
Logical Methods in Computer Science
Volume 22, Issue 1, 2026, pp. 9:1–9:36
https://lmcs.episciences.org/

Submitted Mar. 04, 2024
Published Feb. 16, 2026

REPRESENTING GUARDEDNESS IN CALL-BY-VALUE

AND GUARDED PARAMETERIZED MONADS

SERGEY GONCHAROV

University of Birmingham, Birmingham, UK
e-mail address: s.goncharov@bham.ac.uk

Abstract. Like the notion of computation via (strong) monads serves to classify various
flavours of impurity, including exceptions, non-determinism, probability, local and global
store, the notion of guardedness classifies well-behavedness of cycles in various settings. In
its most general form, the guardedness discipline applies to general symmetric monoidal
categories and further specializes to Cartesian and co-Cartesian categories, where it governs
guarded recursion and guarded iteration, respectively. Here, even more specifically, we deal
with the semantics of call-by-value guarded iteration. It was shown by Levy, Power and
Thielecke that call-by-value languages can be generally interpreted in Freyd categories, but
in order to represent effectful function spaces, such a category must canonically arise from
a strong monad. We generalize this fact by showing that representing guarded effectful
function spaces calls for certain parameterized monads (in the sense of Uustalu). This
provides a description of guardedness as an intrinsic categorical property of programs,
complementing the existing description of guardedness as a predicate on a category.

1. Introduction

A traditional way to model call-by-value languages is based on a clear-cut separation between
computations and values. A computation can be suspended and thus turned into a value,
and a value can be executed, and thus again be turned into a computation. The paradigmatic
example of these conversions is the application and abstraction mechanisms of the λ-calculus.
From the categorical modelling perspective, this view naturally requires two categories,
suitably connected with each other. As essentially suggested by Moggi [Mog91], a minimal
modelling framework requires a Cartesian category (i.e. a category with finite products)
as a category of values and a Kleisli category of a strong monad over it, as a category
of (side-effecting) computations (also called producers [Lev04]). A generic computational
metalanguage thus arises as an internal language of strong monads. Levy, Power and
Thielecke [LPT02] designed a refinement of Moggi’s computational metalanguage, called
fine-grain call-by-value (FGCBV), whose models are not necessarily strong monads, but
are more general Freyd categories. They have shown that a strong monad in fact always
emerges from a Freyd category if certain function spaces (needed to interpret higher-order
functions) are representable as objects of the value category – thus strong monads arise from
first principles.

Support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is gratefully
acknowledged – project number 501369690.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-22(1:9)2026
© S. Goncharov
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-6924-8766
http://creativecommons.org/about/licenses

9:2 S. Goncharov Vol. 22:1

guarded

parameterized monads1
strong guarded

parameterized monads1

id.-on-obj. guarded

functors

guarded Freyd

categories

monads strong monads

id.-on-obj. functors Freyd categories

rep
res

ent
abi

lity

g
u
a
rd

e
d
n
e
ss

strength

Figure 1: Three dimensions within call-by-value.

Here, we analyse an extension of the FGCBV paradigm with a notion of guardedness,
which is a certain predicate on computations, certifying their well-behavedness, in particular
that they can be iterated [GSRP17, LG19]. A typical example is guardedness in process
algebra, where guardedness is often used to ensure that recursive systems of process definitions
have unique solutions [Mil89].

FGCBV does not directly deal with fixpoints, since these are usually considered to be
features orthogonal to computational effects and evaluation strategies. Analogously, even
though the notion of guardedness is motivated by fixpoints, here we do not consider (guarded)
fixpoints as a core language feature. In fact, in practically relevant cases guardedness is
meaningful on its own as a suitable notion of productivity of computation, and need not be
justified via fixpoints, which may or may not exist. In FGCBV, one typically regards general
recursion to be supported by the category of values, and once the latter indeed does so (e.g.
by being a suitable category of complete partial orders), it is obvious to add a corresponding
fixpoint construct to the language.

Let us nevertheless outline the connection between guardedness and recursion in some
more detail. General recursion entails partiality for programs, meaning that even if we
abstract from it, the corresponding effect of partiality must be part of the computational
effect abstraction (see e.g. [Fio04]). Recursion and computational effects are thus intimately
connected. This connection persists under the restriction from general recursion to iteration,
which is subject to a much broader range of models, and triggers the partiality effect just as
well. Arguably, the largest class of monads, supporting iteration, are Elgot monads [AMV10,
GRS15]. These are monads T , equipped with Elgot iteration:

f : X Ñ T pY ` Xq

f : : X Ñ TY
(1.1)

and subject to established equational laws [BE93, SP00]. Intuitively, f : is obtained from f by
iterating away the right summand in the output type Y `X. For example, the maybe-monad
p--q ` 1 is an Elgot monad over the category of classical sets, which yields a model for a
while-language with non-termination as the only computational effect. Now, guarded Elgot
monads [LG19] refine Elgot monads in that the operator (1.1) needs only to be defined w.r.t.
a custom class of guarded morphisms, governed by simple laws. Proper partiality of the
guardedness predicate is relevant for various reasons, such as the following.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:3

‚ Guarded fixpoints often uniquely satisfy the corresponding fixpoint equation [Uus03, Mil05,
GSRP19], which greatly facilitates reasoning; this is extensively used in bisimulation-based
process algebra [Mil89, Fok13].

‚ In a type-theoretic and constructive setting, guarded iteration can often be defined natively
and more generally, e.g. the “simplest” guarded Elgot monad is Capretta’s delay monad
(initially called “partiality monad”) [Cap05], rendered by final coalgebras D “ νγ. p--`γq,
which yields an intensional counterpart of the maybe-monad; guardedness then means
productivity, i.e., that the computation signals that it evolves if it does. Contrastingly,
the “simplest” Elgot monad is much harder to construct and arguably requires additional
principles to be available in the underlying metatheory [CUV17, ADK17, EK17, Gon21].

‚ Guardedness is a compositional type discipline, and hence it potentially helps to encap-
sulate additional information about the productivity of programs in types, like monads
encapsulate the information about potential side-effects.

By allowing the iteration operator to be properly partial, we can accommodate a range of
new examples of iterative behaviour. A notion of guardedness thus often plays an auxiliary
role of determining, in a compositional way, which morphisms can be iterated.

As indicated above, strong monads can be regarded as structures, in a canonical way
arising from FGCBV by adding the requirement of representability of certain function spaces
in the category of values. This is behind the mechanism of representing computational effects
via monads in type systems (e.g. in Fω, by quantification over higher kinds) and hence in
programming languages (e.g. in Haskell). Our goal is to provide an analogous mechanism
for guardedness and for its combinations with computational effects and strength. That is,
(strong) monads are an answer to the question:

What is the categorical/type-theoretic structure that faithfully represents
computational effects within a higher-order universe?

Here, we are answering the question:

What is the categorical/type-theoretic structure that faithfully represents
guarded computational effects within a higher-order universe?

In other words, we seek to formulate guardedness as an intrinsic structural property of
morphisms, rather than as additional data that (anonymously) identifies guarded morphisms
among others. In doing so, we are inspired by the view of monads as structures for
representing effects, as summarized above. In fact, we show that strength, representability
and guardedness can be naturally arranged within FGCBV as three orthogonal dimensions, as
shown in Figure 1 (the arrows point from more general concepts to more specific ones). The
bottom face of the cube features the above-mentioned connection between Freyd categories
and strong monads, and a corresponding connection between identity-on-object functors
and (not necessarily strong) monads. We contribute with the top face, where guardedness
is combined with other dimensions. The key point is the combination of guardedness with
representability, which produces a certain class of parameterized monads [Uus03] that we
dub guarded parameterized monads.

Related work We benefit from the analysis of Power and Robinson [PR97], who
introduced premonoidal categories as an abstraction of Kleisli categories. Freyd categories
were subsequently defined by Power and Thielecke [PT99] as premonoidal categories with

1More precisely, representability yields parameterized guarded monads, subject to an additional monicity
condition. This is treated in detail in Section 7.

9:4 S. Goncharov Vol. 22:1

additional structure and also connected to strong monads. Levy [Lev04] came up with an
equivalent definition, which we use throughout. In the previous characterization [PT99,
LPT02], strong monads were shown to arise jointly with Kleisli exponentials from closed Freyd
categories. We refine this characterization (Corollary 4.6) by showing that strong monads in
fact arise independently of exponentials (Proposition 4.5). Distributive Freyd categories were
defined by Staton [Sta14] – here we use them to extend the FGCBV language with coproducts
and, subsequently, with guardedness predicates. Previous approaches to identifying structures
for ensuring guardedness on monads involved monad modules [PG14, AMV02] – we make
do with guarded parameterized monads instead, which combine monads with modules over
them and arise universally.

Plan of the paper After short technical preliminaries, we start off by introducing a
restricted version of FGCBV in Section 3 and extensively discuss motivating examples, which
(with a little effort) can already be encoded despite restrictions. We establish a very simple
form of the representability scenario, producing monads, and meant to serve as a model for
subsequent sections. In Section 4 we deal with full FGCBV, Freyd categories, modelling
them and strong monads, representing Freyd categories. The guardedness dimension
is introduced in Section 5 where we define guarded Freyd categories, and in Section 6
we analyse the representability issue for them. Finally, in Section 7 we introduce an
equational axiomatization of a categorical structure for representing guardedness, called
guarded parameterized monads. As a crucial technical step, we establish a coherence property
in the style of Mac Lane’s coherence theorem for monoidal categories [ML71].

The present paper is an extended version of the conference paper [Gon23]. We added
the proofs and more details to the examples and the general discussion. The original
definition [Gon23] of the guarded parameterized monad was missing two coherence conditions,
which are now added (Definition 7.1).

2. Preliminaries

We assume familiarity with the basics of category theory [ML71, Awo10]. For a category V,
|V| will denote the class of objects, and VpX,Y q will denote morphisms from X to Y .
We tend to omit indices at natural transformations for readability. A category with finite
(co-)products is called (co-)Cartesian. In a co-Cartesian category with selected coproducts,
we write ! : 0 Ñ A for the initial morphism, and inl : A Ñ A ` B and inr : B Ñ A ` B for
the left and right coproduct injections, respectively. A distributive category [Coc93] is a
Cartesian and co-Cartesian category, in which the natural transformation

X ˆ Y ` X ˆ Z
rid ˆ inl , id ˆ inr s

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ X ˆ pY ` Zq

is an isomorphism, whose inverse we denote distX,Y,Z (a co-Cartesian and Cartesian closed
category is always distributive). Let ∆ “ ⟨id , id⟩ : X Ñ XˆX and∇ “ rid , id s : X`X Ñ X.

A monad T on V is determined by a Kleisli triple pT, η, p´q‹q, consisting of a map
T : |V| Ñ |V|, a family of morphisms pηX : X Ñ TXqXP|V| and Kleisli lifting sending
each f : X Ñ TY to f‹ : TX Ñ TY and obeying monad laws:

η‹ “ id , f‹ ˝ η “ f, pf‹ ˝ gq‹ “ f‹ ˝ g‹.

It follows that T extends to a functor, η extends to a natural transformation – unit,
µ “ id‹ : TTX Ñ TX extends to a natural transformation – multiplication, and that
pT, η, µq is a monad in the standard sense [ML71]. We will generally use blackboard capitals

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:5

x : A $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B P Σc Γ $v v : A

Γ $c fpvq : B

Γ $v v : A

Γ $c return v : A

Γ $c p : A x : A $c q : B

Γ $c dox Ð p; q : B

Γ $v v : 0

Γ $c init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B x : A $c p : C y : B $c q : C

Γ $c case v of inlx ÞÑ p; inr y ÞÑ q : C

Figure 2: Simple FGCBV with coproducts.

(such as T) to refer to monads and the corresponding Roman letters (such as T) to refer to
their functor parts. Morphisms of the form f : X Ñ TY are called Kleisli morphisms and
form the Kleisli category VT of T under Kleisli composition f, g ÞÑ f‹ ˝ g with identity η.

An endofunctor F is strong if it is equipped with a natural transformation strength
τ : X ˆ FY Ñ F pX ˆ Y q, such that the diagrams

1 ˆ FX FX

F p1 ˆ Xq

τ

snd

F snd

pX ˆ Y q ˆ FZ F ppX ˆ Y q ˆ Zq

X ˆ pY ˆ FY q X ˆ F pY ˆ Zq F pX ˆ pY ˆ Zqq

–

τ

–

id ˆτ τ

commute. A natural transformation between two strong functors is strong if it preserves
strength in the obvious sense, and a monad T is strong if T is strong with some strength
τ : X ˆ TY Ñ T pX ˆ Y q and η and µ are strong with id being the strength of Id and
Tτ ˝ τ : X ˆ TTY Ñ TT pX ˆ Y q being the strength of TT .

3. Simple FGCBV with Coproducts

We start off with a restricted – single-variable – fragment of FGCBV, but extended with
coproduct types. Since we will not deal with operational semantics, we simplify the language
slightly (e.g. we do not include let-expressions for values). We also stick to a Haskell-style
syntax with do-notation and case expressions. We fix a collection of sorts S1, S2, . . . , a
signature Σv of pure programs f : A Ñ B, and a signature Σc of effectful programs f : A Ñ B
(also called generic effects [PP01]) where A and B are types, generated with the grammar

A,B ::“ S1, S2, . . . | 0 | A ` B. (3.1)

We then define terms in context of the form x : A $v v : B and x : A $c p : B for value terms
and computation terms inductively by the rules given in Figure 2. (where we chose to stick
to the syntax of the familiar Haskell’s do-notation): This language is essentially a refinement
of Moggi’s simple (!) computational metalanguage [Mog91], which has only one-variable
contexts (i.e. Γ is of the form x : A throughout), rather than fully fledged multi-variable
contexts. In terms of monads, the present language corresponds to not necessarily strong
ones. In terms of monads, the present language corresponds to not necessarily strong
ones. Such monads are not very useful in traditional programming languages semantics;
however we dwell on this case for several reasons. We aim to explore the interaction between
guardedness and monads from a foundational perspective, while remaining as general as

9:6 S. Goncharov Vol. 22:1

possible to cover cases where strength does not exist or is not relevant. We would also like to
identify the basic representation scenario, to be extended later to more sophisticated cases.

