Logical Methods in Computer Science
Volume 22, Issue 1, 2026, pp. 9:1-9:36 Submitted Mar. 04, 2024
https://Imcs.episciences.org/ Published Feb. 16, 2026

REPRESENTING GUARDEDNESS IN CALL-BY-VALUE
AND GUARDED PARAMETERIZED MONADS
SERGEY GONCHAROV

University of Birmingham, Birmingham, UK
e-mail address: s.goncharov@bham.ac.uk

ABSTRACT. Like the notion of computation via (strong) monads serves to classify various
flavours of impurity, including exceptions, non-determinism, probability, local and global
store, the notion of guardedness classifies well-behavedness of cycles in various settings. In
its most general form, the guardedness discipline applies to general symmetric monoidal
categories and further specializes to Cartesian and co-Cartesian categories, where it governs
guarded recursion and guarded iteration, respectively. Here, even more specifically, we deal
with the semantics of call-by-value guarded iteration. It was shown by Levy, Power and
Thielecke that call-by-value languages can be generally interpreted in Freyd categories, but
in order to represent effectful function spaces, such a category must canonically arise from
a strong monad. We generalize this fact by showing that representing guarded effectful
function spaces calls for certain parameterized monads (in the sense of Uustalu). This
provides a description of guardedness as an intrinsic categorical property of programs,
complementing the existing description of guardedness as a predicate on a category.

1. INTRODUCTION

A traditional way to model call-by-value languages is based on a clear-cut separation between
computations and values. A computation can be suspended and thus turned into a value,
and a value can be executed, and thus again be turned into a computation. The paradigmatic
example of these conversions is the application and abstraction mechanisms of the A-calculus.
From the categorical modelling perspective, this view naturally requires two categories,
suitably connected with each other. As essentially suggested by Moggi [Mog91], a minimal
modelling framework requires a Cartesian category (i.e. a category with finite products)
as a category of values and a Kleisli category of a strong monad over it, as a category
of (side-effecting) computations (also called producers [Lev04]). A generic computational
metalanguage thus arises as an internal language of strong monads. Levy, Power and
Thielecke [LPT02] designed a refinement of Moggi’s computational metalanguage, called
fine-grain call-by-value (FGCBYV), whose models are not necessarily strong monads, but
are more general Freyd categories. They have shown that a strong monad in fact always
emerges from a Freyd category if certain function spaces (needed to interpret higher-order
functions) are representable as objects of the value category — thus strong monads arise from
first principles.

Support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is gratefully
acknowledged — project number 501369690.

|E5| LOGICAL METHODS © S. Goncharov
IN COMPUTER SCIENCE DOI:10.46298/LMCS-22(1:9)2026 @ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-6924-8766
http://creativecommons.org/about/licenses

9:2 S. GONCHAROV Vol. 22:1

guarded strong guarded
parameterized monads! parameterized monads!

] _—

id.-on-obj. guarded guarded Freyd

functors categories

$

g monads strong monads

ke

9] 3y

o

F% e%eﬂ&a’

3 et

)
. i strength K
id.-on-obj. functors Freyd categories

Figure 1: Three dimensions within call-by-value.

Here, we analyse an extension of the FGCBV paradigm with a notion of guardedness,
which is a certain predicate on computations, certifying their well-behavedness, in particular
that they can be iterated [GSRP17, LG19]. A typical example is guardedness in process
algebra, where guardedness is often used to ensure that recursive systems of process definitions
have unique solutions [Mil89].

FGCBYV does not directly deal with fixpoints, since these are usually considered to be
features orthogonal to computational effects and evaluation strategies. Analogously, even
though the notion of guardedness is motivated by fixpoints, here we do not consider (guarded)
fixpoints as a core language feature. In fact, in practically relevant cases guardedness is
meaningful on its own as a suitable notion of productivity of computation, and need not be
justified via fixpoints, which may or may not exist. In FGCBYV, one typically regards general
recursion to be supported by the category of values, and once the latter indeed does so (e.g.
by being a suitable category of complete partial orders), it is obvious to add a corresponding
fixpoint construct to the language.

Let us nevertheless outline the connection between guardedness and recursion in some
more detail. General recursion entails partiality for programs, meaning that even if we
abstract from it, the corresponding effect of partiality must be part of the computational
effect abstraction (see e.g. [Fio04]). Recursion and computational effects are thus intimately
connected. This connection persists under the restriction from general recursion to iteration,
which is subject to a much broader range of models, and triggers the partiality effect just as
well. Arguably, the largest class of monads, supporting iteration, are Elgot monads [AMV10,
GRS15]. These are monads 7', equipped with FElgot iteration:

[+ X >TY +X)
fl: X ->TY (1.1)

and subject to established equational laws [BE93, SP00]. Intuitively, f T is obtained from f by
iterating away the right summand in the output type Y + X. For example, the maybe-monad
(=) + 1 is an Elgot monad over the category of classical sets, which yields a model for a
while-language with non-termination as the only computational effect. Now, guarded Elgot
monads [LG19] refine Elgot monads in that the operator (1.1) needs only to be defined w.r.t.
a custom class of guarded morphisms, governed by simple laws. Proper partiality of the
guardedness predicate is relevant for various reasons, such as the following.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:3

e Guarded fixpoints often uniquely satisfy the corresponding fixpoint equation [Uus03, Mil05,
GSRP19], which greatly facilitates reasoning; this is extensively used in bisimulation-based
process algebra [Mil89, Fok13].

e In a type-theoretic and constructive setting, guarded iteration can often be defined natively
and more generally, e.g. the “simplest” guarded Elgot monad is Capretta’s delay monad
(initially called “partiality monad”) [Cap05], rendered by final coalgebras D = vvy. (- +7),
which yields an intensional counterpart of the maybe-monad; guardedness then means
productivity, i.e., that the computation signals that it evolves if it does. Contrastingly,
the “simplest” Elgot monad is much harder to construct and arguably requires additional
principles to be available in the underlying metatheory [CUV17, ADK17, EK17, Gon21].

e Guardedness is a compositional type discipline, and hence it potentially helps to encap-
sulate additional information about the productivity of programs in types, like monads
encapsulate the information about potential side-effects.

By allowing the iteration operator to be properly partial, we can accommodate a range of
new examples of iterative behaviour. A notion of guardedness thus often plays an auxiliary
role of determining, in a compositional way, which morphisms can be iterated.

As indicated above, strong monads can be regarded as structures, in a canonical way
arising from FGCBV by adding the requirement of representability of certain function spaces
in the category of values. This is behind the mechanism of representing computational effects
via monads in type systems (e.g. in Fw, by quantification over higher kinds) and hence in
programming languages (e.g. in Haskell). Our goal is to provide an analogous mechanism
for guardedness and for its combinations with computational effects and strength. That is,
(strong) monads are an answer to the question:

What is the categorical/type-theoretic structure that faithfully represents
computational effects within a higher-order universe?

Here, we are answering the question:

What is the categorical/type-theoretic structure that faithfully represents
guarded computational effects within a higher-order universe?

In other words, we seek to formulate guardedness as an intrinsic structural property of
morphisms, rather than as additional data that (anonymously) identifies guarded morphisms
among others. In doing so, we are inspired by the view of monads as structures for
representing effects, as summarized above. In fact, we show that strength, representability
and guardedness can be naturally arranged within FGCBYV as three orthogonal dimensions, as
shown in Figure 1 (the arrows point from more general concepts to more specific ones). The
bottom face of the cube features the above-mentioned connection between Freyd categories
and strong monads, and a corresponding connection between identity-on-object functors
and (not necessarily strong) monads. We contribute with the top face, where guardedness
is combined with other dimensions. The key point is the combination of guardedness with
representability, which produces a certain class of parameterized monads [Uus03] that we
dub guarded parameterized monads.

Related work We benefit from the analysis of Power and Robinson [PR97], who
introduced premonoidal categories as an abstraction of Kleisli categories. Freyd categories
were subsequently defined by Power and Thielecke [PT99] as premonoidal categories with

More precisely, representability yields parameterized guarded monads, subject to an additional monicity
condition. This is treated in detail in Section 7.

9:4 S. GONCHAROV Vol. 22:1

additional structure and also connected to strong monads. Levy [Lev04] came up with an
equivalent definition, which we use throughout. In the previous characterization [PT99,
LPT02], strong monads were shown to arise jointly with Kleisli exponentials from closed Freyd
categories. We refine this characterization (Corollary 4.6) by showing that strong monads in
fact arise independently of exponentials (Proposition 4.5). Distributive Freyd categories were
defined by Staton [Stal4] — here we use them to extend the FGCBV language with coproducts
and, subsequently, with guardedness predicates. Previous approaches to identifying structures
for ensuring guardedness on monads involved monad modules [PG14, AMV02] — we make
do with guarded parameterized monads instead, which combine monads with modules over
them and arise universally.

Plan of the paper After short technical preliminaries, we start off by introducing a
restricted version of FGCBYV in Section 3 and extensively discuss motivating examples, which
(with a little effort) can already be encoded despite restrictions. We establish a very simple
form of the representability scenario, producing monads, and meant to serve as a model for
subsequent sections. In Section 4 we deal with full FGCBV, Freyd categories, modelling
them and strong monads, representing Freyd categories. The guardedness dimension
is introduced in Section 5 where we define guarded Freyd categories, and in Section 6
we analyse the representability issue for them. Finally, in Section 7 we introduce an
equational axiomatization of a categorical structure for representing guardedness, called
guarded parameterized monads. As a crucial technical step, we establish a coherence property
in the style of Mac Lane’s coherence theorem for monoidal categories [MLT71].

The present paper is an extended version of the conference paper [Gon23]. We added
the proofs and more details to the examples and the general discussion. The original
definition [Gon23| of the guarded parameterized monad was missing two coherence conditions,
which are now added (Definition 7.1).

2. PRELIMINARIES

We assume familiarity with the basics of category theory [ML71, Awol0]. For a category V,
|V| will denote the class of objects, and V(X,Y) will denote morphisms from X to Y.
We tend to omit indices at natural transformations for readability. A category with finite
(co-)products is called (co-)Cartesian. In a co-Cartesian category with selected coproducts,
we write !: 0 — A for the initial morphism, and inl: A - A+ B and inr: B— A+ B for
the left and right coproduct injections, respectively. A distributive category [Coc93] is a
Cartesian and co-Cartesian category, in which the natural transformation

[id x inl, id x inr]

XxY+XxZ

X x (Y +2)

is an isomorphism, whose inverse we denote distx y,z (a co-Cartesian and Cartesian closed
category is always distributive). Let A = (id,id): X - X x X and V = [id,id]: X+X — X.

A monad T on V is determined by a Kleisli triple (T,n,(—)*), consisting of a map
T:|V|—|V], a family of morphisms (nx: X — TX)xcv| and Kleisli lifting sending
each f: X - TY to f*: TX — TY and obeying monad laws:

n" =i, fron=1F, (ffog)" = f"og"
It follows that T extends to a functor, 1 extends to a natural transformation — wunit,

uw = 1id*: TTX — TX extends to a natural transformation — multiplication, and that
(T,n,) is a monad in the standard sense [ML71]. We will generally use blackboard capitals

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:5

fiA—>BeX, T'tyv: A fiA—>BeX¥. I'H,v: A

v Ay A ', f(v): B ' fv): B
'y v: A I'tep: A 2:Acq: B '~y v:0
I' ¢ returnv: A I'cdox < p; q: B I'+cinitv: A
I'k,v: A I',v: B I'-vv:A+B x:Abtcp:C y:Blcq: C
I'yinlv: A+ B I'yinrv: A+ B I'ccasevofinlz — p;inry— q: C

Figure 2: Simple FGCBV with coproducts.

(such as T) to refer to monads and the corresponding Roman letters (such as T') to refer to
their functor parts. Morphisms of the form f: X — TY are called Kleisli morphisms and
form the Kleisli category V1 of T under Kleisli composition f,g— f* o g with identity 7.

An endofunctor F' is strong if it is equipped with a natural transformation strength
7: X X FY — F(X xY), such that the diagrams

1x FX -, FX (X xY)x FZ u F((X xY) x Z)
Tl Avnd lg ’ =
F(1 x X) Xx (Y xFY) 0 X x F(Y x Z) 5 F(X x (Y x Z))

commute. A natural transformation between two strong functors is strong if it preserves
strength in the obvious sense, and a monad T is strong if 71" is strong with some strength
T: X xTY - T(X xY) and n and p are strong with id being the strength of Id and
Tror: X xTTY — TT(X xY) being the strength of T'T.

