
Logical Methods in Computer Science
Vol. 12(3:8)2016, pp. 1–59
www.lmcs-online.org

Submitted Oct. 30, 2015
Published Sep. 6, 2016

BUILD YOUR OWN CLARITHMETIC I: SETUP AND

COMPLETENESS

GIORGI JAPARIDZE

Department of Computing Sciences, Villanova University, 800 Lancaster Avenue, Villanova, PA
19085, USA
URL: http://www.csc.villanova.edu/∼japaridz/

e-mail address: giorgi.japaridze@villanova.edu

Abstract. Clarithmetics are number theories based on computability logic. Formulas of
these theories represent interactive computational problems, and their “truth” is under-
stood as existence of an algorithmic solution. Various complexity constraints on such
solutions induce various versions of clarithmetic. The present paper introduces a param-
eterized/schematic version CLA11

P1,P2,P3

P4
. By tuning the three parameters P1, P2, P3 in

an essentially mechanical manner, one automatically obtains sound and complete theories
with respect to a wide range of target tricomplexity classes, i.e., combinations of time (set
by P3), space (set by P2) and so called amplitude (set by P1) complexities. Sound in
the sense that every theorem T of the system represents an interactive number-theoretic
computational problem with a solution from the given tricomplexity class and, further-
more, such a solution can be automatically extracted from a proof of T . And complete
in the sense that every interactive number-theoretic problem with a solution from the
given tricomplexity class is represented by some theorem of the system. Furthermore,
through tuning the 4th parameter P4, at the cost of sacrificing recursive axiomatizability
but not simplicity or elegance, the above extensional completeness can be strengthened to
intensional completeness, according to which every formula representing a problem with a
solution from the given tricomplexity class is a theorem of the system. This article is pub-
lished in two parts. The present Part I introduces the system and proves its completeness,
while the forthcoming Part II is devoted to proving soundness.

Contents

1. Introduction 3
1.1. Computability logic 3
1.2. Clarithmetic 4
1.3. The present system 5
1.4. Related work 6

2012 ACM CCS: [Theory of computation]: Computational complexity and cryptography—
Complexity theory and logic; Logic.

2010 Mathematics Subject Classification: primary: 03F50; secondary: 03D75; 03D15; 03D20; 68Q10;
68T27; 68T30.

Key words and phrases: Computability logic; Interactive computation; Implicit computational complexity;
Game semantics; Peano arithmetic; Bounded arithmetic.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(3:8)2016

c© G. Japaridze
CC© Creative Commons

http://creativecommons.org/about/licenses

2 G. JAPARIDZE

1.5. Differences with bounded arithmetic 7
1.6. Motivations 8
1.7. How to read this paper 11
2. The system CLA11 12
2.1. Language 12
2.2. Peano arithmetic 12
2.3. Bounds 15
2.4. Axioms and rules 15
2.5. Provability 16
2.6. Regularity 17
2.7. Main result 19
3. Bootstrapping CLA11RA 19
3.1. How we reason in clarithmetic 19
3.2. Reasonable Induction 21
3.3. Reasonable Comprehension 22
3.4. Addition 23
3.5. Trichotomy 24
3.6. Subtraction 25
3.7. Bit replacement 26
3.8. Multiplication 26
4. Some instances of CLA11 29
5. Extensional completeness 32
5.1. X, X and (a, s, t) 32
5.2. Preliminary insights 32
5.3. The sentence W 33
5.4. The overline notation 35
5.5. Configurations 35
5.6. The white circle and black circle notations 37
5.7. Titles 39
5.8. Further notation 40
5.9. Scenes 40
5.10. The traceability lemma 41
5.11. Junior lemmas 45
5.12. Senior lemmas 48
5.13. Main lemma 52
5.14. Conclusive steps 54
6. Intensional completeness 54
6.1. The intensional completeness of CLA11RA! 54

6.2. The intensional strength of CLA11RA 54
References 55
Index 58

BUILD YOUR OWN CLARITHMETIC I 3

1. Introduction

1.1. Computability logic. Computability logic (CoL for short), together with its accom-
panying proof theory termed cirquent calculus, has evolved in recent years in a long series
of publications [2]-[3], [23]-[46], [52], [55], [58]-[62]. It is a mathematical platform and long-
term program for rebuilding logic as a formal theory of computability, as opposed to the
more traditional role of logic as a formal theory of truth. Under CoL’s approach, logical
operators stand for operations on computational problems, formulas represent such prob-
lems, and their “truth” is seen as algorithmic solvability. In turn, computational problems
— understood in their most general, interactive sense — are defined as games played by
a machine against its environment, with “algorithmic solvability” meaning existence of a
machine that wins the game against any possible behavior of the environment. With this
semantics, CoL provides a systematic answer to the question “what can be computed?”, just
like classical logic is a systematic tool for telling what is true. Furthermore, as it happens,
in positive cases “what can be computed” always allows itself to be replaced by “how can be
computed”, which makes CoL of potential interest in not only theoretical computer science,
but many applied areas as well, including interactive knowledge base systems, resource
oriented systems for planning and action, or declarative programming languages.

Both syntactically and semantically, CoL is a conservative extension of classical first
order logic. Classical sentences and predicates are seen in it as special, simplest cases of
computational problems — specifically, as games with no moves, automatically won by the
machine when true and lost when false. Such games are termed elementary. All operators
of classical logic remain present in the language of CoL, with their semantics generalized
from elementary games to all games. Namely: ¬A is A with the roles of the two players
interchanged. A ∧B is a game where both A and B are played in parallel, and where the
machine wins if it wins in both components. A∨B is similar, with the difference that here
winning in just one component is sufficient. A→B is understood as ¬A∨B, playing which,
intuitively, means reducing B to A. ∀xA(x) is a game winning which means playing A(x)
in a uniform, x-independent way so that a win for all possible values of x is guaranteed.
∃xA(x) is similar, only here existence of just one lucky value is sufficient. These operators
are conservative generalizations of their classical counterparts in the sense that the meanings
of the former happen to coincide with the meanings of the latter when the operators are
restricted to elementary games only.

In addition to ¬, ∧ , ∨ , → ,∀,∃, there is a host of “non-classical” connectives and quanti-
fiers. Out of those, the present paper only deals with the so called choice group of operators:
⊓ , ⊔ ,⊓,⊔, referred to as choice (“constructive”) conjunction, disjunction, universal quanti-
fier and existential quantifier, respectively. A ⊓B is a game where the environment chooses
between A and B, after which the play continues according to the rules of the chosen com-
ponent. A ⊔B is similar, only here the choice is made by the machine. In ⊓xA(x), the
environment chooses a value n for x, and the play continues as A(n). In the dual ⊔xA(x),
such a choice is made by the machine.

The language of CoL allows us to specify an infinite variety of meaningful computational
problems and relations between them in a systematic way. Here are some examples, where
f is a unary function, p, q are unary predicates, and A ↔ B abbreviates (A→B) ∧ (B→A).
⊓x

(

p(x) ⊔¬p(x)
)

expresses the problem of deciding p. Indeed, this is a game where, at
the beginning, the environment selects a value n for x. In traditional terms, this event can
be viewed as providing n as an “input”. The game then continues as p(n) ⊔¬p(n) and, in

4 G. JAPARIDZE

order to win, the machine has to choose the true ⊔ -disjunct. So, p is decidable if and only
if the machine has an algorithmic winning strategy in ⊓x

(

p(x) ⊔¬p(x)
)

. Quite similarly,

⊓x⊔y
(

y = f(x)
)

can be seen to be the problem of computing f . Next, ⊓x⊔y
(

p(x) ↔ q(y)
)

is the problem of many-one reducing p to q. If we want to specifically say that f is a such
a reduction, then ⊓x⊔y

(

y = f(x)∧ (p(x) ↔ q(y))
)

can be written. If we additionally want

to indicate that here f is in fact one-one reduction, we can write ⊓x⊔y
(

y = f(x)∧ (p(x) ↔

q(y)) ∧ ∀z(y = f(z)→ z = x)
)

. Bounded Turing reduction of p to q takes the form

⊓y1
(

q(y1) ⊔¬q(y1)
)

∧ . . . ∧⊓yn
(

q(yn) ⊔¬q(yn)
)

→⊓x
(

p(x) ⊔¬p(x)
)

.

If, instead, we write

⊓y1 . . .⊓yn
(

(

q(y1) ⊔¬q(y1)
)

∧ . . . ∧
(

q(yn) ⊔¬q(yn)
)

)

→⊓x
(

p(x) ⊔¬p(x)
)

,

then bounded weak truth-table reduction is generated. And so on. In all such cases,
imposing various complexity constraints on the allowable computations, as will be done in
the present paper, yields the corresponding complexity-theoretic counterpart of the concept.
For instance, if computations are required to run in polynomial time, then ⊓x⊔y

(

p(x) ↔

q(y)
)

becomes polynomial time many-one reduction, more commonly referred to as simply
“polynomial time reduction”.

Lorenzen’s [51], Hintikka’s [21] and Blass’s [8, 9] dialogue/game semantics should be
named as the most direct precursors of CoL. The presence of close connections with intu-
itionistic logic [31] and Girard’s [16] linear logic at the level of syntax and overall philosophy
is also a fact. A rather comprehensive and readable, tutorial-style introduction to CoL can
be found in the first 10 sections of [34], which is the most recommended reading for a
first acquaintance with the subject. A more compact yet self-contained introduction to the
fragment of CoL relevant to the present paper is given in [45].

1.2. Clarithmetic. Steps towards claiming specific application areas for CoL have already
been made in the direction of basing applied theories — namely, Peano arithmetic PA —
on CoL instead of the traditional, well established and little challenged alternatives such as
classical or intuitionistic logics. Formal arithmetical systems based on CoL have been bap-
tized in [38] as clarithmetics. By now ten clarithmetical theories, named CLA1 through
CLA10, have been introduced and studied [35, 38, 44, 46]. These theories are notably
simple: most of them happen to be conservative extensions of PA whose only non-classical
axiom is the sentence ⊓x⊔y(y = x ′) asserting computability of the successor function ′,
and whose only non-logical rule of inference is “constructive induction”, the particular form
of which varies from system to system. The diversity of such theories is typically related
to different complexity conditions imposed on the underlying concept of interactive com-
putability. For instance, CLA4 soundly and completely captures the set of polynomial
time solvable interactive number-theoretic problems, CLA5 does the same for polynomial
space, CLA6 for elementary recursive time (=space), CLA7 for primitive recursive time
(=space), and CLA8 for PA-provably recursive time (=space).

BUILD YOUR OWN CLARITHMETIC I 5

1.3. The present system. The present paper introduces a new system of clarithmetic,
named CLA11. Unlike its predecessors, this one is a scheme of clarithmetical theories

rather than a particular theory. As such, it can be written as CLA11P1,P2,P3

P4
where P1,

P2, P3, P4 are “tunable” parameters, with different specific settings of those parameters
defining different particular theories of clarithmetic — different instances of CLA11, as
we shall refer to them. Technically, P1, P2, P3 are sets of terms or pseudoterms used as
bounds for certain quantifiers in certain postulates, and P4 is a set of formulas that act
as supplementary axioms. The latter is typically empty yet “expandable”. Intuitively, the
value of P1 determines the so called amplitude complexity of the class of problems captured
by the theory, i.e., the complexity measure concerned with the sizes of the machine’s moves
relative to the sizes of the environment’s moves. P2 determines the space complexity of
that class. P3 determines the time complexity of that class. And P4 governs the intensional
strength of the theory. Here intensional strength is about what formulas are provable in the
theory. This is as opposed to extensional strength, which is about what number-theoretic
problems are representable in the theory, where a problem A is said to be representable iff
there is a provable formula F that expresses A under the standard interpretation (model)
of arithmetic.

Where P1, P2, P3 are sets of terms or pseudoterms identified with the functions that they
represent in the standard model of arithmetic, we say that a computational problem has a
(P1, P2, P3) tricomplexity solution if it has a solution (machine’s algorithmic winning strat-
egy) that runs in p1 amplitude, p2 space and p3 time for some triple (p1, p2, p3) ∈ P1×P2×P3.

The main result of this paper is that, as long as the parameters of CLA11P1,P2,P3

P4
satisfy

certain natural “regularity” conditions, the theory is sound and complete with respect to the
set of problems that have (P1, P2, P3) tricomplexity solutions. Sound in the sense that every

theorem T of CLA11P1,P2,P3

P4
represents a number-theoretic computational problem with a

(P1, P2, P3) tricomplexity solution and, furthermore, such a solution can be mechanically ex-
tracted from a proof of T . And complete in the sense that every number-theoretic problem

with a (P1, P2, P3) tricomplexity solution is represented by some theorem of CLA11P1,P2,P3

P4
.

Furthermore, as long as P4 contains or entails all true sentences of PA, the above extensional
completeness automatically strengthens to intensional completeness, according to which ev-
ery formula expressing a problem with a (P1, P2, P3) tricomplexity solution is a theorem of
the theory. Note that intensional completeness implies extensional completeness but not
vice versa, because the same problem may be expressed by many different formulas, some
of which may be provable and some not. Gödel’s celebrated theorem is about intensional
rather than extensional incompleteness. In fact, extensional completeness is not at all inter-
esting in the context of classical-logic-based theories such as PA: in such theories, unlike
CoL-based theories, it is trivially achieved, because the provable formula ⊤ represents every
true sentence. Gödel’s incompleteness theorem retains its validity for clarithmetical theo-
ries, meaning that intensional completeness of such theories can only be achieved at the
expense of sacrificing recursive axiomatizability.

The above-mentioned “regularity” conditions on the parameters of CLA11 are rather
simple and easy-to-satisfy. As a result, by just “mechanically” varying those parameters,
we can generate a great variety of theories for one or another tricomplexity class, the
main constraint being that the space-complexity component of the triple should be at least
logarithmic, the amplitude-complexity component at least linear, and the time-complexity
component at least polynomial. Some natural examples of such tricomplexities are:

6 G. JAPARIDZE

Polynomial amplitude + logarithmic space + polynomial time
Linear amplitude + O(logi) space (for any particular i ∈ {1, 2, 3, . . .}) +

polynomial time
Linear amplitude + polylogarithmic space + polynomial time
Linear amplitude + linear space + polynomial time
Polynomial amplitude + polynomial space + polynomial time
Polynomial amplitude + polynomial space + quasipolynomial time
Polynomial amplitude + polynomial space + exponential time
Quasilinear amplitude + quasilinear space + polynomial time
Elementary amplitude + elementary space + elementary time
Primitive recursive amplitude + primitive recursive space + primitive

recursive time
You name it. . .

1.4. Related work. It has been long noticed that many complexity classes can be charac-
terized by certain versions of arithmetic. Of those, systems of bounded arithmetic should be
named as the closest predecessors of our systems of clarithmetic. In fact, most clarithmeti-
cal systems, including CLA11, can be classified as bounded arithmetics because, as with
the latter, they control computational complexity by explicit resource bounds attached to
quantifiers, usually in induction or similar postulates.1 The best known alternative line of
research [4, 6, 7, 22, 49, 57], primarily developed by recursion theorists, controls computa-
tional complexity via type information instead. On the logical side, one should also mention
“bounded linear logic” [17] and “light linear logic” [18] of Girard et al. Here we will not
attempt any comparison with these alternative approaches because of big differences in the
defining frameworks.

The story of bounded arithmetic starts with Parikh’s 1971 work [53], where the first
system I∆0 of bounded arithmetic was introduced. Paris and Wilkie, in [54] and a series of
other papers, advanced the study of I∆0 and of how it relates to complexity theory. Interest
towards the area dramatically intensified after the appearance of Buss’ 1986 influential work
[11], where systems of bounded arithmetic for polynomial hierarchy, polynomial space and
exponential time were introduced. Clote and Takeuti [14], Cook and Nguyen [15] and others
introduced a host of theories related to other complexity classes. See [13, 15, 20, 48] for
comprehensive surveys and discussions of this line of research. The treatment of bounded
arithmetic found in [15], which uses the two-sorted vocabulary of Zambella [63], is among
the newest. Just like the present paper, it offers a method for designing one’s own system of
bounded arithmetic for a spectrum of complexity classes within P. Namely, one only needs
to add a single axiom to the base theory V 0, where the axiom states the existence of a
solution to a complete problem of the complexity class.

All of the above theories of bounded arithmetic are weak subtheories of PA, typically
obtained by imposing certain syntactic restrictions on the induction axiom or its equivalent,
and then adding some old theorems of PA as new axioms to partially bring back the baby
thrown out with the bath water. Since the weakening of the deductive strength of PA makes
certain important functions or predicates no longer definable, the non-logical vocabularies of

1Only the quantifiers ⊓ and ⊔ , not ∀ or ∃. It should be noted that the earlier “intrinsic theories” of
Leivant [50] also follow the tradition of quantifier restriction in induction.

BUILD YOUR OWN CLARITHMETIC I 7

these theories typically have to go beyond the original vocabulary {0, ′,+,×} of PA. These
theories achieve soundness and extensional completeness with respect to the corresponding
complexity classes in the sense that a function f(~x) belongs to the target class if and only if
it is provably total in the system — that is, if there is a Σ1-formula F (~x, y) that represents
the graph of f(~x), such that the system proves ∀~x∃!yF (~x, y).

1.5. Differences with bounded arithmetic. Here we want to point out several differ-
ences between the above systems of bounded arithmetic and our clarithmetical theories,
including (the instances of) CLA11.

1.5.1. Generality. While the other approaches are about functions, clarithmetics are about
interactive problems, with functions being nothing but special cases of the latter. This way,
clarithmetics allow us to systematically study not only computability in its narrow sense,
but also many other meaningful properties and relations, such as, for instance, various sorts
of reducibilities (cf. Section 1.1). Just like function effectiveness, such relations happen to
be special cases of our broad concept of computability. Namely, a relation holds if and only
if the corresponding interactive problem has a solution. Having said that, the differences
discussed in the subsequent paragraphs of this subsection hold regardless of whether one
keeps in mind the full generality of clarithmetics or restricts attention back to functions
only, the “common denominators” of the two approaches.

1.5.2. Intensional strength. Our systems extend rather than restrict PA. Furthermore, in-
stead of PA, as a classical basis one can take anything from a very wide range of sound the-
ories, beginning from certain weak fragments of PA and ending with the absolute-strength
theory Th(N) of the standard model N of arithmetic (the “truth arithmetic”). It is ex-
actly due to this flexibility that we can achieve not only extensional but also intensional
completeness — something inherently unachievable within the traditional framework of
bounded arithmetic, where computational soundness by its very definition entails deductive
weakness.

1.5.3. Language. Due to the fact that our theories are no longer weak, there is no need
to have any new non-logical primitives in the language and the associated new axioms in
the theory: all recursive or arithmetical relations and functions can be expressed through
0, ′,+,× in the standard way. Instead, as mentioned earlier, the language of our theories
of clarithmetic only has two additional logical connectives ⊓ , ⊔ and two additional quanti-
fiers ⊓,⊔. It is CoL’s constructive semantics for these operators that allows us to express
nontrivial computational problems. Otherwise, formulas not containing these operators —
formulas of the pure/traditional language of PA, that is — only express elementary prob-
lems (i.e., moveless games — see page 3). This explains how our approach makes it possible
to reconcile unlimited deductive strength with computational soundness. For instance, the
formula ∀x∃yF (x, y) may be provable even if F (x, y) is the graph of a function which is

8 G. JAPARIDZE

“too hard” to compute. This does not have any relevance to the complexity class character-
ized by the theory because the formula ∀x∃yF (x, y), unlike its “constructive counterpart”
⊓x⊔yF (x, y), carries no nontrivial computational meaning.2

1.5.4. Quantifier alternation. Our approach admits arbitrarily many alternations of boun-
ded quantifiers in induction or whatever similar postulates, whereas the traditional bounded
arithmetics are typically very sensitive in this respect, with different quantifier complexities
yielding different computational complexity classes.3

1.5.5. Uniformity. As noted, both our approach and that of [15] offer uniform treatments
of otherwise disparate systems for various complexity classes. The spectrums of complexity
classes for which the two approaches allow one to uniformly construct adequate systems
are, however, different. Unlike the present work, [15] does not reach beyond polynomial
hierarchy, thus missing, for instance, linear space, polynomial space, quasipolynomial time
or space, exponential time, etc. On the other hand, unlike [15], our uniform treatment is only
about sequential and deterministic computation, thus missing classes such as AC0, NC1,
NL or NC. A more notable difference between the two approaches, however, is related to
how uniformity is achieved. In the case of [15], as already mentioned, the way to “build your
own system” is to add, to the base theory, an axiom expressing a complete problem of the
target complexity class. Doing so thus requires quite some nontrivial complexity-theoretic
knowledge. In our case, on the other hand, adequacy is achieved by straightforward, brute

force tuning of the corresponding parameter of CLA11P1,P2,P3

P4
. E.g., for linear space, we

simply need to take the P2 parameter to be the set of (0, ′,+)-combinations of variables,
i.e., the set of terms that “canonically” express the linear functions. If we (simultaneously)
want to achieve adequacy with respect to polynomial time, we shall (simultaneously) take
the P3 parameter to be the set of (0, ′,+,×)-combinations of variables, i.e., the set of terms
that express the polynomial functions. And so on.

1.6. Motivations. Subjectively, the primary motivating factor for the author when writing
this paper was that it further illustrates the scalability and appeal of CoL, his brainchild.
On the objective side, the main motivations are as follows, somewhat arbitrarily divided
into the categories “general”, “theoretical” and “practical”.

2It should be noted that the idea of differentiating between operators (usually only quantifiers) with and
without computational connotation has been surfacing now and then in the literature on complexity-bound
arithmetics. For instance, the language of a system constructed in [56] for polynomial time, along with
“ordinary” quantifiers used in similar treatments, contains the “computationally irrelevant” quantifier ∀nc.

3Insensitivity with respect to quantifier alternations is not really without precedents in the literature. See,
for instance, [5]. The system introduced there, however, in its creator’s own words from [7], is “inadequate
as a working logic, e.g., awkwardly defined and not closed under modus ponens”.

BUILD YOUR OWN CLARITHMETIC I 9

1.6.1. General. Increasingly loud voices are being heard [19] that, since the real computers
are interactive, it might be time in theoretical computer science to seriously consider switch-
ing from Church’s narrow understanding of computational problems as functions to more
general, interactive understandings. The present paper and clarithmetics in general serve
the worthy job of lifting “efficient arithmetics” to the interactive level. Of course, these
are only CoL’s first modest steps in this direction, and there is still a long way to go. In
any case, our generalization from functions to interaction appears to be beneficial even if,
eventually, one is only interested in functions, because it allows a smoother treatment and
makes our systems easy-to-understand in their own rights. Imagine how awkward it would
be if one had tried to restrict the language of classical logic only to formulas with at most
one alternation of quantifiers because more complex formulas seldom express things that
we comprehend or care about, and, besides, things can always be Skolemized anyway. Or,
if mankind had let the Roman-European tradition prevail in its reluctance to go beyond
positive integers and accept 0 as a legitimate quantity, to say nothing about the negative,
fractional, or irrational numbers.

The “smoothness” of our approach is related to the fact that, in it, all formulas — rather
than only those of the form ∀x∃!yF (x, y) with F ∈ Σ1 — have clearly defined meanings as
computational problems. This allows us to apply certain systematic and scalable methods of
analysis that otherwise would be inadequate. For instance, the soundness proofs for various
clarithmetical theories go semantically by induction on the lengths of proofs, by showing
that all axioms have given (tri)complexity solutions, and that all rules of inference preserve
the property of having such solutions. Doing the same is impossible in the traditional
approaches to bounded arithmetic (at least those based on classical logic), because not all
intermediate steps in proofs will have the form ∀x∃!yF (x, y) with F ∈ Σ1. It is no accident
that, to prove computational soundness, such approaches usually have to appeal to syntactic
arguments that are around “by good luck”, such as cut elimination.

As mentioned, our approach extends rather than restricts PA. This allows us to safely
continue relying on our standard arithmetical intuitions when reasoning within clarithmetic,
without our hands being tied by various constraints, without the caution necessary when
reasoning within weak theories. Generally, a feel for a formal theory and a “sixth sense”
that it takes for someone to comfortably reason within the theory require time and efforts
to develop. Many of us have such a “sixth sense” for PA but not so many have it for weaker
theories. This is so because weak theories, being artificially restricted and thus forcing us
to pretend that we do not know certain things that we actually do know, are farther from
a mathematician’s normal intuitions than PA is. Even if this was not the case, mastering
the one and universal theory PA is still easier and promises a greater payoff than trying to
master tens of disparate yet equally important weak theories that are out there.

