
Logical Methods in Computer Science
Volume 22, Issue 1, 2026, pp. 11:1–11:32
https://lmcs.episciences.org/

Submitted Jan. 05, 2024
Published Feb. 16, 2026

ASYNCHRONOUS COMPOSITION OF LTL PROPERTIES OVER

INFINITE AND FINITE TRACES

ALBERTO BOMBARDELLI a,b AND STEFANO TONETTA a

aFondazione Bruno Kessler, via Sommarive 18, Trento Italy 380123
e-mail address: abombardelli@fbk.eu, tonettas@fbk.eu

bUniversity of Trento, via Sommarive 9, Trento Italy 380123
e-mail address: alberto.bombardell-1@unitn.it

Abstract. The verification of asynchronous software components poses significant chal-
lenges due to the way components interleave and exchange input/output data concurrently.
Compositional strategies aim to address this by separating the task of verifying individual
components on local properties from the task of combining them to achieve global properties.
This paper concentrates on employing symbolic model checking techniques to verify proper-
ties specified in Linear-time Temporal Logic (LTL) on asynchronous software components
that interact through data ports. Unlike event-based composition, local properties can
now impose constraints on input from other components, increasing the complexity of their
composition. We consider both the standard semantics over infinite traces as well as the
truncated semantics over finite traces to allow scheduling components only finitely many
times.

We propose a novel LTL rewriting approach, which converts a local property into a global
one while considering the interleaving of infinite or finite execution traces of components.
We prove the semantic equivalence of local properties and their rewritten version projected
on the local symbols. The rewriting is also optimized to reduce formula size and to leave
it unchanged when the temporal property is stutter invariant. These methods have been
integrated into the OCRA tool, as part of the contract refinement verification suite. Finally,
the different composition approaches were compared through an experimental evaluation
that covers various types of specifications.

1. Introduction

Model checking asynchronous software poses significant challenges due to the non-determini-
stic interleaving of components and concurrent access to shared variables. Compositional
techniques are often used to tackle scalability issues. The idea of this approach is to decouple
the problem of verifying local properties specified over the component interfaces from the
problem of composing them to ensure some global property.

For example, in [RBH+01] is described the following compositional reasoning. Given
some local component (M1, . . . ,Mn), some local properties of these components (φ1, . . . , φn),
a global property (φ), a notion of composition for the components (γS) and a notion of
composition for the properties (γP); if the local components satisfy the local properties
and the composition of local properties entails the global properties, the local component
composition satisfies the global property. While in the synchronous setting, the composition

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-22(1:11)2026
© A. Bombardelli and S. Tonetta
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-3385-3205
https://orcid.org/0000-0001-9091-7899
http://creativecommons.org/about/licenses

11:2 A. Bombardelli and S. Tonetta Vol. 22:1

is simply giving by a conjunction, the asynchronous composition of local temporal properties
may be tricky when considering software components communicating through data ports.

In this paper, we define the asynchronous composition of LTL [Pnu77] properties local to
components; which means that the local properties reason only over the part of the execution
of the local component, e.g., when a local property refers to the next state, the composition
will consider the next state along the local run of the component. The communication
between local components is achieved with I/O data ports while their execution is controlled
by scheduling constraints. Due to uncontrollable input changes, the composition must take
into account whether or not the local component is running even if the formula does not
contain “next”1. Another important factor to consider is the possibly finite execution of
local components. If for instance, the scheduler is not fair, the unlucky local component
might be scheduled only for a finite amount of time. This “possibly finite” local semantics
also allows for a natural way to represent permanent faults in asynchronous systems (e.g. a
local component is not scheduled anymore means that it crashed).

To represent the “possibly finite” local semantics, we use the truncated weak semantics
defined in [EFH+03a] to represent local properties. The idea is that the local formula can
be interpreted to both finite and infinite trace, and the formula semantics does not force the
system to execute the local component. For completeness, we define the composition in a
way that soundly supports the finite execution of the composed system as well; therefore,
the compositional reasoning applies to hierarchical systems too.

Our composition approach is based on a syntactical rewriting R∗
c of the local temporal

property to a property of the composite model. The rewriting is then conjoined with a
constraint ensuring that output variables do not change when the component is not running
(ψcond). The property composition γP is in the following form: ψcond ∧

∧
1≤i≤nR∗

i (φi). We
also provide an optimized version of the rewriting that works when all components run
infinitely often, thus without possible truncation of the local traces.

The proposed approach has been implemented inside OCRA[CDT13], which allows a
rich extension of LTL and uses a state-of-the-art model checking algorithm implemented in
nuXmv [CCD+14] as back-ends to check satisfiability.

We evaluated our approach on models representing compositions of pattern formulas
and real models from the automotive domains [CCG+23]. We show both the qualitative
differences in results between the two semantics and the impact of the optimization when
dealing with local infinite executions.

1.1. Motivating examples. We propose two examples to motivate our work. The first
model is a toy example representing a system that tries to send a value to a network while the
second is a real model coming from the automotive domain. Both models can be naturally
represented through possibly finite scheduling of local components.

1.1.1. Sender. We now model a three-component system that represents a system that
receives a message and tries to send it through a network. The component either successfully
delivers the message or fails to send it and logs the message. The example is represented in
Figure 1. This example is composed of three components: Component c1 receives a message
rec1 and an input in1 and tries to send the value to component c2. If c1 is eventually able

1Usually when an LTL formula does not contain next, it is stutter invariant. In such cases, the asynchrony
would not interfere with the formula.

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:3

c1 c2

c3

rec1

in1

out1 in2

outf

fail

send
try1
try

send1 rec2

out

in3

φc1 :=G(rec1 → out′1 = in1 ∧X((try1 ∧ out′1 = out1)Usend1))

φc2 :=G(rec2 → out2′ = in2 ∧Xsend2)
φc3 :=G(try → out′f = in3 ∧Xfail)
φ :=G((rec1 ∧ in1 = v) → F (send ∧ out = v ∨ fail ∧ outf = v))

α :=G(in1 → run1) ∧G(send1 → run2) ∧G(H≤ptry1 → run3)

Figure 1. Figure representing the sender model. The colour red represents
input variables while the colour blue represents the output variables.

to send send2 message through the network, then c2 will run and will output the original
input. The network guarantees that eventually, c1 will be able to send the message to c2;
however, if c1 runs only finitely many times, c3 at some point will report a failure. The
global property states that if an input message is received, it is either eventually delivered as
output or an error occurs. If c1 runs infinitely often, the global property is satisfied without
the need for c3.

1.1.2. Automotive compositional contract. Another interesting example comes from the
automotive domain. In [CCG+23], the EVA framework was proposed for the compositional
verification of AUTOSAR components. That work used the rewriting technique we proposed
in [BT22] to verify the correct refinement of contracts defined as a pair of LTL properties.

Due to the complexity of the model, we omit a full description of the system, the
specifications and the properties. We focus on a specific requirement of the system that
states that the system shall brake when the Autonomous Emergency Braking module gets
activated. A simplified version of the specification is defined by the following LTL formula:

G(X(aeb breaking.status ̸= 0) → F≤2Brake In BrakeActuator ̸= 0)

The specification is entailed by a brake actuator component that is composed of the actual
actuator (BrakeActuator#BA Actuator) and a watchdog (BrakeActuator#BA Watchdog).
The actuator is scheduled every time a signal is received in input while the watchdog is
scheduled periodically. By reasoning over finite executions of components, it is possible to
verify whether or not the global specification is valid even if at some point the Actuator stop
working. We omit the detailed structure and specification of the sub-components (actuator

11:4 A. Bombardelli and S. Tonetta Vol. 22:1

and watchdog), for a complete view please refer to [CCG+23] or to the experimental
evaluation.

1.2. Overall contribution. The main contribution of this paper is the definition of a
rewriting-based technique to verify compositional asynchronous systems in a general way.
Furthermore, we provide an additional optimized rewriting technique to cover the case in
which local components are assumed to run infinitely often. The main advantages of our
compositional approach are the following:

• It supports asynchronous communication between data ports.
• It supports generic scheduling constraints expressible through LTL formulas.
• It supports both finite and infinite executions of local components making it a suitable
approach for safety assessment as well.

This work is an extension of the conference paper [BT22]. The work has been extended with
the following contributions:

• A weak semantics for the logic with two decision procedures for its verification.
• A new definition of asynchronous composition of Interface Symbolic Transition Systems
that deals with possibly finite execution of components.

• A new rewriting that generalizes the previous one for possibly finite systems; the rewriting
introduced in [BT22] is then presented as an optimized version of our new rewriting when
each component is scheduled infinitely often.

• A new experimental evaluation with new models and a set of benchmarks from the
automotive domain.

1.3. Outline. The rest of the paper is organized as follows: in Sec. 2, we compare the
proposed solution with related works; in Sec. 3, we define our logic syntax, semantics and
verification; in Sec. 4, we formalize the problem; in Sec. 5, we define the rewriting approach,
its basic version, its complete version and an optimized variation that is suited for infinite
executions only; in Sec. 6, we report on the experimental evaluation; finally, in Sec. 7, we
draw the conclusions and some directions for future works.

2. Related works

One of the most important works on temporal logic for asynchronous systems is Tem-
poral Logic of Action (TLA) [Lam94] by Leslie Lamport, later extended with additional
operators[Lam97]. TLA has been also used in a component-based manner in [RR09].
Our formalism has similarities with TLA. We use a (quantifier-free) first-order version of
LTL [MP92b] with “next” function to specify the succession of actions of a program. TLA
natively supports the notion of stuttering for composing asynchronous programs so that the
composition is simply obtained by conjoining the specifications. We focus instead on local
properties that are specified independently of how the program is composed so that “next”
and input/output data refer only to the local execution. Another substantial difference with
TLA is that our formalism also supports a finite semantics of LTL, permitting reasoning
over finite traces.

As for propositional LTL, the composition of specifications is studied in various papers on
assume-guarantee reasoning (see, e.g., [McM99, PDH99, JT96, CT15a]) for both synchronous
and asynchronous composition. In the case of asynchronous systems, most works focus on

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:5

fragments of LTL without the next operator, where formulas are always stutter invariant.
Other studies investigated how to tackle down state-space explosion for that scenario usually
employing techniques such as partial order reduction [BBC+09]. However, our work covers
a more general setting, where the presence of input variables makes formulas non-stutter-
invariant.

Similar to our work, [BBC+09] considers a rewriting for LTL with events to map local
properties into global ones with stuttering. However, contrary to this paper, it does not
consider input variables (nor first-order extension) and assume that every variable does not
change during stuttering, resulting in a simpler rewriting. In [EFH+03b], a temporal clock
operator is introduced to express properties related to multiple clocks and, in principle, can
be used to interpret formulas over the time points in which a component is not stuttering.
Its rewriting is indeed similar to the basic version defined in this paper, but is limited
to propositional LTL and has not been conceived for asynchronous composition. The
optimization that we introduce to exploit the stutter invariance of subformulas results in
simpler formulas easy to be analyzed as shown in our experimental evaluation.

The rewriting of asynchronous LTL is similar to the transformation of asynchronous
symbolic transition systems into synchronous ones described in [CMT11]. That work
considers connections based on events where data are exchanged only upon synchronization
(allowing optimizations as in shallow synchronization [BCL+10]). Thus, it does not consider
components that read from input variables that may be changed by other components.
Moreover, [CMT11] is not able to transform temporal logic local properties in global ones
as in this paper.

In [LBA+22], the authors defined a technique to verify asynchronous assume/guarantee
systems in which assumptions and guarantees are defined on a safety fragment of LTL
with predicates and functions. The main differences between that work and this one are
the following. The logic considered by [LBA+22] is limited to a safety fragment of LTL
with “globally” and past operators; on the other hand, our work covers full LTL with past
operators with event freezing functions and finite semantics. Another key difference is that
they consider scheduling in which a component is first dispatched and then, after some
steps it completes its action; instead, our framework defines scheduling constraints with LTL
formulas and actions are instantaneous.