An obvious extension of the presented language would be the iteration operator:

Γ $c p : A x : A $c q : B ` A

Γ $c iter x Ð p; q : B
(3.2)

meant to satisfy the fixpoint equality

iter x Ð p; q “ iter x Ð pdox Ð p; qq; q

Presently, we focus on representing guardedness as such and do not deal with (3.2)
We present three examples that can be interpreted w.r.t. the single-variable fragment to

demonstrate the unifying power of FGCBV and illustrate various flavours of guardedness.

Example 3.1 (Basic Process Algebra [BPS01]). Basic process algebra (BPA) over a set of
actions A is defined by the grammar:

P,Q ::“ pa P Aq | P ` Q | P ¨ Q.

One typically considers BPA-terms over free variables (seen as process names) to solve
systems of recursive process equations w.r.t. these variables. E.g. we can specify a 2-bit
FIFO buffer as a solution to

B0 “ in0 ¨B0
1 ` in1 ¨B1

1

Bi
1 “ in0 ¨B0,i

2 ` in1 ¨B1,i
2 ` outi ¨B0 pi P {0, 1}q

Bi,j
2 “ outj ¨Bi

1 pi, j P {0, 1}q

(3.3)

with A “ {in0, in1, out0, out1}. We view B0 as an empty FIFO, Bi
1 as a FIFO carrying only i

and Bi,j
2 as a FIFO carrying i and j. For example, the trace

B0
in0ÝÝÑ B0

1
in1ÝÝÑ B1,0

2
out0
ÝÝÑ B1

1
out1
ÝÝÑ B0

is valid and represents the following course of action: push 0, push 1, pop 1 and then
pop 0. We can model such systems of equations in FGCBV as follows. Let us fix a
single sort 1 and identify an n-fold sum p. . . p1 ` . . .q . . .q ` 1 with the natural number n.
The injections inji : 1 Ñ n are defined inductively in the obvious way. Let Σv “ ∅ and
Σc “ {a : 1 Ñ 1 | a P A}Y{toss : 1 Ñ 2}. A BPA-term over process names {N1, . . . , Nn} can
be translated to FGCBV recursively, with the following rules where ⇝ reads as “translates”:

Ni ⇝ x : 1 $c returnpinrpinji xqq : 1 ` n a⇝ x : 1 $c dox Ð apxq; returnpinlxq : 1 ` n

P ⇝ x : 1 $c p : 1 ` n Q⇝ x : 1 $c q : 1 ` n

P ` Q⇝ x : 1 $c dox Ð tosspxq; casex of inlx ÞÑ p; inr x ÞÑ q : 1 ` n

P ⇝ x : 1 $c p : 1 ` n Q⇝ x : 1 $c q : 1 ` n

P ¨ Q⇝ x : 1 $c dox Ð p; casex of inlx ÞÑ qpxq; inr x ÞÑ returnpinr xq : 1 ` n

Intuitively, the terms x : 1 $c p : 1 ` n represent processes with 1 ` n exit points: every
process name Ni identifies an exit i, in addition to the global anonymous exit. The latter
is associated with actions, which are not postcomposed with any other commands. The

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:7

generic effect toss induces binary nondeterminism as a coin-tossing act. For example, the
result of translating the right-hand sides of (3.3) (after minor simplifications) is

dox Ð tosspxq; casex of

inlx ÞÑ dox Ð in0pxq; returnpinrpinj01 xqq;

inr x ÞÑ dox Ð in1pxq; returnpinrpinj11 xqq,

dox Ð tosspxq; casex of

inlx ÞÑ dox Ð in0pxq; returnpinrpinj0,i2 xqq;

inr x ÞÑ dox Ð tosspxq; casex of

inlx ÞÑ dox Ð in1pxq; returnpinrpinj1,i2 xqq;

inr x ÞÑ dox Ð outipxq; returnpinrpinj0 xqq pi P {0, 1}q

dox Ð outjpxq; returnpinrpinji1 xqq pi, j P {0, 1}q

where n “ 1 ` 2 ` 4 “ 7, inj0 : 1 Ñ 7, the inji1 : 1 Ñ 7 and the inji,j1 : 1 Ñ 7 are the injections,

selecting the indices that address B0, B
i
1 and Bi,j

2 correspondingly. Every list of terms
in the context px : 1 $c p0 : mq, . . . , px : 1 $c pn´1 : mq can be converted to a single term
x : n $c p̂n : m recursively as follows:

p̂0 “ initx, p̂n`1 “ casex of inlx ÞÑ p̂n ; inr x ÞÑ pn`1.

Every system of n equations over m`n process names in BPA is thus represented by a term
x : n $c p : p1 ` mq ` n in simple FGCBV. Now, an iteration operator (3.2) applied to the
latter term “solves” the corresponding system of equations w.r.t. to n names, and keeping the
remaining m names free, resulting in a term of the form x : n $c iter x Ð returnx; p : 1 ` m.
In our example (3.3), n “ m “ 7.

Guarded systems are those in which recursive calls are preceded by actions; (3.3) is an
example. Such systems have a unique solution (under bisimilarity) [BW90, Fok13]. The
simplest unguarded example P “ P has arbitrary solutions and translates to x : 1 $c iter x Ð

returnx; returnpinr xq : 1.

Example 3.2 (Imperative Traces). We adapt the semantic framework of Nakata and
Uustalu [NU15] for imperative coinductive traces to our setting. Let us fix a set P of
predicates, a set T of state transformers, and let the corresponding pure and effectful
signatures be Σv “ {p : S Ñ S ` S | p P P} Y {t : S Ñ S | t P T} and Σc “ {put : S Ñ 1,
get : 1 Ñ S} over the set of sorts {S, 1}. The intended interpretation of this data is as
follows:

‚ S is a set of memory states, e.g. the set of finitely supported partial functions N ↪Ñ 2;
‚ T are state transformers, e.g. functions, updating precisely one specified memory bit;
‚ p P P encode predicates: ppsq “ inlpsq if the predicate is satisfied and ppsq “ inr psq

otherwise, e.g. p can capture functions that give a Boolean answer to the questions “is the
specified bit 0?” and “is the specified bit 1?”.

For example, the following program negates the i-th memory bit (if it is present)

x : 1 $c do s Ð getpxq; case psris “ 0q of inl s ÞÑ putpsri :“ 1sq; inr s ÞÑ putpsri :“ 0sq : 1,

9:8 S. Goncharov Vol. 22:1

where p--ris “ 0q, p--ri :“ 0sq and p--ri :“ 1sq are the obvious predicate and state transformers.
Nakata and Uustalu [NU15] argued in favour of (infinite) traces as a particularly suitable
semantics for reasoning about imperative programs. This means that store updates must
contribute to the semantics, which can be ensured by a judicious choice of syntax, e.g.,
by using skip “ do s Ð getpxq; putpsq, but not return. In FGCBV, however, iterating
x : 1 $c returnpinr xq : 1 would not yield any trace. By restricting to guarded iteration,
with guardedness meaning writing to the store, we can indeed prevent such programs from
iterating by defining guardedness so that at least one put is executed before the body of the
loop is repeated.

Example 3.3 (Hybrid Programs). Hybrid programs combine discrete and continuous
capabilities and can thus be used to describe the behaviours of cyber-physical systems. For
simplicity, we consider time delays as the only hybrid facility – more sophisticated scenarios
are treated elsewhere [GNP20]. Let Rě0 be the sort of non-negative real numbers and let Σv

contain all unary operations on non-negative reals and additionally is0 : Rě0 Ñ Rě0 ` Rě0,
which sends n “ 0 to inlpnq and n ą 0 to inr pnq. Let Σc “ {wait : Rě0 Ñ Rě0}. With
waitprq we can introduce a time delay of length r and return r. With iteration we can write
programs like

x : Rě0 $c iter x Ð returnx;

case is0pxq of inlx ÞÑ returnpinlxq;

inr x ÞÑ dox Ð waitpxq; returnpinr fpxqq : Rě0,

which terminate successfully in finite time (fpxq “ x .́ 12), run infinitely (fpxq “ 1), or
exhibit Zeno behaviour (fpxq “ x{2), i.e. consume finite time, but never terminate. In all
these examples, every iteration consumes non-zero time. This is also often considered a
well-behavedness condition, which we can naturally interpret as guardedness.

To interpret the language from Figure 2, let us fix two co-Cartesian categories V and C,
and an identity-on-objects functor J : V Ñ C (hence |V| “ |C|) that strictly preserves
coproducts. A semantics of pΣv,Σcq over J assigns

‚ an object JAK P |V| to each sort A;
‚ a morphism JfK P VpJAK, JBKq to each f : A Ñ B P Σv;
‚ a morphism JfK P CpJAK, JBKq to each f : A Ñ B P Σc,

which extends to types as follows: J0K “ 0, JA ` BK “ JAK ` JBK. The semantics of terms
are given in Figure 3. As observed by Power and Robinson [PR97] (cf. [Sch69, 0.1]), monads
arise from the requirement that J is a left adjoint, thus simple FGCBV can be interpreted
w.r.t. a monad on V. A direct simple proof is given below for the sake of completeness.

Proposition 3.4. Let J : V Ñ C be an identity-on-objects functor. Then J is a left
adjoint iff C is isomorphic to a Kleisli category of some monad T on V and J “ H ˝ JT
where H : VT – C is the relevant isomorphism, which is necessarily identity-on-objects, and
JT : V Ñ VT is the canonical left adjoint sending every f P VpX,Y q to η ˝ f P VpX,TY q.

Moreover, in this situation, finite coproducts in C are inherited from V, i.e. J ! is the
initial morphism in C and the triples pX ` Y, J inl , J inr q are binary coproducts in C.

2 .́ refers to truncated subtraction: x .́ y “ x ´ y if x ě y, and x .́ y “ 0 otherwise.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:9

Jx : A $v x : AK “ id
h “ JΓ $v v : AK

JΓ $v fpvq : BK “ JfK ˝ h

h “ JΓ $v v : AK
JΓ $c fpvq : BK “ JfK ˝ Jh

h “ JΓ $v v : AK
JΓ $c return v : AK “ Jh

h1 “ Jx : A $c q : BK h2 “ JΓ $c p : AK
JΓ $c dox Ð p; q : BK “ h1 ˝ h2

JΓ $c init v : AK “ !

h “ JΓ $v v : AK
JΓ $v inl v : A ` BK “ inl ˝h

h “ JΓ $v v : BK
JΓ $v inr v : A ` BK “ inr ˝h

h “ JΓ $v v : A ` BK h1 “ Jx : A $c p : CK h2 “ Jy : B $c q : CK
JΓ $c case v of inlx ÞÑ p; inr y ÞÑ q : CK “ rh1, h2s ˝ Jh

Figure 3: Denotational semantics of simple FGCBV with coproducts.

Proof. Suppose that J % U and consider the diagram

VT C

V

KT

JT
J

where KT is the comparison functor from the Kleisli category of T to C. Note that KT is
generally full and faithful, because VTpX,Y q “ VpX,UJY q–CpJX, JY q “ CpKTX,KTY q.
Moreover, KT is identity-on-objects, for so is J by assumption. Thus, KT is an isomorphism
and Jf “ pKT ˝ JTqpfq “ KTpη ˝ fq for any f P VpX,Y q.

Now, suppose that for a suitable monad T, H : VT – C and Jf “ Hpη ˝ fq for
any f P VpX,Y q. Let U $ J be the adjunction between V and VT, and show that UH -1 $ J .
Note that H -1 $ H, and hence, by composing adjunctions UH -1 $ HJ . For every f P

VpX,Y q, HJf “ Hpη ˝ fq “ Jf , i.e. indeed, UH -1 $ J .
That finite coproducts in C are inherited from V is easy to see.

Example 3.5 (Monads). Let us recall relevant monads on V “ Set for further reference.

(1) TX “ νγ.PωppX ` 1q ` A ˆ γq where Pω is the finite powerset functor and νγ. Fγ
denotes a final F -coalgebra. This monad provides a standard strong bisimulation semantics
for BPA (Example 3.1). The denotations in TX are finitely branching trees with edges
labelled by actions and with terminal nodes labelled in X (free variables) or in 1 (successful
termination). This monad is an instance of the coinductive resumption monad [PG14], and

the inhabitants of TX are often called synchronization trees (e.g. [ACÉI12]).
(2) TX “ PpA‹ ˆ pX ` 1q ` A‹q is the monad of finite traces (terminating successfully

A‹ ˆ pX ` 1q and divergent A‹), which can again be used as a semantics of Example 3.1.
(3) TX “ PpA‹ ˆ pX ` 1q ` pA‹ `Aωqq is a refinement of (2), collecting not only finite,

but also infinite traces. If we extend BPA with countable non-determinism, we obtain a
semantics properly between strong bisimilarity and finite trace equivalence. For example,
the equation P “ a ¨ P produces the infinite trace aω and P 1 “

∑
iPN Pi with P0 “ a and

Pi`1 “ a ¨ Pi do not. Therefore, P is not infinite trace equivalent to P 1, while P and P 1 are
finite trace equivalent.

(4) TX “ pνγ.XˆS`γˆSqS can be used for Example 3.2. In Set, TX–pXˆS``SωqS ,
i.e. an element TX is isomorphic to a function that takes an initial state in S and returns

9:10 S. Goncharov Vol. 22:1

x : A in Γ

Γ $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B P Σc Γ $v v : A

Γ $c fpvq : B

Γ $v v : A

Γ $c return v : A

Γ $c p : A Γ, x : A $c q : B

Γ $c dox Ð p; q : B

Γ $v v : 0

Γ $c init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B x : A $c p : C y : B $c q : C

Γ $c case v of inlx ÞÑ p; inr y ÞÑ q : C

Γ $v v : A Γ $v w : B

Γ $v ⟨v, w⟩ : A ˆ B

Γ $v v : A ˆ B Γ, x : A, y : B $c q : C

Γ $c case v of ⟨x, y⟩ ÞÑ q : C

Figure 4: FGCBV with coproducts.

either a finite trace in X ˆ S` or an infinite trace in Sω. We can use Proposition 3.4 to
argue that T indeed extends to a monad. Indeed, let C be the category with CpX,Y q “

SetpX ˆ S, νγ. Y ˆ S ` γ ˆ Sq, which is a full subcategory of the Kleisli category of the
coinductive resumption monad νγ. p--`γ ˆ Sq. Now, by definition, the obvious identity-on-
objects functor J : Set Ñ C is a left adjoint, yielding the original T .

(5) TX “ Rě0ˆX` R̄ě0 is a monad, which can be used for Example 3.3. Here, Rě0ˆX
refers to terminating behaviours and R̄ě0 “ Rě0 Y {8} to Zeno and infinite behaviours.

