
Logical Methods in Computer Science
Vol. 3 (2:4) 2007, pp. 1–36
www.lmcs-online.org

Submitted Jul. 18, 2006
Published Mai 4, 2007

TRANSFORMING STRUCTURES BY SET INTERPRETATIONS

THOMAS COLCOMBET a AND CHRISTOF LÖDING b
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Abstract. We consider a new kind of interpretation over relational structures: finite sets
interpretations. Those interpretations are defined by weak monadic second-order (WMSO)
formulas with free set variables. They transform a given structure into a structure with
a domain consisting of finite sets of elements of the orignal structure. The definition of
these interpretations directly implies that they send structures with a decidable WMSO
theory to structures with a decidable first-order theory. In this paper, we investigate the
expressive power of such interpretations applied to infinite deterministic trees. The results
can be used in the study of automatic and tree-automatic structures.

1. Introduction

Computational model theory is concerned with the study of algorithmic properties of
classes of infinite structures (cf. [BG04]), where the focus is on the problem of model
checking such structures against specifications written in some logic, i.e., deciding for a
given structure and logical formula if the formula holds in this structure. This problem
setting has been studied for various instantiations of the two parameters, i.e., the way to
represent the structures, and the logic to write the specifications. The most prominent
logics in this context are first-order (FO) logic and monadic second-order (MSO) logic, and
they have led to two tracks of research trying to identify classes of structures for which the
respective logic is decidable.

One way of defining such classes uses, e.g., words or trees for representing the elements of
the structure and uses simple transformations based on transducers or rewriting to define
the relations of the structure. In this way, one obtains, e.g., the classes of automatic
[Hod83, KN95, BG00] and tree-automatic [DT90, BG00] structures, for which the FO-
theory is decidable, and the classes of pushdown-graphs [MS85] and prefix recognizable
graphs [Cau96] with decidable MSO-theory.
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CC© Creative Commons

http://creativecommons.org/about/licenses


2 T. COLCOMBET AND C. LÖDING

In the case of automatic structures, the decidability results are based on the strong clo-
sure properties of finite automata, which are used to define the relations. Other techniques,
e.g. in [KL02] for rewriting in trace monoids, are based on Gaifman’s locality theorem.

The decidability results for MSO logic on pushdown and prefix recognizable graphs are
derived from the results of Büchi and Rabin establishing the equivalence of monadic second-
order logic with certain families of finite automata accepting infinite trees (cf. [Tho97]).
These results are also underlying the more recent work [CT02] and [KNUW05] showing the
decidability of MSO logic over certain classes of infinite words and infinite trees, respectively.

A different and more systematic approach for defining and studying classes of infinite
structures is to use operations for transforming structures. An important operation of this
kind is the model-theoretic interpretation. Such an interpretation defines a new structure
‘inside’ a given one by means of logical formulas describing the domain and the new relations.
Depending on whether these defining formulas are FO or MSO one speaks of FO- and
MSO-interpretations. An important property of these interpretations is that decidability
results easily transfer from the given structure to the resulting structure, i.e., applying an
FO-interpretation to a structure with a decidable FO-theory results in a structure with
decidable FO-theory, and similarly for MSO.

As mentioned in [BG04], this suggests a new way of defining interesting classes of
infinite structures: fix an underlying structure (with good algorithmic properties) and con-
sider all structures that can be obtained by applying interpretations of a certain kind. In
this way, one obtains the automatic structures by FO-interpretations from, e.g., a suitable
extension of Presburger arithmetic [Blu99], and the prefix recognizable structures by MSO-
interpretations from the infinite binary tree [Blu01]. This idea has been pursued further in
[Cau02], where MSO-interpretations and unravelling of graphs are iterated, leading to an
infinite hierarchy of graphs (or structures) with a decidable MSO-theory.

All the methods and results described so far can be separated into those concerned
with FO logic (sometimes extended by a reachability relation [DT90, Col02]) and those
dealing with MSO logic (sometimes with only restricted kind of set quantification as in
[Mad03]). To our knowledge, there has been no systematic work on relating these two
areas. In this paper, we bridge this gap by studying a new kind of interpretation, named
finite sets interpretation, allowing to define classes of structures with decidable FO-theory
from structures with decidable MSO-theory. To be more precise, we are considering weak
MSO (WMSO) logic, i.e., MSO logic where quantification is restricted to finite sets. The
idea for these interpretations is rather simple: the domain of the new structure does not
consist of elements of the old structure but of finite sets of elements of the old structure.
The relations are specified by WMSO-formulas with free set variables (the number of which
corresponds to the arity of the relation). In this way, FO-formulas over the new structure
can directly be translated into WMSO-formulas over the old structure. The use of WMSO
ensures that the universe of the resulting structure is countable. It is not clear whether
using standard MSO and then restricting to those resulting structures with a countable
universe gives the same class of structures.

Using the equivalence of WMSO logic and finite automata (over finite words and trees)
it is not difficult to see that the classes of automatic and tree automatic structures can be
obtained by finite sets interpretations from (N, succ), i.e., the natural numbers with succes-
sor relation, and from the infinite binary tree, respectively (see [Col04]). The connection
between automatic structures and finite sets interpretations applied to (N, succ) has already
appeared before in the literature. In [ER66] the authors show that the infinite binary tree
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together with the equal level relation can be generated from (N, succ) by a finite sets in-
terpretation. Today this extension of the infinite binary tree is known as a generator of
automatic structures in the sense that every automatic structure can be obtained from it
by a first-order interpretation. A similar result is given in [Rub04] but for another generator
of the automatic structures.

This raises the question of what happens when we apply finite sets interpretations
to other structures with decidable WMSO-theory, e.g., the structures from the hierarchy
defined in [Cau02]. Though this hierarchy is strict, it is not a priori clear whether this is
also true for the hierarchy obtained after applying finite sets interpretations. To answer
questions of this kind one has to study the expressiveness of finite sets interpretations and
to provide tools for showing that a structure cannot be obtained by such an interpretation
applied to a given structure. In particular, such tools can then be used to answer questions
on automatic structures because these can be obtained by finite sets interpretations (as
mentioned above). More precisely, we concentrate ourselves in understanding what are the
structures which are finite sets interpretatable in trees. All the examples mentionned so far
fall in this category.

We contribute to this study via two results. The first one, Theorem 4.1, establishes
that the quotient of a structure finite sets interpretable in a deterministic tree is itself finite
sets interpretable in that tree. This result was known for automatic structures, and was
open for tree-automatic structures. Theorem 4.1 is a generalisation of those two cases.

The second and main result, Theorem 4.3, allows to reduce questions on definability by
finite sets interpretations to questions on WMSO-interpretability. A precise formulation of
it (in its simplest form, see Corollary 4.5) reads as follows: If the class of structures definable
by finite sets interpretations from a structure S is included in the class of structures definable
by finite sets interpretations from a deterministic tree t, then S is WMSO-interpretable in t.
Those questions of WMSO-interpretability in trees are well understood since they can be
reformulated in terms of clique-width. The clique-width is a measure of the complexity
of graphs which has been first introduced for finite graphs [Cou89], and then extended to
infinite ones [Cou04]. In this latter case, the equivalence is expressible as follows: “a graph
is WMSO-interpretable in a tree iff it is of bounded clique-width”. Our result implies that
if we can show that S is not WMSO-interpretable in t, then there are structures that can be
obtained by a finite sets interpretation from S but not from t. A more technical formulation
of the main result also explicitly gives such a structure.

We demonstrate the use of Theorems 4.1 and 4.3 by showing some non-definability
results, the strictness of the hierarchy mentioned above, and a result on intrinsic definability
of relations related to similar questions studied for automatic structures (cf. [Bár06]).

The remainder of the paper is structured as follows. In Section 2 we give the basic
definitions and introduce finite sets interpretations, and in Section 3 we give the connection
to automatic structures. Section 4 is devoted to the study of finite sets interpretations
applied to trees. In particular, our two results, Theorems 4.1 and 4.3 are stated in this
section. In Section 5 we present some applications of our results. Finally, Section 6 is
devoted to the proof of the main result.
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2. Definitions and elementary results

In this section we provide the basic definitions used in the paper, i.e., relational struc-
tures, trees, logic, automata, and finally interpretations, the main subject of this work. We
end this section by giving some elementary results on finite sets interpretations.

2.1. Structures and trees. We consider (relational) structures S = (U , R1, . . . , RN ) where
U is the universe of the structure and for each i, Ri ⊆ Uri is a relation of arity ri for a
natural number ri. The names of the Ri together with their arities form the signature of
the structure. Trees, as defined below, can be seen in a natural way as particular instances
of such structures.

We will be dealing with infinite binary labeled trees. From now, we simply write ‘trees’.
Formally, a tree labeled by a finite alphabet Σ is a partial mapping t : {0, 1}∗ → Σ with
prefix closed domain dom(t), and such that if u1 ∈ dom(t) then also u0 ∈ dom(t). The
elements of the domain are called nodes. A node u such that u0 is also a node is called an
inner node, else it is called a leaf. By ⊑ we denote the prefix ordering on nodes, also called
the ancestor order. For technical simplifications we will mostly consider purely binary trees,
i.e., such that every node is either a leaf or has two sons.

Seen as a structure a tree labeled by Σ has as universe the domain of the tree and con-
tains the following relations: the unary relations S0 and S1 meaning ‘being a left successor
(resp. a right successor)’ (for i ∈ {0, 1}, Si(u, v) holds if v = ui) and for each a ∈ Σ a unary
relation a interpreted as the set of elements sent to a by t.

We will be considering two particular infinite trees, namely ∆1 and ∆2. The tree ∆1

is the unlabeled tree of domain 0∗. We will identify in a natural way this tree with the
structure (N, succ). The tree ∆2 is the unlabeled tree of domain {0, 1}∗, also called the
infinite binary tree.

2.2. Logic and automata. We use the standard definitions for first-order (FO) and weak
monadic second-order (WMSO) logic. FO-formulas are built up from atomic formulas using
first-order variables (interpreted by elements of the structure and usually denoted by letters
x, y, z) and the relation symbols from the signature under consideration. Complex formulas
are constructed using boolean connectives and quantification over first-order variables.

For WMSO-formulas one can additionally use monadic second-order variables (inter-
preted by finite sets of elements of the structure and usually denoted by capital letters
X, Y , Z), quantification over such variables, and the membership relation x ∈ X. If the
variables are interpreted by arbitrary sets instead of finite sets, then we speak of MSO.

In order to deal with WMSO-formulas on trees, we use automata. Those automata are
more general than WMSO-formulas since they have the expressiveness of full MSO logic
on trees. But for our purpose this doesn’t harm because we only use the translation in
one direction, namely from formulas to automata, and on deterministic trees one can define
finiteness of a set in MSO (a set is finite if its prefix closure does not contain an infinite
path), meaning that for each WMSO-formula there is an equivalent MSO-formula.

Technically, we use nondeterministic parity automata (or simply automata), which are
tuples (Σ, Q, qin, δ,Ω) with a finite set Q of states, initial state qin, transition relation δ ⊆ Q×
Q×Σ×Q⊎Σ×Q, and priority mapping Ω : Q→ N. Recall that we only consider binary trees.
Given a tree t and an automaton, a run of this automaton on t is a mapping ρ : dom(t) → Q
such that (ρ(u0), ρ(u1), t(u), ρ(u)) ∈ δ for each inner node u, and (t(v), ρ(v)) ∈ δ for every
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leaf v. A run is accepting if ρ(ǫ) = qin and for all infinite branches (maximal totally ordered
sequences of nodes) v1, v2, . . . , lim infi Ω(ρ(vi)) is even. We say that a tree t is accepted by
an automaton if there is an accepting run of this automaton on t. For basic properties of
such automata (such as closure under the Boolean operations) and their relation to logic,
we refer the reader to [Tho97].

We are interested here in automata running on a fixed underlying tree t with additional
markings representing (tuples of) subsets of its domain. To mark a certain subset X of
dom(t) we can put additional labels on the tree. Formally, the tree t annotated by X is the
tree with the same domain as t and labels from Σ×{0, 1}, where a node u is labeled by the
pair (t(u), 0) if u /∈ X and (t(u), 1) if u ∈ X. In the same way one can also annotate a tree
with tuples of subsets of its domain using a separate {0, 1}-component for each set.

If t is fixed and X1, . . . ,Xn are subsets of dom(t), then we say that an automaton
accepts the tuple (X1, . . . ,Xn) if it accepts t with the additional labelings corresponding
to the tuple (X1, . . . ,Xn) as explained above. If we consider all the tuples accepted by
an automaton, we obtain a relation over the subsets of dom(t). We call this relation the
relation recognized or accepted by the automaton.

A WMSO-formula with free set variables X1, . . . ,Xn also defines a relation over the
subsets of dom(t). Throughout the paper we make use of the following result stating that
for each WMSO-formula there is an equivalent automaton. The proof of this can easily be
inferred from the equivalence of MSO and automata over trees and from the fact that over
trees each WMSO-formula can be translated into an equivalent MSO-formula.