Another related work is the one proposed in [BCMT14]. Here, the authors propose
a compositional reasoning based on assume-guarantee contracts for model based safety
assessment (MBSA). They extend the model with possible faults that are modelled as input
Boolean parameter to the system. However, contrary to our work, asynchronous composition
is not considered and a fault represents the non-satisfaction of a local property.

In [BCB+21], a related rewriting is proposed in the context of Asynchronous Hyper-
properties. That work considers an hyper-logic based on LTL that uses a rewriting to align
different traces of the same systems on “interesting” points. Although for certain aspects
the work is similar, it considers a very different problem.

Finally, our logic semantics is based on the works of Eisner, Fisman et al. on truncated
LTL of [EFH+03a]. The main differences are the following. Our logic includes past operators,
first-order predicates and functions; we consider only weak/strong semantics for our logic
while their work instead also deals with neutral semantics.

In summary, while existing works address various aspects related to our approach, none
provide a unified framework for the composition of asynchronous systems with I/O data
ports that explicitly accounts for the termination of local components. To the best of our

11:6 A. Bombardelli and S. Tonetta Vol. 22:1

knowledge, this work is the first to bridge this gap, offering a comprehensive solution that
integrates these considerations into a general framework.

3. First Order Past LTL with weak truncated semantics

This section presents the syntax and the semantics of the logic used in this paper and its
verification.

The logic is an extension of LTL with event-freezing functions of [Ton17] that is
interpreted over both finite and infinite traces. As we mentioned in the introduction, we
are considering weak semantics for our logic that is based on the works of Eisner and
Fisman [EFH+03a, FK18]. The overall idea behind this logic is to have an expressive
language that can reason on both infinite and truncated executions of programs. Finally, we
can observe that for each infinite trace, if the trace satisfies a property, then all its finite
prefixes satisfy it as well under the weak semantics.

Prior to the logic, we denote the notion of traces, which represent finite or infinite
executions of input/output components. Therefore, traces distinguish between input and
output symbols. A local component reads the input to decide the next state and output.
Thus, the finite traces in our setting do not contain the evaluation of input variables at the
end of the trace.

Definition 3.1. We define a trace π as a sequence s0, s1, . . . of assignments over a set of
input variables V I and output variables V O i.e. in which each si is defined over V I ∪ V O.
A trace π is denoted as finite if the sequence of assignments s0, s1, . . . is finite. Moreover, if
a trace is finite, its last assignment is defined only over the symbols of V O. We denote the
set of traces finite and infinite over V I , V O as Π(V I , V O).

3.1. Syntax. In this paper, we consider LTL [MP92a] extended with past operators [LPZ85]

(with S as “since” and Y as “yesterday”) as well as “if-then-else” (ite) and “at next” (@F̃),

and “at last” (@P̃) operators from [Ton17]. For simplicity, we refer to it simply as LTL.
We work in the setting of Satisfiability Modulo Theory (SMT) [BSST09] and LTL

Modulo Theory (see, e.g., [CGM+19]). First-order formulas are built as usual by proposition
logic connectives, a given set of variables V and a first-order signature Σ, and are interpreted
according to a given Σ-theory T . We assume to be given the definition of M,µ |=T φ
where M is a Σ-structure, µ is a value assignment to the variables in V , and φ is a formula.
Whenever T and M are clear from contexts we omit them and simply write µ |= φ.

Definition 3.2. Given a signature Σ and a set of variables V , LTL formulas φ are defined
by the following syntax:

φ := ⊤|⊥|pred(u1, . . . , un)|¬φ1|φ1 ∨ φ2|Xφ1|φ1Uφ2|Y φ1|φ1Sφ2

u := c|x|func(u1, . . . , un)|next(u1)|ite(φ, u1, u2)|u1@F̃φ|u1@P̃φ
where c, func, and pred are respectively a constant, a function, and a predicate of the
signature Σ and x is a variable in V .

Apart from @F̃ and @P̃ , the operators are standard. u@F̃φ represents the value of u
at the next point in time (excluding the current point) in which φ holds. Similarly, u@P̃φ
represents the value of u at the last point in time in which φ holds (excluding the current
point). Figure 2 provides an intuitive graphical view of the operator’s semantics.

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:7

.

φ, u = 3 ¬φ, u = 3 ¬φ, u = 3 φ, u = 6

u@F̃φ = 6 u@P̃φ = 3

Figure 2. Graphical representation of @F̃ and @P̃ .

Notation simplification. In the following, we assume to have a background theory such
that the symbols in Σ are interpreted by an implicit structure M (e.g., theory of reals,
integers, etc.). We therefore omit M to simplify the notation, writing π, i |=tsgn φ and
π(i)(u) instead of respectively π,M, i |=tsgn φ and πM (i)(u).

Finally, we use the following standard abbreviations: φ1∧φ2 := ¬(¬φ1∨¬φ2), φ1Rφ2 :=
¬(¬φ1U¬φ2) (φ1 releases φ2), Fφ := ⊤Uϕ (sometime in the future φ), Gφ := ¬F¬φ (always
in the future φ), Oφ := ⊤Sφ (once in the past φ), Hφ := ¬O¬φ (historically in the past φ),
Zφ := ¬Y ¬φ (yesterday φ or at initial state), Xnφ := XXn−1φ with X0φ := φ, Y nφ :=
Y Y n−1φ with Y 0φ := φ, Znφ := ZZn−1φ with Z0φ := φ, F≤nφ := φ ∨Xφ ∨ · · · ∨Xnφ,
G≤nφ := φ ∧Xφ ∧ · · · ∧Xnφ, O≤nφ := φ ∨ Y φ ∨ · · · ∨ Y nϕ, H≤nφ := φ ∧ Zφ ∧ · · · ∧ Znφ.

Example 3.3. We provide an example of our logic from [Ton17] representing a sensor. In
this example, the sensor has an input real variable y, an output real variable x and a Boolean
flag correct that represents whether or not the value reported by the sensor is correct. We
specify that x is always equal to the last correct input value with G(x = y@P̃ (correct)).
We assume that a failure is permanent with G(¬correct → G¬correct). Additionally, we
consider also a Boolean variable read representing the event of reading x. In our example,
reading occurs periodically with period 5 (read ∧ G(read → X(G≤3¬read) ∧ X5read)):
initially read is true; at each step i, if read is true, then in the states ranging from i+ 1 to
i+ 4 (XG≤3) read is false; and, finally read is true at position i+ 5.

Finally, let us say that an alarm a is true if and only if the last two read values are the
same: G(a↔ x@P̃ (read) = (x@P̃ (read))@P̃ (read)).

We can prove that, given the behaviour defined above, every point at which the sensor is
not correct, is followed by an alarm in at most 10 steps.

(G(x = y@P̃ (correct)) ∧G(¬correct→ G¬correct)∧
read ∧G(read→ X(G≤3¬read) ∧X5read)∧

G(a↔ x@P̃ (read) = (x@P̃ (read))@P̃ (read)))

→ G(¬correct→ F≤10a)

3.2. Semantics. We propose an alternative semantics for LTL with past operators and
event freezing function based on the truncated semantics of LTL defined in [EFH+03a]. This
semantics is tailored for both finite and infinite traces. For what regards infinite traces, the
semantics is identical to the standard one. When we reason over finite traces, the predicates
are interpreted “weakly” i.e. all the predicates are evaluated as true at the end of the trace.
Moreover, the semantics differentiate between output and input predicates by treating the
latter as next operators i.e. they are evaluated as true in the last state.

11:8 A. Bombardelli and S. Tonetta Vol. 22:1

Another important difference between standard LTL and other finite semantics (e.g.
LTLf [DGV13]) lies in the negation. When a formula is negated the interpretation passes
from weak to strong and vice versa. Therefore, a negated formula ¬ϕ is satisfied with weak
(strong) semantics if and only if ϕ is not satisfied with strong (weak) semantics. This means
for instance that a proposition P is evaluated as true at the end of a trace independent of the
polarity of its variables. These different semantics are denoted as |=t− for weak semantics
and as |=t+ for strong semantics; moreover, we use |=tsgn to refer to both interpretations. For
what regards the difference with LTLf , LTLf requires finite traces to satisfies eventualities
i.e. π |= Fp iff at some point in the trace p is true. However, in our scenario that semantics
is not desirable because we would like to consider as “good” traces also traces that are
prefixes of traces satisfying Fp (a further discussion on the choice of semantics is given in
Section 4.1.1).

Contrary to the original truncated semantics of [EFH+03a], we consider also past

operators, if-then-else, event freezing operators (@F̃ ,@P̃), functions and terms.
For what regards past operators, the semantics is similar to standard LTL. The only

alteration of the past semantics is that Y is evaluated as true at the end of the trace. This
is done to keep the value of each formula trivially true when evaluated outside of the trace
bounds.

In this paper, terms are not evaluated with a polarity because they are interpreted inside
predicates. Besides ite,@F̃ ,@P̃ , these operators are interpreted identically to standard LTL.

For if-then-else, instead of considering 2 possible term interpretations (u1, u2), the new
semantics consider a third default value. The third value is chosen when both the if condition
and its negation are satisfied weakly (which is possible with finite traces). The idea is that,
when both φ and ¬φ are weakly satisfied, we avoid committing to either value. As a result,
with this three-valued if-then-else, it is still true that ite(φ, u1, u2) = ite(¬φ, u2, u1) which
would be not true with a two value semantics.

Regarding φ@F̃ u and φ@P̃ u, the new semantics considers strong satisfaction of the
formula to get the value of the term. This occurs because strong semantics ensures that
variables are well-defined in the trace. When the φ is not strongly satisfied, a default value
defφ@F̃ u/ defφ@P̃ u is considered.

From an higher level perspective, the motivation on using the “weak” semantics is briefly
described in Section 4.1.1.

The semantics is defined as follows:

• π,M, i |=t− predO(u1, . . . , un) iff |π| ≤ i or predM (πM (i)(u1), . . . , π
M (i)(un))

• π,M, i |=t+ pred
O(u1, . . . , un) iff |π| > i and predM (πM (i)(u1), . . . , π

M (i)(un))
• π,M, i |=t− predI(u1, . . . , un) iff |π| ≤ i− 1 or predM (πM (i)(u1), . . . , π

M (i)(un))
• π,M, i |=t+ pred

I(u1, . . . , un) iff |π| > i+ 1 and predM (πM (i)(u1), . . . , π
M (i)(un))

• π,M, i |=tsgn φ1 ∧ φ2 iff π,M, i |=tsgn φ1 and π,M, i |=tsgn φ2

• π,M, i |=t− ¬φ iff π,M, i ̸|=t+ φ
• π,M, i |=t+ ¬φ iff π,M, i ̸|=t− φ
• π,M, i |=tsgn φ1Uφ2 iff there exists k ≥ i, π,M, k |=tsgn φ2 and for all l, i ≤ l < k, π,M, l
|=tsgn φ1

• π,M, i |=t− φ1Sφ2 iff i ≥ |π| or there exists k ≤ i, π,M, k |=t− φ2 and for all l, k < l ≤
i, π,M, l |=tsgn φ1

• π,M, i |=t+ φ1Sφ2 iff i < |π| and there exists k ≤ i, π,M, k |=t− φ2 and for all l, k < l ≤
i, π,M, l |=tsgn φ1

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:9

• π,M, i |=tsgn Xφ iff π,M, i+ 1 |=tsgn φ
• π,M, i |=t− Y φ iff i ≥ |π| or i > 0 and π,M, i− 1 |=t− φ
• π,M, i |=t+ Y φ iff 0 < i < |π| and π,M, i− 1 |=t+ φ

where predI denotes a predicate containing input variables or @F̃ terms, predO denotes a
predicate that contains only output variables without at next, sgn ∈ {−,+} and predM is
the interpretation in M of the predicate in Σ.

The interpretation of terms πM (i) is defined as follows:

• πM (i)(c) = cM

• πM (i)(x) = si(x) if x ∈ V
• πM (i)(func(u1, . . . , un)) = funcM (πM (i)(u1), . . . , π

M (i)(un))
• πM (i)(next(u)) = πM (i+ 1)(u) if |π| > i+ 1
πM (i)(next(u)) = defnext(u) otherwise.