4. Freyd Categories and Strong Monads

The full FGCBV (with coproducts) is obtained by extending the type syntax (3.1) with
binary products A ˆ B, and by replacing the rules in Figure 2 with the rules in Figure 4.
We now assume that variable contexts Γ are (possibly empty) lists px1 : A1, . . . , xn : Anq

with non-repetitive x1, . . . , xn. To interpret the resulting language, again, we need an
identity-on-objects functor J : V Ñ C, an action of V on C, and J to preserve this action.

Definition 4.1 (Actegory [JK01]). Let pV, b , Iq be a monoidal category. Then an action
of V on a category C is a bifunctor m : V ˆ C Ñ C together with the unitor and the actor
natural isomorphisms υ : I mX –X, α : X m pY mZq – pX b Y q mZ, satisfying the following
coherence conditions

I m pX m Y q X m Y

pI b Xq m Y

υ

α
–

X m Y X m pI m Y q

pX b Iq m Y

id mυ

α
–

X m pY m pZ m V qq X m ppY b Zq m V q pX b pY b Zqq m V

pX b Y q m pZ m V q ppX b Y q b Zq m V

id mα

α

α

–

α

(eliding the names of canonical isomorphisms). Then C is called an (V-)actegory.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:11

Note that every monoidal category trivially acts on itself via m “ b . In the sequel, we
will only consider Cartesian categories, i.e. actegories w.r.t. pV,ˆ, 1q.

Definition 4.2 (Freyd Category [Lev04]). A Freyd category pV,C, Jp--q,mq consists of the
following data:

(1) a Cartesian category V;
(2) a category C with |V| “ |C|;
(3) an identity-on-objects functor J : V Ñ C;
(4) an action of V on C, such that J preserves the V-action, i.e. Jpf ˆ gq “ f m Jg for all

f P VpX,X 1q, g P VpY, Y 1q (entailing X ˆ Y “ X m Y for all X,Y P |V|), υ “ J snd
and α “ J⟨id ˆ fst , snd ˝ snd⟩.

Let us reformulate this definition slightly more explicitly.

Lemma 4.3. A tuple pV,C, Jp--q,mq is a Freyd category iff

(1) V is a Cartesian category;
(2) C is a category, such that |V| “ |C|;
(3) J is an identity-on-objects functor V Ñ C;
(4) m is a bifunctor V ˆ C Ñ C, such that

(a) X m Y “ X ˆ Y for all X,Y P |V|,
(b) Jpf ˆ gq “ f m Jg for all f P VpX,X 1q, g P VpY, Y 1q, and
(c) every J snd : 1ˆX Ñ X is natural in X (w.r.t. C-morphisms) and every J⟨id ˆ fst ,

snd ˝ snd⟩ : X ˆ pY ˆ Zq Ñ pX ˆ Y q ˆ Z is natural in X,Y (w.r.t. V-morphisms)
and Z (w.r.t. C-morphisms).

Proof. The claim follows from the observation that defining υ and α as J snd and J⟨id ˆ fst ,
snd ˝ snd⟩ correspondingly, yields an action of V on C iff υ and α are natural – the coherence
conditions from Definition 4.1 hold automatically.

Definition 4.4 (Distributive Freyd Category [Sta14]). A Freyd category pV,C, Jp--q,mq

is distributive if V is distributive, C is co-Cartesian, and J strictly preserves coproducts.

Note that it follows from the above definition that the action m preserves coproducts in
the second argument. Indeed, by applying J to the isomorphism XˆpY `Zq–XˆY `XˆZ
in V, we obtain that X m pY ` Zq – X m Y ` X m Z is in C.

Given a distributive Freyd category pV,C, Jp--q,mq, we update the semantics from Sec-
tion 3 by extending the semantics of types with the clauses JA ˆ BK “ JAK ˆ JBK, Jx1 : A1,
. . . , xn : AnK “ JA1K ˆ . . . ˆ JAnK, and by defining the semantics of terms as in Figure 5,
where proj i : X1 ˆ . . . ˆ Xn Ñ Xi denotes the i-th projection.

Freyd categories are to strong monads as identity-on-objects functors to monads.

Proposition 4.5. Let pV,C, Jp--q,mq be a Freyd category. Then J is a left adjoint iff C
is isomorphic to a Kleisli category of some strong monad T on V and Jf “ Hpη ˝ fq for
all f P VpX,Y q where H : VT – C is the relevant isomorphism.

Proof. Freyd categories are initially designed to generalize Kleisli categories of strong
monads [PT99], in particular, we obtain the ‘If ’ direction of the claim.

For the ‘Only if ’ direction, suppose that J is a left adjoint, and show that the requested
strong monad exists. Indeed, we obtain a monad T by Proposition 3.4. W.l.o.g. suppose
that C “ VT. Let Jf “ η ˝ f for every f : X Ñ Y from V. Let us define strength τ as

9:12 S. Goncharov Vol. 22:1

Jx1 : A1, . . . , xn : An $v xi : AiK “ proj i

h “ JΓ $v v : AK
JΓ $v fpvq : BK “ JfK ˝ h

h “ JΓ $v v : AK
JΓ $c fpvq : BK “ JfK ˝ Jh

h “ JΓ $v v : AK
JΓ $c return v : AK “ Jh

h1 “ JΓ, x : A $c q : BK h2 “ JΓ $c p : AK
JΓ $c dox Ð p; q : BK “ h1 ˝ pid mh2q ˝ J∆

JΓ $c init v : AK “ !

h “ JΓ $v v : AK
JΓ $v inl v : A ` BK “ inl ˝h

h “ JΓ $v v : BK
JΓ $v inr v : A ` BK “ inr ˝h

h “ JΓ $v v : A ` BK h1 “ JΓ, x : A $c p : CK h2 “ JΓ, y : B $c q : CK
JΓ $c case v of inlx ÞÑ p; inr y ÞÑ q : CK “ rh1, h2s ˝ J dist ˝pid mJhq ˝ J∆

h1 “ JΓ $v v : AK h2 “ JΓ $v w : BK
JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨h1, h2⟩

h1 “ JΓ $v p : A ˆ BK h2 “ JΓ, x : A, y : B $c q : CK
JΓ $c case p of ⟨x, y⟩ ÞÑ q : CK “ h2 ˝ pid mJh1q ˝ J∆

Figure 5: Denotational semantics of FGCBV with coproducts.

idX m idTY : X ˆ TY Ñ T pX ˆ Y q, which is clearly natural in X and Y . If follows that
f m g “ τ ˝ pf ˆ gq. Indeed,

f m g “ f m pid‹
˝η ˝ gq

“ pid m idq‹ ˝ pf m η ˝ gq

“ pid m idq‹ ˝ pf m Jgq

“ pid m idq‹ ˝ Jpf ˆ gq

“ τ‹ ˝ η ˝ pf ˆ gq

“ τ ˝ pf ˆ gq.

Let γ “ ⟨id ˆ fst , snd ˝ snd⟩ : X ˆ pY ˆ Zq – pX ˆ Y q ˆ Z. The axioms of strength are
verified as follows.

(1) Using Lemma 4.3 (4.c): pT sndq ˝ τ “ pJ sndq‹ ˝ pid m idq “ id‹
˝J snd “ id‹

˝η ˝ snd “

snd .
(2) Using Lemma 4.3 (4.c): Tγ˝τ˝pid ˆτq “ pJγq‹˝pid mpid m idqq “ ppid ˆ idqmidq‹˝Jγ “

τ‹ ˝ η ˝ γ “ τ ˝ γ.
(3) τ ˝ pid ˆηq “ τ‹ ˝ η ˝ pid ˆηq “ pid m idq‹ ˝ Jpid ˆηq “ pid m idq‹ ˝ pid mJηq “

id mpid‹
˝Jηq “ id mpid‹

˝η ˝ ηq “ id mη “ id mJ id “ Jpid ˆ idq “ η.
(4) pτ ˝ pf ˆ gqq‹ ˝ τ “ pf m gq‹ ˝ pid m idq “ f m g‹ “ τ ˝ pf ˆ g‹q.

Proposition 4.5 allows us to refactor the existing characterization of closed Freyd
categories [LPT02, Theorem 7.3] along the following lines. In order to include higher-order
types in the language, we would need to add A Ñ B as a new type former and the following

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:13

term formation rules:
Γ, x : A $c p : B

Γ $v λx. p : A Ñ B

Γ $v w : A Γ $v v : A Ñ B

Γ $c vw : B

We would then need to provide the following additional semantic clauses:

h “ JΓ, x : A $c p : BK
JΓ $v λx. p : A Ñ BK “ curry h

h1 “ JΓ $v v : A Ñ BK h2 “ JΓ $v w : AK
JΓ $c vw : BK “ pcurry-1 h1q ˝ pid mJh2q ˝ J∆

where JA Ñ BK “ JAK⊸ JBK, ⊸ : |V| ˆ |C| Ñ |C|, and curry is an isomorphism

curry : CpJpX ˆ Aq, Bq – VpX,A⊸ Bq (4.1)

natural in X. In particular, this says that J is left adjoint to 1⊸ p--q, which, as we have seen
in Proposition 3.4, means that C is isomorphic to the Kleisli category of a strong monad T,
and hence (4.1) amounts to VpX ˆ A, TBq – VpX,A⊸ Bq, i.e. to the existence of Kleisli
exponentials, which are exponentials of the form pTBqA. We thus obtain the following

Corollary 4.6. Let pV,C, Jp--q,mq be a Freyd category. The following are equivalent:

‚ an isomorphism (4.1) natural in X exists;
‚ for all A P |V|, Jp--ˆAq : V Ñ C is a left adjoint;
‚ C is isomorphic to a Kleisli category of a strong monad, and Kleisli exponentials exist.

A yet another way to express (4.1) is to state that the presheaves

CpJp--ˆAq, Bq : Vop Ñ Set

are representable. We will use this formulation in our subsequent analysis of guardedness.

5. Guarded Freyd Categories

We proceed to recall the formal notion of guardedness [GSRP17, LG19].

Definition 5.1 (Guardedness). A guardedness predicate on a co-Cartesian category C
provides for all X, Y, Z P |C| a subset C‚pX,Y, Zq Ď CpX,Y `Zq, whose elements we write
as f : X Ñ Y ⟩⟩⟩⟩ Z and call guarded (in Z), such that

(trv‚)
f : X Ñ Y

inl ˝f : X Ñ Y ⟩⟩⟩⟩ Z
(par‚)

f : X Ñ V ⟩⟩⟩⟩ W g : Y Ñ V ⟩⟩⟩⟩ W
rf, gs : X ` Y Ñ V ⟩⟩⟩⟩ W

(cmp‚)
f : X Ñ Y ⟩⟩⟩⟩ Z g : Y Ñ V ⟩⟩⟩⟩ W h : Z Ñ V ` W

rg, hs˝f : X Ñ V ⟩⟩⟩⟩ W

A guarded (co-Cartesian) category is a category equipped with a guardedness predicate.
A guarded functor between two guarded categories is a functor F : C Ñ D that strictly
preserves coproducts, and preserves guardedness in the following sense: f P C‚pX,Y, Zq

entails f P D‚pFX,FY, FZq.

It follows from the axioms of guardedness that C‚ is a functorial operator.

Proposition 5.2. C‚ extends to a functor Cop ˆ C ˆ C Ñ Set.

Proof. The map X,Y, Z ÞÑ CpX,Y ` Zq is obviously functorial. We are left to check that
given f : X Ñ Y ⟩⟩⟩⟩ Z, g : X 1 Ñ X, h : Y Ñ Y 1 and u : Z Ñ Z 1, ph` uq ˝ f ˝ g : X 1 Ñ Y 1 ⟩⟩⟩⟩ Z 1.
Observe first that f ˝ g : X 1 Ñ Y ⟩⟩⟩⟩ Z. Indeed, f ˝ g “ rf, f s ˝ inl ˝g Ñ Y ⟩⟩⟩⟩ Z using (trv‚)
and (cmp‚). Next, again by (cmp‚), rinr ˝h, inl ˝us˝f˝g “ ph`uq˝f˝g : X 1 Ñ Y 1 ⟩⟩⟩⟩ Z 1.

9:14 S. Goncharov Vol. 22:1

In the sequel, we regard ⟩⟩⟩⟩ as an operator that binds the weakest. Intuitively, C‚pX,Y, Zq

axiomatically distinguishes those morphisms X Ñ Y ` Z for which the program flow
from X to Z is guarded, in particular, if X “ Z then the corresponding guarded loop can
be safely closed. Note that the standard (totally defined) iteration is an instance with
C‚pX,Y, Zq “ CpX,Y ` Zq. Consider other instances.

Example 5.3 (Vacuous Guardedness [GS18]). The least guardedness predicate is as follows:
C‚pX,Y, Zq “ {inl ˝f : X Ñ Y ` Z | f P CpX,Y q}. Such C is called vacuously guarded.

The following class of examples abstracts the monad of synchronization trees from Ex-
ample 5.4: T can capture arbitrary “branching” computational effects besides T “ Pω for
nondeterminism, and H can capture arbitrary “action” functors besides HX “ A ˆ X for
standard process algebra actions.

Example 5.4 (Coalgebraic Resumptions). Let T be a monad on a co-Cartesian category V,
and let H : V Ñ V be an endofunctor such that all fixpoints THX “ νγ. T pX ` Hγq

exist. These jointly yield a monad TH , called the (generalized) coalgebraic resumption
monad (transform of T) [PG14, GSRP17]. Then the Kleisli category of TH is guarded
with f : X Ñ Y ⟩⟩⟩⟩ Z if

X T pY ` HTHpY ` Zqq

THpY ` Zq T ppY ` Zq ` HTHpY ` Zqq

g

f T pinl ` idq

out

(5.1)

for some g : X Ñ T pY ` HTHpY ` Zqq. Guarded iteration operators canonically extend
from T to TH [LG19].

The next example is interesting in that the notion of guardedness is defined essentially
the same way, but fixpoints of guarded morphisms need not exist.

Example 5.5 (Algebraic Resumptions). A simple variation of the previous example involves
least fixpoints THX “ µγ. T pX ` Hγq instead of the greatest ones, and in-1 instead of out,
where in : T pX ` HTHXq Ñ THX is the initial algebra structure of THX, which is an
isomorphism by Lambek’s lemma. However, we can no longer generally induce non-trivial
(guarded) iteration operators for TH .