3. SIMPLE FGCBYV wiTH COPRODUCTS

We start off with a restricted — single-variable — fragment of FGCBV, but extended with
coproduct types. Since we will not deal with operational semantics, we simplify the language
slightly (e.g. we do not include let-expressions for values). We also stick to a Haskell-style
syntax with do-notation and case expressions. We fix a collection of sorts S1,59,..., a
signature X, of pure programs f: A — B, and a signature X of effectful programs f: A — B
(also called generic effects [PP01]) where A and B are types, generated with the grammar

A,B:=51,5,...|0] A+ B. (3.1)

We then define terms in context of the form z: A+, v: B and x: A ¢ p: B for value terms
and computation terms inductively by the rules given in Figure 2. (where we chose to stick
to the syntax of the familiar Haskell’s do-notation): This language is essentially a refinement
of Moggi’s simple (!) computational metalanguage [Mog91], which has only one-variable
contexts (i.e. I' is of the form x: A throughout), rather than fully fledged multi-variable
contexts. In terms of monads, the present language corresponds to not necessarily strong
ones. In terms of monads, the present language corresponds to not necessarily strong
ones. Such monads are not very useful in traditional programming languages semantics;
however we dwell on this case for several reasons. We aim to explore the interaction between
guardedness and monads from a foundational perspective, while remaining as general as

9:6 S. GONCHAROV Vol. 22:1

possible to cover cases where strength does not exist or is not relevant. We would also like to
identify the basic representation scenario, to be extended later to more sophisticated cases.
An obvious extension of the presented language would be the iteration operator:
ep: A x: AFcq: B+ A
I'citerx < p; q: B

(3.2)

meant to satisfy the fixpoint equality
iterz «— p; g = iterx «— (dox < p; q); q

Presently, we focus on representing guardedness as such and do not deal with (3.2)
We present three examples that can be interpreted w.r.t. the single-variable fragment to
demonstrate the unifying power of FGCBV and illustrate various flavours of guardedness.

Example 3.1 (Basic Process Algebra [BPS01]). Basic process algebra (BPA) over a set of
actions A is defined by the grammar:

PQ:=(acA)|P+Q|P- Q.

One typically considers BPA-terms over free variables (seen as process names) to solve
systems of recursive process equations w.r.t. these variables. E.g. we can specify a 2-bit
FIFO buffer as a solution to

By = ing-BY +iny -Bjf
Bi = ing-BY" +iny -By" + out; - By (i € {0,1}) (3.3)
By = out;-B} (i,5 € {0,1})

with A = {ing, in1,outg,out; }. We view By as an empty FIFO, B! as a FIFO carrying only i
and By’ as a FIFO carrying i and j. For example, the trace

BO ing B? iny B21,0 outg Bll outq BO

is valid and represents the following course of action: push 0, push 1, pop 1 and then
pop 0. We can model such systems of equations in FGCBV as follows. Let us fix a
single sort 1 and identify an n-fold sum (...(1+4...)...) + 1 with the natural number n.
The injections inj;: 1 — n are defined inductively in the obvious way. Let X, = () and
Ye={a:1—-1|ae A} u{toss: 1 — 2}. A BPA-term over process names {Ni,..., N,} can
be translated to FGCBV recursively, with the following rules where ~~ reads as “translates”:

N; ~ x: 1 ¢ return(inr(inj; z)): 1+ n a~z:1Fcdox < a(x); return(inlz): 1+ n

Pwx:lbcep:14n Q~z:lbcq:14+n
P+ Q~ x:1}cdox « toss(z); casexofinlz — p;inrx — q: 1 +n

Pwx:lbcep:14n Q~z:lbcq:14+n
P.-Q~ x:1Fcdox « p; casexofinlz — g(z); inrz — return(inrz): 1 +n

Intuitively, the terms z: 1 ¢ p: 1 + n represent processes with 1 + n exit points: every
process name [V; identifies an exit ¢, in addition to the global anonymous exit. The latter
is associated with actions, which are not postcomposed with any other commands. The

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:7

generic effect toss induces binary nondeterminism as a coin-tossing act. For example, the
result of translating the right-hand sides of (3.3) (after minor simplifications) is

dox « toss(z); casez of
inlz — dox « ing(x); return(inr(inj z));

inrz — dox « iny(x); return(inr(inj} z)),

dox « toss(z); casex of
inlz — dox < ing(z); return(inr(injg’i x));
inrx — dox « toss(z); case z of
inlz — dox < iny(z); return(inr(injé’i x));

inrz — dox <« out;(x); return(inr(injy x)) (1€{0,1})
dox « out;(x); return(inr(inj}) (1,7 €{0,1})

where n = 1 +2+4 =7, inj,: 1 — 7, the inj’: 1 — 7 and the inj;” : 1 — 7 are the injections,
selecting the indices that address By, B} and B3’ correspondingly. Every list of terms
in the context (z: 1 ¢ po: m),...,(x: 1 ¢ pp—1: m) can be converted to a single term
T: N ¢ pn: m recursively as follows:

Po = initx, Pna1 = casexofinlz — P, inrx — pyaq.

Every system of n equations over m + n process names in BPA is thus represented by a term
z:ntcp: (1+m)+nin simple FGCBV. Now, an iteration operator (3.2) applied to the
latter term “solves” the corresponding system of equations w.r.t. to n names, and keeping the
remaining m names free, resulting in a term of the form x: n . iterx < returnz; p: 1 + m.
In our example (3.3), n =m =T.

Guarded systems are those in which recursive calls are preceded by actions; (3.3) is an
example. Such systems have a unique solution (under bisimilarity) [BW90, Fok13]. The
simplest unguarded example P = P has arbitrary solutions and translates to x: 1 I iterz «
return z; return(inrzx): 1.

Example 3.2 (Imperative Traces). We adapt the semantic framework of Nakata and
Uustalu [NU15] for imperative coinductive traces to our setting. Let us fix a set P of
predicates, a set T of state transformers, and let the corresponding pure and effectful
signatures be X, = {p: S > S+ S |pePtu{t: S — S|teT} and 3¢ = {put: S — 1,
get: 1 — S} over the set of sorts {S,1}. The intended interpretation of this data is as
follows:

e S is a set of memory states, e.g. the set of finitely supported partial functions N — 2;

e T are state transformers, e.g. functions, updating precisely one specified memory bit;

e p € P encode predicates: p(s) = inl(s) if the predicate is satisfied and p(s) = inr(s)
otherwise, e.g. p can capture functions that give a Boolean answer to the questions “is the
specified bit 07” and “is the specified bit 17”.

For example, the following program negates the i-th memory bit (if it is present)

x:1Fcdos « get(x); case(s[i] = 0)of inl s — put(s[i := 1]); inrs — put(s[i :=0]): 1,

9:8 S. GONCHAROV Vol. 22:1

where (-[i] = 0), (=[i :== 0]) and (~[i := 1]) are the obvious predicate and state transformers.
Nakata and Uustalu [NU15] argued in favour of (infinite) traces as a particularly suitable
semantics for reasoning about imperative programs. This means that store updates must
contribute to the semantics, which can be ensured by a judicious choice of syntax, e.g.,
by using skip = dos <« get(z); put(s), but not return. In FGCBV, however, iterating
x: 1 ¢ return(inrz): 1 would not yield any trace. By restricting to guarded iteration,
with guardedness meaning writing to the store, we can indeed prevent such programs from
iterating by defining guardedness so that at least one put is executed before the body of the
loop is repeated.

Example 3.3 (Hybrid Programs). Hybrid programs combine discrete and continuous
capabilities and can thus be used to describe the behaviours of cyber-physical systems. For
simplicity, we consider time delays as the only hybrid facility — more sophisticated scenarios
are treated elsewhere [GNP20]. Let Rxg be the sort of non-negative real numbers and let ¥,
contain all unary operations on non-negative reals and additionally isy: R>g — R>9 + R>0,
which sends n = 0 to inl(n) and n > 0 to inr(n). Let ¥. = {wait: R>9 — R>¢}. With
wait(r) we can introduce a time delay of length r and return . With iteration we can write
programs like

z: R>g ¢ iterx « return z;
case isg(x) of inlz — return(inl z);

inr z — dox <« wait(z); return(inr f(x)): R>o,

which terminate successfully in finite time (f(z) = = = 12), run infinitely (f(z) = 1), or
exhibit Zeno behaviour (f(x) = x/2), i.e. consume finite time, but never terminate. In all
these examples, every iteration consumes non-zero time. This is also often considered a
well-behavedness condition, which we can naturally interpret as guardedness.

To interpret the language from Figure 2, let us fix two co-Cartesian categories V and C,
and an identity-on-objects functor J: V — C (hence |V| = |C|) that strictly preserves
coproducts. A semantics of (Xy,3.) over J assigns

e an object [A] € |V| to each sort A;
e a morphism [f] € V([A], [B]) to each f: A — B e %;
e a morphism [f] € C([4],[B]) to each f: A — B e X,

which extends to types as follows: [0] = 0, [A + B] = [A] + [B]. The semantics of terms
are given in Figure 3. As observed by Power and Robinson [PR97] (cf. [Sch69, 0.1]), monads
arise from the requirement that J is a left adjoint, thus simple FGCBV can be interpreted
w.r.t. a monad on V. A direct simple proof is given below for the sake of completeness.

Proposition 3.4. Let J: V — C be an identity-on-objects functor. Then J is a left
adjoint iff C is isomorphic to a Kleisli category of some monad T on'V and J = H o Jt
where H: V1 = C is the relevant isomorphism, which is necessarily identity-on-objects, and
Jr: V = V1 is the canonical left adjoint sending every f € V(X,Y) tono f e V(X,TY).
Moreover, in this situation, finite coproducts in C are inherited from V, i.e. J! is the
initial morphism in C and the triples (X + Y, J inl, J inr) are binary coproducts in C.

2~ refers to truncated subtraction: z ~ y=x—yifx >y, and x -y = 0 otherwise.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:9

h =Tty v: A] h=[IFyv:A]
[x: Ay z: A] = id [Ty f(v): Bl =[f]oh [T'c f(v): Bl =[f] o Jh
h =]k, v: 4] hi =Jz: Atcq: B] hy = [T ¢ p: A]
[T b returnv: A] = Jh [IT'+cdox <« p; q: B] = hiohs
h =+, v: A] h =}, v: B]
[T tcinitv: A] = [Tty inlv: A+ B] = inloh [Ty inrv: A+ B] = inroh

h=[It,v: A+ B] hi =[z: Atcp: C] hy =[y: Btcq: C]
[T tc casevofinla — p;inry — q: C] = [h1,h2] o Jh

Figure 3: Denotational semantics of simple FGCBV with coproducts.

Proof. Suppose that J 4 U and consider the diagram

VT C
\ TJ

Jr
A\

where Kt is the comparison functor from the Kleisli category of T to C. Note that K is
generally full and faithful, because V1 (X,Y) = V(X,UJY)=C(JX,JY) = C(K1X, K7Y).
Moreover, K7 is identity-on-objects, for so is J by assumption. Thus, Kt is an isomorphism
and Jf = (Kvo Jr)(f) = Kx(no f) for any f e V(X,Y).

Now, suppose that for a suitable monad T, H: V1 ~ C and Jf = H(no f) for
any f € V(X,Y). Let U I~ J be the adjunction between V and V-, and show that UH™ |- J.
Note that H' - H, and hence, by composing adjunctions UH™ — H.J. For every f €
V(X,Y), HJf = H(no f) = Jf, i.e. indeed, UH™ |- J.

That finite coproducts in C are inherited from V is easy to see. []

Example 3.5 (Monads). Let us recall relevant monads on V = Set for further reference.

(1) TX =vy.Py((X +1) + A x) where P, is the finite powerset functor and vy. Fy
denotes a final F-coalgebra. This monad provides a standard strong bisimulation semantics
for BPA (Example 3.1). The denotations in T'X are finitely branching trees with edges
labelled by actions and with terminal nodes labelled in X (free variables) or in 1 (successful
termination). This monad is an instance of the coinductive resumption monad [PG14], and
the inhabitants of TX are often called synchronization trees (e.g. [ACEI12]).

(2) TX = P(A* x (X + 1) + A*) is the monad of finite traces (terminating successfully
A* x (X 4+ 1) and divergent A*), which can again be used as a semantics of Example 3.1.

(3) TX =P(A* x (X +1)+ (A" + AY)) is a refinement of (2), collecting not only finite,
but also infinite traces. If we extend BPA with countable non-determinism, we obtain a
semantics properly between strong bisimilarity and finite trace equivalence. For example,
the equation P = a - P produces the infinite trace ¥ and P’ =), P; with Py = a and
P,,1 = a- P; do not. Therefore, P is not infinite trace equivalent to P’, while P and P’ are
finite trace equivalent.