Theorem 2.1 (cf. [Tho97]). For each WMSO-formula there is an automaton such that for
each tree t the relation over subsets of dom(t) defined by the formula is the same as the one
accepted by the automaton.

2.3. Interpretations. Interpretations are a standard tool in logic allowing to define trans-
formations of structures by means of logical formulas. This technique allows easy transfer
of theories from one structure onto another.

Definition 2.2. An interpretation is a tuple (δ,ΦR1
, . . . ,ΦRN

) of formulas. The formula δ
has only one free variable, and each formula ΦRi

has ri free variables. By our convention,
for weak monadic variables we use capital letters X and X1, . . . ,Xri

, and small letters x
and x1, . . . , xri

in the case of first-order variables.
An interpretation is FO if the formulas are first-order (and hence the free variables

are also of first-order). An interpretation is WMSO if the formulas are weak monadic and
the free variables are first-order. An interpretation is finite sets if the formulas are weak
monadic and the free variables are weak monadic.

The application of an interpretation to a structure is defined in the standard way. The
only difference is that for finite sets interpretations the elements of the obtained structure
are finite subsets of the universe of the original structure instead of elements of the original
structure. Formally, given a structure S and an interpretation I = (δ,ΦR1

, . . . ,ΦRN
), the

structure I(S) has for universe

• {u ∈ US : S |= δ(u)} if I is a FO or WMSO interpretation,
• {U ⊆ US : U finite, S |= δ(U)} if I is a finite sets interpretation,
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{0}

{1} {0, 1}

{2} {1, 2} {0, 2} {0, 1, 2}

{3} {2, 3} {1, 3} {1, 2, 3} {0, 3} {0, 2, 3} {0, 1, 3}{0, 1, 2, 3}
...

Figure 1: The nodes of the infinite binary tree ∆2 coded by sets of natural numbers

and the interpretation of each symbol Ri is defined by

Ri = {(U1, . . . , Uri
) ∈ (UI(S))ri : S |= Φi(U1, . . . , Uri

)}.

One can note at this point that natural sets interpretations can as well be defined in a
similar way, simply by removing the finiteness hypothesis on sets and using MSO instead
of WMSO. At the end of this section we briefly comment on such possible variants for the
definition.

The following example already appears in [ER66]. It shows how the complete binary
tree extended with the equal level relation can be defined by a finite sets interpretation from
the natural numbers with successor relation. This extension of the binary tree is well-known
as a generator of the automatic structures, in the sense that each automatic structure can
be obtained from it by an FO-interpretation (cf. [BG00]).

Example 2.3. We show how to obtain the structure ({0, 1}∗, S0, S1,⊑, el), i.e., the infi-
nite binary tree extended with the prefix and equal level relations, by a finite sets inter-
pretation from the infinite unary tree ∆1, i.e., from the natural numbers with successor
∆1 = (N, succ). To realize this we have to code the nodes of the tree by finite sets of natu-
ral numbers and to describe the relations S0 (for left successor), S1 (for right successor), ⊑
(for prefix), and el (for equal level) by means of WMSO formulas.

The coding of the nodes is depicted in Figure 1. A node u ∈ {0, 1}∗ is represented by the
set of positions corresponding to letter 1 in u and additionally by its length. For example,
the node 100 is coded by {0, 3} because its length is 3 and only position 0 is labeled 1. We
now define the finite sets interpretation I = (δ,ΦS0

,ΦS1
,Φ⊑,Φel) such that I(∆1) yields

the binary tree depicted in Figure 1 together with the relations ⊑ and el . In the formulas
we use abbreviations like < and max that can easily be defined by WMSO-formulas in ∆1.

• δ(X) := ∃x(x ∈ X) (all finite sets except ∅ are used in the coding).
• Φ⊑(X1,X2) := max(X1) < max(X2) ∧ ∀x(x < max(X1) → (x ∈ X1 ↔ x ∈ X2)).
• ΦS0

(X1,X2) := Φ⊑(X1,X2) ∧ max(X2) = max(X1) + 1 ∧ max(X1) /∈ X2.
• ΦS1

(X1,X2) := Φ⊑(X1,X2) ∧ max(X2) = max(X1) + 1 ∧ max(X1) ∈ X2.
• Φel(X1,X2) := max(X1) = max(X2)

Let us proceed with some elementary considerations. Obviously, finite sets interpreta-
tions are not closed under composition. But, as stated in the following proposition, applying
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an FO-interpretation after, or a WMSO-interpretation before a finite sets interpretation,
does not give more expressive power.

Proposition 2.4. Let I1 be a FO-interpretation, I2 be a WMSO-interpretation, and I be
a finite sets interpretation. Then I1 ◦ I ◦ I2 is effectively a finite sets interpretation.

Proof. As for standard interpretations.

A straightforward as well as essential consequence of this is expressed in the following
corollary.

Corollary 2.5. The image of a structure of decidable WMSO-theory by a finite sets inter-
pretation has a decidable FO-theory.

To finish our elementary considerations on finite sets interpretations, we present Propo-
sition 2.7 which is a form of converse to Proposition 2.4. It states that every finite sets in-
terpretation can be described as the composition of a specific one, called the weak powerset
interpretation, and a first-order interpretation.

Definition 2.6. Let PW be the finite sets interpretation that sends every structure S of
signature Σ onto a structure of signature Σ ∪ {�} where � is a new binary symbol, such
that

• the universe is the set of finite subsets of the universe of S,
• each symbol R in Σ has the same interpretation as in S but over singletons instead

of elements,
• the interpretation of � corresponds to the subset ordering.

The interpretation PW is called the weak powerset interpretation.

This interpretation allows to reconstruct all other finite sets interpretations as stated
in the following proposition which is obtained by a simple syntactic translation of formulas.

Proposition 2.7. For each finite sets interpretation I there exists a FO-interpretation I1

such that I1 ◦ P
W = I.

Possible variants. The definition of finite sets interpretations that we provide uses WMSO
and one might wonder why we restrict ourselves to this logic. At least two modifications of
the definition are very natural:

• replace WMSO logic with MSO logic in the formulas (but still only consider finite
sets for the free variables),

• use full MSO and produce a structure over the powerset of the original structure
instead of its finite subsets.

If we use the first extension, then Proposition 2.7 fails. All other results in this paper would
remain unchanged.

The second extension leads to what can be naturally called sets interpretation. The
formulas are MSO, as well as the free variables. When applying such a sets interpretation
to a structure, one produces a structure of universe included in the powerset of the universe
of the original structure.

All the results presented above remain valid for this variant. However, all the results
developed below in this work make explicit use of the finiteness of the sets representing
elements of the new structure. In particular, one can conjecture that Theorem 4.1 would
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fail for sets interpretations. While the conjecture would be that Theorem 4.3 still holds for
sets interpretations.

This new kind of interpretation allows to define structures of uncountable universe
from structures of countable universe. This makes a major difference with respect to fi-
nite sets interpretations. In general, the relation between set interpretations and finite set
interpretations is not yet understood. In particular, we do not know whether the count-
able structures obtainable by sets interpretations from trees coincide with the structures
obtainable by finite sets interpretations from trees.

3. Automatic-like structures

The line of research that has inspired finite sets interpretations is the one of automatic
structures. Automatic structures in their common acceptation are structures with a universe
consisting of a regular language of words, and the relations defined by half-synchronized
transducers. The key reason for introducing such structures is that — thanks to the good
closure properties of finite automata — they naturally possess decidable first-order theories.

Classical variants of those structures consider universes consisting of infinite words (ω-
automatic structures), or consisting of trees, finite or infinite (namely the tree-automatic
and ω-tree-automatic structures). Some definitions also allow to quotient the structure by a
congruence (that is defined in the same way as the other relations). This extension does not
increase the expressiveness of automatic nor tree-automatic structures (cf. Corollary 4.2
below). The question whether quotienting increases the expressive power of ω-automatic
and ω-tree-automatic structures is open.

Historically, automatic as well as ω-automatic structures have been introduced by Hodg-
son [Hod83]. Khoussainov and Nerode introduce the notion of automatically presentable
theories [KN95], starting the study of definability in automatic structures. The extension
to tree-automatic structures can be traced back, in a different framework, to the work of
Dauchet and Tison [DT90]. Blumensath and Grädel [Blu99, BG00] then formalize the
notion of tree-automatic structure and add to it the family of ω-tree-automatic struc-
tures. Independently, the study of 3-manyfolds lead to the particular case of automatic
groups [ECH+92].

3.1. Word-automatic structures. In the case of words a relation R ⊆ (Σ∗)r is automatic
if there is a finite automaton accepting exactly the tuples (w1, . . . , wr) ∈ R, where the
automaton reads all the words in parallel with the shorter words padded with a dummy
symbol ⋄. Formally, for w1, . . . , wr ∈ Σ∗ we define

w1 ⊗ · · · ⊗ wr =



a′11
...
a′r1


 · · ·



a′1n
...
a′rn


 ∈ (Σr

⋄)
∗

where Σ⋄ = Σ∪{⋄}, n is the maximal length of one of the words wi, and aij is the jth letter
of wi if j ≤ |wi| and ⋄ otherwise. A language L ⊆ ((Σ∪{⋄})r)∗ defines a relation RL ⊆ (Σ∗)r

in the obvious way: (w1, . . . , wr) ∈ RL iff w1 ⊗ · · · ⊗ wr ∈ L. A tuple (L,L1, . . . , Ln) of
languages L ⊆ Σ∗ and Li ⊆ (Σri

⋄ )∗ defines a structure of universe L with the relations RLi

of arity ri. A structure S = (U , R1, . . . , Rn) is automatic if it is isomorphic to a structure
of the above kind for regular languages L,L1, . . . , Ln.
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The class of ω-automatic structures is defined in the same way with infinite words
instead of finite ones. In this case the definition is even simpler as there is no need for
padding shorter words.

3.2. Tree-automatic structures. To define tree-automatic structures we need a way to
code tuples of finite trees, i.e., we need an operation ⊗ for finite trees. For a tree t :
dom(t) → Σ let t⋄ : {0, 1}∗ → Σ⋄ be defined by t⋄(u) = t(u) if u ∈ dom(t), and t⋄(u) = ⋄
otherwise. For finite Σ-labeled trees t1, . . . , tr we define the Σr

⋄-labeled tree t = t1 ⊗ · · · ⊗ tr
by dom(t) = dom(t1)∪ · · · ∪ dom(tr) and t(u) = (t⋄1(u), . . . , t

⋄
r(u)). When viewing words as

unary trees, this definition corresponds to the operation ⊗ as defined for words. As in the
case of words a set T of finite Σr

⋄-labeled trees defines the relation RT by (t1, . . . , tr) ∈ RT

iff t1 ⊗ · · · ⊗ tr ∈ T . A structure is called tree-automatic if it is isomorphic to a structure
given by a tuple (T, T1, . . . , Tn) of regular tree languages in the same way as for words.

Again, the definitions for ω-tree-automatic structures are the same with ω-trees, i.e.,
trees of domain {0, 1}∗ instead of finite trees.

One should note here that we only consider so called injective presentations of automatic
structures. A more general definition as, e.g., in [Blu99] additionally uses a regular language
L∼ ⊆ (Σ2

⋄)
∗ defining an equivalence relation identifying words representing the same element

of the structure (and similarly for the other variants of automatic structures). It is known
that injective presentations are sufficient for automatic structures [KN95] meaning that all
structures that are automatic in the more general sense are also automatic according to our
definition. The corresponding result for tree-automatic structures is established below, see
Corollary 4.2.

3.3. Automaticity via interpretations. Recall that ∆1 is the (unlabeled) infinite unary
tree, i.e., the natural numbers with successor, and that ∆2 is the (unlabeled) infinite binary
tree. The following fact is a straightforward consequence of the definition of automatic
structures and of the equivalences between WMSO-logic and automata. The first claim
also appears in [Rub04, Thm. C.2.11, page 50].

Proposition 3.1. The following holds up to isomorphism

• A structure is automatic iff it is finite sets interpretable in ∆1.
• A structure is tree-automatic iff it is finite sets interpretable in ∆2.

Proof (sketch). As already mentioned, the first claim is shown in [Rub04].
We describe here how to proceed for tree-automatic structures, starting by an explana-

tion how to obtain a tree-automatic presentation from a finite sets interpretation I in ∆2.
A finite subset X of ∆2 is coded as a finite tree as follows: the tree has the smallest domain
that contains all elements from X and is labeled 0 at positions that are not in X and 1 at
positions that are in X. For each formula of I there is an equivalent parity automaton over
∆2. This automaton can easily be turned into an automaton over finite trees accepting the
corresponding relation over the codings as just described.

