
Logical Methods in Computer Science
Volume 22, Issue 1, 2026, pp. 12:1–12:27
https://lmcs.episciences.org/

Submitted Aug. 13, 2024
Published Feb. 16, 2026

ONLINE MONITORING OF METRIC TEMPORAL LOGIC

USING SEQUENTIAL NETWORKS

DOGAN ULUS

Boğaziçi University, Istanbul, Türkiye
e-mail address: dogan.ulus@bogazici.edu.tr

Abstract. Metric Temporal Logic (MTL) is a popular formalism to specify temporal
patterns with timing constraints over the behavior of cyber-physical systems with application
areas ranging in property-based testing, robotics, optimization, and learning. This paper
focuses on the unified construction of sequential networks from MTL specifications over
discrete and dense time behaviors to provide an efficient and scalable online monitoring
framework. Our core technique, future temporal marking, utilizes interval-based symbolic
representations of future discrete and dense timelines. Building upon this, we develop
efficient update and output functions for sequential network nodes for timed temporal
operations. Finally, we extensively test and compare our proposed technique with existing
approaches and runtime verification tools. Results highlight the performance and scalability
advantages of our monitoring approach and sequential networks.

1. Introduction

Monitoring temporal behaviors of complex engineered systems during their execution has
important application areas ranging from system verification and anomaly detection to
supervisory control. As modern computing systems grow increasingly complex, requiring
highly interactive and sophisticated features, the need for effective and more versatile
monitoring solutions increases. Such high levels of complexity necessitate runtime monitoring
of a vast array of temporal properties, including timing constraints and adherence to well-
defined behavioral patterns. Beyond functionality, the concern for performance is also crucial
in any runtime monitoring activity, given the inherent overhead introduced to these systems.
Therefore, fast and versatile runtime monitoring solutions are important assets for ensuring
the correctness and smooth operation of these complex systems.

It is often desirable to construct efficient runtime monitors automatically from high-level
declarative specifications that describe the system behavior in an unambiguous language.
Initially proposed for formal verification, Linear-time Temporal Logic (LTL) [Pnu77] and
its timed extensions, such as Metric Temporal Logic (MTL) [Koy90], have become popular
formalisms in academia and industry to specify the temporal behavior of real-time reactive
systems. These formalisms have found diverse application areas in robotics, optimization,
and property-based testing [BDD+18, SSA+19].

Key words and phrases: runtime verification, temporal logic, sequential networks, real-time systems,
cyber-physical systems.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-22(1:12)2026
© Dogan Ulus
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-5090-1769
http://creativecommons.org/about/licenses

12:2 Dogan Ulus Vol. 22:1

This work presents a unified approach for constructing runtime monitors over discrete
and dense time behaviors from LTL and MTL specifications. Leveraging algebraic sequential
networks, our proposed approach simplifies the transition from untimed to timed specifi-
cations and achieves efficient and scalable runtime monitor construction across both time
models. We study and emphasize the structural advantages of sequential networks over finite
automata, another general solution for runtime monitor construction. Unlike automata-based
constructions, sequential networks offer substantial benefits in compositionality, extensibility,
implementability, and scalability, all while preserving functional equivalence in Boolean con-
texts. Consequently, these structural advantages position sequential networks as a powerful
and adaptable model of computation for tackling diverse runtime monitoring tasks within
complex real-time systems.

Sequential networks in this paper are directly constructed from the past fragments of
LTL and MTL. The restriction to the past temporal connectives is twofold: (1) Future-
oriented (acausal) monitoring is inherently more expensive than past-oriented (causal)
monitoring. The worst-case exponential cost of bookkeeping, among all possibilities in
the future, cannot be avoided unless the output at time t is delayed by some duration d
depending on the formula. (2) However, the practical value of delaying seems nonexistent
for a truly online/reactive setting as we need an output from the monitor at the current
time t rather than the time t + d, which may be too late. This is especially important
when the monitor’s output is used to make a timely decision, as in the supervisory/reactive
control systems. Consequently, we consider future temporal operators to be a costly feature
that does not offer significant practical benefits in online monitoring applications, and we
restrict ourselves to the past fragment for online monitoring applications in this paper. The
basic technique behind constructing sequential networks from past temporal logic formulas
involves associating each subformula with a state variable to store relevant information
and subsequently updating/manipulating them at each time step. This paper introduces
the future temporal marking technique as a novel and effective approach to handling timed
operators for sequential network constructions from PastMTL over discrete and dense time
temporal behaviors. We propose a novel set of update and output equations for each
timed operator to mark future time intervals according to timing constraints in the formula.
Notably, our dense time construction seamlessly extends the discrete time construction,
avoiding the need for a complete overhaul or reliance on naive discretization as in earlier
attempts. This facilitates smooth transitions between untimed and timed specifications, as
well as between discrete and dense time models, paving the way for a unified treatment of
temporal operators across diverse applications and use cases. As a result, our approach
enables the construction of simpler and more extensible monitors, leading to improved
efficiency and adaptability for a wider range of temporal logic monitoring tasks.

The structure of the paper is as follows. Section 2 is dedicated to definitions of sequential
networks and temporal logic over discrete and dense time behaviors. Section 3 and Section 4
present and explain our discrete time and dense time sequential network constructions from
PastMTL specifications. Section 5 presents our online discrete and dense time monitoring
framework, Reelay1, as well as the evaluation and benchmark results. We then summarize
related work in Section 6 before concluding with a summary of our contributions and
promising avenues for future research in Section 7.

1https://github.com/doganulus/reelay

https://github.com/doganulus/reelay

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:3

2. Preliminary Definitions and Background

In this paper, we use both discrete and dense time domains, denoted as T in general.
Specifically, we consider the set N of non-negative integers and the set Q>0 of positive
rational numbers as our discrete and dense time domains, respectively.

Sequential Networks. The online monitoring task can be naturally described as a sequence
transformation [Ran58] from temporal behaviors to monitor verdicts for each time step. A
sequential network is an abstract machine that consists of a finite set C of computation nodes
and implements a sequence-to-sequence transformation, which yields an output sequence
y1y2 . . . yk . . . from an input sequence X1X2 . . .Xk . . . given. Each node c ∈ C is associated
with an update function Vc and an output function Yc. These node functions contribute
to the network’s overall update function V and output function Y . The state valuation
vector Vk collectively represents the internal state of network nodes at time step k, and V0

is called the initial state valuation vector. At each time step k, the network updates its
state vector Vk by calling node update functions and yielding the current output value yk
with respect to the previous state vector Vk−1 and the current input vector Xk. We then
completely characterize a sequential network by the following elements:

(1) The initial state valuation vector V0 of length |C|
(2) The node update functions Vc : Vk(c) ⇐= Vc(Vk−1, Xk) for each node c ∈ C
(3) The network output function Y : Yk ⇐= Y (Vk−1, Xk)

Data types of inputs, outputs, and state variables of the network may vary across applications.
The simplest class of sequential networks, in which all data types are Booleans, is called
Boolean sequential networks or digital sequential circuits when realized using Boolean
logic gates and memory elements. The class of Boolean sequential networks precisely
recognizes regular languages and is thus functionally equivalent to finite automata. The
term algebraic sequential networks denotes generalizations of Boolean sequential networks
into other compatible algebraic structures, such as the algebra of sets.

Past Linear-time Temporal Logic. Past Linear-time Temporal Logic (PastLTL) extends
the propositional logic with past temporal modalities such as the Previously (Y), past Always
(H), past Eventually (P), and Since (S). PastLTL provides a robust framework for expressing
and reasoning about temporal ordering between system states.

Given a finite set P of atomic predicates, the formulas of PastLTL are inductively built
using the following grammar:

φ := ⊤ | ⊥ | p | ¬φ | φ1 ∧ φ2 | φ1 Sφ2

where p ∈ P . The truth of an arbitrary PastLTL formula φ at a given time instant t over
an arbitrary discrete time behavior w, denoted as (w, t) ⊨ φ, is defined inductively in the
following. First, the following statements define the propositional fragment of PastLTL.

(w, t) ⊨ ⊤ ↔ T

(w, t) ⊨ ⊥ ↔ F

(w, t) ⊨ p ↔ wp(t) = T

(w, t) ⊨ ¬φ ↔ (w, t) ⊭ φ
(w, t) ⊨ φ1 ∧ φ2 ↔ (w, t) ⊨ φ1 and (w, t) ⊨ φ2

(2.1)

12:4 Dogan Ulus Vol. 22:1

It is clear how to extend the definitions of negation (¬) and conjunction (∧) of the other
Boolean operators of disjunction (∨), implication (→), double implication (↔), etc.

In the literature, temporal modalities can have reflexive and irreflexive versions, which
differ in how they handle the current time point. The distinction between these two versions
becomes significant when discussing the expressive power. First, the following statement
defines the irreflexive version of the Since modality:

(w, t) ⊨ φ1 Sφ2 ↔ ∃t′ < t. (w, t′) ⊨ φ2 and ∀t′ < t′′ < t. (w, t′′) ⊨ φ1 (2.2)

Other commonly used past temporal modalities Previously (Y), past Eventually (P), and
past Always (H) can be derived from the Since modality using equivalences

(a) Yφ ≡ ⊥ Sφ, (b) Pφ≡ ⊤ Sφ, and (c) Hφ ≡ ¬ P¬φ. (2.3)

Then we can add the following statements to the satisfaction relation:

(w, t) ⊨ Yφ ↔ (w, t− 1) ⊨ φ (2.4)

(w, t) ⊨ Pφ ↔ ∃t′ < t. (w, t′) ⊨ φ (2.5)

(w, t) ⊨ Hφ ↔ ∀t′ < t. (w, t′) ⊨ φ (2.6)

Observe that the irreflexive versions of temporal modalities exclude the current time point t
from their range of quantification. On the other hand, the reflexive versions differ from their
irreflexive counterparts by additionally considering the current time point. The following
statement defines the reflexive version of the Since modality:

(w, t) ⊨ φ1 S
′ φ2 ↔ ∃t′ ≤ t. (w, t′) ⊨ φ2 and ∀t′ < t′′ ≤ t. (w, t′′) ⊨ φ1 (2.7)

From this definition, we can derive reflexive versions of the Past Eventually and the Past
Always operators similarly:

(w, t) ⊨ P′ φ ↔ ∃t′ ≤ t. (w, t′) ⊨ φ (2.8)

(w, t) ⊨ H′ φ ↔ ∀t′ ≤ t. (w, t′) ⊨ φ (2.9)

Yet it is well known that the reflexive version of the Since modality is expressively weaker
than the irreflexive one as it cannot express the Previously modality using Equivalence 2.3(a)
or another way. Therefore, the Previously modality must be added explicitly to the grammar
when using reflexive definitions to preserve expressiveness.

