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ABSTRACT. We give a simple order-theoretic construction of a Cartesian closed category of
sequential functions. It is based on bistable biorders, which are sets with a partial order —
the extensional order — and a bistable coherence, which captures equivalence of program
behaviour, up to permutation of top (error) and bottom (divergence). We show that
monotone and bistable functions (which are required to preserve bistably bounded meets
and joins) are strongly sequential, and use this fact to prove universality results for the
bistable biorder semantics of the simply-typed lambda-calculus (with atomic constants),
and an extension with arithmetic and recursion.

We also construct a bistable model of SPCF, a higher-order functional programming
language with non-local control. We use our universality result for the lambda-calculus to
show that the semantics of SPCF is fully abstract. We then establish a direct correspon-
dence between bistable functions and sequential algorithms by showing that sequential
data structures give rise to bistable biorders, and that each bistable function between such
biorders is computed by a sequential algorithm.

1. INTRODUCTION

Since its inception, domain theory has been a dominant paradigm in denotational se-
mantics; it is a natural and mathematically rich theory with broad applicability across a
wide range of phenomena. However, a limitation of domain theory has been its failure
to capture the intensional aspects of computation. The observation of Plotkin [2§], that
the continuous functional model of PCF is not fully abstract, because it contains functions
which are not sequential, is symptomatic, but the problem cuts deeper; in the presence of
computational effects such as state or concurrency, intensional properties such as the order
of computation become critical, and must be captured by some means in any sound model.

Thus, a longstanding problem in domain theory, and the subject of a significant amount
of research [2], [12] [4, 5], has been to find a simple characterization of higher-order sequential
functions which is wholly extensional in character. Typically, what is sought is some form of
mathematical structure, such that all set-theoretic functions which preserve this structure
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2 J. LAIRD

are sequential and can be used to construct a Cartesian closed category; the basis for a
“sequential domain theory”.

Clearly, any solution to this problem is dependent on what one means by sequential. It
has been closely associated with the full abstraction problem for PCF, although it is now
known that PCF sequentiality cannot be characterized effectively in this sense [12, 22].

Another notion of sequentiality — the observably sequential functionals — was discov-
ered by Cartwright and Felleisen [6]. They observed that if one or more errors are added
to a functional language, then the order of evaluation of programs becomes observable by
varying their inputs. Thus each function corresponds to a unique evaluation tree or sequen-
tial algorithm [7], which can be reconstructed from its graph. The observably sequential
functionals do form a cartesian closed category, which contains a fully abstract model of
SPCF — PCF with errors and a simple control operator. However, the definitions of ob-
servably sequential functions and sequential algorithms are based implicitly or explicitly on
intensional notions of sequentiality, and hence they cannot offer a characterization of it in
the above sense. So we may refine our original problem to ask whether there is a simple,
order-theoretic characterization of observable sequentiality.

This paper suggests such a characterization. We will construct a cartesian closed cat-
egory of biordered sets and order-preserving “bistable” functions. We prove that bistable
functions correspond to the observably sequential functions both indirectly — by showing
that they may used to give models of observably sequential languages which are universal
(every element is the denotation of a term) and fully abstract — and directly, by showing
that each sequential data structure yields a bistable biorder, and that every bistable and
continuous function between such orders is “realized” by a sequential algorithm.

Bistable biorders are analogous to Berry’s bidomains [2] 3], which combine the exten-
sional order with the stable order. Although the bidomain model of PCF is not sequential,
even at first order types, the bidomain model of unary PCF (which contains a T element at
each type) is sequential, and universal [I5] [I8]. The connection with observably sequential
functions is made by viewing top as an error element. Under this interpretation, the mono-
tone and stable functions on bidomains are not observably sequential, because they are not
“error-propagating” (i.e. sequential with respect to T as well as L). However, the duality
between | and T suggests that we “symmetrize” the stable order, to obtain a notion of
bistable order.

Bistable coherence may be thought of as “behavioural equivalence up to the point of
failure — i.e. we may say that M and N are in the bistable order if they are in the
extensional order, and M and N perform the same computation-steps. M and N are
coherent if they behave in a way except that M may diverge where N raises an error, or
vice-versa

Bistable functions are required to preserve the bistable order, and bistably bounded
meets and joins. The proof that bistable functions are sequential is surprisingly simple.
Informally, if we have a function which may evaluate two of its components in parallel,
we may consider two arguments which are identical except that one diverges in the first
component, and produces T in the second, and the other produces T in the first argument
and diverges in the second. These arguments are bounded in the bistable order: their meet
diverges in both components. Our function will produce an error when applied to either
argument, but will diverge when applied to their meet, and hence it cannot be bistable.
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1.1. Related Work. The notion of bistable biorder which is elaborated here was first
presented (in a slightly different form) in [I4], together with a (different) proof of full
abstraction for a model of SPCF. Curien [J], Streicher [30] and Low [32] have studied
bistable functionals, and proved versions of some of the results described here (such as the
correspondence between sequential algorithms and bistable functions in [9, [32]). The use
of definable retractions to prove definability and full abstraction for observably sequential
languages originates with Longley [23, 24]. The concluding section of this paper gives
references to more recent work on bidomain models of sequential languages.

1.2. Outline of the Paper. In Section 2, we describe the notion of bistable biorder and
bistable function, and prove that it yields a Cartesian closed category. We prove that this
contains a universal model of the simply-typed A-calculus AI over a single atomic type
containing two constants (T and L), equivalent to the “minimal model” of A| [26]. In
Section 3, we develop a notion of complete bistable biorder, or bistable bicpo, and show
that we may define a CCC of bicpos and continuous and bistable functions. We give a
semantics of SPCF in this category, and prove that it is fully abstract. In section 4 we
describe a universal model of a A-calculus extending AI with arithmetic operations and
recursion, which may be viewed as a target language for CPS interpretation of observably
sequential languages such as SPCF. In Section 5, we investigate the correspondence between
sequential algorithms on sequential data structures and bistable functions, showing that
each of the latter gives rise to a bistable bicpo, and that each sequential algorithm on the
“function-space” computes a bistable function. We then prove that every bistable function is
computed in this way, and hence that there is a full embedding of the category of sequential
data structures and sequential algorithms in the category of bistable bicpos and bistable
and continuous functions.

2. BISTABLE BIORDERS

Definition 2.1. A bistable biorder is a tuple (D, <%,1), where (D, <F) is a partial order
(the extensional order), and ] is an equivalence relation (bistable coherence) on D such that
each [-equivalence class is a distributive lattice with respect to < and inclusion into D
preserves meets and joins.

Bistable biorders were introduced in [14] as biordered sets (hence the name). In par-
ticular, we may define a bistable biorder to be a tuple (D, <¥, <B) where (D,<¥) and
(D, <P) are partial orders such that:

e o and b are are bounded above in <% if and only if they are bounded below in <B.

e If @ and b are bounded above in <2 then there are elements a A b,a Vb € D which are
(respectively) the greatest lower bound and least upper bound of a and b with respect to
both orders.

e If {a,b,c} is bounded above in <Z, then aV (bAc) = (aVb)A(aVe) (and so aA (bVc) =
(aVb)A(aVe).

Proposition 2.2. The definitions of bistable biorder are equivalent.

Proof. From the bistable order, we may define the bistable coherence relation: a ] b if a
and b are bounded above in (D, <B ). This is an equivalence relation, since if f, g <B pand
g,h <P ¢, then g <B p, q and hence p, q are bounded above and thus f | h.
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From the bistable coherence relation, we may define the bistable order z <B y if x | y
and = <F y. L]

We shall now construct a Cartesian closed category of bistable biorders and monotone
and bistable functions.