For the other direction we start from a tree-automatic presentation of a structure.
A first thing to note is that a singleton alphabet of tree labels is sufficient because each
symbol from a larger alphabet can be encoded in a finite pattern; in this construction, we
use the leaf/non-leaf nature of each node for coding information. Since now the alphabet is
a singleton, one naturally encodes a tree t by the finite set dom(t). Now pick an automaton
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from the tree-automatic presentation accepting a relation and pick a tuple of such sets coding
finite trees. Using standard techniques for translating automata to logic (cf. [Tho97]),
one describes in WMSO that the corresponding tuple of finite trees is accepted by the
automaton.

Note that the ω-automatic and ω-tree-automatic structures satisfy the same equiva-
lences where finite sets interpretations are replaced by sets interpretations.

4. Finite sets interpretations on trees

The power of finite sets interpretations makes it difficult to obtain results for the general
case where such interpretations are applied to arbitrary structures. For this reason, in this
article we only consider the special case of finite sets interpretations applied to deterministic
trees.

This restriction can be justified in two ways. The first justification is that on trees there
are specific tools suitable for treating WMSO questions: their automata equivalents. The
second justification is that if Seese’s conjecture [See91] holds — stating that all structures of
decidable weak monadic second-order theory are WMSO-interpretations of trees — then the
only structures that we can prove to have decidable first-order theory using Corollary 2.5
are finite sets interpretations of trees (for recent work on Seese’s conjecture see [CO06]).

We give here two results concerning finite sets interpretations applied to deterministic
trees. The first one — in Subsection 4.1 — shows that finite sets interpretations on de-
terministic trees followed by a quotient are simply finite sets interpretations. The second
result — subject of Subsection 4.2 — concerns finite sets interpretations applied to trees
leading to powerset lattices. The technical core of the proof is given in Section 6.

4.1. Quotienting finite sets interpretations on trees. We show here that if a structure
is finite sets interpretable in a deterministic tree containing a symbol interpreted as a
congruence on the structure, then it is possible to directly obtain the quotiented structure
by a finite sets interpretation.

A congruence on a structure S is an equivalence relation ∼ such that for every sym-
bol R of arity n and all elements x1, . . . , xn, y1, . . . , yn of S: if x1 ∼ y1, . . . , xn ∼ yn, then
RS(x1, . . . , xn) iff RS(y1, . . . , yn). We say that a symbol is a congruence if its interpretation
in the structure is a congruence. For a congruence ∼ over a structure S, we denote by S/∼
the quotient structure, i.e., the structure which has as elements the equivalence classes of ∼,
and the relations of which are the images of the relations on S under the canonical surjection
induced by ∼.

Note that the operation of quotienting preserves the decidability of the first-order the-
ory. For this reason we may wonder if constructing a structure by a finite sets interpretation
followed by a quotient is more powerful than solely using a finite sets interpretation. The-
orem 4.1 below shows that it is not the case when the original structure is a deterministic
tree.

Theorem 4.1. Given a finite sets interpretation I, there exists a finite sets interpretation I ′

such that for every deterministic tree t, if the symbol ∼ is a congruence in I(t), then I ′(t)
is isomorphic to I(t)/∼.
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Proof. Let A be a nondeterministic parity automaton corresponding to the formula Φ∼

describing ∼ in I. This automaton works on t additionally annotated by a pair (X,Y ) of
sets of nodes. We say that the automaton reads (X,Y ).

For a prefix closed subset S of dom(t), we call the set of minimal nodes not in S its
border. Let X be an element of the structure I(t), i.e., a finite set of nodes of t. We
construct its shadow S(X) by taking the prefix closure of X and then adding all trees of

height at most 2|Q| − 1 that are rooted at the border of this prefix closure. So S(X) is
the least set of nodes containing X that is closed by prefix and such that all element of its
border is the root of a subtree of height at least 2|Q|. Obviously, S(X) is finite. Now, let
us consider an equivalence class c for ∼. Define the shadow S(c) of the class c to be the
intersection of the shadows of all the elements in the class. This is also a finite set of nodes
of t. We define the border of the class, denoted by B(c), to be the border of its shadow.
Note that the subtrees rooted at nodes from B(c) have height at least 2|Q|; indeed, this
property is preserved when intersecting shadows.

Given an element X, its description is the triple (B,Y, f), where B = B(c) for the
class c of X, Y is X ∩ S(c), i.e., X restricted to the shadow of its class, and f maps each
node x ∈ B to the set of states q such that there is an accepting run of A on the subtree
rooted in x starting with state q and reading (∅,X).

We claim that if two elements X and X ′ share the same description — say (B,Y, f) —
then those elements are equivalent for ∼. Using the transitivity of ∼ and the finiteness of B
it is sufficient to consider the case of elements coinciding everywhere but below one x in B.
Note that X and X ′ coincide above B because they have the same description. Since x is
in the border of the class of X, there is an element Z equivalent to X such that Z does
not contain any node below x. Since Z is equivalent to X, there is an accepting run ρ
of A on t labeled by (Z,X). We aim at constructing a run of A witnessing the equivalence
of Z and X ′, i.e., a run accepting t labeled by (Z,X ′). This new run is constructed in the
following way. On every element not below x, it coincides with ρ. This is a valid part of run
since X and X ′ do coincide on this area. On the subtree rooted in x, Z coincides with ∅.
Hence, as (B,Y, f) is a description of X, ρ(x) belongs to f(x). But as the same description
holds also forX ′, there is a piece of run below x starting with ρ(x) and accepting (∅,X ′). We
complete our new run by this piece of run. This new run witnesses as expected that Z ∼ X ′.
It follows by symmetry and transitivity of ∼ that X ∼ X ′. This concludes the proof of the
claim.

Let us remark now that a description (B,Y, f) can be encoded uniquely by a set of
nodes: this set is B∪Y ∪Coding(f) where Coding(f ) contains exactly one element for each
element x of the border, and this element is located in a place uniquely describing the value
of f(x) (e.g. the leftmost node at distance g(f(x)) below x, where g is a numbering of 2Q

starting from 1). This is possible since the subtree rooted in x is has height at least 2|Q|,
and consequently, there is “room” below x for coding the information f(x).

Note that associating to an element X the coding of its description is doable by means of
a WMSO-formula. Note also that given a class c there is only a finite number of descriptions
for the elements it contains. Hence we can choose the smallest description — smallest for
a suitable total order — as unique representative for the class. A suitable total order can,
e.g., use the lexicographically smallest node that is in the symmetric difference of the two
sets coding the two descriptions. From here, it is not difficult to reconstruct I(t)/∼ .

In combination with Proposition 3.1 we obtain the following.
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Corollary 4.2. Tree-automatic structures are effectively closed under quotient.

In the terminology of [Blu99], this result is rephrased as “every tree-automatic structure
admits an injective presentation.” Let us remark that this result is announced in [Blu99],
but unfortunately the proof proposed there contains an unrecoverable error.

4.2. Finite sets interpretations and powerset lattices. In this section we present our
main result. For this, let S be a structure of signature �. We say that S is a finite
powerset lattice if it is isomorphic to (PF (E),⊆) for some set E, where PF (E) represents
the finite subsets of E. Such a finite powerset lattice can be seen as a particular case
of weak powerset generator applied to a vocabulary-free structure. We call the elements
corresponding to singletons in this isomorphic structure atoms, i.e., those elements which
have exactly one element strictly smaller with respect to �.

Theorem 4.3. For every finite sets interpretation I = (δ(X), φ�(X,Y )), there exists a
WMSO-formula Code(X,x) such that, whenever for some tree t, I(t) is a finite powerset
lattice, then Code(X,x) evaluates on t to an injection mapping the atoms of I(t) to nodes
of t.

Section 6 is dedicated to the rather long and involved proof of this result.
We rarely use the theorem in this form. We rather use weakened versions of it, namely

Corollary 4.4 and Corollary 4.5.

Corollary 4.4. For every finite sets interpretation I, there exists a WMSO-interpreta-
tion I2 such that whenever for some structure S and some tree t, I(t) is isomorphic
to PW (S) then I2(t) is isomorphic to S.

Proof. If we remove all relations other than �, the weak powerset generator is nothing
but a finite powerset lattice. Hence we can obtain a formula Code(X,x) by application of
Theorem 4.3. It is then easy to transfer all relations defined on singletons to their image
by Code .

Formally, we define the WMSO-interpretation I2 = (δ,ΦR1
, . . . ,ΦRl

) as follows:

• δ(x) = ∃X.Code(X,x),
• for each symbol R of arity r from the signature, ΦR(x1, . . . , xr) is defined as

∃X1, . . . ,Xr.ΨR(X1, . . . ,Xr) ∧
r∧

i=1

Code(Xi, xi)

where each ΨR is the WMSO-formula in I defining the interpretation of the sym-
bol R.

As Code maps each atom of I(t) to a unique node, this interpretation indeed maps t to a
structure isomorphic to S.

A weaker, yet more readable formulation of the above corollary is provided in the
following one.

Corollary 4.5. If for a structure S and a tree t the class of structures that can be obtained
by finite sets interpretations from S is contained in the class of structures that can be
obtained by finite sets interpretations from t, then S is WMSO-interpretable in t.

Proof. Assume that the hypothesis of the corollary holds. In particular, the structure PW (S)
is isomorphic to I(t) for some finite sets interpretation I. By applying Corollary 4.4, the
structure S is WMSO-interpretable in t.
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5. Applications

We present here several applications of the results above, ordered by level of complex-
ity. The two first ones, showing that the free monoid is not obtainable by a finite sets
interpretation of a tree (Section 5.1) and that a natural hierarchy of structures is strict
(Section 5.2), are paradigmatic applications of Theorem 4.3. Section 5.3 establishes that
the random graph is not finite sets interpretable in a tree, extending the known result for
automatic structures [KNRS04]. Finally, in Section 5.4, we study intrinsically definable
relations in generators of the automatic structures.

Some of those results are known in the weaker context of automatic structures. We
would like to underline here the fundamental methodological difference of our approach: in
none of the applications below we perform a combinatorial analysis of finite sets interpre-
tations. Instead, we systematically reduce the problem to a much easier one of WMSO-
definability in trees.

5.1. The free monoid. We consider the free monoid as a structure ({a, b}∗, ·, a, b) — the
set of words over {a, b} together with the ternary relation corresponding to the concatenation
and the two words a and b identified by unary predicates — and want to answer the question
whether this structure is isomorphic to a finite sets interpretation of a tree.

One should note that the FO theory of the free monoid is undecidable and hence we
can directly conclude that it cannot be obtained by a finite sets interpretation from a tree
with a decidable WMSO theory. However, this reasoning does not include trees with an
undecidable WMSO theory.

The negative answer we give here to the above question is the simplest and in some
sense the purest application of the results presented above and should be considered for this
reason as a key example.

The following result was obtained in a discussion with Olivier Ly.

Proposition 5.1. The free monoid over a two letter alphabet is not isomorphic to any
finite sets interpretation of a tree.

Proof. We first show how to obtain PW (N,+) from the free monoid by an FO-interpretation
followed by a quotient. Then, assuming that our claim is false, we invoke the two results
from the previous section and obtain a contradiction.

Let f be the function which to each word of the form ban1ban2b . . . bankb over {a, b}
associates the set of naturals {n1, n2, . . . , nk}. The domain of f is the set of elements
satisfying dom(x) = ∃y.x = byb. The relation of inclusion is also first-order definable:
f(u) ⊆ f(v) iff sub(u, v) holds with sub(u, v) =

∀x ∈ a∗.∃y, z. u = ybxbz → ∃y′, z′.v = y′bxbz′ ,

where x ∈ a∗ stands for ∀ y, z.x 6= ybz .

Let x ∼ y be the formula sub(x, y)∧sub(y, x). Naturally, for every u, v, u ∼ v iff f(u) = f(v).
Finally the addition over singletons is definable. More precisely, f(u) = {i}, f(v) = {j}
and f(w) = {i+ j} iff add(u, v,w) holds with add(u, v,w) =

∃x ∈ a∗, y ∈ a∗.u ∼ bxb ∧ v ∼ byb ∧w ∼ bxyb.

Using those formulas, one can first-order interpret in the free monoid a structure which,
when quotiented by ∼, is isomorphic to PW (N,+).
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Assume now that the free monoid can be finite sets interpreted in some tree t. Since
structures obtainable by finite sets interpretations from t are closed under first-order in-
terpretations (Proposition 2.4) and quotient (Theorem 4.1), this implies that PW (N,+) is
finite sets interpretable in t. By Corollary 4.4 we deduce that (N,+) is WMSO-interpretable
in t. This yields a contradiction since (N,+) is not WMSO-interpretable in a tree. Let us
provide a direct argument for proving this last argument.

Assume that (N,+) is WMSO-interpretable in t and let U denote the set of nodes of
t that represent N in a corresponding interpretation. We first note that for each node of t
at most one of its subtrees contains infinitely many elements from U . Otherwise, if the two
subtrees of a node u contain both infinitely many elements from U , the successor relation
on N (which is addition with one argument fixed to 1) would infinitely often jump between
these two subtrees. If A is an automaton with n transitions accepting the successor relation,
and if x0, . . . , xn ∈ U are in the left subtree of u, y0, . . . , yn ∈ U are in the right subtree of
u, and all xi, yi are in the successor relation, then A also accepts a pair xi, yj with i 6= j by
a simple counting argument on the transitions used at u in accepting runs of A.

