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ON NATURAL DEDUCTION FOR HERBRAND CONSTRUCTIVE

LOGICS I: CURRY-HOWARD CORRESPONDENCE FOR DUMMETT’S

LOGIC LC
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Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Haupt-
straße 8-10/104, 1040, Vienna, Austria

Abstract. Dummett’s logic LC is intuitionistic logic extended with Dummett’s axiom:
for every two statements the first implies the second or the second implies the first. We
present a natural deduction and a Curry-Howard correspondence for first-order and second-
order Dummett’s logic. We add to the lambda calculus an operator which represents, from
the viewpoint of programming, a mechanism for representing parallel computations and
communication between them, and from the viewpoint of logic, Dummett’s axiom. We
prove that our typed calculus is normalizing and show that proof terms for existentially
quantified formulas reduce to a list of individual terms forming an Herbrand disjunction.

1. Introduction

We call Herbrand constructive any intermediate logic – a logic stronger than intuitionistic
but weaker than classical – which enjoys a strong form of Herbrand’s theorem: for every

provable formula ∃αA, the logic proves as well an Herbrand disjunction

A[m1/α] ∨ . . . ∨A[mk/α]

Of course intuitionistic logic is trivially Herbrand constructive, but classical logic is not: A
is arbitrary! In between, there are several interesting logics which do have the property. Yet
for Herbrand constructive logics there are no known natural deduction formulations with
associated Curry-Howard correspondences, except in trivial cases. We launch here a new
series of papers to fill this void.

We begin with Dummett’s first-order and second-order logic LC: intuitionistic logic
extended with the so-called Dummett linearity axiom

(A → B) ∨ (B → A)

LC was introduced by Dummett [16] as an example, in the propositional case, of a many-
valued logic with a countable set of truth values. Its propositional fragment is also called
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Gödel-Dummett logic, because it is based on the truth definition given in Gödel’s seminal
paper on many-valued logics [20]. In this case, the logic can be formalized by Corsi’s
sequent calculus [14] or by the more elegant hypersequent calculus devised by Avron [8],
[10]. Surprisingly, Avron’s hypersequent calculus does not work for first-order LC: only
recently Tiu [34] provided a more involved version of it, which indeed corresponds to LC at
the first-order.

1.1. Hyper Natural Deduction? In all this story, natural deduction is the great absent.
Since it is one of the most celebrated logical deduction systems, the question is: how is that
possible?

The first issue is that LC is evidently a non-constructive system: for example, it proves
the excluded middle for all negated formulas: ¬A∨¬¬A; and Dummett’s axiom poses even
more problems. As it is well known, natural deduction was put aside by its own inventor,
Gentzen, precisely for the reason that he was not able to prove a meaningful normalization
theorem for classical natural deduction, whilst he was for the intuitionistic case [29]. It
indeed took a surprisingly long time to discover suitable reduction rules for classical natural
deduction systems with all connectives [21], [7]. Even this accomplishment, however, is still
not enough: although Dummett’s axiom is classically provable, the known classical natural
deduction systems fail to provide a refined computational interpretation of LC. The trouble
is that LC proofs are not closed under classical reductions, because during the normalization
process instances of Dummett’s axiom are replaced by reductio ad absurdum in λµ-calculus
[28] and in [15], and by excluded middle in [7].

The second issue is that existential quantifiers are witnessed by multiple terms and so
a parallel computational mechanism is desirable. No Curry-Howard correspondence offered
a suitable one until very recently [7].

Sequent calculus solves these issues by means of structural rules. Classical logic is
rendered by allowing more formulas on the righthand side of a sequent; Dummett’s LC is
rendered by allowing sequences of sequents and a communication mechanism between them.
On the contrary, natural deduction usually solves the same issues by means of new reduction

rules. When one wants to add some new axiom to intuitionistic natural deduction, it is
enough to add it straight away or as a rule, and all the ingenuity of the construction lies in
the proof transformations associated to the axiom.

Inspired by hypersequents, Baaz, Ciabattoni and Fermüller [9] did not follow the latter
path and changed instead the very structure of natural deduction into an hyper version. The
resulting logical calculus is an hyper natural deduction corresponding to Gödel-Dummett
first-order logic (which is not to be confused with first-order LC and can be axiomatized
by adding to LC the axiom scheme ∀α (A ∨ B) → ∀αA ∨ B, where α does not occur
in B). The Normal Form Theorem, however, is only obtained by translation into the
hypersequent calculus, followed by cut-elimination and backward translation: no reduction
rules for hyper deductions were provided. This last task was carried out by Beckmann
and Preining [11], who formulated a propositional hyper natural deduction with a proof
normalization procedure. Unfortunately, the structural rules are so complicated that the
adjective “natural” does not fit any more. Another attempt along the “hyper line” has been
made by Hirai [22], with the addition of an associated lambda calculus. One cannot speak of
a Curry-Howard correspondence, however, because Subject reduction does not hold: there
is no match between computational steps and proof reductions.
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1.2. Natural Deduction Again. Although hyper natural deduction is a legitimate proof
system in its own right, the “hyper approach” is not the one we follow. For two reasons.

The first reason is that we will show that natural deduction works perfectly as it is.
There is no need to change its structure and, to render Dummett’s axiom, it sufficient to
add the inference rule

[A → B]

...
C

[B → A]

...
C

D
C

which allows to conclude unconditionally C from two different deductions of C: one from the
hypothesis A → B and one from the hypothesis B → A. We shall define simple reduction
rules for proofs ending with this inference and we shall show that they are all we need to
extract witnesses for existentially quantified formulas.

The second reason is that natural deduction should stay natural. This is the very
motivation that led to its discovery. Indeed, Gentzen starts his celebrated work [18] on
natural deduction and sequent calculus complaining that the proof systems known at the
time were far removed from the actual mathematical reasoning. And his main goal was
to set up a formalism with the aim of “reproducing as precisely as possible the real logical

reasoning in mathematical proofs”. To avoid betraying natural deduction’s philosophical
motivations, there is no alternative but to add an inference rule that naturally mirrors the
kind of reasoning corresponding to Dummett’s axiom, which is our approach.

1.3. Realizability. One of the most attractive features of intuitionistic natural deduction
is that, in a very precise sense, it does not need a truth-based semantics. Logical inferences
are divided into two groups: introduction rules and elimination rules. And as Gentzen [18]
himself famously suggested, introduction rules define, so to speak, the meaning of the logical
constants they introduce; elimination rules, on the other hand, are nothing but consequences
of these definitions. In other words, introduction rules are self-justifyng, because they fix
themselves the meaning of their conclusions, whereas elimination rules are sound in virtue
of the meaning fixed by the introductions. For example, the rule

[A]

...
B

A → B
says that the grounds for asserting A → B consist in a proof of B from the hypothesis A;
therefore, the elimination

A → B A
B

is automatically justified: if we have a proof of A we can plug it into the proof of B from
A, whose existence is warranted by the meaning of A → B, and obtain a proof of B. The
reverse approach works as well: we may consider elimination rules as meaning constitutive
and treat introduction rules as consequences of the meaning fixed by eliminations. In other
words, meaning is determined by how we use a statement, by what we can directly obtain

from the statement; we shall adopt this pragmatist standpoint, elaborated by Dummett
himself [17].
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This idea of internal justification, as it is, cannot be generalized straight away for exten-
sions of intuitionistic logic: new inferences tend to break the harmony between introductions
and eliminations. It is at this point that Brouwer’s view of logic comes into play. According
to Brouwer [12], the string of “logical” steps appearing in a mathematical proof is in reality
a sequence of mathematical constructions. What we perceive as inference rules are instead
transformations of constructions for the premises into constructions for the conclusion. This
insight finds a precise formalization by means of the Curry-Howard isomorphism: a proof is
indeed isomorphic to an effective construction, in fact, it is, in and of itself, a construction.

Since proofs are constructions, the role of semantics is just explaining what these con-

structions do. Hence, a proof-theoretic semantics of an intermediate logic is in principle
always possible and is made of two ingredients: a formalization of proofs as programs and
a semantical description of what these programs achieve with their calculations. The first
is obtained through the decoration of deduction trees with lambda terms, the second is the
task of realizability.

Realizability was introduced by Kleene [23] to computationally interpret intuitionistic
first-order Arithmetic, but it is Kreisel’s [24] later version with typed terms which embodies
the modern perspective on the subject. Though it was initially conceived just for intu-
itionistic theories, realizability can be extended to intuitionistic Arithmetic with Markov’s
principle [6], to intuitionistic Arithmetic with the simplest excluded middle EM1 [4] and
even all the way up to the strongest classical theories [1, 2, 26]. Realizability replaces the
notion of truth with the notion of constructive evidence. A formula holds if it is realized by
some typed program, providing some constructive information about the formula.

In the following, we shall build a realizability interpretation for Dummett’s LC, inspired
by Krivine’s realizability [26, 15]. By construction, every realizer always terminates its
computations and, in particular, whenever it realizes an existentially quantified formula
∃αA, it reduces to a term of the shape

(m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ak (mk, vk)

with the property that
LC ⊢ A[m1/α] ∨ · · · ∨A[mk/α]

The circle is closed by a soundness theorem, the Adequacy Theorem: every formula provable
in LC is realized by a closed program, which immediately implies the Normalization Theorem
– every proof reduces to a normal form – and that LC is Herbrand constructive. Therefore, to
extract an Herbrand disjunction it suffices to reduce any proof of any existentially quantified
formula to a normal form, according to a very simple set of reduction rules.

1.4. Reduction Rules. To find simple and terminating reduction rules for a natural de-
duction system is always tricky, but once the job is done, the reductions often look so
natural that they appear inevitable. It is the effort of removing obstacles toward a good
normal form what inevitably leads to these reductions, as the flow of a river leads to the
sea. In the case of LC, the main obstacles toward witness extraction for a formula ∃αA are
configurations in which one of the hypotheses introduced by the Dummett inference blocks
the reduction. For example, let us consider this proof shape:
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[A → B]

...
A

B
EL

∃αC

[B → A]

D
∃αC

D
∃αC

where ∃αC has been obtained from B by a series of elimination rules. It is clear that
no witness can be retrieved in the left branch of the proof above, because there is just a
proof of A and, magically, a “void” proof of B obtained by modus ponens from A and the
arbitrary hypothesis A → B. But can’t we just send the proof of A to the right branch of
the Dummett rule and obtain a direct proof of ∃αC, like this?