• πM (i)(u@F̃ (φ)) = πM (k)(u)if there exists k > i such that, for all l, i < l < k, π,M, l |=t+

¬φ and π,M, k |=t+ φ;

πM (i)(u@F̃ (φ)) = defu@F̃φ otherwise.

• πM (i)(u@P̃ (φ)) = πM (k)(u)if i < |π| and there exists k < i such that, for all l, i > l >
k, π,M, l |=t+ ¬φ and π,M, k |=t+ φ;

πM (i)(u@P̃ (φ)) = defu@P̃φ otherwise.

• πM (i)(ite(φ, u1, u2)) =


πM (i)(u1) if π,M, i |=t+ φ

πM (i)(u2) if π,M, i |=t+ ¬φ
defite(φ,u1,u2) otherwise

where funcM , cM are the interpretation M of the symbols in Σ, and defu@F̃φ, defu@P̃φ and

defite(φ,u1,u2) are extra variables used to represent default values.
Finally, we have that π,M |=t φ iff π,M, 0 |=t− φ.

Example 3.4. Here we provide a short example to clarify the semantics. Suppose that
a local component is represented by a temporal property φi := G(i → Xo); the property
expresses that, if the input i is received, at the next step in the local trace the output o
is provided. In our semantics, this means that the execution πf = {i}, {o}, {o, i}, {o} is
satisfied by the property, but since the semantics is weak also π′f = {o, i}{o}, {i} satisfies the
property according to the semantics. It should be noted that when we reason over infinite
executions, the truncated weak semantics is identical to the standard semantics; therefore,
this semantics can be interpreted as a generalisation of the standard one.

3.3. Verification. We present two techniques to verify LTL formulae with truncated
semantics. The first technique is a variation of the rewriting proposed in [DGV13]. It
reduces the verification under finite-trace semantics to standard infinite-trace LTL semantics
by introducing a fresh Boolean variable Tail, which is true only at the last position of the
original finite trace and remains true in all subsequent positions. This effectively marks the
end of the trace. The rewriting consider both traces in which Tail becomes true and traces
in which Tail is never true. In our setting, the extended trace may assign arbitrary values
to the input variables from the last position onward. The key intuition is that, under our
semantics, the values of input variables matter only at positions where Tail evaluates to
false i.e. before position |π| − 1.

11:10 A. Bombardelli and S. Tonetta Vol. 22:1

Definition 3.5. We define Tr(φ) as follows:

Tr−(PredI) := Tail ∨ PredI Tr+(PredI) := ¬Tail ∧ PredI

Trsgn(PredO) := PredO Trsgn(φ1 ∨ φ2) := Trsgn(φ1) ∨ Trsgn(φ2)

Tr−(¬φ) = ¬Tr+(φ) Tr+(¬φ) = ¬Tr−(φ)
Tr−(Xφ) := Tail ∨X(Tr−(φ)) Tr+(Xφ) := ¬Tail ∧X(Tr+(φ))

Trsgn(φ1Uφ2) := Trsgn(φ1)U(Trsgn(φ2))

where sgn ∈ {−,+} and Tr(φ) := ¬Tail ∧G(Tail → XTail ∧
∧

vo∈V O vo = next(vo))∧ →
Tr−(φ) is the top-level rewriting that defines the behaviour of Tail

2

The following theorem relates the truncated semantics to the rewriting. For each finite
or infinite trace π we show that the given a formula φ, π satisfies φ if and only if a

Theorem 3.6. Let π be a trace over V I , V O and π′ be the infinite trace over V I , V O∪{Tail}
constructed from π by extending the original trace with Tail as follows.

• For all 0 ≤ i < |π| − 1 : π′(i)(V I , V O) = π(i)(V I , V O), π′(i)(Tail) = ⊥;
• π(|π| − 1)(V O) = π′(|π| − 1)(V O);
• for all j ≥ |π| − 1: π′(j)(Tail) = ⊤, π(j)(V O) = π(j + 1)(V O).
• for all j ≥ |π| − 1, values of V I are unconstrained i.e. each input variable can be assigned
to any value.

It is true that:

π |=tsgn φ⇔ π′ |=LTL Tr
sgn(φ)

Proof. We can prove the theorem inductively over the structure of the formula for each
i ≥ 1. Formally the statement is: for all i ≥ 0: π, i′ |=tsgn φ ⇔ π, i |=LTL Tr+(φ) where
i′ = min(|π| − 1, i).

The base cases on predicates are very simple. If i′ ≥ |π| − 1 then Tr−(PredI) is true,
Tr+(PredI) is false and Trsgn(PredO) = PredO which has the value of π(|π| − 1)(PredO)
when i ≥ |π| − 1.

If i′ < |π| − 1 then output variables are immediate to prove and input variables follows
since Tail is false.

For the inductive cases, negation, disjunction and Until follow from induction. We need
to prove only X. If i′ = |π| − 1, then π, i′ |=t− Xφ and π, i′ ̸|=t+ Xφ; since π, i

′ |=LTL Tail,
then π′, i |=LTL Tr

−(Xφ) and π′, i ̸|=LTL Tr
+(Xφ). If i′ < |π| − 1, then the case holds by

induction (Tail is false).

The second technique reduces the problem to the verification of safetyLTL frag-
ment [Sis85]. The idea is that the property is valid on the truncated semantics iff the
property is valid with standard semantics and its ”safety part” is valid with truncated
semantics. The verification of the safety fragment is carried out reducing the problem to
invariant checking. Contrary to the standard semantics, in our setting it is not necessary to

2To verify the rewritten formula over a transition system, the system must be extended with a sink state
in which the predicate Tail holds. This ensures that when Tail becomes true, the system remains in that

state indefinitely (i.e., the transition relation becomes (Tail → V O ′
= V O ∧ Tail′) ∧ (¬Tail → T)). Note

that the rewritten formula implicitly refers to the transition relation of this modified system.

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:11

check that the finite trace is extendible as done instead in [BCTZ23]. The reduction from
safetyLTL to invariant is based on [CGH94, Lat03, KV01] and have been detailed practically
in [BCTZ23, BCGT25]. In the following, we propose the rewriting to transform a formula
from LTL to safetyLTL. The transformation is performed by replacing Until with Release on
the formula in negative normal form (see Definition 3.7 below). The intuition is that with
weak semantics and finite traces Until are interpretable as “Weak” Until (Gφ1 ∨ (φ1Uφ2))
which is easily rewritten as Release (φ2R(φ1 ∨ φ2)).

Definition 3.7. Given a formula φ in negative normal form, we define the “Weak-to-Safety”
translation function W2S(φ), which maps formulas interpreted under weak semantics into
equivalent formulas interpreted within the SafetyLTL fragment, as follows:

W2S(Pred) := Pred W2S(¬Pred) := ¬Pred
W2S(φ1 ∨ φ2) := W2S(φ1) ∨W2S(φ2) W2S(φ1 ∧ φ2) := W2S(φ1) ∧W2S(φ2)

W2S(Xφ) := XW2S(φ) W2S(Y φ) := YW2S(φ)
W2S(φ1Uφ2) := W2S(φ2)R(W2S(φ1) ∨W2S(φ2))

W2S(φ1Rφ2) := W2S(φ1)R(W2S(φ2))

Theorem 3.8. For each trace π:

• If π is an infinite trace: π |=t− φ⇔ π |=LTL φ.
• If π is a finite trace: π |=t− φ⇔ π, |=t− W2S(φ).

Proof. In the case of infinite traces, the theorem follows from the fact that the truncated
semantics is equivalent to LTL (with event-freezing functions).

We prove the finite trace case by induction on the structure of the formula considering
each possible index 0 ≤ i < n with n = |π|.

We only need to prove the case of the operator U since W2S is transparent for the other
operators. Moreover, we need to prove only weak semantics because the top level formula is
in negative normal form.

π, i |=t− φ1Uφ2 ⇔ ∃k ≥ i s.t. π, k |=t− φ2 and ∀i ≤ j < k : π, j |=t− φ1. By induction
we obtain that · · · ⇔ ∃k > i s.t. π, k |=t− W2S(φ2) and ∀i ≤ j < k : π, j |=t− W2S(φ1).

If k ≥ |π| then π, k |=t− φ2 since all formulae are satisfied weakly at the end of the trace;
therefore, π, i |=t− Gφ1 ∨ φ1Uφ2 which is equivalent to φ2R(φ1 ∨ φ2).

4. Compositional reasoning

4.1. Formal problem. Compositional verification proves the properties of a system by
proving the local properties on components and by checking that the composition of the local
properties satisfies the global one (see [RBH+01] for a generic overview). This reasoning is
expressed formally by inference 4.1, which is parametrized by a function γS that combines the
component’s implementations and a related function γP that combines the local properties.

Inference 4.1. Let M1,M2, . . . ,Mn be a set of n components, φ1, φ2, . . . , φn be local prop-
erties on each component, γS is a function that defines the composition of M1,M2, . . . ,Mn,
γP combines the properties depending on the composition of γS and φ a property. The

11:12 A. Bombardelli and S. Tonetta Vol. 22:1

following inference is true:

M1 |= φ1,M2 |= φ2, . . . ,Mn |= φn

γS(M1,M2, . . . ,Mn) |= γP (φ1, φ2, . . . , φn) γP (φ1, φ2, . . . , φn) |= φ

γS(M1,M2, . . . ,Mn) |= φ

The problem we address in this paper is to define proper γS , γP representing the composition
of possibly terminating components and temporal properties such that the inference rule
holds.

4.1.1. Motivation for the Semantic choice. In this work, we adopt the weak semantics of
temporal operators described in Section 3. This choice is motivated by the characteristic of
our setting. Specifically, during composition, local traces may be truncated by the scheduler
or due to a component failure, and these truncated traces remain relevant and may contribute
to the satisfaction of the system-level property. In a sense, we need to pertain the safety
part of the property ensured by the finite trace, while disregarding the liveness part of it.
The weak semantics proposed by [EFH+03a] allows us to account for this, ensuring that
truncated traces are not disregarded in the logical reasoning process.

As a motivating example, consider the local property φc1 in Figure 1. This property
states that whenever component c1 receives an input in1 via the rec1 signal, it will attempt
to propagate the message to component c2 until it succeeds. Suppose that c1 receives the
value 3 at time 0 and begins this propagation. If a failure occurs or the scheduler stops
activating c1, its execution may be prematurely truncated, and only a finite prefix of its
local trace is available. Still, this partial trace captures the component’s behaviour up to the
end of its execution– specifically, in this case, that c1 initiated the process of sending the
input to c2. Weak semantics ensures that such truncated traces are preserved in system-level
reasoning, without requiring that liveness properties be fully realized. If (on the composition)
stronger guarantees are required–e.g., to ensure infinite progress or rule out failures—this can
be encoded explicitly in the environment assumption, such as α′ := α ∧GFrunc1, ensuring
fair scheduling and infinite execution.

At the global level, traces may also be finite to support hierarchical composition. In
such cases, weak semantics provides a conservative and practical interpretation: a property
satisfied on a finite trace indicates that no counterexample has been found yet, though one
may still arise on an extension. Consider the system-level property φ := G((rec1 ∧ in1 =
v) → F (send ∧ out = v ∨ fail ∧ outf = v)) from Figure 1. In this case, since φ is a liveness
property, every finite trace satisfy weakly φ. In general, the only problematic cases would
involve finite traces that actually constitute counterexamples, for instance due to reaching
a deadlock state that violates liveness. However, removing deadlocks is computationally
costly, especially in a compositional setting. Thus, adopting weak semantics is a conscious
compromise: it avoids penalizing valid partial behaviours, and in practice, systems are
typically defined to avoid such pathological deadlock cases.

4.2. Interface Transition Systems. In this paper, we represent I/O components as
Interface Transition Systems, a symbolic version of interface automata [dAH01] that considers
I/O variables instead of I/O actions.

Definition 4.2. An Interface Transition System (ITS) M is a tuple
M = ⟨V I , V O, I, T ,SF⟩ where:

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:13

• V I is the set of input variables while V O is the set of output variables where V I ∩V O = ∅.
• V := V I ∪ V O denotes the set of the variables of M
• I is the initial condition, a formula over V O,

• T is the transition condition, a formula over V ∪ V O ′
where V O ′

is the primed versions of
V O

• SF is the set of strong fairness constraints, a set of pairs of formulas over V .