By starting at the root and always proceeding to the unique subtree containing infinitely
many elements from U we obtain an infinite branch B of t.

Now let A+ be an automaton with n transitions accepting the relation + on t and let
x0, . . . , xn ∈ U . For each xi there are infinitely many yi, zi such that the triple (xi, yi, zi) is
accepted by A+. Choose a node v on B such that none of the xi is below v and for each i
choose yi, zi as above that are below v. Counting the possible transitions that are used at v
in accepting runs of A+ on the tuples (xi, yi, zi) we obtain that A+ also accepts (xi, yj, zj)
for some i 6= j. This gives a contradiction.

5.2. A hierarchy of structures of decidable first-order theory. Caucal [Cau02] in-
troduces a hierarchy of graphs/structures of decidable MSO-theory. The definition of this
hierarchy that we use here differs from the original one and follows [CW03] and [Tho03].

Level 0 consists of finite structures, and level n+1 is defined as the MSO-interpretations
of the unraveling of graphs of level n. As both MSO-interpretation and unraveling are trans-
formations preserving the decidability of the MSO-theory, each structure of this hierarchy
has a decidable MSO-theory. In [CW03], this hierarchy is shown to be strict.

If in these definitions the MSO-interpretations are replaced by WMSO-interpretations,
we obtain the same hierarchy. This can be deduced from a result in [CW03] stating that each
graph of level n can be obtained from the unravelling of a deterministic graph of level n− 1
by applying a so called inverse rational mapping. Such an inverse rational mapping can
easily be described by a WMSO-interpretation.

Furthermore, the unravelling of a deterministic graph yields a deterministic tree and
on deterministic trees every WMSO-formula is equivalent to an MSO-formula. Hence, from
the decidability of the MSO theory we also obtain the decidability of the WMSO theory
for deterministic trees. In combination with the above mentioned result all graphs in the
hierarchy have a decidable WMSO theory.

From this hierarchy, it is easy to construct a corresponding tree-automatic hierarchy.
The tree-automatic structures of level n are the image of the structures of level n of the
Caucal hierarchy by finite sets interpretations. Let us denote the nth level of this tree-
automatic hierarchy by TAUTn. Since the trees on the first level of the Caucal hierarchy
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are regular, we can deduce from Proposition 3.1 that TAUT1 coincide with the class of
tree-automatic structures.

Furthermore, from Corollary 2.5 and the above considerations we can conclude the
following decidability result.

Remark 5.2. For each n, every structure in TAUTn has a decidable FO theory.

A simple application of our result is the strictness of this tree-automatic hierarchy.

Theorem 5.3. For each n ≥ 0 the class TAUTn of structures on the nth level of the
automatic hierarchy is strictly contained in TAUTn+1.

Proof. We know that each level n of the Caucal hierarchy contains a tree generator Gn, i.e.,
each structure of level n is WMSO-interpretable in Gn [CW03]. Let us suppose that the
automatic hierarchy collapses at some level n, i.e., TAUTn = TAUTn+1. This would imply
that the structure PW (Gn+1) can be obtained by a finite sets interpretation from Gn. Then,
by Corollary 4.5, we obtain Gn+1 as a WMSO-interpretation of Gn and hence Gn+1 is in
the nth level of the hierarchy. This contradicts the strictness of the Caucal hierarchy.

5.3. Random graph. The random graph is a non-oriented unlabeled countable graph with
the following fundamental property: for any two disjoint finite set of vertices E and F , there
exists a vertex v that is connected to all the elements of E and to none of the elements of F .
For the existence and basic properties of such a graph see, e.g., [Hod93]. We do not give
in this work a more precise definition of the random graph. Anyhow, a direct consequence
of the fundamental property stated above is that the random graph satisfies the quantifier
elimination property (and this is effective). The decidability of its first-order theory follows.

Since the random graph has a decidable first-order theory and since finite sets inter-
pretations define a large number of structures also having this property, it is interesting to
consider the question whether the random graph can be obtained by a finite sets interpre-
tation from a tree. A partial answer to this question has been studied: one knows that the
random graph is not isomorphic to any word-automatic structure [KNRS04].

In this section, we show that there is no tree from which the random graph can be
generated by a finite sets interpretation. This proof was obtained in a discussion with
Vince Bárány.

Theorem 5.4. The random graph is not finite sets interpretable in a tree.

Proof. Heading for contradiction, let us assume that there exists a finite sets interpreta-
tion IR = (δ(X),Ψ(X,Y )) and a binary tree tR such that IR(tR) is (isomorphic to) the
random graph.

The basic idea is to prove that, under this assumption, “the random graph is WMSO-
interpretable in a tree”. However, this statement is uncomfortable to handle since the
properties of the random graph do only refer to its finite induced subgraphs. Instead, we
show a similar interpretability result for every finite induced subgraph of the random graph;
i.e. for every finite graph. Formaly we establish the following claim.

Claim: There exists a finite sets interpretation I ′ such that for any finite non-oriented
graph G there exists a tree tG such that I ′(tG) is isomorphic to PW (G).

Before we prove this claim, let us demonstrate how to use it to show Theorem 5.4. Let us
apply Corollary 4.4 on the interpretation I ′. We obtain a WMSO-interpretation I ′′ with
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the property that I ′′(tG) ∼= G for any non-oriented unlabeled graph G and a suitably chosen
tree tG. As trees have bounded clique-width and WMSO-interpretations applied to a class
of graphs of bounded clique-width yield also a class of graphs of bounded clique-width (see
e.g. [Cou97]1), we obtain a contradiction to the fact that there exists non-oriented graphs
of arbitrary high clique-width (the (n×n)-grids yield such a family of graphs, see [MR99]).

Proof of the claim: Let us show first how we can encode any finite set of elements of IR(tR)
by a pair of finite subsets of dom(tR) in such a way that the membership relation is “defin-
able”.

Let E be a finite set of vertices of IR(tR). Each vertex of IR(tR) is a finite set of
nodes of tR and therefore it makes sense to define DE as the union of all the elements in E.
Furthermore, let us chose IE to be an element of IR(tR) which is connected to all elements
of E and to none of the elements of P(DE) \E (such an element exists since IR(tR) is the
random graph). From DE and IE one can easily reconstruct the set E. More precisely,
let X be an element of IR(tR). Then X belongs to E if and only if tR models δ(X) ∧X ⊆
DE ∧ Ψ(X, IE).

Let now G be a non-oriented finite graph. Since IR(tR) is the random graph, the
graph G appears as an induced subgraph of IR(tR) (cf. [Hod93]). Let V be the set of
vertices of IR(tR) inducing this subgraph.

For each subset F of V , one can construct an element vF of IR(tR) which is connected
to all the vertices in F and to no vertex in V \ F . Knowing V , this element vF completely
characterizes F . Let now V ′ be the set of all the vF ’s for all subsets F of V .

Let tG be the tree tR extended with markings describingDV , IV ,DV ′ and IV ′ . Using the
trick mentioned above, we can define the formulaX ∈ V (similarlyX ∈ V ′) to be δ(X)∧X ⊆
DV ∧ Ψ(X, IV ). We now want to finite sets interpret PW (G) in tG. Obviously, we can
identify the elements of PW (G) with the elements of V ′. Pursuing this idea, we define
the interpretation I ′ = (δ′(X),Ψ′(X,Y ),Φ⊆(X,Y )) in the following way. The universe is
defined by δ′(X) = X ∈ V ′. The subset relation is defined by:

Φ⊆(X,Y ) = ∀Z ∈ V.Ψ(Z,X) → Ψ(Z, Y )

Finally the edge relation is defined by:

Ψ′(X,Y ) = Singleton(X) ∧ Singleton(Y )

∧ ∃X ′, Y ′ ∈ V.Ψ(X ′,X) ∧ Ψ(Y ′, Y ) ∧ (Ψ(X ′, Y ′))

where Singleton(Z) stands for Z ∈ V ′ ∧ ∃!Y ∈ V.Ψ(Y,Z) and ∃! abbreviates “there exists
one and only one”.

Using the properties linking V and V ′, it is not difficult to see that I ′(tG) is (up to
isomorphism) PW (G). Furthermore, I ′ does not depend on G. This finishes the proof of
the claim and hence the proof of the theorem.

1To be precise the result in [Cou97] applies to classes of finite graphs, whereas our trees tG may be
infinite. But given an interpretation that produces a class of finite graphs from a class of infinite trees one
can modify the interpretation such that one obtains the same resulting class of graphs from a class of finite
trees.
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5.4. Intrinsic definability. Our last application of Theorem 4.3 concerns “intrinsic defin-
ability” of relations. This notion is the natural adaption of the notion of intrinsic regularity
for automatic structures [KRS04]. An automatic structure may have (up to isomorphism)
several different presentations. These presentations can have different properties in the fol-
lowing sense: It might be possible to add a relation to the structure that is regular in one
presentation but is not regular in the other presentation.

Consider, for example, the structure ∆1, i.e., the natural numbers with the successor
relation. One automatic presentation is to use binary encodings of the numbers but it is
also possible to use unary encoding. If we now add the predicate “being a power of 2”, i.e.,
the set {2n | n ∈ N}, then this predicate is certainly not regular for the unary encoding but
it is in the binary encoding (it corresponds to the set of all words of the form 10∗). This
means that this predicate is not intrinsically regular for ∆1 because it is regular in some
presentation but not in all.

Accordingly, a relation is called intrinsically regular for a structure if it is regular in all
automatic presentation of the structure. In [KRS04] this notion is studied and the question
of a logical characterization of intrinsically regular relations is raised.

In [Bár06] it is shown that for the structure ({0, 1}∗, S0, S1,⊑, el) (recall Example 2.3
above) each relation is either intrinsically regular or intrinsically non-regular, i.e., either it
is regular in every presentation or non-regular in every presentation of the structure. Such
a result can be used as a tool to show that certain structures are not automatic, which is
a difficult task (cf. [BG00]). If we add a relation to the above structure and show that
it is not regular in the natural automatic presentation, then we know that the structure
extended by this relation has no automatic presentation at all.

In this subsection we show a stronger result for another structure. In terms of automatic
structures we show that for PW (∆1) each relation is intrinsically regular or intrinsically
non-regular for every tree-automatic presentation of PW (∆1).

For this, we adapt the notions to our setting. That is, intrinsic definability considers
relations that are definable in every possible presentation of a structure by a finite sets
interpretation from a fixed tree t. If we, for example, fix this tree to be ∆1, then this
corresponds to intrinsic regularity for automatic structures.

Note that, in contrast to the previous sections, we now explicitly consider the presenta-
tions of elements of a structure, i.e., we distinguish different codings of the same structure.

Definition 5.5. Given a structure T , a T -presentation of a structure S of universe U is
an injection f from U to the finite subsets of T such that the set f(U) as well as the image

by f of each relation R of S are WMSO-definable on T . That is, there is a formula φf
U (X)

over T defining the image of U under f , and for each relation R of S there is a formula

φf
R(X1, . . . ,Xr) using the signature of T such that for all u1, . . . , ur ∈ U ,

(u1, . . . , ur) ∈ R iff T |= φf
R(f(u1), . . . , f(ur)),

where r denotes the arity of R.

Given such a T -presentation f of S, it might be possible to add relations to S such that
f is still a T -presentation of this extended structure. Such relations are called definable in
f , i.e., R′ is called definable in f if f is a T -presentation of S extended by the relation R′.

Note that to a T -presentation f of a structure S we can directly associate a finite
sets interpretation If sending T to S up to isomorphism (the isomorphism being f). An
additional relation R′ is definable in f if we can add to If a formula defining R′.
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If S is the weak powerset structure PW (T ) of T , then there is a canonical T -presentation
given by the identity mapping. We refer to this T -presentation as the standard presentation
of PW (T ).

The following lemma states that the “intrinsically definable” relations of PW (t) for a
tree t are exactly those that are regular in the standard presentation of PW (t).

Lemma 5.6. Let t be a tree and R be a relation over PW (t). Then R is definable in the
standard presentation of PW (t) iff R is definable in all t′-presentations f of PW (t) for all
trees t′.

Proof. Obviously, if R is definable in all t′-presentations f of PW (t) for all trees t′, then R
is in particular definable in the standard presentation.

For the other direction, let R be a relation of arity r that is definable in the stan-
dard presentation of PW (t) and let ΦR(X1, . . . ,Xr) be the defining formula, i.e., ΦR is a
formula over the signature of t such that t |= ΦR(U1, . . . , Ur) iff (U1, . . . , Ur) ∈ R for all
U1, . . . , Ur ⊆ dom(t). According to Proposition 2.7 we can construct an FO-interpretation
I1 such that I1(P

W (t)) is the structure PW (t) augmented with the relation R.
Let now f be a t′-presentation of PW (t) and let If be the finite sets interpretation

with If (t′) = PW (t). Then (I1 ◦ If)(t′) = I1(P
W (t)), witnessing the definability of R in

the t′-presentation f of PW (t).