Example 5.6. Let us describe natural guardedness predicates on the Kleisli categories of
monads from Example 3.5.

(1) TX “ νγ.PωppX ` 1q ` A ˆ γq is a special case of Example 5.4. The guardedness
condition (5.1) instantiates as follows: f : X Ñ νγ.PωppY ` Z ` 1q ` A ˆ γq is guarded if
out ˝f : X Ñ PωppY `Z ` 1q `AˆT pY `Zqq factors through PωppY ` 1q `AˆT pY `Zqq,
i.e. the only allowed way to terminate through Z is that which is preceded by an action
from A.

(2) For TX “ PpA‹ ˆ pX ` 1q ` A‹q, let f : X Ñ Y ⟩⟩⟩⟩ Z if for every x P X, inlpw,
inlpinr yqq P fpxq entails w ‰ ϵ.

(3) For TX “ PpA‹ ˆ pX ` 1q ` pA‹ ` Aωqq guardedness is defined as in clause (2).
(4) For TX “ pνγ.X ˆS `γ ˆSqS , recall that SetT is isomorphic to a full subcategory

of the Kleisli category of νγ. p--`γ ˆ Sq, which is again an instance of Example 5.4 with
TX “ X and HX “ X ˆ S. The guardedness predicate for T thus restricts accordingly.

(5) For TX “ pRě0 ˆ Xq ` R̄ě0 let f : X Ñ Y ⟩⟩⟩⟩ Z if fpxq “ inl pr, inr zq implies r ą 0.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:15

x : A in Γ

Γ $v x : A

f : A Ñ B P Σv Γ $v v : A

Γ $v fpvq : B

f : A Ñ B ⟩⟩⟩⟩ C P Σc Γ $v v : A

Γ $c fpvq : B ⟩⟩⟩⟩ C

Γ $v v : A

Γ $c return v : A ⟩⟩⟩⟩ B
Γ $c p : A ⟩⟩⟩⟩ B Γ, x : A $c q : C ⟩⟩⟩⟩ D Γ, y : B $c r : C ` D ⟩⟩⟩⟩ 0

Γ $c docase p of inlx ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩⟩ D

Γ $v v : 0

Γ $c init v : A

Γ $v v : A

Γ $v inl v : A ` B

Γ $v v : B

Γ $v inr v : A ` B

Γ $v v : A ` B Γ, x : A $c p : C ⟩⟩⟩⟩ D Γ, y : B $c q : C ⟩⟩⟩⟩ D
Γ $c case v of inlx ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩⟩ D

Γ $v v : A Γ $v w : B

Γ $v ⟨v, w⟩ : A ˆ B

Γ $v p : A ˆ B Γ, x : A, y : B $c q : C ⟩⟩⟩⟩ D
Γ $c case p of ⟨x, y⟩ ÞÑ q : C ⟩⟩⟩⟩ D

Figure 6: Term formation rules of guarded FGCBV.

We proceed to extend the language in Figure 4 with guardedness data. As before, Σv

consists of constructs of the form f : A Ñ B, while Σc consists of constructs of the form
f : A Ñ B ⟩⟩⟩⟩ C, indicating guardedness in C. The new formation rules are then given
in Figure 6. The rule for return now introduces a coproduct summand B with respect to
which the computation is vacuously guarded, thus adhering to (trv‚). The rule for binding
now must incorporate (cmp‚), which requires the following modification of the syntax:

docase p of inlx ÞÑ q ; inr y ÞÑ r

The latter construct is meant to be equivalent to do z Ð p; case z of inlx ÞÑ q ; inr y ÞÑ r.
modulo guardedness information. Finally, (par‚) is captured by the formation rule for case,
which is essentially unchanged w.r.t. Figure 4. An analogue of the iteration operator (3.2)
in the new setting would be the rule:

Γ $c p : A ⟩⟩⟩⟩ 0 Γ, x : A $c q : B ⟩⟩⟩⟩ C ` A

Γ $c iter x Ð p; q : B ⟩⟩⟩⟩ C

Example 5.7 (Weakening). One can expect that the judgement f : X Ñ Y ⟩⟩⟩⟩ Z `W entails
f : X Ñ Y ` Z ⟩⟩⟩⟩ W , meaning that if a morphism is guarded w.r.t. an object Z ` W , then it
is guarded w.r.t. to its part W . The corresponding weakening principle

(wkn‚)
f : X Ñ Y ⟩⟩⟩⟩ Z ` W

f : X Ñ Y ` Z ⟩⟩⟩⟩ W

is indeed derivable from (trv‚), (par‚) and (cmp‚). In terms of guarded FGCBV, this
corresponds to constructing the following term from a given Γ $c p : A ⟩⟩⟩⟩ B ` C:

Γ $c docase p of inlx ÞÑ returnpinlxq;

inr z ÞÑ case z of inlx ÞÑ returnpinlpinr xqq;

inr y ÞÑ returnpinr yq : A ` B ⟩⟩⟩⟩ C.

Example 5.8. The updated effectful signature of Example 3.1 now involves a : 1 Ñ 0 ⟩⟩⟩⟩ 1
and toss : 1 Ñ 2 ⟩⟩⟩⟩ 0, indicating that actions guard everything, while nondeterminism guards

9:16 S. Goncharov Vol. 22:1

Jx1 : A1, . . . , xn : An $v xi : AiK “ proj i

h “ JΓ $v v : AK
JΓ $v fpvq : BK “ JfK ˝ h

h “ JΓ $v v : AK
JΓ $c fpvq : B ⟩⟩⟩⟩ CK “ JfK ˝ Jh

h “ JΓ $v v : AK
JΓ $c return v : A ⟩⟩⟩⟩ BK “ J inl ˝Jh

h “ JΓ $c p : A ⟩⟩⟩⟩ BK h1 “ JΓ, x : A $c q : C ⟩⟩⟩⟩ DK h2 “ JΓ, y : B $c r : C ` D ⟩⟩⟩⟩ 0K
JΓ $c docase p of inlx ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩⟩ DK “ rh1, rid , !s ˝ h2s ˝ J dist ˝pid mhq ˝ J∆

JΓ $c init v : AK “ !

h “ JΓ $v v : AK
JΓ $v inl v : A ` BK “ inl ˝h

h “ JΓ $v v : BK
JΓ $v inr v : A ` BK “ inr ˝h

h “ JΓ $v v : A ` BK h1 “ JΓ, x : A $c p : C ⟩⟩⟩⟩ DK h2 “ JΓ, y : B $c q : C ⟩⟩⟩⟩ DK
JΓ $c case v of inlx ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩⟩ DK “ rh1, h2s ˝ J dist ˝pid mJhq ˝ J∆

h1 “ JΓ $v v : AK h2 “ JΓ $v w : BK
JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨h1, h2⟩

Figure 7: Denotational semantics of guarded FGCBV over guarded Freyd categories.

nothing. The signature Σc from Example 3.2 can be refined to {put : S Ñ 0 ⟩⟩⟩⟩ 1, get : 1 Ñ

S ⟩⟩⟩⟩ 0}, meaning again that put guards everything and get guards nothing. Example 3.3 is
more subtle since wait : Rě0 Ñ Rě0 is meant to be guarded only for non-zero inputs. We thus
can embed the involved case distinction into wait by redefining it as wait : Rě0 Ñ Rě0 ⟩⟩⟩⟩ Rě0.

Definition 5.9 (Guarded Freyd Category). A distributive Freyd category pV,C, Jp--q,mq

is guarded if C is guarded and the action of V on C preserves guardedness in the following
sense: Given f P VpA,Bq, g P C‚pX,Y, Zq, J dist ˝pf m gq P C‚pA ˆ X,B ˆ Y,B ˆ Zq.

The semantics of pΣv,Σcq over a guarded Freyd category pV,C, Jp--q,mq interprets
types and operations from Σv as before and sends each f : A Ñ B ⟩⟩⟩⟩ C P Σc to JfK P

C‚pJAK, JBK, JCKq. Terms in context are now interpreted as JΓ $v v : BK P VpJΓK, JBKq and
JΓ $c p : B ⟩⟩⟩⟩ CK P CpJΓK, JBK` JCKq, according to the rules in Figure 7. This is well-defined,
which can be easily shown by structural induction:

Proposition 5.10. For any derivable Γ $c p : A ⟩⟩⟩⟩ B, JΓ $c p : A ⟩⟩⟩⟩ BK P C‚pJΓK, JAK, JBKq.

6. Representing Guardedness

In Section 4 we explored the combination of strength (i.e., multivariable contexts) and the
representability of presheavesCpJp--q, Xq : Vop Ñ Set, sticking to the bottom face of the cube
in Figure 1. Our plan now is to obtain additional concepts by examining the representability
of C‚pJp--q, X, Y q : Vop Ñ Set. Note that representability of guardedness together with
function spaces amounts to representability of C‚pJp--ˆXq, Y, Zq : Vop Ñ Set, i.e. to the
existence of an endofunctor⊸ : VopˆCˆC Ñ C, such thatC‚pJp--ˆXq, Y, Zq–Vp--, X ⊸Z

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:17

Y q. This is exactly the structure one would need to extend Figure 6 with function spaces as
follows:

Γ, x : A $c p : B ⟩⟩⟩⟩ C
Γ $v λx. p : A ÑC B

Γ $v w : A Γ $v v : A ÑC B

Γ $c vw : B ⟩⟩⟩⟩ C

The decorated function spaces A ÑC B can then be interpreted as JAK⊸JCK JBK, which is a
subobject of the Kleisli exponential JAK Ñ T pJBK ` JCKq, consisting of guarded morphisms.

Definition 6.1. Given J : V Ñ C, where C is guarded, we call the guardedness predi-
cate C‚ J-representable if for all X,Y P |C| the presheaf C‚pJp--q, X, Y q : Vop Ñ Set is
representable, i.e. for all X,Y P |C| there is UpX,Y q P |V| such that

C‚pJZ,X, Y q – VpZ,UpX,Y qq (6.1)

naturally in Z. A guardedness predicate C‚ is called J-guarded if it is equipped with
a J-representable guardedness predicate.

Lemma 6.2. Given an identity-on-objects functor J : V Ñ C, C‚ is J-representable iff

‚ there is a family of objects pUpX,Y q P |V|qX,Y P|C|;
‚ there is a family of guarded morphisms pϵX,Y : UpX,Y q Ñ X ⟩⟩⟩⟩ Y qX,Y P|C|;

‚ there is an operator p--q6 : C‚pZ,X, Y q Ñ VpZ,UpX,Y qq sending each f : Z Ñ X ⟩⟩⟩⟩ Y to
the unique morphism f 6 for which the diagram

UpX,Y q

Z X ` Y

ϵX,Y
Jf 6

f

commutes.

These conditions entail that U is a bifunctor and that ϵX,Y is natural in X and Y .

Proof. First, we argue that the declared characterization entails that U is a bifunctor and ϵX,Y

is natural inX and Y . Let g : X Ñ X 1, h : Y Ñ Y 1, and note that pg`hq˝ϵX,Y : JUpX,Y q Ñ

X 1 ⟩⟩⟩⟩ Y 1. Then the diagram

JUpX,Y q JUpX 1, Y 1q

X ` Y X 1 ` Y 1

ϵX,Y

JUpg,hq

ϵX1,Y 1

g`h

commutes for some Upg, hq : UpX,Y q Ñ UpX 1, Y 1q, uniquely determined by g and h. The
fact that thus defined Up--, --q is functorial is obvious by definition. Moreover, the above
diagram establishes the naturality of ϵX,Y in X and Y .

Observe that, by Yoneda lemma, for any bifunctor U , a natural transformation ξ : Vp--,
UpX,Y qq Ñ C‚pJp--q, X, Y q is uniquely determined by a morphism ϵX,Y : UJpX,Y q Ñ

X ⟩⟩⟩⟩ Y . We proceed to show that componentwise isomorphic ξ correspond to those ϵX,Y for

which the above-described maps p--q6 exist. Note that ξ and ϵ are connected as follows:

ϵX,Y “ ξUpX,Y qpid : UpX,Y q Ñ UpX,Y qq,

ξXpf : Z Ñ UpX,Y qq “ ϵX,Y ˝ Jf.

The map ξX : VpZ,UpX,Y qq Ñ C‚pJZ,X, Y q is a bijection iff every f : JZ Ñ JUpX,Y q

is of the form ϵX,Y ˝ Jg for some g : Z Ñ UpX,Y q, which is uniquely identified by f , in

9:18 S. Goncharov Vol. 22:1

other words, for every f : JZ Ñ JUpX,Y q there is a unique f 6 : Z Ñ UpX,Y q, such that
f “ ϵX,Y ˝ Jf 6.

Lemma 6.3. If C is J-guarded, then J % Up--, 0q with U as in Lemma 6.2.

Proof. Suppose that C is J-representable with J : V Ñ C. Observe that C‚pJX,A, 0q

is isomorphic to CpJX,Aq naturally in X: the components of the isomorphism are the
maps f ÞÑ inl ˝f for f P CpJX,Aq and g ÞÑ rid , !s ˝ g for g P C‚pJX,A, 0q. Using (6.1), we
thus arrive at

VpX,UpA, 0qq – C‚pJX,A, 0q – CpJX,Aq,

i.e. J % Up--, 0q.

By Lemma 6.3, representability fails already if J has no right adjoint. Instructive
examples of non-representability are thus only those where J does have a right adjoint.

Proposition 6.4. Let T be a monad over the category of sets Set with the axiom of choice.
If SetT is guarded, the guardedness predicate is representable iff every f : X Ñ T pY ` Zq is

guarded whenever all the compositions 1 ↪Ñ X f
ÝÑ T pY ` Zq are guarded.

Proof. It follows from previous results [GRS21, Proposition 12] that in any category, where
every morphism admits an image factorization (specifically in Set), representability of
guardedness in the Kleisli category of a monad T is equivalent to the following conditions.

(1) for all sets X and Y , there is a greatest subobject Z ↪Ñ T pX `Y q, which is guarded
as a morphism;

(2) for every regular epic e : X 1 Ñ X and every morphism f : X Ñ T pY `Zq, f ˝e : X 1 Ñ

Y ⟩⟩⟩⟩ Z implies f : X Ñ Y ⟩⟩⟩⟩ Z.