...
A

B → A
D

∃αC
No! In fact, the proof of A too might depend on the hypothesis A → B, so that the original
proof could be

[A → B]

[A → B]

...
A

B
EL

∃αC

[B → A]

D
∃αC

D
∃αC

and thus the previous transformation is unsound. But the idea of sending the proof of A to
the right branch can work if the right branch is in turn moved on the left like this

[A → B]

...
A

B → A
D

∃αC

[B → A]

D
∃αC

D
∃αC

The reductions that we shall give generalize this transformation in order to work in every
situation.

1.5. Curry-Howard Correspondence. It is more convenient to express proof reductions
in terms of program reductions, because for that purpose the lambda notation is superior
to the proof tree notation. For this reason, we shall define a lambda calculus isomorphic
to natural deduction for LC and then define an head reduction strategy for lambda terms,
inspired by Krivine’s strategy [26]. The termination of head reduction will just be a con-
sequence of soundness of LC with respect to realizability, while the perfect match between
program reductions and proof reductions will as usual be consequence of the Subject Re-
duction Theorem. The decoration of intuitionistic inferences with programs is standard and
Dummett’s rule will be decorated in the following way
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[aA→B : A → B]

...
u : C

[aB→A : B → A]

...
v : C

D
u ‖a v : C

The parallel operator ‖a is inspired by the exception operator studied in [7] and keeps using
the variable a for communication purposes. The variable a has the task of sending terms
from u to v and viceversa, as well as allowing u to call the process v whenever it needs it
and viceversa.

1.6. Plan of the Paper. In Section §2 we introduce a Curry-Howard interpretation of
intuitionistic first-order natural deduction extended with the Dummett rule D. We first
describe the calculus together with its computational rules and then discuss its proof theo-
retical interpretation.
In Section §3 we prove the Normalization Theorem and the soundness of realizability with
respect to LC.
In Section §4, we prove that LC is Herbrand constructive and in particular that from any
closed term having as type an existentially quantified formula, one can extract a correspond-
ing Herbrand disjunction.
In Section §5 we extend the previous results to the second-order LC2, achieving its first com-
putational interpretation, for there is no known cut-elimination procedure for second-order
hypersequent calculus.

2. The System LC

In this section we describe a standard natural deduction system for intuitionistic first-order
logic, with a term assignment based on the Curry-Howard correspondence (e.g. see [31]),
and add on top of it an operator which formalizes Dummett’s axiom. First, we shall
describe the lambda terms and their computational behavior, proving as main result the
Subject Reduction Theorem, stating that the reduction rules preserve the type. Then,
we shall analyze the logical meaning of the reductions and present them as pure proof
transformations.

We start with the standard first-order language of formulas.

Definition 2.1 (Language of LC). The language L of LC is defined as follows.

(1) The terms of L are inductively defined as either variables α, β, . . . or constants c

or expressions of the form f(m1, . . . ,mn), with f a function constant of arity n and
m1, . . . ,mn ∈ L.

(2) There is a countable set of predicate symbols. The atomic formulas of L are all the
expressions of the form P(m1, . . . ,mn) such that P is a predicate symbol of arity n
and m1, . . . ,mn are terms of L. We assume to have a 0-ary predicate symbol ⊥ which
represents falsity.

(3) The formulas of L are built from atomic formulas of L by the logical constants ∨,∧,→
,∀,∃, with quantifiers ranging over variables α, β, . . .: if A,B are formulas, then A∧B,
A ∨ B, A → B, ∀αA, ∃αB are formulas. The logical negation ¬A can be introduced,
as usual, as a shorthand for the formula A → ⊥.
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In Figure 1 we define a type assignment for lambda terms, called proof terms, which
is isomorphic to natural deduction for intuitionistic logic extended with Dummett’s axiom.

Axioms: xA : A

Conjunction:
u : A t : B

〈u, t〉 : A ∧B

u : A ∧B

uπ0 : A

u : A ∧B

uπ1 : B

Implication:
t : A → B u : A

tu : B

[xA : A]

...
u : B

λxAu : A → B

Disjunction Introduction:
u : A

ι0(u) : A ∨B

u : B

ι1(u) : A ∨B

Disjunction Elimination:

u : A ∨ B

[xA : A]

...
w1 : C

[yB : B]

...
w2 : C

u [xA.w1, y
B.w2] : C

Universal Quantification:
u : ∀αA

um : A[m/α]

u : A

λαu : ∀αA

where m is any term of the language L and α does not occur free in the type B of any free variable xB

of u.

Existential Quantification:
u : A[m/α]

(m,u) : ∃αA
u : ∃αA

[xA : A]

...
t : C

u [(α, xA).t] : C

where α is not free in C nor in the type B of any free variable of t.

Dummett’s Axiom D:

[aA→B : A → B]

...
u : C

[aB→A : B → A]

...
v : C

D
u ‖a v : C

Ex Falso Quodlibet:
Γ ⊢ u : ⊥

Γ ⊢ efqP (u) : P
with P atomic.

Figure 1: Term Assignment Rules for LC

We assume that in the proof terms two distinct classes of variables appear. The first
class of variables is made by the variables for the proof terms themselves: for every for-
mula A, we have variables xA0 , x

A
1 , x

A
2 , . . . of type A; these variables will be denoted as

xA, yA, zA . . . , aA, bA and whenever the type is not important simply as x, y, z, . . . , a, b. For
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clarity, the variables introduced by the Dummett’s inference rule will be denoted with let-
ters a, b, . . ., but they are not in any syntactic category apart. The second class of variables
is made by the quantified variables of the formula language L of LC, denoted usually as
α, β, . . ..

The free and bound variables of a proof term are defined as usual and for the new term
u ‖a v, all of the free occurrences of a in u and v are bound in u ‖a v. In the following, we
assume the standard renaming rules and alpha equivalences that are used to avoid capture
of variables in the reduction rules that we shall give.

Whenever Γ = x1 : A1, . . . , xn : An and the list x1, . . . , xn includes all the free variables
of a proof term t : A, we shall write Γ ⊢ t : A. From the logical point of view, the notation
means that t represents a natural deduction of A from the hypotheses A1, . . . , An. We shall
write LC ⊢ t : A whenever ⊢ t : A, and the notation means provability of A in intuitionistic
logic with Dummett’s axiom.

We are now going to explain the basic reduction rules for the proof terms of LC, which
are given in Figure 2. To understand them, we need the notions of parallel context and
stack. If we omit parentheses, any term t can be written, not uniquely, in the form

t = t1 ‖a1 t2 ‖a2 . . . ‖an tn+1

If we replace some ti with a “hole” [] to be filled, the expression above becomes a parallel
context.

Definition 2.2 (Parallel Contexts). Omitting parentheses, a parallel context C[ ] is an
expression of the form

u1 ‖a1 u2 ‖a2 . . . ui ‖ai [] ‖ai+1
ui+1 ‖ai+2

. . . ‖an un

where [] is a placeholder and u1, u2, . . . , un are proof terms. For any proof term u, C[u]
denotes the replacement in C[ ] of the placeholder [] with u:

u1 ‖a1 u2 ‖a2 . . . ui ‖ai u ‖ai+1
ui+1 ‖ai+2

. . . ‖an un

A stack represents, from the logical perspective, a series of elimination rules; from the
lambda calculus perspective, a series of either operations to be performed or arguments to
be given as input to some program. A stack is also known as a continuation, because it
embodies a series of tasks that wait to be executed, and corresponds to Krivine’s stacks
[26].

Definition 2.3 (Stack). A stack is a sequence

σ = σ1.σ2. . . ..σn
such that for every 1 ≤ i ≤ n, exactly one of the following holds:

• σi = t, with t proof term.
• σi = m, with m ∈ L.
• σi = πj , with j ∈ {0, 1}.
• σi = [x.u, y.v], with u, v proof terms of the same type.
• σi = [(α, x).v], with v proof term.

If no confusion with other sequences of terms arises, σ will often be written without in-
termediate dots, that is, as σ1 σ2 . . . σn. The empty sequence is denoted with ǫ and with
ξ, ξ′, . . . we will denote stacks of length 1. If t is a proof term, as usual in lambda calculus
t σ denotes the term (((t σ1)σ2) . . . σn).
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We find among the reductions in Figure 2 the ordinary reductions for the intuitionistic
constructs together with Prawitz-style permutation rules [30] for D, as in [7]. The reduction
rules for D model the communication mechanism explained in Section §1. In the reduction

C[aA→B uσ] ‖a v 7→ C[ v[λyB u/aB→A] ] ‖a v

we see that the term on the left is in some way stuck: the variable aA→B faces an argument
u of type A; of course, it has no idea how to use u to produce a term of type B! On the
contrary, the term v knows very well how to use u to produce something useful, because it
contains the variable aB→A, which waits for a term of type B → A. Thus, aA→B sends the
term λyB u, with y dummy, to v, yielding the term v[λyB u/aB→A]. This program is called
to replace the useless aA→B uσ and computation can go ahead. We require the context C[ ]
to be parallel, because in this way types are not needed to define the reductions for D and
the calculus makes sense also in its untyped version and with Curry-style typing. We have
chosen Church-typing only to make clearer the intended meaning of the operations: had
we omitted all the types from the terms, everything would have still worked just fine. In
Theorem 2.7, we shall prove that indeed our reduction rules for D are logically correct and
preserve the type.