(4) TX = (vy. X xS+7vx8)° can be used for Example 3.2. In Set, TX = (X x S*+5%)%,
i.e. an element T'X is isomorphic to a function that takes an initial state in S and returns

9:10 S. GONCHAROV Vol. 22:1

z: A in T fiA—>BeX, T'yv: A fiA—>BeX¥., T'+,v: A

My z: A '+, f(v): B I'c f(v): B
'y v: A I'tep: A Tyo: Acq: B 'y v:0
I'creturnv: A I'cdox < p; q: B I'cinitv: A
', v: A I',v: B 'vviA+B x:Arcp:C y:Blcq: C
I'yinlv: A+ B I'yinrv: A+ B I' ~c casevofinlz — p;inry — q: C
I'yv: A ', w: B '—,v: Ax B Ia: Ay: Bkcq: C
'ty (v,w)y: Ax B I case v of (z,y) — q: C

Figure 4: FGCBV with coproducts.

either a finite trace in X x S* or an infinite trace in S“. We can use Proposition 3.4 to
argue that 7' indeed extends to a monad. Indeed, let C be the category with C(X,Y) =
Set(X x S;vv.Y x S+ x S), which is a full subcategory of the Kleisli category of the
coinductive resumption monad v7y. (- +v x S). Now, by definition, the obvious identity-on-
objects functor J: Set — C is a left adjoint, yielding the original T'.

(5) TX = Rsg x X +Rx is a monad, which can be used for Example 3.3. Here, R>g x X
refers to terminating behaviours and R>¢ = Rs¢ U {00} to Zeno and infinite behaviours.

4. FREYD CATEGORIES AND STRONG MONADS

The full FGCBV (with coproducts) is obtained by extending the type syntax (3.1) with
binary products A x B, and by replacing the rules in Figure 2 with the rules in Figure 4.
We now assume that variable contexts I' are (possibly empty) lists (z1: A1,...,2n: Ay)
with non-repetitive x1,...,z,. To interpret the resulting language, again, we need an
identity-on-objects functor J: V — C, an action of V on C, and J to preserve this action.

Definition 4.1 (Actegory [JKO1]). Let (V, ®,I) be a monoidal category. Then an action
of V on a category C is a bifunctor @: V x C — C together with the unitor and the actor
natural isomorphisms v: IQX =X, a: XQ(Y0Z)= (X ® Y)© Z, satisfying the following
coherence conditions

IQ(XQY) —Y— XQY XV <% xo@(oY)
T |

I®X)oY (X®IoY

Xo(Yo(ZoV) 22 Xo(Y ® 2)0V) % (X® (Y ® 2)oV

o| B

X®Y)o(ZoV) a (X®Y)® 2)oV

(eliding the names of canonical isomorphisms). Then C is called an (V-)actegory.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:11

Note that every monoidal category trivially acts on itself via @ = & . In the sequel, we
will only consider Cartesian categories, i.e. actegories w.r.t. (V, x,1).

Definition 4.2 (Freyd Category [Lev04]). A Freyd category (V,C, J(-),®) consists of the
following data:

(1) a Cartesian category V;

(2) a category C with |V| = |C|;

(3) an identity-on-objects functor J: V — C;

(4) an action of V on C, such that J preserves the V-action, i.e. J(f x g) = f @ Jg for all
feV(X, X", ge V(YY) (entailing X x Y = X QY for all X,Y € |V]), v=Jsnd
and o« = J(id x fst,snd o snd).

Let us reformulate this definition slightly more explicitly.

Lemma 4.3. A tuple (V,C, J(-),Q) is a Freyd category iff

(1) V is a Cartesian category;
(2) C is a category, such that |V| = |C|;
(3) J is an identity-on-objects functor V.— C;
(4) @ is a bifunctor V x C — C, such that
(a) XQY =X xY foral X,Y €|V]|,
(b) J(f xg)=f@Jg forall fe V(X,X"), ge V(Y,Y'), and
c) every Jsnd: 1x X — X is natural in X (w.r.t. C-morphisms) and every J{(id x fst,
sndosnd): X x (Y x Z) - (X xY) x Z is natural in X,Y (w.r.t. V-morphisms)
and Z (w.r.t. C-morphisms).

Proof. The claim follows from the observation that defining v and « as J snd and J(id X fst,
snd o snd) correspondingly, yields an action of V on C iff v and « are natural — the coherence
conditions from Definition 4.1 hold automatically. []

Definition 4.4 (Distributive Freyd Category [Stal4]). A Freyd category (V,C, J(-),®)
is distributive if V is distributive, C is co-Cartesian, and J strictly preserves coproducts.

Note that it follows from the above definition that the action @ preserves coproducts in
the second argument. Indeed, by applying J to the isomorphism X x (Y +2Z) =X xY + X x Z
in V, we obtain that X @ (Y +Z) =2 X QY + X © Z isin C.

Given a distributive Freyd category (V,C, J(-),®), we update the semantics from Sec-
tion 3 by extending the semantics of types with the clauses [A x B] = [A] x [B], [x1: 41,
cooy Tt Ay = [A1] x ... x [A,], and by defining the semantics of terms as in Figure 5,
where proj,: X1 x ... x X, = X, denotes the i-th projection.

Freyd categories are to strong monads as identity-on-objects functors to monads.

Proposition 4.5. Let (V,C,J(-),®) be a Freyd category. Then J is a left adjoint iff C
is isomorphic to a Kleisli category of some strong monad T on'V and Jf = H(no f) for
all f e V(X,Y) where H: V1 = C is the relevant isomorphism.

Proof. Freyd categories are initially designed to generalize Kleisli categories of strong
monads [PT99], in particular, we obtain the ‘If’ direction of the claim.

For the ‘Only if’ direction, suppose that J is a left adjoint, and show that the requested
strong monad exists. Indeed, we obtain a monad T by Proposition 3.4. W.l.o.g. suppose
that C = V1. Let Jf =no f for every f: X — Y from V. Let us define strength 7 as

9:12 S. GONCHAROV Vol. 22:1

[x1: A1, xn: Ay by i Ai] = proj;

h=[IF, v: 4] h =]k, v: A]
[T /o) BI=[fToh [T re f(o): Bl = [f]oJh

h =]k, v: 4] hi=[I'z: Atc q: B] hy = [T ¢ p: A]
[T b returnv: A] = Jh [T cdox < p; q: B] = hy o (id@hg) o JA

[T cinitv: A] =! [Ty inlv: A+ B] = inloh [Ty inrv: A+ B] = inroh

h=[I't,v: A+ B] hi=[Iz: Arcp: C] he =[I',y: B tcq: C]
[T ¢ casevofinla — p; inry — q: C|| = [h1, he] o J dist o(id @Jh) o JA

hi =y, v: A] he = [I' -, w: B]
[Ty (v,w): A x B] = (hy, hs)

hi =]y p: Ax B] he =T x: A,y: Btcq: C]
[T k¢ case p of (x,y) — q: C] = hg o (id@Jhy) 0o JA

Figure 5: Denotational semantics of FGCBV with coproducts.

dx@idry: X x TY — T(X x Y), which is clearly natural in X and Y. If follows that
f@g=7o(f xg). Indeed,

f@g=f@(id" onog)

Let v = (id x fst,sndosnd): X x (Y x Z) = (X xY) x Z. The axioms of strength are

verified as follows.

(1) Using Lemma 4.3 (4.c): (T'snd) o7 = (Jsnd)* o (id@id) = id* oJ snd = id* ono snd =
snd.

(2) Using Lemma 4.3 (4.c): Tyoro(id x7) = (Jv)*o(id@(id @ id)) = ((id x id)@id)*oJy =
T*omoy=To".

(3) To(idxn) = 7 ono (idxn) = (dd@id)* o J(id xn) = (id@id)* o (id@Jn) =
id@(id* oJn) = id@(id* onon) = idon = id@Jid = J(id x id) = n.

(4) (to(fxg)or=(fOg)o(id0id)=fOg =70o(f xg").]
Proposition 4.5 allows us to refactor the existing characterization of closed Freyd

categories [LPT02, Theorem 7.3] along the following lines. In order to include higher-order
types in the language, we would need to add A — B as a new type former and the following

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:13

term formation rules:

z: A+c.p: B F'Hyw: A I'~yv:A— B
', Az.p: A— B I'Hcow: B
We would then need to provide the following additional semantic clauses:
h=[I'z: Acp: B] hi=[lt+yv: A— B] hy =T, w: A]
[Ty Az.p: A— B] =curryh [T tc vw: B] = (curry hy) o (id @Jha) o JA
where [A — B] = [A] — [B], —: |V]| x |C|] — |C]|, and curry is an isomorphism
curry: C(J(X x A),B)~V(X,A — B) (4.1)

natural in X. In particular, this says that J is left adjoint to 1 —o (-), which, as we have seen
in Proposition 3.4, means that C is isomorphic to the Kleisli category of a strong monad T,
and hence (4.1) amounts to V(X x A,TB) ~ V(X, A — B), i.e. to the existence of Kleisli
exponentials, which are exponentials of the form (7'B)4. We thus obtain the following
Corollary 4.6. Let (V,C,J(-),®) be a Freyd category. The following are equivalent:
e an isomorphism (4.1) natural in X ezists;
o for all Ae |V|, J(-xA): V — C is a left adjoint;
e C is isomorphic to a Kleisli category of a strong monad, and Kleisli exponentials exist.

A yet another way to express (4.1) is to state that the presheaves

C(J(-xA),B): V® — Set

are representable. We will use this formulation in our subsequent analysis of guardedness.

5. GUARDED FREYD CATEGORIES
We proceed to recall the formal notion of guardedness [GSRP17, LG19].

Definition 5.1 (Guardedness). A guardedness predicate on a co-Cartesian category C
provides for all X, Y, Z € |C| asubset C.(X,Y,Z) € C(X,Y + Z), whose elements we write
as f: X - Y) Z and call guarded (in Z), such that

f: X—>Y [X->VIYW g Y ->V)YW

(trve) e XSV Z [fg: X+Y V)W

(par.)

f:X->Y)Z g Y ->V)YW h:Z—->V+W
[g,hlof: X >V)W

A guarded (co-Cartesian) category is a category equipped with a guardedness predicate.

A guarded functor between two guarded categories is a functor F': C — D that strictly

preserves coproducts, and preserves guardedness in the following sense: f € Co(X,Y, Z)
entails f € Do(FX,FY,FZ).

(cmp,)

It follows from the axioms of guardedness that C, is a functorial operator.
Proposition 5.2. C, extends to a functor C°° x C x C — Set.
Proof. The map X,Y,Z — C(X,Y + Z) is obviously functorial. We are left to check that
given f: X > Y)Z g: X' > X, h:Y >Y andu: Z > Z', (h+u)ofog: X' >Y") 7.
Observe first that fog: X' - Y) Z. Indeed, fog = [f, f]oinlog - Y) Z using (trv,)
and (cmp,). Next, again by (cmp.), [inr oh, inlou]ofog = (h+u)ofog: X' > Y') Z'. []

9:14 S. GONCHAROV Vol. 22:1

In the sequel, we regard) as an operator that binds the weakest. Intuitively, Cq4(X,Y, Z)
axiomatically distinguishes those morphisms X — Y + Z for which the program flow
from X to Z is guarded, in particular, if X = Z then the corresponding guarded loop can
be safely closed. Note that the standard (totally defined) iteration is an instance with
C.(X,Y,Z) = C(X,Y + Z). Consider other instances.

Example 5.3 (Vacuous Guardedness [GS18]). The least guardedness predicate is as follows:
C.(X,Y,Z) ={inlof: X > Y +Z| fe C(X,Y)}. Such C is called vacuously guarded.

The following class of examples abstracts the monad of synchronization trees from Ex-
ample 5.4: T can capture arbitrary “branching” computational effects besides T' = P,, for
nondeterminism, and H can capture arbitrary “action” functors besides HX = A x X for
standard process algebra actions.

Example 5.4 (Coalgebraic Resumptions). Let T be a monad on a co-Cartesian category V,
and let H: V — V be an endofunctor such that all fixpoints Ty X = vy.T(X + H~)
exist. These jointly yield a monad Ty, called the (generalized) coalgebraic resumption
monad (transform of T) [PG14, GSRP17]. Then the Kleisli category of Ty is guarded
with f: X - Y) Zif

X g T(Y + HTy(Y + 2))
fl |7Gnt +) (5.1)
Tag(Y +2) —22 > T((Y + 2) + HTy(Y + Z))

for some g: X — T(Y + HTg(Y + Z)). Guarded iteration operators canonically extend
from T to Ty [LG19].