Definition 2.3. A function f : D — E is monotone if for all z,y € |D|, z <F y implies
f(x) <F f(y) and bistable if for each x, f| [z]; is a lattice homomorphism into [f(z)];
— ie. for all x,y € |D| such that =z | y, f(z) | f(y), fx Ay) = f(z) A f(y) and

fleVvy)=f(z)V f(y).

We define a category BBO in which objects are bistable biorders and morphisms are
monotone and bistable functions.

Lemma 2.4. BBO is bi-Cartesian.

Proof. The product and co-product operations on bistable orders are defined directly (point-
wise):

e Ax B=(|A] x|B|, <% x <E 14 x 1p),

e A+ B= (Al +|B|, <k + <5, 14+ 1)

The unit for the product is the one-point biorder, 1 and the unit for the co-product is the
empty biorder. L]

We will now show that BBO is Cartesian closed by defining an exponential: a bistable
biorder of functions, in which the extensional order is standard, and the bistable order is a
symmetric version of the stable order.

Definition 2.5. Given bistable biorders D, E, we define the function-space D = E to be
the set of monotone and bistable functions from D to E, with

o f<FygifforalzeD, f( ) < g(w),
e flgifforallz € D f(x) ] g(x), and if z | y (and hence f(y) I g(x)) then f(x)Ag(y) =
fy) Ag(z) and f(z) Vv g(y) = f(y) Vyg(x).

Lemma 2.6. D = FE s a bistable biorder.

Proof. If f ] g then f(a) 1 g(a) for all a, and so we may define <¥ meets and joins f A g
and f V g pointwise:
(f A g)a) = f(a) Ag(a) and (f V g)(a) = f(a) V g(a).
We now show that f A g and fV g are monotone and bistable functions — e.g. if a | b
then (f \g)(a V) = (f A g)(a) V (f A g)(b). Observe that (@) A g(b) = gla) A ) <
7(), (1), 9(a), g(b) and so f(a) A g(b), F(b) A g(a) <E f(a) A F(B), g(a) A g(b). Hence:
(fng)avb)=flaVvb)AglaVb)=(f(a)V f(b))A ( (@) v g(b)) = (f(a) Agla)) V (f(a) V
g()) vV (f(b) A gla)) v (f(b) Ag(b)) = (f(a) Agla)) V (f(b) Ag(b)) = (fAg)a)V (fAg)b).
Next, we show that f | fAgand f] fVg:
For all z, f(z) | (f Ag)(z) = f(z) A g(z), and for all y such that = [y, f(x) A (fAg)(y) =
f@)AFy) Agly) = fly) A fx) Aglz) = f(y) A (fAg)(x) and
F@)V(fAgy) = fl@) Vv (fy) Agly) = (f) vV W) A (@) Vay) = (fly)V Flz) A
(fy)vg(@) = fly) vV (fAg)()
Finally, we need to prove that | is transitive, for example, suppose f ] g and g ] h.
Suppose x | y. Then:

f@) Ah(y) = f(z) ANh(y) A (f(x) V) = fx) AR(y) A(f(y) vV g(x))
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— (f(x) AB(y) A F) V (f() A h(y) A glx))
<EFy) Vv (F(@) A g(y) A h() = F@) V (F) A gl) A b)) = F(y).
Similarly, f(x) Ah(y) C h(x), f(y) Ah(x) C f(y) and f(y) Ah(x) C h(x). So f(x) Ahy)

I

f( x
f(y) A h(x). By duality, f(x)V h(y) = f(y) V h(z) and so f ] h as required.
Proposition 2.7. (BBO,1, x) is cartesian closed.

Proof. We need to show that the natural bijection taking f: A x B — C to A(f) : A —
(B = C) such that A(f)(a)(b) = f({a,b)), and its inverse, are well-defined on bistable
biorders and bistable functions. This is similar to the proof for (stable) biorders and stable
and monotone functions [3].
For example, to show that A(f) preserves bistable coherence:
Suppose a [4 a’. Then for all b [ ¥, (a,b) ] (¢/,V'), and e.g. A(f)(a)(d) AN A(f)(a') () =
fa,b) A (a, b)) = f({a, b)) A f({d', b)) = A(f)(a)(b')/\f\( f)(a)(b). Similarly, A(f)(a)(b) v
A(f)(@) () = A(f)(a)() vV A(f)(a")(b) and hence A(f)(a) ] A(f (b’) as required.
Conversely, to show thatifg: A — (B = C)is blstable then A 1(g) is bistable, suppose

(a,b) Taxp (a/,b). Then a | o’ and b ] V' and by bistability of g, g(a)(b) A g(a’)(b’) =
g(a)(t') A gla')(b) and g(a)(B) V g(a)(¥) = gla)(¥)) V g(a)(B). So e.g. A~L(g)({a,b) A
<a', ")) =glana)bnb) = g(a)d) Agla)t') Agla)(b) Agla) V) = g(a)(b) A gla')(¥') =

A~Hg)({a, b)) A AT (g)({a’, b)) O

A bistable biorder D is pointed if (D, <) has a least element | and a greatest element
T, such that L ] T. A monotone bistable function f of pointed biorders is bistrict if it
preserves the meet and join of the empty set —i.e. f(T) =T and f(L) = L. We define the
category BBQO; of pointed bistable biorders and strict, monotone and bistable functions.

Proposition 2.8. The inclusion of BBOs into BBO has a left adjoint.

Proof. The bilifting operation takes a bistable biorder A to a pointed bistable biorder by
adding two new points, T and L: A] = (A x {x}) U{L, T}, where:

ez <Fyife=_Llory=T,orz= (2 *),y=(,* and o' <Fy/,

e xyifz,ye{L, T}oraz= (2, ),y=(y,*) and 2’ [ ¢/.

For any pointed B, BBO(A, B) = BBOs(A], B). (]

2.1. First-Order Sequentiality and Universality. A key step in proving universality for
observably sequential languages is the observation that the monotone and bistable functions
on pointed bistable biorders are bisequential (i.e. sequential with respect to both L and T
elements).

Definition 2.9. Given pointed bistable biorders Aq,..., A,, B, a function f : A; x ... X
A, — B is i-strict if m;(z) = L implies f(x) = L and m;(z) = T implies f(z) =T.

Lemma 2.10. Given pointed bistable biorders Ai,...,A,, every strict, monotone and
bistable function f: Ay X ... X A, — X is i-strict for some i < n.

Proof. Given j <mn,let L[T]; = (x; | ¢ <n), where z; = T if i = j, and z; = L otherwise.
Similarly T[L1]; = <xl | i <n), where z; = L if i = j, and x; = T otherwise.

If mj(z) = L then z <P T[L];, and if m;(z) = T, L[T]; <F 2. Thus f is i-strict if
f(T[L];) = L and f(L[T];) = T. Since L <B T, we have T[L]; T T[L]g for all 4,k < n,
and A, T[L]; = L. Hence A\,_, f(T[L];) = f(A;<,, T[L]:) = f(L) = L, and so for some
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i, f(T[L];) = L. Similarly f(\;c;(L[T]i)) = T, and so f(L[T];) = T for some j. Moreover,
if i # j, then L[T]; <F T[L];, and so either L[T]; = T[L]; — in which case each Ay is
the one-point order — or else ¢ = j as required, and hence 7 is unique — i.e. bisequential
functions are strongly sequential. L]

2.2. Universality for AI. Let AI be the simply-typed A-calculus with products, over
a single base type Y containing the constants T and 1. The “minimal” model of this
language (that is, the model inducing the maximal consistent theory containing 3 and 7)
was shown to be effectively presentable by Padovani [26] using an analysis of the syntax.
By Cartesian closure of BBO, we obtain a model of AI in which each type is interpreted as
the corresponding bistable biorder. We will show that this is the minimal model.

For each type S of AI, an element of the corresponding biorder is definable if it is the
denotation of a closed term of type S. Universality holds at S if every element of S is
definable. Universality at first-order function types is a consequence of sequentiality.