Reduction Rules for Intuitionistic Logic:

(λxu)t 7→ u[t/x]

(λαu)m 7→ u[m/α]

〈u0, u1〉πi 7→ ui, for i = 0, 1

ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i = 0, 1

(m,u)[(α, x).v] 7→ v[m/α][u/x], for each term m of L

Permutation Rules for D:

(u ‖a v)w 7→ uw ‖a vw, if a does not occur free in w

(u ‖a v)πi 7→ uπi ‖a vπi

(u ‖a v)[x.w1, y.w2] 7→ u[x.w1, y.w2] ‖a v[x.w1, y.w2], if a does not occur free in w1, w2

(u ‖a v)[(α, x).w] 7→ u[(α, x).w] ‖a v[(α, x).w], if a does not occur free in w1, w2

Reduction Rules for D:

C[aA→B uσ] ‖a v 7→ C[ v[λyB u/aB→A] ] ‖a v

v ‖a C[aA→B uσ] 7→ v ‖a C[ v[λyB u/aB→A] ]

for some parallel context C, stack σ, variable a free in C[aA→B uσ], dummy variable y not occurring in u

Figure 2: Basic Reduction Rules for LC

Our goal now is to define a reduction strategy for typed terms of LC: a recipe for
selecting, in any given term, the subterm to which apply one of our basic reductions. As most
typed lambda calculi are strongly normalizing and our reduction rules look fairly innocuous,
one cannot help but conjecture that any reduction strategy eventually terminates; in other
words, that reduction strategies are not necessary. We do conjecture that the fragment
with ∀,→,∧,∨ is indeed strongly normalizing. Yet, already the proof of this weaker result
appears excessively complex, to such an extent that arbitrary reduction strategies start to
feel wrong, that is, to perform unnecessary computations.

We therefore leave strong normalization as an open problem and follow a more standard
approach: Krivine’s (weak) head reduction strategy. The difference is: in Krivine’s calculus
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each process has a unique head; in our calculus each process has several heads, like the
Hydra monster. This is due to the presence of the parallel operator ‖a. Indeed, if we omit
parenthesis, any term t can be written, not uniquely, in the form

t = t1 ‖a1 t2 ‖a2 . . . ‖an tn+1

The terms t1, . . . , tn are parallel processes; each one has its own head and may have an head
redex. And as with the Hydra monster, if we contract some head ti, more heads to contract
might grow. We now formally define what are the parallel processes that appear in a term
and what is the head redex of a term.

Definition 2.4 (Parallel Processes, Head).

• Removing the parentheses, whenever a proof term t can be written as

t = t1 ‖a1 t2 ‖a2 . . . ‖an tn+1

each term ti, for 1 ≤ i ≤ n+ 1, is said to be a parallel process of t and is said to be an
elementary process of t in case it is not of the form u ‖a v.

• A redex is a term u such that u 7→ v for some v and basic reduction of Figure 2.
• Let σ be any stack. A redex h is said to be the head redex of a proof term t in the
following cases:
(1) t = (λxu)v σ and h = (λxu)v;
(2) t = (λαu)mσ and h = (λαu)m;
(3) t = 〈u, v〉πi σ and h = 〈u, v〉πi;
(4) t = ιi(u) [x1.t1, x2.t2]σ and h = ιi(u) [x1.t1, x2.t2];
(5) t = (m,u) [(α, x).v]σ and h = (m,u) [(α, x).v];
(6) t = ((u ‖a v) ξ )σ and h = (u ‖a v) ξ;
(7) t = u ‖a v and h = t.

We now define the head reduction of a proof term: the notion generalizes Krivine’s head
reduction to parallel contexts. The idea is to look for the leftmost among the head redexes of
the parallel processes of a term and contract that redex. The only subtlety is to determine
exactly where the new redexes for D start. Since the reduction for u ‖a v is completely
localized either in u or v, it is reasonable to say that the redex starts where the subterm
a uσ to be replaced is located.

Definition 2.5 (Letfmost Redex, Head Reduction).

(1) The starting symbol of a redex r is the symbol “(” when r = (u ξ) for some stack ξ of
length 1; it is the leftmost occurrence of the symbol “a” such that a t σ is an elementary
process of r, when r = (u ‖a v). The leftmost redex among some redexes of a term t
is the redex whose starting symbol is the leftmost in t among the starting symbols of
those redexes.

(2) We say that a term t head reduces to t′ and write

t ≻ t′

when t′ is obtained from t by contracting the leftmost among the head redexes of the
parallel processes of t, using one of the basic reductions in Figure 2.
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For readability, parentheses are often omitted, but in order to spot the head redex of a term,
one must mentally restore the parentheses that have been suppressed. In order to train our
eye, we consider three examples of head reduction:

(λx a (λz z)x)u ‖a z0 ≻ a (λz z)u ‖a z0 ≻ z0 ‖a z0

(λx ιo(x))u [x0.t1, x1.t1]σ ≻ ιo(u) [x0.t0, x1.t1]σ ≻ t0[u/x0]σ

a ((λxx) z0) ‖a a z1 ≻ (λy (λxx) z0) z1 ‖a a z1 ≻ (λxx) z0 ‖a a z1 ≻ z0 ‖a a z1 ≻ z0 ‖a z0
In the first case, the reduction for D is used as third step of the head reduction, while in
the third case, as first and last step.

We define the concept of normal form and normalizable term in the usual way.

Definition 2.6 (Normal Forms and Normalizable Terms).

• A term t is called a head normal form if there is no t′ such that t ≻ t′. We define NF

to be the set of head normal forms.
• A sequence, finite or infinite, of proof terms u1, u2, . . . , un, . . . is said to be a reduction
of t, if t = u1, and for all i, ui ≻ ui+1. A proof term u of LC is (head) normalizable if
there is no infinite reduction of u. We denote with HN the set of normalizable terms of
LC.

The reductions defined in Figure 2 satisfy the important Subject Reduction Theorem: reduc-
tion steps at the level of proof terms preserve the type, which is to say that they correspond
to logically sound transformations at the level of proofs. We first give the simple proof of
the theorem, then analyze in detail its logical meaning in the next subsection.

Theorem 2.7 (Subject Reduction). If t : C and t ≻ u, then u : C. Moreover, all the free

variables of u appear among those of t.

Proof. It is enough to prove the theorem for basic reductions: if t : C and t 7→ u, then u : C.
The proof that the intuitionistic reductions and the permutation rules preserve the type is
completely standard. Thus we are left with the D-reductions, which require straightforward
considerations as well. Suppose

C[aA→B uσ] ‖a v 7→ C[ v[λyB u/aB→A] ] ‖a v

Since C is a parallel context, aA→B uσ and v have both type C. Now, u must be of type A,
so λyBu is of type B → A and thus v[λyB u/aB→A] is a correct term of type C. Moreover,
all the occurrences of aB→A in v are eliminated by the substitution [λyB u/aB→A], so no new
free variable is created.

2.1. Reduction Rules: Logical Interpretation. So far, in studying the system LC, we
have given priority to the underlying lambda calculus and characterized it as a functional
language endowed with parallelism and a communication mechanism. The explanation of
the reductions had little to do with logic and much with computation. However, thanks to
the Subject Reduction Theorem, we know we could have proceeded the other way around.
Namely, we could have given priority to logic and dealt only with transformation of proofs,
in the style of Prawitz natural deduction trees [30]. Since it is instructive to explain directly
this point of view, we are finally going to do so.

First of all, the following proof of ¬A∨¬¬A is an example of natural deduction tree in
LC:
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[¬¬A → ¬A]

[¬A] [A]

⊥
¬¬A

¬A [A]

⊥
¬A

¬A ∨ ¬¬A

[¬A → ¬¬A] [¬A]

¬¬A [¬A]

⊥
¬¬A

¬A ∨ ¬¬A
D

¬A ∨ ¬¬A
The standard reductions for lambda calculus still correspond to the ordinary conversions
for all the logical constants of first-order logic:

[A]

...
B

A → B

...
A

B

converts to:

...
A
...
B

...
Ai

(i ∈ {1, 2})
A1 ∨A2

[A1]

...
C

[A2]

...
C

C

converts to:

...
Ai

...
C

...
A1

...
A2

A1 ∧A2
(i ∈ {1, 2})

Ai

converts to:
...
Ai

...
A[m/α]

∃αA

[A]

π

C
C

converts to:

...
A[m/α]

π[m/α]

C
π

A
∀αA

A[m/α]

converts to:
π[m/α]

A[m/α]

The permutation reductions for the terms of the form u ‖a v, are just instances of Prawitz-
style permutations for disjunction elimination. From the logical perspective, they are used
to systematically transform, whenever possible, the logical shape of the conclusion. This re-
duction is essential because the Dummett inference rule does not yield much when employed
to prove implications or disjunctions; but it becomes Herbrand constructive, whenever used
to prove existentially quantified statements. As an example of permutation for D, we con-
sider the one featuring an implication as conclusion:
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[A → B]

...
F → G

[B → A]

...
F → G

D
F → G

...
F

G

converts to:

[A → B]

...
F → G

...
F

G

[B → A]

...
F → G

...
F

G
G

There are similar permutations for all other elimination rules, as one can see translating in
natural deduction the permutations of Figure 2. With the following notation

D1

C · · ·

Di

C · · ·

Dn

C
D

C
we denote a deduction of C that, in order to obtain its final conclusion, combines the
deductions D1, . . . ,Di, . . . ,Dn of C using only the Dummett rule n − 1 times. In other
words, below the conclusions C of the deductions D1, . . . ,Di, . . . ,Dn only the Dummett
rule is used. This configuration corresponds to a parallel context in our lambda calculus,
as in Definition 2.2. With the notation

B
EL

C
we denote a deduction of C that, starting from B, applies only elimination rules to obtain
C; in particular, B must be the main premise of the first elimination rule which concludes
B1, which must be the main premise of the second elimination rule which concludes B2 and
so on down to C. This configuration corresponds to the concept of stack of Definition 2.3.

Finally, we can look at the two reductions for proofs containing the Dummett rule. Let
us consider just the first conversion for D, the second being perfectly symmetric:

D1

C · · ·

[A → B]

[A → B]

...