The next example is interesting in that the notion of guardedness is defined essentially
the same way, but fixpoints of guarded morphisms need not exist.

Example 5.5 (Algebraic Resumptions). A simple variation of the previous example involves
least fixpoints THX = py. T(X + H~) instead of the greatest ones, and in! instead of out,
where in: T(X + HTH" X) — TH X is the initial algebra structure of 7" X, which is an
isomorphism by Lambek’s lemma. However, we can no longer generally induce non-trivial
(guarded) iteration operators for TH.

Example 5.6. Let us describe natural guardedness predicates on the Kleisli categories of
monads from Example 3.5.

(1) TX = vy.Py((X +1) + A x v) is a special case of Example 5.4. The guardedness
condition (5.1) instantiates as follows: f: X — vy. P,((Y + Z+ 1) + A x) is guarded if
outof: X > P,(Y+Z+1)+AxT(Y + Z)) factors through P,(Y +1) + AxT(Y + Z)),
i.e. the only allowed way to terminate through Z is that which is preceded by an action
from A.

(2) For TX = P(A* x (X + 1)+ A*), let f: X > Y) Z if for every x € X, inl(w,
inl(inry)) € f(z) entails w # e.

(3) For TX = P(A* x (X +1) + (A* + A¥)) guardedness is defined as in clause (2).

(4) For TX = (vy.X x S+~ x 8)%, recall that Sety is isomorphic to a full subcategory
of the Kleisli category of vv. (- +v x S), which is again an instance of Example 5.4 with
TX =X and HX = X x S. The guardedness predicate for T thus restricts accordingly.

(5) For TX = (Rso x X)+Rxp let f: X - Y) Z if f(x) = inl (r,inr 2) implies r > 0.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:15

rz: A in T fiA->BeX, T',v:A fi:A—>B)CeX. IF'kHyv: A

Fyz: A 'ty f(v): B I'c f(v): B)YC
I'yv: A I'tep:AYB T2: Abcq:C)YD T,y:Brcr:C+D)O0
I' ¢ returnv: A) B I' Hc docasepofinlz +— ¢q; infry —r: C) D
', v:0 I'Hyv: A ' v: B
Icinitv: A4 I'—yinlv: A+ B I'yinrv: A+ B

yv: A+ B Mx: Arbcp: C) D Iy: Btcq: C)D
I' c casevofinlz — p;inry— q: C') D

I'yv: A ', w:B I'-,p: Ax B Iz: A,jy: Btcq: C)YD
'ty (v,w): Ax B I case p of (z,y) — q: C') D

Figure 6: Term formation rules of guarded FGCBV.

We proceed to extend the language in Figure 4 with guardedness data. As before, 3,
consists of constructs of the form f: A — B, while ¥ consists of constructs of the form
f: A — B) C, indicating guardedness in C. The new formation rules are then given
in Figure 6. The rule for return now introduces a coproduct summand B with respect to
which the computation is vacuously guarded, thus adhering to (trv,). The rule for binding
now must incorporate (cmp,), which requires the following modification of the syntax:

docasepofinlz — g; inry — r

The latter construct is meant to be equivalent to doz « p; casezofinlz — ¢; inry — r.
modulo guardedness information. Finally, (par,) is captured by the formation rule for case,
which is essentially unchanged w.r.t. Figure 4. An analogue of the iteration operator (3.2)
in the new setting would be the rule:

IF'kcep: A)0 INe: Atcq: BYC+ A
I'citerz «—p;q: B) C

Example 5.7 (Weakening). One can expect that the judgement f: X — Y) Z + W entails
f: X —>Y + Z) W, meaning that if a morphism is guarded w.r.t. an object Z + W, then it
is guarded w.r.t. to its part W. The corresponding weakening principle

[X->Y)YZ+W

[X->Y+Z)YW

is indeed derivable from (trv,), (par,) and (cmp,). In terms of guarded FGCBYV, this
corresponds to constructing the following term from a given I' . p: A) B + C:

(wkn,)

I' i-c docasepof inl z — return(inl x);
inr z — case zof inl z — return(inl(inrx));
inry — return(inry): A+ B) C.

Example 5.8. The updated effectful signature of Example 3.1 now involves a: 1 - 0) 1
and toss: 1 — 2) 0, indicating that actions guard everything, while nondeterminism guards

9:16 S. GONCHAROV Vol. 22:1

[x1: A1, xn: Ay by i Ai] = proj;

h =]k, v: A] h=]IF,v: A]
[T f0): Bl =[floh [T f(0): B) Cl = [f]oJh

h=[Cyv: A
[T ¢ returnv: A) B] = JinloJh

h=[kecp:AYB] h=[l2:Arcq:C)D] ha=[I'y:Brcr:C+D)0]
[T - docasepofinlz — ¢q; inry — r: C') D] = [hy,[id,!] 0 ha] o J dist o(id @h) o JA

h=[I'F,v: A] h=[I'kyv: B]
[T ¢ initv: A] =! [Ty inlv: A+ B] = inloh [Ty inrv: A+ B] = inroh

h=[t+yv:A+B] hi=[z:Arcp:C)D] ha=[I'y: Btcq:C) D]
[T t-c casevofinlz — p;inry — q: C') D] = [h1, he] o J disto(id@Jh) o JA

hi =l v: A] he = [T+, w: B]
[Ty (v,w): Ax B] = (hy, hs)

Figure 7: Denotational semantics of guarded FGCBYV over guarded Freyd categories.

nothing. The signature ¥ from Example 3.2 can be refined to {put: S - 0) 1,get: 1 —
S') 0}, meaning again that put guards everything and get guards nothing. Example 3.3 is
more subtle since wait: R>g — R is meant to be guarded only for non-zero inputs. We thus
can embed the involved case distinction into wait by redefining it as wait: R>g — R>¢) R>o.

Definition 5.9 (Guarded Freyd Category). A distributive Freyd category (V,C, J(-),@)
is guarded if C is guarded and the action of V on C preserves guardedness in the following
sense: Given fe V(A,B), ge Co(X,Y, Z), Jdisto(f@g) € Ce(AXx X,BxY,B x Z).

The semantics of (3,,X.) over a guarded Freyd category (V,C, J(-),@) interprets
types and operations from 3, as before and sends each f: A — B) C € X to [f] €
C.([A],[B],[IC]). Terms in context are now interpreted as [I' -, v: B] € V([I'], [B]) and
[I'+cp: B) C] e C([I'], [B] +[C]), according to the rules in Figure 7. This is well-defined,
which can be easily shown by structural induction:

Proposition 5.10. For any derivable ' -cp: A) B, [I' cp: A) B] € C.([T'], [A], [B])-

6. REPRESENTING (GUARDEDNESS

In Section 4 we explored the combination of strength (i.e., multivariable contexts) and the
representability of presheaves C(J(-), X): VP — Set, sticking to the bottom face of the cube
in Figure 1. Our plan now is to obtain additional concepts by examining the representability
of Co(J(-),X,Y): VP — Set. Note that representability of guardedness together with
function spaces amounts to representability of Ce(J(- xX),Y, Z): VP — Set, i.e. to the
existence of an endofunctor —o: VP x Cx C — C, such that C,(J(- xX),Y, Z)=V (-, X —oy

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:17

Y'). This is exactly the structure one would need to extend Figure 6 with function spaces as
follows:

Mz: Arcp: B)YC ', w: A I'~yv:A—¢ B

'y Az.p: A —>¢ B I'.vw: B)C
The decorated function spaces A —¢ B can then be interpreted as [A] —ocq [B], which is a
subobject of the Kleisli exponential [A] — T([B] + [C]), consisting of guarded morphisms.

Definition 6.1. Given J: V — C, where C is guarded, we call the guardedness predi-

cate C, J-representable if for all X,Y € |C| the presheaf C,(J(-),X,Y): VP — Set is

representable, i.e. for all X,Y € |C| there is U(X,Y) € |V| such that
C.(JZ,X,Y)=V(Z,U(X,Y)) (6.1)

naturally in Z. A guardedness predicate C, is called J-guarded if it is equipped with
a J-representable guardedness predicate.

Lemma 6.2. Given an identity-on-objects functor J: V — C, C, is J-representable iff

o there is a family of objects (U(X,Y) € [V])x ye|c|s

o there is a family of guarded morphisms (exy: U(X,Y) — X) Y)x ye|c|i

e there is an operator (=)?: Co(Z,X,Y) — V(Z,U(X,Y)) sending each f: Z — X)Y to
the unique morphism f* for which the diagram

U(X,Y)
Z X+Y

f
commutes.
These conditions entail that U is a bifunctor and that exy is natural in X andY .
Proof. First, we argue that the declared characterization entails that U is a bifunctor and ex y

isnatural in X and Y. Let g: X — X', h: Y — Y, and note that (g+h)oexy: JU(X,Y) —
X") Y'. Then the diagram

JU(g,h)

JU(X,Y) > JU(X',Y)
EX’yl leX',Y’
X+Y gth X' +Y’

commutes for some U(g,h): U(X,Y) — U(X’,Y’), uniquely determined by g and h. The
fact that thus defined U(-,-) is functorial is obvious by definition. Moreover, the above
diagram establishes the naturality of exy in X and Y.

Observe that, by Yoneda lemma, for any bifunctor U, a natural transformation £: V (-,
U(X,Y)) - C.(J(-),X,Y) is uniquely determined by a morphism exy: UJ(X,Y) —
X) Y. We proceed to show that componentwise isomorphic £ correspond to those ex y for
which the above-described maps (-)? exist. Note that ¢ and e are connected as follows:

exy = Eux,y)(@d: UX,Y) - U(X,Y)),
fx(ft Z — U(X,Y)) = GX,Y (¢] Jf

The map {x: V(Z,U(X,Y)) —» C.(JZ,X,Y) is a bijection iff every f: JZ — JU(X,Y)
is of the form exy o Jg for some g: Z — U(X,Y'), which is uniquely identified by f, in

9:18 S. GONCHAROV Vol. 22:1

other words, for every f: JZ — JU(X,Y) there is a unique f*: Z — U(X,Y), such that
f=exyolfi. [

Lemma 6.3. If C is J-guarded, then J 4 U(-,0) with U as in Lemma 6.2.

Proof. Suppose that C is J-representable with J: V. — C. Observe that C.(JX, A,0)
is isomorphic to C(JX, A) naturally in X: the components of the isomorphism are the
maps f — inlof for fe C(JX,A) and g — [id,!] o g for g€ C4(JX, A,0). Using (6.1), we

thus arrive at
V(X,U(A,0))=C.(JX,A,0)=C(JX,A),
ie. JH4U(-,0). []

By Lemma 6.3, representability fails already if J has no right adjoint. Instructive
examples of non-representability are thus only those where J does have a right adjoint.

Proposition 6.4. Let T be a monad over the category of sets Set with the axiom of choice.
If Sett is guarded, the guardedness predicate is representable iff every f: X — T(Y + Z) is

guarded whenever all the compositions 1 — X I, T(Y + Z) are guarded.

Proof. Tt follows from previous results [GRS21, Proposition 12] that in any category, where
every morphism admits an image factorization (specifically in Set), representability of
guardedness in the Kleisli category of a monad T is equivalent to the following conditions.

(1) for all sets X and Y, there is a greatest subobject Z — T'(X +Y), which is guarded
as a morphism;

(2) for every regular epic e: X’ — X and every morphism f: X — T(Y +Z), foe: X' —
Y) Z implies f: X > Y) Z.
The second clause follows for Set: by the axiom of choice, every e: X’ — X has a section,
say m, and then foe: X' > Y) Z implies f = foeom: X' - Y) Z. The second clause
is equivalent to the property that the injection (J,.,x,y Z — T(X +Y) is guarded (and
hence is the largest guarded subobject by construction). Precomposing this map with any
map whose source is 1 yields a guarded map by definition, hence the condition from the
proposition’s statement is sufficient. Let us show that it is necessary. Let f: X — T(Y + Z),
and suppose that all the compositions 1 — X 7, T(Y + Z) are guarded. If the largest
guarded subobject exists, it must be the union of all such maps. Since this union is precisely
the original map f, it is guarded.]

Example 6.5 (Failure of Representability). In Set, let f: X — Y + Z be guarded in Z if
{z€ Z| fl(inrz) # 0} is finite. The axioms of guardedness are easy to verify. By Proposi-

tion 6.4, this predicate is not Id-representable, as any 1 — X 7, 0 + X is guarded, but
inr is not, unless X is finite.

In what follows, we will use # as a binary operation that binds stronger than monoidal
products (®, +, ...),s0,e.g. X ® Y#Z willread as X ® (Y #2).