Lemma 2.11. The bistable model of AI 1s universal at all types of the form X™ = ¥,

Proof. Suppose m = 1. If f is constant (T or L), then f is definable. Otherwise, f is strict,
and hence for some ¢, f is i-strict — i.e. f = m;, and is therefore definable. If m > 1, we
have f = (f;m; | © <m), and f;m; is definable for each i and so f is definable.

L]

We will now prove that universality at higher-order types reduces to universality at
first-order, using the notion of definable retraction.

Definition 2.12. Given types S, T, a definable retraction from S to 7' (which we may write
inj : ST : proj or just S JT) is a pair of terms: inj : S = T and proj : T = S which
denote a retraction in BBO (i.e. [inj]; [proj] = idsg).

Lemma 2.13. If universality holds at type T, and inj: S <T : proj, then universality holds
at type S.

Proof. Given an element e € S, we have a term M : T such that [M] = e;inj and thus

[proj M] = e;inj; proj = e. ]
So we can prove universality for AI by showing that every AI type is a definable retract

of a first order type. To do so, we require a few simple facts about definable retractions.

Lemma 2.14. Ifinjp : 11 <715 : projp, and injg : S1 <52 : projg, then S1 = 11 1S9 = Th
and 51 X T1 < 52 X Tg.

Proof. We have, for example, Afx.injp (f (projg x) : S1 = T1<9S52 = T : Afz.projr (f (injgx)).
L]

The key to reducing the order of the function-space is the fact that for any n, (X" =
¥) = X is a definable retract of (¥ = ) x X".

Lemma 2.15. If f: (X" = X) — X is a strict bistable function, then for alle € ¥" = %,
fe=e(fm|1<i<n).

Proof. If e = T then fe = T by strictness of f, and e (f(m;) | 1 <i <n) = T. Similarly,
ife= 1 then fe=e(fm |1 <i<n)=_L. Otherwise, e = m; for some 1 < i < n, and
e(fm|1<i<n)=fm = fe asrequired. O
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Lemma 2.16. Let g = Az \y.(z Az.(y (xm; | 1 <i < n)M|. Then g = idsroy)oy

Proof. We show that for any element f € (X" = X) = X, g(f) = f. We first note that
g(T)=T and g(L) = L.

If f# Tand f # L, then f is strict (since f(L) <¥ f(T)). Given e € ¥" = ¥, suppose
fle) =T, then (g f)(e) = f(Az.(e (fmi | 1 <1 <n))) = f(Az.f(e)) = f(Az.T) =T = f(e),
by Lemma and strictness of f, and similarly if f(e) = L, then (¢ f)(e) = L. Hence
g(f) = f as required. O

Lemma 2.17. For any n > 1, (¥" = X) = X is a definable retract of (X = X) x X" in
BBO.

Proof. Consider the terms
nN: (=)= = (=) xI)=A.Qz.(f yz), (fm | 1<i<n))
proj: (E=X)x X" = (X"=X) =X = \x.)\g.(m(z) (g m(x)))
We have Az.proj (injx) =g Ax.A\y.xAz.y(xm | 1 < i < n), and hence by Lemma 216
[Az.proj (inj z)] = id(zno5)=5. [

Lemma 2.18. For anyn,m > 1, (X" = ™) = X is a definable retract of 2" = nC)™

Proof. By induction on m. For the base case (m = 1), we have (X" = ¥) = ¥ J (X =
¥) x X" by Lemmal[217] and since ¥ = ¥ <I¥"+1 = X and XIX" = X g0 X" (X = )",
we have (X" = ™) = ¥ < (¥ = 2)7)2 = (7! = )%™ For the induction case,
=yt s Y2 (P 3 = (0= X)) =)

(" = ¥7) = (£ = ¥) x £*) by Lemma 217

2E=>E"=2E)=20)x (XM= E) = 0)"

(X = (B = 5™« (mrtm = 5™ by induction hypothesis

S](En-l—m—}—l = E(2n)m)n % (En—i-m-l—l = E(Qn)m)n

S]En-I—m-i-l = E(2n)m~2n ~ En-}—m-ﬁ-l = E(Zn)mﬁL1 as required. ]

Lemma 2.19. For any type T there exists n(T), m(T) € N such that T is a definable retract
of £1T) S5 (),

X
X

Proof. is by induction on type structure. For the induction cases: S x T < (E"(S) =
Em(S)) % (En(T) - Em(T)) < ymax{n(S),n(T)} — m(S)+m(T)

S =T < (25 = 5m9)) = (50T = pm(@)

o (E"(T) = (E"(S) = Em(S)) = E)m(T)

< (En(T) = (En(S)—i-m(S) = E(2n(5))m(s))m(T)

o (T +n(S)+m(S) s 37(2n(8))™ S -m(T) ]

By applying Lemma [Z.13] to Lemmas [Z.11] and 219 we have established:
Theorem 2.20. The bistable model of AI 1s universal at all types.
Corollary 2.21. The bistable model is minimal.

Proof. Tt is straightfoward to use universality to show that if [M] # [N], then there is an
(applicative) context such that C[M] =g, T and C[N] =g, L, or vice-versa. Hence any
compatible theory containing Gnm as well as M = N also contains 1 = T. L]

Here we are using A-calculus notation to describe an element of BBO.
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Our proof also yields a solution to a related problem: to give a simple axiomatization
of the theory of the minimal model.

Definition 2.22. Let the theory :I over the terms of AI be the compatible, symmetric
and transitive closure of fnm-equivalence extended with the axioms f: (X" = X) = ¥ =
Mh.f dx.h (f i | 1 <i<mn) for each n.

For each type T', we have a definable retraction injy : 7' < »T) =y projr.
Lemma 2.23. projy (injpz) =] A\z.x.

Proof. This is by induction on 7', following the definition of proj; and injp, since to prove
that they define a retraction in BBO, we used only standard properties of all CCCs (i.e.
Bnm-equivalence) together with (X" = ¥) = X I (¥ = X) x X" O

Proposition 2.24. M : T =] N : T if and only if [M] = [N].

Proof. From left-to-right, this follows from the soundness of the theory :I in the bistable
model of A].

To prove the converse, suppose [M] = [N]. Then [inj M] € ¥™T) = (1) = [inj N] €
»UT) = $mUT). Hence for each j < m(T), the terms Az.7;((inj M) x) and Ax.m;((inj N) )
have the same head-normal form (i.e. Az. T Az.L or A\x.m; x for some 1 < i <n(T)). Thus
injM = |nJN and so M = —L proj (inj M) = l proj (inj N) = T N as required. ]

3. BISTABLE BICPOS

We shall now extend our notion of bistable biorder with notions of completeness and
continuity.

Definition 3.1. Given <F-directed sets X,Y, we say that X ] Y if for all z € X and
y € Y there exists 2’ € X and y' € Y such that  <F 2/, y <F ¢/ and 2’ [ /. A bistable
bicpo is a bistable biorder D such that (|D],<F)is a cpo and if X { Y then | | X | ]Y and
UXAY = {zAy|lzeeXAyeY Az ]y}

Let BBC be the category of bistable bicpos and continuous and bistable functions.
Proposition 3.2. (BBC, 1, x) is Cartesian closed.

Proof. We show that for any directed set F' of functions from A to B, a bistable and
continuous least upper bound can be defined pointwise — (| | F')(a) = | | F'(a), where F'(a) =
{fa)| f € F}.

| | F' is bistable: if a | b, then we have F'(a) I F(b) and hence (| | F)(a) T (L] F)(b), and
UF)aVvd)=1H{fla)Vf®)| feFr<"(UF)(a)V(LUF)0)

To show preservation of glbs, we note that | |{f(a) A g(b) | f,g € F A f(a) ] g(b
LI{f(a) A f(b) | f € F} by directedness of F' (for any f,g such that f(a) I g(b), we choose
h such that f,g <¥ h and hence f(a) A g(b) <¥ h(a) A h(b). Thus (| |F)(a) A (L] F)(b) =
LK (@) Ag(b) [ fge FAfla)] gd)} =LKf(a)Af(b) | feF}=(F)(anb).