The dual of Lemma 5.6, where definable is replaced by not definable, is not true in
general. This is already the case for instance for t = t′ = ∆2, i.e., there is a relation R
which is not definable in the standard presentation of PW (∆2) but is definable in some
∆2-presentation of PW (∆2).

Consider, for example, the relation R(x, y) that holds if x is on the leftmost branch,
y is on the rightmost branch, and x and y are on the same level. It is not difficult to see
that this relation is not WMSO-definable in ∆2. Hence, if we transfer R to singletons on
PW (∆2), it is not definable in the standard presentation of PW (∆2).

On the other hand, one can find a WMSO-interpretation I2 with I2(∆2) ∼ (∆2, R).
The finite sets interpretation PW ◦ I2 defines a ∆2-presentation of PW (∆2) in which R
(transferred to singletons) is regular. The construction of I2 is not very difficult. It suffices
to redefine ∆2 inside itself such that the corresponding vertices of the leftmost and the
rightmost branch are located close to each other, as for example done by the following
mapping (where w is any non-empty word over {0, 1}):

0n 7→ 0n, 1n 7→ 0n1, 0n1w 7→ 0n11w, 1n0w 7→ 0n10w.

The reader can verify that the two successor relations and the relation R are WMSO-
definable on this coding of ∆2.

However, in the particular case of t = ∆1 and t′ = ∆2 such a converse of Lemma 5.6
does hold as expressed in the following theorem.

Theorem 5.7. If R is definable in some ∆2-presentation f of PW (∆1), it is definable in
every ∆2-presentation of PW (∆1).

As we can expect, by application of Theorem 4.3, we will obtain a WMSO-interpre-
tation sending ∆2 to ∆1. The two following lemmas study this kind of interpretations and
how they preserve definability.



TRANSFORMING STRUCTURES BY SET INTERPRETATIONS 19

Lemma 5.8. Let I2 be a WMSO-interpretation sending ∆2 to ∆1 and f2 be the injection
from N to {0, 1}∗ witnessing the isomorphism. Then there exists naturals m,n > 0 and
words u, v,w0, . . . , wn−1 ∈ {0, 1}∗ such that for all naturals k ≥ 0 and p ∈ {0, . . . , n− 1},

f2(m+ kn+ p) = uvkwp .

Proof. The general idea behind the proof is that the elements from the image of f2 cannot
be spread arbitrarily in ∆2 because the successor relation from ∆1 has to be definable in
WMSO and hence must be recognizable by an automaton.

We denote by U ⊆ {0, 1}∗ the image of f2 and by V the closure of U by prefix. The set
V defines a subtree of ∆2. We now augment V by markings containing information on the
successor relation in such a way that these markings are definable in WMSO. Hence, the
marked tree is regular, i.e., it has only finitely many non-isomorphic subtrees (see [Tho97]
for more information on regular trees). From this regular tree we can define the words
u, v,w0, . . . , wn−1.

Let Φsucc(x, y) be the formula of I that defines the successor relation succ of ∆1, and
let Asucc be the equivalent tree automaton.

As succ is deterministic, one can easily show that V contains only one infinite branch
B. Otherwise, the relation succ has to jump infinitely often between two infinite branches
leading to a contradiction as Asucc would also accept pairs of nodes that are not in succ.
The argument is the same as in the proof of Proposition 5.1 where it is shown that (N,+)
is not WMSO-interpretable in any tree t. Furthermore, this branch B is WMSO-definable.

Consider two nodes x, y ∈ U such that Φsucc(x, y) is satisfied, i.e., f−1
2 (y) is the successor

of f−1
2 (x). We can describe how to get from x to y by a pair of words (zx, z

′
x) over {0, 1}

meaning that x = x′zx and y = x′z′x for the greatest common ancestor x′ of x and y. Again,
using the determinism of succ one can show that the length of these words zx, z

′
x is bounded

by some constant derived from the size of Asucc. Hence, we can mark the vertices from U
by this information (using sets Xz,z′ with x ∈ Xz,z′ iff (zx, z

′
x) = (z, z′)). Obviously, this

marking is WMSO-definable.
The last information that we attach to V is for each node x ∈ B the word bx ∈ {0, 1}∗

such that the node xbx is the smallest node in U (smallest referring to the position in ∆1)
such that all nodes bigger than xbx are below x, i.e., for all y ∈ U , if f−1

2 (xbx) < f−1
2 (y),

then x ⊑ y. The length of these bx is bounded because the relation that associates to each
x the node bx is WMSO-definable and deterministic. Hence, the marking of the nodes in B
by using sets Xb with x ∈ Xb iff bx = b is WMSO-definable.

The resulting tree t, consisting of the nodes in V with the markings described above is
WMSO-definable and hence regular. Let u, v ∈ {0, 1}∗ such that u, uv ∈ B and the subtrees
of t rooted at u and uv are isomorphic. Let m = f−1

2 (ubu), m′ = f−1
2 (uvbuv), and define

n = m′ −m. For p ∈ {0, . . . , n− 1} let wp ∈ {0, 1}∗ be such that f2(m+ p) = uwp. By the
choice of m, such a wp always exists. In particular, w0 = bu.

By the choice of v, we know that f2(m+ kn) = uvkw0 for all k ≥ 0. Furthermore, as t
is marked by the information on how to get from one node in U to its successor, we know
that the ways to get from f2(m + kn + p) to f2(m + kn + p + 1) are the same for all k.
Hence, f2(m+ kn+ p) = uvkwp.

Lemma 5.9. Let I2 be a WMSO-interpretation sending ∆2 to ∆1 and f2 be the injection
from N to {0, 1}∗ witnessing the isomorphism. If R is a relation over finite subsets of f2(N)
WMSO-definable in ∆2, then its inverse image under f2 is WMSO-definable in ∆1.
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Figure 2: Regular subtree of ∆2 induced by the domain of the interpretation I2 from Lem-
mas 5.9 and 5.8. The part from u to v is iterated.

Proof. The formula ΨR(X1, . . . ,Xr) defining R can be represented by a tree automaton AR

with state set QR. Using Lemma 5.8, this automaton can be simulated by an automaton A′
R

on ∆1 as we show in the following. On ∆1 automata and WMSO have the same expressive
power and hence the construction of A′

R suffices to prove the lemma.
Let u, v,w0, . . . , wn−1 be as in Lemma 5.8. The states of A′

R correspond to partial runs
of AR on a finite subtree of ∆2 that

• is rooted at ǫ and induced by the elements f2(0), . . . , f2(m− 1) for the first segment
of ∆1,

• rooted at uvk and induced by the words v,w0, . . . , wn−1 for the following segments
of ∆1.

The corresponding parts of ∆2 on which A′
R has to simulate a run of AR are depicted in

Figure 2 (for n = 2 and m = 3).
For the formal definitions, let U0 be the set of all nodes that are prefix of u or of some

f2(i) for 0 ≤ i < m, and let U1 be the set of all nodes that are prefix of v or one of
w0, . . . , wn−1. The set U0 corresponds to the upper finite tree in Figure 2 surrounded by a
dashed line, and the set U1 to the finite tree rooted at u.

The automaton A′
R reads a word α ∈ ({0, 1}r)ω and has to decide if this labeling

transferred by f2 to ∆2 corresponds to a tuple of sets in R. To simulate a run of AR it
guesses partial runs, starting with a partial run on U0, and then continuing with U1, the
periodic part of the tree.

More formally, it starts by guessing a pair (ρ0, λ0) with mappings ρ0 : U0 → QR and
λ0 : {f2(0), . . . , f2(m − 1)} → {0, 1}r such that ρ0 corresponds to a partial run of AR on
U0 with labels corresponding to λ0. In the next steps, A′

R verifies if the guessed labeling is
correct, i.e., if α(i) = λ0(f2(i)). When reaching position m, A′

R guesses a new pair (ρ1, λ1),
now with mappings ρ1 : U1 → QR and λ1 : {w0, . . . , wn−1} → {0, 1}r such that ρ1 is a
possible continuation of ρ0 on the subtree rooted at u that is shown in Figure 2 and labeled
according to λ1. The guessed labeling is again verified on the segment m, . . . ,m+n−1 and
then a pair (ρ2, λ2) of the same type as (ρ1, λ1) is guessed, and so on. The automaton accepts
if the concatenation of the guessed partial runs on the path uvω satisfies the acceptance
condition of AR. For this to work, the guessed partial runs have to be such that they can
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be continued to accepting runs on the “blank parts” of ∆2, i.e., those infinite subtrees that
do not contain a node from the image of f2.

Using this Lemma we can prove Theorem 5.7.

Proof of Theorem 5.7. Assuming a ∆2-presentation f of PW (∆1) and I the corresponding
finite sets interpretation, one obtains by Corollary 4.4 a WMSO-interpretation I2 with
I2(∆2) = ∆1. Let f2 : N → {0, 1}∗ be the injection witnessing this isomorphism and let f̃2

be its extension to sets.
We now have two ways to obtain isomorphic copies of PW (∆1) from ∆2: by applying I

and by applying I2 followed by PW . These two ways yield isomorphic structures and hence
there is an isomorphism h sending I(∆2) to PW (I2(∆2)). We obtain the following picture,
where dashed arrows represent interpretations, while normal arrows are for isomorphisms:

I(∆2) PW (I2(∆2)) PW (∆1)

∆2

I2(∆2) ∆1

h f̃2

f

f2
I

PW PW

I2

We show that we can define the isomorphism h on ∆2 by a WMSO-formula. To understand
this, consider a finite set U of naturals, i.e., an element of PW (∆1). This set U corresponds

to two sets X and Y of nodes of ∆2, namely X = f(U) and Y = f̃2(U). The isomor-
phism h relates these two sets, i.e., h(X) = Y . This relation can be defined in WMSO
using the formula Code that we obtain from Theorem 4.3 and that is used to construct
I2 in Corollary 4.4. The formula Code(X,x) relates each subset of ∆2 that is an atom in
PW (∆1) = I(∆2) to a single node x of ∆2. Assume that the set X represents the atom {n}.
Then the unique x such that Code(X,x) is satisfied represents n in I2(∆2) = ∆1 (by the
construction of I2 in the proof of Corollary 4.4), and the singleton {x} represents the atom
{n} in PW (I2(∆2)). We get that h(X) = x, i.e., the formula Code defines the isomorphism
h on the level of atoms. It is easy to extend this to sets:

φh(X,Y ) = ∀y(y ∈ Y ↔ ∃Z(Φ⊆(Z,X) ∧ Code(Z, y))).

Let now R be a relation over PW (∆1) which is definable in f . This means that f(R)
is WMSO-definable in ∆2. Since h is WMSO-definable, it follows that h(f(R)) is also

WMSO-definable in ∆2. Finally, by Lemma 5.9 we obtain that f̃2
−1

(h(f(R))) is WMSO-

definable in ∆1. Since f̃2
−1

◦ h ◦ f is obtained as a composition of isomorphisms, it is
an automorphism of PW (∆1). Remark now that the identity is the only automorphism

of PW (∆1) (a property inherited from ∆1). It follows that f̃2
−1

(h(f(R))) equals R. And
consequently R is definable in the standard presentation. By Lemma 5.6 it is definable in
every presentation.



22 T. COLCOMBET AND C. LÖDING

6. Proof of the main result

The proof of Theorem 4.3 is rather complex and split into several parts. In Subsec-
tion 6.1, we introduce the key notions used afterwards while we make the scheme of the proof
more precise. This will also be the occasion for explaining the content of Subsections 6.2,
6.3, 6.4, 6.5. In Subsection 6.6, things are put together and the proof of Theorem 4.3 is
finally given.

6.1. First definitions and presentation of the proof. We assume from now that a
finite sets interpretation I = (δ(X), φ�(X,Y )) is fixed. Along the whole proof we use a
tree t together with a set E and the isomorphism f that are assumed to satisfy the equality

f(PF (E)) = I(t) .

The reader must keep in mind that none of the constructions we perform makes use of t,
E, or f . Hence, the result will hold for any such tree, set, and isomorphism. This lightens
the presentation of the proof by avoiding to systematically quantify over those objects.

We consider the set Atoms of finite subsets of t representing atoms of the powerset
lattice, i.e.,

Atoms = {f({u}) : u ∈ E} .

The set Atoms can be defined as the set of finite subsets of t which are minimal — for
the φ� formula seen as an ordering — and distinct from the minimal element itself (which
is f(∅)). This description can be done in weak monadic second-order logic. Hence Atoms
is regular in t and there exists an automaton

AAtoms =(QAtoms , q
in
Atoms , δAtoms ,ΩAtoms)

accepting the language Atoms . We also consider the binary relation Mem over I(t) defined
as the image under f of the ∈ relation in PF (E), i.e.,

Mem = {(f({u}), f(V )) : u ∈ V ⊆ E and V finite} .