Theorem 6.6. Given an identity-on-objects guarded J: V — C, C, is J-representable iff

e there is a bifunctor #: V x V — V_ such that —#0 is a monad and C = V_yg;
e there is a family of guarded morphisms (w.r.t. the guardedness predicate, induced by
CxV_y) (exy: X #Y — X) Y)x yepv|, natural in X and Y;

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:19

o for every guarded f: X — Y) Z, there is unique f': X — Y # Z, such that the diagram

Y7
% lfY,Z
X Y+2)%0

f
commutes.

Proof. (=) By Lemma 6.3 and Proposition 3.4, assume w.l.o.g. that C = Vt for T =
U(J(-),0). Let f4#¢g = U(Jf,Jg). Lemma 6.2 yields the desired guarded morphisms
exy: X #Y — (X +Y) # 0, which satisfy the requisite universal property, obtained by
interpreting the corresponding property of Lemma 6.2 in C = V.

(<) Conversely, given a bifunctor #: V x V. — V with the described properties, let T be
the monad on - #0 and apply Lemma 6.2 with C = V, J being the free functor J: V — Vr
and U(X,Y) =X %Y. [

Theorem 6.6 provides a bijective correspondence between morphisms f: X - Y) Z
in C and the morphisms ff: X — Y # Z in V, representing them. Uniqueness of the f* is
easily seen to be equivalent to the monicity of the ex 7.

7. GUARDED PARAMETERIZED MONADS

Theorem 6.6 describes guardedness as a certain bifunctor #: V x V — V and a family of
morphisms (exy: X #Y — X) Y)x yev|, so that the guardedness predicate is derivable.
However, the guardedness laws are still formulated in terms of this predicate, and not in
terms of 4 and e. To make the new definition of guardedness self-contained, we must identify
a collection of canonical morphisms and a complete set of equations relating them, in the
sense that the guardedness laws for all derived guarded morphisms follow. For example, by
applying (-)* to the composition

X#(Y+27Z) XY (X + (Y +2)#0= (X +Y)+ 2)) %0

we obtain a morphism vy z: X # (Y + Z) — (X + Y) % Z, which represents weakening of
the guardedness guarantee: in X # (Y + Z) the guarded part is Y + Z, while in (X +Y)#Z
the guarded part is only Z. It should not make a difference though if starting from
X# (Y +(Z+V)) we apply v twice or rearrange Y + (Z + V) by associativity and
subsequently apply v only once — the results must be canonically isomorphic, which is
indeed provable. Similarly to this case we introduce further morphisms and derive laws
relating them. We then prove that the resulting axiomatization enjoys a coherence property
(Theorem 7.3) in the style of Mac Lane’s coherence theorem for (symmetric) monoidal
categories [MLT71]. In what follows, we switch from coproducts to general symmetric tensor
products, as coherence can only hold if the corresponding structure is not involved.

Definition 7.1 (Guarded Parameterized Monad). A guarded parameterized monad on a
symmetric monoidal category (V, ®,I) consists of a bifunctor #: V x V — V and natural
transformations

n: A— A%l
& (A#B)#C > A% (B ® (), v: A#(B® C) > (A® B)#C,
(: A (B#C) > A#(B® C), X: A#B® C#D - (A® C)#(B ® D).

9:20 S. GONCHAROV Vol. 22:1

such that the following diagrams commute, where =~ refers to the obvious canonical isomor-
phisms

(A%D)#B ——— A% (I ® B) ((A4B)#C)4D —— (A4B)#(C ® D)
id ™ A#B/; S#idl
(A+(B® C))#D 3
(A#B)#1 : A4 (B® I)]
YW\A#B/; A#(B® C) ® D) — A#(B® (C ® D))
A#(B® (C® D)) — A#(B® C) ® D)
A4(I®B) —Y—— (AQ) 4B “l
™~ 7 (A® B)#(C ® D) v
 A¥B Ul
(AR B)®@ C)#D = (A® (B® C))#D
A®B %", A4] ® B#I A4B® C4D —= -~ C4D ® A+B

d x x| [x

(ARB)#I = (A@B)#(I®I) (A®RC)#(B® D) = (C® A)#(D ® B)

A#B ® (C#D ® E+F) = (A#B® C#D) ® E+F
z'd#xl lx#id
A#B® (C® E)(D ® F) (AR C)#(B® D) ® E#F

x| x

>~

A CREN+BRDAF) — (A®C)®E)#(B®D)® F)

(A4B)#(I4]) — > (A@ DN#(B®I) A#(B+]) — - A+(B®I)
id@vﬁA#B)@f/ > p
¢ A¥((B#O)4(DHE) gy
A%((B#C) ® (D¥E) T A%((BO)#(D ®)
id#xl lid#f
44((B ® D)#(C ® E)) 44 (B+#(C ® (D ® F)))

J¢

A#(B® (C® (D ® E)))

12

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:21

¢ (A#(B#C0))#(D#E) __gid

P

A#((B#C) ® (D*E)) (A#(B® C))#(D+E)
id#xl lc

A#((B® D)#(C ® E)) (A#(B® C))*(D ® E)
q l’f

A#(B® D) ® (C ® E)) = A#(B® 0) ® (D ® E))

(A+B)+C) ®@ (D#E)#F) — > (A+B Q@ D+ E)+(C ® F)
f@fl lx#id
A4#(B® C)® D#(E ® F) (A® D)4 (B ® E)#(C ® F)

xl ls

~

(A@D)#(B®C)®(E®F)) — (AQ D)#((B® E) ® (C® F))

(A#(B+C)) ® (D# (E+F)) X (AQ D)#(B+C ® E® F)
é‘@Cl lid#x
A#(B®C) @ D#(E ® F) (A® D)#((B® E)#(C ® F))

xl lc

~

A@D)#(BRC)®(EQF) — (A®D)#(B® E)® (C® F))

(A#B)#(C#D @ E#F) ——— (A#B Q@ C#D)# (E#F)

id #x x3id
(A4 B)+#((C ® E)#(D ® F)) (A® C)#(B® D))+ (E+F)
¢ ¢
(A+B)#((C ® E) ® (D ® F)) (A®C)#(B® D)) ® (E+F)
13
A#(B® (CQ®D)® (E® F)) ¢

A#(C® (BO®D)®(E®F) —— (A®C)#(B® D) ® (E® I))

9:22 S. GONCHAROV Vol. 22:1

A#B® C#(D® E) —2®", A4B® (C ® D)% E

gl x

(A®C)#(B® (D Q® E)) (A® (C®D))*(B® E)

| E

(A®C)#(D® (B E) — (A® C) ® D)+(B ® E)

(A% (B® C) 4D - (A® B)#C)4D

|

A¥#((B® C) ® D) 3

Y

A#(B® (C ® D)) —— (A® B)#(C ® D)

A#(B#(C ® D)) % A ((B ® C)#D)

¢| l¢

A¥(B® (C ® D)) — A#((B® C) ® D)

Remark 7.2. The first three laws (relating n and &) identify guarded parameterized monads
as parametric monads in the sense of Melliés [Mell7], and subsequently renamed to graded
monads [FKM16]. In our case, more specifically, # is a V-graded monad on V.

The relevance of the presented axiomatization is certified by the following

Theorem 7.3 (Coherence). Let &1, & and &) be expressions, built from &, # and I over
a set of letters, in such a way that & and Es 4 &) contain every letter at most once and
neither E nor &) contain #. Let f and g be two expressions built with ® and 4 over
identities, n, v, &, , x, associators, unitors, braidings and inverses of associators and
unitors, in such a way that the judgements f: & — Ea#E) and g: E1 — E24 &) are formally
valid. Then f = g follows from the axioms of guarded parameterized monads.

Proof. For the sake of the present proof, let us introduce some nomenclature. We will use
the following names correspondingly for associators, right unitors and braidings:

a:A® (B®C)—(A® B) ® C, prAR®I— A, v:A® B— B ® A.

We dispense with the left unitor, since our monoidal structure is symmetric.

Let us refer to the expressions built from &, # and I over some alphabet of object names,
fixed globally from now on, in such a way that every object name occurs at most once, as
object expressions. We refer to the expressions built with ® and # over id, n, v, &, (, X,
a, al, D, ,0'1, ~ as morphism expressions. An isomorphism expression is then a morphism
expression that does not involve 7, v, &, ¢, x. Every morphism expression f unambiguously
identifies object expressions £ and & for which the judgement f: & — & is formally valid
(that is, in any category, where we can interpret f, & and &, f is a morphism from &;
to &). For two morphism expressions f,g: & — &, let f = g denote ‘f = g follows from
the axioms of guarded parameterized monads‘. An object expression is nmormal if it is of

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:23

the form £# &’ and £ and £’ do not contain #. A morphism expression is simple if it is a
composition of isomorphism expressions between normal form expressions and instances
of v.

For an object expression &£, we define object expressions nfi(£) and nfa(E) recursively
with the clauses:

e nf1(€) =&, nfy(E) =Tif £ =1 or £ is an object name;
[nfl(E @ 5/) = nfl(E) ® nfl(é"), nfg(S ® 8/) = nfg(S) ® nfg(S’);
o NfL(E#E) = nf1(E), nf2(E#E) = nfa(€) ® (nF1L(E) ® nf2(E))).

Let nf(€) = nf1(€) #nfa(E), so nf(E) is normal. For any object expression & we also define
a normalization morphism expression nm(E): € — nf(€), by induction as follows:

e nm(&) =nif £ =1 or £ is an object name;
e nm(E ®E') =xo(nm(€) ® nm(&));
e nm(E#E) =Eo0 o (nm(E)#Fnm(E)).

The statement of the theorem will follow from the following subgoals.

(1) If a morphism expression f: &€ — £’ does not contain v then nm(E’)o f =nm(E)og
for some isomorphism expression g.
a morphism expression f: & — oes not contain 7, £, ¢ and Y, then there exists
2) If hi i E—-¢&d inn d hen th i
a simple morphism expression g: nf(€) — nf(€’), such that nm(E’) o f = gonm(E).
(3) For any two simple morphism expressions f: &€ -> & and g: £ > &', f=g.
or every normal object expression £, nm(€): £ — n is an isomorphism expres-
(4) F y 1 obj pression &, nm(€): £ — nf(£) is an i phi p
sion.

Indeed, given f,g: £ — &' with normal £, to prove f = g, it suffices to prove that f is equal

to & "ME) nf &) I’ & for some simple f’ — the analogous statement would be true for g,
and we would be done by (3). In order to construct f’, let us represent f as a composition
fno...o f1 where every f; with even i contains precisely one occurrence of v and every f;
with odd ¢ contains no occurrences of v. We obtain

g fl (‘:1 f2 52 . gn
nm(c‘:)l nm(€1)l nm(52)l nm(&En)
nf(E) — = nf(E) — 2 nf(&) - nf(E)

where £ = &, every odd diagram commutes by (1) and every even diagram commutes by (2).
Note that nm(&,) is an isomorphism expression by (1), and therefore we obtain the desired
presentation for f, by composing the left vertical arrow, the bottom horizontal sequence of
arrows and the inverse of the right vertical arrow. It remains to show the subgoals (1)—(4).

(1) We strengthen the claim by demanding the requisite isomorphism g to be of the
form gi # g2 and proceed by structural induction on f.

Induction Base: f e {id,n, &, ¢, X, p, pt, a, @, v}, If f = id, we are done trivially by
taking g = f. Consider f =n: & - £# 1. Then the following diagram commutes, and we

9:24 S. GONCHAROV Vol. 22:1

obtain the requisite isomorphism ¢ as the bottom horizontal morphism:

& 1 &

, |
lnm(sw
(nf1(E)#nfa(E)) # (14 1)
nm(&) y lc nm(E41)
(nfL(E) #nf2(E) 4] = (nf1(E)#nf2(E)# (I ® I)
s ;

nf1(E) #nfo(E) —> nf1 ()% (nf2() @ I) = nfi(E)#(nfa(E) ® (I ® I))

The remaining cases are handled by producing analogous commutative diagrams, which
are given below. We do not treat f = p! and f = o™, as these cases are obtained from
the corresponding cases f = p and f = «a by flipping the corresponding diagrams. To save
space and maintain readability, we write A, B,C, D for object expressions, Ay, By,C1, D
for nf1(A), nf1(B),nf1(C),nf1(D) and Az, Ba, Ca, D2 for nfa(A), nfa(B), nf2(C), nfa(D) respec-
tively.