Past Metric Temporal Logic. Past Metric Temporal Logic (PastMTL) extends PastLTL
with a timed variant of the Since modality, denoted by S[a:b], where a and b denote lower
and upper bounds restricting the range of quantification for the modality. We omit a and
b in the notation if there is no constraint on the lower and upper end, respectively. We
refer to a temporal modality untimed if there is no constraint on both ends. The following
statement defines the timed and irreflexive version of the Since modality:

(w, t) ⊨ φ1 S[a:b] φ2 ↔ ∃t′ < t. (w, t′) ⊨ φ2 and
∀t′ < t′′ < t. (w, t′′) ⊨ φ1 and
t− b ≤ t′ < t− a

(2.10)

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:5

From this definition, timed versions of Past Eventually and Past Always operators are
derived using Equivalences 2.3(b) and 2.3(c), respectively, as follows.

(w, t) ⊨ P[a:b] φ ↔ ∃t′ < t. (w, t′) ⊨ φ and t− b ≤ t′ < t− a (2.11)

(w, t) ⊨ H[a:b] φ ↔ ∀t′ < t. (w, t′) ⊨ φ and t− b ≤ t′ < t− a (2.12)

Notice that the formula ⊥ Sφ is equivalent to ⊥ for any formula φ under dense time
interpretation, unlike the discrete case. Hence it is meaningless to define the Previously
modality as one should expect in dense time.

However, when we interpret MTL over discrete time behaviors, we can always replace
timed irreflexive Since connective with the Previously connective as defined in Equation 2.4
and timed reflexive Since defined as follows:

(w, t) ⊨ φ1 S
′
[a:b] φ2 ↔ ∃t′ ≤ t. (w, t′) ⊨ φ2 and

∀t′ < t′′ ≤ t. (w, t′′) ⊨ φ1 and
t− b ≤ t′ ≤ t− a

(2.13)

From this definition, we can derive reflexive versions of the timed Past Eventually and the
timed Past Always operators similarly:

(w, t) ⊨ P′[a:b] φ ↔ ∃t′ ≤ t. (w, t′) ⊨ φ and t− b ≤ t′ ≤ t− a (2.14)

(w, t) ⊨ H′[a:b] φ ↔ ∀t′ ≤ t. (w, t′) ⊨ φ and t− b ≤ t′ ≤ t− a (2.15)

This paper adopts a careful and consistent approach to applying reflexive and irreflex-
ive semantics of temporal modalities. Specifically, we exclusively use reflexive semantics
(Eq. 2.4, 2.7 and 2.13) of temporal modalities when interpreting formulas over discrete time
behaviors. On the other hand, we exclusively use irreflexive semantics (Eq. 2.2 and 2.10)
when interpreting formulas over dense time behaviors. In this manner, our objective is to
establish well-behaving default presets for online temporal logic monitoring applications.
Once this is understood, we drop the prime notation for reflexive modalities and use the
same notation for temporal modalities across discrete and dense time settings.

3. Discrete Time Sequential Network Constructions

This section describes how to construct sequential networks from PastLTL and PastMTL
specifications for discrete time behaviors. We assume that we observe a finite set of
propositions at each discrete time point, which can be represented as a Boolean vector.
The sequential network is fed with these vectors incrementally, one at a time. To track the
passage of time for timed properties, we use a global time counter that increments with each
discrete time step, corresponding to the sequence index. Finally, it’s important to remember
that in the discrete setting, we always use reflexive semantics for temporal modalities and
specify timing constraints over integers.

3.1. Sequential Networks from PastLTL. The PastLTL monitor construction presented
here serves as a crucial preparation step for constructing monitors from timed specifications
in the following sections. This construction shares significant similarities with the dynamic
programming technique described in [HR04] while seemingly distinct in terminology and
presentation. Yet these differences and changing the point of view are important in extending
the approach toward metric extensions.

12:6 Dogan Ulus Vol. 22:1

Given a PastLTL formula, we construct a sequential network consisting of nodes rep-
resenting each subformula of the formula. Each node maintains a Boolean state variable,
collectively forming a state valuation vector V. Initially, all nodes are set to false, such that
V0 = ⊥. At each time point k, the network’s update equations determine the new state
valuation of each node based on its operator type and the current valuations of other nodes.
These update equations defined based on the operator type are as follows:

Vk(p) ⇐= Xk(p) :=

{
T if the proposition p holds at time point k

F otherwise.

Vk(¬φ) ⇐= ¬Yk(φ)
Vk(φ1 ∧ φ2) ⇐= Yk(φ1) ∧Yk(φ2)
Vk(φ1 ∨ φ2) ⇐= Yk(φ1) ∨Yk(φ2)

Vk(Yφ) ⇐= Yk−1(φ)
Vk(Pφ) ⇐= Yk(φ) ∨Vk−1(Pφ)
Vk(Hφ) ⇐= Yk(φ) ∧Vk−1(Hφ)

Vk(φ1 Sφ2) ⇐= Yk(φ2) ∨
(
Yk(φ1) ∧ Vk−1(φ1 Sφ2)

)
(3.1)

whereXk is the propositional input vector. The output functionYk(φ) ⇐= Vk(φ) determines
the output at the time point k. Since the output function is trivial for the untimed case, it is
ignored in monitor constructions from untimed specifications like [HR04, HPU17]. However,
we must distinguish the state and output values of network nodes when dealing with timed
extensions in the following.

We now illustrate the compositionality of sequential network construction with an
example. Consider a PastLTL formula φ := (p ∨ q) S¬r, which contains three propositions
and three non-leaf subformulas. We then construct a sequential network from φ, which
has six nodes (all initialized to false) with update equations and the output function given
in Table 1. Easily seen, we can construct the same sequential network from previously
constructed monitors of (p∨q) and ¬r. Given two monitors for PastLTL formulas φ1 := (p∨q)
and φ2 := ¬r, we can obtain a new monitor for φ1 Sφ2 by joining state variables from both
monitors plus adding a new state variable for the (topmost) Since operator. Then, the
outputs of φ1 and φ2 monitors become arguments of the update equation of the new state.
In other words, output equations of φ1 and φ2 are embedded into the update equation of

Vk(p) : bool ⇐= Xk(p) : bool
Vk(q) : bool ⇐= Xk(q) : bool
Vk(r) : bool ⇐= Xk(r) : bool

Vk(¬r) : bool ⇐= ¬Yk(r) : bool
Vk(p ∨ q) : bool ⇐= Yk(p) : bool ∨ Yk(q) : bool

Vk(φ) : bool ⇐= Yk(¬r) : bool ∨
(
Yk(p ∨ q) : bool ∧Vk−1(φ) : bool

)
Yk(φ) : bool ⇐= Vk(φ) : bool

Table 1. Sequential network constructed from the LTL formula
φ := (p ∨ q) S¬r. Equations are annotated by type information for the state
and input variables, which are always Boolean for networks constructed from
PastLTL specifications.

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:7

φ1 Sφ2 at the composition. Note that the update order for state variables is critical as we
use reflexive semantics. Therefore, the implementation must ensure subformulas are updated
earlier than their parents. This is always possible for LTL formulas due to the acyclic nature
of LTL parse trees, which allows for methods like post-order traversal or topological sorting
to establish a well-defined evaluation order.

3.2. Sequential Networks from PastMTL. This section extends the PastLTL monitor
construction in Section 3.1 towards PastMTL specifications. Timed specifications differ from
untimed specifications in that temporal distances between events and states play a role
in determining satisfaction. Suppose we want to evaluate a PastMTL formula ψ1 S[a:b] ψ2

at the current time point k. Without timing constraints, we need to check the past time
points where ψ2 holds and ensure ψ2 holds since then. This is insufficient for the timed
specification as we also need to check the distance between k and the past time points where
ψ2 holds. The naive way to address this problem is formula discretization, that is, encoding
timing constraints as a series of the Previous operator. However, this technique does not
scale for large timing constraints, and the monitoring performance is heavily degraded while
the timing constraints are getting larger. A better solution for the problem is to keep
the history bounded by the window [k − b, k] and check timing constraints retroactively.
Although this technique performs better than naive discretization, it still suffers from large
timing constraints when the number of events increases in the window. In Section 5.1,
we present our performance experiments using existing MTL monitoring tools using these
techniques [BHKZ11, BKZ17, BKT17].

In this paper, we propose an alternative technique, called future temporal marking, which
labels future temporal points with the corresponding information to be used when the future
time arrives. For example, consider online monitoring of the PastMTL formula φ := P[a:b] ψ.
Unlike existing techniques that rely on keeping a bounded history of output values for the
formula ψ, our technique proactively marks all future time points in [k + a, k + b] whenever
the formula ψ holds at time point k. At a future time point k′, we know the formula φ needs
to be evaluated to true if k′ is already marked, false otherwise. Such a proactive approach
necessitates maintaining a subset of future time points marked for each timed operator
as time progresses. This observation is our starting point for constructing a discrete time
sequential network that can manipulate sets of integers.

Following the PastLTL construction in Section 3.1, we begin our construction by associat-
ing each propositional and untimed subformula with a Boolean state variable and updating
them using the same set of update equations in Equation 3.1. Therefore, the construction
for the untimed fragment remains unaltered in the discrete setting. For the timed fragment,
we create nodes for each timed operator φ that maintains an integer-set (nset) valued state
variable Vk(φ) ⊆ [k,∞). This integer set essentially represents a subset of future integer
time points, and this property is ensured by intersecting Vk(φ) with [k,∞) after an update,
an operation referred to as trimming.

In the following, we explain and formalize how to update timed state variables for each
timed operator.