This Mem relation is also definable in weak monadic second-order logic, and consequently
is regular. We fix

AMem = (QMem , q
in
Mem , δMem ,ΩMem)

to be an automaton recognizing the relation Mem.
Recall that the theorem we want to prove claims the existence of a formula Code(X,x)

such that the corresponding relation is an injection from Atoms into dom(t).
Our goal in the construction of Code is to uniquely attach to each X in Atoms an

element in dom(t) in a WMSO-definable way. As a first approximation, in Subsections 6.2,
6.3 and 6.4, we define a mapping Index which assigns to each X in Atoms a node in dom(t).
Though the Index mapping is not in general an injection from Atoms into dom(t), it does
not either concentrate a lot of indices in the same area of the tree t. Formally, if we set D(x)
for x ∈ t to be the cardinality of Index−1(x), then by Lemmas 6.6 and 6.12, D happens to
be a sparse distribution (see Definition 6.1 below). Subsection 6.5 is dedicated to the study
of sparse distributions. The central lemma of this part, Lemma 6.17, establishes that, given
elements concentrated according to a sparse distribution, we can uniformly redistribute
them in dom(t) in a unique WMSO-definable way. Applied to our case, this means that
the Index mapping can be transformed into an injection by use of WMSO-formulas. And
this last step is used in Subsection 6.6 for terminating the proof of Theorem 4.3.
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The key definition connecting the two main parts of the proof (definition of the Index
mapping and turning it into an injection) is the notion of sparsity. This definition requires
the notion of zone. A zone Z in t is a connected — where t is seen as an non-oriented graph
— subset of dom(t). That is, Z contains a minimal element w.r.t. to the prefix ordering, and
whenever x ⊑ y ⊑ z for x, z in Z, then also y ∈ Z. A zone Z is completely characterized by
its least element x, and by the minimal elements x1, . . . , xn that are below x and not in Z.
The elements {x, x1, . . . , xn} are called the frontier of the zone. Given nodes x, x1, . . . , xn

of t such that the xi are pairwise incomparable and x ⊑ xi for all i, we define Nx,x1,...,xn

t to
be the set of nodes y such that x ⊑ y and xi 6⊑ y for all i ∈ [n] where [n] denotes the set
{1, . . . n}. By construction, Nx,x1,...,xn

t is the only zone which has frontier {x, x1, . . . , xn}.

Definition 6.1. A distribution D is a mapping from dom(t) to N. For Z a finite zone,
D(Z) stands for

∑
x∈Z D(x). A distribution D is K-sparse for some K ∈ N if for every

finite zone Z of frontier F , D(Z) ≤ |Z| +K|F |. A distribution is strongly K-sparse if for
any finite zone Z of frontier F , D(Z) ≤ K|F |.

Sparsity tells us that no finite zone contains more indices than its size plus a factor
linearly depending on the size of the frontier.

6.2. Important nodes. In order to construct the mapping Index , given an element X
of Atoms , we first define the set I(X) ⊆ dom(t) of its important nodes via combinatorial
constraints. Essentially, we try to locate the places where “important coding decisions” are
made by the automaton AAtoms when reading X. In the present Subsection, we provide the
key combinatorial lemmas concerning important nodes.

Then, depending on the shape of the set I(X) two cases are separated and two distinct
definitions of Index are given. The first kind of index is called standard index — noted
SIndex (X) — and is the subject of Subsection 6.3. The other kind is called branch index
— noted BIndex (X) — and is the subject of Subsection 6.4.

Let us first introduce a convenient notation for studying the behavior of the automata
AAtoms and AMem over zones: For a zone Z = Nx,x1,...,xn

t and states q, q1, . . . , qn ∈ QAtoms ,
we denote by Atoms(q, Z, q1, . . . , qn) the set of all X ⊆ Z such that there exists X ′ ⊆ dom(t)
with

• X = X ′ ∩ Z, and
• X ′ is accepted by AAtoms with a run ρ such that ρ(x) = q and ρ(xi) = qi for all
i ∈ [n].

Similarly, for q, q1, . . . , qn ∈ QMem we denote by Mem(q, Z, q1, . . . , qn) the set of all pairs
(X,Y ) with X,Y ⊆ Z such that there are X ′, Y ′ ⊆ dom(t) with

• X = X ′ ∩ Z, Y = Y ′ ∩ Z, and
• (X ′, Y ′) is accepted by AMem with a run ρ such that ρ(x) = q and ρ(xi) = qi for all
i ∈ [n].

The definition of important nodes is then the following, where the constant Kim is
chosen to make the combinatorial arguments in the subsequent lemmas work.

Definition 6.2. Let Kim = (2|QMem | + 1)|QAtoms |. Given X ∈ Atoms , a node x ∈ dom(t)
is called important for X if

|{Y ⊆ Nx
t : (X −Nx

t ) ∪ Y ∈ Atoms}| > Kim .

We denote by I(X) the set of important nodes for X.
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Hence a node x is important for X if there are many — i.e., more than Kim — ways
to modify X below x while remaining in Atoms . Intuitively, without knowing how X looks
like below x, we cannot say much about which atom is coded because there are too many
possibilities left. Remark that the set I(X) is by definition prefix closed. The fundamental
property that we show in Lemma 6.4 is that for an important node x of X, the part of
X that is not below x comes from a set of small size. To prove this lemma we need its
combinatorial core stated in the following lemma.

Lemma 6.3. Let Kc = 2|QMem | + 1. For any two disjoint zones Z and Z ′ of respective
frontiers F = {x, x1, . . . , xn} and F ′ = {x′, x′1, . . . , x

′
m}, and all accepting runs ρ of AAtoms

either |Atoms(ρ(x), Z, ρ(x1), . . . , ρ(xn))| < Kc ,

or |Atoms(ρ(x′), Z ′, ρ(x′1), . . . , ρ(x
′
m))| < Kc .

Proof. It is sufficient for us to prove the result for two complementary zones. This comes
from the fact that increasing a zone also increases the number of possible projections w.r.t.
a fixed run, i.e., |Atoms(ρ(x), Z, ρ(x1), . . . , ρ(xn))| ≤ |Atoms(ρ(y), Z ′′, ρ(y1), . . . , ρ(yℓ))| for
a zone Z ′′ of frontier {y, y1, . . . , yℓ} with Z ⊆ Z ′′. Hence, we will assume Z to be N ǫ,x

t and
Z ′ to be Nx

t for some node x.
Assume that for some K ≥ Kc we have distinct sets X1, . . . ,XK in Atoms(ρ(ǫ), Z, ρ(x))

and distinct sets X ′
1, . . . ,X

′
K in Atoms(ρ(x), Z ′). Then, for every i, j ∈ [K], let Yi,j be Xi ∪

X ′
j . As the union of Z and Z ′ gives the whole domain of t, we have Yi,j ∈ Atoms for all

i, j ∈ [K].
Let us now consider the set Comb of possible combinations of the Yi,j, combination

in the sense of the relation Mem. More precisely, A ⊆ dom(t) is in Comb if whenever
(Y,A) ∈ Mem holds for some atom Y , then Y = Yi,j for some i, j. The cardinality of Comb

is 2K2

. We now show by a combinatorial argument that AMem cannot distinguish all the
elements from Comb because the amount of information that can be passed between the
two zones Z and Z ′ is limited by the number of states in QMem .

For this purpose, we define for each A ∈ Comb, fA : [K] × QMem → {0, 1} and gA :
QMem × [K] → {0, 1} by

fA(i, q) =

{
1 if (Xi, A ∩ Z) ∈ Mem(qinMem , Z, q),

0 else,

gA(q, j) =

{
1 if (X ′

j , A ∩ Z ′) ∈ Mem(q, Z ′),

0 else.

It is obvious that if two sets A,B ∈ Comb are such that fA = fB and gA = gB , then
(Yi,j, A) ∈ Mem iff (Yi,j, B) ∈ Mem for all i, j ∈ [K]. This means, by definition of Comb,
that A = B.

However, there are only 22|QMem |K different possible values for the pair fA, gA. Hence

we obtain |Comb| ≤ 22|QMem |K . This contradicts |Comb| = 2K2

.

The following lemma shows that the possibilities to code an atom ‘above’ an important
node are bounded.

Lemma 6.4. For each node x we have |{X ∩N ǫ,x
t : X ∈ Atoms and x ∈ I(X)}| < Kim.
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Proof. We are aiming at a contradiction to Lemma 6.3 for Z = N ǫ,x
t and Z ′ = Nx

t .
For each X with x ∈ I(X) there are more than Kim many Y ⊆ Nx

t such that XY,x :=
(X −Nx

t ) ∪ Y is in Atoms . Since Kim = |QAtoms | ·Kc (with Kc from Lemma 6.3), we can
choose a state qX,x ∈ QAtoms such that more than Kc of these XY,x are accepted by AAtoms

with a run that labels x with qX,x. This means that |Atoms(qX,x, N
x
t )| ≥ Kc.

Now, assume that there are Kim different X ∈ Atoms with x ∈ I(X) that differ on
N ǫ,x

t . Then there are at least Kc such sets X1, . . . ,XKc
with qX1,x = · · · = qXKc ,x =: q.

In particular, we obtain |Atoms(qinAtoms , N
x
t , q)| ≥ Kc. Together with |Atoms(q,Nx

t )| ≥ Kc

from above we obtain the desired contradiction.

6.3. Standard indices. We now address the problem of computing Index (X) for some
atom X under the assumption that I(X) is not an infinite branch (the case when I(X) is
an infinite branch is treated in Subsection 6.4). Since we call this case the standard case,
we will denote the index defined for such atoms X by SIndex (X). The simplest case is that
I(X) is totally ordered by ⊑, i.e., I(X) is a finite path starting from the root. We simply
define SIndex (X) to be the last node on this path. The other case corresponds to I(X)
not being a finite path nor an infinite branch. This corresponds to I(X) not being totally
ordered by ⊑. In this situation, we define SIndex (X) to be the first node at which I(X)
splits into two paths. Those two cases are unified in the following definition.

Definition 6.5. For X ∈ Atoms such that I(X) is not an infinite branch, the index of X,
written SIndex (X), is the maximal element in I(X) which is comparable to every element
in I(X).

As already mentioned, the intention of this definition is that SIndex (X) roughly locates
in the tree where the main information concerning the atom coded by X lies. This location
is far from being precise, and many elements of Atoms may have the same index. However,
we will see that it is possible to obtain a good understanding of the repartition of the
standard indices. The following lemma gives precise bounds on the quantity of indices that
may occur in a zone, i.e., it states that the distribution assigning to each node x the number
of X such that SIndex (X) = x is sparse.

Lemma 6.6 (sparsity). There is a constant Ks such that |SIndex−1(Z)| ≤ |Z|+Ks|F | for
every finite zone Z of frontier F .

Proof. Denote the elements of the frontier of Z by x and x1, . . . , xn, i.e., Z = Nx,x1,...,xn

t .
The proof of the lemma consists of two steps. We first show that for atoms X such that
SIndex (X) is inside Z, the amount of information located outside Z is bounded. More
precisely, we first show for M := Kim · |QAtoms |

(a) |{X ∩N ǫ,x
t : X ∈ Atoms and SIndex (X) ∈ Z}| < M and

(b) |{X ∩Nxi
t : X ∈ Atoms and SIndex (X) ∈ Z}| < M for all i ∈ [n].

For (a) note that from SIndex (X) ∈ Z, the definition of SIndex , and the prefix closure of
I(X) we obtain that x ∈ I(X). Therefore,

{X ∩N ǫ,x
t : X ∈ Atoms and SIndex (X) ∈ Z}

⊆ {X ∩N ǫ,x
t : X ∈ Atoms and x ∈ I(X)}

and (a) follows from Lemma 6.4.
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For (b) we show that for each X ∈ SIndex−1(Z) and each xi there is a state q ∈ QAtoms

such that X ∩ Nxi
t ∈ Atoms(q,Nxi

t ) and |Atoms(q,Nxi
t )| < Kim. From this, (b) follows

because each X ∩Nxi
t comes from one of at most |QAtoms | many sets of size less than Kim.

We distinguish two cases.
If xi /∈ I(X), then we take q to be the state at xi in an accepting run of AAtoms on X.

From the definition of I(X) we immediately obtain the desired property.
Else, if xi ∈ I(X), by definition of standard indices there must some y ∈ I(X) incom-

parable to xi, the index of X being the deepest common ancestor of xi and y. From the
definition of important nodes for X and from Kim = |QAtoms | · Kc we obtain that there
exists a set Y ⊆ Ny

t such that (X − Ny
t ) ∪ Y is in Atoms and is accepted with a run of

AAtoms that labels y by a state q′ such that |Atoms(q′, Ny
t )| ≥ Kc. Let q be the state

assumed at node xi by this run. From Lemma 6.3 applied to the zones Nxi
t , Ny

t , and to
the aforementioned run, we can conclude that |Atoms(q,Nxi

t )| < Kc. The desired property
follows from Kc ≤ Kim. This finishes the proof of (b).