A symbolic transition system with strong fairnessM = ⟨V, I, T ,SF⟩ is an interface transition
system without input variables (i.e., ⟨∅, V, I, T ,SF⟩).

Definition 4.3. A trace π of an ITS M is a trace π = s0s1 · · · ∈ Π(V I , V O) s.t.

• s0 |= I
• For all i < |π| − 1, si ∪ s′i+1 |= T , and
• If π is infinite: for all ⟨fA, fG⟩ ∈ SF , If for all i there exists j ≥ i, sj |= fA then for all i
there exists j ≥ i : sj |= fG.

The finite and infinite languages L<ω(M) and Lω(M) of an ITS M is the set of all finite
and infinite traces of M, respectively. Finally, we denote L(M) := L<ω(M) ∪ Lω(M) as
the language of M.

Definition 4.4. Let π = s0s1 . . . be a trace of an ITS M and V ′ ⊆ V a set of symbols of
M. We denote si(V

′) as the restriction of the assignment si to the symbols of V ′; moreover,
we denote π|V ′ := s0(V

′)s1(V
′) . . . as the restriction of all the state assignments of π to the

symbols of V ′. Furthermore, we denote L(M)|V ′ = {π|V ′ |π ∈ L(M)} as the restriction of
all the traces of the language of an ITS M to a set of symbols V ′ ⊆ V .

Definition 4.5. Let M1, . . . ,Mn be n ITS, they are said compatible iff they share respec-
tively only input with output (i.e. ∀i ≤ n, j ≤ n s.t. i ≠ j : Vi∩Vj = (V O

i ∩V I
j)∪ (V I

i ∩V O
j))

4.3. Asynchronous composition of ITS. We now provide the notion of asynchronous
composition (⊗) that will be used as the composition function (γS) of Inference 4.1.

Definition 4.6. Let M1, . . . ,Mn be n compatible interface transition systems, let run1, . . . ,
runn be n Boolean variables not occurring inM1, . . . ,Mn (i.e. run1, . . . runn /∈

⋃
1≤i≤n(V

I
i ∪

V O
i)) and end1, . . . , endn be n Boolean variables not occurring in M1, . . . ,Mn i.e. end1,
. . . endn /∈

⋃
1≤i≤n(V

I
i ∪ V O

i). M1 ⊗ · · · ⊗Mn = ⟨V I , V O,
∧

1≤i≤n Ii, T ,SF⟩ where:

V I =(
⋃

1≤i≤n

V I
i ∪ {runi}) \ (

⋃
1≤i<n

⋃
i<j≤n

Vi ∩ Vj)

V O =(
⋃

1≤i≤n

V O
i ∪ {endi}) ∪ (

⋃
1≤i<n

⋃
i<j≤n

Vi ∩ Vj)

T =
∧

1≤i≤n

((runi → Ti) ∧ ψMi
cond ∧ (endi ↔ end′i ∧ ¬runi))

SF =
⋃

1≤i≤n

({⟨⊤, runi ∨ endi⟩} ∪ {⟨runi ∧ φa, runi ∧ φg⟩|⟨φa, φg⟩ ∈ SF i})

where ψMi
cond := ¬runi →

∧
v∈V O

i
v = v′.

11:14 A. Bombardelli and S. Tonetta Vol. 22:1

s̄j+0 s̄j+1 s̄j+2 s̄j+3 s̄j+4 s̄j+5π

vi,¬vo,
runi

¬vi,¬vo,
¬runi

¬vi,¬vo,
¬runi

vi,¬vo,
runi

vi, vo,

¬runi
¬vi, vo,
runi

si+0 si+1 si+2πi

vi,¬vo vi,¬vo ¬vi, vo

Figure 3. Graphical view of trace projection. White states of π represent
the states of the sequence mapi, pink states represent states in which the
local component stutters, and red arrows represent the link between the
states of π and the states of πi formally represented by mapk.

The operator ⊗ provides a notion of asynchronous composition of Interface Transition
Systems based on interleaving. Each component can either run (execute a transition) or
stutter (freeze output variables). Contrary to our previous work[BT22], this new definition
allows for finite executions of local components. For each i, we introduce the variable runi
representing the execution of a transition of Mi; furthermore, we introduce the prophecy
variables endi that monitor whether or not a component will execute new transitions in the
future i.e. endi is equivalent to G¬runi.

Definition 4.7. Let π be a trace of M = M1 ⊗ · · · ⊗ Mn with i ≤ n. We define the
projection function PrMi : Π(V) → Π(Vi) as follows:

PrMi(π) =

{
smap0(Vi), . . . If π is infinite and π |= GFruni

smap0(Vi), . . . , smapn−1(Vi), smapn(V
O
i) Otherwise

where mapk is the sequence mapping each state of πi into a state of π as follows:

mapk :=


k If k < 0

mapk−1 + 1 If k ≥ |π| − 1

k′ | k′ > mapk−1, π, k
′ |= runi and ∀mapk−1<j′<k′π, j

′ ̸|= runi Otherwise

Moreover, we define the inverse operator of Pr, denoted by Pr−1:

Pr−1
Mi

(π) = {π′|PrMi(π
′) = π}

Definition 4.7 provides a mapping between the composed ITS and the local transition
system. The function mapk maps indexes of the local trace to the indexes of the global
trace. For each k in the range of the trace excluding the last point (i.e. [0, |π| − 1)) mapk
represent the k-th occurrence of run counting from 0. It should be noted that map0 is not
0 but the first point of the trace in which runi is true (k′|map−1 < k′, π, k′ |= runi and
∀map−1 < k′′ < k′ π ̸|= runi). Finally, the projection of a global trace to a local trace is
defined using map. A graphical representation of projection is shown in Figure 3. We now
show that the language of each local ITS Mi contains the language of the composition
projected to the local ITS. From this result we can derive a condition for γP such that
Inference 4.1 holds. We do that by considering a mapping between local trace and global
traces that follows the same mapping mapi.

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:15

Theorem 4.8. Let M = M1 ⊗ · · · ⊗Mn:

For all 1 ≤ i ≤ n : L(Mi) ⊇ {PrMi(π)|π ∈ L(M)}

Proof. Given a trace π ∈ L(M), πi := PrMi(π). We prove the theorem by induction on the
length of πi. The inductive hypothesis states that if |πi| > k+1 and π0...ki ∈ L<ω(Mi), then

π0...k+1
i ∈ L<ω(Mi).

• Base case:
By definition I :=

∧
1≤i≤n Ii and πi(0) = π(map0)(Vi). We derive that πi, 0 |= Ii ⇒

π0...0i ∈ L<ω(Mi). It should be noted that this holds also if |πi| = 1 and π, |π| − 1 ̸|= runi
because Ii is a proposition on symbols of V O

i .
• Inductive case:
By definition πi(k) = π(mapk)(Vi) where mapk is the kth position s.t. runi holds.

Therefore, π(mapk)π(mapk + 1) |= runi → Ti ⇒ π(mapk)π(mapk + 1) |= Ti. By ψMi
cond we

obtain that πmapk+1
(V O

i) = πmapk+1(V
O
i) = πi(k + 1)(V O

i). Since Ti reasons over symbols

of V ∪ V O ′
, then π(mapk)π(mapk + 1) |= Ti ⇔ πi(k)πi(k + 1) |= Ti. Therefore, πi, k |= Ti

which guarantees that π0...k+1
i ∈ L<ω(Mi).

We proved the theorem for finite traces, we now extend the proof to consider infinite traces.
To do so, it is sufficient to prove that each infinite trace πi satisfies the strong fairness
conditions of SF i since it already satisfies Ii and Ti.

Since πi = PrMi(π) and π ∈ L(M), π |=
∧

⟨fa,fg⟩∈SF (GFfa → GFfg). In particular,

due to the composition, π |=
∧

⟨fa,fg⟩∈SF i
(GF (runi ∧ fa) → GF (runi ∧ fg)) The projection

defines the sequence map0, . . . representing the points in which runi holds; therefore, for
all ⟨fa, fg⟩ ∈if for all k there exists j ≥ k s.t. π,mapk |= fa then for all k′ there exists
j′ ≥ k′ s.t. π,map′k |= fg. From the projection definition then πi |= GFfa → GFfg for each
⟨fa, fg⟩ ∈ SF i.

Definition 4.9. Let M1, . . . ,Mn be n ITS, we define γS as follows:

γS(M1, . . . ,Mn) := M1 ⊗ · · · ⊗Mn

From Theorem 4.8, we obtain a composition γS for which each projected global trace is
an actual behaviour of a local trace. Therefore, when we consider the global traces, we do
not introduce new local traces which cannot be witnessed locally.

To complete our compositional reasoning, we need to define the function γP such that
Inference 4.1 holds. To do so, Section 5 provides a rewriting technique that maps each local
trace satisfying φi to a global trace satisfying γP .

5. Rewriting

In this section, we introduce a rewriting-based approach for the composition of local
properties. In section 5.1, we present the rewriting of the logic of Section 3 that maps local
properties to global properties with proofs and complexity results. In section 5.2, we propose
an optimized version of the rewriting. Finally, in section 5.3, we propose a variation of
the optimized rewriting tailored for infinite executions of local properties i.e. in which the
semantics is the one of standard LTL because we assume fairness of runi.

To simplify the notation, we assume to be given n interface transition systems M1, . . . ,
Mn, a composed ITS C = M1 ⊗ · · · ⊗Mn, a trace π of Mi with i < n, a local property
φ and a local term u. For brevity, we refer to RMi , R∗

Mi
, Rθ

Mi , Pr
−1
Mi

, PrMi , endi

11:16 A. Bombardelli and S. Tonetta Vol. 22:1

and runi as respectively R,R∗,Rθ,Rθ∗, P r−1, P r, end and run. Moreover, we will refer
to map0,map1, . . . as the sequence of definition 4.7. As in section 3.2, we denote input
predicates with apex I: PredI and the output predicates and terms with apex O: PredO.
Finally, we denote sgn ∈ {−,+}.

5.1. Trucanted LTL with Event Freezing Function Compositional Rewriting. In
this section, we propose a rewriting to asynchronously compose propositional truncated LTL
properties over Interface Transition Systems symbols.

The idea is based on the notions of projection (introduced in Definition 4.7) and
asynchronous composition (introduced in Definition 4.6). We produce a rewriting R∗ for φ
such that each trace π of Mi satisfies the rewritten formula iff the projected trace satisfies
the original property.

Definition 5.1. We define R as the following rewriting function:

R−(PredI(u1, . . . , un)) := ¬run ∨ PredI(R−(u1), . . . ,R−(un))

R+(PredI(u1, . . . , un)) := run ∧ PredI(R+(u1), . . . ,R+(un))

Rsgn(PredO(u1, . . . , un)) := PredO(Rsgn(u1), . . . ,Rsgn(un))

Rsgn(φ1 ∨ φ2) := Rsgn(φ1) ∨Rsgn(φ2)

R−(¬φ) := ¬R+(φ),R+(¬φ) := ¬R−(φ)

R−(Xφ) := X(stateR(¬state ∨R−(φ)))

R+(Xφ) := X(¬stateU(state ∧R+(φ)))

R−(φ1Uφ2) := (¬state ∨R−(φ1))U((state ∧R−(φ2)) ∨ Y end)
R+(φ1Uφ2) := (¬state ∨R+(φ1))U(state ∧R+(φ2))

Rsgn(Y φ) := Y (¬runS(run ∧Rsgn(φ)))

Rsgn(φ1Sφ2) := (¬state ∨Rsgn(φ1))S(state ∧Rsgn(φ2))

Rsgn(func(u1, ..., un)) := func(Rsgn(u1), ...,Rsgn(un))

Rsgn(x) := x,Rsgn(c) := c

Rsgn(ite(φ, u1, u2)) := ite(R+(φ),R−(u1), ite(R+(¬φ),R−(u2), defite(φ,u1,u2)))

Rsgn(next(u)) := Rsgn(u)@F̃ (state)

Rsgn(u@F̃φ) := Rsgn(u)@F̃ (state ∧R+(φ))

Rsgn(u@P̃φ) := Rsgn(u)@P̃ (state ∧R+(φ))

where state := run ∨ (Zrun ∧ end) and R(φ) = R−(φ).