Timed Past Eventually. According to the reflexive PastMTL semantics, the formula
P[a:b] ψ holds at a time point k if the formula ψ holds for some time points in the discrete
time interval [k − b, k − a]. For the timed Eventually nodes, we want to mark future
time points and maintain the integer-set valued state variable V(P[a:b] ψ) to update it at

12:8 Dogan Ulus Vol. 22:1

every time point. This behavior is formally captured in the update equation of timed past
Eventually nodes as follows:

Vk(P[a:b] ψ) : nset ⇐=

{
Vk−1(P[a:b] ψ) : nset ∪ [k + a, k + b] if Yk(ψ) : bool

Vk−1(P[a:b] ψ) : nset otherwise.
(3.2)

where the Boolean-valued function Yk(ψ) denotes the output equation of the formula ψ
and the initial state V0 is defined to be empty. Here, the update equation marks future
time points based on the subformula’s truth value and timing constraints, while previously
marked time points remain marked. It is easy to see that the current time point k must be
in Vk(P[a:b] ψ) by definition if the formula P[a:b] ψ holds at k. From this observation, we
define the output function Yk(P[a:b] ψ) to be a membership test as follows:

Yk(P[a:b] ψ) : bool ⇐= k ∈ Vk(P[a:b] ψ) (3.3)

Notice that unlike the untimed case, where both state valuations and output values are
Boolean, the discrete timed case introduces different data types for valuations and output
values. We consider this fact to be the general case for sequential networks and regard the
untimed case to be a specialization of the general framework established in this paper.

In the following, we present an example sequential network construction from the
PastMTL formula φ := P[1:2] P[1:2](p ∨ q), which has three non-leaf subformulas ψ1 : p ∨ q
and ψ2 : P[1:2](p ∨ q) including the formula φ itself. Our construction produces one Boolean
and two timed nodes in the resulting network, as shown in Table 2 with corresponding
update equations and the output function. Notice that the output function k ∈ Vk(ψ2) of
P[1,2](p∨ q) is embedded into the update equation of Vk(φ) during the construction. Table 3
illustrates an example run over a discrete time behavior from the time index k = 0 to 5
over the propositions p and q in the first two rows. The next three rows below denote
the valuation of state variables, and the final row denotes the output of the sequential
network. Observe that the timed nodes trim their valuations to be a subset of [k,∞) as
time progresses. This is important in practice to keep the size of state valuations small. A
minor limitation and our performance experiments related to the size of state valuations are
presented in Section 5.1.

Finally note that the formula P[1:2] P[1:2](p ∨ q) is semantically equivalent to a simpler
formula of P[2:4](p ∨ q). Therefore, we know it is possible to construct a smaller network to

Vk(p) : bool ⇐= Xk(p) : bool
Vk(q) : bool ⇐= Xk(q) : bool

Vk(ψ1) : bool ⇐= Yk(p) : bool ∨ Yk(q) : bool

Vk(ψ2) : nset ⇐=

{
Vk−1(ψ2) : nset ∪ [k + 1, k + 2] if Yk(ψ1) : bool

Vk−1(ψ2) : nset otherwise.

Vk(φ) : nset ⇐=

{
Vk−1(φ) : nset ∪ [k + 1, k + 2] if Yk(ψ2) : bool

Vk−1(φ) : nset otherwise.

Yk(φ) : bool ⇐= k ∈ Vk(φ) : nset

Table 2. Sequential network constructed from the formula φ :=
P[1,2] P[1,2](p ∨ q) where ψ1 := p ∨ q and ψ2 := P[1,2](ψ1).

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:9

k − 0 1 2 3 4 5

X(p) : bool T F F F F F

X(q) : bool F F F F T F

V(p) : bool F T F F F F F

V(q) : bool F F F F F T F

V(ψ1) : bool F T F F F T F

V(ψ2) : nset ∅ [1, 2] [1, 2] {2} ∅ [5, 6] [5, 6]
V(φ) : nset ∅ ∅ [2, 3] [2, 4] [3, 4] {4} [6, 7]

Y(φ) : bool F F T T T F

Table 3. An example execution of the sequential network in Table 2.

monitor this formula. However, in this paper, our constructions follow the formula structure
faithfully. Although we do not target the most optimal networks, we still recognize the
potential for performance improvements through syntactic optimizations such as formula
rewriting and common subformula elimination.

Timed Past Always. According to the reflexive PastMTL semantics, the formula H[a:b] ψ
holds at a time point k if the formula ψ holds for all time points in the discrete time interval
[k − b, k − a]. Similar to the timed past Eventually case, we maintain the integer-set valued
state variable V(H[a:b] ψ) for timed past Always nodes and update it at every time point.
To capture this behavior efficiently, we leverage the duality property from Equivalence 2.3(c)
and define the update equation for the timed past Always operator as follows:

Vk(H[a:b]) : nset ⇐=

{
Vk−1(H[a:b]) : nset ∪ [k + a, k + b] if ¬Yk(ψ) : bool

Vk−1(H[a:b]) : nset otherwise.
(3.4)

where the Boolean-valued function Yk(ψ) denotes the output equation of the formula ψ.
But, unlike the timed past Eventually case, the update equation now marks new future time
points if the subformula does not hold, and we need to check the absence of current time
point k in the Vk(H[a:b]) to output true. The output function is then defined as:

Yk(H[a:b]) : bool ⇐= k /∈ Vk(H[a:b]) (3.5)

The initial state V0(H[a:b]) is similarly set to the empty set ∅. This approach allows the
operators P[a:b] and H[a:b] to seamlessly handle vacuous truth situations where no truth

k − 0 1 2 3 4 5

X(p) : bool F F T T T F

V(H[1:2] p) : nset ∅ [1, 2] [1, 3] [2, 3] {3} ∅ [6, 7]

Y(H[1:2] p) : bool T F F F T T

Table 4. An example execution of the sequential network constructed for
the formula φ := H[1:2] p over an discrete time behavior of the proposition p.

12:10 Dogan Ulus Vol. 22:1

value is assigned before the initial time point. Table 4 illustrates an example run of the
sequential network constructed from the formula φ := H[1:2] p.

Timed Since. According to the reflexive PastMTL semantics, the formula ψ1 S[a:b] ψ2 holds
at a time point k if ψ2 held at time point k′ in the past between time points k− b and k− a,
and ψ1 has held continuously from k′ to k. The timed Since operation is the most general
case for our discrete time PastMTL construction, as the previous cases can be derived from
this construction. Intuitively speaking, online monitoring of timed Since nodes using our
approach requires marking future time points whenever the formula ψ2 holds according
to timing constraints and removing them when the formula ψ1 ceases to hold. In other
words, timed Since nodes dynamically maintain an integer-set valued state variable based on
the output of the formula ψ2 and timing constraints. These integers represent future time
points where the timed Since node might be satisfied, while requiring the subformula ψ1 to
continuously hold until then.

Based on these observations, we formally define the update equation of the sequential
network constructed for the formula φ := ψ1 S[a:b] ψ2 as follows:

Vk(φ) : nset ⇐=


Vk−1(φ) : nset ∪ [k + a, k + b] if Yk(ψ1) ∧Yk(ψ2)

[k + a, k + b] if ¬Yk(ψ1) ∧Yk(ψ2)

Vk−1(φ) : nset if Yk(ψ1) ∧ ¬Yk(ψ2)

∅ otherwise.

(3.6)

The initial state V0(ψ1 S[a:b] ψ2) is set to the empty set ∅ and the output function is similarly
defined as a membership test for the timed Since nodes as follows:

Yk(ψ1 S[a:b] ψ2) : bool ⇐= k ∈ Vk(ψ1 S[a:b] ψ2) (3.7)

These definitions complete our discrete time sequential network construction from the reflexive
PastMTL specifications. The irreflexive case is similar to the reflexive. The irreflexive update
function does not add k to the valuation for the case when Yk(ψ2) holds. Therefore, we can
obtain the update function for the irreflexive Since operation from Equation 3.6 by replacing
[k + a, k + b] with (k + a, k + b] when a = 0 and derive update functions for other irreflexive
temporal operators.

Each node in the network synchronously updates its state based on information as
defined by their update and output equations. Table 5 illustrates an example run of the
sequential network constructed from the formula φ = p S[2:3] q. At time point 1, the
proposition q is true, and we mark future time points [3, 4]. These potential satisfaction
points for the formula will be kept in the valuation set if the proposition p continues to hold,
as realized for time points 3 and 4. The proposition p gets false at time point 5; therefore,
potential satisfaction for time points 6 and 7 will not be realized. Note that the valuation
set has been trimmed at each time step therefore the valuation set at time point 4 does not
contain the time point 3.

Finally, we state the correctness of our construction with the following theorem.

Theorem 3.1. For any PastMTL formula φ and discrete time behavior w, the sequential
network output Yk(φ) evaluates to true at time point k over w iff (w, k) ⊨ φ holds.

Proof. We only show the correctness of the timed Since case as the propositional and untimed
fragment is straightforward and other temporal operators can be derived from timed Since.

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:11

k − 0 1 2 3 4 5

X(p) : bool F F T T T F

X(q) : bool F T F F T F

V(p S[2:3] q) : nset ∅ ∅ [3, 4] [3, 4] [3, 4] {4} ∪ [6, 7] ∅
Y(p S[2:3] q) : bool F F F T T F

Table 5. An example execution of the sequential network constructed for
the formula φ := p S[2:3] q over discrete time behaviors of p and q.

(�) First, we show that (w, k) ⊨ ψ1 S[a:b] ψ2 holds if time point k ∈ Vk(ψ1 S[a:b] ψ2). Assume
that k ∈ Vk(ψ1 S[a:b] ψ2). By Definition 3.6 of the update function, this implies that k
was added to the valuation set for some k† ∈ [k − b, k − a], which satisfies the first and
timed condition of the semantic definition in Definition 2.13. Furthermore, this implies
ψ1 holds continuously from the last addition of k until the current time point k as the
update function preserves time points from Vk when ψ1 holds. Thus, the semantic
definition is satisfied in either case, and we conclude (w, k) ⊨ ψ1 S[a:b] ψ2.

(�) Second, we show that (w, k) ⊭ ψ1 S[a:b] ψ2 holds if the time point k /∈ Vk(ψ1 S[a:b] ψ2).
Assume that k /∈ Vk(ψ1 S[a:b] ψ2). There are two possibilities:

(i) The time point k is never added to Vk. Then, there exists no time point k† ∈
[k − b, k − a] that satisfies ψ2, thus (w, k) ⊭ ψ1 S[a:b] ψ2.

(ii) The time point k is initially added to Vk at some time point k† ∈ [k − b, k − a]
and removed at a later step. This means there exists a time point k‡ such that
k† < k‡ ≤ k where ψ1 does not hold as the update function only removes time
points from Vk when ψ1 does not hold. Thus, (w, k) ⊭ ψ1 S[a:b] ψ2.

The semantic definition is violated in either case, and we conclude (w, k) ⊭ ψ1 S[a:b] ψ2.

This completes both directions of the equivalence proof, establishing the correctness of the
update function for the timed Since operator and our construction.