1.6.2. Theoretical. Among the main motivations for studying bounded arithmetics has been
a hope that they can take us closer to solving some of the great open problems in complexity
theory, for “it ought to be easier to separate the theories corresponding to the complexity
classes than to separate the classes themselves” ([15]). The same applies to our systems of
clarithmetic and CLA11 in particular that allows us to capture, in a uniform way, a very
wide and diverse range of complexity classes.

While the bounded arithmetic approach has been around and extensively studied since
long ago, the progress towards realizing the above hope has been very slow. This fact
alone justifies all reasonable attempts to try something substantially new and so far not

10 G. JAPARIDZE

well explored. The clarithmetics line of research qualifies as such. Specifically, studying
“nonstandard models” of clarithmetics, whatever they may mean, could be worth the effort.

Among the factors which might be making CLA11 more promising in this respect
than its traditional alternatives is that the former achieves intensional completeness while
the latter inherently have to settle for merely extensional completeness. Separating the-
ories intensionally is generally easier than separating them extensionally, yet intensional
completeness implies that the two sorts of separation mean the same.

Another factor relates to the ways in which theories are axiomatized in uniform treat-
ments, namely, the approach of CLA11 versus that of [15]. As noted earlier, the uniform
method of [15] achieves extensional completeness with respect to a given complexity class
by adding to the theory an axiom expressing a complete problem of that class. The same
applies to the method used in [14]. Such axioms are typically long formulas as they carry
nontrivial complexity-theoretic information. They talk — through encoding and arithme-
tization — about graphs, computations, etc. rather than about numbers. This makes
such axioms hard to comprehend directly as number-theoretic statements, and makes the
corresponding theories hard to analyze. This approach essentially means translating our
complexity-theoretic knowledge into arithmetic. For this reason, it is likely to encounter
the same kinds of challenges as the ordinary, informal theory of computation does when
it comes to separating complexity classes. Also, oftentimes we may simply fail to know a
complete problem of a given, not very well studied, complexity class.

The uniform way in which CLA11 axiomatizes its instances, as explained earlier, is
very different from the above. Here all axioms and rules are “purely arithmetical”, car-
rying no direct complexity-theoretic information. This means that the number-theoretic
contents of such theories are easy to comprehend, which, in turn, carries a promise that
their model theories might be easier to successfully study, develop and use in proving inde-
pendence/separation results.

1.6.3. Practical. More often than not, the developers of complexity-bound arithmetics have
also been motivated by the potential of practical applications in computer science. Here we
quote Schwichtenberg’s [56] words:

“It is well known that it is undecidable in general whether a given program
meets its specification. In contrast, it can be checked easily by a machine
whether a formal proof is correct, and from a constructive proof one can
automatically extract a corresponding program, which by its very construc-
tion is correct as well. This at least in principle opens a way to produce
correct software, e.g. for safety-critical applications. Moreover, programs
obtained from proofs are “commented” in a rather extreme sense. Therefore
it is easy to apply and maintain them, and also to adapt them to particular
situations.”

Applying the same line of thought to clarithmetics, where, by the way, all proofs qualify as
“constructive” for the above purposes, the introductory section of [38] further adds:

“In a more ambitious and, at this point, somewhat fantastic perspective,
after developing reasonable theorem-provers, CoL-based efficiency-oriented
systems can be seen as declarative programming languages in an extreme
sense, where human “programming” just means writing a formula expressing
the problem whose efficient solution is sought for systematic usage in the

BUILD YOUR OWN CLARITHMETIC I 11

future. That is, a program simply coincides with its specification. The
compiler’s job would be finding a proof (the hard part) and translating it
into a machine-language code (the easy part). The process of compiling
could thus take long but, once compiled, the program would run fast ever
after.”

What matters for applications like the above, of course, is the intensional rather than
extensional strength of a theory. The greater that strength, the better the chances that a
proof/program will be found for a declarative, ad hoc specification of the goal. Attempts
to put an intensionally weak theory (regardless of its extensional strength) to practical use
would usually necessitate some pre-processing of the goal, such as expressing it through a
certain standard-form Σ1-formula. But this sort of pre-processing often essentially means
already finding — outside the formal system — a solution of the target problem or, at least,
already finding certain insights into such a solution.

In this respect, CLA11 fits the bill. Firstly, because it is easily, “mechanically” ad-
justable to a potentially infinite variety of target complexities that one may come across
in real life. It allows us to adequately capture a complexity class from that variety with-
out any preliminary complexity-theoretic knowledge about the class, such as knowledge of
some complete problem of the class (yet another sort of “pre-processing”) as required by
the approaches in the style of [14] or [15]. All relevant knowledge about the class is au-
tomatically extracted by the system from the definition (ad hoc description) of the class,
without any need to look for help outside the formal theory itself. Secondly, and more
importantly, CLA11 fits the bill because of its intensional strength, which includes the full
deductive power of PA and which is only limited by the Gödel incompleteness phenomenon.

Even when the P4 parameter of a theory CLA11P1,P2,P3

P4
is empty (meaning that the theory

does not possess any arithmetical knowledge that goes beyond PA), the theory provides
“practically full” information about (P1, P2, P3) tricomplexity computability. This is in the
same sense as PA, despite Gödel’s incompleteness, provides “practically full” information

about arithmetical truth. Namely, if a formula F is not provable in CLA11P1,P2,P3

P4
, it is

unlikely that anyone would find a (P1, P2, P3) tricomplexity algorithm solving the problem
expressed by F : either such an algorithm does not exist, or showing its correctness requires
going beyond ordinary combinatorial reasoning formalizable in PA.

1.7. How to read this paper. This paper is being published in two parts. The present
Part I introducesCLA11 (Section 2), “bootstraps” it (Section 3), looks at certain particular
instances of it (Section 4), and proves its completeness (Sections 5 and 6). The forthcoming
[47] Part II is devoted to proving the soundness of the system. Even though the paper
is long, a reader inclined to skip the proofs of its main results can safely drop everything
beyond Section 4 of the present part, including the entire Part II. Dropping all proofs in
the remaining sections of Part I will further reduce the amount of material to be read.

The only external source on which this paper relies is [45], and familiarity with the
latter is a necessary condition for reading this paper. Again, all proofs found in [45] can
be safely omitted, which should significantly reduce the size of that otherwise fairly long
article. Familiarity with [45] is also a sufficient condition, because [45] presents a self-
contained, tutorial-style introduction to the relevant fragment of CoL. It would be accurate
to say that [45] is, in fact, “Part 0” of the present series of articles. Having [45] at hand for
occasional references is necessary even for those who are well familiar with CoL but from

12 G. JAPARIDZE

some other sources. It contains an index, which can and should be looked up every time
one encounters an unfamiliar term or notation. All definitions and conventions of [45] are
adopted in the present series without revisions.

2. The system CLA11

CLA11 is a scheme of applied theories based on the system CL12 of computability logic,
in the same sense as the well known (cf. [10, 15, 20, 48]) Peano Arithmetic PA is an
applied theory based on classical logic. We do not reintroduce logic CL12 here, assuming
that the reader is familiar with it from [45]. As noted just a while ago, the same holds for
all other concepts used but not explained in this article.

2.1. Language. The theories that we deal with in this paper have the same language,
obtained from the language of CL12 by removing all nonlogical predicate letters, removing
all constants but 0, and removing all but the following three function letters:

• successor, unary. We write τ ′ for successor(τ).
• sum, binary. We write τ1 + τ2 for sum(τ1, τ2).
• product, binary. We write τ1 × τ2 for product(τ1, τ2).

Let us call this language L. Unless otherwise specified or implied by the context, when
we say “formula”, it is to be understood as formula of L. As always, sentences are formulas
with no free occurrences of variables. An L-sequent is a sequent all of whose formulas are
sentences of L. A paraformula is defined as the result of replacing, in some formula, some
free occurrences of variables by constants. And a parasentence is a paraformula with no
free occurrences of variables. Every formula is a paraformula but not vice versa, because a
paraformula may contain constants other than 0, which are not allowed in formulas. Yet,
oftentimes we may forget about the distinction between formulas and paraformulas, and
carelessly say “formula” where, strictly speaking, “paraformula” should have been said.
In any case, we implicitly let all definitions related to formulas automatically extend to
paraformulas whenever appropriate/possible.

For a formula F , ∀F means the ∀-closure of F , i.e., ∀x1 . . . ∀xnF , where x1, . . . , xn are
the free variables of F listed in their lexicographic order. Similarly for ∃F , ⊓F , ⊔F .

A formula is said to be elementary iff it is ⊓ , ⊔ ,⊓,⊔-free. We will be using the
lowercase p, q, . . . as metavariables for elementary formulas. This is as opposed to the
uppercase letters E,F,G, . . ., which will be used as metavariables for any (elementary or
nonelementary) formulas.

2.2. Peano arithmetic. As one can see, L is an extension of the language of PA —
namely, the extension obtained by adding the choice operators ⊓ , ⊔ ,⊓,⊔. The language
of PA is the elementary fragment of L, in the sense that formulas of the former are nothing
but elementary formulas of the latter. We remind the reader that, deductively, PA is the
theory based on classical first-order logic with the following nonlogical axioms, that we shall

BUILD YOUR OWN CLARITHMETIC I 13

refer to as the Peano axioms:

1. ∀x(0 6= x ′);

2. ∀x∀y(x ′ = y ′ → x = y);

3. ∀x(x+ 0 = x);

4. ∀x∀y
(

x+ y ′ = (x+ y) ′
)

;

5. ∀x(x× 0 = 0);

6. ∀x∀y
(

x× y ′ = (x× y) + x
)

;

7. ∀
(

p(0) ∧ ∀x
(

p(x)→ p(x ′)
)

→ ∀x p(x)
)

for each elementary formula p(x).

The concept of an interpretation explained in [45] can now be restricted to interpreta-
tions that are only defined (other than the word “Universe”) on ′, + and ×, as the present
language L has no other nonlogical function or predicate letters. Of such interpretations,
the standard interpretation † is the one whose universe Universe† is the ideal universe
(meaning that Domain† is {0, 1, 10, 11, 100, . . .} and Denotation† is the identity function on
Domain†), and that interprets the letter ′ as the standard successor function var1+1, inter-
prets + as the sum function var1+var2, and interprets × as the product function var1×var2.
We often terminologically identify a (para)formula F with the game F †, and typically write
F instead of F † unless doing so may cause ambiguity. Correspondingly, whenever we say
that an elementary (para)sentence is true, it is to be understood as that the (para)sentence
is true under the standard interpretation, i.e., is true in what is more commonly called the
standard model of arithmetic.

Terminologically we will further identify natural numbers with the corresponding binary
numerals (constants). Usually it will be clear from the context whether we are talking about
a number or a binary numeral. For instance, if we say that x is greater than y, then we
obviously mean x and y as numbers; on the other hand, if we say that x is longer than y,
then x and y are seen as numerals. Thus, 111 (seven) is greater but not longer than 100
(four).

If we write
0̂, 1̂, 2̂, . . .

within formal expressions, they are to be understood as the terms 0, 0 ′, 0 ′ ′, . . ., respectively.
Such terms will be referred to as the unary numerals. Occasionally, we may carelessly
omit ˆ and simply write 0, 1, 2,

An n-ary (n ≥ 0) pterm4 is an elementary formula p(y, x1, . . . , xn) with all free vari-
ables as shown and one of such variables — y in the present case — designated as what we
call the value variable of the pterm, such that PA proves ∀x1 . . . ∀xn∃!yτ(y, x1, . . . , xn).
Here, as always, ∃!y means “there is a unique y such that”. We call x1, . . . , xn the argu-
ment variables of the pterm. If p(y, ~x) is a pterm, we shall usually refer to it as p(~x)
(or just p), changing Latin to Gothic and dropping the value variable y (or dropping all
variables). Correspondingly, where F (y) is a formula, we write F

(

p(~x)
)

to denote the for-

mula ∃y
(

p(y, ~x) ∧F (y)
)

, which, in turn, is equivalent to ∀y
(

p(y, ~x)→F (y)
)

. These sort of
expressions, allowing us to syntactically treat pretms as if they were genuine terms of the
language, are unambiguous in that all “disabbreviations” of them are provably equivalent
in the system. Terminologically, genuine terms of L, such as (x1 + x2)× x1, will also count

4The word “pterm”, where “p” stands for “pseudo”, is borrowed from [10].

14 G. JAPARIDZE

as pterms. Every n-ary pterm p(x1, . . . , xn) represents — in the obvious sense — some
PA-provably total n-ary function f(x1, . . . , xn). For further notational and terminologi-
cal convenience, in many contexts we shall identify pterms with the functions that they
represent.

It is our convention that, unless otherwise specified, if we write a pterm as p(x1, . . . , xn)
or p(~x) (as opposed to just p) when first mentioning it, we always imply that the displayed
variables are pairwise distinct, and that they are exactly (all and only) the argument vari-
ables of the pterm. Similarly, if we write a function as f(x1, . . . , xn) or f(~x) when first
mentioning it, we imply that the displayed variables are pairwise distinct, and that f is
an n-ary function that does not depend on any variables other than the displayed ones. A
convention in this style does not apply to formulas though: when writing a formula as F (~x),
we do not necessarily imply that all variables of ~x have free occurrences in the formula, or
that all free variables of the formula are among ~x (but we still do imply that the displayed
variables are distinct).

The language of PA is known to be very expressive, despite its nonlogical vocabulary’s
officially being limited to only 0, ′,+,×. Specifically, it allows us to express, in a certain
standard way, all recursive functions and relations, and beyond. Relying on the common
knowledge of the power of the language of PA, we will be using standard expressions such
as x ≤ y, y > x, etc. in formulas as abbreviations of the corresponding proper expressions
of the language. Similarly for pterms. So, for instance, if we write “x < 2y”, it is officially
to be understood as an abbreviation of a standard formula of PA saying that x is smaller
than the yth power of 2.

In our metalanguage,
|x|

will refer to the length of (the binary numeral for) x. In other words, |x| = ⌈log2(x +
1)⌉, where, as always, ⌈z⌉ means the smallest integer t with z ≤ t. As in the case of
other standard functions, the expression |x| will be simultaneously understood as a pterm
naturally representing the function |x|. The delimiters “| . . . |” will automatically also be
treated as parentheses, so, for instance, when f is a unary function or pterm, we will usually
write “f |x|” to mean the same as the more awkward expression “f(|x|)” would normally
mean. Further generalizing this notational convention, if ~x stands for an n-tuple (x1, . . . , xn)
(n ≥ 0) and we write τ |~x|, it is to be understood as τ(|x1|, . . . , |xn|).

Among the other pterms/functions that we shall frequently use is

(x)y,

standing for ⌊x/2y⌋ mod 2, where, as always, ⌊z⌋ denotes the greatest integer t with z ≥ t.
In other words, (x)y is the yth least significant bit of x. Here, as usual, the bit count
starts from 0 rather than 1, and goes from right to left, i.e., from the least significant bit to
the most significant bit; when y ≥ |x|, “the yth least significant bit of x”, by convention, is
0. Sometimes we will talk about the yth most significant bit of x, where 1 ≤ y ≤ |x|. In
this case we count bits from left to right, and the bit count starts from 1 rather than 0. So,
for instance, 0 is the 4th least significant bit and, simultaneously, the 5th most significant
bit, of 111101111. This number has a 99th least significant bit (which is 0), but it does not
have a 99th most significant bit.

One more abbreviation that we shall frequently use is Bit, defined by

Bit(y, x) =def (x)y = 1.

BUILD YOUR OWN CLARITHMETIC I 15

2.3. Bounds. We say that a pterm p2 is a syntactic variation of a pterm p1 iff there is a
function f from the set of (free and bound) variables of p1 onto the set of (free and bound)
variables of p2 such that the following conditions are satisfied:

(1) If x, y are two distinct variables of p1 where at least one of them is bound, then f(x) 6=
f(y).

(2) The two pterms only differ from each other in that, wherever p1 has a (free or bound)
variable x, p2 has the variable f(x) instead.

Example: y + z is a syntactic variation of x+ y, and so is z + z.
By a bound we shall mean a pterm p(x1, . . . , xn) — which may as well be written

simply as p(~x) or p — satisfying (making true) the following monotonicity condition:

∀x1 . . . ∀xn∀y1 . . . ∀yn
(

x1 ≤ y1 ∧ . . . ∧ xn ≤ yn → p(x1, . . . , xn) ≤ p(y1, . . . , yn)
)

.

A boundclass means a set B of bounds closed under syntactic variation, in the sense that,
if a given bound is in B, then so are all of its syntactic variations.

Where p is a pterm and F is a formula, we use the abbreviation ⊓x ≤ pF for ⊓x(x ≤
p→F), ⊔x ≤ pF for ⊔x(x ≤ p∧F), ⊓|x| ≤ pF for ⊓x(|x| ≤ p→F), and ⊔|x| ≤ pF for
⊔x(|x| ≤ p ∧F). Similarly for the blind quantifiers ∀ and ∃. And similarly for < instead of
≤.

Let F be a formula and B a boundclass. We say that F is B-bounded iff every ⊓-
subformula (resp. ⊔-subformula) of F has the form ⊓|z| ≤ b|~s|H (resp. ⊔|z| ≤ b|~s|H),
where z,~s are pairwise distinct variables not bound by ∀ or ∃ in F , and b(~s) is a bound
from B. By simply saying “bounded” we shall mean “B-bounded for some boundclass B”.

A boundclass triple is a triple R = (Ramplitude ,Rspace ,Rtime) of boundclasses.

2.4. Axioms and rules. Every boundclass triple R and set A of sentences induces the
theory CLA11RA that we deductively define as follows.

The axioms of CLA11RA , with x and y below being arbitrary two distinct variables,
are:

All Peano axioms; (2.1)

⊓x⊔y(y = x ′), which we call the Successor axiom; (2.2)

⊓x⊔y(y = |x|), which we call the Log axiom; (2.3)

⊓x⊓y
(

Bit(y, x) ⊔ ¬Bit(y, x)
)

, which we call the Bit axiom; (2.4)

All sentences of A, which we call supplementary axioms. (2.5)

The rules of inference of CLA11RA are Logical Consequence, R-Induction, and R-
Comprehension. These rules are meant to deal exclusively with sentences, and correspond-
ingly, in our schematic representations (2.7) and (2.8) ofR-Induction andR-Comprehension
below, each premise or conclusion H should be understood as its ⊓-closure ⊓H, with the
prefix ⊓ dropped merely for readability.

The rule of Logical Consequence (every application/instance of this rule, to be more
precise), abbreviated as LC, as already known from [45], is

E1 . . . En

F
, (2.6)

16 G. JAPARIDZE

where E1, . . . , En (n ≥ 0) as well as F are sentences such that CL12 proves the sequent
E1, . . . , En ◦– F . More generally, we say that a parasentence F is a logical consequence
of parasentences E1, . . . , En iff CL12 proves E1, . . . , En ◦–F . If here n = 0, we can simply
say that F is logically valid.

The rule of R-Induction is

F (0) F (x)→F (x ′)

x ≤ b|~s|→F (x)
, (2.7)

where x and ~s are pairwise distinct variables, F (x) is an Rspace -bounded formula, and b(~s)
is a bound from Rtime . We shall say that F (0) is the basis of induction, and F (x)→F (x ′)
is the inductive step. Alternatively, we may refer to the two premises as the left premise
and the right premise, respectively. The variable x has a special status here, and we say
that the conclusion follows from the premises by R-Induction on x. We shall refer to the
formula-variable pair F (x) as the induction formula, and refer to the bound b(~s) as the
induction bound.

The rule of R-Comprehension is

p(y) ⊔ ¬p(y)

⊔|x| ≤ b|~s|∀y < b|~s|
(

Bit(y, x) ↔ p(y)
) (2.8)

(q1 ↔ q2 abbreviates (q1 → q2) ∧ (q2 → q1)), where x, y and ~s are pairwise distinct variables,
p(y) is an elementary formula not containing x, and b(~s) is a bound from Ramplitude . We
shall refer to the formula-variable pair p(y) as the comprehension formula, and refer to
b(~s) as the comprehension bound.

When R is fixed in a context, we may simply say “Induction” and “Comprehension”
instead of “R-Induction” and “R-Comprehension”. Note that, of the three components of
R, the rule of R-Induction only depends on Rspace and Rtime , while R-Comprehension only
depends on Ramplitude .

2.5. Provability. A sentence F is considered to be provable in CLA11RA , written as

CLA11RA ⊢ F, iff there is a sequence of sentences, called a CLA11RA-proof of F , where
each sentence is either an axiom, or follows from some previous sentences by one of the
three rules of CLA11RA , and where the last sentence is F . An extended CLA11RA-proof
is defined in the same way, only, with the additional requirement that each application of
LC should come together with an attached CL12-proof of the corresponding sequent.

Generally, in the context of CLA11RA , as in the above definition of provability and
proofs, we will only be interested in proving sentences. In the premises and conclusions
of (2.7) and (2.8), however, we wrote not-necessarily-closed formulas and pointed out that
they were to be understood as their ⊓-closures. For technical convenience, we continue this
practice and agree that, whenever we write CLA11RA ⊢ F or say “F is provable” for a

non-sentence F , it simply means that CLA11RA ⊢ ⊓F . Similarly, when we say that F is a
logical consequence of E1, . . . , En, what we shall mean is that ⊓F is a logical consequence of
⊓E1, . . . ,⊓En. Similarly, when we say that a given strategy solves a given paraformula F ,
it is to be understood as that the strategy solves ⊓F (⊓F †, that is). To summarize, when
dealing with CLA11RA or reasoning within this system, any formula or paraformula with
free variables should be understood as its ⊓-closure, unless otherwise specified or implied
by the context. An exception is when F is an elementary paraformula and we say that F

BUILD YOUR OWN CLARITHMETIC I 17

is true. This is to be understood as that the ∀-closure ∀F of F is true (in the standard
model), for “truth” is only meaningful for elementary parasentences (which ⊓F generally
would not be). An important fact on which we will often rely yet only implicitly so, is
that the parasentence ∀F →⊓F or the closed sequent ∀F ◦–⊓F is (always) CL12-provable.
In view of the soundness of CL12 (Theorem 8.2 of [45]), this means that whenever F an
elementary paraformula and ∀F is true, ⊓F is automatically won by a strategy that does
nothing.

Remark 2.1. Our choice of PA as the “elementary basis” of CLA11RA — that is, as

the classical theory whose axioms constitute the axiom group (2.1) of CLA11RA — is rather
arbitrary, and its only explanation is that PA is the best known and easiest-to-deal-with
recursively enumerable theory. Otherwise, for the purposes of this paper, a much weaker
elementary basis would suffice. It is interesting to understand exactly what weak subtheories
of PA are sufficient as elementary bases of CLA11RA , but we postpone to the future any
attempts to answer this question. Our choice of the language L is also arbitrary, and the
results of this paper, as typically happens in similar cases, generalize to a wide range of
“sufficiently expressive” languages.

As PA is well known and well studied, we safely assume that the reader has a good feel
for what it can prove, so we do not usually further justify PA-provability claims that we
make. A reader less familiar with PA can take it as a rule of thumb that, despite Gödel’s
incompleteness theorems, PA proves every true number-theoretic fact that a contemporary
high school student can establish, or that mankind was aware of before 1931. One fact
worth noting at this point is that, due to the presence of the axiom group (2.1) and the rule
of LC,

CLA11RA proves every sentence provable in PA. (2.9)

2.6. Regularity. Let B be a set of bounds. We define the linear closure of B as the
smallest boundclass C such that the following conditions are satisfied:

• B ⊆ C;
• 0 ∈ C;
• whenever a bound b is in C, so is the bound b ′;5

• whenever two bounds b and c are in C, so is the bound b+ c.

The polynomial closure of B is defined as the smallest boundclass C that satisfies the
above four conditions and, in addition, also satisfies the following condition:

• whenever two bounds b and c are in C, so is the bound b× c.

Correspondingly, we say that B is linearly closed (resp. polynomially closed) iff B is
the same as its linear (resp. polynomial) closure.

Let b = b(~x) = b(x1, . . . , xm) and c = c(~y) = c(y1, . . . , yn) be functions or pterms
understood as functions. We write

b � c

iff m = n and b(~a) ≤ c(~a) is true for all constants ~a. Next, where B and C are boundclasses,
we write b � C to mean that b � c for some c ∈ C, and write B � C to mean that b � C for

5We assume the presence of some fixed, natural way which, given any pterms b, c, generates the pterms
(whose meanings are) b ′, b + c, b × c. Similarly for any other standard combinations of pterms/functions,
such as, for instance, composition b(c).