A

B
EL

C · · ·

Dn

C
D

C

[B → A]

D

C
D

C

converts to:
D1

C · · ·

[A → B]

...

A

B → A

D

C · · ·

Dn

C
D

C

[B → A]

D

C
D

C

The conversion above focuses first on the deduction D on the left branch of the proof; it
replaces the hypothesis B → A of D with a proof of B → A directly obtained from the
proof of A found on the left branch; afterwards, it takes the deduction so generated and
replaces with it the old proof of C obtained from B by elimination rules.
There is a crucial assumption about the structure of the first proof. In the left branch of the
Dummett rule, the hypothesis A → B is used together with A to obtain B, which is in turn
used to infer C by means only of a main branch of elimination rules, as called by Prawitz.
Thanks to this restriction, the proof of A does not end up having more open assumptions
in the second proof than it has in the first proof.
But what have we gained with this reduction? It looks like we made no progress at all. The
hypothesis A → B may be actually used more times in the second proof than in the first,
because the hypothesis B → A might be used several times in the deduction D! Actually,
the gain is subtle. In the left branch of the first proof the formula B was derived in a
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fictitious way: by an arbitrary hypothesis A → B, bearing no relationship with C. Since B
is used to obtain C, we cannot expect B to provide constructive content to C, in particular
no witness if C is an existential formula. The conversion above gets rid of this configuration
and provide a more direct proof of C: in the new proof, if B → A is employed to derive A
by modus ponens, one can discard B and use the proof of A coming from the first proof.

The main difficulty that we face with our reduction rules for D is termination. There is
hardly any decrease in complexity from before to after the reduction and the road toward
a combinatorial termination proof looks barred. We are thus forced to employ a far more
abstract technique: realizability.

3. Classical Realizability

In this section we prove that each term of LC realizes its type and is normalizing. To
this end, we make a detour into a logically inconsistent, yet computationally sound world:
the system LC⋆, a type system which extends LC . The idea that extending a system can
make easier rather than harder to prove its normalization might not seem very intuitive,
but it is well tested and very successful (see [32], [5], [3], [7]). LC⋆ will be our calculus of
realizers. It is indeed typical of realizability, the method we shall use, to set up a calculus
with more realizers than the actual proof terms [24, 26, 6]. The idea is that a realizer is
defined as a proof term that defeats every opposer and passes every termination test; but
proof terms, as opposers and testers of proof terms themselves, are not enough; proof terms
must be opposed and tested also by “cheaters”, terms that do satisfy the same definition
of realizability, but only because they have some advantage. These extra tests make proof
terms stronger realizers than they otherwise would be. We may imagine a realizer as a
tennis player that trains himself to return fast balls thrown by a robot: if he withstands
the attacks of the robot, he will perform all the more well against real weaker humans.

3.1. The Abort Operator. The system LC⋆ is not meant to be a logical system: it would
be inconsistent! The purpose of the system is not logical, but computational: to simulate
the reduction rules for D by an abort operator A. We define the typing rules of LC⋆ to be
those of LC plus a new term formation scheme:

Abort Axiom: AA→B : A → B

With A, A1, . . . ,Ak, we shall denote some generic constant AA→B. The reduction rules for
the terms of LC⋆ are those for LC with the addition of a new reduction rule defined in Figure
3.

Reduction Rules for A:

Auσ 7→ u

whenever Auσ and u have the same type

Figure 3: Extra Reduction Rules for LC⋆



CURRY-HOWARD CORRESPONDENCE FOR DUMMETT’S LOGIC 15

The abort computational construct reminds Krivine’s kπ, which removes the current
continuation ρ and restore a previously saved continuation π:

kπ ⋆ t.ρ ≻ t ⋆ π

There is indeed an analogy with Krivine’s realizability: the terms of LC correspond to
Krivine’s proof-like terms, whereas the terms of LC⋆ correspond to Krivine’s inconsistent
terms that may contain kπ and may realize any formula. But in our case LC⋆ is just a tool

for defining realizability, not a tool for implementing reductions, like kπ in Krivine case.
The role of A will emerge later on in the proof of Propositions 3.6 and 3.7. However, by
now, the intuition should be pretty clear: in the reduction

C[a uσ] ‖a v 7→ C[ v[λy u/a] ] ‖a v

the term a uσ aborts the local continuation σ. The difficulty is that the new continuation
v[λy u/a], from the perspective of a, is created out of nowhere! Therefore proving by
induction that C[a uσ] is a realizer would not be of great help for proving that the whole
term C[a uσ] ‖a v is realizer. With terms of the form Aw we can instead simulate locally
the global reduction above and get a stronger induction hypothesis.

The Definition 2.3 of stack is of course extended to LC⋆ and the Definition 2.4 of head
redex is extended to the terms of LC⋆ by saying that Auσ is the head redex of Auσ
whenever u and Auσ have the same type. The reduction relation ≻ for the terms of LC⋆

is then defined as in Definition 2.5. In the following, we define HN⋆ to be the set of
normalizing proof terms of LC⋆.

As usual in lambda calculus, a value represents the result of the computation: a function
for arrow and universal types, a pair for product types, a boolean for sum types and a witness
for existential types and in our case also the abort operator.

Definition 3.1 (Values, Neutrality).

• A proof term is a value if it is of the form λxu or λαu or 〈u, t〉 or ιi(u) or (m,u) or
efq(u) or A.

• A proof term is neutral if it is neither a value nor of the form u ‖a v.

We now prove a property of head normal forms that we will be crucial in the following.
It is a generalization of the well known head normal form Theorem for lambda calculus and
tells us that if we decompose a proof term into its elementary parallel processes, then each
of them is either a value or some variable or constant applied to a list of argument.

Proposition 3.2 (Head Normal Form Property). Suppose t is in head normal form and

t = t1 ‖a1 t2 ‖a2 . . . ‖an tn+1

and that each ti is an elementary process. Then for every 1 ≤ i ≤ n+1, there is some stack

σ such that either ti = xσ, with x 6= a1, . . . , an, or ti = Auσ, with the type of u different

from the type of Auσ, or ti = aj or ti is a value.

Proof. By induction on t. If t is a value, we are done. There are two other cases to consider.

(1) t = u ‖a v. By Definition 2.4, the parallel processes of u and v are parallel processes
of u ‖a v as well, so they cannot have head redexes; hence u and v are in head normal
form. By induction hypothesis, u and v are of the desired form, thus we just have to
check that if

u = u1 ‖a1 u2 ‖a2 . . . ‖ak uk+1
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and for some i, ui = xσ, with σ 6= ǫ, then x 6= a (and symmetricallly for v). Indeed, if
for some i, ui = a σ, then u = C[a σ] for some parallel context C[ ], and therefore u ‖a v
would be the leftmost head redex of itself, which is impossible since by assumption it is
in head normal form.

(2) t is neutral. Then t can be written, for some stack σ, as r σ where r is a value or
r = u ‖a v or r = x. In the third case, we are done; in the first and second case,
σ = ξ.ρ, so r ξ would be the head redex of t, unless t = A ξ ρ, with the type of ξ
different from the type of A ξ ρ, which is the thesis.

3.2. Definition of Classical Realizability. Our main goal now is to prove the Normal-
ization Theorem for LC: every proof term of LC reduces in a finite number of head reduction
steps to a head normal form. We shall employ a notion of classical realizability, a generaliza-
tion of the Tait-Girard reducibility method [19] that works for classical type systems. The
origins of classical realizability can be traced all the way back to Parigot [28] and Krivine
[25] classical reducibility, but we present it in a fashion popularized later by Krivine in his
work on realizability [26], which is indeed a generalization of classical reducibility. Thanks
to the fact that one considers only head reduction, Krivine-style classical realizability is
slightly simpler than the notions usually employed to derive strong normalization.

Given a logic, we raise a question: what kind of evidence does a proof provide other than
the tiny bit “1” declaring the truth of the proven statement? Realizability is a semantics
explaining what is to be taken as constructive evidence for a statement and a technique for
showing that proofs can provide such an evidence. Formally, realizability is a relation be-
tween terms of LC⋆ and formulas, with terms playing the role of constructions and formulas
determining what properties a construction should satisfy. In particular, to each formula
C is associated a set of stacks ||C||, which represents a collection of valid tests: whenever a
term passes all these tests, in the sense that it maps them into terminating programs, it is
a realizer. As prescribed by the pragmatist viewpoint, the clauses that defines realizability
follow the shape of elimination rules, in order to make sure that no matter how a program
is used, it always terminates.

Definition 3.3 (Valid Tests, Classical Realizability). Assume t is a term of LC⋆ and C is
a formula of L. We define by mutual induction the relation t  C (“t realizes C”) and a
set ||C|| of stacks of LC⋆ (the “valid tests for C”) according to the form of C:

• t  C if and only if t : C and for all σ ∈ ||C||, t σ ∈ HN⋆

• ||P|| = {ǫ}
• ||A → B|| = {u.σ | u  A ∧ σ ∈ ||B||} ∪ {ǫ}
• ||A ∧B|| = {π0.σ | σ ∈ ||A||} ∪ {π1.σ | σ ∈ ||B||} ∪ {ǫ}
• ||A ∨ B|| = {[x.u, y.v].σ | ∀t. (t  A =⇒ u[t/x]σ ∈ HN⋆) ∧ (t  B =⇒ v[t/y]σ ∈
HN⋆)} ∪ {ǫ}

• ||∀αA|| = {m.σ | m ∈ L ∧ σ ∈ ||A[m/α]||} ∪ {ǫ}
• ||∃αA|| = {[(α, x).v].σ | ∀t. t  A[m/α] =⇒ v[m/α][t/x]σ ∈ HN⋆} ∪ {ǫ}

3.3. Properties of Realizers. In this section we prove the basic properties of classical
realizability. They are all we need to prove the Adequacy Theorem 3.8, which states that
typable terms are realizable. The arguments for establishing the properties are in many
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cases standard (see Krivine [26]). We shall need extra work for dealing with terms of the
form u ‖a v.