4. Dense Time Sequential Network Construction

This section explains sequential network constructions over the dense time behaviors from
PastMTL specifications, extending our discrete time constructions in the previous section.

The first difference between discrete and dense time settings is the representation of
temporal behaviors. Discrete time behaviors are naturally described as a finite sequence
of atomic observations indexed by discrete time points. Such finite representation is not
straightforward for dense time behaviors as we lack a standard successor relation for dense
domains. One solution is timed event sequences that sample a finite subset of time points
from the dense time domain and order them by the standard ordering relation. However,
timed event sequences have a severe limitation in that the state of monitors can be updated
only at sample points, and a non-sufficiently sampled time domain may cause the monitor
to yield a wrong verdict [Rey16, BKZ18].

An alternative solution is to represent dense time behaviors as finite sequences of time
intervals [AH92], that is, non-empty convex subsets of the time domain. Although the
traditional continuum representation is more natural and does not have the aforementioned

12:12 Dogan Ulus Vol. 22:1

irregularities of timed event sequences, this representation is much less developed for dense
time monitoring algorithms [Rey16, BKZ18]. One possible reason is that any algorithm
working on the traditional continuum must deal with all the challenges of real analysis,
such as boundary inclusion/exclusion, limit conditions, epsilon neighborhoods, and Zeno
paradoxes. However, these mathematical artifacts hardly matter in monitoring and lead
to unnecessarily complicated algorithms. Practical monitor implementations thus restrict
dense time behaviors to have finite variability —meaning a finite number of discontinuities
exists within any bounded interval— and employ a single interval type in practice. These
practices are departures from the initial assumptions of the continuum, but nonetheless,
they can be formalized using a restriction to finite representation and a coarser topology on
the time domain. Yet a deeper discussion is beyond our scope in this paper.

This paper follows the latter solution and represents dense time behaviors as finite
sequences of left-open and right-closed intervals. This particular choice of interval type
follows from the fact that the Since operator is left-continuous [FMNP19], intuitively meaning
that the Since operation yields and preserves left-open and right-closed interval types on
dense domains. Therefore, our approach uniformly treats and requires dense time intervals
to be left-open and right-closed for our dense time procedures.

We start our dense time monitor construction by assuming we observe a finite set P
of propositions. We consider a dense time Boolean behavior w : (t0, tn] → BP is a function
that can be represented as a sequence of constant valued segments such that

(t0, t1] → X1; (t1, t2] → X2; . . . ; (tn−1, tn] → Xn

where n ∈ N, t0, t1, . . . , tn ∈ Q and X1,X2, . . . ,Xn ∈ BP are propositional Boolean vec-
tors. For the behavior w, the segmentation τ(w) is defined to be the set of its endpoints
{t0, t1, t2, . . . , tn}. We use the notation wk to refer to the k-th segment of the behavior w,
and the function dom(k) denotes its time domain (tk−1, tk] for k = 1, 2, . . . , n. The duration
|wk| of the segment k is defined to be tk − tk−1. We avoid zero-duration segments in this
formulation; thus, time progress is strict.

We then define quantization and condensation as two common operations on dense time
behaviors to help analyze the inherent tradeoff between granularity and efficiency in dense
time monitoring. Quantization partitions a dense time behavior w into an equivalent and
evenly segmented behavior w′ such that the duration |w′

k| of each segment k is equal within
w′. Quantization requires a fixed segment length δ such that each segment boundary t in
the behavior w is an integer multiple of δ. The set {kδ | k ∈ N} is called the base of the
quantization generated by δ. Conversely, condensation merges consecutive segments with the
same value, called stuttering segments, into longer segments. This process can be applied
iteratively until the behavior is maximally condensed, meaning that containing no stuttering
segments. Figure 1 illustrates the application of quantization and condensation to example
dense time behaviors.

Dense-time sequential networks process input behavior incrementally, consuming a single
constant-valued segment at each step. Crucially, the network operates without requiring
prior knowledge of the overall segmentation, nor does it impose constraints on segment
boundaries, length, or arrival rate. This flexibility is a key feature of our approach. The
network handles varying data streams, making it ideal for real-time processing and systems
with asynchronous or irregular updates. While segmentation choices do not affect the
network’s functionality and output, they may influence monitoring performance considerably.
Section 5.3 provides a detailed performance analysis, examining how different segmentation

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:13

A B A B C

A A B B B A A A B B C C

(i) Quantization

A A B B B A A A B B C C

A B A B C

(ii) Condensation

Figure 1. Quantization and condensation operations side by side

schemes influence the performance. Yet, ultimately, the user or application side retains
control over the segmentation.

In the following section, we explain and formalize how to update sequential network
nodes for each operator, extending our discrete time constructions from the previous section.

Dense Time Propositional Fragment. Nodes in our dense time sequential network
construction manipulate all current and future time points at a single update step. This is
similar to the discrete case except that current time points are no longer isolated. Dense
time nodes receive input and produce output for all time points in the current interval.

Dense-time propositional nodes internally represent their state valuation as a subset
of the rational numbers, denoted as qset. For a given dense-time segment k, the valuation
set Vk(p) consists of rational time points where the proposition p holds. This extends to
Boolean operations naturally, and we define the update equations for both propositional
and Boolean nodes as follows:

Vk(p) : qset ⇐= {t ∈ dom(k) | wp(t) = T}
Vk(¬φ) : qset ⇐= dom(k) \ Yk(φ) : qset

Vk(φ1 ∧ φ2) : qset ⇐= Yk(φ1) : qset ∩ Yk(φ2) : qset
Vk(φ1 ∨ φ2) : qset ⇐= Yk(φ1) : qset ∪ Yk(φ2) : qset

(4.1)

where dom(k) ⊆ Q+ denotes the domain of the current segment k. For the dense time
setting, the output of each segment is a subset of its time domain, where membership
indicates the formula’s validity at that particular point in time. The output function for
propositional nodes is then trivially defined as follows:

Yk(φ) : qset ⇐= Vk(φ) : qset (4.2)

Therefore, the network efficiently computes and propagates truth values of dense time points
within a segment in a single, unified update.

Dense Timed Since. We handle dense timed Since nodes similar to the discrete time
construction with a few modifications for the dense time setting.

First, the network node for timed Since needs to process the output values of their
operand nodes over constant segments. Yet, generally, constant segments in the operand
outputs are not synchronized inside the current segment. Therefore, we must synchronize
dense time output valuations from operands to provide constant-valued local segments before
feeding them into our node update procedure. To this end, we introduce a secondary local
index l that indicates the position of a local segment in the current global segment. For
example, consider that we are processing the k-th segment that consists of Lk constant-valued
local segments over the operand values ψ1 and ψ2 for the formula ψ1 S[a:b] ψ2. The notation

12:14 Dogan Ulus Vol. 22:1

Vk,l denotes the valuation of l-th constant local segment for both operands in the k-th global
segment for l = 1 . . . Lk, and similarly Yk,l denotes its output.

The example in Table 6 illustrates the synchronization operation over dense time
behaviors of sub-formulas ψ1 and ψ2. Dense time behaviors of the operands are sequentially
given as four global segments in the example, and we locally synchronize them before local
updates of the timed Since operation. Synchronization may lead to further segmentation
on the timeline in which both behaviors hold constant, as shown in the row denoted by
ψ1||ψ2. In the worst case, this leads to |Yk(ψ1)|+ |Yk(ψ2)| − 1 local segments inside the
global segment k. For this example, the first three global segments are divided into four
local segments, and the last is divided into two local segments.

Second, node updates within each global segment are performed through local update
steps. Similar to the discrete time update function in Equation 3.6, the update function for
dense timed Since nodes φ = ψ1 S[a:b] ψ2 for the local segment (k, l) is defined as follows:

Vk,l(φ) : qset ⇐=


Vk, l−1(φ) : qset ∪ (t+ a, t′ + b] if yk,l(ψ1) ∧ yk,l(ψ2)

(t′ + a, t′ + b] if ¬yk,l(ψ1) ∧ yk,l(ψ2)

Vk, l−1(φ) : qset if yk,l(ψ1) ∧ ¬yk,l(ψ2)

∅ otherwise.

(4.3)

where dom(k, l) = (t, t′] and yk,l is the Boolean value for the constant-valued local segment
(k, l) for the operands. Local updates follow a strict sequential order like global update steps,
with the final local step serving as the initial step for the subsequent segment such that
Vk,Lk

= Vk+1,0. The irreflexive Since operation is left-continuous by the semantic definition
in Equation 2.10, meaning that, for all behaviors w and time points t; (w, t) ⊨ φ implies
there exists t′ < t such that for all t′′ ∈ (t′, t).(w, t) ⊨ φ. It is easy to see that the local
update function preserves the left-continuity of the valuation set.

Finally, we combine the outputs of local updates to prevent timeline fragmentation at
the network interface, which may be problematic when the network’s output is used to feed
another network in a compositional way. Analogously to the discrete time output function
defined in Equation 3.7, the output function for a local segment is defined using the set
intersection operation as follows:

Yk,l(φ) : qset ⇐= Vk,l(φ) : qset ∩ dom(k, l) : qset (4.4)

This set intersection operation symbolically checks membership for all points within the
current time segment and yields all time instants that satisfy the formula for the segment.
The final computation step combines the outputs of individual local steps within each global
segment and yields the output of the global segment as a whole. This step is achieved
through the union operation, effectively preventing any timeline fragmentation that could
otherwise arise from the local synchronization approach. Leveraging these insights, we
formally define the output of the global segment k as a union of the outputs of all Lk local
segments as follows:

Yk(φ) : qset ⇐= Yk,1(φ) : qset ∪ Yk,2(φ) : qset ∪ · · · ∪ Yk,Lk
(φ) : qset (4.5)

Therefore, a dense time node receives the inputs for the current time interval and yields an
output for the same interval as the sequential model of computation dictates.