Now given directed sets of bistable functions F, G such that F' ] G
| |F 1| ]G: For all z, F(x)  G(z), and hence (| |F)(z) I (|]G)(z). Now suppose

z 1y — we need to show that (| F)(z) A (UG)(y) = (LUF)(y) A (UG)(x). By
symmetry it suffices to show (| |F)(x) A (LJG)(y) = | {f(@)Agly) | f€ FAge
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GA f(z) ] g(y) }<E(|_|F)() leenfGFandgeGsuchthatf ) 1 g9(y)
there exists f/ € F and ¢ € G such that f <P f' g <F ¢ and f' ] ¢. Hence
F(@) A gly) <P fl(x) Ag'(y) <P fy) and so f(z) | g(y) <P (LI F)(y) as required.
LIFAMIG=Lr Ay |1l Torall 2. UF ALIGE) = (LT)(0) £ LIG) -
LI{f(@) Agla) | f(z) ] g(x)} =LI{f(z) Ag(z) | f1g}, since for any f, g such that
z) ] gz there exists f' € F, ¢’ € G such that ' 1 ¢ and f <P ', g <F ¢/, and
so f(x) /\g(x) <F f'(z) N ().
]

The bistable bicpos are also closed under the lifting and coproduct operations.

3.1. SPCF. We have defined a cpo-enriched Cartesian closed category of sequential func-
tionals, in which we may interpret PCF. We will now show that we have a fully abstract
semantics of SPCF [6] — PCF with a non-local control operator — catch — and an “er-
ror”, T. Thus we may connect our bistable semantics of AI to the “original” observably
sequential language, SPCF. In doing so, we establish indirectly the correspondence between
observably sequential functionals and bistable functionals, since both yield fully abstract
imodels of SPCF. In the case of the bistable model, our proof of universality for AI gives
an easy proof of full abstraction, since every SPCF type-object is a limit for a chain of AI

types.
The types of SPCF are given by the following grammar:

S,T:=%¥|nat |S=T|SxT

Terms are obtained by extending the simply-typed A-calculus with pairing and projection
and the following constants:

Divergence and Error: T, 1 : X,

Numerals: 0 : nat, succ,pred : nat = nat,

Conditionals: IF0:nat = (T x T) = T, where T € {¥ nat},

Fixpoints: Y: (I'=T)=1T

Control: catch, : (X" = ¥) = nat
The control operator catch is a basic form of Cartwright and Felleisen’s catch [6]; it sends
i-strict functions (ith-projection) to i. Despite its simplicity, it can be used to derive
(call-by-name versions of ) control operators such as Felleisen’s idealized call-with-current-
continuation operator C : ((nat = ¥) = X) = nat [10]:

C =YMAf)\g.((IFO (catchy A\x.g A\y.(IFOy) x)) (0, succ (f Ah.g (Az.h (pred z)))))

(So catchy is sufficient to express catch, for any n.)
We may give a simple operational semantics for SPCF programs — closed terms of type
>, — using evaluation contexts,

Definition 3.3. Evaluation contexts of SPCF are given by the following grammar:
E[]==[]| E[| M | IFOE[] | m; E[-] | succ E[-| | pred E[]

The “small-step” operational semantics of SPCF programs is given in Table 1. The
rule for catch makes its connection with control operators such as callcc apparent; the
current continuation (represented as a tuple of evaluation contexts filled with the possible
values for catch M) is passed as an argument to M. For a program M we write M | if
M — T. We adopt a standard definition of observational approximation and equivalence:
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E[T] —T
E[Tri <M1, M2>] E— E[MZ]
E[pred (succn)] — Fl[n]
E[IFO 0] — E[7T1]
E[IFO (succn)] — Elms]
E[catch, M| — M (E[0],... E[n— 1])
E[Y M] — E[M (YM)]

Table 1: “Small-step” operational semantics for SPCF programs.

given terms M, N : T, M < N if for all compatible program contexts C|-], C[M] | implies
C[NT V.

3.2. The bistable model of SPCF. The ground type nat is interpreted as NI, where
N is the set of natural numbers with the trivial extensional and bistable orderings. We
interpret catch,, as the strict bistable function from " = ¥ to NI which sends the ith
projection to the value i. The interpretation of the remainder of the language (i.e. PCF) is
standard, since BBC is a cpo-enriched Cartesian closed category.

Proposition 3.4. M |} if and only if [M] = T.

Proof. To show soundness, we need simply to verify that if M — N then [M] = [N]. This
is standard for all the rules except those for T and catch. To establish these cases, we prove
by induction that evaluation contexts are interpreted as strict maps — ie. [E[T]] = T
and [E[L]] = L. Thus for any closed term M : X" = X  if [M] is constant, then
[E[catch M]] = [M E[0],..., En — 1])], whilst if [M] = m; then [M (E[0],...,En—1])] =
[E[i]] = [E[catch M]]

Adequacy is proved using a Tait-style computability predicate argument as for PCF
[28]. L]

We prove full abstraction by reduction to universality for AI. The key to doing this is
the observation that for each i, the type X! = ¥ is a definable retract of nat.

For each n > 1 we have projection maps from NI to X" = ¥ sending i < n to the
i + 1th projection, and ¢ > n to L. These are definable as n-ary case statements case,,
where case; = A\x.\y.((IFO z) (x, 1)), and

casent1 = Az \y.(IFO z)(m y, (case, (predx)) (m2 y))

Lemma 3.5. For each SPCF type S there is a sequence of AI types {S; : 1 € w} with
SPCF-definable retractions: inj; : S; IS : proj; such that | | ([proj]; [inj;]) = idpsy-

Proof. We define ¥; = ¥, nat; = %! = X (and so inj; = catch; and proj, = case;),
(SXT)Z':SZ'XTi,and(SiT)i:SiiTi. ]
Theorem 3.6. For all terms M, N, M < N if and only if [M] < [N].

Proof. Inequational soundness follows from soundness and adequacy: if [M] C [N], then
for every context C|-|, if C[M] || then [C[M]] = T, by soundness, [C[M]] C [C[N]] by
compositionality, [C[N]] = T, and so by adequacy C[N] |} as required.
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We prove inequational completeness by induction on the type of M, N (closed), for
which the base case is Proposition B4l For example, if M, N : S = T, and [M] # [N], then
there exists e € [S] such that [M] e Z [N] e. Moreover, since e = ([|_|;c,,([Az.inj; (proj; 2)]))(e),
by continuity there exists i such that [M]([Az.inj; (proj; z)])(e) £ [N]([Az.inj; (proj; z)])(e)

By definability for A |, there is a term L such that [L] = [proj;](e), and hence [M (inj; L)] £
[N (inj; L)]. By induction hypothesis, there exists a context C[.] such that C[M (inj; L)] {
and C[N (inj; L)] §f and so M £ N as required. O

4. UNIVERSALITY FOR A CPS TARGET LANGUAGE

We have given a direct interpretation of SPCF in the category of bistable bicpos and
bistable and continuous functions, but this is in fact equivalent to a CPS (continuation-
passing-style) interpretation (in the style of Streicher and Reus [31]). This may be described
as a translation into a target language, AI(w), which is an extension of AI with arithmetic
and recursion (and which may also be used as a target calculus for CPS translation of
call-by-value variants of SPCF). By proving universality for this calculus we show that it
precisely captures the observably sequential functions over the given type-structure.