The first task is to prove that realizability is sound for all introduction and elimination
rules of LC. We start with the eliminations.

Proposition 3.4 (Properties of Realizability: Eliminations).

(1) If t  A → B and u  A, then tu  B.

(2) If t  ∀αA, then for every term m of L, tm  A[m/α].
(3) If t  A ∧B, then t π0  A and t π1  B.

(4) If t  A ∨B and for every w  A, u[w/x]  C and for every w  B, v[w/y]  C, then

t [x.u, y.v]  C.

(5) If t  ∃αA and for every m ∈ L and for every w  A[m/α], u[m/α][w/x]  C, then

t [(α, x).u]  C.

Proof.

(1) Assume t  A → B and u  A. Let σ ∈ ||B||; we must show tu σ ∈ HN⋆. Indeed,
since t  A, by Definition 3.3 u.σ ∈ ||A → B|| and since t  A → B, we conclude
tu σ ∈ HN⋆.

(2) Similar to 1.
(3) Assume t  A ∧ B. Let σ ∈ ||A||; we must show t π0 σ ∈ HN⋆. Indeed, by Definition

3.3 π0.σ ∈ ||A ∧ B|| and since t  A ∧ B, we conclude t π0 σ ∈ HN⋆. A symmetrical
reasoning shows that t π1  B.

(4) Let σ ∈ ||C||. We must show that t [x.u, y.v]σ ∈ HN⋆. By hypothesis, for every
w  A, u[w/x]σ ∈ HN⋆ and for every w  B, v[w/y]σ ∈ HN⋆; by Definition 3.3,
[x.u, y.v]σ ∈ ||A ∨B||. Since t  A ∨B, we conclude t [x.u, y.v]σ ∈ HN⋆.

(5) Similar to 4.

Realizability is also sound for introduction rules and the abort operator realizes any
implication.

Proposition 3.5 (Properties of Realizability: Introductions).

(1) If for every t  A, u[t/x]  B, then λxu  A → B.

(2) If for every term m of L, u[m/α]  B[m/α], then λαu  ∀αB.

(3) If u  A and v  B, then 〈u, v〉  A ∧B.

(4) If t  Ai, with i ∈ {0, 1}, then ιi(t)  A0 ∨A1.

(5) If t  A[m/α], then (m, t)  ∃αA.
(6) If A and B are any two formulas, then A  A → B.

Proof.

(1) Suppose that for every t  A, u[t/x]  B. Let σ ∈ ||A → B||. We have to show
(λxu)σ ∈ HN⋆. If σ = ǫ, indeed λxu ∈ HN⋆. Suppose then σ = t.ρ, with t  A
and ρ ∈ ||B||. Since by hypothesis u[t/x]  B, we have u[t/x] ρ ∈ HN⋆; moreover,
(λxu)t ρ ≻ u[t/x] ρ. Therefore, (λxu)t ρ ∈ HN⋆.

(2) Similar to 1.
(3) Suppose u  A and v  B. Let σ ∈ ||A∧B||. We have to show 〈u, v〉σ ∈ HN⋆. If σ = ǫ,

indeed 〈u, v〉 ∈ HN⋆. Suppose then σ = πi.ρ, with i ∈ {0, 1} and ρ ∈ ||A||, when i = 0,
and ρ ∈ ||B||, when i = 1. We have two cases.
(a) i = 0. Since by hypothesis u  A, we have u ρ ∈ HN⋆; moreover, 〈u, v〉πi ρ ≻ u ρ.

Therefore, 〈u, v〉πi ρ ∈ HN⋆.
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(b) i = 1. Since by hypothesis u  B, we have v ρ ∈ HN⋆; moreover, 〈u, v〉πi ρ ≻ v ρ.
Therefore, 〈u, v〉πi ρ ∈ HN⋆.

(4) Suppose t  Ai. Let σ ∈ ||A0 ∨ A1||. We have to show ιi(t)σ ∈ HN⋆. If σ = ǫ,
indeed ιi(t) ∈ HN⋆. Suppose then σ = [x0.u0, x1.u1].ρ and for all w, if w  A0,
then u0[w/x0] ρ ∈ HN⋆ and if w  A1, then u1[w/x1] ρ ∈ HN⋆. We have to show
ιi(t) [x0.u0, x1.u1] ρ ∈ HN⋆. By hypothesis ui[t/xi] ρ ∈ HN⋆; moreover,

ιi(t) [x0.u0, x1.u1] ρ ≻ ui[t/xi] ρ

Therefore, ιi(t) [x0.u0, x1.u1] ∈ HN⋆.
(5) Similar to 4.
(6) Let σ ∈ ||A → B||. We have to show that Aσ ∈ HN⋆. If σ = ǫ, indeed A ∈ HN⋆.

Suppose then σ = u.ρ, with u  A and ρ ∈ ||B||. We have to show that Au ρ ∈ HN⋆.
Since u  A and ǫ ∈ ||A||, we have u = u ǫ ∈ HN⋆. Moreover, if Au ρ is not a redex, we
are done, and if Au ρ ≻ u, the thesis follows.

It is now that the abort operator really enters the scene. Thanks to it, any reduction
u ‖a v ≻ u′ ‖a v can be simulated in a purely local way. This is possible because any such
reduction affects only what is inside u and leaves v untouched. Then, in order to replicate
the reduction is enough to substitute to a a term A that throws away any stack of terms
it is applied to, like a does, and then restores v, with some substitution depending on the
context. Of course, symmetrical considerations hold true for any reduction u ‖a v ≻ u ‖a v′.

Proposition 3.6 (Local Simulation). Define

A := λxA v[λy x/a]

B := λzAu[λy z/a]

with x, y, z and A occurring with the right type. Then

(u ‖a v ≻ u′ ‖a v) =⇒ u[A /a] ≻+ u′[A /a]

(u ‖a v ≻ u ‖a v′) =⇒ v[B/a] ≻+ v′[B/a]

Proof. We prove the first statement, the other being perfectly symmetric. The only trouble
is to formalize precisely the argument, which is otherwise intuitively obvious. To this end,
we first need some simple, but tedious to prove, claims.

• Claim 1. Every parallel process of u[A /a] is of the form t[A /a], where t is a parallel
process of u.

• Claim 2. For every parallel process t[A /a] of u[A /a], if the starting symbol of the head
redex of t is in the n-th, from left to right, elementary process of u, then the starting
symbol of the head redex of t[A /a] is in the n-th elementary process, from left to right,
of u[A /a].

Proof of Claim 1. By induction on u. Let t′ be a parallel process of u′ = u[A /a]. If t′ = u′,
since u is a parallel process of itself, we are done. Suppose now u′ = u′1 ‖b′ u′2. Then,
assuming u = u1 ‖b u2, we have

u′1 ‖b′ u
′
2 = (u1 ‖b u2)[A /a] = (u1[A /a] ‖b u2[A /a])

Therefore, b′ = b, u′1 = u1[A /a] and u′2 = u2[A /a]. Now, t′ is a parallel process of either
u′1 or u′2; by induction hypothesis, t′ = t[A /a], where t is a parallel process of u1, in the
first case, and of u2 in the second.
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Proof of Claim 2. By induction on u. Let t′ = t[A /a] be a parallel process of u′ = u[A /a],
where t is a parallel process of u. We have two cases.

(1) t′ = u[A /a]. If u = hσ and h is its head redex, then u is the first and unique elemen-
tary process of u; moreover, t′ = (h[A /a]) (σ[A /a]), thus h[A /a] is its head redex and
indeed t′ is the first and unique elementary process of t. If u = u1 ‖b u2 and is a redex,
then by Definition 2.5, the starting symbol of u is the occurrence of b such that bw σ is
the n-th elementary process of u and for every m < n, the m-th elementary process of u
does not start with b. Since t′ = u1[A /a] ‖b u2[A /a] and a 6= b, the starting symbol of t′

is the occurrence of b such that b (w[A /a]) (σ[A /a]) is the n-th elementary process of t′.

(2) t′ 6= u[A /a]. Since t′ = t[A /a] and t is a parallel process of u with t 6= u, there is a
parallel context C[ ] such that u = C[t]. By induction hypothesis, assuming that the
starting symbol of the head redex of t is in the n-th elementary process of t, then the
starting symbol of the head redex of t′ is in the n-th elementary process of t′. Since
u′ = (C[A /a])[t′], if m is the number of elementary processes on the left of t in C[t],
then the starting symbol of the head redex of t is in the (m+ n)-th elementary process
of u and the starting symbol of the head redex of t′ is in the (m + n)-th elementary
process of u′, which is the thesis.

Let now us return to the main line of the proof. Suppose

u ‖a v ≻ u′ ‖a v

Then for some parallel context C, we have u = C[q] and u′ = C[q′], where q′ is either obtained
from q by contracting the head redex r of q or q′ = v[λy t/a] and q = a t σ; in the first case, it
is r that is the leftmost among the head redexes of the parallel processes of u ‖a v, whereas
in the second case, it is u ‖a v. With this notation, we have

C[q] ‖a v ≻ C[q′] ‖a v

We must show
u[A /a] ≻+ u′[A /a]

There are several cases.

• q = (λx s)t σ and r = (λx s)t. Let r′ = s[t/x]. We first need to show that r[A /a] is
the leftmost among the head redexes of the parallel process of u[A /a] as well. Assume
that the starting symbol of r is in the n-th elementary processes of u. By Claim 2, the
starting symbol of r[A /a] is in the n-th elementary process of u[A /a]. Suppose by the
way of contradiction, that there is a parallel process p′ of u[A /a] whose head redex has
a starting symbol more on the left, that is, in the m-th elementary process of u[A /a],
with m < n. By Claim 1, p′ = p[A /a], where p is a parallel process of u. By Claim
2, the starting symbol of the head redex of p is in the m-th elementary process of u,
which contradicts the assumption on q and r. Now, letting s′ = s[A /a], t′ = t[A /a],
C′ = C[A /a], σ′ = σ[A /a], we get

u[A /a] = C′[(λx s′)t′ σ′] ≻ C′[s′[t′/x]σ′] = C[s[t/x]σ][A /a] = u′[A /a]

• q = r σ and r = 〈s0, s1〉πi or r = ιi(s)[x0.t0, x1.t1] or r = (m, s)[(α, x).t] or r = (w1 ‖b
w2) ρ and let, respectively, r′ = si or r

′ = ti[s/xi] or r
′ = t[m/α][s/x] or r′ = w1 ρ ‖b w2 ρ.