18 G. JAPARIDZE

all b ∈ B. Finally, where a1, s1, t1, a2, s2, t2 are bounds, we write (a1, s1, t1) � (a2, s2, t2) to
mean that a1 � a2, s1 � s2 and t1 � t2.

Definition 2.2. We say that a boundclass triple R is regular iff the following conditions
are satisfied:6

(1) For every bound b(~s) ∈ Ramplitude ∪ Rspace ∪ Rtime and any (=some) variable z not
occurring in b(~s), the game ⊓⊔z(z = b|~s|) has an R tricomplexity solution (in the sense
of Convention 12.4 of [45]), and such a solution can be effectively constructed from b(~s).

(2) Ramplitude is at least linear, Rspace is at least logarithmic, and Rtime is at least
polynomial. This is in the sense that, for any variable x, we have x � Ramplitude ,
|x| � Rspace and x, x2, x3, . . . � Rtime .

(3) All three components ofR are linearly closed and, in addition, Rtime is also polynomially
closed.

(4) For each component B ∈ {Ramplitude ,Rspace ,Rtime} of R, whenever b(x1, . . . , xn) is a
bound in B and c1, . . . , cn ∈ Ramplitude ∪Rspace , we have b(c1, . . . , cn) � B.

(5) For every triple
(

a(~x), s(~x), t(~x)
)

of bounds in Ramplitude × Rspace × Rtime there is a

triple
(

a′(~x), s′(~x), t′(~x)
)

in Ramplitude × Rspace × Rtime such that
(

a(~x), s(~x), t(~x)
)

�
(

a′(~x), s′(~x), t′(~x)
)

and |t′(~x)| � s′(~x) � a′(~x) � t′(~x).

Our use of the “Big-O” notation below and elsewhere is standard. One of several equivalent
ways to define it is to say that, given any two n-ary functions — or pterms seen as functions
— f(~x) and g(~y), f(~x) = O(g(~y)) (or simply f = O(g)) means that there is a natural
number k such that f(~a) ≤ kg(~a)+ k for all n-tuples ~a of natural numbers. If we say “O(g)
amplitude”, it is to be understood as “f amplitude for some f with f = O(g)”. Similarly
for space and time.

Lemma 2.3. Assume R is a regular boundclass triple, B ∈ {Ramplitude ,Rspace ,Rtime},
f = f(x1, . . . , xn) (n ≥ 0) is a function, b is an n-ary bound from B, and f = O(b). Then
f � B.

Proof. Assume the conditions of the lemma. The condition f = O(b) means that, for some

number k, f(~z) � k̂ × b(~z) + k̂. But, by condition 2 of Definition 2.2, B is linearly closed.

Hence k̂ × b(~z) + k̂ is in B. Thus, f � B.

Remark 2.4. When R is a regular boundclass triple, the above lemma allows us to safely
rely on asymptotic (“Big-O”) terms and asymptotic analysis when trying to show that a
given machine M runs in time Rtime . Namely, it is sufficient to show that M runs in time
O(b) for some b ∈ Rtime or even just b � Rtime . Similarly for space and amplitude.

Definition 2.5. We say that a theory CLA11RA is regular iff the boundclass triple R is
regular and, in addition, the following conditions are satisfied:

(1) Every sentence of A has an R tricomplexity solution. Here, if A is infinite, we addition-
ally require that there is an effective procedure that returns an R tricomplexity solution
for each sentence of A.

(2) For every bound b(~x) from Ramplitude ∪Rspace ∪Rtime and every (=some) variable z not

occurring in b(~x), CLA11RA proves ⊔z(z = b|~x|).

6Not all of these conditions are independent from each other.

BUILD YOUR OWN CLARITHMETIC I 19

2.7. Main result. By an (arithmetical) problem in this paper we mean a game G such
that, for some sentence X, G = X† (remember that † is the standard interpretation).
Such a sentence X is said to be a representation of G. We say that a problem G is
representable in CLA11RA and write

CLA11RA |∼G

iff G has a CLA11RA-provable representation.
The truth arithmetic, denoted Th(N), is the set of all true elementary sentences.

We agree that, whenever A is a set of (not necessarily elementary) sentences, A! is an
abbreviation defined by

A! = A∪ Th(N).

In these terms, the central theorem of the present paper reads as follows:

Theorem 2.6. Assume a theory CLA11RA is regular. Then the following conditions are
satisfied:

(1) Extensional adequacy: A problem G has an R tricomplexity solution iff CLA11RA |∼G.

(2) Intensional adequacy: A sentence X has an R tricomplexity solution iff CLA11RA! ⊢
X.

(3) Constructive soundness: There is an effective procedure that takes an arbitrary ex-
tended CLA11RA!-proof of an arbitrary sentence X and constructs an R tricomplexity
solution for X.

Proof. The completeness (“only if”) parts of clauses 1 and 2 will be proven in Sections 5
and 6, respectively, and the soundness (“if”) part of either clause is immediately implied
by clause 3. The latter will be verified in [47].

3. Bootstrapping CLA11RA

Throughout this section, we assume that CLA11RA is a regular theory. Unless otherwise
specified, “provable” means “provable in CLA11RA”. “Induction” and “Comprehension”
mean “R-Induction” and “R-Comprehension”, respectively. We continue to use our old
convention according to which, context permitting, F can be written instead of ⊓F .

In order to prove the completeness of CLA11RA , some work on establishing the provabil-
ity of certain basic theorems in the system has to be done. This is also a good opportunity
for the reader to gain intuitions about our system. This sort of often boring but necessary
work is called bootstrapping, named after the expression “to lift oneself by one’s bootstraps”
(cf. [13]).

3.1. How we reason in clarithmetic. Trying to generate full formal proofs in CLA11RA ,
just like doing so in PA, would be far from reasonable in a paper meant to be read by
humans. This task is comparable with showing the existence of a Turing machine for one
or another function. Constructing Turing machines if full detail is seldom feasible, and one
usually resorts to some sort of lazy/informal constructions, such as constructions that rely
on the Church-Turing thesis. Thesis 9.2 of [45] will implicitly act in the role of “our Church-
Turing thesis” when dealing with CLA11RA-provability, allowing us to replace formal proofs
with informal/intuitive descriptions of interpretation-independent winning strategies — ac-
cording to the thesis, once such a strategy exists for a given formula, we can be sure that

20 G. JAPARIDZE

the formula is provable. In addition, we will be heavily relying on our observation (2.9)
that CLA11RA proves everything provable in PA. As noted earlier, since PA is well known
and since it proves “essentially all” true arithmetical facts, we will hardly ever try to justify
the PA-provability claims that we make, often only implicitly. Furthermore, in relatively
simple cases, we usually will not try to justify our CL12-provability claims of the sort
CL12 ⊢ E1, . . . , En ◦– F either and, instead, simply say that F follows from E1, . . . , En

by LC (Logical Consequence), or that F is a logical consequence of E1, . . . , En, or that
E1, . . . , En logically imply F . What allows us to take this kind of liberty is that CL12 is
an analytic system, and verifying provability in it is a mechanical job that a distrustful
reader can do on his or her own; alternatively, our non-justified CL12-provability claims
can always be verified intuitively/informally based on Thesis 9.2 of [45].7

The following fact is the simplest of those established in this section, so let us look at
its proof as a warm-up exercise. Remember from Section 2.2 that 0̂ = 0, 1̂ = 0 ′, 2̂ = 0 ′ ′,
3̂ = 0 ′ ′ ′, . . .

Fact 3.1. For any natural number n, CLA11RA ⊢ ⊔z(z = n̂).

Proof. Fix an n and argue in CLA11RA . Using 0 and the Successor axiom, we find the value
y1 of 0 ′. Then, using y1 and the Successor axiom again, we find the value y2 of 0 ′ ′. And
so on, n times. This way, we find the value yn of n̂. We now choose yn for z in ⊔z(z = n̂)
and win this game.

What is the precise meaning of the second sentence of the above proof? The Successor
axiom ⊓x⊔y(y = x ′) is a resource that we can use any number of times. As such, it is a
game played and always won by its provider (=our environment) in the role of ⊤ against
us, with us acting in the role of ⊥. So, a value for x in this game should be picked by us.
We choose 0, bringing the game down to ⊔y(y = 0 ′). The resource provider will have to
respond with a choice of a value (constant) y1 for y, further bringing the game down to
y1 = 0 ′. This elementary game is true (otherwise the provider would have lost), meaning
that y1 is the value — which we have just found — of 0 ′.

The rest of the proof of Fact 3.1 should be understood as that we play ⊓x⊔y(y = x ′)
against its provider once again, but this time we specify the value of x as y1, bringing the
game down to ⊔y(y = y1

′). In response, the provider will have to further bring the game
down to y2 = y1

′ for some constant y2. This means that now we know the value y2 of 0 ′ ′.
And so on. Continuing this way, eventually we come to know the value yn of n̂. Now we
can and do win the target game ⊔z(z = n̂) by choosing yn for z in it, thus bringing it down
to the true yn = n̂.

Out of curiosity, let us also take a look at a formal counterpart of our informal proof
of ⊔z(z = n̂). Specificity, consider the case of n = 2. A non-extended CLA11RA-proof of

⊔z(z = 2̂) consists of just the following two lines:

I. ⊓x⊔y(y = x ′) Successor axiom
II. ⊔z(z = 0 ′ ′) LC: I

Step II above is justified by LC which, in an extended proof, needs to be supplemented
with a CL12-proof of the sequent ⊓x⊔y(y = x ′) ◦–⊔z(z = 0 ′ ′). Below is such a proof:

7Of course, when dealing with formula schemes (e.g., as in Fact 3.2) rather than particular formulas,
the analyticity of CL12 may not always be directly usable. However, in such cases, Thesis 9.2 of [45] still
remains at our full disposal.

BUILD YOUR OWN CLARITHMETIC I 21

1. y1 = 0 ′, y2 = y1
′ ◦– y2 = 0 ′ ′ Wait: (no premises)

2. y1 = 0 ′, y2 = y1
′ ◦– ⊔z(z = 0 ′ ′) ⊔-Choose: 1

3. y1 = 0 ′, ⊔y(y = y1
′) ◦– ⊔z(z = 0 ′ ′) Wait: 2

4. y1 = 0 ′, ⊓x⊔y(y = x ′) ◦– ⊔z(z = 0 ′ ′) ⊓-Choose: 3
5. ⊔y(y = 0 ′), ⊓x⊔y(y = x ′) ◦– ⊔z(z = 0 ′ ′) Wait: 4
6. ⊓x⊔y(y = x ′), ⊓x⊔y(y = x ′) ◦– ⊔z(z = 0 ′ ′) ⊓-Choose: 5
7. ⊓x⊔y(y = x ′) ◦– ⊔z(z = 0 ′ ′) Replicate: 6

Unlike the above case, most formulas shown to beCLA11RA-provable in this section will
have free occurrences of variables. As a very simple example, consider ⊔y(y = x). Remem-
bering that it is just a lazy way to write ⊓x⊔y(y = x), our informal justification/strategy
(translatable into a formal CLA11RA-proof) for this formula would go like this:

Wait till Environment chooses a constant c for x, thus bringing the game
down to ⊔y(y = c). Then choose the same c for y. We win because the
resulting elementary game c = c is true.

However, more often than not, in cases like this we will omit the routine phrase “wait till
Environment chooses constants for all free variables of the formula”, and correspondingly
treat the free variables of the formula as standing for the constants already chosen by
Environment for them. So, a shorter justification for the above ⊔y(y = x) would be:

Choose (the value of) x for y. We win because the resulting elementary game
x = x is true.

Of course, an even more laconic justification would be just the phrase “Choose x for y.”,
quite sufficient and thus acceptable due to the simplicity of the case. Alternatively, we can
simply say that the formula ⊔y(y = x) is logically valid (follows by LC from no premises).

A reader who would like to see some additional illustrations and explanations, can
browse Sections 11 and 12 of [38]. In any case, the informal methods of reasoning induced
by computability logic and clarithmetic in particular cannot be concisely or fully explained,
but rather they should be learned through experience and practicing, not unlike the way
one learns a foreign language. A reader who initially does not find some of our informal
CLA11RA-arguments very clear, should not feel disappointed. Greater fluency and better
understanding will come gradually and inevitably. Counting on that, as we advance in this
paper, the degree of “laziness” of our informal reasoning within CLA11RA will gradually
increase, more and more often omitting explicit references to CL, PA, axioms or certain
already established and frequently used facts when justifying certain relatively simple steps.

3.2. Reasonable Induction.

Fact 3.2. The set of theorems of CLA11RA will remain the same if, instead of the or-
dinary R-Induction rule (2.7), one takes the following rule, which we call Reasonable
R-Induction:

F (0) x < b|~s| ∧F (x)→F (x ′)

x ≤ b|~s|→F (x)
, (3.1)

where x, ~s, F (x), b are as in (2.7).

Proof. To see that the two rules are equivalent, observe that, while having identical left
premises and identical conclusions, the right premise of (3.1) is weaker than that of (2.7) —
the latter immediately implies the former by LC. This means that whenever old induction

22 G. JAPARIDZE

is applied, its conclusion can just as well be obtained through first weakening the premise
F (x)→F (x ′) to x < b|~s| ∧F (x)→F (x ′) using LC, and then applying (3.1).

For the opposite direction, consider an application of (3.1). Weakening (by LC) its left
premise F (0), we find the following formula provable:

0 ≤ b|~s|→F (0). (3.2)

Next, the right premise x < b|~s| ∧F (x)→F (x ′) of (3.1), together with the PA-provable
∀(x ′ ≤ b|~s|→ x < b|~s|) and ∀(x ′ ≤ b|~s|→ x ≤ b|~s|), can be seen to logically imply

(

x ≤ b|~s|→F (x)
)

→
(

x ′ ≤ b|~s|→F (x ′)
)

. (3.3)

Applying rule (2.7) to (3.2) and (3.3), we get x ≤ b|~s|→
(

x ≤ b|~s|→F (x)
)

. The latter, by
LC, immediately yields the target x ≤ b|~s|→F (x).

3.3. Reasonable Comprehension.

Fact 3.3. The set of theorems of CLA11RA will remain the same if, instead of the ordinary
R-Comprehension rule (2.8), one takes the following rule, which we call Reasonable R-
Comprehension:

y < b|~s|→ p(y) ⊔ ¬p(y)

⊔|x| ≤ b|~s|∀y < b|~s|
(

Bit(y, x) ↔ p(y)
) , (3.4)

where x, y, ~s, p(y), b are as in (2.8).

Proof. The two rules have identical conclusions, and the premise of (3.4) is a logical conse-
quence of the premise of (2.8). So, whatever can be proven using (2.8), can just as well be
proven using (3.4).

For the opposite direction, consider an application of (3.4). Of course, CLA11RA proves
the logically valid y = y ⊔ ¬y = y without using either version of comprehension. From here,
by (2.8), we obtain

⊔|x| ≤ b|~s|∀y < b|~s|
(

Bit(y, x) ↔ y = y
)

, (3.5)

which essentially means that the system proves the existence of a number x0 whose binary
representation consists of b|~s| “1”s. Argue in CLA11RA . Using (3.5), we find the above
number x0. From PA, we can see that |x0| = b|~s|. Now, we can win the game

y < b|~s| ⊔ ¬y < b|~s|. (3.6)

Namely, our strategy for (3.6) is to find whether Bit(y, x0) is true or not using the Bit
axiom; then, if true, we — based on PA — conclude that y < |x0|, i.e., that y < b|~s|, and
choose the left ⊔ -disjunct in (3.6); otherwise we conclude that ¬y < |x0|, i.e., ¬y < b|~s|,
and choose the right ⊔ -disjunct in (3.6).

The following is a logical consequence of (3.6) and of the premise of (3.4):
(

y < b|~s| ∧ p(y)
)

⊔ ¬
(

y < b|~s|∧ p(y)
)

. (3.7)

Indeed, here is a strategy for (3.7). Using (3.6), figure out whether y < b|~s| is true or false.
If false, choose the right ⊔ -disjunct in (3.7) and rest your case. Suppose now y < b|~s| is
true. Then, using the premise of (3.4), figure out whether p(y) is true or false. If true (resp.
false), choose the left (resp. right) ⊔ -disjunct in (3.7).

Applying rule (2.8) to (3.7) yields

⊔|x| ≤ b|~s|∀y < b|~s|
(

Bit(y, x) ↔
(

y < b|~s| ∧ p(y)
)

)

. (3.8)

BUILD YOUR OWN CLARITHMETIC I 23

Now, the conclusion of (3.4), obtaining which was our goal, can easily be seen to be a logical
consequence of (3.8).

3.4. Addition. Throughout this and the subsequent subsections we assume that the vari-
ables involved in a formula whose provability is claimed are pairwise distinct.

Fact 3.4. CLA11RA ⊢ ⊔z(z = u+ v).

Proof. We shall rely on the pencil-and-paper algorithm for adding two numbers with “car-
rying” which everyone is familiar with, as the algorithm is taught at the elementary school
level (albeit for decimal rather than binary numerals). Here is an example to refresh our
memory. Suppose we are adding the two binary numbers u = 10101 and v = 1101. They,
together with the resulting number z = 100010, should be written as rows in a right-aligned
table as shown below:

10101
+

1101
−−−−
100010

The algorithm constructs the sum z bit by bit, in the right-to-left order, i.e., starting from
the least significant bit (z)0. At any step y > 0 we have a “carry” cy−1 ∈ {0, 1} from the
preceding step y − 1. For uniformity, at step 0, i.e., when computing (z)0, the “carry” c−1

from the non-existing “preceding step” # − 1 is stipulated to be 0. Anyway, at each step
y = 0, 1, 2, . . ., we first find the sum ty = (u)y + (v)y + cy−1. Then we declare (z)y to be
0 (resp. 1) if ty is even (resp. odd); and we declare cy — the carry from the present step
y that should be “carried over” to the next step y + 1 — to be 0 (resp. 1) if ty ≤ 1 (resp.
ty > 1).

Let Carry1(y, u, v) be a natural arithmetization of the predicate “When calculating the
yth least significant bit of u + v using the above pencil-and-paper algorithm, the carry cy
generated by the corresponding (yth) step is 1.”

Argue in CLA11RA . Our main claim is

y ≤ |u|+ |v|→
(

Carry1(y, u, v) ⊔ ¬Carry1(y, u, v)
)

∧
(

Bit(y, u+ v) ⊔ ¬Bit(y, u+ v)
)

, (3.9)

which we justify by Induction on y. Note that the conditions of R-Induction are indeed
satisfied here: in view of the relevant clauses of Definition 2.2, the linear bound u+ v used
in the antecedent of (3.9) is in Rtime as it should. To solve the basis

(

Carry1(0, u, v) ⊔ ¬Carry1(0, u, v)
)

∧
(

Bit(0, u + v) ⊔ ¬Bit(0, u + v)
)

, (3.10)

we use the Bit axiom and figure out whether Bit(0, u) and Bit(0, v) are true. If both are
true, we choose Carry1(0, u, v) and ¬Bit(0, u + v) in the corresponding two conjuncts of
(3.10). If both are false, we choose ¬Carry1(0, u, v) and ¬Bit(0, u + v). Finally, if exactly
one of the two is true, we choose ¬Carry1(0, u, v) and Bit(0, u + v).

The inductive step is
(

Carry1(y, u, v) ⊔ ¬Carry1(y, u, v)
)

∧
(

Bit(y, u+ v) ⊔ ¬Bit(y, u+ v)
)

→
(

Carry1(y ′, u, v) ⊔ ¬Carry1(y ′, u, v)
)

∧
(

Bit(y ′, u+ v) ⊔ ¬Bit(y ′, u+ v)
)

.
(3.11)

The above is obviously solved by the following strategy. We wait till the adversary tells
us, in the antecedent, whether Carry1(y, u, v) is true. After that, using the Successor
axiom, we compute the value of y ′ and then, using the Bit axiom, figure out whether

24 G. JAPARIDZE

Bit(y ′, u) and Bit(y ′, v) are true. If at least two of these three statements are true, we
choose Carry1(y ′, u, v) in the left conjunct of the consequent of (3.11), otherwise choose
¬Carry1(y ′, u, v). Also, if either one or all three statements are true, we additionally choose
Bit(y ′, u+v) in the right conjunct of the consequent of (3.11), otherwise choose ¬Bit(y ′, u+
v). (3.9) is thus proven.

Of course (3.9) logically implies y < |u|+ |v|→Bit(y, u+v) ⊔ ¬Bit(y, u+v), from which,
by Reasonable Comprehension (where the comprehension bound u+ v is linear and hence,
by Definition 2.2, is guaranteed to be in Ramplitude as it should), we get

⊔|z| ≤ |u|+ |v|∀y < |u|+ |v|
(

Bit(y, z) ↔ Bit(y, u+ v)
)

. (3.12)

The following is a true (by PA) sentence:

∀u∀v∀|z| ≤ |u|+ |v|
(

∀y < |u|+ |v|
(

Bit(y, z) ↔ Bit(y, u+ v)
)

→ z = u+ v
)

. (3.13)

Now, the target ⊔z(z = u+ v) is a logical consequence of (3.12) and (3.13).

3.5. Trichotomy.

Fact 3.5. CLA11RA ⊢ (u < v) ⊔ (u = v) ⊔ (u > v).

Proof. Argue inCLA11RA . Let u <x v be an abbreviation of (u mod 2x) < (v mod 2x), u =x

v an abbreviation of (u mod 2x) = (v mod 2x), and u >x v an abbreviation of (u mod 2x) >
(v mod 2x).

By Induction on x, we first want to prove

x ≤ |u|+ |v|→ (u <x v) ⊔ (u =x v) ⊔ (u >x v). (3.14)

The basis (u <0 v) ⊔ (u =0 v) ⊔ (u >0 v) of induction is won by choosing the obviously true
u =0 v component. The inductive step is

(u <x v) ⊔ (u =x v) ⊔ (u >x v)→ (u <x′

v) ⊔ (u =x′

v) ⊔ (u >x′

v). (3.15)

To solve (3.15), using the Bit axiom, we figure out the truth status of Bit(x, u) and Bit(x, v).

If Bit(x, u) is false while Bit(x, v) is true, we choose u <x′
v in the consequent of (3.15).

If vice versa, we choose u >x′
v. Finally, if both Bit(x, u) and Bit(x, v) are true or both

are false, we wait till Environment resolves the antecedent of (3.15). If it chooses u <x v

(resp. u =x v, resp. u >x v) there, we choose u <x′
v (resp. u =x′

v, resp. u >x′
v)

in the consequent. With some basic knowledge from PA, our strategy cab be seen to be
successful.

Having established (3.14), this is how we solve (u < v) ⊔ (u = v) ⊔ (u > v). Using the
Log axiom and Fact 3.4, we find the value d with d = |u|+ |v|. Next, we plug d for x (i.e.,
specify x as d) in (3.14), resulting in

d ≤ |u|+ |v|→ (u <d v) ⊔ (u =d v) ⊔ (u >d v). (3.16)

The antecedent of (3.16) is true, so (3.16)’s provider will have to resolve the consequent. If
the first (resp. second, resp. third) ⊔ -disjunct is chosen there, we choose the first (resp.
second, resp. third) ⊔ -disjunct in the target (u < v) ⊔ (u = v) ⊔ (u > v) and rest our case.
By PA, we know that (u <d v)→ (u < v), (u =d v)→ (u = v) and (u >d v)→ (u > v) are
true. It is therefore obvious that our strategy succeeds.

BUILD YOUR OWN CLARITHMETIC I 25

3.6. Subtraction. In what follows, we use ⊖ for a natural pterm for limited subtraction,
defined by u⊖ v = max(0, u − v).

Fact 3.6. CLA11RA ⊢ ⊔z(z = u⊖ v).

Proof. The present proof is rather similar to our earlier proof of Fact 3.4. It relies on the
elementary school pencil-and-paper algorithm for computing u − v (when u ≥ v). This
algorithm, just like the algorithm for u + v, constructs the value z of u − v digit by digit,
in the right-to-left order. At any step y > 0, we have a “borrow” (which is essentially
nothing but a “negative carry”) bi−1 ∈ {0, 1} from the preceding step y− 1. For step 0, the
“borrow” b−1 from the non-existing “preceding step” # − 1 is stipulated to be 0. At each
step y = 0, 1, 2, . . ., we first find the value ty = (u)y − (v)y − cy−1. Then we declare (z)y to
be 0 (resp. 1) if ty is even (resp. odd); and we declare by — the value “borrowed” by the
present step y from the next step y + 1 — to be 0 (resp. 1) if ty > −1 (resp. ty ≤ −1).