R transforms the formula applying run and state to φ. The general intuition is that when
run is true, the local component triggers a transition. Moreover, state represents a local
state of π in the global trace. It should be noted that the rewriting has to deal with the last
state. Therefore, state is represented by a state that either satisfies run or is the successor
of the last state that satisfies run.

For output predicates, the rewriting is transparent because the projection definition
guarantees that each state i of π has the same evaluation of eachmapi state of π

ST . Although
this holds for input predicates as well, there is a semantic technicality that should be taken

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:17

si+0

s̄j+0 s̄j+1 s̄j+2 s̄j+3 s̄j+4πST

a, run ¬a,¬run ¬a,¬run a, run ¬a, run

si+1 si+2π

a a ¬a

aXa

¬run ∨ a run ∧ a
stateR(¬state ∨ a)

R−(Xa)

Figure 4. Graphical representation of rewriting of Xa. π represents the
local trace while πST represents the trace of the composition. White states are
states of local trace while pink states are states in which the local component
is not running. In this example, a is an input variable which happens to be
true in state si and si+1 of local trace π and state s̄j . To show the intuition
of the rewriting, we show that Release operator permits to skip the pink
states (which are not relevant w.r.t. the local trace). Finally, at state s̄j+3 a
is evaluated since run is true.

into account. Input predicates are evaluated differently on the last state: with strong
semantics (+) they do not hold while on weak semantics (−) they hold. Since (i) the last
state of a local trace might not be the last state of the global trace, and (ii) a variable
that locally is an input variable might be an output variable of the composed system, we
have to take input predicates into account inside the rewriting. Therefore, with strong
semantics, the rewriting forces the predicate to hold in a transition i.e. when run holds
(π, i |=tsgn Pred

I ⇔ i < |π| − 1 and PredI(π(i)(u1), . . . , π(i)(un))). The weak semantics is
managed specularly.

Regarding X, R− needs to pass from point mapi to mapi+1 and to verify that the
sub-formula is verified in that state. The first X passes from mapi to mapi + 1. Then, the
rewriting skips all states that are not mapi+1 and “stops” in position mapi+1. Figure 4
shows an intuitive representation of the rewriting of X when the trace is not in its last state.

For Until formulae, the rewriting needs to “skip” all points that either do not belong to
the local trace or satisfy the left part of the formula while it must “stop” to a point that
satisfies the right part and is a state in the local trace. To do so, it introduces a disjunction
with state on the left side of the formula and a conjunction with state on the right side of
the formula. When the rewriting and the formula are interpreted weakly, reaching the end
of the local trace makes the formula true; therefore, Y end is also put in disjunction with the
right side of the formula. Figure 5 shows an intuitive representation of the rewriting of U
when the trace does not terminate before reaching b.

Lemma 5.2. For all πST ∈ Pr−1(π), for all i < |π|:

π, i |=tsgn φ⇔ πST ,mapi |=tsgn Rsgn(φ)

Proof. We prove Lemma 5.2 by induction on the formula. The high level intuition is that,
assuming that we are in a point mapi of the trace, we can “reach” the corresponding mapk

11:18 A. Bombardelli and S. Tonetta Vol. 22:1

si+0

s̄j+0 s̄j+1 s̄j+2 s̄j+3 s̄j+4πST

a,¬b, run ¬a, b,¬run¬a,¬b¬run a,¬b, run ¬a, b, run

si+1 si+2π

a,¬b a,¬b ¬a, b

ba
aUb

¬state ∨ a state ∧ bR−(aUb)

Figure 5. Graphical representation of rewriting of U . In this example both
a and b variables are input variables. Local trace π satisfies aUb at position i
since a is true at state si, si+1 while b is true at state si+2. The corresponding
global trace contains 2 additional states (s̄j+1, s̄j+2) which are not considered
in the rewriting since ¬state holds these 2 states. Finally, the state s̄j+4

of the global trace satisfies both state and b.

using the syntactically rewriting for each temporal operator. Two graphical examples of
that are given in Figure 4 and Figure 5 for respectively X and U .

Before starting the proof we observe the following facts:

(1) For all i : i < |π| − 1 ⇔ πST ,mapi |=t+ run.
(2) For all i : i < |π| ⇔ πST ,mapi |=t+ state.
(3) ∀i < |π|, ∀mapi−1 < j ≤ mapi : π

ST ,mapi |=t− ψ ⇔ πST , j |=t− stateR(¬state ∨ ψ).
(4) ∀i < |π|, ∀mapi−1 < j ≤ mapi : π

ST ,mapi |=t+ ψ ⇔ πST , j |=t+ ¬stateU(state ∧ ψ).
(5) πST ,map|π|−1 + 1 |=tsgn Y end .

Base cases:

• PredI : π, i |=t− PredI ⇔ i ≥ |π| − 1 ∨ PredI Pr⇔ i ≥ |π| − 1 or πST ,mapi |=t− PredI
1⇔

πST ,mapi |=t− ¬run ∨ PredI . The strong semantics case is identical.

• PredO, x, c: Trivial.

Inductive cases:

• ¬: Trivial in both cases. It follows the semantics definition
• ∨, P redI , P redO, func: Trivial.
• Xφ : πST ,mapi |=t− R(Xφ) ⇔ πST ,mapi + 1 |=t− stateR(¬state ∨ R(φ))

3⇔ πST ,
mapi+1 |=t− R(φ) if i < |π| − 1 (By ind. holds). Otherwise, i = |π| − 1 and thus
πST ,mapi + 1 |=t− G¬run which implies πST ,mapi |= R(Xφ) as expected by the weak
semantics. We skip the strong case because it is similar.

• φ1Uφ2 : πST ,mapi |=t− R−(φ1Uφ2) ⇔ πST ,mapi |=t− (state ∨ R−(φ1))U(¬state ∧
R−(φ2)∨Y end) ⇔ ∃k′ ≥ mapi s.t. (π

ST , k′ |=t− R−(φ2) and π
ST , k′ |=t− state or πST , k′

|=t− Y end) and ∀mapi ≤ j′ < k′ : πST , j′ |=t− R(φ1) or π
ST , j′ |=t− state

2,5⇔ ∃k ≥
i s.t. πST ,mapk |=t− R(φ2) and k < |π| or k = |π| and ∀i ≤ j < kπST ,mapj |=t−

R(φ1)
Ind.(k,j<|π|),∀ϕ:π,|π||=t−ϕ

⇔ ∃k ≥ i s.t. π, k |=t− φ2 and ∀i ≤ j < k : π, j |=t− φ1 ⇔
π, i |=t− φ1Uφ2. The proof of the strong case is the same.

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:19

• Y φ: The case is specular to the case of X. In this specific case, we can use run instead of

state because we are assuming that i < |π|; therefore i− 1 < |π| − 1
1⇒ πST ,mapi−1 |=t−

run (if i = 0, then property is false).

• φ1Sφ2 : The case is specular to U . It is sufficient to observe that 4 can be applied for the
past as well.

• ite(φ, u1, u2) : πST (mapi)(Rsgn(ite(φ, u1, u2))) = πST (mapi)(R−(u1)) if π
ST ,mapi |=t+

φ; · · · = πST (mapi)(R−(u2)) if π
ST ,mapi |=t+ ¬φ; · · · = πST (defite(φ,u1,u2)) otherwise.

By induction the case holds.

• u@F̃φ : πST (mapi)(Rsgn(u@F̃φ)) = πST (mapi)(R−(u)@F̃ (state ∧ R+(φ))). By the
semantics of the at next operator operator, we obtain the following.
πST (mapi)(Rsgn(u@F̃φ)) = πST (j)(R−(u)) if there exists j > mapi s.t. π

ST , j |=t+

state and πST , j |=t+ R+(φ); πST (mapi)(. . .) = defu@F̃φ otherwise. πST (mapi)(. . .)
2
=

πST (mapj)(R−(u)) if ∃j ≥ i s.t. πST ,mapj |=t+ R+(φ);πST (mapi)(. . .) = def... other-
wise. Finally, by induction hypothesis, the case is proved.

• u@P̃φ : Identical to @F̃ .
• next(u): Identical to case u@F̃⊤.

Lemma 5.2 states that each point in the sequence map0, . . . of πST satisfies R(φ) iff the
local property satisfies in that point φ; therefore, providing a mapping between the two
properties.

Definition 5.3. We define R∗ as R∗(φ) := stateR(¬state ∨R(φ)).

Lemma 5.4. For all πST ∈ Pr−1(π) : πST ,map0 |=t R(φ) ⇔ πST , 0 |=t R∗(φ)

Proof. Proofs follows simply applying observation 3 of the proof of Lemma 5.2.

Lemma 5.2 shows that R guarantees that satisfiability is preserved in the active tran-
sitions of the global traces. However, map0 is not always granted to be equal to 0 (see
definition 4.7), and thus, the rewriting must guarantee that satisfiability is preserved in the
first transition as well. From lemma 5.2 and lemma 5.4, we infer the rewriting theorem
(Theorem 5.5) which shows that R∗ maps the local trace to the global trace as follows:

Theorem 5.5. For all πST ∈ Pr−1(π) : π |=t φ⇔ πST |=t R∗(φ)

Proof. We prove Theorem 5.5 through Lemma 5.2 and Lemma 5.4:
By Lemma 5.2, ∀i : π, i |=tsgn φ ⇔ πST ,mapi |=tsgn Rsgn(φ). Therefore, π |=t− φ ⇔

πST ,map0 |=t− R−(φ). By Lemma 5.4, πST ,map0 |=tsgn R−(φ) ⇔ πST |=tsgn R∗(φ).
Therefore, π |=t− φ⇔ πST |=t− R∗(φ).

Theorem 5.6. Let φ be a truncated LTL formula:

(1) If φ does not contain ite, the size of the rewritten formula with R∗ is linear w.r.t. φ i.e.
|R∗(φ)| = O(|φ|).

(2) If φ contains ite, the size of the rewritten formula is in the worst-case exponentially
larger than φ.

Proof. We prove Theorem 5.6 by first showing that |R(φ)| = |φ|+ c where c is a constant
inductively on the structure of the formula. The base case trivially holds since the Rsgn(x) =
x and Rsgn(c) = c. We now show the other cases assuming that the theorem holds on the
sub-formulae. For brevity, we prove only the weak part of the rewriting; the prove of the
strong part is identical since the sizes of the generated formulae are the same.

11:20 A. Bombardelli and S. Tonetta Vol. 22:1

• (Pred) |R−(PredI(u1, . . . , un))| = |¬run∨PredI(R−(u1), . . . ,R−(un))| = 3+
∑

1≤i≤n |ui|
+ci = 2+

∑
1≤i≤n ci +1+

∑
1≤i≤n |ui| = 2+

∑
1≤i≤n ci + |PredI |(u1, . . . , P redn). Since ci

are constants the rewriting is linear in this case. The proof for output predicate is almost
identical.

• (∨,¬) Trivial.
• (X) |R−(Xφ)| = |X(stateR(¬state∨R−(φ)))| = 1+2|state|+2+ |R−(φ)| = 3+ |state|+
|φ|+ c. |state| and c are constants; therefore, the rewriting is still linear.

• (U) |R−(φ1Uφ2)| = |(¬state∨R−(φ1))U(state∧R−(φ2))| = 3+2|state|+1+ |φ1|+ c1 +
|φ2| + c2 = |φ1Uφ2| + c1 + c2 + 3 + 2|state|. |state|, c1 and c2 are constants; therefore,
the rewriting is still linear.

• (S, Y) The proof is respectively as U and X.
• (func) Trivial.