The second clause follows for Set: by the axiom of choice, every e : X 1 ↠ X has a section,
say m, and then f ˝ e : X 1 Ñ Y ⟩⟩⟩⟩ Z implies f “ f ˝ e ˝ m : X 1 Ñ Y ⟩⟩⟩⟩ Z. The second clause
is equivalent to the property that the injection

⋃
Z↪ÑX ⟩⟩⟩ Y Z ↪Ñ T pX ` Y q is guarded (and

hence is the largest guarded subobject by construction). Precomposing this map with any
map whose source is 1 yields a guarded map by definition, hence the condition from the
proposition’s statement is sufficient. Let us show that it is necessary. Let f : X Ñ T pY `Zq,

and suppose that all the compositions 1 ↪Ñ X f
ÝÑ T pY ` Zq are guarded. If the largest

guarded subobject exists, it must be the union of all such maps. Since this union is precisely
the original map f , it is guarded.

Example 6.5 (Failure of Representability). In Set, let f : X Ñ Y ` Z be guarded in Z if
{z P Z | f -1pinr zq ‰ ∅} is finite. The axioms of guardedness are easy to verify. By Proposi-

tion 6.4, this predicate is not Id-representable, as any 1 ↪Ñ X inr
ÝÝÑ 0 ` X is guarded, but

inr is not, unless X is finite.

In what follows, we will use # as a binary operation that binds stronger than monoidal
products (b , `, . . .), so, e.g. X b Y #Z will read as X b pY #Zq.

Theorem 6.6. Given an identity-on-objects guarded J : V Ñ C, C‚ is J-representable iff

‚ there is a bifunctor # : V ˆ V Ñ V, such that --#0 is a monad and C – V--#0;
‚ there is a family of guarded morphisms (w.r.t. the guardedness predicate, induced by
C – V--#0) pϵX,Y : X # Y Ñ X ⟩⟩⟩⟩ Y qX,Y P|V|, natural in X and Y ;

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:19

‚ for every guarded f : X Ñ Y ⟩⟩⟩⟩ Z, there is unique f 7 : X Ñ Y # Z, such that the diagram

Y # Z

X pY ` Zq # 0

ϵY,Z
f 7

f

commutes.

Proof. (ñ) By Lemma 6.3 and Proposition 3.4, assume w.l.o.g. that C “ VT for T “

UpJp--q, 0q. Let f # g “ UpJf, Jgq. Lemma 6.2 yields the desired guarded morphisms
ϵX,Y : X # Y Ñ pX ` Y q # 0, which satisfy the requisite universal property, obtained by
interpreting the corresponding property of Lemma 6.2 in C “ VT.

(ð) Conversely, given a bifunctor # : VˆV Ñ V with the described properties, let T be
the monad on --#0 and apply Lemma 6.2 with C “ VT, J being the free functor J : V Ñ VT

and UpX,Y q “ X # Y .

Theorem 6.6 provides a bijective correspondence between morphisms f : X Ñ Y ⟩⟩⟩⟩ Z
in C and the morphisms f 7 : X Ñ Y #Z in V, representing them. Uniqueness of the f 7 is
easily seen to be equivalent to the monicity of the ϵX,Z .

7. Guarded Parameterized Monads

Theorem 6.6 describes guardedness as a certain bifunctor # : V ˆ V Ñ V and a family of
morphisms pϵX,Y : X # Y Ñ X ⟩⟩⟩⟩ Y qX,Y P|V|, so that the guardedness predicate is derivable.
However, the guardedness laws are still formulated in terms of this predicate, and not in
terms of # and ϵ. To make the new definition of guardedness self-contained, we must identify
a collection of canonical morphisms and a complete set of equations relating them, in the
sense that the guardedness laws for all derived guarded morphisms follow. For example, by
applying p--q7 to the composition

X #pY ` Zq
ϵX,Y `Z
ÝÝÝÝÝÑ pX ` pY ` Zqq#0 – ppX ` Y q ` Zqq#0

we obtain a morphism υX,Y,Z : X #pY ` Zq Ñ pX ` Y q#Z, which represents weakening of
the guardedness guarantee: in X#pY `Zq the guarded part is Y `Z, while in pX ` Y q#Z
the guarded part is only Z. It should not make a difference though if starting from
X # pY ` pZ ` V qq we apply υ twice or rearrange Y ` pZ ` V q by associativity and
subsequently apply υ only once – the results must be canonically isomorphic, which is
indeed provable. Similarly to this case we introduce further morphisms and derive laws
relating them. We then prove that the resulting axiomatization enjoys a coherence property
(Theorem 7.3) in the style of Mac Lane’s coherence theorem for (symmetric) monoidal
categories [ML71]. In what follows, we switch from coproducts to general symmetric tensor
products, as coherence can only hold if the corresponding structure is not involved.

Definition 7.1 (Guarded Parameterized Monad). A guarded parameterized monad on a
symmetric monoidal category pV, b , Iq consists of a bifunctor # : V ˆ V Ñ V and natural
transformations

η : A Ñ A#I,

ξ : pA#Bq#C Ñ A#pB b Cq, υ : A#pB b Cq Ñ pA b Bq#C,

ζ : A#pB#Cq Ñ A#pB b Cq, χ : A#B b C#D Ñ pA b Cq#pB b Dq.

9:20 S. Goncharov Vol. 22:1

such that the following diagrams commute, where – refers to the obvious canonical isomor-
phisms

pA#Iq#B A#pI b Bq

A#B

pA#Bq#I A#pB b Iq

A#B

ξ

η#id –

ξ

η –

ppA#Bq#Cq#D pA#Bq#pC b Dq

pA#pB b Cqq#D

A#ppB b Cq b Dq A#pB b pC b Dqq

ξ

ξ#id

ξ

ξ

–

A#pI b Bq pA b Iq#B

A#B

υ

––

A#pB b pC b Dqq A#ppB b Cq b Dq

pA b Bq#pC b Dq

ppA b Bq b Cq#D pA b pB b Cqq#D

–

υ

υ

υ

–

A b B A#I b B#I

pA b Bq#I pA b Bq#pI b Iq

η

η b η

χ

–

A#B b C#D C#D b A#B

pA b Cq#pB b Dq pC b Aq#pD b Bq

χ

–

χ

–

A#B b pC#D b E#F q pA#B b C#Dq b E#F

A#B b pC b Eq#pD b F q pA b Cq#pB b Dq b E#F

pA b pC b Eqq#pB b pD b F qq ppA b Cq b Eq#ppB b Dq b F q

id #χ

–

χ#id

χ χ

–

pA#Bq#pI #Iq pA b Iq#pB b Iq

pA#Bq b I

χ

id b η
–

A#pB#Iq A#pB b Iq

A#B

ζ

id #η –

A#ppB#Cq#pD#Eqq

A#ppB#Cq b pD#Eqq A#ppB#Cq#pD b Eqq

A#ppB b Dq#pC b Eqq A#pB#pC b pD b Eqqq

A#ppB b Dq b pC b Eqq A#pB b pC b pD b Eqqq

ζ id #ζ

id #χ id #ξ

ζ ζ

–

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:21

pA#pB#Cqq#pD#Eq

A#ppB#Cq b pD#Eqq pA#pB b Cqq#pD#Eq

A#ppB b Dq#pC b Eqq pA#pB b Cqq#pD b Eq

A#ppB b Dq b pC b Eqq A#ppB b Cq b pD b Eqq

ξ ζ#id

id #χ ζ

ζ ξ

–

ppA#Bq#Cq b ppD#Eq#F q pA#B b D#Eq#pC b F q

A#pB b Cq b D#pE b F q ppA b Dq#pB b Eqq#pC b F q

pA b Dq#ppB b Cq b pE b F qq pA b Dq#ppB b Eq b pC b F qq

χ

ξ b ξ χ#id

χ ξ

–

pA#pB#Cqq b pD#pE#F qq pA b Dq#pB#C b E b F q

A#pB b Cq b D#pE b F q pA b Dq#ppB b Eq#pC b F qq

pA b Dq#ppB b Cq b pE b F qq pA b Dq#ppB b Eq b pC b F qq

ζ b ζ

χ

id #χ

χ ζ

–

pA#Bq#pC#D b E#F q pA#B b C#Dq#pE#F q

pA#Bq#ppC b Eq#pD b F qq ppA b Cq#pB b Dqq#pE#F q

pA#Bq#ppC b Eq b pD b F qq ppA b Cq#pB b Dqq b pE#F q

A#pB b ppC b Dq b pE b F qqq

A#pC b ppB b Dq b pE b F qqq pA b Cq#ppB b Dq b pE b F qq

υ

id #χ χ#id

ζ ζ

ξ

ξ

–

υ

9:22 S. Goncharov Vol. 22:1

A#B b C#pD b Eq A#B b pC b Dq#E

pA b Cq#pB b pD b Eqq pA b pC b Dqq#pB b Eq

pA b Cq#pD b pB b Eqq ppA b Cq b Dqq#pB b Eq

id b υ

χ χ

– –

υ

pA#pB b Cqq#D ppA b Bq#Cq#D

A#ppB b Cq b Dq

A#pB b pC b Dqq pA b Bq#pC b Dq

υ#id

ξ

ξ

–

υ

A#pB#pC b Dqq A#ppB b Cq#Dq

A#pB b pC b Dqq A#ppB b Cq b Dq

id #υ

ζ ζ

–

Remark 7.2. The first three laws (relating η and ξ) identify guarded parameterized monads
as parametric monads in the sense of Melliés [Mel17], and subsequently renamed to graded
monads [FKM16]. In our case, more specifically, # is a V-graded monad on V.

The relevance of the presented axiomatization is certified by the following

Theorem 7.3 (Coherence). Let E1, E2 and E 1
2 be expressions, built from b , # and I over

a set of letters, in such a way that E1 and E2 #E 1
2 contain every letter at most once and

neither E2 nor E 1
2 contain #. Let f and g be two expressions built with b and # over

identities, η, υ, ξ, ζ, χ, associators, unitors, braidings and inverses of associators and
unitors, in such a way that the judgements f : E1 Ñ E2#E 1

2 and g : E1 Ñ E2#E 1
2 are formally

valid. Then f “ g follows from the axioms of guarded parameterized monads.

Proof. For the sake of the present proof, let us introduce some nomenclature. We will use
the following names correspondingly for associators, right unitors and braidings:

α : A b pB b Cq Ñ pA b Bq b C, ρ : A b I Ñ A, γ : A b B Ñ B b A.

We dispense with the left unitor, since our monoidal structure is symmetric.
Let us refer to the expressions built from b ,# and I over some alphabet of object names,

fixed globally from now on, in such a way that every object name occurs at most once, as
object expressions. We refer to the expressions built with b and # over id , η, υ, ξ, ζ, χ,
α, α-1, ρ, ρ-1, γ as morphism expressions. An isomorphism expression is then a morphism
expression that does not involve η, υ, ξ, ζ, χ. Every morphism expression f unambiguously
identifies object expressions E1 and E2 for which the judgement f : E1 Ñ E2 is formally valid
(that is, in any category, where we can interpret f , E1 and E2, f is a morphism from E1
to E2). For two morphism expressions f, g : E1 Ñ E2, let f ” g denote ‘f “ g follows from
the axioms of guarded parameterized monads‘. An object expression is normal if it is of

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:23

the form E #E 1 and E and E 1 do not contain #. A morphism expression is simple if it is a
composition of isomorphism expressions between normal form expressions and instances
of υ.

For an object expression E , we define object expressions nf1pEq and nf2pEq recursively
with the clauses:

‚ nf1pEq “ E , nf2pEq “ I if E “ I or E is an object name;
‚ nf1pE b E 1q “ nf1pEq b nf1pE 1q, nf2pE b E 1q “ nf2pEq b nf2pE 1q;
‚ nf1pE #E 1q “ nf1pEq, nf2pE #E 1q “ nf2pEq b pnf1pE 1q b nf2pE 1qq.

Let nfpEq “ nf1pEq#nf2pEq, so nfpEq is normal. For any object expression E we also define
a normalization morphism expression nmpEq : E Ñ nfpEq, by induction as follows:

‚ nmpEq “ η if E “ I or E is an object name;
‚ nmpE b E 1q “ χ ˝ pnmpEq b nmpE 1qq;
‚ nmpE #E 1q “ ξ ˝ ζ ˝ pnmpEq#nmpE 1qq.

The statement of the theorem will follow from the following subgoals.

(1) If a morphism expression f : E Ñ E 1 does not contain υ then nmpE 1q ˝ f ” nmpEq ˝ g
for some isomorphism expression g.

(2) If a morphism expression f : E Ñ E 1 does not contain η, ξ, ζ and χ, then there exists
a simple morphism expression g : nfpEq Ñ nfpE 1q, such that nmpE 1q ˝ f ” g ˝ nmpEq.

(3) For any two simple morphism expressions f : E Ñ E 1 and g : E Ñ E 1, f ” g.
(4) For every normal object expression E , nmpEq : E Ñ nfpEq is an isomorphism expres-

sion.

Indeed, given f, g : E Ñ E 1 with normal E 1, to prove f ” g, it suffices to prove that f is equal

to E nmpEq
ÝÝÝÝÑ nfpEq

f 1

ÝÑ E 1 for some simple f 1 – the analogous statement would be true for g,
and we would be done by (3). In order to construct f 1, let us represent f as a composition
fn ˝ . . . ˝ f1 where every fi with even i contains precisely one occurrence of υ and every fi
with odd i contains no occurrences of υ. We obtain

E E1 E2 En

nfpEq nfpE1q nfpE2q nfpEnq

nmpEq

f1

nmpE1q

f2

nmpE2q

. . .

nmpEnq

– f 1
2 . . .

where E “ En, every odd diagram commutes by (1) and every even diagram commutes by (2).
Note that nmpEnq is an isomorphism expression by (1), and therefore we obtain the desired
presentation for f , by composing the left vertical arrow, the bottom horizontal sequence of
arrows and the inverse of the right vertical arrow. It remains to show the subgoals (1)–(4).

(1) We strengthen the claim by demanding the requisite isomorphism g to be of the
form g1 #g2 and proceed by structural induction on f .