Let Borrow1(y, u, v) be a natural arithmetization of the predicate “u ≥ v and, when
calculating the yth least significant bit of u− v using the above pencil-and-paper algorithm,
the value by borrowed from the (y + 1)th step is 1. For instance, Borrow1(0, 110, 101) is
true, Borrow1(1, 110, 101) is false and Borrow1(2, 110, 101) is also false.

Argue in CLA11RA . Our main claim is

y ≤ |u|→
(

Borrow1(y, u, v) ⊔ ¬Borrow1(y, u, v)
)

∧
(

Bit(y, u⊖ v) ⊔ ¬Bit(y, u⊖ v)
)

, (3.17)

which we justify by Induction on y. For the basis
(

Borrow1(0, u, v) ⊔ ¬Borrow1(0, u, v)
)

∧
(

Bit(0, u ⊖ v) ⊔ ¬Bit(0, u ⊖ v)
)

,

using Fact 3.5, we figure out whether u ≥ v of not. If not, we choose ¬Borrow1(0, u, v)
and ¬Bit(0, u ⊖ v). Now assume u ≥ v. Using the Bit axiom, we determine the truth
status of Bit(0, u) and Bit(0, v). If Bit(0, u) ↔ Bit(0, v), we choose ¬Borrow1(0, u, v) and
¬Bit(0, u⊖ v); if Bit(0, u) ∧ ¬Bit(0, v), we choose ¬Borrow1(0, u, v) and Bit(0, u⊖ v); and if
¬Bit(0, u) ∧Bit(0, v), we choose Borrow1(0, u, v) and Bit(0, u⊖ v).

The inductive step is
(

Borrow1(y, u, v) ⊔ ¬Borrow1(y, u, v)
)

∧
(

Bit(y, u⊖ v) ⊔ ¬Bit(y, u⊖ v)
)

→
(

Borrow1(y ′, u, v) ⊔ ¬Borrow1(y ′, u, v)
)

∧
(

Bit(y ′, u⊖ v) ⊔ ¬Bit(y ′, u⊖ v)
)

.
(3.18)

The above is obviously solved by the following strategy. Using Fact 3.5, we figure out
whether u ≥ v or not. If not, we choose ¬Borrow1(y ′, u, v) and ¬Bit(y ′, u ⊖ v) in the
consequent of (3.18). Now assume u ≥ v. We wait till the adversary tells us, in the
antecedent, whether Borrow1(y, u, v) is true. Using the Bit axiom in combination with the
Successor axiom, we also figure out whether Bit(y ′, u) and Bit(y ′, v) are true. If we have
Borrow1(y, u, v) ∧Bit(y ′, v) or ¬Bit(y ′, u) ∧

(

Borrow1(y, u, v) ∨Bit(y ′, v)
)

, then we choose
Borrow1(y ′, u, v) in the consequent of (3.18), otherwise we choose ¬Borrow1(y ′, u, v). Also,
if Bit(y ′, u) ↔

(

Borrow1(y, u, v) ↔ Bit(y ′, v)
)

, we choose Bit(y ′, u ⊖ v) in the consequent
of (3.18), otherwise we choose ¬Bit(y ′, u⊖ v).

(3.17) is proven. It obviously implies y < |u|→Bit(y, u⊖v) ⊔ ¬Bit(y, u⊖v), from which,
by Reasonable Comprehension, we get

⊔|z| ≤ |u|∀y < |u|
(

Bit(y, z) ↔ Bit(y, u⊖ v)
)

. (3.19)

The following is a true (by PA) sentence:

∀u∀v∀|z| ≤ |u|
(

∀y < |u|
(

Bit(y, z) ↔ Bit(y, u⊖ v)
)

→ z = u⊖ v
)

. (3.20)

26 G. JAPARIDZE

Now, the target ⊔z(z = u⊖ v) is a logical consequence of (3.19) and (3.20).

3.7. Bit replacement. Let Br0(x, s) (resp. Br1(x, s)) be a natural pterm for the function
that, on arguments x and s, returns the number whose binary representation is obtained
from that of s by replacing the xth least significant bit (s)x by 0 (resp. by 1).

Fact 3.7. For either i ∈ {0, 1}, CLA11RA ⊢ x < |s|→⊔z
(

z = Bri(x, s)
)

.

Proof. Consider either i ∈ {0, 1}. Arguing in CLA11RA , we claim that

Bit
(

y,Bri(x, s)
)

⊔ ¬Bit
(

y,Bri(x, s)
)

. (3.21)

This is our strategy for (3.21). Using Fact 3.5, we figure out whether y = x or not. If y = x,
we choose the left ⊔ -disjunct of (3.21) if i is 1, and choose the right ⊔ -disjunct if i is 0.
Now suppose y 6= x. In this case, using the Bit axiom, we figure out whether Bit(y, s) is
true or not. If it is true, we choose the left ⊔ -disjunct in (3.21), otherwise we choose the
right ⊔ -disjunct. It is not hard to see that, this way, we win.

From (3.21), by Comprehension, we get

⊔|z| ≤ |s|∀y < |s|
(

Bit(y, z) ↔ Bit
(

y,Bri(x, s)
)

)

. (3.22)

From PA, it can also be seen that the following sentence is true:

∀s∀x < |s|∀|z| ≤ |s|
[

∀y < |s|
(

Bit(y, z) ↔ Bit
(

y,Bri(x, s)
)

)

→ z = Bri(x, s)
]

. (3.23)

Now, the target x < |s|→⊔z
(

z = Bri(x, s)
)

is a logical consequence of (3.22) and (3.23).

3.8. Multiplication. In what follows, ⌊u/2⌋ is a pterm for the function that, for a given
number u, returns the number whose binary representation is obtained from that of u by
deleting the least significant bit if such a bit exists (i.e., if u 6= 0), and returns 0 otherwise.

Lemma 3.8. CLA11RA ⊢ ⊔z(z = ⌊u/2⌋).

Proof. Argue in CLA11RA . We first claim that

Bit(y, ⌊u/2⌋) ⊔ ¬Bit(y, ⌊u/2⌋). (3.24)

To win (3.24), we compute the value a of y ′ using the Successor axiom. Next, using the Bit
axiom, we figure out whether the ath least significant bit of u is 1 or 0. If it is 1, we choose
the left ⊔ -disjunct of (3.24), otherwise choose the right ⊔ -disjunct.

From (3.24), by Comprehension, we get

⊔|z| ≤ |u|∀y < |u|
(

Bit(y, z) ↔ Bit(y, ⌊u/2⌋)
)

. (3.25)

From PA, we also know that

∀u∀|z| ≤ |u|
(

∀y < |u|
(

Bit(y, z) ↔ Bit(y, ⌊u/2⌋)
)

→ z = ⌊u/2⌋
)

. (3.26)

Now, the target ⊔z(z = ⌊u/2⌋) is a logical consequence of (3.25) and (3.26).

BUILD YOUR OWN CLARITHMETIC I 27

In what follows, Bitsum(x, y, u, v) is (a pterm for) the function

(u)0 × (v)y⊖0 + (u)1 × (v)y⊖1 + (u)2 × (v)y⊖2 + . . .+ (u)min(x,y) × (v)y⊖x

(here, of course, min(x, y) means the smaller of y, x).
Take a note of the following obvious facts:

PA ⊢ ∀
(

Bitsum(x, y, u, v) ≤ |u|
)

. (3.27)

PA ⊢ ∀
(

x ≥ y→Bitsum(x ′, y, u, v) = Bitsum(x, y, u, v)
)

. (3.28)

PA ⊢ ∀
(

x > |u|→Bitsum(x, y, u, v) = Bitsum(|u|, y, u, v)
)

. (3.29)

Lemma 3.9. CLA11RA ⊢ ⊔z
(

z = Bitsum(x, y, u, v)
)

.

Proof. Argue in CLA11RA . By Induction on x, we want to show that

x ≤ |u|→⊔|z| ≤ ||u||
(

z = Bitsum(x, y, u, v)
)

. (3.30)

Here and later in similar cases, as expected, “||u||” is not any sort of new notation, it
simply stands for “|(|u|)|”. Note that the consequent of the above formula is logarithmically
bounded (namely, the bound for ⊔ is |u|, unlike the linear bound u used in the antecedent)
and hence, in view of clause 2 of Definition 2.2, is guaranteed to be Rspace -bounded as
required by the conditions of R-Induction.

The basis ⊔|z| ≤ ||u||
(

z = Bitsum(0, y, u, v)
)

is solved by choosing, for z, the constant
b with b = (u)0 × (v)y. Here our writing “×” should not suggest that we are relying on the
system’s (not yet proven) knowledge of how to compute multiplication. Rather, (u)0 × (v)y
has a simple propositional-combinatorial meaning: it means 1 if both Bit(0, u) and Bit(y, v)
are true, and means 0 otherwise. So, b can be computed by just using the Bit axiom twice
and then, if b is 1, further using Fact 3.1.

The inductive step is

⊔|z| ≤ ||u||
(

z = Bitsum(x, y, u, v)
)

→⊔|z| ≤ ||u||
(

z = Bitsum(x ′, y, u, v)
)

. (3.31)

To solve the above, we wait till Environment chooses a constant a for z in the antecedent.
After that, using Fact 3.5, we figure out whether x < y. If not, we choose a for z in
the consequent and, in view of (3.28), win. Now suppose x < y. With the help of the
Successor axiom, Bit axiom, Fact 3.6 and perhaps also Fact 3.1, we find the constant b
with b = (u)x′ × (v)y⊖x′ . Then, using Fact 3.4, we find the constant c with c = a + b, and
specify z as c in the consequent. With some basic knowledge from PA including (3.27), our
strategy can be seen to win (3.31).

Now, to solve the target ⊔z
(

z = Bitsum(x, y, u, v)
)

, we do the following. We first wait
till Environment specifies values x0, y0, u0, v0 for the (implicitly ⊓-bound) variables x, y, u, v,
thus bringing the game down to ⊔z

(

z = Bitsum(x0, y0, u0, v0)
)

. (Ordinarily, such a step
would be omitted in an informal argument and we would simply use x, y, u, v to denote the
constants chosen by Environment for these variables; but we are being more cautious in
the present case.) Now, using the Log axiom, we find the value c0 of |u0| and then, using
Fact 3.5, we figure out the truth status of x0 ≤ c0. If it is true, then, choosing x0, y0, u0, v0
for the free variables x, y, u, v of (3.30), we force the provider of (3.30) to choose a constant
d for z such that d = Bitsum(x0, y0, u0, v0) is true. We select that very constant d for
z in ⊔z

(

z = Bitsum(x0, y0, u0, v0)
)

, and celebrate victory. Now suppose x0 ≤ c0 is false.
We do exactly the same as in the preceding case, with the only difference that we choose
c0, y0, u0, v0 (rather than x0, y0, u0, v0) for the free variables x, y, u, v of (3.30). In view of
(3.29), we win.

28 G. JAPARIDZE

Fact 3.10. CLA11RA ⊢ ⊔z(z = u× v).

Proof. The pencil-and-paper algorithm for multiplying binary numbers, which creates a
picture like the following one, is also well known:

11011
×

101
−−−−

11011
+ 000000

1101100
−−−−−
10000111

One way to describe it is as follows. The algorithm constructs the value z of the product
u × v bit by bit, in the right-to-left order. At any step y > 0 we have a carry ci−1 from
the preceding step y− 1 (unlike the carries that emerge in the addition algorithm, here the
carry can be greater than 1). For step 0, the “carry” c−1 from the non-existing “preceding
step” # − 1 is stipulated to be 0. At each step y = 0, 1, 2, . . ., we first find the sum
ty = Bitsum(y, y, u, v) + cy−1. Then we declare (z)y to be 0 (resp. 1) if ty is even (resp.
odd); and we declare cy to be ⌊ty/2⌋.

Let Carry(y, u, v) be a natural pterm for “the carry cy that we get at step y ≥ 0 when
computing u× v”. Take a note of the following PA-provable fact:

∀
(

Carry(y, u, v) ≤ |u|
)

. (3.32)

Arguing in CLA11RA , we claim that

y ≤ |u|+ |v|→⊔|w| ≤ ||u||
(

Carry(y, u, v) = w
)

∧
(

Bit(y, u× v) ⊔ ¬Bit(y, u× v)
)

. (3.33)

This claim can be proven by Induction on y. The basis is

⊔|w| ≤ ||u||
(

Carry(0, u, v) = w
)

∧
(

Bit(0, u × v) ⊔ ¬Bit(0, u × v)
)

. (3.34)

Our strategy for (3.34) is as follows. Using Lemma 3.9, we compute the value a of
Bitsum(0, 0, u, v). Then, using Lemma 3.8, we compute the value b of ⌊a/2⌋. After that,
we choose b for w in the left conjunct of (3.34). Also, using the Bit axiom, we figure out
whether Bit(0, a) is true. If yes, if we choose Bit(0, u × v) in the right conjunct of (3.34),
otherwise we choose ¬Bit(0, u × v). With some basic knowledge from PA including (3.32),
we can see that victory is guaranteed.

The inductive step is

⊔|w| ≤ ||u||
(

Carry(y, u, v) = w
)

∧
(

Bit(y, u× v) ⊔ ¬Bit(y, u× v)
)

→

⊔|w| ≤ ||u||
(

Carry(y ′, u, v) = w
)

∧
(

Bit(y ′, u× v) ⊔ ¬Bit(y ′, u× v)
)

.
(3.35)

Here is our strategy for (3.35). We wait till, in the antecedent, the adversary tells us the
carry a = Carry(y, u, v) from the yth step. Using the Successor axiom, we also find the value
b of y ′. Then, using Lemma 3.9, we compute the value c of Bitsum(b, b, u, v). Then, using
Fact 3.4, we compute the value d of a+ c. Then, using Lemma 3.8, we compute the value
e of ⌊d/2⌋. Now, we choose e for w in the consequent of (3.35). Also, using the Bit axiom,
we figure out whether Bit(0, d) is true. If true, we choose Bit(y ′, u × v) in the consequent
of (3.35), otherwise we choose ¬Bit(y ′, u× v). Again, with some basic knowledge from PA
including (3.32), we can see that victory is guaranteed.

BUILD YOUR OWN CLARITHMETIC I 29

The following formula is a logical consequence of (3.33) and the PA-provable fact ∀(y <
|u|+ |v|+ 1̂→ y ≤ |u|+ |v|):

y < |u|+ |v|+ 1̂→Bit(y, u× v) ⊔ ¬Bit(y, u× v). (3.36)

From (3.36), by Reasonable Comprehension, we get

⊔|z| ≤ |u|+ |v|+ 1̂∀y < |u|+ |v|+ 1̂
(

Bit(y, z) ↔ Bit(y, u× v)
)

. (3.37)

By PA, we also have

∀
(

|z| ≤ |u|+ |v|+ 1̂∧ ∀y < |u|+ |v|+ 1̂
(

Bit(y, z) ↔ Bit(y, u× v)
)

→ z = u× v
)

. (3.38)

Now, the target ⊔z(z = u× v) is a logical consequence of (3.37) and (3.38).

4. Some instances of CLA11

In this section we are going to see an infinite yet incomplete series of natural theories that
are regular and thus adequate (sound and complete) in the sense of Theorem 2.6. All these
theories look like CLA11R∅ , with the subscript ∅ indicating that there are no supplementary
axioms.

Given a set S of bounds, by S♥ (resp. S♠) we shall denote the linear (resp. polynomial)
closure of S.

Lemma 4.1. Consider any regular boundclass triple R, and any set S of bounds. Assume
that, for every pterm p(~x) ∈ S, we have CLA11R∅ ⊢ ⊔z(z = p|~x|) for some (=any) variable

z not occurring in p. Then the same holds for S♠ — and hence also S♥ — instead of S.

Proof. Straightforward (meta)induction on the complexity of pterms, relying on the Succes-
sor axiom, Fact 3.4 and Fact 3.10.

Lemma 4.2. Consider any regular boundclass triple R, any pterms p(~x) and a(~x), and
any variable z not occurring in these pterms. Assume a(~x) is in Ramplitude , and CLA11R∅
proves the following two sentences:

⊓⊔z
(

z = p(~x)
)

; (4.1)

∀
(

p(~x) ≤ a(~x)
)

. (4.2)

Then CLA11R∅ also proves ⊓⊔z(z = 2p|~x|).

Proof. Assume the conditions of the lemma, and argue in CLA11R∅ . We claim that

Bit(y, 2p|~x|) ⊔ ¬Bit(y, 2p|~x|). (4.3)

Our strategy for (4.3) is as follows. Using the Log axiom, we compute the values ~c of |~x|.
Then, relying on (4.1), we find the value a of p(~c). From PA, we know that the ath least
significant bit of 2a — and only that bit — is a 1. So, using Fact 3.5, we compare a with y.
If a = y, we choose Bit(y, 2p|~x|) in (4.3), otherwise choose ¬Bit(y, 2p|~x|).

From (4.3), by Comprehension, we get

⊔|z| ≤ (a|~x|) ′∀y < (a|~x|) ′
(

Bit(y, z) ↔ Bit(y, 2p|~x|)
)

.

The above, in view of the PA-provable fact |2a|~x|| = (a|~x|) ′, implies

⊔|z| ≤ |2a|~x||∀y < |2a|~x||
(

Bit(y, z) ↔ Bit(y, 2p|~x|)
)

. (4.4)

30 G. JAPARIDZE

Obviously, from PA and (4.2), we also have

∀
(

|z| ≤ |2a|~x|| ∧ ∀y < |2a|~x||
(

Bit(y, z) ↔ Bit(y, 2p|~x|)
)

→ z = 2p|~x|
)

. (4.5)

Now, the target ⊔z(z = 2p|~x|) is a logical consequence of (4.4) and (4.5).

Here we define the following series B1
1,B

2
1,B

3
1 , . . . ,B2,B3,B4,B5,B6,B7,B8 of sets of

terms:

(1) (a) B1
1 = {|x|}♥ (logarithmic boundclass);

(b) B2
1 = {|x|2}♥;

(c) B3
1 = {|x|3}♥;

(d) . . . ;
(2) B2 = {|x|}♠ (polylogarithmic boundclass);
(3) B3 = {x}♥ (linear boundclass);
(4) B4 = {x× |x|, x× |x|2, x× |x|3, . . .}♥ (quasilinear boundclass);
(5) B5 = {x}♠ (polynomial boundclass);

(6) B6 = {2|x|, 2|x|
2

, 2|x|
3

, . . .}♠ (quasipolynomial boundclass);
(7) B7 = {2x}♠ (exponential-with-linear-exponent boundclass);

(8) B8 = {2x, 2x
2

, 2x
3

, . . .}♠ (exponential-with-polynomial-exponent boundclass).

Note that all elements of any of the above sets are bounds, i.e., monotone pterms.
Further, since all sets have the form S♥ or S♠, they are (indeed) boundclasses, i.e., are
closed under syntactic variation.

Fact 4.3. For any boundclass triple R listed below, the theory CLA11R∅ is regular:

(B3,B
1
1,B5); (B3,B

2
1 ,B5); (B3,B

3
1,B5); . . . ; (B3,B2,B5); (B3,B2,B6); (B3,B2,B7); (B3,B3,B5);

(B3,B3,B6); (B3,B3,B7); (B4,B
1
1 ,B5); (B4,B

2
1,B5); (B4,B

3
1 ,B5); . . . ; (B4,B2,B5); (B4,B2,B6);

(B4,B4,B5); (B4,B4,B6); (B4,B4,B7); (B5,B
1
1 ,B5); (B5,B

2
1,B5); (B5,B

3
1 ,B5); . . . ; (B5,B2,B5);

(B5,B2,B6); (B5,B5,B5); (B5,B5,B6); (B5,B5,B7); (B5,B5,B8).

Proof. Let R be any one of the above-listed triples. By definition, a theory CLA11R∅ is

regular iff the triple R is regular and, in addition, CLA11R∅ satisfies the two conditions of
Definition 2.5.

To verify that R is regular, one has to make sure that all five conditions of Definition
2.2 are satisfied by any value of R from the list. This is a rather easy job. For instance, the
satisfaction of condition 3 of Definition 2.2 is automatically guaranteed in view of the fact
that all of the boundclasses B1

1, . . . ,B8 have the form S♥ or S♠, and the Rtime component
of each of the listed triples has the form S♠. We leave a verification of the satisfaction of
the other conditions of Definition 2.2 to the reader.

As for Definition 2.5, condition 1 of it is trivially satisfied because the set of the supple-
mentary axioms of each theory CLA11R∅ under question is empty. So, it remains to only
verify the satisfaction of condition 2. Namely, we shall show that, for every bound b(~x)
from Ramplitude , Rspace or Rtime , CLA11R∅ proves ⊔z(z = b|~x|). Let us start with Rspace .

Assume Rspace = B1
1 = {|x|}♥. In view of Lemma 4.1, in order to show (here and

below in similar situations) that CLA11R∅ ⊢ ⊔z(z = b|~x|) for every bound b(~x) from this

boundclass, it is sufficient for us to just show that CLA11R∅ ⊢ ⊔z(z = ||x||). But this is
indeed so: apply the Log axiom to x twice.

Assume Rspace = B2
1 = {|x|2}♥. Again, in view of Lemma 4.1, it is sufficient for us to

show that CLA11R∅ proves ⊔z(z = ||x||2), i.e., ⊔z(z = ||x|| × ||x||). But this is indeed so:

BUILD YOUR OWN CLARITHMETIC I 31

apply the Log axiom to x twice to obtain the value a of ||x||, and then apply Fact 3.10 to
compute the value of a× a.

The cases of Rspace being B3
1, B

4
1, . . . will be handled in a similar way, relying on Fact

3.10 several times rather than just once.
The case of Rspace = B2 = {|x|}♠ will be handled in exactly the same way as we handled

Rspace = B1
1 = {|x|}♥.

So will be the case of Rspace = B3 = {x}♥, with the only difference that, the Log axiom
needs to be applied only once rather than twice.

Assume Rspace = B4 = {x × |x|, x × |x|2, x × |x|3, . . .}♥. In view of Lemma 4.1, it is

sufficient for us to show that, for any i ≥ 1, CLA11R∅ ⊢ ⊔z(z = |x|×||x||i). This provability
indeed holds due to the Log axiom (applied twice) and Fact 3.10 (applied i times).

The case of Rspace = B5 = {x}♠ will be handled in exactly the same way as we handled

Rspace = B3 = {x}♥.
Looking back at the triples listed in the present lemma, we see that Rspace is always one

of B1
1,B

2
1, . . ., B2, B3, B4, B5. This means we are done with Rspace . If Ramplitude or Rtime is

one of B1
1,B

2
1, . . ., B2, B3, B4, B5, the above argument applies without any changes. In fact,

Ramplitude is always one of B3, B4, B5, meaning that we are already done with Ramplitude as
well. So, it only remains to consider Rtime in the cases where the latter is one of B6, B7, B8.

Assume Rtime = B6 = {2|x|, 2|x|
2

, 2|x|
3

, . . .}♠. In view of Lemma 4.1, it is sufficient for

us to show that, for any i ≥ 1, CLA11R∅ ⊢ ⊔z(z = 2||x||
i

). Consider any such i. Relying

on the Log axiom once and Fact 3.10 i times, we find that CLA11R∅ ⊢ ⊔z(z = |x|i). Also,
as R is a regular boundclass triple, Ramplitude is at least linear, implying that it contains a

bound a(x) with PA ⊢ ∀x
(

|x|i ≤ a(x)
)

. Hence, by Lemma 4.2, CLA11R∅ ⊢ ⊔z(z = 2||x||
i

),
as desired.

Assume Rtime = B7 = {2x}♠. It is sufficient to show that CLA11R∅ ⊢ ⊔z(z = 2|x|).

The sentence ⊔z(z = x) is logically valid and hence provable in CLA11R∅ . Also, due to

being at least linear, Ramplitude contains a bound a(x) with PA ⊢ ∀x
(

x ≤ a(x)
)

. Hence, by

Lemma 4.2, CLA11R∅ ⊢ ⊔z(z = 2|x|), as desired.

Finally, assume Rtime = B8 = {2x, 2x
2

, 2x
3

, . . .}♠. It is sufficient for us to show that,

for any i ≥ 1, CLA11R∅ ⊢ ⊔z(z = 2|x|
i

). Consider any such i. Relying on Fact 3.10 i times,

we find that CLA11R∅ ⊢ ⊔z(z = xi). Also, Ramplitude , which in our case — as seen from

the list of triples — can only be B5 = {x}♠, contains the bound xi, for which we trivially

have PA ⊢ ∀x(xi ≤ xi). Hence, by Lemma 4.2, CLA11R∅ ⊢ ⊔z(z = 2|x|
i

), as desired.