Table 6 illustrates how our sequential network processes a dense time behavior for the
formula φ = ψ1 S[18:24] ψ2 where ψ1 and ψ2 represent subformulas over dense time. Each
row corresponds to a step in the processing, progressing through global segments defined

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:15

Step(k) : 1 2 3 4

Domain : (0, 30] (30, 47] (47, 75] (75, 99]

ψ1 :
(0, 7] → F;
(7, 30] → T;

(30, 35] → T;
(35, 39] → F;
(39, 47] → T;

(47, 49] → T;
(49, 63] → F;
(63, 75] → T;

(75, 99] → T;

ψ2 :
(0, 3] → F;
(3, 8] → T;
(8, 30] → F;

(30, 38] → F;
(38, 39] → T;
(39, 47] → F;

(47, 70] → F;
(70, 75] → T;

(75, 89] → T;
(89, 99] → F;

ψ1 ||ψ2 :

yψ1 yψ2

(0, 3] : F F

(3, 7] : F T

(7, 8] : T T

(7, 30] : T F

yψ1 yψ2

(30, 35] : T F

(35, 38] : F F

(38, 39] : F T

(39, 47] : T F

yψ1 yψ2

(47, 49] : T F

(49, 63] : F F

(63, 70] : T F

(70, 75] : T T

yψ1 yψ2

(75, 89] : T T

(89, 99] : T F

Vk,l(φ) :

1 : ∅
2 : {(25, 31]}
3 : {(25, 32]}
4 : {(25, 32]}

1 : {(30, 32]}
2 : ∅
3 : {(57, 63]}
4 : {(57, 63]}

1 : ∅
2 : ∅
3 : ∅
4 : {(88, 99]}

1 : {(88, 113]}
2 : {(89, 113]}

Yk(φ) : {(25, 30]} {(30, 32]} ∅ {(88, 99]}

Table 6. An example run of the network constructed for the formula φ =
ψ1 S[18:24] ψ2 over dense time behaviors of ψ1 and ψ2.

by the input behavior and the timing window of the Since operator. Within each global
segment, the table breaks down the output Y(φ) into local valuations (||) for individual time
periods. These local valuations depend on the satisfaction of both subformulas Y(ψ1) and
Y(ψ2) within the corresponding period and the timing constraints of the Since operation.
The final output Y(φ) for each global segment is obtained by joining the local outputs,
reflecting the overall periods where the formula φ holds based on the combined behavior of
ψ1 and ψ2 across the global segment.

Finally, we establish the correctness of our dense time construction. Our strategy involves
two steps. First, we reduce the dense-time behavior to an equivalent, evenly-segmented
form compatible with the timing constraints specified in the formula. Then, we prove the
correctness of our procedure over this reduced behavior, without loss of generality. The
structure of the dense-time proof deliberately is similar to the discrete case.

Proposition 4.1. Given a PastMTL formula φ, there exists a base of quantization for any
dense time behavior w is closed under dense time sequential network update functions.

Proof. Let δ ∈ Q+ be the greatest rational common divisor of all segment boundaries in the
behavior w and timing constraints in the formula φ. The base of quantization generated
by δ is trivially closed under addition; thus dense time Since update function in Equation 4.3
does not generate new segment boundaries outside the existing base. Since Boolean update
functions trivially preserve the existing base, the proof is complete.

12:16 Dogan Ulus Vol. 22:1

Theorem 4.2. For any PastMTL formula φ and dense time behavior w, the sequential
network output Yk(φ) evaluates to true at time point k over w iff (w, k) ⊨ φ holds.

Proof. Let an evenly segmented behavior w′ that is equivalent to the behavior w and
compatible with the formula φ by Proposition 4.1. We assume the fixed segment length δ = 1
without loss of generality and proceed similarly to the proof of discrete time Theorem 3.1.
Boolean operations are straightforward. The case for dense time Since is as follows:

(�) First, we show that (w, t) ⊨ ψ1 S[a:b] ψ2 holds for all t ∈ (k, k+1] if a segment (k, k+1] ⊆
Vk(ψ1 S[a:b] ψ2). Assume that (k, k + 1] ⊆ Vk(ψ1 S[a:b] ψ2). By Definition 2.10 of the
dense time update function, at least one of the following cases holds:

(i) The segment (k, k + 1] was added to the valuation set by a segment (k†, k† + 1] ⊆
(k − b, k − a] where φ2 and ¬φ1 holds. Furthermore, the formula φ1 holds for all
points in (k† + 1, k + 1]. Then, the intersection of (k − b, k − a] and [t− b, t− a)
for all t ∈ (k, k + 1] is non-empty. Hence, (w, t) ⊨ ψ1 for all t ∈ (k, k + 1].

(ii) The segment (k, k + 1] was added to the valuation set by a segment (k†, k† + 1] ⊆
(k− b, k− a+1] where φ2 and φ1 holds. Furthermore, the formula φ1 holds for all
points in (k†, k + 1]. Then, the intersection of (k − b, k − a+ 1] and [t− b, t− a)
for all t ∈ (k, k + 1] is non-empty. Hence, (w, t) ⊨ ψ1 for all t ∈ (k, k + 1].

The semantic definition of the Since operation is satisfied in either case, and we conclude
(w, t) ⊨ ψ1 for all t ∈ (k, k + 1].

(�) Second, we show that (w, t) ⊭ ψ1 S[a:b] ψ2 holds for all t ∈ (k, k + 1] if a segment
(k, k + 1] ⊈ Vk(ψ1 S[a:b] ψ2). Assume that (k, k + 1] ⊈ Vk(ψ1 S[a:b] ψ2). There are two
possibilities:

(i) The segment (k, k + 1] is never added to Vk. Then, there exists no segment that
satisfies ψ2 and timing constraints, thus (w, k) ⊭ ψ1 S[a:b] ψ2.

(ii) The segment (k, k + 1] is initially added to Vk at some segment k† and removed
at a later step. This means there exists a segment k‡ between k† < k‡ ≤ k where
ψ1 does not hold as the update function only removes time points from Vk when
ψ1 does not hold. Thus, (w, k) ⊭ ψ1 S[a:b] ψ2.

The semantic definition is violated in either case, and we conclude (w, k) ⊭ ψ1 S[a:b] ψ2.

This completes both directions of the equivalence proof, establishing the correctness of the
dense time update function for the timed Since operator and our construction.

The quantization technique employed in the proof is not practical, however. In practice,
the number of quantized segments may be very large and sensitive to the specific numeric
constants present in the behavior and timing constraints. This would bring a higher and
unnecessary computational burden in many dense time monitoring applications. Therefore,
our dense time procedure performs a lazy and local synchronization on the fly, only dividing
time intervals as needed during the evaluation process.

5. Implementation and Evaluation

This section presents a comparative performance and scalability analysis of the Reelay
monitoring library that implements sequential network-based monitors as explained in this
paper. Reelay2 provides a comprehensive solution for specification-based monitoring of
temporal behaviors, offering flexibility and extensibility at its core. Its latest version is

2https://github.com/doganulus/reelay

https://github.com/doganulus/reelay

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:17

written as a header-only C++ template library. Reelay implements sequential networks as
an acyclic computation graph using runtime polymorphism in C++, which provides a flexible
structure and easier usage but incurs virtual function indirection overhead. The software
design permits users to customize the types for input streams, allowing them to opt for their
preferred representation formats for temporal behaviors, provided they create the necessary
adapter code. Furthermore, as a standalone monitoring tool, Reelay releases include a C++
application ryjson, which leverages the reelay library to monitor the newline-delimited
sequences of JSON documents, which represents discrete and dense time behaviors. This
application is exclusively utilized for all performance experiments conducted in this study.

We start our analysis with some basic experiments to demonstrate the benefits and
limitations of the MTL monitoring technique explained in this paper. In particular, we
compare existing techniques implemented in monitoring tools against certain challenging
properties on synthetic and adversarial inputs. This analysis clarifies the importance and
effectiveness of our approach in tackling large timing constraint issues, especially when
compared to contemporary state-of-the-art solutions. In this part, we also compare discrete
and dense time monitoring, delving into their strengths and weaknesses within various
monitoring contexts based on performance results.

The second and third parts of the analysis demonstrate the typical performance of
discrete and dense time monitors over Timescales benchmarks [Ulu19]. Discrete time
benchmarks compare Reelay with other publicly available MTL monitoring tools, whereas
dense time benchmarks are compared with the discrete case. In all our experiments, we report
performance results from our Linux-based containerized benchmarking environment, which
runs on a six-core 3.80GHz Intel Xeon W-2235 CPU. Benchmark scripts and repeatability
instructions are available in our code repository3.

5.1. Basic Experiments. As detailed in Sections 3 and 4, our monitor construction
technique generates a set of nodes with update and output functions based on the syntax
tree of the PastMTL formula. These nodes form an acyclic computation graph where
each performs certain Boolean and interval set operations depending on the node type
and the time model at every computation step. This section compares our approach
with other alternative approaches implemented in two publicly available monitoring tools,
MonPoly [BHKZ11, BKZ17] and Aerial [BKT17], that support online PastMTL monitoring.
Both tools use a sample-based time model, equivalent to the discrete model if there is a
sample for each discrete time point. Conversely, their sample-based model and our interval-
based model for dense time behaviors are inherently different. Therefore, we restrict our
evaluation to discrete time behaviors only for a fair comparison.

To systematically evaluate the scalability of timed monitoring approaches under different
temporal constraints and behavior lengths, we conduct a number of experiments using
three parameterized PastMTL properties. We define three variants for each property, each
encompassing a tenfold increase in timing constraints, spanning from ten to thousand time
units. These properties are tested over temporal behaviors whose lengths range from ten
thousand to one million. Ideally, we expect the performance of monitoring tools to scale
linearly to the behavior length while exhibiting constant execution times with respect to
varying timing constraints—a particularly important metric for real-time systems where
specified timing constraints can be significantly larger than the system’s base time unit.

3https://github.com/doganulus/timescales

https://github.com/doganulus/timescales

12:18 Dogan Ulus Vol. 22:1

Table 7 presents our evaluation results for these performance experiments. First, the
property QPR : H

(
(r ∧ ¬q ∧ P q) → (p S[l:u] q)

)
is a typical PastMTL property where we

consider three variants, QPR10, QPR100, and QPR1000, whose timing parameters are defined
as [3:6], [30:60], and [300:600], respectively. We see that MonPoly and Reelay handle longer
temporal behaviors and large timing constraints as expected for QPR property. Aerial also
handles longer behaviors as expected. Yet it does not scale for large timing constraints as it
uses naive discretization for handling timing constraints. For these properties and behaviors,
Reelay appears 10-15 times faster than MonPoly, yet the performance difference is still in the
margin of the implementation details between tools —especially regarding the programming
language choices of C++ (Reelay) and OCaml (MonPoly, Aerial).