(A+B)#C e A%(B®C)
(nm#nm)#nml lnm#(nm ® nm)
(A1 A2) % (B1 4 Ba)) # (C1 #C2) < (A1 #A) # ((B1#8B2) ® (C1#C2))
C#idl lid#x
(A1 % A2) # (B1 ® Ba))# (C1#C2) (A1 #A2)# ((B1 ® C1)# (B2 ® C2))
¢
s h# (B ® B2))#(C1 ® C2)

(A1 3 (A2 ® (B1 ® Ba))) # (C1#Cs)

i
(A1# (A2 ® (B1 ® B2)))#(C1 ® Ca) (Ar#A2)# ((B1 ® C1) ® (B2 ® C2))
e
(A1#A)# ((B1 ® B2) ® (C1 ® C2))
3 lﬁ §

A4 (A ® (B1 ® By) ® (C1 ® C2)))

2

= A (A2 ® (B ® C1) ® (B ® C2)))

&aid

o

A # (A2 ®@ (B1 @ B2))) ® (€1 @ C2))

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:25

A4 (B4C) < A+ (B ® C)
nm#(nm#nm)l lnm#(nm ® nm)
(Ar#As) # ((By#B2) 4 (C1 #Ca)) < (A1 #A) # ((Br#B2) ® (C1#C2))
id#¢| i
(A1 #A2) # (B1#B2) #(C1 ® C2)) (A1 A2)# ((Br ® C1) # (B2 ® C2))

id#{l
¢

(Ar#A2) # (Bi# (B2 ® (C1 ® C2)))
‘|
= (A1 #A) # ((B1 ® C1) ® (By ® Co))
|

(Ar#A2)# (B1 ® (B2 ® (C1 ® C2)))
13 li
A @ (A4 (B1 ® (B2 ® (€1 ® C2)))) —— A4 (A2 @ (B1 ® C1) @ (B2 @ C2)))
. (A®C)# (B ® D)
(nm ® nm)#(nm ® nm)

(A1 A) # (Bi#B2)) ® X (A1 A2) ® (C1#Co)) #
((B14B2) ® (D14 D2))

((C14C2) 4 (D14 D2)) -
e

(A1 #A2) ® (Cr#C2))# ((B1 @ Dy)# (B2 ® D2))

A#B ® C#D

(nm#nm) ® (nm#Enm)

XFHX

(A1 ® C1)# (A2 ® C2)) %

8¢ ¢ ((B1 ® D1)# (B2 ® D2))

(A1 #A2) ® (C1#C2))#((B1 ® D1) ® (B2 ® D7) ¢

i
(A1 ® C1)# (A2 ® C2) #

(A1#A2)#(B1 ® B2)) ® N
((C1#Co)# (D1 ® Dy)) B (B1 ® D1) ® (B2 ® Da))
~

(A3 A2) ® (C1#C2))#((B1 ® Bz) ® (D1 ® Ds))

E®E X ® id

(A1 ®@C1)# (A2 ® C2))#((B1 ® Ba2) ® (D1 ® D2))

(A1#(A2 ® (B1 ® B2))) ®
(C1#(Co ® (D1 @ D2)))

xl 13
(A ®C#((A2 ® (B1 ® B2)) ® (A ®C1)#((A2 ® C2) ®
(C2 ® (D1 ® D2))) (B1 ® D1) ® (B2 ® D3)))
& 7

(A ®@Cr)#((A2 ® C2) ® ((B1 ® B2) ® (D1 ® D2)))

9:26 S. GONCHAROV Vol. 22:1

AT & A
nm & id nm
(Ar#A) ® 1 £ Ar# Ay

id ®n

(Ar#A2) ® (I#1)

(A1 @ DN# (A ® I) = A #As
A® (B®C) & A®B)®C
nm@(nm ® nm)l l(nm ® nm) @nm
(A1 #A2) ® (B1#B2) ® (C1#C2)) = (A1#A2) ® (Bi#B2)) ® (Cr#C2)
ud ®Xi lx@id
(A1 4 A2) @ ((Br ® C1)# (B2 ® C2)) (A1 @ By)# (A2 ® Bz)) ® (C1#Ca)

x| i |x

(A1 ® (B1 ® C1))# (A2 ® (B2 ® C2)) (A1 ® B1) ® C1) # (A2 ® B2) ® Ca)

A®B 7 B® A
nm®nml lnm@nm
(A1 4 A2) ® (By 4 Bo) — (Bi#B2) ® (A1 #.A2)
xl lx
(A1 Q@ B1) ® (A2 @ By) —— (B1 ® A1) @ (B2 ® Az)

Induction Step. Consider f = fi13 fo: E1#E — E1#E). We obtain the requisite isomorphism
from the diagram:

E #E f1if2 5{#55

nm&meml [meysmie
(N1 (1) # nfa(£1)) 4 (nf1 (E5) 4 nfa(Ex)) FHETL) (0 (1) 4 nfa (E])) 4 (nf1 (€5) #nfa(€5))
<l lc
(nf1(51)#nfz(&))#i(nh(c‘?z) ® nfa(&2)) (nfl(gi)#nfz(gi))#l(nfl(fé) ® nfa(&3))
3 3

nf1(&1) ® (nf2(&1) # (nf1(E2) ® nfa(Er))) ———— nf1(E]) ® (nf2(&]) # (nf1(E5) @ nfa(EL)))

Here, the top cell commutes by induction hypothesis, with some isomorphisms ey, es, u1
and us, and the bottom cell commutes by naturality of ¢ and £&. The case f = f1 ® fo is
handled analogously.

(2) The given morphism expression f can be decomposed as f, o...o fi in such a way
that every f; contains at most one morphism name (not including id). It thus suffices to

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:27

establish the claim for every i. If the involved name is not v, we are done by the previous
clause (1). We thus continue with the proof of (2) w.l.o.g. assuming that f is built from id,
v, ® and #, and v occurs in f precisely once.

Consider f = v. Using the naming conventions from clause (1), we obtain the following
commutative diagram:

A#(B® C) = (A® B)#C
nm(nm ® nm>l l(nm ® nmenm
(Ar#A2) # ((B1#B2) ® (C1#C2)) - (A4 A2) ® (Br#B2))# (C1#C2)
z’d#xl lx#id
(Ar1#A2) # ((B1 @ C1)# (B2 ® C2)) (A1 @ B1)# (A2 ® Bz)) # (C1 #C2)
| ¢
(A1 A2) # ((B1 ® C1) ® (B2 ® C2)) (A1 ® B1)# (A2 ® Ba))#(C1 ® C2)

e| E

A4 (A ® (B ® C) ® By ® C2))) —=), (A4 4B)) 4 (s @ Bo) ® (C1 ® (1))

which yields g = v o (id#e). Notably, e is an isomorphism. Next, we handle the cases
f=v#id, f=id#v, f=v ® id and f = id ®v. For f = v#id, we have

vkid

E1# & 5{ #&
nm(Sl)#nm(é'z)l lnm(:‘,‘{)#nm(é})
vo(id e 7d
(nF1(E1) 4 nfa(E1)) 4 (nf1(E2) #nfa(E2)) —2UFDHL (e (E1) 4 nfa(€])) 4 (nf1(E2) #nf(E2))

‘| |

(nf1(E1) # nf2(E1)) % (nf1(E2) ® nfa(Ex)) —2EFDHL e (&1) s nfa(ED)) 4 (nf1(E2) ® nfa(Es))

(id 4)4rid /

(nf1(E1) # &) # (nf1(E) @ nfy(E)) £

nf1(51)#(nf2(51) ® (nfl(é'g) @ nfg(gg))) ¢ nfl(E{)#(nfg((‘f{) ® (nfl(é'g) @ nfg(gg)))

idm %y

nf1(&1) # (€ ® (nf1(&) ® nfa(E2)))

where e and €’ are isomorphisms, and e is the one that we inherit from the case f = v.

9:28 S. GONCHAROV Vol. 22:1

For f = id#v, we have construct the requisite g analogously:

E1#E v & :H:gé
nm(E1)4#nm(E2) lnm(é‘l)#nm(gé)

(N1 (E1) % nfa(E1)) % (nf1(E2) 4 nfa(E2)) —FUEHD | e (£1) 4 nfo(E1)) # (nf1(E)) % nfa(EL))

id #(id #e) id #v

¢ (nf1(E1) #nfa(E1)) % (nfy (&) #E) ¢

\

(nfl(é’l)#nfg(é’l))#(nfl(é'g ® nf2 52 ¢ (nfl(é’l)#nfg(é’l))#(nfl(é’é) ® nfg(é’é))

id #m‘ >~

¢ (nf1(E1) #nfa(E1)) # (nf1 (&) ® €) ¢

\

nf1(&1) # (nf2(€1) ® (nf1(E2) ® nfa(Er))

id4(id ® m

nf1 51 (nf2(51) ® (nfl(SQ) ® 8))

¢ (nf1(&1) # nf2(E1)) # (nf1(€3) @ nf2(E3))

\

For f = v ® id, we have

v®id

& ® & & ® &
nm(€1) ® nm(E2) lnm(f{)@nm(f)g)
vo(id#e id
(nFL(E1) #nfa(€1)) ® (nf1(E2) 4 nfa(Ex)) ~CEHFDEE e () fnfo(E])) ® (nf1(E2) #nfa(E2))

zd%@x\ %7

X (nf1(E1) &) ® (nf1(E)#nfy(Ey)) x

(nf1(&1) @ nfi(E2)) # (nf2(E1) ® nfa(E2)) X (nf1(&1) ® nfi(E2)) # (nf2(E]) ® nf2(E2))

id#(e ® id) A

(nfl(El) ® nfl(Eg))#(E ® nfg(gg))

where, again, e is the one that we inherit from the case f = v, and €’ and €” are isomorphisms.
The argument for f = id @ v is symmetric.

The general case now follows by structural induction on f with the above cases serving
as the induction base.

(3) Let us first argue that w.l.o.g., f and g are of the form (es # id) o v o (id4#e;)
and (ug # id) o v o (id4u1) with some isomorphism expressions ey, e2,u1,us. Indeed, by
assumption, f is a composition of morphism expressions of the form: v, id4e and e#id where
e ranges over isomorphism expressions. We ensure that v occurs at least once by using the fact
that id ags = (padidp)ov.a o (ida4ys,) o (id a4p). Since (id#e)ov = vo (id4(id ®e))
and v o (e#1id) = ((id ®e) #id) o v, we can rearrange f equivalently in such a way that all
components of the form id4e are gathered on the right of the expression and all components
of the form e id are gathered on the left of the expression. Using the axioms of guarded
parameterized monads, we can subsequently replace compositions v o v with a single v, and
thus arrive at the requisite form. The same reasoning applies to g.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:29

Now the equality f = g follows from the diagram:

e .A#(Bl ® D) v (.A ® Bl):H:D y
2 61/7 \egj#z

A#B C#D
~_ -

W e B @ D) — Y (A® By 4D

using the fact that By and By are necessarily isomorphic. That the triangles commute follows
from the original Mac Lane’s coherence theorem for symmetric monoidal categories [ML71].

(4) Since £ is assumed to be normal, £ = & # &, where & and & do not contain
Let us show first, by induction over &1, that nm(&;) = (id4e1) o i for some isomorphism e;
between I and a tensor product of some number of copies of I. The induction base is
trivial. For the induction step, let & = & ® &/. Then, using the induction hypothesis,
nm(&r) = xo(nm(&]) @ nm(&Y)) = xo((id4e))on®(id el)on) = (id (e} ®ef))oxo(n@n) =
(id4#(e] ® €)oe)on where e: I I ®I. Analogously, we obtain nm(&2) = (id4ez) o 1.

Now, nm(€) = nm(&E1#E1) = oo (nm(&1)#Enm(E)) = oo ((id4er) onF(iddres)on) =
(id ®(e1 ® (id ®ez))) o€ oo (n#n). Using the axioms of guarded parameterized monads,
observe that £ o (o (n#mn) is an isomorphism expression, which finishes the proof. L]

e
I1e

It is an open question if a stronger version of the above coherence theorem with general
f,g: &1 — & can be proven. In the sequel, we will only deal with guarded parameterized
monads over (V,+,0). Recall that a parameterized monad (in the sense of Uustalu [Uus03])
is a bifunctor T: V x V — V| such that each T'(-, X) is a monad and each T'(-, f) is a
monad morphism. Of course, a guarded parameterized monad is meant to be a parameterized
monad in this sense. This follows from Remark 7.2 and the following general fact.

Proposition 7.4. Every V-graded monad on (V,+,0) is a parameterized monad.