Types of AI (w) are generated from two ground types: a data type of natural number
values and the program (or “response”) type X. Programs of function type may take either
data or programs as arguments, but must return a program — i.e. nat may not occur on
the right of an arrow. Thus the types of our language are:

T:=N|X|PxP|T=P

where P # N (we refer to non-N types as pointed).
Terms are obtained by extending the simply-typed A-calculus (with products) with the
following constants:

Divergence and Error: L, T : X,
Zero test: IF0 : N = ¥ = 3 = ., interpreted as the function sending 0 to Azxy.x
and n+ 1 to Axy.y.
Fixpoints: Y : (P = P) = P, interpreted, in standard fashion, as | |, F'(L), where
F=X\fXgg(fg)
together with a set of basic arithmetic constants and unary and binary operations operations
on N, including:
e zero (0),
e cquality testing, - = _,
e “injective pairing” (_*_) and projections fst_ and snd_, such that nxm > 0, fst(nxm) = n
and snd(n *m) = t.
e a unary operation ¢ for every total function f : N — N, such that ¢¢(n) = f(n).

4.1. SPCF and A (w). We may embed SPCF in A | (w) via a fragment of the call-by-name
CPS interpretation, by representing the type N as (N = ¥) = ¥. The constants of SPCF
may thus be expressed in A ] (w) as macros:

e 0=MAr.z0

succ = Af.\z.f An.z succ(n)

IFO = Af Az \y.f An.((IFOn) z)y

catch, = Af A z.f (z0,...2 (n—1))
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In fact, this yields an interpretation of SPCF in the category of bistable bicpos which is
equivalent to the direct one, because the objects NI and (N = X) = ¥ are isomorphic. To
show this, we extend our sequentiality result for bistable functions to those which take an
argument of the form N = D. Noting that N = D = Il;cnD, if D and E are pointed, we
say that a function f : (N = D) = E is i-strict if g(¢) = L implies f(g) = L and g(i) = T
implies f(g)=T.

Lemma 4.1. If A is pointed then every strict, continuous and bistable function f : (N =
A) = X is i-strict for some i.

Proof. Given i € N, a € A, and e € N= A, let e[a]; € N = A denote the function defined:

e ¢clal;(i) = 7,

e efa]; (n)— e(n), ifn#i

Then L[T]; [ L[T]; for all 4, j, and so by continuity and bistability, f(T) = f(\V{L[T]i |i €

N}) = \/{f( [ ]) | i € N}, and so f(L[T];) = T for some ¢, and e(i) = T implies

T = f(L[T]:) < fle). T[L]i I L[T)i, and so f(T[L];) A fF(L[T]:) = F(T[Ll: A L[T]:) =

f(L)= 1, and so f(T[L];) = L, and e(i) = L implies f(e) <¥ f(T[L];) = L. Il
Hence the strict function from N| to (N = X) = ¥ sending ini(n) to Af.fn is an

isomorphism.

Corollary 4.2. N| ¥ (N= %) = %.

So every SPCF type-object is isomorphic to the corresponding AI(w) type-object.
Moreoever, it is straightforward to show that the interpretation of SPCF constants fac-
tors through this isomorphism and hence:

Proposition 4.3. The direct and indirect interpretations of SPCF are equivalent.

4.2. Universality for A](w). We shall now prove that every element of every A [ (w) type-
object is expressible as a term, using definable retractions.

Lemma 4.4. There are definable retractions from N = N = ¥ to N = X and from
(N=Y=N=X)=3to N=3) =X

Proof. Using the injective pairing operation, we have the embedding-projection pairs:

(M Az (f fst(z) snd(x), A\g. Az \y.g (z * y)) and

A Az (f Az.x (2% 0)) Az.x (2 % 1), Ag. Az Ay.g Az.((IFOsnd(2)) (z fst(z))) (y fst(2))). O
Now let U be the type N = (N = ¥) = X. We will show that U is universal amongst

the (pointed) type-objects of AI(w) — i.e. T QU for every pointed type — with a proof

based on the the sequentiality of the model.

Lemma 4.5. If f : U — X is i-strict then for any h € U, f(h) = (hi) Av.f (h[Ay.y v];).

Proof. If h(i) = L, then f(h) = L = (hi) M.(f(h[A\y.yv];), and similarly if h(i) = T
Otherwise h(i) = Ap.pn for some n € N. Then h[\y.y n]; = h and so h(i) Mv.(f(h[\y.yv];) =
f(h[My.yn];) = f(h) as required. n
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Hence if f is i-strict and h(z)(k) = h(i)(K') for all k,k" € N = X, then f(h) = h(i)(L).
Note that we may express h[a]; in A] (w) as A\z.IFOz = i then aelse (h ).

Definition 4.6. Let inj: U = X =
YAEMNf Azy.f Aa.\b.(IFO z then(y a) else ((F (Ak.f k[Ap.pfst(z)]q)) fst(a)) y
and proj = YAG.Ag.A\h.(g 0) Au.((hu) Av.(G Aw.g (v * w)) h.

To prove that this defines a retraction, we require a bound on the number of times the
fixpoint must be unwound to compute inj(f) for finitary f € U = X.

Definition 4.7. A function f : U — ¥ is i-dependent if there exist g,h € U such that
g(7) = h(j) for all j # i and f(g) # f(k). We shall say that f has finite support if the set
of i € N such that f is i-dependent is finite.

Lemma 4.8. Every f: U = X is the least upper bound of a chain of functions with finite
support.

Proof. For each g € U, define g; € U by gi(z) = g(z) if # < i and g(z) = L, otherwise.
Then f*: U — ¥, defined f*(g) = f(gi) is continuous and bistable, and k-dependent only
for k <. By continuity, | [{f* | i € N} = f. ]

Lemma 4.9. If f has finitary support then inj(proj(f)) = f.

Proof. By induction on the size of the set of n € N such that f is n-dependent. If f is not
n-dependent for any n then it is constant, and so inj(proj(f)) = f by strictness of inj, proj.
Suppose f is i-strict (hence i-dependent). Unfolding the fixpoint gives inj(f) =

Az Y. f Aa.\b.(IFO x then(y a) else ((inj (\k.f k[Ap.pfst(x)]q)) fst(a)) y.
LemmalL5] (on Aa.\b.(IFO z then(y a) else ((inj (Ak. f k[Ap.pfst(z)],)) fst(a)) y), gives inj(f)(0)(e) =
(ei) and inj(f)(m)(e) = ((inj(Ak.f k[Ay.y fst(m)];)) fst(a)) e for m > 0.

Hence proj(inj(f))(h)
((h) (\w-(G Awini(f) (0 % w)) B)
((hi) (A\v.(G Aw.inj(Ak.f Kk[fst(v * w)];
( v
= (h

* )snd(v * w)) h)
(h i) (\o.(proj Aw.(ini (M. f K[o];)) w) h)
i) (. (proj (inj(Mk.f K[v].)) h).
Observe that A\k.f k[v]; is n-dependent on strictly fewer n than f, since it is not i-

dependent but if it is n-dependent for some n # i then so is f. Hence by hypothesis

proj(inj(Ak.f k[v];)) = Ak.f k[v];. So proj(inj(f))(h) = h(i) Av.(f(h[v];) = f(h) by Lemma
as required. []

Proposition 4.10. (inj, proj) form a definable retraction from U = 3 to U.

Proof. For each i, proj(inj(f*)) = f* by LemmalL3d} and so proj(inj(f)) = proj(inj(|;cy f9)) =
Lien proj(inj(f*)) = Lien fr=r. L]

It is now straightforward to prove universality of U.

Proposition 4.11. For each pointed type T there is a definable retraction from T to U
U=UJdU.

Proof. By induction on the structure of 1. For the induction step, suppose T'= R = S,
then:

TAU=U=ZN=N=%)=U=YXdIN= (N=X%X)=U
“N=N=(N=3¥)=(N=¥)=Y¥<dN=N=N=X)=%
“(N=3¥)=N=N=3Y¥dIdN=%X)=N=X=U. O
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Lemma 4.12. The bistable semantics of AI(w) is universal at type U.