Second, the property PandQ : p S[a:b] q is a basic property where we consider three
variants, PandQ10, PandQ100, and PandQ1000, whose timing parameters are defined as [1:6],
[1:60], and [1:600], respectively. We evaluate these three variants over a specific temporal
behavior where the proposition q occurs frequently. This combination attacks MonPoly’s
approach of keeping bounded history windows for timed nodes. The performance results in
Table 7 show that MonPoly does not scale for this particular case as MonPoly explicitly
stores all occurrences of the second argument of Since operation in the history window
bounded by the constraint b. For Reelay, frequent occurrence of q leads to overlapping
marked periods in the future that we can merge, thus keeping the size of the valuation set
small. Therefore, our approach performs well in this case and requires a constant time as
the timing constraint b gets larger.

However, for the third property, we attack our own method by a very specific adversarial
case that involves (1) a formula P[a:b] q with a very precise and large timing constraint
such that b− a≪ b, and (2) an input behavior of the proposition q holds very frequently
such as on every other time point. This pathological scenario is captured by the property
Delay where we consider three variants, Delay10, Delay100, and Delay1000, whose timing
parameters are defined as [6:6], [60:60], and [600:600], respectively. The performance results
in Table 7 show that the Delay property does not scale for all three tools. For Reelay,
this case leads to linear growth of the valuation set with respect to the constraint b, thus

Aerial MonPoly Reelay
10K 100K 1000K 10K 100K 1000K 10K 100K 1000K

QPR10 0.031 0.303 3.413 0.025 0.285 3.062 0.020 0.037 0.255
QPR100 0.270 2.658 27.418 0.024 0.274 2.861 0.020 0.036 0.263
QPR1000 3.859 38.345 315.566 0.026 0.275 2.911 0.020 0.036 0.260

PandQ10 0.038 0.267 2.544 0.032 0.349 3.535 0.021 0.046 0.367
PandQ100 0.243 2.275 22.723 0.066 0.639 6.500 0.021 0.055 0.371
PandQ1000 3.215 32.039 401.784 0.339 3.664 36.786 0.021 0.048 0.365

Delay10 0.039 0.252 2.538 0.028 0.300 3.048 0.021 0.046 0.387
Delay100 0.215 2.126 21.015 0.036 0.404 4.243 0.026 0.133 1.280
Delay1000 2.952 29.339 294.031 0.142 1.551 15.304 0.087 1.100 10.523

Table 7. Total execution times in seconds for discrete time monitoring tools
over three different properties and behavior lengths.

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:19

deteriorating the performance as b grows larger. We present this case as a pathological
example of timed monitoring applications.

5.2. Discrete Time Benchmarks. This section presents a comparative analysis of perfor-
mance benchmarks for our discrete time monitors against existing publicly available tools.
To provide a rigorous evaluation, we leverage the Timescales benchmark generator [Ulu19],
enabling the generation of semi-randomized temporal behaviors satisfying predefined tempo-
ral logic formulas at every time point. Table 8 details the 10 Timescales properties used in
our experiments, representing real-world scenarios and as reliable proxies for assessing typical
monitoring tool performance. Following the methodology from the previous section, we
evaluate each property through three variants featuring a tenfold difference in their timing
parameters. These benchmarks demonstrate the performance and scalability of monitoring
tools over typical scenarios, complementing our findings in Section 5.1.

Table 9 presents a performance comparison of the monitoring tools (Aerial, MonPoly,
Reelay) across Timescales properties over discrete time behaviors with a length of 1 million.
These results reinforce the evidence of the practical scalability of Reelay and MonPoly in
the face of varying timing constraints, as both maintain near-constant execution times over
many different properties. Conversely, Aerial demonstrates its limitation in handling large
constraints and does not scale at all. Regarding absolute speed, Reelay’s performance is
consistently faster than MonPoly in these benchmarks. As the speed of executions is very
important for many online and offline applications, we must ensure monitoring tools are
optimized for speed. Therefore, we strongly advocate for compiled and system languages in
developing monitoring tools, ensuring they can effectively meet the stringent performance
demands of modern applications.

5.3. Dense Time Benchmarks. In this section, we present a comprehensive performance
analysis and benchmarking of our dense time monitor implementations. We use the same set
of Timescales properties and discrete time behaviors defined in Section 5.2 for dense time
experiments after condensing these behaviors, to enable a direct comparison of time models
and their trade-offs. Recall that we interpret the discrete time point k with a value v as a
constant segment of (k, k + 1] with the value v under the dense time setting. To enrich our
experiments, we consider an additional parameter that controls the maximum duration for
condensed periods. This parameter is particularly helpful for simulating real-time systems
that must respond at a minimum rate. In the extreme case, setting the parameter to 1
disables condensation, resulting in the original discrete time representation. Conversely,
setting it to a sufficiently large value eliminates all stuttering periods, leading to the most
condensed representation. It is easy to see that condensation is a lossless compression
operation for dense time behaviors.

Table 10 presents the performance of our dense time monitors on dense time Timescales
benchmarks. These benchmarks were generated using different values for the condensa-
tion parameter, as explained earlier. The benchmark sets, named Dense1, Dense10, and
Dense100, represent scenarios where the maximum duration of a condensed segment is
restricted to 1, 10, and 100 time units, respectively. The Dense benchmark set represents
the scenario with no stuttering periods in input behaviors. Len columns in Table 10 indicate
the length of the condensed behavior, which originally had a length of 1 million units. Hence,
condensation achieves a compression ratio between 56% and 99% over this particular set of

12:20 Dogan Ulus Vol. 22:1

Timescales Properties MTL Formulas

Absence After Q
Always the case that the proposition p
does not occur at least for b time units
after the proposition q occurs.

H
(
P[:b] q −→ (¬p S q)

)
(AbsentAQ)

Absence Before R
Always the case that the proposition p
does not occur at least for b time units
before the proposition r occurs.

H
(
r −→ H[:b] ¬p

)
(AbsentBR)

Absence Between Q and R
Always the case that the proposition p
does not occur between propositions q
and r and the duration between q and r
is in a and b time units.

H
(
(r ∧ ¬q ∧ P q) −→ (¬p S[a:b] q)

)
(AbsentBQR)

Universality After Q
Always the case that the proposition p
always occurs at least for b time units
after the proposition q occurs

H
(
P[:b] q −→ (p S q)

)
(AlwaysAQ)

Universality Before R
Always the case that the proposition p
always occurs at least for b time units
before the proposition r occurs.

H
(
r −→ H[:b] p

)
(AlwaysBR)

Universality Between Q and R
Always the case that the proposition p
always occurs between propositions q and
r, and the duration between q and r is in
a and b time units.

H
(
(r ∧ ¬q ∧ P q) −→ (p S[a:b] q)

)
(AlwaysBQR)

Recurrence Globally
Always the case that the proposition p
occurs at least for every b time unit.

H
(
P[:b] p

)
(RecurGLB)

Recurrence Between Q and R
Always the case that the proposition
p occurs at least for every b time unit
between propositions q and r.

H
(
(r ∧ ¬q ∧ P q) −→ (P[:b](p ∨ q) S q)

)
(RecurBQR)

Response Globally
Always the case that the proposition s
responds to the proposition p in a and b

time units.

H
(
(s −→ P[a:b] p) ∧ ¬(¬s S[b:] p)

)
(RespondGLB)

Response Between Q and R.
Always the case that the proposition s
responds to the proposition p in a and b

time units between propositions q and r.

H
(
(r ∧ ¬q ∧ P q) −→(

(s −→ P[a:b] p) ∧ ¬(¬s S[b:] p)
)) (RespondBQR)

Table 8. Parameterized Timescales Properties [Ulu19]

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:21

Aerial MonPoly Reelay Aerial MonPoly Reelay

AbsentAQ10 3.277 6.179 0.396 AlwaysAQ10 3.347 6.241 0.381
AbsentAQ100 15.378 6.141 0.369 AlwaysAQ100 15.210 6.234 0.350
AbsentAQ1000 166.553 6.200 0.366 AlwaysAQ1000 166.587 6.188 0.349

AbsentBQR10 3.768 7.513 0.529 AlwaysBR10 3.332 5.910 0.408
AbsentBQR100 17.987 7.544 0.487 AlwaysBR100 17.702 5.968 0.417
AbsentBQR1000 191.937 7.327 0.484 AlwaysBR1000 193.257 5.998 0.412

AbsentBR10 2.979 5.851 0.422 AlwaysBQR10 3.673 7.659 0.511
AbsentBR100 14.901 5.761 0.420 AlwaysBQR100 15.479 7.688 0.473
AbsentBR1000 166.440 5.784 0.421 AlwaysBQR1000 166.743 7.646 0.466

RecurGLB10 2.867 4.958 0.304 RecurBQR10 4.274 7.890 0.626
RecurGLB100 14.525 4.790 0.233 RecurBQR100 20.961 7.769 0.565
RecurGLB1000 164.242 4.826 0.227 RecurBQR1000 220.845 7.753 0.549

RespondGLB10 4.968 6.368 0.566 RespondBQR10 5.709 9.525 0.844
RespondGLB100 31.062 6.255 0.463 RespondBQR100 31.797 9.586 0.749
RespondGLB1000 356.832 6.178 0.450 RespondBQR1000 363.070 9.481 0.748

Table 9. Total execution times in seconds for discrete time monitoring tools
over Timescales benchmarks

behaviors. Note that this is an important practical advantage for the dense time setting in
reducing log storage requirements significantly.

First, we present execution times for our dense time monitors for each property using
uncondensed (discrete) input behaviors under Column Dense1. For comparison, the discrete
time performance for the same inputs is shown under Column Discrete. As expected,
the discrete time implementation is 3-5 times faster than the dense time implementation
due to the absence of synchronization and its use of more primitive data types and fewer
memory accesses. Then, we observe that dense time performance improves as we increase the
level of condensation through Dense10, Dense100, and Dense columns. This is because our
dense time monitor can process condensed behaviors directly and such symbolic treatment
corresponds to processing multiple unit intervals at one step. Consequently, dense time
monitors are better suited for hig-frequency temporal behaviors with smaller time steps with
fewer changes. Therefore, dense time performance surpasses discrete time performance for
highly condensed behaviors, demonstrating the effectiveness of our approach.

6. Related Work

A pioneering work in temporal logic monitoring is the work by Moszkowski to specify and
interpret properties of digital circuits and other discrete systems in [Mos84]. Following
his separation theorem for temporal logic, Gabbay differentiated the role of past and
future temporal operators for monitoring applications in [Gab89]. These early works and
separating the role of past and future temporal logic would be critical for developing efficient
algorithms for temporal logic monitoring as Havelund and Roşu introduced a simple and

12:22 Dogan Ulus Vol. 22:1

effective dynamic programming technique to construct online monitors directly from PastLTL
specifications in [HR04].