• (@F̃) |Rsgn(u@F̃φ)| = |Rsgn(u)@F̃ (state∧R+(φ))| = |u|+ c1+1+ |state|+1+ |φ|+ c2 =

|u@F̃φ|+ c1 + c2 + |state|+ 1. Since c1 (constant of Rsgn(u)), c2 (constant of Rsgn(φ))
and state are constants; then the rewriting is linear.

• (@P̃ , next) Identical to @F̃ .

Finally, |R∗(φ)| = |stateR(¬state∨R−(φ))| = |R−(φ)|+2|state|+3; since |R−(φ)| is linear
w.r.t |φ| we deduce that |R(φ)| is linear as well.

Finally, the size of the rewriting is worst-case exponential when considering ite because
Rsgn(ite(φ, u1, u2)) contains, both weakly and strongly R(φ), the rewriting of φ.

Example 5.7. Consider the formula φc2 := G(rec2 → out′2 = in2 ∧Xsend2) from Figure 1.
The rewriting R∗(φc2) is defined as the following formula.

G(¬state ∨ (run ∧ rec2︸ ︷︷ ︸
R+(rec2)

→

R−(next(out2))︷ ︸︸ ︷
(out2@F̃ state = in2)∧X(runR(¬run ∨ send2))︸ ︷︷ ︸

R−(Xsend2)

))

Finally, R∗(φc2) is defined as stateR(¬state ∨R−(φc2).
Recall that G is an abbreviation of Until: Gψ := ¬(⊤U¬ψ). Therefore, the rewriting of

G is equal to ¬R+(⊤U¬ψ) := ¬((¬state ∨ ⊤)U(state ∧R+(¬ψ))); we can simplify the left
side of until and we obtain ¬(⊤U(state ∧ R+(¬ψ))); and, with further simplifications we
obtain ¬F (state∧¬R−(ψ)) ≡ G(¬state∨R−(ψ)). Intuitively, with the always modality, we
are interested in evaluating the states that are local by evaluating as true any state in which
the component stutters.

For what regards rec2, since it is in the left side of an implication, we rewrite it with
strong semantics by asking for run to be true. Then, next(out2) is rewritten via at-next
operator; the intuition is that at-next provides the “next” value of the variable out2 if state
will be true, otherwise a default value is given. For what regards next, the intuition is given
by Figure 4.

5.2. Optimized LTL compositional rewriting. The main weakness of the rewriting
proposed in previous sections is the size of the resulting formula. However, there are several
cases in which it is possible to apply a simpler rewriting. For instance, Gvo is rewritten by
Rsgn into G(¬state∨ vo) while by ψcond (see Definition 4.6) it does not need to be rewritten
since output variables do not change when run is false. Similarly, Xvo can be rewritten in
the weak semantics to end ∨Xvo.

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:21

To do so, we apply the concept of stutter-tolerance introduced in [BT22] tailored for
possibly finite traces. Informally, a formula is said stutter-tolerant if it keeps the same value
when rewritten with Rsgn in all adjacent stuttering transitions.

Definition 5.8. An LTL formula φ and a term u are respectively said stutter-tolerant w.r.t.
Rsgn iff:
For all π, for all πST ∈ Pr−1(π), for all 0 ≤ i < |π| : for all mapi−1 < j < mapi :

πST , j |=tsgn Rsgn(φ) ⇔πST ,mapi |=tsgn Rsgn(φ) and

πST (j)(Rsgn(u)) =πST (mapi)(Rsgn(u))

Definition 5.9. An LTL formula φst is syntactically stutter-tolerant—abbreviated as
synt.st.tol.—iff it has the following grammar:

φst :=φst ∨ φst | ¬φst | PredO(u, . . . , u) | φUφ | Y φ

ust :=func(ust, . . . , ust) | s | c | ite(φst, ust, ust) | u@P̃φ

where φ is an LTL formula, u is a term from LTL syntax, s is an output variable and c is a
constant.

Lemma 5.10. Syntactically stutter-tolerant formulas are stutter-tolerant w.r.t. Rsgn

Proof. We prove the Lemma by induction on the size of the formula.
The base case is trivial since output variables remain unchanged during stuttering. The

inductive case is proved as follows:

• ∨, P redO and ¬: Trivial.
• U : We can prove the correctness by induction on j, with base case j = mapi − 1.
πST , j |=t− (¬state ∨R−(φ1))U(state ∧R−(φ2) ∨ end) ⇔ πST , j |=t− (R−(φ2) ∧ state ∨
end)∨ (¬state∨R−(φ1))∧X((¬state∨R−(φ1)U(state∧R−(φ2)))

πST ,j⊭tstate⇔ πST , j |=t−

X((R−(φ1)∨¬state)U(state∧R−(φ2)∨ end)
j<|πST |−1⇔ πST , j+1 |=t− R−(φ1Uφ2) which

is mapi for the base case. The inductive case follows trivially.
• Y : The case of Y can be prove in the same way of U by expanding S instead of U .
• @P̃ : The semantics of at last evaluates R+(φ) at the first occurrence in the past of state.
The proof is the same as Y .

From Lemma 5.10, we derive a syntactical way to determine identify a relevant fragment
of stutter tolerant formulae. Since this definition is purely syntactical, it is very simple for
an algorithm to determine whether or not a formula is syntactically stutter tolerant; it is
sufficient to traverse the structure of the formula and look at the variables and operators.

From the notion of syntactically stutter tolerant formula, we provide an optimized
rewriting that is semantically equivalent to Rsgn. If the sub-formulas of φ are syntactically
stutter tolerant, we can simplify the rewriting for φ.

11:22 A. Bombardelli and S. Tonetta Vol. 22:1

Definition 5.11. We define Rθ as follows. We omit the cases that are identical to R.

Rθ−(Xφ) := end ∨XRθ−(φ) If φ is syntactically stutter-tolerant

Rθ+(Xφ) := ¬end ∧XRθ+(φ) If φ is syntactically stutter-tolerant

Rθ−(φ1Uφ2) := Rθ−(φ1)U(Y end ∨Rθ−(φ2)) If φ1, φ2 are syntactically stutter-tolerant

Rθ+(φ1Uφ2) := Rθ+(φ1)U(¬Y end ∧Rθ+(φ2)) If φ1, φ2 are syntactically stutter-tolerant

Rθsgn(u@F̃φ) := Rθsgn(u)@F̃ (Rθsgn(φ) ∧ ¬end) If φ is syntactically stutter-tolerant

where Rθ(φ) := Rθ−(φ).

Lemma 5.12. For all π, for all πST ∈ Pr−1(π), for all i < |π|:

π, i |=tsgn φ⇔ πST ,mapi |=tsgn Rθ(φ) π(i)(u) = πST (mapi)(Rθ(u))

Proof. From Lemma 5.2, we deduce that to prove the Lemma it suffices to prove that
∀0≤i<|π|π

ST ,mapi |=tsgn R(φ) ⇔ πST ,mapi |=tsgn Rθ(φ) and πST (mapi)(Rsgn(u)) =

πST (mapi)(Rθsgn(u)). To prove that, we also prove inductively that if φ is syntactically
stutter-tolerant, then ∀0≤i<|π|∀mapi−1<j<mapiπ

ST , j |=tsgn Rθsgn(φ) ⇔ πST ,mapiRsgn(φ).

We need to prove only the cases in which the sub-formulae are stutter tolerant w.r.t R∗.

• X: If end is true, then i >= |π| − 1. Therefore, with weak semantics, the formula shall be
true while with strong semantics the formula shall be false.

If end is false, then πST ,mapi |=tsgn Rθsgn(Xφ) ⇔ πST ,mapi |=tsgn XRθsgn(φ) ⇔
πST ,mapi + 1 |=tsgn Rθsgn(φ). By induction hypothesis · · · ⇔ πST ,mapi + 1 |=tsgn

R(φ) ⇔ πST ,mapi+1 |=tsgn R(φ).

• U : πST ,mapi |=t− Rθ−(φ1)U(Y end ∨ Rθ−(φ2)) ⇔ ∃k′ ≥ mapi s.t. π
ST , k′ |=t− Y end

or πST , k′ |=t− Rθ−(φ2) and ∀mapi≤j′<k′π
ST , j′ |=t− Rθ−(φ1). By induction hypothesis

∃mapk ≥ mapi s.t. π
ST ,mapk |=t− R(φ2) and ∀mapi≤mapj<mapkπ

ST ,mapj |=t− R(φ1).
We now prove the additional part of the Lemma. If φ1 or φ2 are not syntactically

stutter tolerant, then the rewriting is identical and thus, the lemma holds since φ is stutter
tolerant.

If φ1 and φ2 are syntactic stutter tolerant, πST , j |=t− Rθ−(φ1)U(Y end ∨Rθ−(φ2)) ⇔
∃k′ ≥ mapi s.t. π

ST , k′ |=t− Y end or πST , k′ |=t− Rθ−(φ2) and ∀mapi≤j′<k′π
ST , j′ |=t−

Rθ−(φ1). We observe that πST , k′ |=t− Y end ⇔ k′ > map|π|−1. Moreover, by induction
hypothesis, each j′ and each k′ can be replaced with respectively mapj and mapk s.t.
i ≤ k ≤ |π| and i ≤ j < k. Therefore, · · · ⇔ ∃k ≥ i s.t. πST ,mapk |=t− R(φ2) or k = |π|
and ∀i ≤ j < k : πST ,mapj |=t− R(φ1) ⇔ π, i |=t− φ1Uφ2.

• @F̃ : It follows from induction hypothesis and by Lemma 5.2

Definition 5.13. We define Rθ∗ as follows:

Rθ∗(φ) :=

{
Rθ−(φ) If φ is syntactically stutter-tolerant

stateR(¬state ∨Rθ−(φ)) Otherwise

Lemma 5.14. For all πST ∈ Pr−1(π) : πST ,map0 |=t Rθ(φ) ⇔ πST , 0 |=t Rθ∗(φ)

Proof. If φ is not syntactically stutter tolerant, then the proof is the same one of lemma 5.4. If

φ is syntactically stutter tolerant, then ∀map−1<j<mapiπ
ST , j |=t− Rθ−(φ) ⇔ πST ,map0 |=t−

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:23

Rθ−(φ). Since map−1 is −1, then either map0 = 0 or j gets the value 0 in the for all; thus,
proving the lemma.

Theorem 5.15. For all πST ∈ Pr−1(π) : π |=t φ⇔ πST |=t Rθ∗(φ)

Proof. The proof is identical to the proof of Theorem 5.5 using Lemma 5.12 and Lemma
5.14.

Theorem 5.5 and Theorem 5.15 show that respectively R∗ and Rθ∗ are able to translate a
local LTL property into a global property without changing its semantics in terms of traces.
Therefore, we can use the two rewritings to prove Inference 4.1.

Definition 5.16. Let M1, . . . ,Mn be n ITS and φ1, . . . , φn be LTL formulas on the
language of each Mi. We define γP as follows

γP (φ1, . . . , φn) := Rθ∗
M1

(φ1) ∧ · · · ∧ Rθ∗
Mn

(φn) ∧ ψcond

where ψcond := ψM1
cond ∧ · · · ∧ ψMn

cond

Corollary 5.17. Using γP from Definition 5.16, γS from Section 4.1, for all compatible ITS
M1, . . . ,Mn, for all local properties φ1, . . . , φn over the language of respectively M1, . . . ,Mn,
for all global properties φ: Inference 4.1 holds.

Example 5.18. Consider the formula φc2 := G(rec2 → out′2 = in2 ∧Xsend2) from Figure
1. The rewriting Rθ(φc2) is defined as the following formula.

G(¬state ∨ (run ∧ rec2︸ ︷︷ ︸
Rθ+(rec2)

→ (end ∨

Rθ(out2@F̃⊤)︷ ︸︸ ︷
out2@F̃¬end = in2)︸ ︷︷ ︸
Rθ(out′2=in2)

∧ end ∨Xsend2︸ ︷︷ ︸
Rθ−(Xsend2)

))

Finally, Rθ∗(φc2) is defined as Rθ(φc2).
The simplification optimizes the formula in various parts. Xsend2 is rewritten into a

simpler formula, in which we only need to check whether we are at the end of the local trace;
the same occurs for primed output variable (next). On the contrary, G must be rewritten
as for R because its sub-formula is not stutter-tolerant. On the other hand, the top-level
rewriting is simplified because G is syntactically stutter tolerant.