Proof. A V-graded monad on V is equivalently a lax monoidal functor from V to the
monoidal category of endofunctors ([V, V], 0,1d). Let this lax monoidal functor send each
X € |V|toT(-,X): V- V. Lax monoidal functors preserve monoids, which unravels
as follows. Every object X in V is a monoid under !: 0 > X and V: X + X — X, and
monoids in ([V, V], o0,1d) are precisely monads. Therefore, T'(~, X) is a monad for every X.
Likewise, every morphism f: X — Y in V is a monoid morphism, and hence induces a
monoid morphism from 7T'(-, X) to T'(-,Y), i.e. a monad morphism. []

Explicitly, for a guarded parameterized monad # we obtain parameterized multiplication
transformation:

pxy = (X4#Y)#Y 5 X4V +Y) 94, X 4v)

Theorem 7.5. Given co-Cartesian V and an identity-on-object functor J: V — C strictly
preserving coproducts, C is guarded and C, is representable iff C = V_yg for a guarded
parameterized monad (¥,1,v, X,§, (), the compositions vx y,o o (id#inl) are all monic and
f: X >Y) Ziff f factors through Y 4 (Z +0) 2 (Y + Z) #0.

Proof. (=) Let C, be J-representable. By Theorem 6.6, assume w.l.0.g. that C = V1 where
T = -#0, and let € and (-=)* be the corresponding structure, belonging to #. Let n be the
unit of T. We obtain the remaining transformations v, £, ¢ and x by universality as follows:

v=(X#(Y+72) S (X+ (Y +2)40= (X +Y) + 2))#0)",

9:30 S. GONCHAROV Vol. 22:1

¢ = ((X#Y)#Z S (X4Y + 2)40 [T(id + inl)oe,noinr o inr]* (X + (Y+Z))#O)ﬂ,
(= (X#(Y42) 5 (X +Y#2Z)40 lenbTired” (xy o (v 4+ 7)) #0)",
X=(X#Y +Z4V S (X +Y)#0+ (Z+V)#0

T[inl + inl,inr + inr] ((X+Y)+(Z+V))#O)ﬁ

It is clear by definition that f? is mono as long as f is mono, hence v is mono. The
characterization of the guardedness predicate follows from Theorem 6.6. The laws of guarded
parameterized monad all follow by postcomposition with € and using the fact that it is mono.

(<) Let C = V_g for a guarded parameterized monad (3, 1,v,x,&,(). We define
e: X#Y - (X+Y)#0as X#Y =2 X#(Y +0) Y (X +Y)40, which is monic, since v is so
by assumption. This yields a unique f* for every guarded f, by definition of the guardedness
predicate. The only non-trivial condition of Theorem 6.6, which is left to verify, is that the
guardedness predicate is well-defined.

e (trv,) Given f: X > Y, noinlof =eo (id#!) ono fis thus guarded.

e (par,) Given f: X > V#Wand g: Y > V# W, [eo f,eog| =eo][f,g] is guarded.

e (cmp,) Given f: X > Y # 7, g:Y >V #W and h: Z — (V + W) 4 0, observe
first that

[cog, k" oo f = po([cog,h]# id)oeo
— (id#V) 0o ([0 g, h] 4 id) o co f
= (id#V) oo ([e,id] #id)oeo(g# h)o f.
That is, we are left to show that (id#V) o £ o ([e, id] # id) o € factors through e. Observe
that (V4 V) o x = V. Therefore,
(id#V)o&o(Vaid)o((e+1id) # id) oe
= (dd#V) oo ((V#V)ox#id)o((e+id) #id)oe
= (id#V) o (V#(V +id)) oo (x#id) o ((e +id) # id) o e
=(V#Vo(V+id))olo(x#id)o((e+id)#id)oe
=((V+V)#Vo(V+id)o([inl+inl,inr+inr]#id) oo (xo (e + id) 4 id) o e.
Using coherence, ([inl + inl, inr + inr|4id)ofo(xo(e+id)#id)oe: (VH#EW)#((V +W)#0) —

(V+V)+ (W +W))# ((0+0) + 0) can be factored through v, and hence the entire
expression factors through e.]

Vacuous guardedness is clearly representable and by Theorem 7.5 corresponds to those
guarded parameterized monads #, which do not depend on the parameter, i.e. to monads.

Example 7.6. Let us revisit Example 5.4. Let X #Y =T(X + HTy(X +Y)), and note
that — #0 is isomorphic to Ty. Assuming the existence of some morphism p: 1 — H1, for
every X, we obtain the final map p: 1 — Ty X, induced by the coalgebra map 1 1°77°P,
T(X + H1). Now, T(inl+1id) is a section, since T[id +Hpopo!, inr] o T(inl + id) is the
identity. By Theorem 6.6, # is a guarded parameterized monad.

Example 7.7. Let us revisit Example 5.6. Let X #Y = R>9 x X + R-g x Y + R>(. Then
X #0=Rx¢ x X +Rx¢ and there is an obvious injection exy from X # Y to (X +Y) 4 0.
By definition, every guarded f: X — Y # Z uniquely factors through ey z, and hence # is a
guarded parameterized monad.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:31

Definition 7.8 (Strong Guarded Parameterized Monad). A guarded parameterized monad
(#,1, v, X, & () is strong, if # is strong as a monad in the first argument and as a functor
in the second argument, and the diagram

Xx(Y42) LS Xx (Y +2)40 5> (X x (Y +2)#0 T (X x YV + X x 2)40
Tl lﬁd+sm0#0
(X xY)#Z - (X XY +2)%0

commutes, where exy = vx,y, © (id#inl) and 7 is the monadic strength of 4.

Remark 7.9. Strength is commonly referred to as a “technical condition”. This is justified
by the fact that in self-enriched categories, strength is equivalent to enrichment of the
corresponding functor or a monad [Koc72], and in foundational categories, like Set, every
functor and every natural transformation are canonically enriched w.r.t. Cartesian closeness
as the self-enrichment structure. Then the canonical strength pxy: X x FY — F(X xY)
for a functor F is defined by the expression pxy = A(x, 2). F'(A\y. (z,y))(2). We conjecture
that the strengths involved in Definition 7.8 are technical in the same sense, in particular,
the requested commutative diagram is entailed by enrichment of e.

Finally, let us establish the analogue of Theorem 7.5 for Freyd categories.

Theorem 7.10. A Freyd category (V,C, J(-),@) is guarded and C, is representable iff
C =~ V_y for a strong guarded parameterized monad (3,m,v,x,&,(), the compositions
vx,y,0 o (idd#inl) are all monic and f: X — Y) Z iff f factors through Y 4 (Z + 0) 2
(Y + 2)#0.
Proof. Theorem 7.5 and Proposition 4.5 jointly imply that C is a representable guarded
Freyd category iff

e C~V_y for a guarded parameterized monad (3,7, v, x, &, (),

e v is componentwise monic,

o [: X > Y) Ziff ffactors through Y#(Z+0) 2 (Y + 2)#0,

o T'=(-)#0is strong and (T'dist)oTo (idxe): X x (Y#Z) > T(X xY + X x Z)
uniquely factors through e: X x Y# X x Z - T(X x Y + X x Z) where 7 is the strength
of T.

This yield strength for both sides of # by composition:
Xx(Y42Z) > (X xY)4(X x Z) Mdtnd (X x V)4 Z,
Xx(Y42) > (X xY)4 (X x Z2) 444 y 4 (X x Z).

The diagram in Definition 7.8 is thus satisfied by definition. The axioms of strength are
checked routinely. L]

For a strong guarded parameterized monad #, let 7 be the composition
Xx(Y#27) 224 (X x X)x (Y#2Z) =X x (X x (Y#2))
Mo X x (Y4#(X xZ) L (X xY)#(X x Z)

where 7 is the monadic strength of # and p is the functorial strength of #. It is easy to check
that 7 and p are derivable from 7, and in the sequel, we will include it as the last element in
a tuple (#,1m,v,x,&,(,7), defining a strong guarded parameterized monad.

9:32 S. GONCHAROV Vol. 22:1

[x1: A1, xn: Ay by i Ai] = proj;

h =]y, v: 4] h =]y, v: 4]
[T f0): Bl =[fleh [Tk f(v): Bl =[floh
h =TIty v: 4]

[T creturnv: A) Bl =noh

h=[I'tcp: A) B] hi =[T,z: Arcq: C) D] hy =[I',y: Btcr: (C+ D)) 0]
[T -c docasepofinlz — ¢; inry — r: C') D]
= (V#id)ovopo ((id#inr)#[id,!]) o (o (h1#h2) o 7o (id, h)

h=[IF,v: A] h=[I'kyv: B]
[T tcinitv: A =! [Tty inlv: A+ B] = inloh [Ty inrv: A+ B] = inroh

h=][IF,v: A+ B] hi=[Iz: Arcp: C) D] he =[I',y: Btcq: C) D]
[T' ¢ casevofinlz — p;inry — q: C') D] = (V#V)oxo (hy + hy)odisto(id, h)

hi =y, v: A] he = [l -, w: B]
[Ty (v,w): A x B] = (hy, hs)

Figure 8: Denotational semantics of guarded FGCBV over guarded parameterized monads.

Finally, we can interpret the guarded version of FGCBYV over a strong guarded parame-
terized monad (3,71, v,x,&,(,7) on V. A semantics of (X, X.) then assigns

e an object [A] € V| to each sort A;
e a morphism [f] € V([A],[B]) to each f: A — B e X;
e a morphism [f] € V([A], [B]#[C]) toeach f: A— B) C € ¥;

This semantics extends to types as before and to terms in context with the assignments
in Figure 8. Let us spell out the most sophisticated morphism corresponding to the rule
for docase:

(1] S48, [0 x (AT #[B]) 421, ([0 x [A]) + (7] x [B])
It ([C# [D]) + (IC] + [D]) #0) Iwipbictstoto, (€] 4 [D]) # ([C] + [D]) +0)
(it ([4 ([C] + [D) # (IC] + [D]) H1HEEL, [C] 4 (€] + [D])
UL, ([C] + [C]) +[D] T4, [C] 4 [D]

Note that what allows us to sidestep the monicity condition of the representability criterion
(Theorem 7.5) is that we gave up on the assumption that the space of guarded morphisms
X — Y#Z injectively embeds into the space of all morphisms X — (Y + Z)#0, in particular,
the entire notion of guardedness predicate is eliminated.

Vol. 22:1 REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:33

8. CONCLUSIONS AND FURTHER WORK

We investigated a combination of FGCBV and guardedness, drawing inspiration from
previous work relating Freyd categories to strong monads via a natural representability
condition for certain presheaves. An abstract notion of guardedness naturally fits into
the FGCBYV paradigm and gives rise to more general formats of presheaves, which must
be representable, e.g., to interpret higher-order (guarded) functions. In our case, the
representability requirement gave rise to a novel categorical structure — we dub it a
(strong) guarded parameterized monad — that encapsulates the computational effects under
consideration while providing guardedness guarantees.

We regard our present results as a prerequisite step for implementing guarded programs
in existing higher-order languages, such as Haskell, and in proof assistants with strict
support of the propositions-as-types discipline, such as Coq and Agda, where unproductive
recursive definitions cannot be implemented directly, and thus guarded iteration is particularly
significant. It would be interesting to further refine guarded parameterized monads to include
quantitative information about how productive a computation is, or how unproductive it is,
so that this relative unproductivity could possibly be cancelled out by composition with
something very productive. Another strand for future work arises from the observation that
guarded iteration is a formal dual of guarded recursion [GS18].

A good deal of the present theory can be easily dualized, which will presumably lead to
guarded parameterized comonads and comonadic recursion — we are planning to investigate
these structures from the perspective of comonadic notion of computation [UV0S8]. In terms
of syntax, a natural extension of fine-gain call-by-value is call-by-push-value [Lev99]. We
expect it to be a natural environment for analyzing the above-mentioned aspects in the style
of the presented approach.

As we demonstrated, guarded parameterized monads emerge as an answer to a very natu-
ral representability question, but the resulting notion, i.e. Definition 7.1, admittedly appears
to be rather unwieldy. It involves five natural transformations, two of which (7 and §) render
guarded parameterized monads as graded [FKM16] or parametric monads [Mell7]|. Each of
the remaining transformations has its specific role in governing guardedness guarantees. They
ensure that a guardedness guarantee can be weakened (v), that independent guardedness
guarantees can be merged (x), and that nested guardedness guarantees can be flattened ().
Numerous coherence conditions between these transformations are vital for the coherence the-
orem, and it seems that not much can be done to simplify them significantly. One seemingly
natural idea is to replace the natural transformation y: A#B ® C#D — (A® C)#(B ® D)
with a more elementary transformation k: A ® B#C — (A ® B)#C from which y can be
derived. This, however, does not have a straightforward simplifying effect on the coherence
conditions, in particular on the condition describing the interaction of x and associativity
transformations. Outside the context of coherence, the only useful example of ® known
presently is the binary coproduct functor 4+, and the only useful candidate for y in this case
is [inl4:inl, inr4inr]. In this special case Definition 7.1 might be possible to simplify.