The previously mentioned works, along with others like [MS03, EFH+03, HJL03, FK09,
BLS11, HPU17], laid the groundwork for temporal logic monitoring, but they primarily
focused on discrete untimed models. Real-time systems necessitate precise timing constraints
that discrete models struggle to represent accurately. Naive discretization techniques exist,
but they introduce significant computational overhead. Additionally, improper discretization
can lead to a loss of crucial temporal information, hindering the ability to monitor real-time
systems effectively. Following their successful applications in model checking and formal

Discrete Dense1 Dense10 Dense100 Dense

Time Time Len Time Len Time Len Time

AbsentAQ10 0.168 0.767 345K 0.276 333K 0.269 333K 0.269
AbsentAQ100 0.157 0.731 303K 0.219 259K 0.185 258K 0.183
AbsentAQ1000 0.154 0.731 296K 0.211 255K 0.178 250K 0.176
AbsentBQR10 0.264 0.743 444K 0.386 444K 0.386 444K 0.385
AbsentBQR100 0.242 0.668 137K 0.120 59K 0.069 59K 0.068
AbsentBQR1000 0.239 0.657 95K 0.081 15K 0.029 6K 0.023
AbsentBR10 0.181 0.607 345K 0.243 333K 0.236 333K 0.236
AbsentBR100 0.180 0.604 303K 0.210 260K 0.186 258K 0.184
AbsentBR1000 0.181 0.603 296K 0.206 254K 0.183 251K 0.181
AlwaysAQ10 0.168 0.804 345K 0.279 333K 0.268 333K 0.267
AlwaysAQ100 0.159 0.761 303K 0.215 260K 0.174 258K 0.173
AlwaysAQ1000 0.156 0.758 295K 0.205 255K 0.167 250K 0.163
AlwaysBQR10 0.248 1.033 444K 0.514 444K 0.512 444K 0.512
AlwaysBQR100 0.232 0.949 137K 0.159 59K 0.087 59K 0.087
AlwaysBQR1000 0.230 0.943 95K 0.109 15K 0.034 6K 0.025
AlwaysBR10 0.180 0.642 345K 0.239 333K 0.231 332K 0.232
AlwaysBR100 0.180 0.636 303K 0.204 260K 0.176 258K 0.175
AlwaysBR1000 0.179 0.634 296K 0.197 255K 0.172 251K 0.169
RecurGLB10 0.137 0.404 327K 0.166 327K 0.167 327K 0.166
RecurGLB100 0.106 0.362 117K 0.063 39K 0.037 39K 0.036
RecurGLB1000 0.104 0.359 93K 0.051 12K 0.023 6K 0.020
RecurBQR10 0.303 1.067 336K 0.426 336K 0.421 335K 0.421
RecurBQR100 0.278 0.993 117K 0.142 39K 0.066 39K 0.65
RecurBQR1000 0.276 0.991 93K 0.111 12K 0.032 4K 0.023
RespondGLB10 0.262 0.974 375K 0.454 374K 0.451 374K 0.452
RespondGLB100 0.220 0.866 124K 0.139 45K 0.072 44K 0.072
RespondGLB1000 0.217 0.863 94K 0.100 13K 0.032 4K 0.023
RespondBQR10 0.414 1.591 487K 0.863 487K 0.862 487K 0.859
RespondBQR100 0.379 1.492 147K 0.253 69K 0.142 69K 0.141
RespondBQR1000 0.383 1.485 97K 0.161 16K 0.045 7K 0.031

Table 10. Total execution times in seconds for discrete and dense time
monitoring over Timescales benchmarks using Reelay monitoring tool

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:23

verification, real-time logics [Koy90, CHR91, AH94] have been employed for specification-
based monitoring over two different temporal representations [BKZ18]. The first approach
models continuous/dense time behaviors as sequences of isolated events (samples) with
timestamps and applies to monitor them [TR05, Dru06, HOW14, BKMZ15]. While this
sample based approach yields computationally tractable monitoring algorithms due to its
reliance on discrete time representations, its effectiveness relies on the initial discretization,
which may reside outside the control of the monitoring framework. This is a potential source
of inaccuracies and inefficiencies. In contrast, the second branch focuses on timed state
sequences [MNP05, MNP06, CPS09b, BN13], which are more natural to represent physical
phenomena. Monitoring algorithms for this representation exist on a spectrum of trade-offs
between practicality and mathematical rigor. Our time model in this paper is compatible
with the previous works of [ACM97, UFAM14, UFAM16, UM18], which offers a balanced
position on this spectrum without compromising mathematical rigor and practicality.

The monitor construction technique presented in [HR04] has been proved very fruitful
and extended for timed and quantitative properties in several subsequent works [RFB14,
DHF14, BKMZ15, CM20, HPU17, HKO+23, MW20, MCW23] and implemented in several
monitoring tools [CPS09a, BHKZ11, BKT17, HPU18]. Other approaches for online MTL
monitoring include automata based [MNP05, BBKT05, HOW14], tester based [MNP06],
and the incremental marking procedures [MN13]. These approaches rely on a point-based
continuous-time model compared to our period (segment) based dense time model, as
discussed in Section 4. This is a fundamental theoretical difference, and a comprehensive
comparison of point-based and period-based time models can be found in [vB91]. Moreover,
no implementation is publicly available or maintained for these automata and tester-based
monitors to allow practical comparisons. The implementation of the incremental algorithm
has been reported to work only with an external simulator in [MN13] and is not available
in the latest version [NLM+18]. Therefore, implementability remains a significant concern,
whereas our network-based technique offer a more practical and easily-implementable solution
for dense time monitoring. Finally, it is worth mentioning that the recent works also consider
the monitor verifiability and explainability [SBKT19, CM20, BDH+22, LHR+23]. The
explicit state representation and ease of inspection in sequential network-based monitors
could contribute to this line of research.

Synchronous dataflow programming languages, such as Lustre [HCRP91] and Es-
terel [BG92], and stream runtime verification frameworks [dSS+05, PGMN10, CHL+18,
GS18, FFS+19] offer alternative monitoring solutions. These solutions leverage procedural
domain-specific languages (DSLs) to describe temporal properties, contrasting with the
declarative logic formulas used in temporal logic monitoring. While procedural languages
hold the advantage of familiarity for many software engineers, existing safety standards often
advocate for declarative formal semantics due to their unambiguous nature and verifiability.
This motivates the common practice of embedding temporal logic into procedural monitoring
frameworks, with various levels of timing constraints support. However, existing stream
real-time runtime verification solutions are still limited by the aforementioned complications
of time-event sequences. This paper shows that time-state sequences can play nicely with the
synchronous paradigm under careful design decisions; hence, it is not an inherent limitation,
and our procedures can easily be embedded into these frameworks.

12:24 Dogan Ulus Vol. 22:1

7. Conclusion

The ability to monitor diverse data streams, ranging from high-frequency, evenly sampled
data to low-frequency, event-driven data, is equally critical to understanding and analyzing
complex engineered systems. Discrete and dense time models effectively capture these
distinct data characteristics. Discrete time models excel at handling high-frequency, evenly
sampled data, where data points are collected at fixed intervals. Conversely, dense time
models are better suited for unevenly sampled, variable-frequency data, enabling the capture
of physical phenomena and long-term relationships. To offer a comprehensive solution,
monitoring tools must seamlessly integrate both discrete and dense time models.

This paper presented a temporal logic monitoring solution to handle both time models
in a unified manner. By leveraging the sequential model of computation, we constructed
sequential networks from past metric temporal properties. Our key technique, future temporal
marking, employs a symbolic representation of timelines using interval structures, enabling
efficient analysis and implementation. Unlike existing approaches, our technique effectively
handles the complexities of dense time models by discretizing time into variable-duration
symbolic steps. This approach clearly delineates our assumptions and distinctions from other
methods. We comprehensively evaluated our methods through extensive benchmarking and
comparative analysis across various properties and scenarios.

Future work will explore extending our framework to encompass diverse temporal logic
variants, including first-order, robust, and probabilistic extensions. This entails generalizing
our Boolean algebra-based approach by defining suitable update and output functions for
other compatible algebraic structures, along with efficient supporting data structures. We
will continue to make these techniques and libraries openly available to facilitate adoption
and community contributions. Our long term goal is a unified monitoring framework capable
of handling a broad spectrum of temporal logic flavors, thereby addressing the fragmentation
prevalent in current implementations.

In this paper, we primarily focused on constructing monitors for individual temporal
properties. However, many real-world applications require the simultaneous monitoring of
multiple properties over multiple data streams, which introduces additional complexity and
demands advanced optimization techniques. To address this challenge, we plan to incorporate
well-known compiler optimization techniques such as common subexpression elimination
and formula rewriting—into the construction process for multi-property monitors. Our
compositional approach to monitor construction is particularly well-suited to supporting these
optimizations in a modular and scalable manner. Ultimately, these enhanced monitoring
capabilities, including multi-property handling and optimization, will be seamlessly integrated
into our existing cloud-native infrastructure. This will make our approach more adaptable
to real-world deployment scenarios.

References

[ACM97] Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed automata. In Proceedings
of the Symposium on Logic in Computer Science (LICS), pages 160–171, 1997.

[AH92] Rajeev Alur and Thomas A Henzinger. Logics and models of real time: A survey. In Proceedings
of the REX Workshop on Real-Time: Theory in Practice, pages 74–106, 1992.

[AH94] Rajeev Alur and Thomas A Henzinger. A really temporal logic. Journal of the ACM (JACM),
41(1):181–203, 1994.

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:25

[BBKT05] Saddek Bensalem, Marius Bozga, Moez Krichen, and Stavros Tripakis. Testing conformance
of real-time applications by automatic generation of observers. Electronic Notes in Theoretical
Computer Science, 113:23–43, 2005.

[BDD+18] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, Dejan
Ničković, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-physical systems:
a survey on theory, tools and applications. Lectures on Runtime Verification: Introductory and
Advanced Topics, pages 135–175, 2018.

[BDH+22] David Basin, Thibault Dardinier, Nico Hauser, Lukas Heimes, Jonathan Julián Huerta y Munive,
Nicolas Kaletsch, Srd̄an Krstić, Emanuele Marsicano, Martin Raszyk, Joshua Schneider, et al.
Verimon: A formally verified monitoring tool. In International Colloquium on Theoretical Aspects
of Computing, pages 1–6. Springer, 2022.

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous programming language: Design,
semantics, implementation. Science of computer programming, 19(2):87–152, 1992.