In view of Theorem 2.6, an immediate corollary of Fact 4.3 is that, where R is any
one of the boundclass triples listed in Fact 4.3, the theory CLA11R∅ (resp. CLA11R∅!)
is extensionally (resp. intensionally) adequate with respect to computability in the corre-

sponding tricomplexity. For instance, CLA11
(B3,B2,B5)
∅ and CLA11

(B3,B2,B5)
∅! are adequate

with respect to (simultaneously) linear amplitude, polylogarithmic space and polynomial

time computability; CLA11
(B5,B3,B8)
∅ and CLA11

(B5,B3,B8)
∅! are adequate with respect to

polynomial amplitude, linear space and exponential time computability; and so on.
Fact 4.3 was just to somewhat illustrate the scalability and import of Theorem 2.6.

There are many meaningful and interesting boundclasses and boundclass triples yielding
regular and hence adequate theories yet not mentioned in this section.

32 G. JAPARIDZE

5. Extensional completeness

We let CLA11RA be an arbitrary but fixed regular theory. Additionally, we pick and fix an
arbitrary arithmetical problem A with an R tricomplexity solution. Proving the extensional
completeness ofCLA11RA — i.e., the completeness part of Theorem 2.6(1) —means showing

the existence of a theorem of CLA11RA which, under the standard interpretation †, equals
to (“expresses”) A. This is what the present section is exclusively devoted to.

5.1. X, X and (a, s, t). By definition, the above A is an arithmetical problem because, for
some sentence X, A = X†. For the rest of Section 5, we fix such a sentence X, and fix X
as an HPM (=strategy) which solves X† in R tricomplexity. In view of Lemma 10.1 of [45]
and Lemma 2.3, we may and will assume that, as a solution of X†, X is provident. We
further fix three unary bounds a(x) ∈ Ramplitude , s(x) ∈ Rspace and t(x) ∈ Rtime such that

X is an (a, s, t) tricomplexity solution of X†. In view of conditions 2, 3 and 5 of Definition
2.2, we may and will assume that the following sentence is true:

∀x
(

x ≤ a(x) ∧ |t(x)| ≤ s(x) ≤ a(x) ≤ t(x)
)

. (5.1)

X is not necessarily provable in CLA11RA , and our goal is to construct another sentence

X so that A = X
†
and so that X is guaranteed to be provable in CLA11RA .

Following our earlier conventions, more often than not we will drop the superscript †

applied to (para)formulas, writing F † simply as F .
We also agree that, throughout the present section, unless otherwise suggested by the

context, different metavariables x, y, z, s, s1, . . . stand for different variables of the language
of CLA11RA .

5.2. Preliminary insights. It might be worthwhile to try to get some preliminary insights
into the basic idea behind our extensional completeness proof before going into its details.
Let us consider a simple special case where X is ⊓s⊔yp(s, y) for some elementary formula
p(s, y).

The assertion “X is an (a, s, t) tricomplexity solution of X” can be formalized in the
language of PA as a certain sentence W. Then we let the earlier mentioned X be the
sentence ⊓s⊔y

(

W→ p(s, y)
)

. Since W is true, W→ p(s, y) is equivalent to p(s, y). This

means that X and X, as games, are the same — that is, X
†
= X†. It now remains to

understand why CLA11RA ⊢ X. Let us agree to write “X (s)” as an abbreviation of the
phrase “X in the scenario where, at the very beginning of the play, X ’s adversary made the
move #s, and made no other moves afterwards”. Argue in CLA11RA .

A central lemma, proven by R-induction in turn relying on the results of Section 3,
is one establishing that the work of X is provably “traceable”. A simplest version of this
lemma applied to our present case would look like

t ≤ t|s|→⊔|v| ≤ s|s|Config(s, t, v), (5.2)

where Config(s, t, v) is an elementary formula asserting that v is a partial description of the
t’th configuration of X (s). Here v is not a full description as it omits certain information.
Namely, v does not include the contents of X ’s buffer and run tape, because this could
make |v| bigger than the allowed s|s|; on the other hand, v includes all other information
necessary for finding a similar partial description of the next configuration, such as scanning
head locations or work-tape contents.

BUILD YOUR OWN CLARITHMETIC I 33

Tracing the work of X (s) up to its (t|s|)th step in the style of (5.2), one of the following
two eventual scenarios will be observed:

“X (s) does something wrong”; (5.3)

¬(5.3) ∧ “at some point, X (s) makes the move #c for some constant c”. (5.4)

Here “X (s) does something wrong” is an assertion that X (s) makes an illegal move, or
makes an oversized (exceeding a|s|) move, or consumes too much (exceeding s|s|) work-tape
space, or makes no moves at all, etc. — any observable fact that contradicts W. As an
aside, why do we consider X (s)’s not making any moves as “wrong”? Because it means
that X (s) either loses the game or violates the t time bound by making an unseen-by-us
move sometime after step t|s|.

We will know precisely which of (5.3) or (5.4) is the case. That is, we will have the
resource

(5.3) ⊔ (5.4). (5.5)

If (5.3) is the case, then X does not satisfy whatW asserts about it, soW is false. In this
case, we can win ⊔y

(

W→ p(s, y)
)

by choosing 0 (or any other constant) for y, because the
resulting W→ p(s, 0), having a false antecedent, is true. Thus, as we have just established,

(5.3)→⊔y
(

W→ p(s, y)
)

. (5.6)

Now suppose (5.4) is the case. This means that the play of X by X (s) hits p(s, c). If
W is true and thus X is a winning strategy for X, then p(s, c) has to be true, because
hitting a false parasentence would make X lose. Thus, W→ p(s, c) is true. If so, we can
win ⊔y

(

W→ p(s, y)
)

by choosing c for y. But how can we obtain c? We know that c is on
X (s)’s run tape at the (t|s|)th step. However, as mentioned, the partial description v of the
(t|s|)th configuration that we can obtain from (5.2) does not include this possibly “oversized”
constant. It is again the traceability of the work of X — in just a slightly different form
from (5.2) — that comes in to help. Even though we cannot keep track of the evolving (in
X ’s buffer) c in its entirety while tracing the work of X (s) in the style of (5.2), finding any
given bit of c is no problem. And this is sufficient, because our ability to find all particular
bits of c, due to Comprehension, allows us to assemble the constant c itself. In summary,
we have

(5.4)→⊔y
(

W→ p(s, y)
)

. (5.7)

Our target X is now a logical consequence of (5.5), (5.6) and (5.7).

What we saw above was about the exceptionally simple case of X = ⊓s⊔yp(s, y),
and the general case is much more complex, of course. Among other things, showing the
provability of X requires a certain metainduction on its complexity. But the idea that we
have just tried to explain, with certain adjustments and refinements, still remains at the
core of the proof.

5.3. The sentence W. Remember the operation of prefixation from [45]. It takes a con-
stant game G together with a legal position Φ of G, and returns a constant game 〈Φ〉G.
Intuitively, 〈Φ〉G is the game to which G is brought down by the labmoves of Φ. This is an
“extensional” operation, insensitive with respect to how games are represented/written. Be-
low we define an “intensional” version 〈·〉!· of prefixation, which differs from its extensional
counterpart in that, instead of dealing with games, it deals with parasentences. Namely:

34 G. JAPARIDZE

Assume F is a parasentence and Φ is a legal position of F . We define the parasentence
〈Φ〉!F inductively as follows:

• 〈〉!F = F (as always, 〈〉 means the empty position).
• For any nonempty legal position 〈λ,Ψ〉 of F , where λ is a labmove and Ψ is a sequence
of labmoves:
– If λ signifies a choice of a component Gi in an occurrence of a subformula G0 ⊔G1

or G0 ⊓G1 of F , and F ′ is the result of replacing that occurrence by Gi in F , then
〈λ,Ψ〉!F = 〈Ψ〉F ′.

– If λ signifies a choice of a constant c for a variable x in an occurrence of a subformula
⊔xG(x) or ⊓xG(x) of F , and F ′ is the result of replacing that occurrence by G(c) in
F , then 〈λ,Ψ〉!F = 〈Ψ〉F ′.

For example, 〈⊥1.#101,⊤1.0〉!
(

E ∧⊓x
(

G(x) ⊔H(x)
)

)

= E ∧G(101).

We assume that the reader is sufficiently familiar with Gödel’s technique of encoding
and arithmetizing. Using that technique, we can construct an elementary sentence W1

which asserts that

“X is a provident (a, s, t) tricomplexity solution of X”. (5.8)

While we are not going to actually construct W1 here, some clarifications could still be
helpful. A brute force attempt to express (5.8) would have to include the phrase “for all
computation branches of X”. Yet, there are uncountably many computation branches, and
thus they cannot be encoded through natural numbers. Luckily, this does not present a
problem. Instead of considering all computation branches, for our purposes it is sufficient
to only consider ⊥-legal branches of X with finitely many ⊥-labeled moves. Call such
branches relevant. Each branch is fully determined by what moves are made in it by
Environment and when. Since the number of Environment’s moves in any relevant branch
is finite, all such branches can be listed according to — and, in a sense, identified with —
the corresponding finite sequences of Environment’s timestamped moves. This means that
there are only countably many relevant branches, and they can be encoded with natural
numbers. Next, let us say that a parasentence E is relevant iff E = 〈Γ〉!X for some
legal position Γ of X. In these terms, the formula W1 can be constructed as a natural
arithmetization of the following, expanded, form of (5.8):

“a, s, t are bounds8 and, for any relevant computation branch B, the following
conditions are satisfied:
(1) (X plays X in (a, s, t) tricomplexity): For any step c of B, where ℓ

is the background of c, we have:
(a) The spacecost of c does not exceed s(ℓ);
(b) If X makes a move α at step c, then the magnitude of α does not

exceed a(ℓ) and the timecost of α does not exceed t(ℓ).
(2) (X wins X): There is a legal position Γ of X and a parasentence H

such that Γ is the run spelled by B, H = 〈Γ〉!X, and the elementarization
‖H‖ of H is true.

(3) (X plays X providently): There is an integer c such that, for any
d ≥ c, X ’s buffer at step d of B is empty.”

8I.e., a, s, t are monotone pterms — see Section 2.3. This condition is implicit in (5.8).

BUILD YOUR OWN CLARITHMETIC I 35

Clause 2 of the above description relies on the predicate “true” which, in full generality, by
Tarski’s theorem, is non-arithmetical. However, in the present case, the truth predicate is
limited to the parasentences ‖H‖ where H is a relevant parasentence. Due to H’s being
relevant, all occurrences of blind quantifiers in ‖H‖ are inherited from X. This means that,
as long as X is fixed (and, in our case, it is indeed fixed), the ∀,∃-depth of ‖H‖ is bounded
by a constant. It is well known (cf. [13]) that limiting the ∀,∃-depths of arithmetical
parasentences to any particular value makes the corresponding truth predicate expressible
in the language of PA. So, it is clear that constructing W1 formally does not present a
problem.

We now define the sentence W by

W =def W1 ∧ (5.1).

5.4. The overline notation. A literal is ⊤, ⊥, or a (nonlogical) atomic formula with or
without negation ¬. By a politeral of a formula we mean a positive (not in the scope of
¬) occurrence of a literal in it. For instance, the occurrence of p, as well as of ¬q — but
not of q — is a politeral of p ∧ ¬q. While a politeral is not merely a literal but a literal L
together with a fixed occurrence, we shall often refer to it just by the name L of the literal,
assuming that it is clear from the context which (positive) occurrence of L is meant.

As we remember, our goal is to construct a formulaX which expresses the same problem
as X does and which is provable in CLA11RA . Where E is X or any other formula, we let
E be the result of replacing in E every politeral L by W→L.

Lemma 5.1. For any formula E, including X, we have E† = E
†
.

Proof. If E is a literal, then, since W is true, E is equivalent (in the standard model) to

W→E, meaning that E† = E
†
. The phenomenon E† = E

†
now automatically extends

from literals to all formulas.

In view of the above lemma, what now remains to do for the completion of our exten-
sional completeness proof is to show that CLA11RA ⊢ X . The rest of Section 5 is entirely
devoted to this task.

Lemma 5.2. For any formula E, CLA11RA ⊢ W∨ ∀E.

Proof. Induction on the complexity of E. The base, which is about the cases where E is
a literal L, is straightforward, as then W∨ ∀E is the classically valid W ∨ ∀(W→L). If
E has the form H0 ∧H1, H0 ∨H1, H0 ⊓H1 or H0 ⊔H1 then, by the induction hypothesis,
CLA11RA proves W∨ ∀H0 and W ∨ ∀H1, from which W∨ ∀E follows by LC. Similarly, if
E has the form ∀xH(x), ∃xH(x), ⊓xH(x) or ⊔xH(x), then, by the induction hypothesis,

CLA11RA proves W∨ ∀H(x), from which W∨ ∀E follows by LC.

5.5. Configurations. Let us fix y as the number of work tapes of X , and d as the maximum
possible number of labmoves in any legal run of X (the depth of X).

For the rest of Section 5, by a configuration we shall mean a description of what
intuitively can be thought of as the “current” situation at some step of X . Specifically, such
a description consists of the following 7 pieces of information:

(1) The state of X .

36 G. JAPARIDZE

(2) A y-element array of the contents of the corresponding y work tapes of X .
(3) The content of X ’s buffer.
(4) The content of X ’s run tape.
(5) A y-element array of the locations of the corresponding y work-tape heads of X .
(6) The location of the run-tape head of X .
(7) The string that X put into its buffer on the transition to the “current” configuration

from the predecessor configuration; if there is no predecessor configuration, then such
a string is empty.

Notice a difference between our present meaning of “configuration” (of X) and the normal
meaning of this word as given in [45]. Namely, the piece of information from item 7 is not
normally part of a configuration, as this information is not really necessary in order to be
able to find the next configuration.

It also is important to point out that any possible combination of any possible settings
of the above 7 parameters is considered to be a configuration, regardless of whether such
settings can actually be reached in some computation branch of X or not. For this reason,
we shall use the adjective reachable to characterize those configurations that can actually
be reached.

We fix some reasonable encoding of configurations. For technical convenience, we as-
sume that every configuration has a unique code, and vice versa: every natural number is
the code of some unique configuration. With this one-to-one correspondence in mind, we
will routinely identify configurations with their codes. Namely, for a number c, instead of
saying “the configuration encoded by c”, we may simply say “the configuration c”. “The
state of c”, or “c’s state”, will mean the state of the machine X in configuration c — i.e.,
the 1st one of the above-listed 7 components of c. Similarly for the other components of a
configuration, such as tape or buffer contents and scanning head locations.

By the background of a configuration c we shall mean the greatest of the magnitudes
of the ⊥-labeled moves on c’s run tape, or 0 if there are no such moves.

The following definition, along with the earlier fixed constant d, involves the constants
m and p introduced later in Section 5.7.

Definition 5.3. We say that a configuration c is uncorrupt iff, where Γ is the position
spelled on c’s run tape, α is the string found in c’s buffer and ℓ is the background of c, all
of the following conditions are satisfied:

(1) Γ is a legal position of X.
(2) ℓ ≤ a(ℓ) ∧ |t(ℓ)| ≤ s(ℓ) ≤ a(ℓ) ≤ t(ℓ).
(3) |m| ≤ s(ℓ), where m is as in (5.11).
(4) |d(a(ℓ) + p+ 1) + 1| ≤ s(ℓ), where d is as at the beginning of Section 5.5 and p is as in

(5.12).
(5) The number of non-blank cells on any one of the work tapes of c does not exceed s(ℓ).
(6) There is no ⊤-labeled move in Γ whose magnitude exceeds a(ℓ).
(7) If α is nonempty, then there is a string β such that 〈Γ,⊤αβ〉 is a legal position of X

and the magnitude of the move αβ does not exceed a(ℓ).

As expected, “corrupt” means “not uncorrupt”. If c merely satisfies condition 1 of Defini-
tion 5.3, then we say that c is semiuncorrupt.

We define the yield of a semiuncorrupt configuration c as the game 〈Γ〉!X, where Γ is
the position spelled on c’s run tape.

BUILD YOUR OWN CLARITHMETIC I 37

Let c, d be two configurations and k a natural number. We say that d is a kth unadul-
terated successor of c iff there is a sequence a0, . . . , ak (k ≥ 0) of configurations such
that a0 = c, ak = d and, for each i ∈ {1, . . . , k}, we have: (1) ai is a legitimate successor
of (possible next configuration immediately after) ai−1, and (2) ai’s run tape content is the
same as that of ai−1. Note that every configuration c has at most one kth unadulterated
successor. The latter is the configuration to which c evolves within k steps/transitions in
the scenario where Environment does not move, as long as X does not move in that scenario
either (otherwise, if X moves, c has no kth unadulterated successor). Also note that every
configuration c has a 0th unadulterated successor, which is c itself.

For simplicity and without loss of generality, we shall assume that the work-tape alpha-
bet of X — for each of its work tapes — consists of just 0, 1 and Blank, and that the leftmost
cells of the work tapes never contain a 0.9 Then, remembering from [45] that an HPM never
writes a Blank and never moves its head past the leftmost blank cell, the content of a given
work tape at any given time can be understood as the bitstring bn−1, . . . , b0, where n is the
number of non-blank cells on the tape10 and, for each i ∈ {1, . . . , n}, bn−i is the bit written
in the ith cell of the tape (here the cell count starts from 1, with the 1st cell being the
leftmost cell of the tape). We agree to consider the number represented by such a string —
i.e., the number bn−1 × 2n−1 + bn−2 × 2n−2 + . . .+ b1 × 21 + b0 × 20 — to be the code of the
corresponding content of the work tape. As with configurations, we will routinely identify
work-tape contents with their codes.

For further simplicity and again without loss of generality, we assume that, on any
transition, X puts at most one symbol into its buffer. We shall further assume that, on a
transition to a move state, X never repositions any of its scanning heads and never modifies
the content of any of its work tapes.

5.6. The white circle and black circle notations. For the rest of this paper we agree
that, whenever τ(z) is a unary pterm but we write τ(~x) or τ(x1, . . . , xn), it is to be un-
derstood as an abbreviation of the pterm τ

(

max(x1, . . . , xn)
)

. By convention, if n = 0,
max(x1, . . . , xn) is considered to be 0. And if we write τ |~x|, it is to be understood as
τ(|x1|, . . . , |xn|).

Let E(~s) be a formula all of whose free variables are among ~s (but not necessarily vice
versa), and z be a variable not among ~s. We will write

E◦(z,~s)

to denote an elementary formula whose free variables are z,~s, and which is a natural arith-
metization of the predicate that, for any constants a,~c in the roles of z,~s, holds (that is,
E◦(a,~c) is true) iff a is a reachable uncorrupt configuration whose yield is E(~c) and whose
background does not exceed max(~c). Further, we will write

E•(z,~s)

to denote an elementary formula whose free variables are z,~s, and which is a natural arith-
metization of the predicate that, for any constants a,~c in the roles of z,~s, holds iff E◦(a,~c)
is true and a has a (t|~c|)th unadulterated successor.

9If not, X can be easily modified using rather standard techniques so as to satisfy this condition without
losing any of the relevant properties of the old X . The same can be said about the additional assumptions
made in the following paragraph.

10If n = 0, then the string bn−1, . . . , b0 is empty.

38 G. JAPARIDZE

Thus, while E◦(a,~c) simply says that the formula E(~c) is the yield of the (reachable,
uncorrupt and ≤ max(~c)-background) configuration a, the stronger E•(a,~c) additionally
asserts that such a yield E(~c) is persistent, in the sense that, unless the adversary moves, X
does not move — and hence the yield of a remains the same E(~c) — for at least t|~c| steps
beginning from a.

We say that a formula E is critical iff one of the following conditions is satisfied:

• E is of the form G0 ⊔G1 or ⊔yG;
• E is of the form ∀yG or ∃yG, and G is critical;
• E is of the form G0 ∨G1, and both G0 and G1 are critical;
• E is of the form G0 ∧G1, and at least one of G0, G1 is critical.

Lemma 5.4. Assume E(~s) is a non-critical formula all of whose free variables are among
~s. Then

PA ⊢ ∀
(

E•(z,~s)→ ‖E(~s)‖
)

.

Proof. Assume the conditions of the lemma. Argue in PA. Consider arbitrary (∀) values of
z and ~s, which we continue writing as z and ~s. Suppose, for a contradiction, that E•(z,~s)

is true but ‖E(~s)‖ is false. The falsity of ‖E(~s)‖ implies the falsity of ‖E(~s)‖. This is so
because the only difference between the two formulas is that, wherever the latter has some
politeral L, the former has W→L.

The truth of E•(z,~s) implies that, at some point of some actual play, X reaches the
configuration z, where z is uncorrupt, the yield of z is E(~s), the background of z is at most
max(~s) and, in the scenario where Environment does not move, X does not move either for
at least t|~s| steps afterwards. If X does not move even after t|~s| steps, then it has lost the
game, because the eventual position hit by the latter is E(~s) and the elementarization of
E(~s) is false (it is not hard to see that every such game is indeed lost). And if X does make
a move sometime after t|~s| steps, then, as long as t is monotone (and if not, W is false), X
violates the time complexity bound t, because the background of that move does not exceed
max(~s) but the timecost is greater than t|~s|. In either case we have:

W is false. (5.9)

Consider any non-critical formula G. By induction on the complexity of G, we are going
to show that ‖G‖ is true for any (∀) values of its free variables. Indeed:

• If G is a literal, then ‖G‖ is W→G which, by (5.9), is true.
• If G is H0 ⊓H1 or ⊓xH(x), then ‖G‖ is ⊤ and is thus true.
• G cannot be H0 ⊔H1 or ⊔xH(x), because then it would be critical.

• If G is ∀yH(y) or ∃yH(y), then ‖G‖ is ∀y‖H(y)‖ or ∃y‖H(y)‖, where H(y) is non-critical.

In either case ‖G‖ is true because, by the induction hypothesis, ‖H(y)‖ is true for every
value of its free variables, including variable y.

• If G is H0 ∧H1, then bothH0 andH1 are non-critical. Hence, by the induction hypothesis,
both ‖H0‖ and ‖H1‖ are true. Hence so is ‖H0‖∧ ‖H1‖ which, in turn, is nothing but
‖G‖.

• Finally, if G is H0 ∨H1, then one of the formulas Hi is non-critical. Hence, by the
induction hypothesis, ‖Hi‖ is true. Hence so is ‖H0‖∨ ‖H1‖ which, in turn, is nothing
but ‖G‖.

Thus, for any non-critical formula G, ‖G‖ is true. This includes the case G = E(~s) which,

however, contradicts our assumption that ‖E(~s)‖ is false.

BUILD YOUR OWN CLARITHMETIC I 39

Lemma 5.5. Assume E(~s) is a critical formula all of whose free variables are among ~s.
Then

CLA11RA ⊢ ∃E•(z,~s)→ ∀E(~s). (5.10)

Proof. Assume the conditions of the lemma. By induction on complexity, one can easily see
that the ∃-closure of the elementarization of any critical formula is false. Thus, for whatever
(∀) values of ~s, ‖E(~s)‖ is false. Arguing further as we did in the proof of Lemma 5.4 when
deriving (5.9), we find that, if E•(z,~s) is true for whatever (∃) values of z and ~s, then W is
false. And this argument can be formalized in PA, so we have PA ⊢ ∃E•(z,~s)→¬W. This,
together with Lemma 5.2, can be easily seen to imply (5.10) by LC.

5.7. Titles. A paralegal move means a string α such that, for some (possibly empty)
string β, position Φ and player ℘ ∈ {⊤,⊥}, 〈Φ, ℘αβ〉 is a legal position of X. In other
words, a paralegal move is a prefix of some move of some legal run of X. Every paralegal
move α we divide into two parts, called the header and the numer. Namely, if α does
not contain the symbol #, then α is its own header, with the numer being 0 (i.e., the
empty bit string); and if α is of the form β#c, then its header is β# and its numer is c.
When we simply say “a header”, it is to be understood as “the header of some paralegal
move”. Note that, unlike numers, there are only finitely many headers. For instance, if X
is ⊔xp∧⊓y(q ⊔ r) where p, q, r are elementary formulas, then the headers are 0.#, 1.#, 1.0,
1.1 and their proper prefixes — nine strings altogether.