Proof. Given f e N= (N= %) = %, let f: N — N be defined:
o f(n)=0,if f(n) = 1,

~

o f(n)=1,if f(n)=T,
o f(n) =m+2,if f(n)=in(m).
Then f is definable as the term:

Az.Ay.IFO ¢ 7(z) then L else (IFO pred(qﬁf(x)) then T elsey (pred(pred((bf(a:))))). O
Hence by Lemma [2.13] we have shown the following.

Proposition 4.13. The bistable semantics of AI(w) s universal.

4.3. Extending the Bistable Semantics. We may us bicpos to give (fully abstract)
interpretations of functional programming languages with a variety of features of, including
recursive types, call-by-value functions, and different control primitives. In general, these
models follow the same lines as those based on cpos and continuous functions.

Sum Types: We may interpret sum types using either the coproduct, the “bilifted
coproduct”, A® B = (A+ B)I7 or a “bi-coalesced” sum identifying the T and L
elements of its components. Using the bilifted co-product, for example, we may
construct a fully abstract model of SPCF extended with sums [14]. It is straight-
forward to reduce full abstraction for this semantics to the case of the language
without sums by using a definable retraction A @ B <nat x A x B. (The injection
from A @ B to nat x A x B sends inj(e) to (0,e, L) and ing(e) to (1,L,e), and
the projection from nat x A x B to A @ B sends (0,d, e) to in;(d), (n 4+ 1,d,e) to
in,(e).)

Recursive Types: We may interpret general recursive types using bistable variants
of the standard techniques for determining colimits of w-chains of cpos [29] 27]. For
example, we may give an observably sequential version of Plotkin’s FPC [II] by
adding recursive types to SPCF. We may prove full abstraction for the resulting
semantics by showing that every type is the limit of a chain of SPCF types, as
shown for unary FPC in [15].

Call-by-value: Our constructions generalize naturally to a call-by-value setting using
standard techniques; for example, the strong monad (_)I meets the requirements
for a model of Moggi’s computational metalanguage [25].

Hence we can interpret a call-by-value version of SPCF with catch. A proof of full
abstraction for this model using definable retractions is given in [20]. Alternatively,
we may interpret call-by-value SPCF with control (i.e. callcc) at all types by CPS
interpretation.

Continuation-passing style interpretation: We have given a simple interpreta-
tion of SPCF inside A (w): this corresponds to a special case of the call-by-name
CPS interpretation of Streicher and Reus [31], in which (closed) terms M : T are
interpreted as elements of [T]. = X, where [T]. — the object of continuations of
type T'— is defined [nat]. = N =3 and [S = T]. = ([S]. = X) x [T]..

In general (in call-by-value, or call-by-name with sum types), continuation-passing
style interpretations will not be equivalent to those based on the lifting monad (the
latter is equivalent to a linear CPS monad [17]). CPS interpretation yields models
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with “higher-order” control (callcc at all types), whilst lifting yields models with
“first-order control” (catch or callcc at ground type only).

5. BISTABLE FUNCTIONS AND SEQUENTIAL ALGORITHMS

As we have already observed, sequential algorithms also provide a description of the
fully abstract model of SPCF [7], and thus correspond to bistable functions. We shall now
make this correspondence explicit, by showing that the set of sequential data algorithms on
a sequential data structure forms a bistable bicpo, and that all bistable functions between
such spaces of strategies are observably sequential, in that they are computed by a sequential
algorithm on the corresponding function-space SDS. (Similar results have been described
by Curien [9] and Streicher [30].)

As observed in [21, 8], sequential algorithms on sequential data structures may be
represented as strategies on a game (of the basic form described in [I]). We adopt this
presentation, capturing interactions which result in an error (T) as odd-length traces.

A sequential data structure game A is specified by a triple (M4, Aa, P4), where M4 is
a set of moves with a labelling function A4 : M4 — {P, O} which partitions M4 into sets
of Player and Opponent moves. P4 C Mff is the set of plays of A, where Mﬁ? is the set of
sequences over A which are finite, alternating (i.e. P-moves are immediately preceded by
O-moves and vice-versa), and contain at most one occurrence of each move and at least as
many Opponent as Player moves. Key examples are the “empty game” (&, &, {¢}), and the
game with one (Opponent) move o = ({0}, (0, 0), {e,0}).

Sequential algorithms, or Player strategies on A, are represented as sets of plays, using
odd-length sequences to represent divergences. We write s C ¢ for the partial order on
sequences defined “s is an even-length prefix of ¢t or s =t”.

Definition 5.1. A sequential algorithm over a game A is a non-empty subset of P4, subject
to the conditions:

e Even-prefix closure — if s C¥ ¢t € ¢, then s € 0.
e Even-branching — if s,¢ € o then st CF s,t. (So the only odd-length sequences in o
are of maximal length.)

We shall write strat(A) for the set of strategies over A. Given a strategy o, we shall write
E(o) for its set of even-length sequences (which is a strategy).

So, for instance, there are two strategies over o, {¢} and {&,0}. We shall now define an
extensional order and bistable coherence making strat(A) a bistable bicpo.

Definition 5.2. We first define the extensional order on plays:
s <P tif s is even-length and s C t, or ¢ is odd-length and ¢ C s.

This is a partial order — to show antisymmetry, note that if s < t and t <F s then
s and t are either both even or both odd, and hence s = t. Thus we may define a partial
order on strategies: o <E 7ifVs € 0.3t € 7.s <E t. We establish that this is a partial order
by proving antisymmetry.

Lemma 5.3. If o <P 7 and 7 <F o, then o = 7.

Proof. We prove that s € ¢ if and only if s € 7 by induction on length. For the induction
case suppose sab € E(o). Then s € o and so s € 7, and there exists ¢ € 7 such that
sab <P t. If sab C t then sab € 7. Otherwise ¢ is odd-length and ¢ C sab. Then there exists
t' € o such that t <F ¢/ and so ¢’ C t C sab. But this contradicts determinacy of o. O
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So in strat(o), for instance, we have {e} <¥ {e,0}. More generally, for each game
there is a <F-least element | — the empty strategy — and a <F-greatest element T,
which contains every play consisting of at most one move.

Definition 5.4. Two strategies are bistably coherent if they have the same non-divergent
traces — i.e. o [ 7 if E(0) = E(7).

Lemma 5.5. For any game A, strat(A) = (strat(A), <F 1) is a pointed bistable bicpo.

Proof. If E(0) = E(7) then we may define c AT =0 N7 and 0 V7 =0 U7. These clearly
satisfy the even-prefix-closure and even-branching conditions.

It is straightforward to see that ¢ U T is a least upper bound, since 0,7 C o U 7, and if
o,7 < p, then for all s € ¢ UT, either s € o or s € 7 and we have r € p such that s <F r.

Similarly, o N 7 is a lower bound — o N7 C o¢,7. To show that it is a greatest lower
bound, suppose p <F o,7 and r € p. Then there exist s € o,t € 7 such that » <P s,t. If s
is even-length, then s € E(7) C o N 7. If s is odd-length, then s C r and s,t € o U7 and so
s =t € o N7 as required.