5.3. Rewriting under fairness assumption. This section defines a variation of the
previous rewriting that assumes infinite execution of local components. The rewriting is
presented as a variation of the optimized rewriting; it is meant to exploit the fairness
assumption to be more concise and efficient. The general idea is that since the local
components run infinitely often, we can consider the semantics of LTL with event-freezing
functions instead of the finite semantics considered up to now.

11:24 A. Bombardelli and S. Tonetta Vol. 22:1

Definition 5.19. We define RF as follows:

RF (v) := v for v ∈ V

RF (Pred(u1, . . . , un)) := Pred(RF (u1), . . . ,RF (un))

RF (φ ∨ ψ) := RF (φ) ∨RF (ψ)

RF (¬φ) = ¬RF (φ)

RF (Xψ) :=

{
X(RF (ψ)) if ψ is synt.st.tol.

X(runR(¬run ∨RF (ψ))) otherwise

RF (φ1Uφ2) :=

{
RF (φ1)URF (φ2) if φ1 and φ2 are synt.st.tol.

(¬run ∨RF (φ1))U(run ∧RF (φ2)) otherwise

RF (Y φ) := Y (¬runS(run ∧RF (φ)))

RF (φ1Sφ2) :=

{
RF (φ1)SRF (φ2) if φ1 and φ2 are synt.st.tol.

(¬run ∨RF (φ1))S(run ∧RF (φ2)) otherwise

RF (ite(ψ, u1, u2)) := ite(RF (ψ),RF (u1),RF (u2))

RF (u@F̃φ) :=

{
RF (u)@F̃RF (φ) if ψ is synt.st.tol.

RF (u)@F̃ (run ∧RF (φ)) otherwise

RF (u@P̃φ) := RF (u)@P̃ (run ∧RF (φ))

Moreover, we define RF∗
as

RF∗
(φ) :=

{
RF (φ) If φ is syntactically stutter-tolerant

runR(¬run ∨RF (φ)) Otherwise

RF∗
simplifies Rθ∗ in various ways. It does not need to distinguish between input and

output variables, it does not distinguish between weak/strong semantics and it does not
distinguish between state and run. Intuitively, these distinctions make sense only with finite
semantics; since the rewriting assumes infinite local executions, these technicalities become
superfluous.

Theorem 5.20. Let π be an infinite trace, for all πST ∈ Pr−1(π) : π |= φ⇔ πST |= RF∗
(φ)

Proof. (Sketch) Since π is infinite, end is always false, state⇔ run. We can substitute end
with ⊥ and state with run in Rθ and we obtain this rewriting.

Example 5.21. Consider the formula φc2 := G(rec2 → out′2 = in2 ∧Xsend2) from Figure
1. The rewriting RF (φc2) is defined as the following formula.

G(¬run ∨ (rec2︸︷︷︸
RF (rec2)

→ (

RF (out′2)︷︸︸︷
out′2 = in2)︸ ︷︷ ︸
RF (out′2=in2)

∧ Xsend2︸ ︷︷ ︸
RF (Xsend2)

))

Finally, RF∗
(φc2) is defined as RF (φc2).

By assuming infinite executions of local traces it is possible to drastically simplify the
rewriting. Next outputs are left unchanged because they are stutter tolerant and with infinite
execution end is not needed. Input variables are also transparent to the rewriting because

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:25

the infinite semantics do not distinguish between input and output variables. As before, G
must be rewritten because its sub-formula is not stutter-tolerant; however, in this case, the
rewriting can use run instead of state because the two expressions are equivalent with infinite
semantics. Finally, as before, the top-level rewriting is simplified because G is syntactically
stutter tolerant.

6. Experimental evaluation

We implemented the compositional techniques proposed in this paper inside the contract-
based design tool OCRA [CDT13]. Our extension covers the contract refinement check, in
which a contract (defined as a couple ⟨A,G⟩ of LTL formulae) is considered correct if its
sub-component contracts refine it. For simplicity, we consider contracts without assumptions
i.e. in which the assumption is ⊤; in this scenario, the refinement of contracts is given
by the compositional reasoning described in this paper. For a detailed description of the
assume-guarantee contract proof system employed in the tool refer to [CT15b].

The objective of this experimental evaluation is to do both a quantitative and a
qualitative evaluation of our compositional approach differentiating possibly finite and
infinite semantics. Qualitatively, we compare the verification results to assess how the
finiteness impacts on the result, observing also the required scheduling assumptions for
possibly finite systems. Quantitatively, we analyse the overhead of reasoning over a mix of
finite and infinite executions to assess whether or not our rewriting scales on real models.
Due to the absence of equally expressible formalism to define asynchronous composition, our
comparison with related work is limited to another rewriting suited only for local infinite
systems with event-based asynchronous composition[BBC+09].

Although we defined compositional reasoning with truncated semantics, in our experi-
ments we reason about global infinite executions and possibly finite local executions. The
experiments [BT26] were run in parallel on a cluster with nodes with Intel Xeon CPU 6226R
running at 2.9GHz with 32CPU, 12GB. The timeout for each run was two hours and the
memory cap was set to 2GB.

In this section, we denote the composition based on Rθ∗ as TrR(Truncated Rewriting);

we denote the composition based on Rθ∗ with additional constraints to ensure infinite local
executions as TrR+F (Truncated Rewriting + Fairness); we denote the composition based

on RF∗
assuming local infinite execution as TrRuFA (Truncated Rewriting under Fairness

Assumption).

6.1. Benchmarks. We have considered benchmarks of various kinds:

(1) Simple asynchronous models from OCRA comprehending the example depicted in Figure
1.

(2) Pattern formula compositions from [BT22] experimental evaluation
(3) Contracts from the experimental evaluation of [CCG+23] on AUTOSAR models adapted

for truncated semantics.

11:26 A. Bombardelli and S. Tonetta Vol. 22:1

(a) Comparison between TrR+F and TrRuFA
over valid instances.

(b) Comparison between TrR and TrRuFA over
valid instances.

(c) Comparison between TrR and TrRuFA over
”different” results.

(d) Comparison between TrR and TrRuFA over
all the instances.

Figure 6. Scatter plots comparing TrR,TrR+F and TrRuFA

6.1.1. Simple asynchronous models. We considered two variations of the example model
depicted in Figure 1: one version considers all three components with both the possible
outcome of failure and success. The second version is composed only of components c1 and
c2 and the global property states that eventually the message is sent.

The second model we are considering is a simple representation of a Wheel Brake System
with two Braking System Control Units (BSCU) connected to two input braking pedals, a
Selection Switch and an actual hydraulic component that performs the actual brake. The

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:27

Figure 7. Comparison between TrRuFA and event-based rewriting of
[BBC+09]

Model Algorithm Result Time (s)

Response boolean sequence with size=3 TrR Invalid 0.74
Response boolean sequence with size=3 TrRuFA Valid 0.79
Response boolean sequence with size=3 TrR+F Valid 0.48
Simplified Example (no component c3) TrR Invalid 1.15
Simplified Example (no component c3) TrRuFA Valid 0.87
Simplified Example (no component c3) TrR+F Valid 2.82
Example (Figure 1) TrR Valid 20.13
Example (Figure 1) TrR+F Valid 5.3
Example (Figure 1) TrRuFA Valid 1.37
Response event sequence with size=12 TrR Invalid 14.61
Response event sequence with size=12 TrRuFA Valid 0.8
Response event sequence with size=12 TrR+F Valid 3.74
Universality sequence with size=17 TrR Invalid 6.63
Universality sequence with size=17 TrRuFA Valid 2.81
Universality sequence with size=17 TrR+F Valid 11.17
”Brake when AEB status is active” bugged TrR Invalid 48.3
”Brake when AEB status is active” bugged TrRuFA Valid 24.63
”Brake when AEB status is active” bugged TrR+F Valid 74.72
”Brake when AEB status is active” fixed TrR Valid 136.34
”Brake when AEB status is active” fixed TrRuFA Valid 17.6
”Brake when AEB status is active” fixed TrR+F Valid 62.83

Table 1. Subset of quantitative and qualitative results of the experimental
evaluation.

11:28 A. Bombardelli and S. Tonetta Vol. 22:1

Algorithm N. ALL N. VAL N. INV N. UNK < 1 sec < 60 sec < 600 sec

ALL 624 476 88 60 82 448 535
TrR 208 91 86 31 26 133 167
TrR+F 208 182 1 25 21 126 168
TrRUFA 208 203 1 4 35 189 200

Table 2. Summary result for algorithms

top-level property states that if one of the two pedals is pressed eventually the hydraulic
component will brake.

6.1.2. Pattern models. We took from [BT22] some benchmarks based on Dwyer LTL patterns
[DAC70]. The considered LTL patterns are the following: response, precedence chain and
universality patterns. The models compose the pattern formulas in two ways: as a sequence
of n components linked in a bus and as a set of components that tries to write on the
output port. These patterns are parametrized on the number of components involved in the
composition.

6.1.3. EVA AUTOSAR contracts. We took the experimental evaluation from the tool
EVA[CCG+23] and we adapted it for our compositional reasoning. The models are composed
of various components for which the scheduling is of two types: event-based and cyclic.
Event-based scheduling forces the execution of a component when some of its input variables
change while cyclic scheduling forces the execution of the component every n time units.

In addition to these models, we also considered a variation of a subset of instances
(described in Section 1.1.2) and we relaxed the scheduling constraints allowing some com-
ponents to become unresponsive at some point to the original constraints. We forced an
event-based scheduled component (Brake Actuator) to be scheduled when its input changes
but only until it ends; moreover, we forced a cyclic scheduled component (Brake Watchdog)
to run every n times units until it ends. Finally, assuming that one of the two components
runs infinitely often (i.e. does not become unresponsive), we check if the composition still
holds.

6.2. Experimental evaluation results. Figure 6 provide an overall comparison between
TrR, TrR+F and TrRuFA in terms of results and execution time. In these plots, the colour
determines the validity results: blue aggregates all the results without distinction between
valid and invalid; green considers valid instances of both techniques (if the other algorithm
returns valid, timeout is optimistically believed to be true); yellow consider instances in
which the two techniques had different results.

Overall, we checked 624 instances (208 for each rewriting); 406 of these instances were
proven valid, 88 were proven invalid and 60 instances timed out. The general statistics can
be found in Table 2.

Table 1 shows some relevant instances of the experimental evaluation highlighting their
execution time and their validity results.

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:29

Qualitative results. As we expected, there are differences in validity results between TrR
and TrRuFA. The pattern models cannot guarantee the validity of the composition with the
weak semantics without additional constraints over the composition. Intuitively, it suffices
that a single component is not scheduled to violate bounded response properties.

Similarly, we compared the validity results of the 3 rewritings on a simplified version of
the example of Section 1.1.1; this variation of the model contains only components c1 and c2.
The simplified version was proved valid using TrRuFA and TrR+F while a counterexample
was found using TrR. The simplified version is found invalid when c1 is scheduled only a
finite amount of times failing to deliver the message to component c2. On the other hand,
when we correct the model by adding the component c3, the composition is proved valid in
all the 3 cases.

For what regards the EVA benchmarks, TrR and TrRuFA gave the same validity results.
That occurred because the scheduling constraints were quite strong; in particular, the cyclic
constraints implicitly forced components, such as the watchdog, to run infinitely often. The
event-based scheduled component could have a finite execution but only if their input did
not change from some point on. Differently, updating the constraints by removing these
implicit infinite executions makes the property invalid using TrR. To fix these invalid results,
we updated the system assuming that at least one of the two components runs infinitely
often and we relaxed the global property increasing the timed bound for the brake to occur
from 2 time units to 3. Finally, the corrected model was proved in all the 3 cases.