Given a configuration x, by the title of x we shall mean a partial description of x
consisting of the following four pieces of information, to which we shall refer as titular
components:

(1) x’s state.
(2) The header of the move spelled in x’s buffer.
(3) The string put into the buffer on the transition to x from its predecessor configuration;

if x has no predecessor configuration, then such a string is empty.
(4) The list ℘1α1, . . . , ℘nαm, where m is the total number of labmoves on x’s run tape and,

for each i ∈ {1, . . . ,m}, ℘i and αi are the label (⊤ or ⊥) and the header of the ith
labmove.

We say that a title is buffer-empty if its 2nd titular component is the empty string.
Obviously there are infinitely many titles, yet only finitely many of those are titles of

semiuncorrupt configurations. We fix an infinite, recursive list

Title0,Title1,Title2, . . . ,Titlek,Titlek+1,Titlek+2 . . . ,Titlem,Titlem+1,Titlem+2 . . .

— together with the natural numbers 1 ≤ k ≤ m — of all titles without repetitions, where
Title0 through Titlem−1 (and only these titles) are titles of semiuncorrupt configurations,
with Title0 through Titlek−1 (and only these titles) being buffer-empty titles of semiuncor-
rupt configurations. By the titular number of a given configuration c we shall mean the
number i such that Titlei is c’s title.

We may and will assume that, where p is the size of the longest header, m is as above
and d is as at the beginning of Section 5.5, PA proves the following sentences:

W→ ∀x
(

|m̂| ≤ s(x)
)

; (5.11)

W→ ∀x
(

|d̂(a(x) + p̂+ 1̂) + 1̂| ≤ s(x)
)

. (5.12)

40 G. JAPARIDZE

Indeed, if this is not the case, we can replace s(x) with s(x) + . . . + s(x) + k̂, a(x) with

a(x) + . . . + a(x) + k̂ and t(x) with t(x) + . . . + t(x) + k̂, where “s(x)”, “a(x)” and “t(x)”
are repeated k times, for some sufficiently large k. Based on (5.1) and Definition 2.2, one
can see that, with these new values of a, s, t and the corresponding new value of W, (5.11)
and (5.12) become provable while no old relevant properties of the triple are lost, such
as X ’s being a provident (a, s, t) tricomplexity solution of X, (a, s, t)’s being a member of
Ramplitude ×Rspace ×Rtime , or the satisfaction of (5.1).

5.8. Further notation. Here is a list of additional notational conventions. Everywhere be-
low: x, u, z, t range over natural numbers; n ∈ {0, . . . , d}; ~s abbreviates an n-tuple s1, . . . , sn
of variables ranging over natural numbers; ~v abbreviates a (2y+3)-tuple v1, . . . , v2y+3 of vari-
ables ranging over natural numbers; “|~v| ≤ s|~s|” abbreviates |v1| ≤ s|~s| ∧ . . . ∧ |v2y+3| ≤ s|~s|;
and “⊔|~v| ≤ s|~s|” abbreviates ⊔|v1| ≤ s|~s| . . .⊔|v2y+3| ≤ s|~s|. Also, we identify informal
statements or predicates with their natural arithmetizations.

(1) N(x, z) states that configuration x does not have a corrupt kth unadulterated successor
for any k ≤ z.

(2) D(x,~s,~v) is a ∧ -conjunction of the following statements:
(a) “There are exactly n (i.e., as many as the number of variables in ~s) labmoves on

configuration x’s run tape and, for each i ∈ {1, . . . , n}, if the ith (lab)move is
numeric, then si is its numer”.

(b) “v1 is the location of x’s 1st work-tape head, . . . , vy is the location of x’s yth
work-tape head”.

(c) vy+1 is the content of x’s 1st work tape, . . . , v2y is the content of x’s yth work
tape”.

(d) “v2y+1 is the location of x’s run-tape head”.
(e) “v2y+2 is the length of the numer of the move found in x’s buffer”.
(f) “v2y+3 is x’s titular number, with v2y+3 < m̂ (implying that x is semiuncorrupt)”.

(3) Dǫ(x,~s,~v) abbreviates D(x,~s,~v) ∧ v2y+3 < k̂.
(4) D⊔(x,~s) and Dǫ

⊔
(x,~s) abbreviate ⊔|~v| ≤ s|~s|D(x,~s,~v) and ⊔|~v| ≤ s|~s|Dǫ(x,~s,~v), respec-

tively.
(5) U(x, t, z, u) says “Configuration t is a uth unadulterated successor of configuration x,

and u is the greatest number not exceeding z such that x has a uth unadulterated
successor”.

(6) U~s
⊔
(x, t, z) abbreviates ⊔|u| ≤ s|~s|U(x, t, z, u).

(7) U~s
∃
(x, t) abbreviates ∃uU(x, t, t|~s|, u).

(8) Q(~s, z) abbreviates ∀x
[

D⊔(x,~s)→¬N(x, z) ⊔
(

N(x, z) ∧ ∃t
(

U~s
⊔
(x, t, z) ∧D⊔(t, ~s)

)

)]

.

(9) F(x, y) says “y is the numer of the move found in configuration x’s buffer”.

(10) Ẽ◦(~s) abbreviates ∃x
(

E◦(x,~s) ∧Dǫ
⊔
(x,~s)

)

.

(11) Ẽ•(~s) abbreviates ∃x
(

E•(x,~s) ∧Dǫ
⊔
(x,~s)

)

.

5.9. Scenes. In this subsection and later, unless otherwise suggested by the context, n, ~s,
~v are as stipulated in Section 5.8.

Given a configuration x, by the scene of x we shall mean a partial description of x
consisting of the following two pieces of information for the run tape and each of the work
tapes of x:

BUILD YOUR OWN CLARITHMETIC I 41

• The symbol scanned by the scanning head of the tape.
• An indication (yes/no) of whether the scanning head is located at the beginning of the
tape.

Take a note of the obvious fact that the number of all possible scenes is finite. We let j

denote that number, and let us correspondingly fix a list

Scene1, . . . ,Scenej

of all scenes. Also, for each i ∈ {1, . . . , j}, we let Scenei(x) be a natural formalization of the
predicate “Scenei is the scene of configuration x”.

According to the following lemma, information on x contained in D(x,~s,~v) is sufficient
to determine (in CLA11RA) the scene of x.

Lemma 5.6. CLA11RA proves

∀x
(

D(x,~s,~v)→ Scene1(x) ⊔ . . . ⊔ Scenej(x)
)

. (5.13)

Proof. Recall that ~s is the tuple s1, . . . , sn and ~v is the tuple v1, . . . , v2y+3. Argue in

CLA11RA . Consider an arbitrary (∀) configuration x, keeping in mind — here and later in
similar contexts — that we do not really know the (“blind”) value of x. Assume D(x,~s,~v)
is true, for otherwise (5.13) will be won no matter how we (legally) act.

Consider the 1st work tape of X . According to D(x,~s,~v), v1 is the location of the
corresponding scanning head in configuration x. Using Fact 3.5, we figure out whether
v1 = 0. This way we come to know whether the scanning head of the tape is located at the
beginning of the tape. Next, we know that vy+1 is the content of x’s 1st work tape. Using
the Log axiom and Fact 3.5, we compare |vy+1| with v1. If v1 ≥ |vy+1|, we conclude that
the symbol scanned by the head is Blank. And if v1 < |vy+1|, then the symbol is either a
0 or 1; which of these two is the case depends on whether Bit(vy+1, v1) is true or false; we
make such a determination using the Bit axiom.

The other work tapes are handled similarly.
Finally, consider the run tape. We figure out whether x’s run-tape scanning head is

looking at the leftmost cell of the tape by comparing v2y+1 with 0. The task of finding the
symbol scanned by the scanning head in this case is less straightforward than in the case
of the work tapes, but still doable in view of our ability to perform the basic arithmetic
operations established in Section 3. We leave details to the reader.

The information obtained by now fully determines which of Scene1, . . . ,Scenej is the
scene of x. We win (5.13) by choosing the corresponding ⊔ -disjunct in the consequent.

5.10. The traceability lemma.

Lemma 5.7. CLA11RA ⊢ z ≤ t|~s|→Q(~s, z).

Proof. Argue in CLA11RA . We proceed by Reasonable R-Induction on z. The basis Q(~s, 0)
abbreviates

∀x
(

D⊔(x,~s)→¬N(x, 0) ⊔
[

N(x, 0) ∧ ∃t
(

U~s
⊔
(x, t, 0) ∧D⊔(t, ~s)

)]

)

.

Solving it means solving the following problem for a blindly-arbitrary (∀) x:

D⊔(x,~s)→¬N(x, 0) ⊔
[

N(x, 0) ∧ ∃t
(

U~s
⊔
(x, t, 0) ∧D⊔(t, ~s)

)]

.

42 G. JAPARIDZE

To solve the above, we wait till the adversary brings it down to

|~c| ≤ s|~s| ∧D(x,~s,~c)→¬N(x, 0) ⊔
[

N(x, 0) ∧ ∃t
(

U~s
⊔
(x, t, 0) ∧D⊔(t, ~s)

)]

(5.14)

for some (2y+ 3)-tuple ~c = c1, . . . , c2y+3 of constants. From now on we will assume that

|~c| ≤ s|~s| ∧D(x,~s,~c) (5.15)

is true, for otherwise (5.14) will be won no matter what. On this assumption, solving (5.14)
means solving its consequent, which disabbreviates as

¬N(x, 0) ⊔
(

N(x, 0) ∧ ∃t
(

⊔|r| ≤ s|~s|U(x, t, 0, r) ∧⊔|~v| ≤ s|~s|D(t, ~s, ~v)
)

)

. (5.16)

In order to solve (5.16), we first of all need to figure out whether N(x, 0) is true. Even
though we do not know the actual value of (the implicitly ∀-bounded) x, we do know that
it satisfies (5.15), and this is sufficient for our purposes. Note that N(x, 0) is true iff x
is uncorrupt. So, it is sufficient to just go through the seven conditions of Definition 5.3
and test their satisfaction. From the D(x,~s,~c) conjunct of (5.15), we know that c2y+3 is
x’s titular number. Therefore, x is semiuncorrupt — i.e., condition 1 of Definition 5.3 is
satisfied — iff c2y+3 < m̂. And whether c2y+3 < m̂ we can determine based on Facts 3.1 and
3.5. Next, from the title Titlec2y+3

of x, we can figure out which of the n moves residing on
x’s run tape are numeric. We look at the numers of such moves from among s1, . . . , sn and,
using Fact 3.5 several times, find the greatest numer a. After that, using the Log axiom,
we find the background ℓ of x, which is nothing but |a|. Knowing the value of ℓ, we can
now test the satisfaction of condition 2 of Definition 5.3 based on clause 2 of Definition
2.5, the Log axiom and Fact 3.5. Conditions 3 and 4 of Definition 5.3 will be handled in a
similar way. Next, from cy+1, . . . , c2y, we know the contents of the work tapes of x. This,
in combination with the Log axiom, allows us to determine the numbers of non-blank cells
on those work tapes. Comparing those numbers with s(ℓ), we figure out whether condition
5 of Definition 5.3 is satisfied. Checking the satisfaction of conditions 6 and 7 of Definition
3.5 is also a doable task, and we leave details to the reader.

So, now we know whether x is corrupt or not. If x is corrupt, we choose ¬N(x, 0) in
(5.16) and win. And if x is uncorrupt, i.e., N(x, 0) is true, then we bring (5.16) down to

N(x, 0) ∧ ∃t
(

|0| ≤ s|~s| ∧U(x, t, 0, 0) ∧ |~c| ≤ s|~s|∧D(t, ~s,~c)
)

.

We win because the above is a logical consequence of (5.15), N(x, 0) and the obviously true
|0| ≤ s|~s| ∧U(x, x, 0, 0). The basis of our induction is thus proven.

The inductive step is z < t|~s| ∧Q(~s, z)→Q(~s, z ′), which partially disabbreviates as

z < t|~s| ∧ ∀x
(

D⊔(x,~s)→¬N(x, z) ⊔
[

N(x, z) ∧ ∃t
(

U~s
⊔
(x, t, z) ∧D⊔(t, ~s)

)]

)

→ ∀x
(

D⊔(x,~s)→¬N(x, z ′) ⊔
[

N(x, z ′) ∧ ∃t
(

U~s
⊔
(x, t, z ′) ∧D⊔(t, ~s)

)]

)

.
(5.17)

With some thought, (5.17) can be seen to be a logical consequence of

∀x∀t
[

z < t|~s| ∧
(

¬N(x, z) ⊔
[

N(x, z) ∧
(

U~s
⊔
(x, t, z) ∧D⊔(t, ~s)

)]

)

→¬N(x, z ′) ⊔
[

N(x, z ′) ∧ ∃t
(

U~s
⊔
(x, t, z ′) ∧D⊔(t, ~s)

)]

]

,

BUILD YOUR OWN CLARITHMETIC I 43

so let us pick arbitrary (∀) numbers a, b in the roles of the ∀-bounded variables x, t of the
above expression and focus on

z < t|~s| ∧
(

¬N(a, z) ⊔
[

N(a, z) ∧
(

U~s
⊔
(a, b, z) ∧D⊔(b, ~s)

)]

)

→¬N(a, z ′) ⊔
[

N(a, z ′) ∧ ∃t
(

U~s
⊔
(a, t, z ′) ∧D⊔(t, ~s)

)]

.
(5.18)

To solve (5.18), we wait till the ⊔ -disjunction in its antecedent is resolved. If the adversary
chooses the first ⊔ -disjunct there, we do the same in the consequent and win, because
¬N(a, z) obviously implies ¬N(a, z ′). Now suppose the adversary chooses the second ⊔ -
disjunct in the antecedent. We wait further until (5.18) is brought down to

z < t|~s| ∧N(a, z) ∧ |d| ≤ s|~s| ∧U(a, b, z, d) ∧ |~c| ≤ s|~s| ∧D(b, ~s,~c)
→¬N(a, z ′) ⊔

[

N(a, z ′) ∧ ∃t
(

U~s
⊔
(a, t, z ′)∧D⊔(t, ~s)

)] (5.19)

for some constant d and some (2y + 3)-tuple ~c = c1, . . . , c2y+3 of constants. From now on
we will assume that the antecedent

z < t|~s| ∧N(a, z) ∧ |d| ≤ s|~s| ∧U(a, b, z, d) ∧ |~c| ≤ s|~s| ∧D(b, ~s,~c) (5.20)

of (5.19) is true, for otherwise we win (5.19) no matter what. Our goal is to win the
consequent of (5.19), i.e., the game

¬N(a, z ′) ⊔
[

N(a, z ′) ∧ ∃t
(

U~s
⊔
(a, t, z ′) ∧D⊔(t, ~s)

)]

. (5.21)

Using Fact 3.5, we compare d with z. The case d > z is ruled out by our assumption
(5.20), because it is inconsistent with the truth of U(a, b, z, d). If d < z, we bring (5.21)
down to

N(a, z ′) ∧ ∃t
(

|d| ≤ s|~s| ∧U(a, t, z ′, d) ∧ |~c| ≤ s|~s| ∧D(t, ~s,~c)
)

, (5.22)

which is a logical consequence of

N(a, z ′) ∧ |d| ≤ s|~s| ∧U(a, b, z ′, d) ∧ |~c| ≤ s|~s| ∧D(b, ~s,~c). (5.23)

This way we win, because (5.23) is true and hence so is (5.22). Namely, the truth of (5.23)
follows from the truth of (5.20) in view of the fact that, on our assumption d < z, U(a, b, z, d)
obviously implies U(a, b, z ′, d) and N(a, z) implies N(a, z ′).

Now suppose d = z. So, our resource (5.20) is the same as

z < t|~s| ∧N(a, z) ∧ |z| ≤ s|~s|∧U(a, b, z, z) ∧ |~c| ≤ s|~s| ∧D(b, ~s,~c). (5.24)

The D(b, ~s,~c) component of (5.24) contains sufficient information on whether the configura-
tion b has any unadulterated successors other than itself.11 If not, N(a, z) obviously implies
N(a, z ′) and U(a, b, z, z) implies U(a, b, z ′, z); hence, (5.24) implies

N(a, z ′) ∧ |z| ≤ s|~s| ∧U(a, b, z ′, z) ∧ |~c| ≤ s|~s| ∧D(b, ~s,~c),

which, in turn, implies

N(a, z ′) ∧ ∃t
(

|z| ≤ s|~s| ∧U(a, t, z ′, z) ∧ |~c| ≤ s|~s| ∧D(t, ~s,~c)
)

. (5.25)

So, we win (5.21) by bringing it down to the true (5.25).
Now, for the rest of this proof, assume b has unadulterated successors other than itself.

From the U(a, b, z, z) conjunct of (5.24) we also know that b is a zth unadulterated successor

11Namely, b has an unadulterated successor other than itself iff the state component of b — which can
be found in Titlec2y+3

— is not a move state.

44 G. JAPARIDZE

of a. Thus, a (z+1)st unadulterated successor of a — call it e — exists, implying the truth
of

U(a, e, z ′, z ′). (5.26)

In order to solve (5.21), we want to find a tuple ~d = d1, . . . , d2y+3 of constants satisfying

D(e,~s, ~d) (5.27)

— that is, satisfying conditions 2(a) through 2(f) of Section 5.8 with e, ~s and ~d in the roles
of x, ~s and ~v, respectively. In doing so below, we shall rely on the truth of D(b, ~s,~c) implied
by (5.24). We shall then also rely on our knowledge of the scene of b obtained from D(b, ~s,~c)
based on Lemma 5.6, and our knowledge of the state component of b obtained from c2y+3

(the (2y + 3)rd constant of the tuple ~c).

First of all, notice that, no matter how we select ~d, condition 2(a) of Section 5.8 is
satisfied with e in the role of x. This is so because, as implied by D(b, ~s,~c), that condition
is satisfied with b in the role of x, and e is an unadulterated successor of b, meaning that b
and e have identical run-tape contents.

From D(b, ~s,~c), we know that the location of b’s 1st work-tape head is c1; based on
our knowledge of the state and the scene of b, we can also figure out whether that tape’s
scanning head moves to the right, to the left, or stays put on the transition from b to e. If
it moves to the right, we apply the Successor axiom and compute the value d1 to be c1

′. If
the head stays put or tries to move to the left while c1 = 0 (whether c1 = 0 we figure out
using Fact 3.5), we know that d1 = c1. Finally, if it moves to the left while c1 6= 0, then
d1 = c1 − 1, and we compute this value using Facts 3.1 and 3.6. We find the constants
d2, . . . , dy in a similar manner.

The values dy+1, . . . , d2y can be computed from cy+1, . . . , c2y and our knowledge —
determined by b’s state and scene — of the symbols written on X ’s work tapes on the
transition from b to e. If such a symbol was written in a previously non-blank cell (meaning
that the size of the work tape content did not change), we shall rely on Fact 3.7 in computing
dy+i from cy+i (1 ≤ i ≤ y), as the former is the result of changing one bit in the latter.
Otherwise, if the new symbol was written in a previously blank (the leftmost blank) cell,
then dy+i is either cy+i + cy+i (if the written symbol is 0) or cy+i + cy+i + 1̂ (if the written
symbol is 1); so, dy+i can be computed using Facts 3.1 and 3.4.

We find the value d2y+1 in a way similar to the way we found d1, . . . , dy.
From the state and the scene of b, we can also figure out whether the length of the

numer of the string in the buffer has increased (by 1) or not on the transition from b to e.
If not, we determine that d2y+2 = c2y+2. If yes, then d2y+2 = c2y+2

′, which we compute
using the Successor axiom.

From the N(a, z) component of (5.24) we know that configuration a is uncorrupt and
hence semiuncorrupt. From (5.26) we also know that e is an unadulterated successor of
a. As an unadulterated successor of a semiuncorrupt configuration, e obviously remains
semiuncorrupt, meaning that its titular number d2y+3 is an element of the set {0, . . . ,m−1}.
Which of these m values is precisely assumed by d2y+3 is fully determined by the title and

the scene of b, both of which we know. All 2y+3 constants from the ~d group are now found.

As our next step, from (5.27) — from D(e,~s, ~d), that is — we figure out whether e is
corrupt in the same style as from D(x,~s,~c) we figured out whether x was corrupt when
building our strategy for (5.16). If e is corrupt, we choose ¬N(a, z ′) in (5.21) and win. Now,

BUILD YOUR OWN CLARITHMETIC I 45

for the rest of this proof, assume
e is uncorrupt. (5.28)

Using the Successor axiom, we compute the value g of z ′ and then we bring (5.21) down to

N(a, g) ∧ ∃t
(

|g| ≤ s|~s| ∧U(a, t, g, g) ∧ |~d| ≤ s|~s| ∧D(t, ~s, ~d)
)

, (5.29)

which is a logical consequence of

N(a, g) ∧ |g| ≤ s|~s|∧U(a, e, g, g) ∧ |~d| ≤ s|~s| ∧D(e,~s, ~d). (5.30)

To declare victory, it remains to see that (5.30) is true. The 3rd and the 5th conjuncts
of (5.30) are true because they are nothing but (5.26) and (5.27), respectively. The 4th
conjunct can be seen to follow from (5.27) and (5.28). From (5.24), we know that z < t|~s|,
which implies g ≤ t|~s| and hence |g| ≤ |t|~s||. Since e is uncorrupt, by clause 2 of Definition
5.3, we also have |t|~s|| ≤ s|~s|. Thus, the second conjunct of (5.30) is also true. Finally,
for the first conjunct of (5.30), observe the following. According to (5.24), N(a, z) is true,
meaning that a does not have a corrupt kth unadulterated successor for any k with k ≤ z.
By (5.28), e — which is the (z + 1)th unadulterated successor of a — is uncorrupt. Thus,
a does not have a corrupt kth unadulterated successor for any k with k ≤ z + 1 = g. This
means nothing but that N(a, g) is true.

5.11. Junior lemmas.

Lemma 5.8. CLA11RA ⊢ ⊔z
(

z = t|~s| ∧Q(~s, z)
)

.

Proof. Argue in CLA11RA . Using Fact 3.5 several times, we find the greatest number s
among ~s. Then, relying on the Log axiom and condition 2 of Definition 2.5, we compute
the value b of t|s|. Specifying z as b in the resource provided by Lemma 5.7, we bring the
latter down to

b ≤ t|~s|→Q(~s, b). (5.31)

Now, the target ⊔z
(

z = t|~s| ∧Q(~s, z)
)

is won by specifying z as b, and then synchronizing
the second conjunct of the resulting b = t|~s| ∧Q(~s, b) with the consequent of (5.31) — that
is, acting in the former exactly as the provider of (5.31) acts in the latter, and “vice versa”:
acting in the latter as Environment acts in former.

For the purposes of the following two lemmas, we agree that Nothing(t, q) is an elemen-
tary formula asserting that the numer c of the move found in configuration t’s buffer does
not have a qth most significant bit (meaning that either q = 0 or |c| < q). Next, Zero(t, q)
means “¬Nothing(t, q) and the qth most significant bit of the numer of the move found in
t’s buffer is a 0”. Similarly, One(t, q) means “¬Nothing(t, q) and the qth most significant
bit of the numer of the move found in t’s buffer is a 1”.

Lemma 5.9. CLA11RA proves

z ≤ t|~s|→ ∀x∀t
(

N(x, z) ∧ |~v| ≤ s|~s| ∧Dǫ(x,~s,~v) ∧U(x, t, z, z)→
Nothing(t, q) ⊔Zero(t, q) ⊔One(t, q)

)

.
(5.32)

Proof. Argue in CLA11RA . Reasonable Induction on z. The basis is

∀x∀t
(

N(x, 0) ∧ |~v| ≤ s|~s| ∧Dǫ(x,~s,~v) ∧U(x, t, 0, 0)→Nothing(t, q) ⊔Zero(t, q) ⊔One(t, q)
)

,

which is obviously won by choosing Nothing(t, q) in the consequent.