Induction Base: f P {id , η, ξ, ζ, χ, ρ, ρ-1, α, α-1, γ}. If f “ id , we are done trivially by
taking g “ f . Consider f “ η : E Ñ E #I. Then the following diagram commutes, and we

9:24 S. Goncharov Vol. 22:1

obtain the requisite isomorphism g as the bottom horizontal morphism:

E E #I

pnf1pEq#nf2pEqq#pI #Iq

pnf1pEq#nf2pEqq#I pnf1pEq#nf2pEqq#pI b Iq

nf1pEq#nf2pEq nf1pEq#pnf2pEq b Iq nf1pEq#pnf2pEq b pI b Iqq

η

nmpEq

nmpEq#η

nmpE#Iqζ
id #η

–

ξ ξ
η

–
–

The remaining cases are handled by producing analogous commutative diagrams, which
are given below. We do not treat f “ ρ-1 and f “ α-1, as these cases are obtained from
the corresponding cases f “ ρ and f “ α by flipping the corresponding diagrams. To save
space and maintain readability, we write A,B, C,D for object expressions, A1,B1, C1,D1

for nf1pAq, nf1pBq, nf1pCq, nf1pDq and A2,B2, C2,D2 for nf2pAq, nf2pBq, nf2pCq, nf2pDq respec-
tively.

pA#Bq#C A#pB b Cq

ppA1 #A2q#pB1 #B2qq#pC1 #C2q pA1 #A2q#ppB1 #B2q b pC1 #C2qq

ppA1 #A2q#pB1 b B2qq#pC1 #C2q pA1 #A2q#ppB1 b C1q#pB2 b C2qq

ppA1 #A2q#pB1 b B2qq#pC1 b C2q

pA1 #pA2 b pB1 b B2qqq#pC1 #C2q

pA1 #pA2 b pB1 b B2qqq#pC1 b C2q pA1 #A2q#ppB1 b C1q b pB2 b C2qq

pA1 #A2q#ppB1 b B2q b pC1 b C2qq

A1 #pA2 b ppB1 b B2q b pC1 b C2qqq

A1 #pppA2 b pB1 b B2qqq b pC1 b C2qq A1 #pA2 b ppB1 b C1q b pB2 b C2qqq

pnm#nmq#nm

ξ

nm#pnm b nmq

ζ#id

ξ

id #χ

ζ

ξ#id

ζ

ξ

ξ#id

ζ

ξ ξ

–

ξ

––

–

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:25

A#pB#Cq A#pB b Cq

pA1 #A2q#ppB1 #B2q#pC1 #C2qq pA1 #A2q#ppB1 #B2q b pC1 #C2qq

pA1 #A2q#ppB1 #B2q#pC1 b C2qq pA1 #A2q#ppB1 b C1q#pB2 b C2qq

pA1 #A2q#pB1 #pB2 b pC1 b C2qqq

pA1 #A2q#pB1 b pB2 b pC1 b C2qqq pA1 #A2q#ppB1 b C1q b pB2 b C2qq

A1 b pA2 #pB1 b pB2 b pC1 b C2qqqq A1 #pA2 b ppB1 b C1q b pB2 b C2qqq

ζ

nm#pnm#nmq nm#pnm b nmq

ζ

id #ζ id #χ

id #ξ

ζ

ζ

ξ

–

ξ

–

A#B b C#D pA b Cq#pB b Dq

ppA1 #A2q#pB1 #B2qq b

ppC1 #C2q#pD1 #D2qq

ppA1 #A2q b pC1 #C2qq#

ppB1 #B2q b pD1 #D2qq

ppA1 #A2q b pC1 #C2qq#ppB1 b D1q#pB2 b D2qq

ppA1 b C1q#pA2 b C2qq#

ppB1 b D1q#pB2 b D2qq

ppA1 #A2q b pC1 #C2qq#ppB1 b D1q b pB2 b D2qq

ppA1#A2q#pB1 b B2qq b

ppC1 #C2q#pD1 b D2qq

ppA1 b C1q#pA2 b C2qq#

ppB1 b D1q b pB2 b D2qq

ppA1 #A2q b pC1 #C2qq#ppB1 b B2q b pD1 b D2qq

ppA1 b C1q#pA2 b C2qq#ppB1 b B2q b pD1 b D2qq

pA1#pA2 b pB1 b B2qqq b

pC1 #pC2 b pD1 b D2qqq

pA1 b C1q#ppA2 b pB1 b B2qq b

pC2 b pD1 b D2qqq

pA1 b C1q#ppA2 b C2q b

ppB1 b D1q b pB2 b D2qqq

pA1 b C1q#ppA2 b C2q b ppB1 b B2q b pD1 b D2qqq

χ

pnm#nmq b pnm#nmq pnm b nmq#pnm b nmq

ζ b ζ

χ

χ#χ

id #χ

ζ

ζ

χ#id

–

ξ b ξ

χ

ξ

–

χ b id

ξχ

– –

9:26 S. Goncharov Vol. 22:1

A b I A

pA1 #A2q b I A1 #A2

pA1 #A2q b pI #Iq

pA1 b Iq#pA2 b Iq A1 #A2

nm b id

ρ

nm

ρ

id b η

χ

–

A b pB b Cq pA b Bq b C

pA1 #A2q b ppB1 #B2q b pC1 #C2qq ppA1 #A2q b pB1 #B2qq b pC1 #C2q

pA1 #A2q b ppB1 b C1q#pB2 b C2qq ppA1 b B1q#pA2 b B2qq b pC1 #C2q

pA1 b pB1 b C1qq#pA2 b pB2 b C2qq ppA1 b B1q b C1q#ppA2 b B2q b C2q

α

nm bpnm b nmq pnm b nmq b nm

id b χ

α

χ b id

χ χ

–

A b B B b A

pA1 #A2q b pB1 #B2q pB1 #B2q b pA1 #A2q

pA1 b B1q b pA2 b B2q pB1 b A1q b pB2 b A2q

γ

nm b nm nm b nm

γ

χ χ

–

Induction Step. Consider f “ f1#f2 : E1#E2 Ñ E 1
1#E 1

2. We obtain the requisite isomorphism
from the diagram:

E1 #E2 E 1
1 #E 1

2

pnf1pE1q#nf2pE1qq#pnf1pE2q#nf2pE2qq pnf1pE 1
1q#nf2pE 1

1qq#pnf1pE 1
2q#nf2pE 1

2qq

pnf1pE1q#nf2pE1qq#pnf1pE2q b nf2pE2qq pnf1pE 1
1q#nf2pE 1

1qq#pnf1pE 1
2q b nf2pE 1

2qq

nf1pE1q b pnf2pE1q#pnf1pE2q b nf2pE2qqq nf1pE 1
1q b pnf2pE 1

1q#pnf1pE 1
2q b nf2pE 1

2qqq

f1#f2

nmpE1q#nmpE2q nmpE 1
1q#nmpE 1

2q

pe1#u1q#pe2#u2q

ζ ζ

ξ ξ

–

Here, the top cell commutes by induction hypothesis, with some isomorphisms e1, e2, u1
and u2, and the bottom cell commutes by naturality of ζ and ξ. The case f “ f1 b f2 is
handled analogously.

(2) The given morphism expression f can be decomposed as fn ˝ . . . ˝ f1 in such a way
that every fi contains at most one morphism name (not including id). It thus suffices to

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:27

establish the claim for every i. If the involved name is not υ, we are done by the previous
clause (1). We thus continue with the proof of (2) w.l.o.g. assuming that f is built from id ,
υ, b and #, and υ occurs in f precisely once.

Consider f “ υ. Using the naming conventions from clause (1), we obtain the following
commutative diagram:

A#pB b Cq pA b Bq#C

pA1 #A2q#ppB1 #B2q b pC1 #C2qq ppA1 #A2q b pB1 #B2qq#pC1 #C2q

pA1 #A2q#ppB1 b C1q#pB2 b C2qq ppA1 b B1q#pA2 b B2qq#pC1 #C2q

pA1 #A2q#ppB1 b C1q b pB2 b C2qq ppA1 b B1q#pA2 b B2qq#pC1 b C2q

A1 #pA2 b ppB1 b C1q b pB2 b C2qqq pA1 #B1q#ppA2 b B2q b pC1 b C1qq

υ

nm#pnm b nmq pnm b nmq#nm

υ

id #χ χ#id

ζ ζ

ξ ξ

υ˝pid #eq

which yields g “ υ ˝ pid #eq. Notably, e is an isomorphism. Next, we handle the cases
f “ υ# id , f “ id #υ, f “ υ b id and f “ id b υ. For f “ υ# id , we have

E1 #E2 E 1
1 #E2

pnf1pE1q#nf2pE1qq#pnf1pE2q#nf2pE2qq pnf1pE 1
1q#nf2pE 1

1qq#pnf1pE2q#nf2pE2qq

pnf1pE1q#nf2pE1qq#pnf1pE2q b nf2pE2qq pnf1pE 1
1q#nf2pE 1

1qq#pnf1pE2q b nf2pE2qq

pnf1pE1q#Eq#pnf1pE2q b nf2pE2qq

nf1pE1q#pnf2pE1q b pnf1pE2q b nf2pE2qqq nf1pE 1
1q#pnf2pE 1

1q b pnf1pE2q b nf2pE2qqq

nf1pE1q#pE b pnf1pE2q b nf2pE2qqq

υ#id

nmpE1q#nmpE2q nmpE 1
1q#nmpE2q

pυ˝pid #eqq#id

ζ ζ

ξ
pid #eq#id

pυ˝pid #eqq#id

ξ
υ#id

ξ

id #pe b idq υ˝e1

where e and e1 are isomorphisms, and e is the one that we inherit from the case f “ υ.

9:28 S. Goncharov Vol. 22:1

For f “ id #υ, we have construct the requisite g analogously:

E1 #E2 E1 #E 1
2

pnf1pE1q#nf2pE1qq#pnf1pE2q#nf2pE2qq pnf1pE1q#nf2pE1qq#pnf1pE 1
2q#nf2pE 1

2qq

pnf1pE1q#nf2pE1qq#pnf1pE2q#Eq

pnf1pE1q#nf2pE1qq#pnf1pE2q b nf2pE2qq pnf1pE1q#nf2pE1qq#pnf1pE 1
2q b nf2pE 1

2qq

pnf1pE1q#nf2pE1qq#pnf1pE2q b Eq

nf1pE1q#pnf2pE1q b pnf1pE2q b nf2pE2qqq pnf1pE1q#nf2pE1qq#pnf1pE 1
2q b nf2pE 1

2qq

nf1pE1q#pnf2pE1q b pnf1pE2q b Eqq

id #υ

nmpE1q#nmpE2q nmpE1q#nmpE 1
2q

ζ
id #pid #eq

id #pυ˝pid #eqq

ζ
id #υ

ζ

id #pid b eq
ξ ξ

–

ξ

id #pid b pid b eqq –

For f “ υ b id , we have

E1 b E2 E 1
1 b E2

pnf1pE1q#nf2pE1qq b pnf1pE2q#nf2pE2qq pnf1pE 1
1q#nf2pE 1

1qq b pnf1pE2q#nf2pE2qq

pnf1pE1q#Eq b pnf1pE2q#nf2pE2qq

pnf1pE1q b nf1pE2qq#pnf2pE1q b nf2pE2qq pnf1pE 1
1q b nf1pE2qq#pnf2pE 1

1q b nf2pE2qq

pnf1pE1q b nf1pE2qq#pE b nf2pE2qq

υ b id

nmpE1q b nmpE2q nmpE 1
1q b nmpE2q

pυ˝pid #eqq b id

χ
pid #eq b id

χ
υ b id

χ

id #pe b idq e2
˝υ˝e1

where, again, e is the one that we inherit from the case f “ υ, and e1 and e2 are isomorphisms.
The argument for f “ id b υ is symmetric.

The general case now follows by structural induction on f with the above cases serving
as the induction base.

(3) Let us first argue that w.l.o.g., f and g are of the form pe2 # idq ˝ υ ˝ pid #e1q

and pu2 # idq ˝ υ ˝ pid #u1q with some isomorphism expressions e1, e2, u1, u2. Indeed, by
assumption, f is a composition of morphism expressions of the form: υ, id #e and e#id where
e ranges over isomorphism expressions. We ensure that υ occurs at least once by using the fact
that idA#B ” pρA#idBq˝υA,I,B ˝pidA#γB,Iq˝pidA#ρ-1B q. Since pid #eq˝υ ” υ˝pid #pid b eqq

and υ ˝ pe# idq ” ppid b eq# idq ˝ υ, we can rearrange f equivalently in such a way that all
components of the form id #e are gathered on the right of the expression and all components
of the form e# id are gathered on the left of the expression. Using the axioms of guarded
parameterized monads, we can subsequently replace compositions υ ˝ υ with a single υ, and
thus arrive at the requisite form. The same reasoning applies to g.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:29

Now the equality f ” g follows from the diagram:

A#pB1 b Dq pA b B1q#D

A#B C#D

A#pB2 b Dq pA b B2q#D

υ

–

e2#id

–

id #e1

id #u1 υ u2#id

using the fact that B1 and B2 are necessarily isomorphic. That the triangles commute follows
from the original Mac Lane’s coherence theorem for symmetric monoidal categories [ML71].

(4) Since E is assumed to be normal, E “ E1 #E2, where E1 and E2 do not contain #.
Let us show first, by induction over E1, that nmpE1q ” pid #e1q ˝ η for some isomorphism e1
between I and a tensor product of some number of copies of I. The induction base is
trivial. For the induction step, let E1 “ E 1

1 b E2
1 . Then, using the induction hypothesis,

nmpE1q “ χ˝pnmpE 1
1q b nmpE2

1 qq ” χ˝ppid #e1
1q˝ηbpid #e2

1q˝ηq ” pid #pe1
1 b e2

1qq˝χ˝pηbηq ”

pid #pe1
1 b e2

1q ˝ eq ˝ η where e : I – I b I. Analogously, we obtain nmpE2q ” pid #e2q ˝ η.
Now, nmpEq “ nmpE1#E1q “ ξ˝ζ ˝pnmpE1q#nmpE2qq ” ξ˝ζ ˝ppid #e1q˝η#pid #e2q˝ηq ”

pid b pe1 b pid b e2qqq ˝ ξ ˝ ζ ˝ pη#ηq. Using the axioms of guarded parameterized monads,
observe that ξ ˝ ζ ˝ pη#ηq is an isomorphism expression, which finishes the proof.

It is an open question if a stronger version of the above coherence theorem with general
f, g : E1 Ñ E2 can be proven. In the sequel, we will only deal with guarded parameterized
monads over pV,`, 0q. Recall that a parameterized monad (in the sense of Uustalu [Uus03])
is a bifunctor T : V ˆ V Ñ V, such that each T p--, Xq is a monad and each T p--, fq is a
monad morphism. Of course, a guarded parameterized monad is meant to be a parameterized
monad in this sense. This follows from Remark 7.2 and the following general fact.