Quantitative results. We provided a comparison between Rθ and RF in term of impact of
the transformation on the verification time. Since RF assumes that each local components
is executed infinitely often, we used the rewriting Rθ equipped with fairness assumption
(TrR+F). Figure 6a shows the comparison between TrR+F and TrRuFA. In this case,
TrRuFA is more efficient than TrR+F. This is not surprising because the generated formula
assuming infinite local execution can be significantly smaller than the general one. In general,
we see that, regardless of the result, TrRuFA can prove the property faster. We think that
having to check all the possible combinations of finite/infinite local execution provides a
significant overhead in the verification.

In figure 7, we compared TrRuFA with another rewriting for the composition of temporal
properties from [BBC+09]. The comparison has been done over a subset of the pattern
models. The rewriting of [BBC+09] is in principle similar to TrRuFA; it assumes infinite
executions of local component but, contrary to our approaches, in [BBC+09] the asynchronous
composition is supported only considering shared synchronization events3. Due to the
expressive limitations of the other approach, we applied the evaluation over a smaller set of
instances. It should be noted that the technique of [BBC+09] already introduces fairness
assumptions of the infinite execution of local components; therefore, we don’t need to
manipulate/complicate that rewriting in this evaluation. It is clear from the figure that
TrRuFA outperforms this other rewriting.

3These events are basically Boolean variables shared between two components. When one of these variable
becomes true, both the components run. Although it is not detailed in the paper, we do support these events
natively by adding additional scheduling constraints in α

11:30 A. Bombardelli and S. Tonetta Vol. 22:1

7. Conclusions

In this paper, we considered the problem of compositional reasoning for asynchronous
systems with LTL properties over input and output variables in which local components
are not assumed to run infinitely often. We introduced a semantics based on the truncated
semantics of Eisner and Fisman for LTL to reason over finite executions of local components.
We proposed a new rewriting of LTL formulas that allows for checking compositional rules
with temporal satisfiability solvers. We then provided an optimized version of such rewriting.

In the future, we will consider various directions for extending the framework including
real-time and hybrid specifications, optimizations based on the scheduling of components
and other communication mechanisms such as buffered communication. Moreover, we will
generalise our compositional reasoning for assume/guarantee contracts based on [CT15b],
for which we hypothesise that assumptions must be treated with strong semantics.

References

[BBC+09] Nikola Benes, Lubos Brim, Ivana Cerná, Jiŕı Sochor, Pavĺına Vareková, and Barbora Buhnova.
Partial Order Reduction for State/Event LTL. In IFM, 2009.

[BCB+21] Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez. A
Temporal Logic for Asynchronous Hyperproperties. In CAV (1), volume 12759 of Lecture Notes
in Computer Science, pages 694–717. Springer, 2021.

[BCGT25] Alberto Bombardelli, Alessandro Cimatti, Alberto Griggio, and Stefano Tonetta. Another Look at
LTL Modulo Theory over Finite and Infinite Traces, pages 419–443. Springer Nature Switzerland,
Cham, 2025. doi:10.1007/978-3-031-75783-9_17.

[BCL+10] Lei Bu, Alessandro Cimatti, Xuandong Li, Sergio Mover, and Stefano Tonetta. Model Checking
of Hybrid Systems Using Shallow Synchronization. In John Hatcliff and Elena Zucca, editors,
Formal Techniques for Distributed Systems, pages 155–169, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-13464-7_13.

[BCMT14] Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, and Stefano Tonetta. Formal safety
assessment via contract-based design. In Franck Cassez and Jean-François Raskin, editors, Auto-
mated Technology for Verification and Analysis, pages 81–97, Cham, 2014. Springer International
Publishing.

[BCTZ23] Alberto Bombardelli, Alessandro Cimatti, Stefano Tonetta, and Marco Zamboni. Symbolic Model
Checking Of Relative Safety LTL Properties. In IFM 2023: 18th International Conference, IFM
2023, Leiden, The Netherlands, November 13-15, 2023, Proceedings, pages 302–320, Berlin,
Heidelberg, 2023. Springer-Verlag. doi:10.1007/978-3-031-47705-8_16.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability Modulo
Theories. In Handbook of Satisfiability, pages 825–885. IOS Press, January 2009. doi:10.3233/
978-1-58603-929-5-825.

[BT22] Alberto Bombardelli and Stefano Tonetta. Asynchronous Composition of Local Interface LTL
Properties. In NFM, pages 508–526, 2022.

[BT26] Alberto Bombardelli and Stefano Tonetta. Asynchronous Composition of LTL Properties over
Infinite and Finite Traces - Experimental Evaluation, 2026. doi:10.5281/zenodo.18171622.

[CCD+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuXmv Symbolic Model
Checker. volume 8559, pages 334–342, 07 2014. doi:10.1007/978-3-319-08867-9_22.

[CCG+23] Alessandro Cimatti, Luca Cristoforetti, Alberto Griggio, Stefano Tonetta, Sara Corfini, Marco
Di Natale, and Florian Barrau. Eva: a tool for the compositional verification of autosar models.
In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 3–10, Cham, 2023. Springer Nature Switzerland.

[CDT13] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. OCRA: A tool for checking the
refinement of temporal contracts. pages 702–705, 11 2013. doi:10.1109/ASE.2013.6693137.

https://doi.org/10.1007/978-3-031-75783-9_17
https://doi.org/10.1007/978-3-642-13464-7_13
https://doi.org/10.1007/978-3-031-47705-8_16
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.5281/zenodo.18171622
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/ASE.2013.6693137

Vol. 22:1 ASYNC COMPOSITION OF LTL PROPERTIES OVER INF AND FINITE TRACES 11:31

[CGH94] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another Look at LTL Model
Checking. Formal Methods in System Design, 10:47–71, 1994.

[CGM+19] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, and Stefano Tonetta.
SMT-based satisfiability of first-order LTL with event freezing functions and metric operators.
Information and Computation, 272:104502, 12 2019. doi:10.1016/j.ic.2019.104502.

[CMT11] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. HyDI: A Language for Symbolic Hybrid
Systems with Discrete Interaction. pages 275–278, 08 2011.

[CT15a] Alessandro Cimatti and Stefano Tonetta. Contracts-refinement proof system for component-
based embedded systems. Science of Computer Programming, 97:333–348, 2015. Object-Oriented
Programming and Systems (OOPS 2010) Modeling and Analysis of Compositional Software (pa-
pers from EUROMICRO SEAA 12). URL: https://www.sciencedirect.com/science/article/
pii/S0167642314002901, doi:10.1016/j.scico.2014.06.011.

[CT15b] Alessandro Cimatti and Stefano Tonetta. Contracts-refinement proof system for component-
based embedded systems. Science of Computer Programming, 97:333–348, 2015. URL: https:
//www.sciencedirect.com/science/article/pii/S0167642314002901, doi:10.1016/j.scico.
2014.06.011.

[DAC70] Matthew Dwyer, George Avrunin, and James Corbett. Patterns in Property Specifications for
Finite-State Verification. Proceedings - International Conference on Software Engineering, 02
1970. doi:10.1145/302405.302672.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT FSE, pages
109–120. ACM, 2001.

[DGV13] Giuseppe De Giacomo and Moshe Y. Vardi. Linear Temporal Logic and Linear Dynamic Logic
on Finite Traces. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, IJCAI ’13. AAAI Press, 2013.

[EFH+03a] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and David Van
Campenhout. Reasoning with Temporal Logic on Truncated Paths. In International Conference
on Computer Aided Verification, 2003. URL: https://api.semanticscholar.org/CorpusID:
9153840.

[EFH+03b] Cindy Eisner, Dana Fisman, John Havlicek, Anthony McIsaac, and David Van Campenhout. The
Definition of a Temporal Clock Operator. In ICALP, volume 2719 of Lecture Notes in Computer
Science, pages 857–870. Springer, 2003.

[FK18] Dana Fisman and Hillel Kugler. Temporal Reasoning on Incomplete Paths: 8th International
Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part II, pages
28–52. 11 2018. doi:10.1007/978-3-030-03421-4_3.

[JT96] B. Jonsson and Yih-Kuen Tsay. Assumption/Guarantee Specifications in Linear-Time Temporal
Logic. Theor. Comput. Sci., 167:47–72, 1996.

[KV01] Orna Kupferman and Moshe Y Vardi. Model checking of safety properties. Formal Methods in
System Design, 19(3):291–314, 2001.

[Lam94] Leslie Lamport. Temporal logic of actions. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16:872–923, 05 1994. doi:10.1145/177492.177726.

[Lam97] Leslie Lamport. The Operators of TLA. 06 1997.
[Lat03] Timo Latvala. Efficient Model Checking of Safety Properties. In SPIN, volume 2648 of Lecture

Notes in Computer Science, pages 74–88. Springer, 2003.
[LBA+22] Cong Liu, Junaid Babar, Isaac Amundson, Karl Hoech, Darren D. Cofer, and Eric Mercer.

Assume-Guarantee Reasoning with Scheduled Components. In NASA Formal Methods, 2022.
URL: https://api.semanticscholar.org/CorpusID:248991390.

[LPZ85] O. Lichtenstein, A. Pnueli, and L.D. Zuck. The Glory of the Past. In Logics of Programs, pages
196–218, 1985.

[McM99] Kenneth L. McMillan. Circular Compositional Reasoning about Liveness. In CHARME, volume
1703 of Lecture Notes in Computer Science, pages 342–345. Springer, 1999.

[MP92a] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems - specification.
Springer, 1992.

[MP92b] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems - specifica-
tion. Springer, 1992.

https://doi.org/10.1016/j.ic.2019.104502
https://www.sciencedirect.com/science/article/pii/S0167642314002901
https://www.sciencedirect.com/science/article/pii/S0167642314002901
https://doi.org/10.1016/j.scico.2014.06.011
https://www.sciencedirect.com/science/article/pii/S0167642314002901
https://www.sciencedirect.com/science/article/pii/S0167642314002901
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1145/302405.302672
https://api.semanticscholar.org/CorpusID:9153840
https://api.semanticscholar.org/CorpusID:9153840
https://doi.org/10.1007/978-3-030-03421-4_3
https://doi.org/10.1145/177492.177726
https://api.semanticscholar.org/CorpusID:248991390

11:32 A. Bombardelli and S. Tonetta Vol. 22:1

[PDH99] Corina S. Pasareanu, Matthew B. Dwyer, and Michael Huth. Assume-Guarantee Model Checking
of Software: A Comparative Case Study. In SPIN, volume 1680 of Lecture Notes in Computer
Science, pages 168–183. Springer, 1999.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. pages 46–57, 09 1977. doi:10.1109/SFCS.1977.
32.

[RBH+01] Willem-Paul Roever, Frank Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech, Mannes
Poel, and Job Zwiers. Concurrency Verification: Introduction to Compositional and Noncomposi-
tional Methods. 01 2001.

[RR09] Ondrej Rysavy and Jaroslav Rab. A formal model of composing components: The TLA+
approach. Innovations in Systems and Software Engineering, 5:139–148, 06 2009. doi:10.1007/
s11334-009-0089-0.

[Sis85] A. P. Sistla. On characterization of safety and liveness properties in temporal logic. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Distributed Computing, PODC ’85, pages
39–48, New York, NY, USA, 1985. Association for Computing Machinery. doi:10.1145/323596.
323600.

[Ton17] Stefano Tonetta. Linear-time Temporal Logic with Event Freezing Functions. In GandALF,
volume 256 of EPTCS, pages 195–209, 2017.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/s11334-009-0089-0
https://doi.org/10.1007/s11334-009-0089-0
https://doi.org/10.1145/323596.323600
https://doi.org/10.1145/323596.323600

	1. Introduction
	1.1. Motivating examples
	1.2. Overall contribution
	1.3. Outline

	2. Related works
	3. First Order Past LTL with weak truncated semantics
	3.1. Syntax
	3.2. Semantics
	3.3. Verification

	4. Compositional reasoning
	4.1. Formal problem
	4.2. Interface Transition Systems
	4.3. Asynchronous composition of ITS

	5. Rewriting
	5.1. Trucanted LTL with Event Freezing Function Compositional Rewriting
	5.2. Optimized LTL compositional rewriting
	5.3. Rewriting under fairness assumption

	6. Experimental evaluation
	6.1. Benchmarks
	6.2. Experimental evaluation results

	7. Conclusions
	References