We now prove completeness. For a directed set of strategies S C strat(A), we define
L|S={s€Py|To(s)eSVreSoa(s)<Fr=secr}

This is a well-defined strategy: if s,t € | ]S then there exists 7 € S such that
o(s),o(t) <¥ 7 and so s,t € T and are therefore even-branching.

| | S is an upper bound for S: We prove by induction on sequence length that if s € 0 € S
then there exists t € | |.S such that s <” ¢. Suppose there exists 7 € S with ¢ <¥ 7 such
that s ¢ 7. Then there exists s’ € 7 with s <¥ s/, and s’ must be a (proper) prefix of s so
by hypothesis, there exists ¢ € | | S with s <P s’ <P ¢.

|| S is a least upper bound: If ¢ < 7 for all o € S, then if s € | | .S then s € o(s) <F 7,
and so there exists t € 7 with s < t.

| | preserves coherence: Suppose X [ Y, and s € E(| | X). Then s € og(s), and there
exists 0/ € X,7 € Y such that 0 < ¢’ and ¢’ [ 7. so s € 0’ and s € 7. If 7/ € Y and
7 <P 7' then either s € 7/ or else there exists odd-length t € 7/ with ¢ C s. But in the latter
case, we may find o”, 7" with o/ <F ¢” and 7/ < 7" and ¢” | 7" and so s € 7. Since
there exists ¢ € 7/ with ¢t <P t/, this is a contradiction.

The proof that | | preserves bistable glbs is similar. ]

We shall say that a biorder arising as strat(A) for some sequential data structure is an
SDS-biorder.

5.1. Bistable Functions and observably sequential functions. We shall now show
that bistable functions between spaces of sequential algorithms correspond to sequential
algorithms on the corresponding “function-space” sequential data structure. We follow
Lamarche [21I] and Curien [8] in decomposing this into an affine function space A — B, and
a ! operator.

Definition 5.6. The affine function-space A —o B is formed as follows.
® Maop=Ma+ Mg,

® Mo = [Aa, Ag),
e Pyop={te M p|tIAc ANt|B€ B}.
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We define the affine application of 0 : A — B to 7 : A:

Tio={t|B|teoNtlAeT}

Lemma 5.7. For any sequential algorithm o : A — B, the function from strat(A) to
strat(B) sending T to T;0 is continuous and bistable.

Proof. For monotonicity, suppose p : A <F 7 : A. Then given r € p; o, we have s € ¢ such
that s|B = r and s[|A € p. Hence there exists t € 7 such that s|A <P t. If s|A C t,
then s[A is even-length and so s[A € 7 and so r = s[B € 7 as required. If s|[A [ t, t is
odd-length and ¢ C s[A. Hence there exists s’ CF s such that s'|A =t, and s'|B C s|B = r,
and s'[B is odd-length, so s|B <¥ s/ B as required. For continuity, suppose s € (| |.9);0.
Then there exists t € A — B such that ¢|B = s, and there exists 7 € S such that 7 < 7/
implies t[A € 7. So 7 <F 7/ implies s € 7/ and hence s € | [{o;7 | o € S}.

For bistability, we show that for all 7 : A, F(r;0) = E(F(7);0). Given t € E(7;0)
there exists s € o such that s|A € 7 and s[|B = t. But since s[B is even-length, so
are s and s A, and therefore s|B € E(E(7);0). Preservation of bistable lubs and glbs is
straightforward. For example, if 7 | p then s € (7;0)U(p; o) if and only if there exists t € o
such that t|{B=sand tfA € portf[A€ tifand only if s € (pUT);0. L]

We form the game !A as in [2I] by using plays of A as moves of !A. For a sequence s
of such moves, let |s|¥ = {p € P4 | Jt.tp CF s}.

Definition 5.8. From a game A, we define a game !A as follows:
o My = Py —{c},

e \i4(sa) = Aa(a),

o Py={se My |VtC s|t|F €strat(A)}.

We define the promotion of a strategy o : A to a strategy ol :1A:
ol ={sePa|l|s|¥ Co}.

Lemma 5.9. The function sending o to o' is continuous and bistable.

Proof.

Monotonicity: We prove by induction on the length of s that if s € of then there
exists t € 71 such that s <P t. For the induction case, suppose s = s’ (pa) or
s = s'(pa)(pab), where s’ is even-length. Then by hypothesis there exists ¢’ € 71
such that s’ <F /. If ¢ is odd-length then t' C s’ C s and we are done. If ¢ is
even-length, then s’ C ' and so s/ € 7. If s = s'(pa) then since pa € o, there
must exist ¢ € 7 with ¢ <F pa — i.e. ¢ is odd-length and ¢ C pa. Since p € T
by even-prefix closure, ¢ cannot be a proper prefix of pa and so ¢ = pa, and so
s = s'(pa) € 7. Similarly, if s = s'(pa)(pab), then either pab € 7 — and so s € 77
— or else pa € 7 and so s <F §'(pa) € 1.

Continuity: Given a directed set of strategies S, suppose s € (| |S)I. We prove by
induction on the length of s that s € | [{o' | ¢ € S}. Suppose s = s'(pa). Then by
hypothesis there exists o € S such that s’ € of and o <F 7 implies s’ € tau'. Since
|s|F C || S, there exists p € S such that p < 7 implies pa € 7. So there exists ¢
such that o, p < 6 and so 6§ <F r implies s’ € 71 and pa € 7 and so s'(pa) € 7.

Bistability: Note that if s € P4 is even-length then |s|F = E(|s|F). Hence E(o)! =
E(c"), and so if E(o) = E(r) then E(c') = E(rT). Moreover of N 71 = {5 ¢
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We define the application of a strategy ¢ : A = B to a strategy ¢ : B by combining
the promotion and affine application operations: o -7 = 7f:0 (or directly, o -7 = {s]
B |s€oA|s[!A|F C 7}). We define an observably sequential function between sequential
data structures A and B to be a function f : strat(A) — strat(B) which is “realized” by a
sequential algorithm oy : A = B —ie. f(7) = oy -7. By Lemmas 5.7 and 5.9, we have
shown the following.

Proposition 5.10. Every observably sequential function is continuous and bistable.

We shall now show that every strategy on A = B corresponds to a continuous and
bistable function from strat(A) to strat(B). To do so, we observe that bistable functions
are stable with respect to the inclusion order — i.e. continuous with respect to C, and
conditionally multiplicative (if 0,0’ C 7 then f(c No’) = f(o) N f(o')).

Proposition 5.11. Fvery bistable and continuous function of SDS-biorders is stable.

Proof. Suppose 0,7 C p. Let o/ = (cN7)U{pa € Py |p € E(cNT)AIq € o.pa T qNq & T},
and 7' = (cN7T)U{pa € Py | g€ TpaCqhq&o}.

Then o <¥ ¢’ (if s € o then either s € o N7 C o', or else s’a € o/, where s'a is the
maximal prefix of s such that s’ € o N7) and similarly 7 <¥ 7. Moreover o/ | 7/ and
o'Nt =ont,andso f(oN7)= flo)Nf(r) <F flo"\ N f(r') = flo'N7T') = flonT) <F
f(o)N f(1) as required.

Hence f is also monotone with respect to C, and moreover continuous because every
C-directed set is <Z-directed.

[

Thus each continuous and bistable function f : strat(A) — strat(B) has a trace: tr(f) C
strat(A) x Pg = {(o,t) | t € f(o) AVT.(c T TAt € f(T) = o C 7)}. We define a
sequential algorithm oy : A = B for computing f by “sequentializing” this trace: o; =
{s € Paep | VECF s.(|t]'A|F ¢]B) € tr(f)}.

Lemma 5.12. o is a well-defined strategy on A = B.

Proof. oy is even-prefix-closed by definition. To prove that it is even-branching, suppose
sab, sac € oy. We show that b = c.

e If b and ¢ are both moves in B then sab|B, sac/C € f(|sa]!A|¥) and so b = c.

e If bis a move in !4 and ¢ is a move in B (or vice-versa), then b is an odd-length sequence
on A and so |sab[!A|F = |sa|FU{b} | |sal!A|F = |sac|!A|F. Hence f(|sab[!A|¥) ] f(|sac|
1A|F) and so sac|B = (sa|B)c € f(|sab[!A|F) since it is even-length. But this contradicts
the assumption that the (odd-length) sab|B = salB € f(|sab[!A|).

e If b and c are both (Opponent) moves in A, then if b # ¢ then |sab[!A|¥ ] |sac[!A|F and
|sabl!A|F A |sac]!A|F = |sal!A|P. Thus salB € f(|sab['A|®) A f(|sac['A|F) = f(|sab]
LAIZ) A |sacMA|E) = f(]sa!A|P). But by definition of oy, (|sab['A|F, sab|B) € tr(f),
which is a contradiction.