ACKNOWLEDGEMENT

The author would like to thank anonymous reviewers of the present and previous editions of
the paper for their diligence in their effort to improve it.

9:34

S. GONCHAROV Vol. 22:1

REFERENCES

[ACEHQ] Luca Aceto, Arnaud Carayol, Zoltdn Esik, and Anna Ingdlfsdéttir. Algebraic synchronization trees

[ADK17]

[AMV02]

[AMV10]
[Awo10]
[BE93]
[BPSO1]
[BW90]
[Cap05]
[Coc93]

[CUV1T]

[EK17]

[Fio04]

[FKM16]

[Fok13]

[GNP20]

[Gon21]

[Gon23]

and processes. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors,
Proc. of 39th Int. Coll on Automata, Languages, and Programming (ICALP 2012), Part 2, volume
7392 of LNCS, pages 30-41. Springer, 2012. doi:10.1007/978-3-642-31585-5_7.

Thorsten Altenkirch, Nils Danielsson, and Nicolai Kraus. Partiality, revisited — the partiality
monad as a quotient inductive-inductive type. In Javier Esparza and Andrzej Murawski, editors,
Foundations of Software Science and Computation Structures (FOSSACS 2017), volume 10203 of
LNCS, pages 534-549, 2017. doi:10.1007/978-3-662-54458-7.

Jiti Adamek, Stefan Milius, and Jifi Velebil. On rational monads and free iterative the-
ories. In Proc. Category Theory and Computer Science (CTCS 2002), volume 69 of Elec-
tron. Notes Theor. Comput. Sci., pages 2346, 2002. doi:10.1016/s1571-0661(04)80557-7.
Jifi Adédmek, Stefan Milius, and Jifi Velebil. Equational properties of iterative monads. Inf.
Comput., 208(12):1306-1348, 2010. doi:10.1016/j.ic.2009.10.006.

Steve Awodey. Category Theory (Oxzford Logic Guides). Oxford University Press, USA, 2 edition,
2010. doi:10.1093/acprof:0s0/9780198568612.001.0001.

Stephen Bloom and Zoltan Esik. Iteration theories: The equational logic of iterative processes.
Springer, 1993. doi:10.1007/978-3-642-78034-9.

J. Bergstra, A. Ponse, and Scott Smolka, editors. Handbook of Process Algebra. Elsevier, 2001.
d0i:10.1016/b978-0-444-82830-9.x5017-6.

Jos C. M. Baeten and W. P. Weijland. Process algebra, volume 18 of Cambridge tracts in theoretical
computer science. Cambridge University Press, 1990. doi:10.1017/cbo9780511624193.
Venanzio Capretta. General recursion via coinductive types. Log. Meth. Comput. Sci., 1(2), 2005.
doi:10.2168/1mcs-1(2:1)2005.

J. Robin B. Cockett. Introduction to distributive categories. Mathematical Structures in Computer
Science, 3(3):277-307, 1993. doi:10.1017/s0960129500000232.

James Chapman, Tarmo Uustalu, and Niccolé Veltri. Quotienting the delay monad by weak
bisimilarity. volume 29, page 67-92. Cambridge University Press (CUP), October 2017. doi:
10.1017/s0960129517000184.

Martin H. Escard6 and Cory M. Knapp. Partial Elements and Recursion via Dominances in
Univalent Type Theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 21:1-21:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2017.21.

M.P. Fiore. Aziomatic Domain Theory in Categories of Partial Maps. Distinguished Dissertations
in Computer Science. Cambridge University Press, 2004. doi:10.1017/CB09780511526565.
Soichiro Fujii, Shin-ya Katsumata, and Paul-André Mellies. Towards a formal theory of graded
monads. In Bart Jacobs and Christof Loding, editors, Proc. 19th International Conference on Foun-
dations of Software Science and Computation Structures (FOSSACS 2016), volume 9634 of Lecture
Notes in Computer Science, pages 513-530. Springer, 2016. doi:10.1007/978-3-662-49630-5\
_30.

W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer Science. An EATCS
Series. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-662-04293-9.

Sergey Goncharov, Renato Neves, and José Proenca. Implementing hybrid semantics: From
functional to imperative. In Volker Stolz Violet Ka I Pun, Adenilso da Silva Siméao, editor,
17th International Colloguium on Theoretical Aspects of Computing (ICTAC 2020), 2020. doi:
10.1007/978-3-030-64276-1_14.

Sergey Goncharov. Uniform Elgot Iteration in Foundations. In Nikhil Bansal, Emanuela Merelli, and
James Worrell, editors, 48th International Colloguium on Automata, Languages, and Programming
(ICALP 2021), volume 198 of LIPIcs, pages 131:1-131:16. Schloss Dagstuhl — Leibniz-Zentrum fur
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.131.

Sergey Goncharov. Representing Guardedness in Call-By-Value. In Marco Gaboardi and Femke
van Raamsdonk, editors, 8th International Conference on Formal Structures for Computation and
Deduction (FSCD 2023), volume 260 of Leibniz International Proceedings in Informatics (LIPIcs),

https://doi.org/10.1007/978-3-642-31585-5_7
https://doi.org/10.1007/978-3-662-54458-7
https://doi.org/10.1016/s1571-0661(04)80557-7
https://doi.org/10.1016/j.ic.2009.10.006
https://doi.org/10.1093/acprof:oso/9780198568612.001.0001
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1016/b978-0-444-82830-9.x5017-6
https://doi.org/10.1017/cbo9780511624193
https://doi.org/10.2168/lmcs-1(2:1)2005
https://doi.org/10.1017/s0960129500000232
https://doi.org/10.1017/s0960129517000184
https://doi.org/10.1017/s0960129517000184
https://doi.org/10.4230/LIPIcs.CSL.2017.21
https://doi.org/10.1017/CBO9780511526565
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.4230/LIPIcs.ICALP.2021.131

Vol. 22:1

[GRS15]

[GRS21]

[GS18]

[GSRP17]

[GSRP19)

[JKO1]
[KocT2]

[Lev99]

[Lev04]

[LG19]

[LPTO02]
[Mel17]

[Mil89)]
[Mil05]

[ML71]
[Mog91]
[NU15]

[PG14]

[PPO1]

[PRO7]

[PT99]

REPRESENTING GUARDEDNESS IN CALL-BY-VALUE 9:35

pages 34:1-34:21, Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi:10.4230/LIPIcs.FSCD.2023.34.

Sergey Goncharov, Christoph Rauch, and Lutz Schréder. Unguarded recursion on coinductive
resumptions. In Proc. Mathematical Foundations of Programming Semantics (MFPS 2015), volume
319 of ENTCS, pages 183-198. Elsevier, 2015. doi:10.23638/1mcs-14(3:10)2018.

Sergey Goncharov, Christoph Rauch, and Lutz Schroder. A metalanguage for guarded iteration.
Theoretical Computer Science, 880:111-137, 2021. doi:10.1016/j.tcs.2021.04.005.

Sergey Goncharov and Lutz Schréder. Guarded traced categories. In Christel Baier and Ugo Dal
Lago, editors, Proc. 21th International Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS 2018), LNCS. Springer, 2018. doi:10.1007/978-3-319-89366-2_17.
Sergey Goncharov, Lutz Schréder, Christoph Rauch, and Maciej Pirég. Unifying guarded and
unguarded iteration. In Javier Esparza and Andrzej Murawski, editors, Proc. 20th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2017),
volume 10203 of LNCS, pages 517-533. Springer, 2017. doi:10.1007/978-3-662-54458-7_30.
Sergey Goncharov, Lutz Schréder, Christoph Rauch, and Maciej Pirég. Guarded and unguarded
iteration for generalized processes. Logical Methods in Computer Science, 15(3), 2019. doi:
10.23638/LMCS-15(3:1)2019.

George Janelidze and Gregory M Kelly. A note on actions of a monoidal category. Theory Appl.
Categ, 9(61-91):02, 2001.

Anders Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113-120, 1972.
doi:10.1007/b£01304852.

Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor,
TLCA, volume 1581 of Lecture Notes in Computer Science, pages 228-242. Springer, 1999.
d0i:10.1007/978-94-007-0954-6_2

Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Structures in
Computation, V. 2). Kluwer Academic Publishers, USA, 2004. doi:10.1007/978-94-007-0954-6.
Paul Blain Levy and Sergey Goncharov. Coinductive resumption monads: Guarded iterative
and guarded elgot. In Proc. 8rd international conference on Algebra and coalgebra in computer
science (CALCO 2019), LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. doi:
10.4230/LIPIcs.CALC0.2019.13.

Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Inf. & Comp, 185:2003, 2002. doi:10.1016/s0890-5401(03)00088-9.
Paul-André Melliés. The parametric continuation monad. Mathematical Structures in Computer
Science, 27(5):651-680, 2017. doi:10.1017/s0960129515000328.

R. Milner. Communication and concurrency. Prentice-Hall, 1989.

Stefan Milius. Completely iterative algebras and completely iterative monads. Inf. Comput.,
196(1):1-41, 2005. doi:10.1016/j.ic.2004.05.003.

Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971. doi:10.1007/
978-1-4612-9839-7.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55-92, 1991. doi:10.1016/
0890-5401(91)90052-4.

Keiko Nakata and Tarmo Uustalu. A Hoare logic for the coinductive trace-based big-step semantics
of While. Log. Meth. Comput. Sci., 11(1), 2015. doi:10.2168/1mcs-11(1:1)2015.

Maciej Pirég and Jeremy Gibbons. The coinductive resumption monad. In Mathematical Foun-
dations of Programming Semantics, MFPS 2014, volume 308 of ENTCS, pages 273-288, 2014.
doi:10.1016/j.entcs.2014.10.015.

Gordon Plotkin and John Power. Adequacy for algebraic effects. In Proc. 4th International
Conference in Foundations of Software Science and Computation Structures (FOSSACS 2001),
volume 2030 of LNCS, pages 1-24, 2001. doi:10.1007/3-540-45315-6_1.

A. J. Power and E. P. Robinson. Premonoidal categories and notions of computation. Mathematical
Structures in Computer Science, 7(5):453-468, October 1997. doi:10.1017/s0960129597002375.
A. John Power and Hayo Thielecke. Closed Freyd- and kappa-categories. In Proceedings of
the 26th International Colloquium on Automata, Languages and Programming (ICALP 1999),
Lecture notes in Computer Science, page 625-634, Berlin, Heidelberg, 1999. Springer-Verlag.
doi:10.1007/3-540-48523-6_59.

https://doi.org/10.4230/LIPIcs.FSCD.2023.34
https://doi.org/10.23638/lmcs-14(3:10)2018
https://doi.org/10.1016/j.tcs.2021.04.005
https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.1007/bf01304852
https://doi.org/10.1007/978-94-007-0954-6_2
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://doi.org/10.1016/s0890-5401(03)00088-9
https://doi.org/10.1017/s0960129515000328
https://doi.org/10.1016/j.ic.2004.05.003
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.2168/lmcs-11(1:1)2015
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1017/s0960129597002375
https://doi.org/10.1007/3-540-48523-6_59

9:36 S. GONCHAROV Vol. 22:1

[Sch69] Dietmar Schumacher. Minimale und maximale tripelerzeugende und eine bemerkung zur tripel-
barkeit. Archiv der Mathematik, 20(4):356-364, Sep 1969. doi:10.1007/BF01899590.

[SP00] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In
Proc. 15th Annual IEEE Symposium on Logic in Computer Science (LICS 2000), pages 30—41.
IEEE Comput. Soc, 2000. doi:10.1109/1ics.2000.855753.

[Stald] Sam Staton. Freyd categories are enriched Lawvere theories. Electron. Notes Theor. Comput. Sci.,
303:197-206, mar 2014. doi:10.1016/j.entcs.2014.02.010.

[Uus03] Tarmo Uustalu. Generalizing substitution. ITA, 37(4):315-336, 2003. doi:10.1051/ita:2003022.

[UVog] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Electron. Notes Theor.
Comput. Sci., 203(5):263-284, 2008. doi:10.1016/j.entcs.2008.05.029.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/BF01899590
https://doi.org/10.1109/lics.2000.855753
https://doi.org/10.1016/j.entcs.2014.02.010
https://doi.org/10.1051/ita:2003022
https://doi.org/10.1016/j.entcs.2008.05.029

	1. Introduction
	2. Preliminaries
	3. Simple FGCBV with Coproducts
	4. Freyd Categories and Strong Monads
	5. Guarded Freyd Categories
	6. Representing Guardedness
	7. Guarded Parameterized Monads
	8. Conclusions and Further Work
	Acknowledgement
	References