After these preliminary considerations, we come back to the claim of the lemma. We
denote the elements from {X ∩N ǫ,x

t : SIndex (X) ∈ Z} by X1, . . . ,XM and the elements
from {X ∩ Nxi

t : SIndex (X) ∈ Z} by X1
i , . . . ,X

M
i (the same element can be represented

more than once, what is important is that all elements are represented).
Now, consider the set Comb of all combinations of atoms from SIndex−1(Z) (in the same

sense as in the proof of Lemma 6.3). A combination A ∈ Comb is entirely characterized by
the following objects

• the set A ∩ Z,
• the mapping fA,x : [M ] ×QMem → {0, 1} with

fA,x(j, q) =

{
1 if (Xj , A ∩N ǫ,x

t ) ∈ Mem(qinMem , N
ǫ,x
t , q),

0 else,

• and the mapping fA,xi
: QMem × [M ] → {0, 1} with

fA,xi
(q, j) =

{
1 if (Xj

i , A ∩Nxi
t ) ∈ Mem(q,Nxi

t ),

0 else.

Thus, |Comb| ≤ 2|Z| · 2M |QMem | ·
∏n

i=1 2|QMem |M . For Ks = |QMem |M we obtain

2|SIndex−1(Z)| = |Comb| ≤ 2|Z|+|F |Ks

and hence |SIndex−1(Z)| ≤ |Z| +Ks|F |.

6.4. Treatment of infinite branches. It is possible that for some X ∈ Atoms the set
I(X) of important nodes is an infinite branch. For these X we also develop a notion of
index, called BIndex (X), and show that the distribution obtained in this way is strongly
sparse. Since the sum of a K-sparse distribution and of a strongly K ′-sparse distribution is
a K +K ′-sparse distribution, we can add the indices corresponding to infinite branches to
the other indices without affecting the sparsity of the induced distribution.

In this subsection, we call the infinite branches that are equal to I(X) for some atom X
important branches. We start with the helpful observation that the number of elements of
Atoms corresponding to the same important branch is bounded.

Lemma 6.7. For every important branch B, |I−1(B)| < Kim.
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Proof. If there are Kim different sets in I−1(B), then we can pick a node x on B such that
all these sets differ on the zone N ǫ,x

t . Since x is important for all X in I−1(B), we obtain a
contradiction to Lemma 6.4.

Our goal is to associate to every important branch B a node VInd(B) on B such that

(1) at most Kim branches are mapped to the same node by VInd , and
(2) if some VInd(B′) is above VInd(B), then VInd(B) is not in B′.

Those two properties are established in Lemma 6.11. Then Lemma 6.12 uses those two
properties for concluding that VInd ◦ I has a strongly sparse distribution.

Our main tool for constructing VInd is to produce a well-founded order for branches.
For this, we define RInd(B) for every important branch B by

RInd(B) = min{x ∈ B : ∃X ⊆ N ǫ,x
t , I(X) = B}.

Since we consider finite sets interpretations, RInd(B) is always defined. Lemma 6.4 applied
to the node RInd(B) directly leads to the following lemma.

Lemma 6.8. For all nodes x, |RInd−1(x)| < Kim.

The well-foundedness argument announced above is then the following.

Lemma 6.9. For every important branch B, there are finitely many important branches B′

such that RInd(B′) ⊑ RInd(B).

Proof. One has that RInd(B′) ⊑ RInd(B) iff B′ belongs to ∪x⊑RInd(B)RInd−1(x). This set
is finite by Lemma 6.8.

Now, we can define for a branch B the index VInd(B) as being the first node in B
below RInd(B) which is not lying on an important branch strictly inferior with respect to
comparing the RInd values. Formally

VInd(B) = min{x ∈ B : RInd(B) ⊑ x, ∀B′. RInd(B′) ⊏ RInd(B) → x /∈ B′}.

This definition is sound thanks to Lemma 6.9. Furthermore, VInd and RInd can be related
in the following way.

Lemma 6.10. VInd(B) ⊑ VInd(B′) implies RInd(B) ⊑ RInd(B′).

Proof. Assume VInd(B) ⊑ VInd(B′). Since VInd(B′) ∈ B′ we obtain VInd(B) ∈ B′. As
by definition RInd(B) ⊑ VInd(B), we also have RInd(B) ∈ B′. Consequently RInd(B)
and RInd(B′) lie on the same branch B′, and thus are comparable. For the sake of contra-
diction, suppose RInd(B′) ⊏ RInd(B), then by definition of VInd we obtain VInd(B) /∈ B′.
Contradiction. The remaining case is the expected RInd(B) ⊑ RInd(B′).

We are ready to establish the two properties wanted for VInd .

Lemma 6.11. The following holds.

(1) For every node x, |VInd−1(x)| < Kim.
(2) If VInd(B′) ⊏ VInd(B), then VInd(B) /∈ B′.

Proof. (1): Let B be an infinite branch such that VInd(B) = x and let y = RInd(B). By
Lemma 6.10, important branches with the same VInd also have the same RInd and hence
VInd−1(x) ⊆ RInd−1(y). The desired bound follows from Lemma 6.8.

(2): By Lemma 6.10, if VInd(B′) ⊏ VInd(B) then RInd(B′) ⊑ RInd(B). If RInd(B′) ⊏

RInd(B), the claim follows by definition of VInd(B). The case RInd(B′) = RInd(B) is not
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possible since this would imply that VInd(B′) = VInd(B) because they are both lying on
the branch B according to the assumption VInd(B′) ⊏ VInd(B).

Now, for X ∈ Atoms such that I(X) is an infinite branch we define BIndex (X) to be
VInd(I(X)). The distribution induced by BIndex is strongly sparse:

Lemma 6.12 (strong sparsity). For Z a finite zone of frontier F , |BIndex−1(Z)| ≤ K2
im|F |.

Proof. Assume that VInd(B),VInd(B′) ∈ Z for two branches B and B′. If the two branches
exit Z at the same point, i.e., if B ∩ F = B′ ∩ F , then B and B′ do not differ inside Z.
As VInd(B),VInd(B′) ∈ Z we conclude that VInd(B) ∈ B′ and VInd(B′) ∈ B. Applying
Lemma 6.11 (2) yields VInd(B) = VInd(B′).

According to Lemmas 6.7 and 6.11 (1), the number of atoms X that share the same
value BIndex (X) is bounded by K2

im. This shows that for each exit of the zone Z there are
at most K2

im branches B with VInd(B) ∈ Z leaving Z through that exit. Hence we obtain

that |BIndex−1(Z)| ≤ K2
im|F |.

6.5. Car parking. In this subsection, our goal is to spread the indices around the tree such
that each index ends in exactly one position. This can be seen as parking vehicles. In the
beginning there are cars (indices) placed in the nodes of the tree, possibly more than one at
the same position, and we aim at parking each of them in one node, i.e., attaching a single
node to each of those cars. This is obviously not possible in general but we shall prove that,
under a sparsity constraint on the distribution of vehicles, it is possible to attach a single
parking place to each car, and furthermore that the mapping that, given a car, tells where
to park it, can be described by a WMSO-formula.

For this purpose, we have to describe distributions and other kinds of mappings that
involve integers in their domain or image by WMSO-formulas. These integers will always
be bounded by some constant K and hence we can split the WMSO-definition into several
formulas, one for each number that may be involved. Formally, we say that a relation
R ⊆ dom(t)r × I for some finite I ⊆ Z is WMSO-definable if there are WMSO-formulas
φi(x1, . . . , xr) for each i ∈ I such that (u1, . . . , ur, i) ∈ R iff t, u1, . . . , ur |= φi(x1, . . . , xr).
Note that a K-sparse distribution can be seen as a relation of this kind since 0 ≤ D(x) ≤ 3K
for every x ∈ dom(t).

Definition 6.13. Given a distribution D, a placement P for D is an injective partial
mapping from dom(t) × N to dom(t) such that P (x, i) is defined iff i ∈ [D(x)].

A flow, defined below, can be seen as a kind of instruction on how to spread the values
of a distribution to obtain a placement. In the vehicles description, this is the number of
cars which will have to cross an edge in order to reach the final placement.

Recall that, for simplicity reasons, we assume that all the nodes of a tree t have either
2 successors or no successors, i.e., for all nodes u we have u0 ∈ dom(t) iff u1 ∈ dom(t).
This assumption is not essential but simplifies the definitions and allows to avoid case
distinctions.

Definition 6.14. A flow is a mapping f from the nodes of t to Z. A flow f is compatible
with a distribution D if for all inner nodes x, D(x) + f(x) ≤ 1 + f(x0) + f(x1) and for
every leaf x, D(x) + f(x) ≤ 1. A flow f is bounded by a constant K if |f(x)| ≤ K for each
node x.
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In this definition, f(x) is interpreted as the number of cars crossing the edge from
the ancestor of x to x. In case of a negative value, −f(x) cars are driving from x to its
ancestor. The condition of f being compatible with D states that after distributing all the
cars according to the flow there is at most one car remaining at each node. One should note
here that, according to our definition, it is possible that f(ǫ) < 0. With the above intuition
this would mean that one has to send −f(ǫ) cars to the (non-existing) ancestor of the root.
We need this case when constructing flows on finite subtrees of a given infinite tree.

In the following we show that for a K-sparse distribution there is a compatible flow that
is bounded. From this flow we then compute a placement for the distribution. We start by
defining a flow on finite trees (which can then also be used to deal with finite subtrees of a
given infinite tree).

Lemma 6.15. For every finite tree t and every WMSO-definable K-sparse distribution D
over t, there exists a WMSO-definable flow f that is compatible with D, bounded by 2K+1,
and such that for each node x there is a zone Zx rooted in x of frontier Fx with

(1) D(Zx) + f(x) = |Zx| +K(|Fx| − 1),
(2) and f(y) ≥ K for all y ∈ Fx different from x.

Proof. First note that (1) implies f(x) ≥ −K for each x since D is K-sparse. We define the
values f(x) and the zones Zx inductively starting at the leaves. These definitions directly
imply that f is compatible with D.

The base case of a leaf x is straightforward: we set f(x) to be 1−D(x) and Zx = {x}.
By the hypothesis of sparsity, we have that D(x) ≤ K + 1 and hence |f(x)| is bounded by
2K + 1.

Let x be an inner node and assume that the values f(x0), f(x1) and the zones Zx0, Zx1

are already defined. We set f ′(x0) = min(K, f(x0)) and f ′(x1) = min(K, f(x1)). Let us
now define f(x) to be 1 + f ′(x0) + f ′(x1) −D(x) and Zx to contain the node x, the nodes
of Zx0 if f(x0) < K, and the nodes of Zx1 if f(x1) < K. By the hypothesis of induction,
we indeed obtain that D(Zx) + f(x) = |Zx| +K(|Fx| − 1). We illustrate this only for the
case f ′(x0) < K and f ′(x1) = K, the other cases are similar. In this case Zx = Zx0 ∪ {x},
|Fx| = |Fx0|+1, and f(x) = 1+f(x0)+K−D(x). From this we get the following sequence
of equalities:

D(Zx) + f(x) = D(Zx0) +D(x) + 1 + f(x0) +K −D(x)

= D(Zx0) + f(x0) + 1 +K

= |Zx0| +K(|Fx0| − 1) + 1 +K

= |Zx0| + 1 +K|Fx0|

= |Zx| +K(|Fx| − 1).

From the definition of f(x) it is clear that f(x) ≤ 2K+1. As mentioned before, f(x) ≥ −K
and thus |f(x)| is bounded by 2K + 1.

It is obvious that this flow, which has only a bounded number of possible values and
is defined inductively, is WMSO-definable. This definition can be done by requiring the
existence of sets X−K , . . . ,X2K+1 such that a node x is in Xi iff f(x) = i. This can be
directly expressed if x is a leaf. Otherwise it is a simple statement on the membership of
the successors x0 and x1 of x.
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Figure 3: Proof of Lemma 6.16: The flow in nodes of type (a) is bounded by 7K.

Lemma 6.16. For every infinite tree t and every WMSO-definable K-sparse distribution D,
there exists a WMSO-definable flow f bounded by 7K that is compatible with D such that
f(ǫ) = 0.

Proof. As a K-sparse distribution restricted to a finite subtree of t is also K-sparse on this
subtree, we can apply Lemma 6.15 to define the values of f(x) for the nodes x that are not
on infinite branches of t.

Let B be the set of nodes appearing in some infinite branch. We define inductively for
any node x ∈ B a flow f(x) such that 0 ≤ f(x) ≤ 7K. We only consider non-negative
values since on infinite branches we never reach a leaf and hence there is no need for an
upward flow.

We start by setting f(ǫ) = 0. For x 6= ǫ let y ∈ B be the father of x. Three cases may
happen. If at node y only one of its children is in B (case (a)), we forward everything to
this node. Otherwise (cases (b) and (c)), we forward at most 5K to the left child and the
rest to the right child. The formal definitions are given below, where the the max operator
is only used to avoid negative flows.