By exactly the same considerations of the previous case, we get

u[A /a] = C[A /a][r σ[A /a]] ≻ C[A /a][r′ σ[A /a]] = C[r′ σ][A /a] = u′[A /a]
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• q = r = Ak w σ or q = r = C1[bw ρ] ‖b s for some variable b 6= a (the other case is
symmetric); let respectively r′ = w or r′ = C1[s[λy w/b]] ‖b s. By exactly the same
considerations of the previous case, we get

u[A /a] = C[A /a][r[A /a]] ≻ C[A /a][r′[A /a]] = C[r′][A /a] = u′[A /a]

• q′ = v[λy t/a] and q = a t σ. Let t′ = t[A /a], σ′ = σ[A /a] and C′ = C[A /a]. We first
need to show that the head redex of q[A /a] = A t′ σ′ is the leftmost among the head
redexes of the parallel processes of u[A /a]. Assume that a t σ is the n-th elementary
process of u, so that A t′ σ′ is the n-th elementary process of u[A /a] as well. Then, no
parallel process of u has an head redex whose starting symbol is in the m-th elementary
process of u, with m < n. By Claims 1 and 2, no parallel process p[A /a] of u[A /a],
where p is a parallel process of u, has an head redex whose starting symbol is in the m-th
elementary process of u, with m < n, otherwise the starting symbol of the head redex of
p would be in the m-th elementary process of u as well (Claim 2 applies, since p cannot
be of the form aw ρ, given that a is the starting symbol of the redex u ‖a v). Finally, we
conclude

u[A /a] = C′[A t′ σ′] = C′[(λxA v[λy x/a]) t′ σ′] ≻

C′[A v[λy t′/a]σ′] ≻ C′[v[λy t′/a]] = C[v[λy t/a]][A /a] = u′[A /a]

We are now able to tackle the most difficult case of the Adequacy Theorem 3.8 for real-
izability: proving that realizability is also sound for the Dummett rule. The idea is that
Proposition 3.6 allows us to use in a very strong manner an inductive hypothesis that will
naturally be granted when proving the Adequacy Theorem. This hypothesis is knowing that
for every t  A → B, u[t/a] ∈ HN⋆; since one can prove that the term A realizes A → B,
one can conclude with simple reasoning that the head reduction reduces u in u ‖a v only a
finite number of times and a symmetric reasoning holds for v. Hadn’t we the abort opera-
tor and thus the possibility of local simulation, the hypothesis that for every t  A → B,
u[t/a] ∈ HN⋆, would not be enough to conclude a great deal. Details follow.

Proposition 3.7 (Preservation of Realizability by Parallel Composition).

(1) If for every t  A → B, u[t/a] ∈ HN⋆ and for every t  B → A, v[t/a] ∈ HN⋆, then

u ‖a v ∈ HN⋆.

(2) If for every t  A → B, u[t/a]  C and for every t  B → A, v[t/a]  C, then

u ‖a v  C.

Proof.

(1) Define
A := λxA(v[λy x/a])

We start by showing that A  A → B, which establishes by means of the hypothesis
that u[A /a] ∈ HN⋆. Let ρ ∈ ||A → B||; the case ρ = ǫ is trivial, so we assume ρ = t.σ,
with t  A and σ ∈ ||B||. We must show A t σ ∈ HN⋆. We have

A t σ = (λxA(v[λy x/a]))t σ ≻ A(v[λy t/a])σ ≻ v[λy t/a]

(assuming the last reduction is possible: if not, the thesis is trivial). In order to obtain
v[λy t/a] ∈ HN⋆, which is what we wanted, it is enough to show that λy t  B → A. Let
ρ′ ∈ ||B → A||; again, the case ρ′ = ǫ is trivial, so we assume ρ′ = t′.σ′, with t′  B
and σ′ ∈ ||A||. We must show (λy t) t′ σ′ ∈ HN⋆. Indeed, since t  A,

(λy t) t′ σ′ ≻ t σ′ ∈ HN⋆
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We now prove that u ‖a v ∈ HN⋆ by induction on the length of the reduction of
u[A /a] in head normal form. We have two cases.
(a) Assume

u ‖a v ≻ u ‖a v′

so that in particular u is in head normal form. Define

B := λxA(u[λy x/a])

Since we are going again to prove the thesis by induction on the length of the
reduction of v[B/a] in head normal form, we first need to show that B  B → A,
which allows us to conclude that indeed v[B/a] ∈ HN⋆. Let ρ ∈ ||B → A||; the
case ρ = ǫ is trivial, so we assume ρ = t.σ, with t  B and σ ∈ ||A||. We have to
show B t σ ∈ HN⋆. We have

B t σ = (λxA(u[λy x/a]))t σ ≻ A(u[λy t/a])σ ≻ u[λy t/a]

Now, u is in head normal form and thus by Proposition 3.2,

u = u0 ‖a1 u1 ‖a2 . . . ‖an un

and for each 0 ≤ i ≤ n, either ui = xσ, with x 6= a1, . . . , an, a, or ui = Awσ,
with the type of w different from the type of Aw σ, or ui = aj or ui = a or ui is a
value. Therefore, u[λy t/a] is in head normal form, because the substitution does
not create head redexes in any parallel process of u.
We now prove the main thesis. By Proposition 3.6, v[B/a] ≻+ v′[B/a], so by
induction hypothesis we conclude u ‖a v′ ∈ HN⋆ and thus u ‖a v ∈ HN⋆.

(b) Assume
u ‖a v ≻ u′ ‖a v

By Proposition 3.6, u[A /a] ≻+ u′[A /a], so by induction hypothesis we conclude
u′ ‖a v ∈ HN⋆ and thus u ‖a v ∈ HN⋆.

(2) Let σ ∈ ||C||. We must show that (u ‖a v)σ ∈ HN⋆. By hypothesis, for every t  A → B,
u[t/a]σ ∈ HN⋆ and for every t  B → A, v[t/a]σ ∈ HN⋆. By point 1., uσ ‖a v σ ∈ HN⋆.
Since

(u ‖a v)σ ≻∗ uσ ‖a v σ

we are done.

3.4. The Adequacy Theorem. We finally prove that realizability is sound for LC: if we
replace all free proof term variables of any proof term with realizers, then we get a realizer.

Theorem 3.8 (Adequacy Theorem). Suppose that w : A in the system LC, with w having

free variables among xA1

1 , . . . , xAn

n . For all terms r1, . . . , rk of L, if there are terms t1, . . . , tn
such that

for i = 1, . . . , n, ti  Ai := Ai[r1/α1 · · · rk/αk]

then

w[r1/α1 · · · rk/αk][t1/x
A1

1 · · · tn/x
An

n ]  A[r1/α1 · · · rk/αk]
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Proof. For any term v and formula B, we define

v := v[r1/α1 · · · rk/αk][t1/x
A1

1 · · · tn/x
An

n ]

and
B := B[r1/α1 · · · rk/αk]

We proceed by induction on w. Consider the last rule R in the derivation of w : A:

(1) If R = xAi

i : Ai, for some i, then w = xAi

i and A = Ai. So w = ti  Ai = A.
(2) If R is the → E rule, then w = t u,

t : B → A u : B

So by Proposition 3.4, w = t u  A, for t  B → A and u  B by induction hypothesis.

(3) If R is the → I rule, then w = λxB u, A = B → C and u : C. So, w = λxB u,

because by renaming of bound variables we can assume xB 6= xA1

1 , . . . , xAk

k . For every

t  B, by induction hypothesis on u, u[t/xB ]  C. Therefore, by Proposition 3.5,

λxB u  B → C = A.
(4) If R is a ∨I rule, say left (the other case is symmetric), then w = ι0(u), A = B ∨ C

and u : B. So, w = ι0(u) and by induction hypothesis u  B. Hence, by Proposition
3.5 we conclude ι0(u)  B ∨ C = A.

(5) If R is a ∨E rule, then

w = u[xB .w1, y
C .w2]

and
u : B ∨ C w1 : D w2 : D

with A = D. By induction hypothesis, we have u  B ∨ C; moreover, for every t  B,

we have w1[t/x
B ]  D and for every t  C, we have w2[t/y

C ]  D. By Proposition

3.4, we obtain w = u [xB .w1, y
C .w2]  D.

(6) The cases R = ∧E and R = ∧I are straightforward.
(7) The cases R = ∃I and R = ∃E are similar respectively to ∨I and ∨E.
(8) If R is the ∀E rule, then w = um, A = B[m/α] and u : ∀αB. So, w = um. By

inductive hypothesis u  ∀α B and so um  B[m/α] by Proposition 3.4.
(9) If R is the ∀I rule, then w = λαu, A = ∀αB and u : B (with α not occurring free in

the types A1, . . . , An of the free variables of u). So, w = λαu, since we may assume
α 6= α1, . . . , αk. Let m be a term of L; by Proposition 3.5, it is enough to prove that
u[m/α]  B[m/α], which amounts to showing that the induction hypothesis can be
applied to u. For this purpose, we observe that, since α 6= α1, . . . , αk, for i = 1, . . . , n
we have

ti  Ai = Ai[m/α]

(10) If R is the D rule, then w = u ‖a v, A = D and

[aB→C : B → C]

...
u : D

[aC→B : C → B]

...
v : D

u ‖a v : D

By induction hypothesis, for every t  B → C, we have u[t/a]  D and for every
t  C → B, v[t/a]  D. By Proposition 3.7, we conclude w = u ‖a v  D.
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(11) If R is the ex falso quodlibet rule, then w = efqP (u), A = P and u : ⊥. Now,
||P || = {ǫ} and w ǫ = w = efqP (u) ∈ HN⋆. We conclude w  A.