46 G. JAPARIDZE

The inductive step is

z < t|~s|∧ ∀x∀t
(

N(x, z) ∧ |~v| ≤ s|~s|∧Dǫ(x,~s,~v) ∧U(x, t, z, z)→
Nothing(t, q) ⊔Zero(t, q) ⊔One(t, q)

)

→ ∀x∀t
(

N(x, z ′) ∧ |~v| ≤ s|~s| ∧
Dǫ(x,~s,~v) ∧U(x, t, z ′, z ′)→Nothing(t, q) ⊔Zero(t, q) ⊔One(t, q)

)

.
(5.33)

To solve (5.33), we wait till the adversary makes a choice in the antecedent. If it chooses
Zero(t, q) or One(t, q), we make the same choice in the consequent, and rest our case.
Suppose now the adversary chooses Nothing(t, q), thus bringing (5.33) down to

z < t|~s| ∧ ∀x∀t
(

N(x, z) ∧ |~v| ≤ s|~s| ∧Dǫ(x,~s,~v) ∧U(x, t, z, z)→
Nothing(t, q)

)

→ ∀x∀t
(

N(x, z ′) ∧ |~v| ≤ s|~s| ∧
Dǫ(x,~s,~v) ∧U(x, t, z ′, z ′)→Nothing(t, q) ⊔Zero(t, q) ⊔One(t, q)

)

.
(5.34)

In order to win (5.34), we need a strategy that, for arbitrary (∀) and unknown a and c, wins

z < t|~s| ∧ ∀x∀t
(

N(x, z) ∧ |~v| ≤ s|~s| ∧Dǫ(x,~s,~v) ∧U(x, t, z, z)→
Nothing(t, q)

)

→
(

N(a, z ′) ∧ |~v| ≤ s|~s| ∧
Dǫ(a,~s,~v) ∧U(a, c, z ′, z ′)→Nothing(c, q) ⊔Zero(c, q) ⊔One(c, q)

)

.
(5.35)

To solve (5.35), assume both the antecedent and the antecedent of the consequent of it are
true (otherwise we win no matter what). So, all of the following statements are true:

z < t|~s|; (5.36)

∀x∀t
(

N(x, z) ∧ |~v| ≤ s|~s| ∧Dǫ(x,~s,~v) ∧U(x, t, z, z)→Nothing(t, q)
)

; (5.37)

N(a, z ′) ∧ |~v| ≤ s|~s| ∧Dǫ(a,~s,~v); (5.38)

U(a, c, z ′, z ′). (5.39)

Assumption (5.39) implies that a has (not only a (z ′)th but also) a zth unadulterated
successor. Let b be that successor. Thus, the following is true:

U(a, b, z, z). (5.40)

The N(a, z ′) conjunct of (5.38), of course, implies

N(a, z). (5.41)

From (5.37), we also get

N(a, z) ∧ |~v| ≤ s|~s| ∧Dǫ(a,~s,~v) ∧U(a, b, z, z)→Nothing(b, q),

which, together with (5.38), (5.40) and (5.41), implies

Nothing(b, q). (5.42)

From (5.36), we have z′ ≤ t|~s|. Hence, using Lemma 5.7 in combination with the
Successor axiom, we can obtain the resource Q(~s, z ′), which disabbreviates as

∀x
[

D⊔(x,~s)→¬N(x, z ′) ⊔
(

N(x, z ′) ∧ ∃t
(

U~s
⊔
(x, t, z ′) ∧D⊔(t, ~s)

)

)]

.

We bring the above down to

∀x
[

|~v| ≤ s|~s| ∧D(x,~s,~v)→¬N(x, z ′) ⊔
(

N(x, z ′) ∧ ∃t
(

U~s
⊔
(x, t, z ′) ∧D⊔(t, ~s)

)

)]

. (5.43)

Now (5.43), in conjunction with (5.38) and the obvious fact ∀
(

D(x,~s,~v)→Dǫ(a,~s,~v)
)

, im-

plies ∃t
(

U~s
⊔
(a, t, z ′) ∧ D⊔(t, ~s)

)

, i.e.,

∃t
(

⊔|r| ≤ s|~s|U(a, t, z ′, r) ∧D⊔(t, ~s)
)

. (5.44)

BUILD YOUR OWN CLARITHMETIC I 47

From (5.39), by PA, we know that c is the unique number satisfying U(a, t, z ′, r) in the
role of t for some r (in fact, for r = z ′ and only for r = z ′). This implies that the provider
of (5.44), in fact, provides (can only provide) the resource

⊔|r| ≤ s|~s|U(a, c, z ′, r) ∧D⊔(c, ~s).

Thus, D⊔(c, ~s) is at our disposal, which disabbreviates as ⊔|~v| ≤ s|~s|D(c, ~s, ~v). The provider
of this resource will have to bring it down to

|~d| ≤ s|~s| ∧D(c, ~s, ~d) (5.45)

for some tuple ~d = d1, . . . , d2y+3 of constants. Here d2y+2 is the length of the numer of the
move found in c’s buffer. Using Fact 3.5, we figure out whether d2y+2 = q. If d2y+2 6= q, we
choose Nothing(c, q) in the consequent of (5.35). Now suppose d2y+2 = q. In this case, from
d2y+3 (the title of c), we extract information about what bit has been placed into the buffer
on the transition from b to c.12 If that bit is 1, we choose One(c, q) in (5.35); otherwise
choose Zero(c, q). With a little thought and with (5.42) in mind, it can be seen that our
strategy succeeds.

Lemma 5.10. CLA11RA proves

∃x∃t∃y
(

N(x, t|~s|) ∧Dǫ(x,~s,~v) ∧U~s
∃
(x, t) ∧ F(t, y)∧Bit(r, y)

)

⊔

¬∃x∃t∃y
(

N(x, t|~s|) ∧Dǫ(x,~s,~v) ∧U~s
∃
(x, t) ∧ F(t, y) ∧Bit(r, y)

)

.
(5.46)

Proof. Argue in CLA11RA . From PA we know that values x, t, y satisfying

Dǫ(x,~s,~v) ∧U~s
∃
(x, t) ∧ F(t, y) (5.47)

exist (∃) and are unique. Fix them for the rest of this proof. This allows us to switch from
(5.46) to (5.48) as the target for our strategy, because the two paraformulas are identical as
a games:

(

N(x, t|~s|) ∧Bit(r, y)
)

⊔ ¬
(

N(x, t|~s|) ∧Bit(r, y)
)

. (5.48)

Relying on the Log axiom, Fact 3.5 and clause 2 of Definition 2.5, we find the value of
s|~s|. Then, using that value and relying on the Log axiom and Fact 3.5 again, we figure out
the truth status of |~v| ≤ s|~s|. If it is false, then, with a little analysis of Definition 5.3, x can
be seen to be corrupt; for this reason, N(x, t|~s|) is false, so we choose the right ⊔ -disjunct
in (5.48) and rest our case. Now, for the remainder of this proof, assume

|~v| ≤ s|~s|. (5.49)

By Lemma 5.8, the resource Q(~s, t|~s|), i.e.,

∀x
[

D⊔(x,~s)→¬N(x, t|~s|) ⊔
(

N(x, t|~s|) ∧ ∃t
(

U~s
⊔
(x, t, t|~s|) ∧D⊔(t, ~s)

)

)]

,

is at our disposal. We bring it down to

∀x
[

|~v| ≤ s|~s| ∧D(x,~s,~v)→¬N(x, t|~s|) ⊔
(

N(x, t|~s|) ∧ ∃t
(

U~s
⊔
(x, t, t|~s|) ∧D⊔(t, ~s)

)

)]

,

which, in view of (5.47), (5.49) and the fact ∀
(

Dǫ(x,~s,~v)→D(x,~s,~v)
)

, implies

¬N(x, t|~s|) ⊔
(

N(x, t|~s|) ∧ ∃t
(

U~s
⊔
(x, t, t|~s|) ∧D⊔(t, ~s)

)

)

. (5.50)

12A symbol other than 0 or 1 could not have been placed into the buffer, because then, by clause 7 of
Definition 5.3, c would be corrupt, contradicting the N(a, z ′) conjunct of (5.38).

48 G. JAPARIDZE

We wait till one of the two ⊔ -disjuncts of (5.50) is selected by the provider. If the left dis-
junct is selected, we choose the right ⊔ -disjunct in (5.48) and retire. Now suppose the right
disjunct of (5.50) is selected. Such a move, with U~s

⊔
(x, t, t|~s|) and D⊔(t, ~s) disabbreviated,

brings (5.50) down to

N(x, t|~s|) ∧ ∃t
(

⊔u
(

|u| ≤ s|~s| ∧U(x, t, t|~s|, u)
)

∧⊔~v
(

|~v| ≤ s|~s| ∧D(t, ~s, ~v)
)

)

. (5.51)

We wait till (5.51) is fully resolved by its provider, i.e., is brought down to

N(x, t|~s|) ∧ ∃t
(

|a| ≤ s|~s| ∧U(x, t, t|~s|, a) ∧ |~d| ≤ s|~s| ∧D(t, ~s, ~d)
)

(5.52)

for some constant a and tuple ~d = d1, . . . , d2y+3 of constants. By PA, (5.47) and (5.52)
imply

N(x, t|~s|) ∧U(x, t, t|~s|, a) ∧D(t, ~s, ~v). (5.53)

The U(x, t, t|~s|, a) conjunct of (5.53) further implies

a ≤ t|~s| ∧U(x, t, a, a). (5.54)

By PA, the N(x, t|~s|) conjunct of (5.53) and the a ≤ t|~s| conjunct of (5.54) imply

N(x, a). (5.55)

The D(t, ~s, ~d) conjunct of (5.53) implies that d2y+2 is the length of the numer of the
move residing in t’s buffer. By the F(t, y) conjunct of (5.47) we know that y is such a numer.
Thus, d2y+2 = |y|. Let q = d2y+2 ⊖ r. This number can be computed using Fact 3.6. The
rth least significant bit of y is nothing but the qth most significant bit of y.

By Lemma 5.9, we have

a ≤ t|~s| ∧N(x, a) ∧ |~v| ≤ s|~s| ∧Dǫ(x,~s,~v) ∧U(x, t, a, a)→
Nothing(t, q) ⊔ Zero(t, q) ⊔One(t, q).

(5.56)

The a ≤ t|~s| and U(x, t, a, a) conjuncts of the antecedent of (5.56) are true by (5.54); the
N(x, a) conjunct is true by (5.55); the |~v| ≤ s|~s| conjunct is true by (5.49); and the Dǫ(x,~s,~v)
conjunct is true by (5.47). Hence, the provider of (5.56) has to resolve the ⊔ -disjunction in
the consequent. If it chooses One(t, q), we choose the left ⊔ -disjunct in (5.48); otherwise
we choose the right ⊔ -disjunct. In either case we win.

5.12. Senior lemmas. Let E be a formula not containing the variable y. We say that a
formula H is a (⊥, y)-development of E iff H is the result of replacing in E:

• either a surface occurrence of a subformula F0 ⊓F1 by Fi (i = 0 or i = 1),
• or a surface occurrence of a subformula ⊓xF (x) by F (y).

(⊤, y)-development is defined in the same way, only with ⊔ ,⊔ instead of ⊓ ,⊓.

Lemma 5.11. Assume E(~s) is a formula all of whose free variables are among ~s, y is a
variable not occurring in E(~s), and H(~s, y) is a (⊥, y)-development of E(~s). Then CLA11RA
proves Ẽ◦(~s)→ H̃◦(~s, y).

Proof. Assume the conditions of the lemma. The target formula whoseCLA11RA-provability
we want to show partially disabbreviates as

∃x
(

E◦(x,~s) ∧Dǫ
⊔
(x,~s)

)

→ ∃x
(

H◦(x,~s, y) ∧Dǫ
⊔
(x,~s, y)

)

. (5.57)

BUILD YOUR OWN CLARITHMETIC I 49

Let ⊥β be the labmove that brings E(~s) down to H(~s, y),13 and let α be the header
of β. For instance, if E(~s) is G→F0 ⊓F1 and H(~s, y) is G→F0, then both β and α are
“⊥1.0”; and if E(~s) is G→⊓zF (x) ∨ J and H(~s, y) is G→F (y) ∨ J , then β is 1.0.#y and α
is 1.0.#.

For each natural number j, let j+ be the number such that the first three titular
components of Titlej+ are the same as those of Titlej , and the 4th titular component of
Titlej+ is obtained from that of Titlej by appending ⊥α to it. Intuitively, if Titlej is the
title of a given configuration x, then Titlej+ is the title of the configuration that results
from x in the scenario where ⊥ made the (additional) move β on the transition to x from
the predecessor configuration. Observe that, if j is a member of {0, . . . ,m − 1}, then so is
j+.

Argue in CLA11RA . To win (5.57), we wait till Environment brings it down to

∃x
(

E◦(x,~s) ∧ |~c| ≤ s|~s| ∧Dǫ(x,~s,~c)
)

→ ∃x
(

H◦(x,~s, y) ∧Dǫ
⊔
(x,~s, y)

)

(5.58)

for some tuple ~c = c1, . . . , c2y+3 of constants. Based on clause 2 of Definition 2.5 and Facts
3.1 and 3.5, we check whether c2y+3 < m̂. If not, the antecedent of (5.58) can be seen to
be false, so we win (5.58) by doing nothing. Suppose now c2y+3 < m̂. In this case we bring
(5.58) down to

∃x
(

E◦(x,~s) ∧ |~c| ≤ s|~s| ∧Dǫ(x,~s,~c)
)

→

∃x
(

H◦(x,~s, y) ∧ |~c +| ≤ s|~s| ∧Dǫ(x,~s, y,~c +)
)

,
(5.59)

where ~c + is the same as ~c, only with c+2y+3 instead of c2y+3. The elementary formula (5.59)
can be easily seen to be true, so we win.

Lemma 5.12. Assume E(~s) is a formula all of whose free variables are among ~s, y is a
variable not occurring in E(~s), and H1(~s, y), . . . ,Hn(~s, y) are all of the (⊤, y)-developments
of E(~s). Then CLA11RA proves

Ẽ◦(~s)→ Ẽ•(~s) ⊔¬W⊔⊔yH̃◦
1 (~s, y) ⊔ . . . ⊔⊔yH̃◦

n(~s, y). (5.60)

Proof. Assume the conditions of the lemma and argue in CLA11RA to justify (5.60). The
antecedent of (5.60) disabbreviates as ∃x

(

E◦(x,~s) ∧⊔|~v| ≤ s|~s|Dǫ(x,~s,~v)
)

. At the beginning,
we wait till the ⊔|~v| ≤ s|~s|Dǫ(x,~s,~v) subcomponent of it is resolved and thus (5.60) is
brought down to

∃x
(

E◦(x,~s) ∧ |~c| ≤ s|~s| ∧Dǫ(x,~s,~c)
)

→

Ẽ•(~s)⊔ ¬W⊔⊔yH̃◦
1 (~s, y) ⊔ . . . ⊔⊔yH̃◦

n(~s, y)
(5.61)

for some tuple ~c = c1, . . . , c2y+3 of constants. From now on, we shall assume that the
antecedent of (5.61) is true, or else we win no matter what. Let then x0 be the obviously
unique number that, in the role of x, makes the antecedent of (5.61) true. That is, we have

E◦(x0, ~s) ∧ |~c| ≤ s|~s| ∧Dǫ(x0, ~s,~c). (5.62)

In order to win (5.61), it is sufficient to figure out how to win its consequent, so, from now
on, our target will be

Ẽ•(~s) ⊔ ¬W ⊔⊔yH̃◦
1 (~s, y) ⊔ . . . ⊔⊔yH̃◦

n(~s, y). (5.63)

For some (⊔) constant a, Lemma 5.8 provides the resource a = t|~s| ∧Q(~s, a), which
disabbreviates as

13In the rare cases where there are more than one such β, take the lexicographically smallest one.

50 G. JAPARIDZE

a = t|~s| ∧ ∀x
[

D⊔(x,~s)→¬N(x, a) ⊔
(

N(x, a) ∧ ∃t
(

U~s
⊔
(x, t, a) ∧D⊔(t, ~s)

)

)]

.

We use ~c to resolve the D⊔(x,~s) component of the above game, bringing the latter it down
to

a = t|~s| ∧ ∀x
[

|~c| ≤ s|~s| ∧D(x,~s,~c)→

¬N(x, a) ⊔
(

N(x, a) ∧ ∃t
(

U~s
⊔
(x, t, a) ∧D⊔(t, ~s)

)

)]

.
(5.64)

Plugging the earlier fixed x0 for x in (5.64) and observing that |~c| ≤ s|~s| ∧D(x0, ~s,~c) is true
by (5.62), it is clear that having the resource (5.64), in fact, implies having

a = t|~s| ∧
(

¬N(x0, a) ⊔
(

N(x0, a) ∧U~s
⊔
(x0, t0, a) ∧D⊔(t0, ~s)

)

)

(5.65)

for some (∃) t0. We wait till the displayed ⊔ -disjunction of (5.65) is resolved by the provider.
Suppose the left ⊔ -disjunct ¬N(x0, a) is chosen in (5.65). Then N(x0, a) has to be false.

This means that x0 has a corrupt unadulterated successor. At the same time, from the
E◦(x0, ~s) conjunct of (5.62), we know that x0 is a reachable semiuncorrupt configuration.
All this, together with (5.1), (5.11) and (5.12), as can be seen with some analysis, implies
that W is false.14 So, we win (5.63) by choosing its ⊔ -disjunct ¬W.

Now suppose the right ⊔ -disjunct is chosen in (5.65), bringing the game down to

a = t|~s| ∧N(x0, a) ∧U~s
⊔
(x0, t0, a) ∧D⊔(t0, ~s).

We wait till the above is further brought down to

a = t|~s| ∧N(x0, a) ∧ |b| ≤ s|~s| ∧U(x0, t0, a, b) ∧ |~d| ≤ s|~s| ∧D(t0, ~s, ~d) (5.66)

for some constant b and some tuple ~d of constants. Take a note of the fact that, by the
U(x0, t0, a, b) conjunct of (5.66), t0 is a bth unadulterated successor of x0. Using Fact 3.5,
we figure out whether b = a or b 6= a.

First, assume b = a, so that, in fact, (5.66) is

a = t|~s| ∧N(x0, a) ∧ |a| ≤ s|~s| ∧U(x0, t0, a, a) ∧ |~d| ≤ s|~s| ∧D(t0, ~s, ~d). (5.67)

In this case we choose Ẽ•(~s) in (5.63) and then further bring the latter down to

∃x
(

E•(x,~s) ∧ |~c| ≤ s|~s| ∧Dǫ(x,~s,~c)
)

. (5.68)

According to (5.62), E◦(x0, ~s) is true. From the first and the fourth conjuncts of (5.67),
we also know that the run tape content of e persists for “sufficiently long”, namely, for at
least t|~s| steps. Therefore, E◦(x0, ~s) implies E•(x0, ~s). For this reason, (5.68) is true, as it
follows from (5.62). We thus win.

Now, for the rest of this proof, assume b 6= a. Note that then, by the U(x0, t0, a, b)
conjunct of (5.66), b < a and, in the scenario that we are dealing with, X made a move on
the (b + 1)st step after reaching configuration x0, i.e., immediately (1 step) after reaching
configuration t0. Let us agree to refer to that move as σ, and use t1 to refer to the con-
figuration that describes the (b + 1)st step after reaching configuration x0 — that is, the
step on which the move σ was made. In view of [45]’s stipulation that an HPM never adds
anything to its buffer when transitioning to a move state, we find that σ is exactly the move
found in configuration t0’s buffer.

14Namely, W is false because X “does something wrong” after reaching the configuration x0.

BUILD YOUR OWN CLARITHMETIC I 51

Applying Comprehension to the formula (5.46) of Lemma 5.10 and taking ~c in the role
of ~v, we get

⊔|w| ≤ a|~s|∀r < a|~s|
(

Bit(r, w) ↔

∃x∃t∃y
(

N(x, t|~s|) ∧Dǫ(x,~s,~c) ∧U~s
∃
(x, t) ∧ F(t, y) ∧Bit(r, y)

)

)

.

The provider of the above resource will have to choose a value w0 for w and bring the game
down to

|w0| ≤ a|~s| ∧ ∀r < a|~s|
(

Bit(r, w0) ↔

∃x∃t∃y
(

N(x, t|~s|) ∧Dǫ(x,~s,~c) ∧U~s
∃
(x, t) ∧ F(t, y) ∧Bit(r, y)

)

)

.
(5.69)

From (5.62) we know that Dǫ(x0, ~s,~c) is true, and then from PA we know that x0 is a
unique number satisfying Dǫ(x0, ~s,~c). Also remember from (5.66) that t|~s| = a. For these
reasons, the (para)formula

∃x∃t∃y
(

N(x, t|~s|) ∧Dǫ(x,~s,~c) ∧U~s
∃
(x, t) ∧ F(t, y) ∧Bit(r, y)

)

(5.70)

can be equivalently re-written as

∃t∃y
(

N(x0, a) ∧U~s
∃
(x0, t) ∧ F(t, y)∧Bit(r, y)

)

. (5.71)

From the a = t|~s| and U(x0, t0, a, b) conjuncts of (5.66), by PA, we know that t0 is a
unique number satisfying U~s

∃
(x0, t0). From (5.66) we also know that N(x0, a) is true. And,

from PA, we also know that there is (∃) a unique number — let us denote it by y0 —
satisfying F(t0, y0). Consequently, (5.71) can be further re-written as Bit(r, y0). So, (5.70)
is equivalent to Bit(r, y0), which allows us to re-write (5.69) as

|w0| ≤ a|~s| ∧ ∀r < a|~s|
(

Bit(r, w0) ↔ Bit(r, y0)
)

. (5.72)

With the N(x0, a) conjunct of (5.66) in mind, by PA we can see that t0, being a bth
unadulterated successor of x0 with b < a, is uncorrupt. If so, remembering that y0 is the
numer of the move σ found in t0’s buffer, by condition 7 of Definition 5.3, we have |y0| ≤ a|~s|.
This fact, together with (5.72), obviously implies that y0 and w0 are simply the same. Thus,
w0 is the numer of σ.

In view of the truth of the D(t0, ~s, ~d) conjunct of (5.66), d2y+3 contains information
on the header of σ. From this header, we can determine the number i ∈ {1, . . . , n} such
that the move σ by X in position E(~s) yields Hi(~s,w0). Fix such an i. Observe that the
following is true:

H◦
i (t1, ~s, w0). (5.73)

From d2y+3 we determine the state of t0. Lemma 5.6 further allows us to determine the
scene of t0 as well. These two pieces of information, in turn, determine the titular number

of t0’s successor configuration t1. Let e be that titular number. Let ~de be the same as ~d,
only with e instead of d2y+3.

From the E◦(x0, ~s) conjunct of (5.62) we know that x0 is uncorrupt and hence semi-
uncorrupt. This implies that t1 is also semiuncorrupt, because x0 has evolved to t1 in the
scenario where Environment made no moves. For this reason, the titular number e of t0 is
smaller than m. From E◦(x0, ~s) and x0’s being uncorrupt, in view of clause 3 of Definition
5.3, we also know that m ≤ s|~s|. Consequently, e ≤ s|~s|. This fact, together with the

|~d| ≤ s|~s| conjunct of (5.66), implies that

|~de| ≤ s|~s|. (5.74)

52 G. JAPARIDZE

Next, from (5.66) again, we know that D(t0, ~s, ~d) is true. This fact, in view of our earlier
assumption that X never moves its scanning heads and never makes any changes on its
work tapes on a transition to a move state, obviously implies that the following is also true:

D(t1, ~s, w0, ~d
e). (5.75)

At this point, at last, we are ready to describe our strategy for (5.63). First, relying

on Fact 3.5 several times, we figure out whether |~de| ≤ s|~s,w0|. If not, then, in view of
(5.74), s is not monotone and hence W is false. In this case we select the ¬W disjunct

of (5.63) and celebrate victory. Now suppose |~de| ≤ s|~s,w0|. In this case we select the

⊔yH̃◦
i (~s, y) disjunct of (5.63), then bring the resulting game down to H̃◦

i (~s,w0), i.e., to
∃x

(

H◦
i (x,~s, w0) ∧⊔|~v| ≤ s|~s,w0|D(x,~s, w0, ~v)

)

, which we then further bring down to

∃x
(

H◦
i (x,~s, w0) ∧ |~de| ≤ s|~s,w0|∧D(x,~s, w0, ~d

e)
)

.

The latter is true in view (5.73), (5.75) and our assumption |~de| ≤ s|~s,w0|, so we win.

5.13. Main lemma.

Lemma 5.13. Assume E(~s) is a formula all of whose free variables are among ~s. Then

CLA11RA proves Ẽ◦(~s)→E(~s).