Proposition 7.4. Every V-graded monad on pV,`, 0q is a parameterized monad.

Proof. A V-graded monad on V is equivalently a lax monoidal functor from V to the
monoidal category of endofunctors prV,Vs, ˝, Idq. Let this lax monoidal functor send each
X P |V| to T p--, Xq : V Ñ V. Lax monoidal functors preserve monoids, which unravels
as follows. Every object X in V is a monoid under ! : 0 Ñ X and ∇ : X ` X Ñ X, and
monoids in prV,Vs, ˝, Idq are precisely monads. Therefore, T p--, Xq is a monad for every X.
Likewise, every morphism f : X Ñ Y in V is a monoid morphism, and hence induces a
monoid morphism from T p--, Xq to T p--, Y q, i.e. a monad morphism.

Explicitly, for a guarded parameterized monad # we obtain parameterized multiplication
transformation:

µX,Y “
(
pX #Y q#Y ξ

ÝÑ X #pY ` Y q id #∇
ÝÝÝÑ X #Y

)
Theorem 7.5. Given co-Cartesian V and an identity-on-object functor J : V Ñ C strictly
preserving coproducts, C is guarded and C‚ is representable iff C – V--#0 for a guarded
parameterized monad p#, η, υ, χ, ξ, ζq, the compositions υX,Y,0 ˝ pid #inlq are all monic and
f : X Ñ Y ⟩⟩⟩⟩ Z iff f factors through Y #pZ ` 0q υ

ÝÑ pY ` Zq#0.

Proof. (ñ) Let C‚ be J-representable. By Theorem 6.6, assume w.l.o.g. that C “ VT where
T “ --#0, and let ϵ and p--q7 be the corresponding structure, belonging to #. Let η be the
unit of T. We obtain the remaining transformations υ, ξ, ζ and χ by universality as follows:

υ “
(
X #pY ` Zq ϵ

ÝÑ pX ` pY ` Zqq#0 – ppX ` Y q ` Zqq#0
)7
,

9:30 S. Goncharov Vol. 22:1

ξ “
(
pX #Y q#Z ϵ

ÝÑ pX #Y ` Zq#0 rT pid ` inlq˝ϵ,η˝inr ˝ inr s‹

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pX ` pY ` Zqq#0
)7
,

ζ “
(
X #pY #Zq ϵ

ÝÑ pX ` Y #Zq#0 rη˝inl ,T inr ˝ϵs‹

ÝÝÝÝÝÝÝÝÝÑ pX ` pY ` Zqq#0
)7
,

χ “
(
X #Y ` Z#V ϵ`ϵ

ÝÝÑ pX ` Y q#0 ` pZ ` V q#0

T rinl ` inl ,inr ` inr s
ÝÝÝÝÝÝÝÝÝÝÝÝÑ ppX ` Y q ` pZ ` V qq#0

)7
.

It is clear by definition that f 7 is mono as long as f is mono, hence υ is mono. The
characterization of the guardedness predicate follows from Theorem 6.6. The laws of guarded
parameterized monad all follow by postcomposition with ϵ and using the fact that it is mono.

(ð) Let C “ V--#0 for a guarded parameterized monad p#, η, υ, χ, ξ, ζq. We define
ϵ : X#Y Ñ pX `Y q#0 as X#Y –X#pY ` 0q υ

ÝÑ pX `Y q#0, which is monic, since υ is so
by assumption. This yields a unique f 7 for every guarded f , by definition of the guardedness
predicate. The only non-trivial condition of Theorem 6.6, which is left to verify, is that the
guardedness predicate is well-defined.

‚ (trv‚) Given f : X Ñ Y , η ˝ inl ˝f “ ϵ ˝ pid #!q ˝ η ˝ f is thus guarded.
‚ (par‚) Given f : X Ñ V # W and g : Y Ñ V # W , rϵ ˝ f, ϵ ˝ gs “ ϵ ˝ rf, gs is guarded.
‚ (cmp‚) Given f : X Ñ Y # Z, g : Y Ñ V # W and h : Z Ñ pV ` W q # 0, observe

first that

rϵ ˝ g, hs‹ ˝ ϵ ˝ f “ µ ˝ prϵ ˝ g, hs # idq ˝ ϵ ˝ f

“ pid #∇q ˝ ξ ˝ prϵ ˝ g, hs # idq ˝ ϵ ˝ f

“ pid #∇q ˝ ξ ˝ prϵ, id s # idq ˝ ϵ ˝ pg # hq ˝ f.

That is, we are left to show that pid #∇q ˝ ξ ˝ prϵ, id s # idq ˝ ϵ factors through ϵ. Observe
that p∇#∇q ˝ χ “ ∇. Therefore,

pid #∇q ˝ ξ ˝ p∇# idq ˝ ppϵ ` idq # idq ˝ ϵ

“ pid #∇q ˝ ξ ˝ pp∇#∇q ˝ χ# idq ˝ ppϵ ` idq # idq ˝ ϵ

“ pid #∇q ˝ p∇#p∇ ` idqq ˝ ξ ˝ pχ# idq ˝ ppϵ ` idq # idq ˝ ϵ

“ p∇#∇ ˝ p∇ ` idqq ˝ ξ ˝ pχ# idq ˝ ppϵ ` idq # idq ˝ ϵ

“ pp∇ ` ∇q#∇ ˝ p∇ ` idqq ˝ prinl ` inl , inr ` inr s# idq ˝ ξ ˝ pχ ˝ pϵ ` idq # idq ˝ ϵ.

Using coherence, prinl ` inl , inr ` inr s#idq˝ξ˝pχ˝pϵ`idq#idq˝ϵ : pV #W q#ppV `W q#0q Ñ

ppV ` V q ` pW ` W qq # pp0 ` 0q ` 0q can be factored through υ, and hence the entire
expression factors through ϵ.

Vacuous guardedness is clearly representable and by Theorem 7.5 corresponds to those
guarded parameterized monads #, which do not depend on the parameter, i.e. to monads.

Example 7.6. Let us revisit Example 5.4. Let X # Y “ T pX ` HTHpX ` Y qq, and note
that --#0 is isomorphic to TH . Assuming the existence of some morphism p : 1 Ñ H1, for

every X, we obtain the final map p̂ : 1 Ñ THX, induced by the coalgebra map 1 η˝inr ˝p
ÝÝÝÝÝÑ

T pX ` H1q. Now, T pinl ` idq is a section, since T rid `Hp̂ ˝ p ˝ !, inr s ˝ T pinl ` idq is the
identity. By Theorem 6.6, # is a guarded parameterized monad.

Example 7.7. Let us revisit Example 5.6. Let X # Y “ Rě0 ˆ X ` Rą0 ˆ Y ` R̄ě0. Then
X # 0 – Rě0 ˆ X ` R̄ě0 and there is an obvious injection ϵX,Y from X # Y to pX ` Y q # 0.
By definition, every guarded f : X Ñ Y #Z uniquely factors through ϵY,Z , and hence # is a
guarded parameterized monad.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:31

Definition 7.8 (Strong Guarded Parameterized Monad). A guarded parameterized monad
p#, η, υ, χ, ξ, ζq is strong, if # is strong as a monad in the first argument and as a functor
in the second argument, and the diagram

X ˆ pY #Zq X ˆ pY ` Zq#0 pX ˆ pY ` Zqq#0 pX ˆ Y ` X ˆ Zq#0

pX ˆ Y q#Z pX ˆ Y ` Zq#0

id ˆϵ

τ

τ dist #0

pid ` sndq#0

ϵ

commutes, where ϵX,Y “ υX,Y,0 ˝ pid #inlq and τ is the monadic strength of #.

Remark 7.9. Strength is commonly referred to as a “technical condition”. This is justified
by the fact that in self-enriched categories, strength is equivalent to enrichment of the
corresponding functor or a monad [Koc72], and in foundational categories, like Set, every
functor and every natural transformation are canonically enriched w.r.t. Cartesian closeness
as the self-enrichment structure. Then the canonical strength ρX,Y : X ˆ FY Ñ F pX ˆ Y q

for a functor F is defined by the expression ρX,Y “ λpx, zq. F pλy. px, yqqpzq. We conjecture
that the strengths involved in Definition 7.8 are technical in the same sense, in particular,
the requested commutative diagram is entailed by enrichment of ϵ.

Finally, let us establish the analogue of Theorem 7.5 for Freyd categories.

Theorem 7.10. A Freyd category pV,C, Jp--q,mq is guarded and C‚ is representable iff
C – V--#0 for a strong guarded parameterized monad p#, η, υ, χ, ξ, ζq, the compositions
υX,Y,0 ˝ pid #inlq are all monic and f : X Ñ Y ⟩⟩⟩⟩ Z iff f factors through Y # pZ ` 0q υ

ÝÑ
pY ` Zq#0.

Proof. Theorem 7.5 and Proposition 4.5 jointly imply that C is a representable guarded
Freyd category iff

‚ C – V--#0 for a guarded parameterized monad p#, η, υ, χ, ξ, ζq,
‚ υ is componentwise monic,
‚ f : X Ñ Y ⟩⟩⟩⟩ Z iff f factors through Y #pZ ` 0q υ

ÝÑ pY ` Zq#0,
‚ T “ p--q #0 is strong and pT distq ˝ τ ˝ pid ˆϵq : X ˆ pY #Zq Ñ T pX ˆ Y ` X ˆ Zq

uniquely factors through ϵ : X ˆ Y #X ˆ Z Ñ T pX ˆ Y ` X ˆ Zq where τ is the strength
of T.

This yield strength for both sides of # by composition:

X ˆ pY #Zq Ñ pX ˆ Y q#pX ˆ Zq id #snd
ÝÝÝÝÑ pX ˆ Y q#Z,

X ˆ pY #Zq Ñ pX ˆ Y q#pX ˆ Zq snd #id
ÝÝÝÝÑ Y #pX ˆ Zq.

The diagram in Definition 7.8 is thus satisfied by definition. The axioms of strength are
checked routinely.

For a strong guarded parameterized monad #, let
~
τ be the composition

X ˆ pY #Zq ∆ˆid
ÝÝÝÑ pX ˆ Xq ˆ pY #Zq – X ˆ pX ˆ pY #Zqq

id ˆρ
ÝÝÝÑ X ˆ pY #pX ˆ Zqq τ

ÝÑ pX ˆ Y q#pX ˆ Zq

where τ is the monadic strength of # and ρ is the functorial strength of #. It is easy to check
that τ and ρ are derivable from

~
τ , and in the sequel, we will include it as the last element in

a tuple p#, η, υ, χ, ξ, ζ,
~
τq, defining a strong guarded parameterized monad.

9:32 S. Goncharov Vol. 22:1

Jx1 : A1, . . . , xn : An $v xi : AiK “ proj i

h “ JΓ $v v : AK
JΓ $v fpvq : BK “ JfK ˝ h

h “ JΓ $v v : AK
JΓ $c fpvq : BK “ JfK ˝ h

h “ JΓ $v v : AK
JΓ $c return v : A ⟩⟩⟩⟩ BK “ η ˝ h

h “ JΓ $c p : A ⟩⟩⟩⟩ BK h1 “ JΓ, x : A $c q : C ⟩⟩⟩⟩ DK h2 “ JΓ, y : B $c r : pC ` Dq ⟩⟩⟩⟩ 0K
JΓ $c docase p of inlx ÞÑ q ; inr y ÞÑ r : C ⟩⟩⟩⟩ DK

“ p∇# idq ˝ υ ˝ µ ˝ ppid #inr q#rid , !sq ˝ ζ ˝ ph1 #h2q ˝
~
τ ˝ ⟨id , h⟩

JΓ $c init v : AK “ !

h “ JΓ $v v : AK
JΓ $v inl v : A ` BK “ inl ˝h

h “ JΓ $v v : BK
JΓ $v inr v : A ` BK “ inr ˝h

h “ JΓ $v v : A ` BK h1 “ JΓ, x : A $c p : C ⟩⟩⟩⟩ DK h2 “ JΓ, y : B $c q : C ⟩⟩⟩⟩ DK
JΓ $c case v of inlx ÞÑ p; inr y ÞÑ q : C ⟩⟩⟩⟩ DK “ p∇#∇q ˝ χ ˝ ph1 ` h2q ˝ dist ˝⟨id , h⟩

h1 “ JΓ $v v : AK h2 “ JΓ $v w : BK
JΓ $v ⟨v, w⟩ : A ˆ BK “ ⟨h1, h2⟩

Figure 8: Denotational semantics of guarded FGCBV over guarded parameterized monads.

Finally, we can interpret the guarded version of FGCBV over a strong guarded parame-
terized monad p#, η, υ, χ, ξ, ζ,

~
τq on V. A semantics of pΣv,Σcq then assigns

‚ an object JAK P |V| to each sort A;
‚ a morphism JfK P VpJAK, JBKq to each f : A Ñ B P Σv;
‚ a morphism JfK P VpJAK, JBK#JCKq to each f : A Ñ B ⟩⟩⟩⟩ C P Σc;

This semantics extends to types as before and to terms in context with the assignments
in Figure 8. Let us spell out the most sophisticated morphism corresponding to the rule
for docase:

JΓK ⟨id ,h⟩
ÝÝÝÑ JΓK ˆ pJAK#JBKq

~τJΓK,JAK,JBK
ÝÝÝÝÝÝÝÑ pJΓK ˆ JAKq#pJΓK ˆ JBKq

h1#h2
ÝÝÝÝÑ pJCK#JDKq#ppJCK ` JDKq#0q

ζJCK#JDK,JCK`JDK,0
ÝÝÝÝÝÝÝÝÝÝÝÑ pJCK#JDKq#ppJCK ` JDKq ` 0q

pid #inr q#rid ,!s
ÝÝÝÝÝÝÝÝÝÑ pJCK#pJCK ` JDKqq#pJCK ` JDKq

µJCK,JCK`JDK
ÝÝÝÝÝÝÝÝÑ JCK#pJCK ` JDKq

υJCK,JCK,JDK
ÝÝÝÝÝÝÝÑ pJCK ` JCKq#JDK ∇#id

ÝÝÝÑ JCK#JDK

Note that what allows us to sidestep the monicity condition of the representability criterion
(Theorem 7.5) is that we gave up on the assumption that the space of guarded morphisms
X Ñ Y #Z injectively embeds into the space of all morphisms X Ñ pY `Zq#0, in particular,
the entire notion of guardedness predicate is eliminated.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:33

8. Conclusions and Further Work

We investigated a combination of FGCBV and guardedness, drawing inspiration from
previous work relating Freyd categories to strong monads via a natural representability
condition for certain presheaves. An abstract notion of guardedness naturally fits into
the FGCBV paradigm and gives rise to more general formats of presheaves, which must
be representable, e.g., to interpret higher-order (guarded) functions. In our case, the
representability requirement gave rise to a novel categorical structure — we dub it a
(strong) guarded parameterized monad — that encapsulates the computational effects under
consideration while providing guardedness guarantees.