3.5. Normalization for LC. As corollary of the Adequacy Theorem 3.8, one obtains nor-
malization for LC.

Corollary 3.9 (Normalization for LC). Suppose that t : A is a proof term of LC. Then

t ∈ HN⋆.

Proof. Assume x1 : A1, . . . , xn : An are the free variables of t. We observe that xi  Ai,
for i = 1, . . . , n because, given any σ ∈ ||Ai||, xσ ∈ HN⋆. Therefore, from Theorem 3.8, we
derive that t  A and since ǫ ∈ ||A||, we conclude t = t ǫ ∈ HN⋆.

4. Normal Form Property and Herbrand’s Disjunction Extraction

In this section, we finally show that our Curry-Howard correspondence for LC is meaning-
ful from the computational perspective. We already know that every execution of every
program we extract always terminate; now we prove that in the case of any existentially
quantified formula ∃αA, every closed program of that type produces a complete finite se-
quence m1,m2, . . . ,mk of possible witnesses for ∃αA. This means that whatever first-order
model we consider, there will be an i such that A[mi/α] is true in it. In other terms, we
have provided a proof that LC is Herbrand constructive and a Curry-Howard computational
interpretation of this very strong Herbrand-like theorem.

Such statements in first-order logic are typically drawn as consequences of the Subfor-
mula Property, which is in turn a corollary of full cut-elimination when sequent calculus is
available. But as in [7], a more primitive argument suffices here. This is indeed providential,
since not only without permutation rules for ∨ and ∃ we can have no Subformula Property,
but surprisingly even those reductions would not suffice. The topic of what reductions
are needed is very non-trivial and left as subject of future research. However, in a sense,
Herbrand constructiveness is already a weak Subformula Property and holds for the most
interesting case of the existential quantifier, when there is actually some information to gain.
For lambda calculus, instead, to enjoy the Subformula Property is a mere curiosity without
much computational sense. In fact, if we think that in intuitionistic Logic or fragments of
classical Arithmetic [4] general permutation rules are not needed to compute witnesses, it
should not entirely come as a surprise that this is still the case in our framework.

If we omit parentheses, we know that every proof term in head normal form can be
written as v0 ‖a1 v1 . . . ‖an vn, where each vi is not of the form u ‖a v; if for every i, vi is
of the form (mi, ui), then we call the whole term an Herbrand normal form, because it is
essentially a list of the witnesses appearing in an Herbrand disjunction. Formally:

Definition 4.1 (Herbrand Normal Forms). We define by induction a set of proof terms,
called Herbrand normal forms, as follows:

• Every proof-term (m,u) is an Herbrand normal form;
• if u and v are Herbrand normal forms, u ‖a v is an Herbrand normal form.

An Herbrand normal form represents, in a straightforward way, a proof of an Herbrand
disjunction.
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Proposition 4.2 (Herbrand Normal Forms and Herbrand Disjunctions).
Suppose that Γ ⊢ u : ∃αA in LC and u is an Herbrand normal form

(m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ak (mk, vk)

Then for some u+

Γ ⊢ u+ : A[m1/α] ∨ · · · ∨A[mk/α]

Proof. We proceed by induction on k.
If k = 0, then u = (m0, v0) and thus Γ ⊢ v0 : A[m0/α], which is the thesis.
If k > 0, then u = w1 ‖ai w2, for some 1 ≤ i ≤ n and

w1 = (m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ai−1
(mi−1, vi−1)

w2 = (mi, vi) ‖ai+1
(mi+1, vi+1) ‖ai+2

. . . ‖ak (mk, vk)

[aB→C

i : B → C]

...
w1 : ∃αA

[aC→B

i : C → B]

...
w2 : ∃αA

w1 ‖a w2 : ∃αA

By induction hypothesis,

Γ, ai : B → C ⊢ w+
1 : A[m1/α] ∨ · · · ∨A[mi−1/α]

Γ, ai : C → B ⊢ w+
2 : A[mi/α] ∨ · · · ∨A[mk/α]

Hence, by repeated application of the ∨I inference, we get, for some s1, s2,

Γ, ai : B → C ⊢ s1 : A[m1/α] ∨ · · · ∨A[mk/α]

Γ, ai : C → B ⊢ s2 : A[m1/α] ∨ · · · ∨A[mk/α]

and thus
Γ ⊢ s1 ‖ai s2 : A[m1/α] ∨ · · · ∨A[mk/α]

By setting u+ := s1 ‖ai s2, we obtain the thesis.

Our last task is to prove that every closed realizer of any existentially quantified state-
ment ∃αA include an exhaustive sequence m1,m2, . . . ,mk of possible witnesses.

Theorem 4.3 (Herbrand Disjunction and Realizability). Let ∃αA be any formula. Suppose

t  ∃αA, t contains neither free proof term variables nor A, and t ≻∗ u ∈ HNF. Then u is

an Herbrand normal form

u = (m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ak (mk, vk)

and

LC ⊢ A[m1/α] ∨ · · · ∨A[mk/α]

Proof. By Proposition 3.2
u = u0 ‖a1 u1 ‖a2 . . . ‖ak uk

where for each 0 ≤ i ≤ k, either ui = xσ, with x 6= a1, . . . , an or ui = aj, with 1 ≤ j ≤ k,
or ui is a value. Since ui does not contain free proof term variables other than a1, . . . , ak,
it cannot be of the form ui = xσ. Moreover, ui : ∃αA, hence ui cannot be equal to some
aj , because aj must have type B → C. Therefore ui is a value, according to Definition 3.1,
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and the only possible shape compatible with its type ∃αA is (mi, ui). We have thus shown
that u is an Herbrand normal form

(m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ak (mk, vk)

By Proposition 4.2, for some u+

LC ⊢ u+ : A[m1/α] ∨ · · · ∨A[mk/α]

which is the thesis.

As corollary, we obtain that Dummett’s logic LC is Herbrand constructive.

Corollary 4.4 (Herbrand Disjunction Extraction). Let ∃αA be any formula. Suppose

LC ⊢ t : ∃αA

Then there is a proof term u such that t ≻∗ u ∈ HNF, LC ⊢ u : ∃αA and u is an Herbrand

normal form

u = (m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ak (mk, vk)

Moreover,

LC ⊢ A[m1/α] ∨ · · · ∨A[mk/α]

Proof. By the Subject Reduction Theorem 2.7, LC ⊢ u : ∃αA. By the Adequacy Theorem
3.8, t  ∃αA and the thesis follows from Theorem 4.3.

We suggest to interpret an Herbrand normal form

(m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ak (mk, vk)

in the following way. Each (mi, ui) represents the result of an intuitionistic computation
of a witness in a possible universe. These witnesses have been obtained by communication
coming from other intuitionistic computations in other parallel universes. It is that pro-
cess of interaction and dialogue between different possible computations that generates the
Herbrand normal forms.

4.1. Parallel Reductions. Head reduction, of course, is sequential computation. Yet, the
operator ‖a has such a strong parallel flavour that parallel reduction strategies inevitably
arise as consequence of Normalization for head reduction. To see this, let us consider a proof
term u ‖a v of LC. By the Normalization Theorem 3.9, the head reduction of u ‖a v reduces
subterms inside the left part of the term until it is possible, afterwards it continues to reduce
the right part and finally it stops. If we consider only the first half of the reduction, we get

u ‖a v ≻∗ u′ ‖a v (4.1)

for some u′ in head normal form and not of the shape C[a t σ], otherwise a further reduction
inside u′ would be possible. Thanks to the perfect logical symmetry of the term u ‖a v, also
v ‖a u is a term of the same type. Again, we can reduce

v ‖a u ≻∗ v′ ‖a u (4.2)

for some v′ in head normal form and not of the shape C[a t σ]. The point is that the head
reductions (4.1) and (2) can be made in parallel and what we get,

u′ ‖a v′

not only is a term of the same type of u ‖a v and with no more free variables, it also is a
head normal form!
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5. Second-Order Intuitionistic Logic with Dummett’s Axiom

At the time of this writing, there is no known cut-free sequent calculus for second-order
intuitionistic logic with Dummett’s Axiom, which we call LC2. Even if there were one, the
situation would be similar to what happens in the hypersequent calculus for second-order
Gödel-Dummett logic [27]: there is no known cut-elimination procedure, only a semanti-
cal proof that valid statements can be proved without cuts. Why? This state of thing
reminds the status of Takeuti’s conjecture [33], a problem which resisted the effort of the
best researchers for many years in the 1950-60’s, and was solved constructively in 1971 by
Girard (see [19]). It asked whether the now standard second-order sequent calculus was
cut-free. A cut-elimination procedure for intuitionistic second-order sequent calculus was
finally obtained only through translation to natural deduction, where the powerful Tait-
Girard reducibility settles the matter. This shortcoming of sequent calculus is even worse
in the case of hypersequent calculus, which is more complicated and no cut-elimination
procedure is known at second-order.

In this section, we consider second-order natural deduction for LC2 and prove the Nor-
malization of head reduction. Unlike in hypersequent calculus, where second-order cut-
elimination requires climbing a steep and cold combinatorial mountain, extending classical
realizability to the second-oder case is a like a quiet stroll in a peaceful and sunny country-
side road. Indeed, classical realizability was introduced directly in the second-order case by
Parigot [28] and Krivine [25], without even bothering with the first-order case. We follow
once again Krivine’s successive formulation [26].

The language L2 of LC2 extends L in the standard way, adding second order predicate
variables, representing sets of individuals.

Definition 5.1 (Language of LC2). The language L2 of LC2 is defined as follows.

(1) The terms of L2 are inductively defined as either variables α, β, . . . or constants c

or expressions of the form f(m1, . . . ,mn), with f a function constant of arity n and
m1, . . . ,mn ∈ L2.