[BHKZ11] David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu. Monpoly: Monitoring usage-
control policies. In International Conference on Runtime Verification (RV), pages 360–364.
Springer, 2011.

[BKMZ15] David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu. Monitoring metric first-order
temporal properties. Journal of the ACM, 62(2):15, 2015.

[BKT17] David Basin, Srdjan Krstic, and Dmitriy Traytel. Aerial: Almost event-rate independent algo-
rithms for monitoring metric regular properties. In RV-CuBES, pages 29–36, 2017.

[BKZ17] David Basin, Felix Klaedtke, and Eugen Zalinescu. The MonPoly monitoring tool. In RV-CuBES
2017. An International Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools, volume 3, pages 19–28, 2017.

[BKZ18] David Basin, Felix Klaedtke, and Eugen Zălinescu. Algorithms for monitoring real-time properties.
Acta Informatica, 55(4):309–338, 2018.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4):1–64, 2011.

[BN13] Kevin Baldor and Jianwei Niu. Monitoring dense-time, continuous-semantics, metric temporal
logic. In Runtime Verification: Third International Conference, RV 2012, Istanbul, Turkey,
September 25-28, 2012, Revised Selected Papers 3, pages 245–259. Springer, 2013.

[CHL+18] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte Schmitz, and
Daniel Thoma. Tessla: temporal stream-based specification language. In Formal Methods: Foun-
dations and Applications: 21st Brazilian Symposium, SBMF 2018, Salvador, Brazil, November
26–30, 2018, Proceedings 21, pages 144–162. Springer, 2018.

[CHR91] Zhou Chaochen, Charles Anthony Richard Hoare, and Anders P Ravn. A calculus of durations.
Information Processing Letters, 40(5):269–276, 1991.

[CM20] Agnishom Chattopadhyay and Konstantinos Mamouras. A verified online monitor for metric tem-
poral logic with quantitative semantics. In Runtime Verification: 20th International Conference,
RV 2020, Los Angeles, CA, USA, October 6–9, 2020, Proceedings 20, pages 383–403. Springer,
2020.

[CPS09a] Christian Colombo, Gordon J Pace, and Gerardo Schneider. Larva—safer monitoring of real-time
java programs (tool paper). In 2009 seventh ieee international conference on software engineering
and formal methods, pages 33–37. IEEE, 2009.

[CPS09b] Christian Colombo, Gordon J Pace, and Gerardo Schneider. Safe runtime verification of real-time
properties. In International Conference on Formal Modeling and Analysis of Timed Systems,
pages 103–117. Springer, 2009.

[DHF14] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. On-line monitoring for temporal logic
robustness. In International Conference on Runtime Verification, pages 231–246. Springer, 2014.

[Dru06] Doron Drusinsky. On-line monitoring of metric temporal logic with time-series constraints using
alternating finite automata. Journal of Universal Computer Science, 12(5):482–498, 2006.

[dSS+05] Ben d’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd Finkbeiner,
Henny B Sipma, Sandeep Mehrotra, and Zohar Manna. Lola: runtime monitoring of synchronous
systems. In 12th International Symposium on Temporal Representation and Reasoning (TIME’05),
pages 166–174. IEEE, 2005.

12:26 Dogan Ulus Vol. 22:1

[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and David Van Camp-
enhout. Reasoning with temporal logic on truncated paths. In Proceedings of the Conference on
Computer Aided Verification (CAV), pages 27–39, 2003.

[FFS+19] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger, Marvin Stenger,
Leander Tentrup, and Hazem Torfah. Streamlab: stream-based monitoring of cyber-physical
systems. In International Conference on Computer Aided Verification, pages 421–431. Springer,
2019.

[FK09] Bernd Finkbeiner and Lars Kuhtz. Monitor circuits for ltl with bounded and unbounded future.
In International Workshop on Runtime Verification, pages 60–75. Springer, 2009.

[FMNP19] Thomas Ferrere, Oded Maler, Dejan Ničković, and Amir Pnueli. From real-time logic to timed
automata. Journal of the ACM (JACM), 66(3):1–31, 2019.

[Gab89] Dov Gabbay. The declarative past and imperative future: Executable temporal logic for interactive
systems. In Temporal Logic in Specification: Altrincham, UK, April 8–10, 1987 Proceedings,
pages 409–448. Springer, 1989.

[GS18] Felipe Gorostiaga and César Sánchez. Striver: Stream runtime verification for real-time event-
streams. In International Conference on Runtime Verification, pages 282–298. Springer, 2018.

[HCRP91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous data
flow programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[HJL03] John H̊akansson, Bengt Jonsson, and Ola Lundqvist. Generating online test oracles from temporal
logic specifications. International Journal on Software Tools for Technology Transfer, 4:456–471,
2003.

[HKO+23] Klaus Havelund, Panagiotis Katsaros, Moran Omer, Doron Peled, and Anastasios Temperekidis.
Tp-dejavu: Combining operational and declarative runtime verification. In International Con-
ference on Verification, Model Checking, and Abstract Interpretation, pages 249–263. Springer,
2023.

[HOW14] Hsi-Ming Ho, Joël Ouaknine, and James Worrell. Online monitoring of metric temporal logic. In
International Conference on Runtime Verification, pages 178–192. Springer, 2014.

[HPU17] Klaus Havelund, Doron Peled, and Dogan Ulus. First-order temporal logic monitoring with BDDs.
In Proceedings of the Conference on Formal Methods in Computer-Aided Design (FMCAD), 2017.

[HPU18] Klaus Havelund, Doron Peled, and Dogan Ulus. Dejavu: A monitoring tool for first-order temporal
logic. In Proceedings of the Workshop on Monitoring and Testing of Cyber-Physical Systems
(MT-CPS), pages 12–13, 2018.

[HR04] Klaus Havelund and Grigore Roşu. Efficient monitoring of safety properties. International Journal
on Software Tools for Technology Transfer, 6(2):158–173, 2004.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[LHR+23] Leonardo Lima, Andrei Herasimau, Martin Raszyk, Dmitriy Traytel, and Simon Yuan. Explainable
online monitoring of metric temporal logic. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 473–491. Springer, 2023.

[MCW23] Konstantinos Mamouras, Agnishom Chattopadhyay, and Zhifu Wang. A compositional framework
for algebraic quantitative online monitoring over continuous-time signals. International Journal
on Software Tools for Technology Transfer, pages 1–17, 2023.

[MN13] Oded Maler and Dejan Ničković. Monitoring properties of analog and mixed-signal circuits.
International Journal on Software Tools for Technology Transfer, 15(3):247–268, 2013.

[MNP05] Oded Maler, Dejan Ničković, and Amir Pnueli. Real time temporal logic: Past, present, future.
In International Conference on Formal Modeling and Analysis of Timed Systems, pages 2–16.
Springer, 2005.

[MNP06] Oded Maler, Dejan Ničković, and Amir Pnueli. From MITL to timed automata. In International
Conference on Formal Modeling and Analysis of Timed Systems, pages 274–289. Springer, 2006.

[Mos84] Ben Moszkowski. Executing temporal logic programs. In Proceedings of the Conference on
Concurrency Theory (CONCUR), pages 111–130, 1984.

[MS03] Nicolas Markey and Philippe Schnoebelen. Model checking a path. In Proceedings of the Conference
on Concurrency Theory (CONCUR), pages 251–265, 2003.

Vol. 22:1 ONLINE MONITORING OF METRIC TEMPORAL LOGIC 12:27

[MW20] Konstantinos Mamouras and Zhifu Wang. Online signal monitoring with bounded lag. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11):3868–3880,
2020.

[NLM+18] Dejan Ničković, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus. AMT2.0:
Qualitative and quantitative trace analysis with extended signal temporal logic. In Proceedings of
the Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
2018.

[PGMN10] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard real-time
runtime monitor. In International Conference on Runtime Verification, pages 345–359. Springer,
2010.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the Symposium on Foundations
of Computer Science (FOCS), pages 46–57, 1977.

[Ran58] George N Raney. Sequential functions. Journal of the ACM, 5(2):177–180, 1958.
[Rey16] Mark Reynolds. Metric temporal logic revisited. Acta Informatica, 53(3):301–324, 2016.
[RFB14] Thomas Reinbacher, Matthias Függer, and Jörg Brauer. Runtime verification of embedded

real-time systems. Formal methods in system design, 44(3):203–239, 2014.
[SBKT19] Joshua Schneider, David Basin, Srd̄an Krstić, and Dmitriy Traytel. A formally verified monitor

for metric first-order temporal logic. In Runtime Verification: 19th International Conference, RV
2019, Porto, Portugal, October 8–11, 2019, Proceedings 19, pages 310–328. Springer, 2019.

[SSA+19] César Sánchez, Gerardo Schneider, Wolfgang Ahrendt, Ezio Bartocci, Domenico Bianculli,
Christian Colombo, Yliès Falcone, Adrian Francalanza, Srd̄an Krstić, Joao M Lourenço, et al. A
survey of challenges for runtime verification from advanced application domains (beyond software).
Formal Methods in System Design, 54:279–335, 2019.

[TR05] Prasanna Thati and Grigore Roşu. Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science, 113:145–162, 2005.

[UFAM14] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed pattern matching. In
Proceedings of the Conference on Formal Modeling and Analysis of Timed Systems (FORMATS),
pages 222–236, 2014.

[UFAM16] Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Online timed pattern matching
using derivatives. In Proceedings of the Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 736–751, 2016.

[Ulu19] Dogan Ulus. Timescales: A benchmark generator for MTL monitoring tools. In Proceedings of
the Conference on Runtime Verification (RV), pages 402–412. Springer, 2019.

[UM18] Dogan Ulus and Oded Maler. Specifying timed patterns using temporal logic. In Proceedings of
the Conference on Hybrid Systems: Computation and Control (HSCC), 2018.

[vB91] Johan van Benthem. The Logic of Time. A Model-Theoretic Investigation into the Varieties of
Temporal Ontology and Temporal Discourse. Springer, 1991.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Preliminary Definitions and Background
	Sequential Networks
	Past Linear-time Temporal Logic
	Past Metric Temporal Logic

	3. Discrete Time Sequential Network Constructions
	3.1. Sequential Networks from PastLTL
	3.2. Sequential Networks from PastMTL

	4. Dense Time Sequential Network Construction
	5. Implementation and Evaluation
	5.1. Basic Experiments
	5.2. Discrete Time Benchmarks
	5.3. Dense Time Benchmarks

	6. Related Work
	7. Conclusion
	References