(a) If x is the only child of y in B, then we set

f(x) = max(0, f(y) +D(y) − f(x′) − 1)

where x′ is the other child of y.
(b) If the two children of y are in B and x is the left child, then we set

f(x) = max(0,min(5K, f(y) +D(y) − 1)).

(c) If the two children of y are in B and x is the right child, then we set

f(x) = max(0, f(y) +D(y) − 1 − 5K).

Obviously, f(x) ≥ 0 in all cases. We show that if x is of type (b) or (c), then f(x) ≤ 5K,
and if x is of type (a), then f(x) ≤ 7K.

In case (b), f(x) ≤ 5K follows directly from the definition and in case (c) from f(y) ≤
7K (by induction) and D(y) ≤ 3K + 1 (D is K-sparse).

For x as in (a) we cannot use a local argument but we have to go upwards until we
reach a node that has a flow of at most 5K. Such a node must exist because we eventually
meet a node of type (b) or (c), or the root, which has flow 0. All nodes we met before must
be of type (a).
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The following definitions are illustrated in Figure 3. The choice of the yi being the left
successors in the figure is arbitrary and only for matters of presentation. Let yn, . . . , y1 be
such that yn is the father of x, yi−1 is the father of yi for all i ∈ {2, . . . , n}, f(y1) ≤ 5K,
and f(y2), . . . , f(yn) > 5K. As mentioned above, y2, . . . , yn are of type (a).

Let x1, . . . , xn be such that yi is the father of xi, xn 6= x, and xi 6= yi+1 for i ∈
{1, . . . , n−1}, i.e., xi is the brother of yi+1. For the xi the flow is defined using Lemma 6.15
because they are not lying on an infinite branch. Hence there are zones Zxi

rooted at xi of
frontier Fxi

such that

D(Zxi
) + f(xi) = |Zxi

| +K(|Fxi
| − 1). (6.1)

Let Z =
⋃n

i=1({yi} ∪ Zxi
) and let F be the frontier of Z. Then

|Z| = n+

n∑

i=1

|Zxi
| (6.2)

|F | = 2 +
n∑

i=1

(|Fxi
| − 1) (6.3)

n∑

i=1

D(yi) = D(Z) −
n∑

i=1

D(Zxi
) (6.4)

Since y2, . . . , yn are of type (a) and furthermore their flow is bigger than 5K (and hence
bigger than 0), we get

f(x) = f(y1) +

n∑

i=1

(D(yi) − 1 − f(xi)).

We know that f(y1) ≤ 5K and hence it remains to be shown that
∑n

i=1(D(yi)−1−f(xi)) ≤
2K. This can be deduced as follows:

n∑

i=1

(D(yi) − 1 − f(xi))
(6.4)
= D(Z) − n−

n∑

i=1

(D(Zxi
) + f(xi))

(6.1)
= D(Z) − n−

n∑

i=1

(|Zxi
| +K(|Fxi

| − 1))

(6.3)
= D(Z) − n−K(|F | − 2) −

n∑

i=1

|Zxi
|

K-sparse
≤ |Z| +K|F | − n−K(|F | − 2) −

n∑

i=1

|Zxi
|

(6.2)
= 2K

That this flow f is compatible with D and that it is WMSO-definable can easily be deduced
from the definitions.

We are now ready to establish our placement Lemma.

Lemma 6.17 (car parking). For every tree t and every WMSO-definable K-sparse distri-
bution D, there exists a WMSO-definable placement for D. If t is finite, we additionally
require that D(dom(t)) ≤ |dom(t)|.
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Proof. According to Lemmas 6.15 and 6.16 we know that there is a WMSO-definable flow f
that is compatible with D. For simplicity, we first assume that f(ǫ) = 0, which is always the
case for infinite trees (Lemma 6.16). If f(ǫ) > 0 for finite trees, then we can simply redefine
f(ǫ) = 0 without changing the property of f being compatible with D. If t is finite and
f(ǫ) < 0, then we cannot simply set f(ε) = 0 because this would affect the compatibility of
f with D. At the end of the proof we briefly explain how to treat this case.

The general strategy for defining the placement is the following:

• From each node we send all the cars except one to its neighbors. The number of
cars sent to each neighbor is described by the flow.

• If we follow this strategy, then each edge in t is crossed by the cars in only one
direction. Hence, a car cannot visit the same node twice. This means that it might
be sent up in the tree for some steps and from some point onwards it is only sent
downwards.

• To be sure that each car will be parked after finite time we order all the cars that
cross a node (as described by D and f) according to a fixed strategy and we also
fix a scheme for distributing the cars to the neighboring nodes.

• This ordering will ensure that the index of a car decreases each time it is sent down
in the tree. As described above, each car is sent up in the tree only a finite number
of times. Hence, if we always park the car that is first in the ordering at a specific
node, then each car will eventually be parked.

To show that this strategy can be realized by WMSO-formulas we first describe the ordering
of cars that we use and then define formulas

• sendi(x, y) meaning that the ith car at node x is sent to node y.
• drivei,j(x, y) meaning that the ith car at node x is sent to y and is car number j at
y.

• starti(x) meaning that the ith car at node x does not come from another node.
• itineraryi(x,X1, . . . ,XK , y) meaning that the ith car at node x will be parked at

node y using an itinerary that is described by the sets X1, . . . ,XK .

To define these formulas we first have to introduce some notation. To avoid case distinctions
we define f+(x) = max(f(x), 0) and f−(x) = min(f(x), 0). Furthermore, we assume by
convention that for a leaf x the values f+(x0), f+(x1), f−(x0), f−(x1) are defined, and are
all set to 0.

Then the number of cars crossing a node x is f+(x) + f−(x0) + f−(x1) +D(x). Since
all the values involved in this expression are bounded and since we can increase K without
affecting the K-sparsity of D, we can assume that f+(x) + f−(x0) + f−(x1) +D(x) ≤ K
for all x.

Since f is WMSO-definable, we can also assume that there are formulas φ+
i (x) and

φ−i (x) defining f+ and f−. Then expressions of the form i1 + f+(x) + f−(y) = i2 for

i1, i2 ∈ [K] can easily be expressed as Boolean combinations of the formulas φ+
i and φ−i .

The use of expressions of this kind simplifies the presentation of the formulas.
We start by giving the orderings used in the definitions of the formulas sendi and

drivei,j. The cars that cross a node x will be distributed in the following order that we refer
to as the distribution order:

f+(x) f−(x0) f−(x1) D(x)
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That is, we first distribute the cars that come from the father of x, then the cars that come
from the left child of x, and so on. It remains to fix where to send the cars.

1 f−(x) f+(x0) f+(x1)

This means that the first car in the distribution order is parked in the node x. The next
cars are sent to the father of x if f(x) is negative. The following cars in the distribution
order are send to the left child of x and the remaining cars to the right child of x.

To illustrate this, consider the following example with x = y0, f+(y) = 3, f−(x) = 5,
and f+(y1) = 7.

y

x y1
75

3

Let us first see how the cars at y are ordered according to the distribution order. The first
three are the ones coming from the father of y. The next 5 are those coming from x. There
are no cars coming from y1, and the last cars are those from D(y). Now, we would like to
know what happens to the 4th car at x. The first car at x stays at x. The next 5 cars are
sent to y, that is, the fourth car at x is the third car sent from x to y. According to the
distribution order at y described before, this car becomes car number 6 at y.

This is expressed by the following formulas, where the first two are only defined for
2 ≤ i ≤ K because the first car is always kept at the current position.

• For 2 ≤ i ≤ K:

sendi(x, y) := [(x = y0 ∨ x = y1) ∧ 1 < i ≤ C1]
∨ [x0 = y ∧ C1 < i ≤ C2]
∨ [x1 = y ∧ C2 < i ≤ C3]

Here C1 = 1 + f−(x), C2 = 1 + f−(x) + f+(x0), and C3 = 1 + f−(x) + f+(x0) +
f+(x1).

• For 2 ≤ i ≤ K:

drivei,j(x, y) := sendi(x, y)∧(
[x = y0 ∧ j = i− 1 + f+(y)]
∨ [x = y1 ∧ j = i− 1 + f+(y) + f−(y0)]
∨ [x0 = y ∧ j = i− 1 − f−(x)]
∨ [x1 = y ∧ j = i− 1 − f−(x) − f+(x0)]

)

• For 1 ≤ i ≤ K:

starti(x) := f+(x) + f−(x0) + f−(x1) < i ≤ f+(x) + f−(x0) + f−(x1) +D(x)

• For 1 ≤ i ≤ K:

itineraryi(x,X1, . . . ,XK , y) := disjoint(X1, . . . ,XK)∧
x ∈ Xi ∧ starti(x) ∧X1 = {y}

∧
K∧

j=2
(∀z ∈ Xj

∨
j′∈[K]

∃z′ ∈ Xj′ : drivej,j′(z, z
′))

This formula states that the ith car at x starts there. The free set variables describe
the set of positions that this car crosses, where a position is included in Xm if the
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car is the mth one at this position. Finally, it states that y is the only position
where the car is first in the ordering. Hence it will stop at y.

Then the formulas ψi(x, y) defining the placement are given by

ψi(x, y) = ∃X1, . . . XK(itineraryi(x,X1, . . . ,XK , y)).

As mentioned at the beginning of the proof we now discuss how to treat the case f(ǫ) < 0.
Recall that this may only happen for finite trees. In general, simply redefining f(ǫ) = 0
may lead to a flow that is not compatible with D anymore. Therefore, we have to use a
different strategy.

The strategy for distributing the cars described above would lead to f−(ǫ) cars that
“get stuck” at the root because, following the flow, they should be sent upwards, and this
is not possible. This means that there are at most K cars (for simplicity assume exactly
K cars) that start at some node but never arrive at some destination, i.e., there are nodes
x1, . . . , xK and i1, . . . , iK ∈ [K] such that

startij (xj) ∧ ¬∃y(ψij(xj , y))

is satisfied. From the assumption D(dom(t)) ≤ |dom(t)| we can conclude that there remain
at least K nodes where no car is parked, i.e., K nodes which are not image of the function
defined by the ψi’s. Let y1, . . . , yK be the K first such nodes for some WMSO-definable
order (this is possible since the tree is finite). We can now extend this function by ordering
the x1, . . . , xK and map the ijth car from xj to yj. Note that these definitions are expressible
in WMSO. In this way, we obtain a modification of the function defined by the ψi’s into a
placement for D.

6.6. Proof of Theorem 4.3. We can now prove Theorem 4.3 as stated in Section 4 by
combining the previous results.

For X ∈ Atoms let

Index (X) =

{
BIndex (X) if I(X) is an infinite branch,
SIndex (X) otherwise.

We construct a formula φind(X, y) that associates to each X ∈ Atoms its index y =
Index (X). From the definitions of I(X), SIndex (X), and BIndex (X) it is clear that we
can construct such a formula. Note that in the definition of this formula, we do not have
to explicitly represent infinite sets (though I(X) may be infinite) because we can construct
a WMSO formula φimp(X,x) that associates to X ∈ Atoms its important nodes. From this
one can construct WMSO definitions of SIndex (X) and BIndex (X), and hence the formula
φind(X, y) is also WMSO.

Then, we compute the distribution D defined by D(x) = |Index−1(x)|. Since this
distribution is (Ks +K2

im)-sparse by Lemmas 6.6 and 6.12, it is also WMSO-definable using
the formula φind. Let K be a constant such that D(x) ≤ K for all nodes x. Applying
Lemma 6.17, we obtain a WMSO-definable placement P for D. One should note that for
finite t the assumption D(dom(t)) ≤ |dom(t)| is satisfied because D(dom(t)) is the number
of elements in the set E, and I(t) being isomorphic to PF (E) implies that t has at least as
many elements as E.

Let ψi(x1, x2) for i ∈ [K] be the formulas defining P . Now, we order all the X ∈
Atoms with the same index. A possible definition for such an ordering is X < Y if the
lexicographically smallest node that is not in X ∩ Y is in X. Then one can construct
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WMSO-formulas θi(X) stating that X is the ith set in the ordering among those that have
the same index as X.

The WMSO-formula Code(X,x) that attaches X to its final position x is then defined
as follows:

Code(X,x) =
∨

i∈[K]

(θi(X) ∧ ∃y(φind(X, y) ∧ ψi(y, x)).

One should note here that without the results from Subsection 6.5 we can obtain a
weaker version of Corollary 4.4 by replacing the interpretation I2 by a transduction, i.e.,
an interpretation that can use a fixed number K of copies of the given structure. Such
a transduction can be realized using the formula φind instead of Code . In particular one
could use this weaker version of the result in all the applications, but at the price of some
notational and technical overheads.

From this point of view, Lemma 6.17 can also be seen as a result on the question
under which conditions a (W)MSO-transduction is equivalent to a (W)MSO-interpretation
on binary trees. Namely, if the distribution defined by the transduction, i.e., the function
assigning to each node the number of times it is used in the result of the transduction, is
K-sparse (for some K) on each tree. And this presentation can be used either for WMSO-
transductions or MSO-transductions.
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