We regard our present results as a prerequisite step for implementing guarded programs
in existing higher-order languages, such as Haskell, and in proof assistants with strict
support of the propositions-as-types discipline, such as Coq and Agda, where unproductive
recursive definitions cannot be implemented directly, and thus guarded iteration is particularly
significant. It would be interesting to further refine guarded parameterized monads to include
quantitative information about how productive a computation is, or how unproductive it is,
so that this relative unproductivity could possibly be cancelled out by composition with
something very productive. Another strand for future work arises from the observation that
guarded iteration is a formal dual of guarded recursion [GS18].

A good deal of the present theory can be easily dualized, which will presumably lead to
guarded parameterized comonads and comonadic recursion – we are planning to investigate
these structures from the perspective of comonadic notion of computation [UV08]. In terms
of syntax, a natural extension of fine-gain call-by-value is call-by-push-value [Lev99]. We
expect it to be a natural environment for analyzing the above-mentioned aspects in the style
of the presented approach.

As we demonstrated, guarded parameterized monads emerge as an answer to a very natu-
ral representability question, but the resulting notion, i.e. Definition 7.1, admittedly appears
to be rather unwieldy. It involves five natural transformations, two of which (η and ξ) render
guarded parameterized monads as graded [FKM16] or parametric monads [Mel17]. Each of
the remaining transformations has its specific role in governing guardedness guarantees. They
ensure that a guardedness guarantee can be weakened (υ), that independent guardedness
guarantees can be merged (χ), and that nested guardedness guarantees can be flattened (ζ).
Numerous coherence conditions between these transformations are vital for the coherence the-
orem, and it seems that not much can be done to simplify them significantly. One seemingly
natural idea is to replace the natural transformation χ : A#B b C#D Ñ pA b Cq#pB b Dq

with a more elementary transformation κ : A b B#C Ñ pA b Bq#C from which χ can be
derived. This, however, does not have a straightforward simplifying effect on the coherence
conditions, in particular on the condition describing the interaction of χ and associativity
transformations. Outside the context of coherence, the only useful example of b known
presently is the binary coproduct functor `, and the only useful candidate for χ in this case
is rinl #inl , inr #inr s. In this special case Definition 7.1 might be possible to simplify.

Acknowledgement

The author would like to thank anonymous reviewers of the present and previous editions of
the paper for their diligence in their effort to improve it.

9:34 S. Goncharov Vol. 22:1

References

[ACÉI12] Luca Aceto, Arnaud Carayol, Zoltán Ésik, and Anna Ingólfsdóttir. Algebraic synchronization trees
and processes. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors,
Proc. of 39th Int. Coll on Automata, Languages, and Programming (ICALP 2012), Part 2, volume
7392 of LNCS, pages 30–41. Springer, 2012. doi:10.1007/978-3-642-31585-5_7.

[ADK17] Thorsten Altenkirch, Nils Danielsson, and Nicolai Kraus. Partiality, revisited — the partiality
monad as a quotient inductive-inductive type. In Javier Esparza and Andrzej Murawski, editors,
Foundations of Software Science and Computation Structures (FOSSACS 2017), volume 10203 of
LNCS, pages 534–549, 2017. doi:10.1007/978-3-662-54458-7.

[AMV02] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. On rational monads and free iterative the-
ories. In Proc. Category Theory and Computer Science (CTCS 2002), volume 69 of Elec-
tron. Notes Theor. Comput. Sci., pages 23–46, 2002. doi:10.1016/s1571-0661(04)80557-7.

[AMV10] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Equational properties of iterative monads. Inf.
Comput., 208(12):1306–1348, 2010. doi:10.1016/j.ic.2009.10.006.

[Awo10] Steve Awodey. Category Theory (Oxford Logic Guides). Oxford University Press, USA, 2 edition,
2010. doi:10.1093/acprof:oso/9780198568612.001.0001.

[BE93] Stephen Bloom and Zoltán Ésik. Iteration theories: The equational logic of iterative processes.
Springer, 1993. doi:10.1007/978-3-642-78034-9.

[BPS01] J. Bergstra, A. Ponse, and Scott Smolka, editors. Handbook of Process Algebra. Elsevier, 2001.
doi:10.1016/b978-0-444-82830-9.x5017-6.

[BW90] Jos C. M. Baeten and W. P. Weijland. Process algebra, volume 18 of Cambridge tracts in theoretical
computer science. Cambridge University Press, 1990. doi:10.1017/cbo9780511624193.

[Cap05] Venanzio Capretta. General recursion via coinductive types. Log. Meth. Comput. Sci., 1(2), 2005.
doi:10.2168/lmcs-1(2:1)2005.

[Coc93] J. Robin B. Cockett. Introduction to distributive categories. Mathematical Structures in Computer
Science, 3(3):277–307, 1993. doi:10.1017/s0960129500000232.

[CUV17] James Chapman, Tarmo Uustalu, and Niccoló Veltri. Quotienting the delay monad by weak
bisimilarity. volume 29, page 67–92. Cambridge University Press (CUP), October 2017. doi:
10.1017/s0960129517000184.

[EK17] Mart́ın H. Escardó and Cory M. Knapp. Partial Elements and Recursion via Dominances in
Univalent Type Theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 21:1–21:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2017.21.

[Fio04] M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Distinguished Dissertations
in Computer Science. Cambridge University Press, 2004. doi:10.1017/CBO9780511526565.

[FKM16] Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. Towards a formal theory of graded
monads. In Bart Jacobs and Christof Löding, editors, Proc. 19th International Conference on Foun-
dations of Software Science and Computation Structures (FOSSACS 2016), volume 9634 of Lecture
Notes in Computer Science, pages 513–530. Springer, 2016. doi:10.1007/978-3-662-49630-5\
_30.

[Fok13] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science. An EATCS
Series. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-662-04293-9.

[GNP20] Sergey Goncharov, Renato Neves, and José Proença. Implementing hybrid semantics: From
functional to imperative. In Volker Stolz Violet Ka I Pun, Adenilso da Silva Simão, editor,
17th International Colloquium on Theoretical Aspects of Computing (ICTAC 2020), 2020. doi:
10.1007/978-3-030-64276-1_14.

[Gon21] Sergey Goncharov. Uniform Elgot Iteration in Foundations. In Nikhil Bansal, Emanuela Merelli, and
James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021), volume 198 of LIPIcs, pages 131:1–131:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.131.

[Gon23] Sergey Goncharov. Representing Guardedness in Call-By-Value. In Marco Gaboardi and Femke
van Raamsdonk, editors, 8th International Conference on Formal Structures for Computation and
Deduction (FSCD 2023), volume 260 of Leibniz International Proceedings in Informatics (LIPIcs),

https://doi.org/10.1007/978-3-642-31585-5_7
https://doi.org/10.1007/978-3-662-54458-7
https://doi.org/10.1016/s1571-0661(04)80557-7
https://doi.org/10.1016/j.ic.2009.10.006
https://doi.org/10.1093/acprof:oso/9780198568612.001.0001
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1016/b978-0-444-82830-9.x5017-6
https://doi.org/10.1017/cbo9780511624193
https://doi.org/10.2168/lmcs-1(2:1)2005
https://doi.org/10.1017/s0960129500000232
https://doi.org/10.1017/s0960129517000184
https://doi.org/10.1017/s0960129517000184
https://doi.org/10.4230/LIPIcs.CSL.2017.21
https://doi.org/10.1017/CBO9780511526565
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.4230/LIPIcs.ICALP.2021.131

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:35

pages 34:1–34:21, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSCD.2023.34.

[GRS15] Sergey Goncharov, Christoph Rauch, and Lutz Schröder. Unguarded recursion on coinductive
resumptions. In Proc. Mathematical Foundations of Programming Semantics (MFPS 2015), volume
319 of ENTCS, pages 183–198. Elsevier, 2015. doi:10.23638/lmcs-14(3:10)2018.

[GRS21] Sergey Goncharov, Christoph Rauch, and Lutz Schröder. A metalanguage for guarded iteration.
Theoretical Computer Science, 880:111–137, 2021. doi:10.1016/j.tcs.2021.04.005.

[GS18] Sergey Goncharov and Lutz Schröder. Guarded traced categories. In Christel Baier and Ugo Dal
Lago, editors, Proc. 21th International Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS 2018), LNCS. Springer, 2018. doi:10.1007/978-3-319-89366-2_17.

[GSRP17] Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying guarded and
unguarded iteration. In Javier Esparza and Andrzej Murawski, editors, Proc. 20th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2017),
volume 10203 of LNCS, pages 517–533. Springer, 2017. doi:10.1007/978-3-662-54458-7_30.

[GSRP19] Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Guarded and unguarded
iteration for generalized processes. Logical Methods in Computer Science, 15(3), 2019. doi:

10.23638/LMCS-15(3:1)2019.
[JK01] George Janelidze and Gregory M Kelly. A note on actions of a monoidal category. Theory Appl.

Categ, 9(61-91):02, 2001.
[Koc72] Anders Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–120, 1972.

doi:10.1007/bf01304852.
[Lev99] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor,

TLCA, volume 1581 of Lecture Notes in Computer Science, pages 228–242. Springer, 1999.
doi:10.1007/978-94-007-0954-6_2.

[Lev04] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in
Computation, V. 2). Kluwer Academic Publishers, USA, 2004. doi:10.1007/978-94-007-0954-6.

[LG19] Paul Blain Levy and Sergey Goncharov. Coinductive resumption monads: Guarded iterative
and guarded elgot. In Proc. 8rd international conference on Algebra and coalgebra in computer
science (CALCO 2019), LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.CALCO.2019.13.

[LPT02] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Inf. & Comp, 185:2003, 2002. doi:10.1016/s0890-5401(03)00088-9.

[Mel17] Paul-André Melliés. The parametric continuation monad. Mathematical Structures in Computer
Science, 27(5):651–680, 2017. doi:10.1017/s0960129515000328.

[Mil89] R. Milner. Communication and concurrency. Prentice-Hall, 1989.
[Mil05] Stefan Milius. Completely iterative algebras and completely iterative monads. Inf. Comput.,

196(1):1–41, 2005. doi:10.1016/j.ic.2004.05.003.
[ML71] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971. doi:10.1007/

978-1-4612-9839-7.
[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, 1991. doi:10.1016/

0890-5401(91)90052-4.
[NU15] Keiko Nakata and Tarmo Uustalu. A Hoare logic for the coinductive trace-based big-step semantics

of While. Log. Meth. Comput. Sci., 11(1), 2015. doi:10.2168/lmcs-11(1:1)2015.
[PG14] Maciej Piróg and Jeremy Gibbons. The coinductive resumption monad. In Mathematical Foun-

dations of Programming Semantics, MFPS 2014, volume 308 of ENTCS, pages 273–288, 2014.
doi:10.1016/j.entcs.2014.10.015.

[PP01] Gordon Plotkin and John Power. Adequacy for algebraic effects. In Proc. 4th International
Conference in Foundations of Software Science and Computation Structures (FOSSACS 2001),
volume 2030 of LNCS, pages 1–24, 2001. doi:10.1007/3-540-45315-6_1.

[PR97] A. J. Power and E. P. Robinson. Premonoidal categories and notions of computation. Mathematical
Structures in Computer Science, 7(5):453–468, October 1997. doi:10.1017/s0960129597002375.

[PT99] A. John Power and Hayo Thielecke. Closed Freyd- and kappa-categories. In Proceedings of
the 26th International Colloquium on Automata, Languages and Programming (ICALP 1999),
Lecture notes in Computer Science, page 625–634, Berlin, Heidelberg, 1999. Springer-Verlag.
doi:10.1007/3-540-48523-6_59.

https://doi.org/10.4230/LIPIcs.FSCD.2023.34
https://doi.org/10.23638/lmcs-14(3:10)2018
https://doi.org/10.1016/j.tcs.2021.04.005
https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.1007/bf01304852
https://doi.org/10.1007/978-94-007-0954-6_2
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://doi.org/10.1016/s0890-5401(03)00088-9
https://doi.org/10.1017/s0960129515000328
https://doi.org/10.1016/j.ic.2004.05.003
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.2168/lmcs-11(1:1)2015
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1017/s0960129597002375
https://doi.org/10.1007/3-540-48523-6_59

9:36 S. Goncharov Vol. 22:1

[Sch69] Dietmar Schumacher. Minimale und maximale tripelerzeugende und eine bemerkung zur tripel-
barkeit. Archiv der Mathematik, 20(4):356–364, Sep 1969. doi:10.1007/BF01899590.

[SP00] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In
Proc. 15th Annual IEEE Symposium on Logic in Computer Science (LICS 2000), pages 30–41.
IEEE Comput. Soc, 2000. doi:10.1109/lics.2000.855753.

[Sta14] Sam Staton. Freyd categories are enriched Lawvere theories. Electron. Notes Theor. Comput. Sci.,
303:197–206, mar 2014. doi:10.1016/j.entcs.2014.02.010.

[Uus03] Tarmo Uustalu. Generalizing substitution. ITA, 37(4):315–336, 2003. doi:10.1051/ita:2003022.
[UV08] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Electron. Notes Theor.

Comput. Sci., 203(5):263–284, 2008. doi:10.1016/j.entcs.2008.05.029.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/BF01899590
https://doi.org/10.1109/lics.2000.855753
https://doi.org/10.1016/j.entcs.2014.02.010
https://doi.org/10.1051/ita:2003022
https://doi.org/10.1016/j.entcs.2008.05.029

	1. Introduction
	2. Preliminaries
	3. Simple FGCBV with Coproducts
	4. Freyd Categories and Strong Monads
	5. Guarded Freyd Categories
	6. Representing Guardedness
	7. Guarded Parameterized Monads
	8. Conclusions and Further Work
	Acknowledgement
	References