Proof. We prove this lemma by (meta)induction on the complexity of E(~s). By the induc-
tion hypothesis, for any (⊥, y)- or (⊤, y)-development Hi(~s, y) of E(~s) (if there are any),
CLA11RA proves

H̃◦
i (~s, y)→Hi(~s, y), (5.76)

which is the same as
∃x

(

H◦
i (x,~s, y) ∧Dǫ

⊔
(x,~s)

)

→Hi(~s, y). (5.77)

Argue in CLA11RA to justify Ẽ◦(~s)→E(~s), which disabbreviates as

∃x
(

E◦(x,~s) ∧Dǫ
⊔
(x,~s)

)

→E(~s). (5.78)

To win (5.78), we wait till Environment brings it down to

∃x
(

E◦(x,~a) ∧ |~c| ≤ s|~s| ∧Dǫ(x,~a,~c)
)

→E(~a) (5.79)

for some tuples ~a = a1, . . . , an and ~c = c1, . . . , c2y+3 of constants.15 Assume the antecedent

of (5.79) is true (if not, we win). Our goal is to show how to win the consequent E(~a). Let
b be the (obviously unique) constant satisfying the antecedent of (5.79) in the role of x.

Let H◦
1 (~s, y), . . . ,H

◦
n(~s, y) be all of the (⊤, y)-developments of E(~s). By Lemma 5.12,

the following resource is at our disposal:

∃x
(

E◦(x,~s) ∧Dǫ
⊔
(x,~s)

)

→

Ẽ•(~s) ⊔ ¬W ⊔⊔yH̃◦
1 (~s, y) ⊔ . . . ⊔⊔yH̃◦

n(~s, y).
(5.80)

We bring (5.80) down to

∃x
(

E◦(x,~a) ∧ |~c| ≤ s|~a| ∧Dǫ(x,~a,~c)
)

→

Ẽ•(~a) ⊔ ¬W ⊔⊔yH̃◦
1 (~a, y) ⊔ . . . ⊔⊔yH̃◦

n(~a, y).
(5.81)

15Here, unlike the earlier followed practice, for safety, we are reluctant to use the names ~s,~v for those
constants.

BUILD YOUR OWN CLARITHMETIC I 53

Since the antecedent of (5.81) is identical to the antecedent of (5.79) and hence is true, the
provider of (5.81) will have to choose one of the ⊔ -disjuncts in the consequent

Ẽ•(~a) ⊔ ¬W ⊔⊔yH̃◦
1 (~a, y) ⊔ . . . ⊔⊔yH̃◦

n(~a, y). (5.82)

Case 1: ¬W is chosen in (5.82). W has to be false, or else the provider loses. By Lemma

5.2, the resource W∨ ∀E(~s) is at our disposal, which, in view of W’s being false, simply

means having ∀E(~s). But the strategy that wins the latter, of course, also (“even more

so”) wins our target E(~a).

Case 2: One of ⊔yH̃◦
i (~a, y) is chosen in (5.82). This should be followed by a further choice

of some constant d for y, yielding H̃◦
i (~a, d). Plugging ~a and d for ~s and y in (5.76), we get

H̃◦
i (~a, d)→Hi(~a, d). Thus, the two resources H̃◦

i (~a, d) and H̃◦
i (~a, d)→Hi(~a, d) are at our

disposal. Hence so is Hi(~a, d). But, remembering that the formula Hi(~s, y) is a (⊤, y)-

development of the formula E(~s), we can now win E(~a) by making a move α that brings

(E(~a) down to Hi(~a, d) and hence) E(~a) down to Hi(~a, d), which we already know how
to win. For example, imagine E(~s) is Y (~s)→Z(~s) ⊔ T (~s) and Hi(~s, y) is Y (~s)→Z(~s).
Then the above move α will be “1.0”. It indeed brings (Y (~a)→Z(~a)⊔ T (~a) down to

Y (~a)→Z(~a) and hence) Y (~a)→Z(~a) ⊔ T (~a) down to Y (~a)→Z(~a). As another example,
imagine E(~s) is Y (~s)→⊔wZ(~s,w) and Hi(~s, y) is Y (~s)→Z(~s, y). Then the above move

α will be “1.#d”. It indeed brings Y (~a)→⊔wZ(~a,w) down to Y (~a)→Z(~a, d).

Case 3: Ẽ•(~a), i.e., ∃x
(

E•(x,~a) ∧Dǫ
⊔
(x,~a)

)

, is chosen in (5.82). It has to be true, or else
the provider loses. For this reason, ∃xE•(x,~a) is also true.

Subcase 3.1: The formula Ẽ•(~s) is critical. Since ∃xE•(x,~a) is true, so is ∃E•(z,~s). By

Lemma 5.5, we also have ∃E•(z,~s)→ ∀E(~s). So, we have a winning strategy for ∀E(~s).

Of course, the same strategy also wins E(~a).

Subcase 3.2: The formula Ẽ•(~s) is not critical. From ∃xE•(x,~a) and Lemma 5.4, by

LC, we find that the elementarization of E(~a) is true. This obviously means that if

Environment does not move in E(~a), we win the latter. So, assume Environment makes

a move α in E(~a). The move should be legal, or else we win. Of course, for one of
the (⊥, y)-developments Hi(~s, y) of the formula E(~s) and some constant d, α brings

E(~a) down to Hi(~a, d). For example, if E(~s) is Y (~s)→Z(~s) ⊓ T (~s), α could be the move

“1.0”, which brings Y (~a)→Z(~a) ⊓ T (~a) down to Y (~a)→Z(~a); the formula Y (~s)→Z(~s)
is indeed a (⊥, y)-development of the formula Y (~s)→Z(~s) ⊓ T (~s). As another example,
imagine E(~s) is Y (~s)→⊓wZ(~s,w). Then the above move α could be “1.#d”, which

brings Y (~a)→⊓wZ(~a,w) down to Y (~a)→Z(~a, d); the formula Y (~s)→Z(~s, y) is indeed
a (⊥, y)-development of the formula Y (~s)→⊓wZ(~s,w). Fix the above formula Hi(~s, y)

and constant d. Choosing ~a and d for ~s and y in the resource Ẽ◦(~s)→ H̃◦
i (~s, y) provided

by Lemma 5.11, we get the resource Ẽ◦(~a)→ H̃◦
i (~a, d). Since Ẽ•(~a) is chosen in (5.82),

we have a winning strategy for Ẽ•(~a) and hence for the weaker Ẽ◦(~a). This, together

with Ẽ◦(~a)→ H̃◦
i (~a, d), by LC, yields H̃◦

i (~a, d). By choosing ~a and d for ~s and y in (5.76),

we now get the resource Hi(~a, d). That is, we have a strategy for the game Hi(~a, d) to

which E(~a) has evolved after Environment’s move α. We switch to that strategy and
win.

54 G. JAPARIDZE

5.14. Conclusive steps. Now we are ready to claim the target result of this section. Let
a be the (code of the) start configuration of X where the run tape is empty. Without

loss of generality we may assume that the titular number of a is 0. Let ~0 stand for a
(2y + 3)-tuple of 0s. Of course, PA proves X◦(â) ∧Dǫ(â,~0),16 and hence PA also proves

∃x
(

X◦(x) ∧Dǫ(x,~0)
)

. Then, by LC, CLA11RA proves ∃x
(

X◦(x) ∧⊔|~v| ≤ s(0)Dǫ(x,~v)
)

, i.e.,

∃x
(

X◦(x) ∧Dǫ
⊔
(x)

)

, i.e., X̃◦. By Lemma 5.13, CLA11RA also proves X̃◦ →X. These two

imply the desired X by LC, thus completing our proof of the extensional completeness of
CLA11RA .

6. Intensional completeness

6.1. The intensional completeness of CLA11RA!. Let us fix an arbitrary regular theory

CLA11RA and an arbitrary sentence X with an R tricomplexity solution. Proving the inten-
sional completeness of CLA11RA! — i.e., the completeness part of clause 2 of Theorem 2.6

— means showing that CLA11RA! proves (not only X but also) X. This is what the present
section is devoted to. Let X , (a, s, t), W be as in Section 5, and so be the meaning of the
overline notation.

Lemma 6.1. CLA11RA ⊢ W→X.

Proof. First, by induction on the complexity of E, we want to show that

For any formula E, CLA11RA ⊢ ∀(E ∧W→E). (6.1)

If E is a literal, then ∀(E ∧W→E) is nothing but ∀
(

(W→E) ∧W→E
)

. Of course

CLA11RA proves this elementary sentence, which happens to be classically valid. Next,
suppose E is F0 ∧F1. By the induction hypothesis, CLA11RA proves both ∀(F0 ∧W→F0)
and ∀(F1 ∧W→F1). These two, by LC, imply ∀

(

(F0 ∧F1) ∧W→F0 ∧F1

)

. And the latter

is nothing but the desired ∀(E ∧W→E). The remaining cases where E is F0 ∨F1, F0 ⊓F1,
F0 ⊔F1, ⊓xF (x), ⊔xF (x), ∀xF (x) or ∃xF (x) are handled in a similar way. (6.1) is thus
proven.

(6.1) implies that CLA11RA proves X ∧W→X. As established in Section 5, CLA11RA
also proves X . From these two, by LC, CLA11RA proves W→X, as desired.

As we remember from Section 5, W is a true elementary sentence. As such, it is an
element of A! and is thus provable in CLA11RA!. By Lemma 6.1, CLA11RA! also proves

both X and X ∧W→X. Hence, by LC, CLA11RA! ⊢ X. This proves the completeness part
of Theorem 2.6.

6.2. The intensional strength of CLA11RA. While CLA11RA! is intensionally complete,

CLA11RA generally is not. Namely, the Gödel-Rosser incompleteness theorem precludes

CLA11RA from being intensionally complete as long as it is consistent and A is recursively
enumerable. Furthermore, in view of Tarski’s theorem on the undefinability of truth, it is
not hard to see that CLA11RA , if sound, cannot be intensionally complete even if the set A
is just arithmetical, i.e., if the predicate “x is the code of some element of A” is expressible
in the language of PA.

16Whatever would normally appear as an additional ~s argument of Dǫ is empty in the present case.

BUILD YOUR OWN CLARITHMETIC I 55

Intensionally, even though incomplete, CLA11RA is still very strong. The last sentence
of Section 1.6.3, in our present terms, reads:

... If a sentence F is not provable in CLA11RA , it is unlikely that anyone
would find an R tricomplexity algorithm solving the problem expressed by F :
either such an algorithm does not exist, or showing its correctness requires
going beyond ordinary combinatorial reasoning formalizable in PA.

To explain and justify this claim, assume F has a
(

b(x), c(x), d(x)
)

tricomplexity solu-

tion/algorithm F , where
(

b(x), c(x), d(x)
)

∈ Ramplitude × Rspace × Rtime . Let V be a sen-
tence constructed from F , F and (b, c, d) in the same way as we earlier constructed W from
X, X and (a, s, t). Note that V is a sentence asserting the “correctness” of F . Now, assume
a proof of F ’s correctness can be formalized in PA, in the precise sense that PA ⊢ V.
According to Lemma 6.1, we also have CLA11RA ⊢ V→F . Then, by LC, CLA11RA ⊢ F .

References

[1] K. Aehlig, U. Berger, M. Hoffmann and H. Schwichtenberg. An arithmetic for non-size-increasing

polynomial-time computation. Theoretical Computer Science 318 (2004), pp. 3-27.
[2] M. Bauer. A PSPACE-complete first order fragment of computability logic. ACM Transactions on

Computational Logic 15 (2014), No 1, Paper A.
[3] M. Bauer. The computational complexity of propositional cirquent calculus. Logical Methods is Com-

puter Science 11 (2015), Issue 1, Paper 1, pp. 1-16.
[4] S. Bellantoni and S. Cook. A new recursive-theoretic characterization of the polytime functions. Com-

putational Complexity 2 (1992), pp. 97-110.
[5] S. Bellantoni. Ranking arithmetic proofs by implicit ramification. Proof Complexity and Feasible

Arithmetics. P. Beame and S. Buss, editors. DIMACS Series in Discrete Mathematics 39 (1998), pp.
37-58.

[6] S. Bellantoni, K. Niggl and H. Schwichtenberg. Higher type recursion, ramification and polynomial time.
Annals of Pure and Applied Logic 104 (2000), pp. 17-30.

[7] S. Bellantoni and M. Hoffmann. A new “feasible” arithmetic. Journal of Symbolic Logic 67 (2002),
pp. 104-116.

[8] A. Blass. Degrees of indeterminacy of games. Fundamenta Mathematicae 77 (1972) 151-166.
[9] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic 56 (1992), pp.

183-220.
[10] G. Boolos. The Logic of Provability. Cambridge University Press, 1993.
[11] S. Buss. Bounded Arithmetic (revised version of Ph. D. thesis). Bibliopolis, 1986.
[12] S. Buss. The polynomial hierarchy and intuitionistic bounded arithmetic. Lecture Notes in Computer

Science 223 (1986), pp. 77-103.
[13] S. Buss. First-order proof theory of arithmetic. In: Handbook of Proof Theory. S. Buss, editor.

Elsevier, 1998, pp. 79-147.
[14] P. Clote and G. Takeuti. Bounded arithmetic for NC, ALogTIME, L and NL. Annals of Pure and

Applied Logic 56 (1992), pp. 73-117.
[15] S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge University Press,

2010.
[16] J.Y. Girard. Linear logic. Theoretical Computer Science 50 (1) (1987), pp. 1-102.
[17] J. Girard, A. Scedrov and P. Scott. Bounded linear logic: a modular approach to polynomial-time

computability. Theoretical Computer Science 97 (1992), pp. 1-66.
[18] J. Girard. Light linear logic. Information and Computation 143 (1998), pp. 175-204.
[19] D. Goldin, S. Smolka and P. Wegner (editors). Interactive Computation: The New Paradigm.

Springer, 2006.
[20] P. Hajek and P. Pudlak. Metamathematics of First-Order Arithmetic. Springer, 1993.
[21] J. Hintikka. Logic, Language-Games and Information: Kantian Themes in the Philosophy

of Logic. Clarendon Press 1973.

56 G. JAPARIDZE

[22] M. Hofmann. Safe recursion with higher types and BCK-algebras. Annals of Pure and Applied

Logic 104 (2000), pp. 113-166.
[23] G. Japaridze. Introduction to computability logic. Annals of Pure and Applied Logic 123 (2003),

pp. 1-99.
[24] G. Japaridze. Propositional computability logic I. ACM Transactions on Computational Logic 7

(2006), pp. 302-330.
[25] G. Japaridze. Propositional computability logic II. ACM Transactions on Computational Logic 7

(2006), pp. 331-362.
[26] G. Japaridze. Introduction to cirquent calculus and abstract resource semantics. Journal of Logic and

Computation 16 (2006), pp. 489-532.
[27] G. Japaridze. Computability logic: a formal theory of interaction. In: Interactive Computation:

The New Paradigm. D. Goldin, S. Smolka and P. Wegner, editors. Springer 2006, pp. 183-223.
[28] G. Japaridze. From truth to computability I. Theoretical Computer Science 357 (2006), pp. 100-135.
[29] G. Japaridze. From truth to computability II. Theoretical Computer Science 379 (2007), pp. 20-52.
[30] G. Japaridze. The logic of interactive Turing reduction. Journal of Symbolic Logic 72 (2007), pp.

243-276.
[31] G. Japaridze. The intuitionistic fragment of computability logic at the propositional level. Annals of

Pure and Applied Logic 147 (2007), pp. 187-227.
[32] G. Japaridze. Cirquent calculus deepened. Journal of Logic and Computation 18 (2008), pp. 983-

1028.
[33] G. Japaridze. Sequential operators in computability logic. Information and Computation 206 (2008),

pp. 1443-1475.
[34] G. Japaridze. In the beginning was game semantics. Games: Unifying Logic, Language, and

Philosophy. O. Majer, A.-V. Pietarinen and T. Tulenheimo, eds. Springer 2009, pp. 249-350.
[35] G. Japaridze. Towards applied theories based on computability logic. Journal of Symbolic Logic 75

(2010), pp. 565-601.
[36] G. Japaridze. Toggling operators in computability logic. Theoretical Computer Science 412 (2011),

pp. 971-1004.
[37] G. Japaridze. From formulas to cirquents in computability logic. Logical Methods is Computer

Science 7 (2011), Issue 2 , Paper 1, pp. 1-55.
[38] G. Japaridze. Introduction to clarithmetic I. Information and Computation 209 (2011), pp. 1312-

1354.
[39] G. Japaridze. A logical basis for constructive systems. Journal of Logic and Computation 22 (2012),

pp. 605-642.
[40] G. Japaridze. A new face of the branching recurrence of computability logic. Applied Mathematics

Letters 25 (2012), pp. 1585-1589.
[41] G. Japaridze. Separating the basic logics of the basic recurrences. Annals of Pure and Applied Logic

163 (2012), pp. 377-389.
[42] G. Japaridze. The taming of recurrences in computability logic through cirquent calculus, Part I.

Archive for Mathematical Logic 52 (2013), pp. 173-212.
[43] G. Japaridze. The taming of recurrences in computability logic through cirquent calculus, Part II.

Archive for Mathematical Logic 52 (2013), pp. 213-259.
[44] G. Japaridze. Introduction to clarithmetic III. Annals of Pure and Applied Logic 165 (2014), pp.

241-252.
[45] G. Japaridze. On the system CL12 of computability logic. Logical Methods is Computer Science

11 (2015), Issue 3, paper 1, pp. 1-71.
[46] G. Japaridze. Introduction to clarithmetic II. Information and Computation 247 (2016), pp. 290-

312.
[47] G. Japaridze. Build your own clarithmetic II: Soundness. arXiv:1510.08566 (2015).
[48] J. Krajicek. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge

University Press, 1995.
[49] D. Leivant. Ramified recurrence and computational complexity I: Word recurrence and poly-time. Feasi-

ble Mathematics II (P. Clote and J. Remmel, editors). Perspectives in Computer Science, Birkhauser,
1994, pp. 320-343.

http://arxiv.org/abs/1510.08566

BUILD YOUR OWN CLARITHMETIC I 57

[50] D. Leivant. Intrinsic theories and computational complexity. Lecture Notes in Computer Science

960 (1995), pp. 117-194.
[51] P. Lorenzen. Ein dialogisches Konstruktivitätskriterium. In: Infinitistic Methods. In: PWN, Proc.

Symp. Foundations of Mathematics, Warsaw, 1961, pp. 193-200.
[52] I. Mezhirov and N. Vereshchagin. On abstract resource semantics and computability logic. Journal of

Computer and System Sciences 76 (2010), pp. 356-372.
[53] R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic 36 (1971), pp. 494-508.
[54] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. Methods is Mathematical Logic,

Lecture Notes in Mathematics No. 1130. Springer, 1985, pp. 317-340.
[55] M. Qu, J. Luan, D. Zhu and M. Du. On the toggling-branching recurrence of computability logic. Journal

of Computer Science and Technology 28 (2013), pp. 278-284.
[56] H. Schwichtenberg. An arithmetic for polynomial-time computation. Theoretical Computer Science

357 (2006), pp. 202-214.
[57] H. Simmons. The realm of primitive recursion. Archive for Mathematical Logic 27 (1988), pp.

177-188.
[58] W. Xu and S. Liu. Soundness and completeness of the cirquent calculus system CL6 for computability

logic. Logic Journal of the IGPL 20 (2012), pp. 317-330.
[59] W. Xu and S. Liu. The countable versus uncountable branching recurrences in computability logic. Jour-

nal of Applied Logic 10 (2012), pp. 431-446.
[60] W. Xu and S. Liu. The parallel versus branching recurrences in computability logic. Notre Dame

Journal of Formal Logic 54 (2013), pp. 61-78.
[61] W. Xu. A propositional system induced by Japaridze’s approach to IF logic. Logic Journal of the

IGPL 22 (2014), pp. 982-991.
[62] W. Xu. A cirquent calculus system with clustering and ranking. Journal of Applied Logic 16 (2016),

pp.37-49.
[63] D. Zambella. Notes on polynomially bounded arithmetic. Journal of Symbolic Logic 61 (1996), pp.

942-966.

Index

amplitude (as a subscript) 15
argument variable 13
arithmetical problem 19
at least linear 18
at least logarithmic 18
at least polynomial 18
background (of a configuration) 36
basis of induction 16
“Big-O” notation 18
Bit(y, x) 14
Bit axiom 15
Bitsum 27
Borrow1 25
bound 15
boundclass 15
boundclass triple 15
bounded formula 15
bounded arithmetic 6
Br0(x, s), Br1(x, s) 26
buffer-empty title 39
Carry 28
Carry1 23
clarithmetic 4
CL12 12
CLA11RA 15
CLA11 5
choice operators 3
cirquent calculus 3
Comprehension (R-Comprehension) 16
comprehension bound 16
comprehension formula 16
computability logic (CoL) 3
configuration 35
corrupt configuration 36
critical formula 38
d 35
D 40
Dǫ 40
D⊔ 40
Dǫ

⊔
40

elementary (formula, sentence) 12
elementary (game, problem) 3
elementary basis 17
extended proof 16
extensional: strength 5 completeness 5

F 40
formula 12
header (of a move) 39
HPM 32
Induction (R-Induction) 16
induction bound 16
induction formula 16
inductive step 16
instance of CLA11 5
intensional: strength 5 completeness 5
j 41
k 39
L 12
L-sequent 12
LC 15
least significant bit 14
left premise (of induction) 16
linear closure 17
linearly closed 17
literal 35
Log axiom 15
logical consequence (as a relation) 16
Logical Consequence (as a rule) 15
logically imply 20
logically valid 16
m 39
min 27
monotonicity 15
most significant bit 14
N 40
Nothing 45
numer 39
One 45
paraformula 12
paralegal move 39
parasentence 12
Peano arithmetic (PA) 4,12
Peano axioms 13,15
politeral 35
polynomial closure 17
polynomially closed 17
provider (of a resource/game) 20
pterm (pseudoterm) 13
Q(~s, z) 40
reachable configuration 36
Reasonable R-Comprehension 22
Reasonable R-Induction 21

58

INDEX 59

regular boundclass triple 18
regular theory 18
relevant branch 34
relevant parasentence 34
representable 5,19
representation 19
right premise (of induction) 16
scene (of a configuration) 40
Scenei 41
semiuncorrupt configuration 36
sentence 12

space (as a subscript) 15
standard interpretation (model) 13
standard model of arithmetic 13
Successor axiom 15
successor function 4,13
supplementary axioms 15
syntactic variation 15
Th(N) 7,19

time (as a subscript) 15
title (of a configuration) 39
Titlei 39
titular component 39
titular number 39
tricomplexity 5,18
true 13
truth arithmetic 7,19
U 40
U~s

⊔
40

U~s
∃
40

unadulterated successor 37
unary numeral 13
uncorrupt configuration 36
value variable 13
W 35
W1 34
X, X 32
y 35
yield (of a configuration) 36
Zero 45

⊓x ≤ p (and similarly for the other quanti-
fiers) 15

⊓|x| ≤ p (and similarly for the other quanti-
fiers) 15

A! 19
⊢ 16
|∼ 19
� (as a relation between bounds/bound-

classes) 17
� (as a relation between tricomplexities) 18
|x| 14
τ |~x| 14
(x)y 14
x ′ 4,12
n̂ 13
F † 13
∀F , ∃F , ⊓F , ⊔F 12
⊓ , ⊔ ,⊓,⊔ 3
↔ 16
E◦ 37
E• 37
Ẽ◦(~s) 40

Ẽ•(~s) 40
⌊u/2⌋ 26
〈Φ〉!F 34
E (where E is a formula) 35
S♥ 29
S♠ 29

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Computability logic
	1.2. Clarithmetic
	1.3. The present system
	1.4. Related work
	1.5. Differences with bounded arithmetic
	1.6. Motivations
	1.7. How to read this paper

	2. The system CLA11
	2.1. Language
	2.2. Peano arithmetic
	2.3. Bounds
	2.4. Axioms and rules
	2.5. Provability
	2.6. Regularity
	2.7. Main result

	3. Bootstrapping CLA11AR
	3.1. How we reason in clarithmetic
	3.2. Reasonable Induction
	3.3. Reasonable Comprehension
	3.4. Addition
	3.5. Trichotomy
	3.6. Subtraction
	3.7. Bit replacement
	3.8. Multiplication

	4. Some instances of CLA11
	5. Extensional completeness
	5.1. X, calX and a,s,t
	5.2. Preliminary insights
	5.3. The sentence W
	5.4. The overline notation
	5.5. Configurations
	5.6. The white circle and black circle notations
	5.7. Titles
	5.8. Further notation
	5.9. Scenes
	5.10. The traceability lemma
	5.11. Junior lemmas
	5.12. Senior lemmas
	5.13. Main lemma
	5.14. Conclusive steps

	6. Intensional completeness
	6.1. The intensional completeness of CLA11AR
	6.2. The intensional strength of CLA11AR

	References
	Index