(2) There is a set of predicate constant symbols and of predicate variables. The
atomic formulas of L2 are all the expressions of the form P(m1, . . . ,mn) and X(m)
such that P is a predicate symbol of arity n, X is a predicate variable andm,m1, . . . ,mn

are terms of L2. We assume to have a 0-ary predicate symbol ⊥ which represents falsity.
(3) The formulas of L2 are built from atomic formulas of L2 by the logical constants

∨,∧,→,∀,∃, with quantifiers ranging over first-order variables α, β, . . . and second-order
variables X,Y, . . .: if A,B are formulas, then A∧B, A∨B, A → B, ∀αA, ∃αB, ∀X A
are formulas. The logical negation ¬A can be introduced, as usual, as an abbreviation
of the formula A → ⊥ and the second-order existential quantification is defined as
∃X A := ∀Y. (∀X.A → Y (c)) → Y (c).

(4) As usual, if A and B are formulas of L2 and X is a predicate variable, we denote with
A[λαB/X] the formula obtained from A by replacing all its atomic subformulas of the
form X(m) with B[m/α] (without capturing free variables of B).

The natural deduction for LC2 and LC⋆
2 extends respectively the natural deduction for LC

and the one for LC⋆ with the following inference and reduction rules (see Girard [19]):
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Second-Order Universal Quantification:
t : A

ΛX t : ∀X A
t : ∀X A

t(λαB) : A[λαB/X]

where in the left rule X does not occur free in the types of the free variables of A.

Reduction Rule for Universal Quantification: (ΛX u)(λαB) 7→ u[λαB/X]

The Definition 2.3 of stack is of extended to LC⋆
2 allowing expressions (λαB), with B formula,

to appear in the stack, and the Definition 2.4 of head redex is extended to the terms of
LC⋆

2 by saying that (ΛX u)(λαB) is the head redex of (ΛX u)(λαB)σ for every stack σ.
The reduction relation ≻ for the terms of LC⋆

2 is then defined as in Definition 2.5. In the
following, we define HN⋆ to be the set of normalizing proof terms of LC⋆

2.
In order to define second-order realizability we need the concept of realizability opponent,

which is nothing but a function mapping terms of L2 to arbitrary sets of stacks adapted to
some fixed type. The idea is that an arbitrary realizability opponent represents the sets of
tests that an arbitrary definition of realizability requires to pass in order to declare a term
to be a realizer.

Definition 5.2 (Realizability Opponent).

(1) A stack σ of LC⋆
2 is said to be adapted to a type C, if for all terms t of type C, t σ is

still a term of LC⋆
2.

(2) A realizability opponent of type λαC is any function that maps each term m of L2

to a set of stacks adapted to C[m/α]. We assume that for each realizability opponent X
of type C there is in L2 an opponent predicate constant

�

X of type λαC associated
to it.

Realizability for LC⋆
2 extends realizability for LC⋆ to second-order quantification. The idea

is the usual: we would like to define t  ∀X A as: for all formulas B, t (λαB)  A[λαB/X],
but we cannot. So we define t  ∀X A as t  A for all possible definitions of realizability
which X can be assigned to, that is, for all reducibility opponents that replace X.

Definition 5.3 (Classical Realizability for LC⋆
2). Assume t is a term of LC⋆

2 and C is a
formula of L2. We define by mutual induction the relation t  C (“t is reducible of type
C”) and a set ||C|| of stacks of LC⋆

2 according to the form of C:

• t  C if and only if t : C and for all σ ∈ ||C||, t σ ∈ HN⋆

• ||P|| = {ǫ} if P is atomic
• ||

�

B(m)|| = B(m) for each realizability opponent B
• ||A → B|| = {u.σ | u  A ∧ σ ∈ ||B||} ∪ {ǫ}
• ||A ∧B|| = {π0.σ | σ ∈ ||A||} ∪ {π1.σ | σ ∈ ||B||} ∪ {ǫ}
• ||A ∨ B|| = {[x.u, y.v].σ | ∀t. (t  A =⇒ u[t/x]σ ∈ HN⋆) ∧ (t  B =⇒ v[t/y]σ ∈
HN⋆)} ∪ {ǫ}

• ||∀αA|| = {m.σ | m ∈ L ∧ σ ∈ ||A[m/α]||} ∪ {ǫ}
• ||∃αA|| = {[(α, x).v].σ | ∀t. t  A[m/α] =⇒ v[m/α][t/x]σ ∈ HN⋆} ∪ {ǫ}
• ||∀X A|| = {(λαB).σ | σ ∈ ||A[

�

B/X]|| for some realizability opponent B of type λαB} ∪
{ǫ}

The next proposition says that in the definition of ||A[λαB/X]||, we can replace λαB with
the realizability opponent corresponding to it, transforming in this way an intensionally
defined set into an extensionally defined object.
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Proposition 5.4 (Comprehension). Let B a formula of L2. Suppose B is a realizability

opponent such that

B = m 7→ ||B[m/α]||

Then for every formula A of L2

||A[
�

B/X]|| = ||A[λαB/X]||

Proof. Standard, by induction on A (see Krivine [26]).

(1) A = P(m1, . . . ,mn), where P is a predicate constant symbol. Then, A[
�

B/X] =
P(m1, . . . ,mn) = A[λαB/X] and the thesis is trivial.

(2) A = Y (m), where Y is a predicate variable. Then, if Y 6= X, the thesis is trivial, since
we have

A[
�

B/X] = Y (m) = A[λαB/X]

So let us suppose Y = X. Then

||A[
�

B/X]|| = ||
�

B(m)|| = B(m) = ||B[m/α]|| = ||A[λαB/X]||

(3) The other cases are straightforward.

We extended Proposition 3.4 by showing that realizability is also sound with respect to
second-order quantification elimination.

Proposition 5.5 (Properties of Realizability: ∀-Eliminations).
If t  ∀X A, then for every formula B of L2, t(λαB)  A[λαB/X].

Proof. Assume t  ∀X A. Let σ ∈ ||A[λαB/X]||; we must show t(λαB)σ ∈ HN⋆. Let us
consider a realizability opponent B such that

B = m 7→ ||B[m/α]||

By Proposition 5.4, σ ∈ ||A[
�

B/X]||. By Definition 5.3, (λαB).σ ∈ ||∀XA||, and since
t  ∀XA, we conclude t(λαB)σ ∈ HN⋆.

We extended Proposition 3.5 by showing that realizability is also sound with respect to
second-order quantification introduction.

Proposition 5.6 (Properties of Realizability: ∀-Introductions). If for every realizability

opponent B of type λαB, u[λαB/X]  A[
�

B/X], then ΛX u  ∀X A.

Proof. Suppose that for every formula B of L2, u[λαB/X]  A[
�

B/X]. Let σ ∈ ||∀XA||. We
have to show (ΛX u)σ ∈ HN⋆. If σ = ǫ, indeed ΛX u ∈ HN⋆. Suppose then σ = (λαB).ρ,
with ρ ∈ ||A[

�

B/X]|| and B realizability opponent of type λαB. Since by hypothesis
u[λαB/X]  A[

�

B/X], we have u[λαB/X] ρ ∈ HN⋆; moreover,

(ΛX u)(λαB) ρ ≻ u[λαB/X] ρ

Therefore, (Λxu)(λαB) ρ ∈ HN⋆.
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The Adequacy Theorem is readily extended to second-order realizability.

Theorem 5.7 (Adequacy Theorem). Suppose that w : A in the system LC2, with w having

free variables among xA1

1 , . . . , xAn

n . Let r1, . . . , rk and
�

B1, . . . ,
�

Bm be respectively terms of

L2 and realizability opponents of type λβ1B1, . . . , λβmBm. For every formula C, set C =
C[r1/α1 · · · rk/αk

�

B1/X1 · · ·
�

Bm/Xm]. If there are terms t1, . . . , tn such that

for i = 1, . . . , n, ti  Ai

then

w[r1/α1 · · · rk/αk λβ1B1/X1 · · ·λβmBm/Xm][t1/x
A1

1 · · · tn/x
An

n ]  A

Proof. For any term v, we define

v := v[r1/α1 · · · rk/αk λβ1B1/X1 · · · λβmBm/Xm][t1/x
A1

1 · · · tn/x
An

n ]

We proceed by induction on w. Consider the last rule R in the derivation of w : A: we just
have to deal with the second-order cases, the other ones have been settled in the proof of
Theorem 3.8.

(1) If R is the second-order ∀E rule, then w = u (λαB), A = C[λαB/X] and u : ∀X C.
So, w = u (λαC). By inductive hypothesis u  ∀X C and so u (λαB)  C[λαB/X] by
Proposition 5.5.

(2) If R is the second-order ∀I rule, then w = ΛX u, A = ∀X B and u : B (with X
not occurring free in the types A1, . . . , An of the free variables of u). So, w = ΛX u,
since we may assume X 6= X1, . . . ,Xm. By Proposition 5.6, it is enough to prove that
u[λαB/X]  B[

�

B/X] for every realizability opponent B of type λαB, which amounts
to showing that the induction hypothesis can be applied to u. For this purpose, we
observe that, since X 6= X1, . . . ,Xm, for i = 1, . . . , n we have

ti  Ai = Ai[
�

B/X]

As consequence of the Adequacy Theorem 5.7, we obtain that every typed term of LC2 is
normalizable by head reduction.

Corollary 5.8 (Normalization for LC2). Suppose t : A in LC2. Then t ∈ HN.

We can finally prove that second-order Dummett’s logic LC2 is Herbrand constructive.

Theorem 5.9 (Second-Order Herbrand Disjunction Extraction). Let ∃αA be any formula.

Suppose

LC2 ⊢ t : ∃αA

Then there is a proof term u such that t ≻∗ u ∈ HNF, LC2 ⊢ u : ∃αA and u is an Herbrand

normal form

u = (m0, v0) ‖a1 (m1, v1) ‖a2 . . . ‖ak (mk, vk)

Moreover,

LC2 ⊢ A[m1/α] ∨ · · · ∨A[mk/α]

Proof. As the proof of Theorem 4.3.
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