We show that if s € oy is odd-length, then there is no extension of s in oy by the same

argument. L]
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We now show that the sequential algorithm oy does indeed compute f, based on the
following lemmas.

Lemma 5.13. Suppose (7,tab) € tr(f) or (7,ta) € tr(f), where t is even-length, and
o C E(7) is such that t € f(o). Then there exists a unique sequentiality index seq(o) for
f at (0,t) — an even-length sequence pc € T — o such that ta € f(o U {p}).

Proof. Suppose (7,tab) € tr(f) (the case (7,ta) € tr(f) is similar). In this case 7 = E(7)
by bistability. Let o/ = ocU{pc € Pa | p € o0 A3d.pcd € 7}. We have f(o) | f(¢’) and so
t € f(o'). Moreover, 7 <F ¢/, and so f(7) <¥ f(¢’). Hence there exists r € f(o’) such that
tab <P r. If tab C r then tab € f(o’). But then tab € (o), since o | o', which contradicts
C-minimality of 7. So r C tab is odd-length, and since t € f(o), this entails r = ta. Since
o' = V{ocU{pc} | p € 0 AJd.pcd € 7}, by bistability there exists a unique pcd € 7 such
that tc € f(o U {pc}). L]

Given (7, tab) € tr(f) or (7,ta) € tr(f), where t is even-length, we define a (finite) chain
of strategies oy C ...0, C T:

eop=({pCT7|te flp}
e If 0; # E(7), then we define 0,11 = 0; U seq(0;).

Lemma 5.14. If p C E(7), t € f(p) and seq(p) = pe, then (pU{p},ta) € tr(f) if and only
if p = o; for some 1.

Proof. Suppose (p U {p},ta) € tr(f). Since there exists n such that o, = E(7), there must
be some i such that seq(o;) = pc. Then seq; U {p} and p U {p} are stably coherent, and so
tce€ f(pno;U{p}). But since (p U {p},ta) € tr(f), we have p = o; as required.

We prove the converse by induction on the size of p. Suppose p = g;, but there exists
0 C pU{p} with (6,ta) € tr(f). Then t € f(0 — {p}) (by bistability), and so by induction
hypothesis 6 — {p} = o; for some j < i. But then pc is the sequentiality index for o;, and
so pc € 0, which is a contradiction. ]

Proposition 5.15. If (7,tab) € tr(f) or (7,ta) € tr(f), where t is even-length, then either
(E(7),t) € tr(f) or else there exists (a unique) ped € E(1) such that ((E(r) — {pcd} U

{pc}, ta) € tr(f).

Proof. If (1,t) & tr(f) then since there exists n such that o, = 7 0,41 = 05, U {seq(0;)} =
E(7), we may take pcd = seq(o;) as required. [

We may now show how to sequentialize each element of tr(f).

Lemma 5.16. Let f : strat(A) — strat(B) be a continuous bistable function. Then for any
(1,t) € tr(f), there exists a sequence T4t € o5 such that |T4t[!A|¥ =1 and T4t|B = t.

Proof. By induction on the total lengths of the sequences in 7 U {t}.

If ¢ is even-length and non-empty — i.e. t = t'ab — then 7 = E(7) by bistability and
by Proposition G515l either (7,t') € tr(f) — and so we may define 74t = (74t )ab — or
there exists pcd € 7 such that ((7 — {ped} U {pc},ta) € tr(f) — and so we may define
r4t = (7 — {ped} U {pc}) ta)(ped)b.

Similarly, if ¢ is odd-length i.e. t = t'a — then if 7 = F(7), by Proposition 5.I5, either
(1,t') € tr(f) — and so we may define 74t = (74t')ab — or there exists ped € 7 such that
((1 —{ped} U{pc},ta) € tr(f) — and so we may define 74t = (((7 — {ped} U{pc})sta)(pcd).
Otherwise 7 contains an odd-length sequence ¢. By minimality of 7 with respect to C, and
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bistability of f, ¢ is unique. By Proposition[B.15] either (E(7),t") € tr(f) — so we may define
T4t = (E(7)4t")ga — or there exists ped € E(7) such that ((E(7) —{pcd} U{pc},ta) € tr(f)
and so we may define 74t = (((E(7) — {ped} U {pc})sta)(ped)q. O]

Thus we have shown that every bistable and continuous function f : strat(4) —
strat(B) is observably sequential (and hence given an alternaative proof that observably
sequential functions may be composed).

Proposition 5.17. The SDS-biorders and observably sequential functions form a full sub-
category of BBC.

6. FURTHER DIRECTIONS

Research into bidomain models of sequential programming languages is ongoing, and
includes the following themes:

Elimination of nesting in SPCF: In [16, 20] we use the full abstract bicpo model of
SPCF to show that nested and recursive function calls in SPCF may be eliminated:
every SPCF term is observationally equivalent to one typable in an affine typing
system which does not permit nesting. The proof is based on the universality of
the type of first-oder functions: we show that all retractions into this type may be
defined in our affine system. Since every first-order function is definable without
nesting, we show that every SPCF-definable element of the model is definable in
affine SPCF.

Locally Boolean Domains: We have shown that the category of sequential algo-
rithms and sequential data structures can be fully embedded in the category of
bistable bicpos and bistable and continuous functions. This leaves open the ques-
tion of how the correspondence works in the opposite direction; what is the image of
the embedding, and given an object in that image, can we construct the correspond-
ing sequential data structures? Furthermore, is there a “linear decomposition” of
bistable bidomains into a model of linear logic, which corresponds to that for se-
quential algorithms [21) [8]?7 In [I7] we answer these gestions by describing a notion
of “locally boolean” domain — a partial order (the extensional order) with an in-
volutive negation, which can be used to give simple definitions of the stable and
bistable orders. Our fundamental representation result for these domains is that
they can all be generated (up to isomorphism) by taking products and co-products,
lifting, and limits of w-chains. Hence, in particular, locally boolean domains may be
viewed as games in which one player chooses indices in the product, and the other
in the lifted sum.

Semantics of imperative effects: Locally boolean domains form a model of linear
type theory equivalent to the simple games and strategies (or affine sequential algo-
rithms) model described by Lamarche [21, [8]. A more general “linear decomposion”
of bistable functions is still under investigation. A next step is to extend our seman-
tics beyond functional languages with control to include imperative features, non-
determinism and concurrency, inspired by games models of functional-imperative
languages such as Idealized Algol. The key to constructing such models is the iden-
tification of categorical structures shared by games and bistable models, and used
to capture subtle intensional properties of such languages [13]. This in turn may
lead to higher-order principles for reasoning about them.
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In another direction, we may obtain a semantics of fresh name generation in a
category of “FM-biorders” — bistable biorders acted upon by the topological group
of natural number automorphisms. This fits with a a natural CPS interpretation of
fresh name generation given by Shinwell and Pitts to give a sequential model of a
“CPS-nu-calculus”.

Other Bidomain Models: Bistable bidomains share many properties with Bérry’s
original (stable) bidomains [2]. This captures a different but related notion of non-
deterministic observable sequentiality, as shown by may-nand-must full abstraction
results for a version of A (w) with countable non-determinism [19] (as well as fully
abstract models of languages such as the lazy A-calculus [18]). This poses the
question of whether there is a general notion of bidomain embracing both stable and
bistable instances, and other phenomena such as probabilistic non-determinism.
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