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Abstract. A relational structure is a core, if all its endomorphisms are embeddings. This
notion is important for computational complexity classification of constraint satisfaction
problems. It is a fundamental fact that every finite structure has a core, i.e., an endomor-
phism such that the structure induced by its image is a core; moreover, the core is unique
up to isomorphism.

We prove that every ω-categorical structure has a core. Moreover, every ω-categorical
structure is homomorphically equivalent to a model-complete core, which is unique up to
isomorphism, and which is finite or ω-categorical. We discuss consequences for constraint
satisfaction with ω-categorical templates.

1. Introduction

The notion of the core of a finite structure is a central concept in structural combi-
natorics [22]. It can be defined in many equivalent ways, one of which is as follows (for
detailed definitions see Section 2). A finite structure S is a core if every endomorphism of
S is an automorphism. A structure C is called a core of S if C is a core and is isomorphic
to a substructure induced by the image of an endomorphism of S.

For finite structures S it is well-known and easy to prove that a core of S always exists,
and is unique up to isomorphism; see e.g. [22]. We therefore speak of the core of a finite
relational structure S. For infinite structures various core-like properties were studied by
Bauslaugh [5,6]. In general, infinite structures might not have a core in the sense introduced
above, see [5, 6].

An important application of the concept of a core is the theory of constraint satisfaction
in computer science. Roughly speaking, a constraint satisfaction problem is a computational
problem where the input consists of a given set of variables and a set of constraints that
are imposed on these variables, and where the task is to assign values to the variables such
that all the constraints are satisfied. Such problems appear in numerous areas of computer
science, and constraint satisfaction problems attracted considerable attention in artificial
intelligence.
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Many constraint satisfaction problems can be formalized as follows, using the concept of
structure homomorphisms; again, for a detailed introduction of all the involved concepts see
Section 2. Let Γ be a finite or infinite structure with relational signature τ . The constraint
satisfaction problem (CSP) for the so-called template Γ is the following computational
problem.

CSP(Γ)
INSTANCE: A finite structure S of the same relational signature τ as the template Γ.
QUESTION: Is there a homomorphism h : S → Γ?

We want to stress that Γ is not part of the input; each Γ defines a computational
problem. Note that if two structures Γ and ∆ are homomorphically equivalent, i.e., there
is a homomorphism from Γ to ∆ and from ∆ to Γ, then these structures have the same
constraint satisfaction problem. In particular, a structure S and its core C have the same
constraint satisfaction problem.

For a finite template Γ, the computational problem CSP(Γ) is clearly contained in
NP. A classification of tractable and NP-hard constraint satisfaction problems with a finite
template is intensively studied, but still not complete. See [12,17,21], just to mention a few
highlights on that subject. In all these approaches, the authors make use of the assumption
that the templates of the constraint satisfaction problems under consideration are cores.

The class of constraint satisfaction problems with an infinite template was not yet
studied systematically. It turns out that many interesting computational problems can be
formulated with templates that are ω-categorical. The concept of ω-categoricity is central
in classical model theory, and will be introduced carefully in Section 3. The following
list of well-known computational problems can all be formulated with a countably infinite
template that is ω-categorical.

• Allen’s interval algebra, and all its fragments [4, 23,27,31]
• Problems in phylogenetic analysis [20,32]
• Tree description constraints in computational linguistics [10,11,15]
• Computational problems in the theory of relation algebras [16,24,30]
• All CSPs in monotone monadic SNP without inequality [9, 17]

Moreover, every constraint satisfaction problem with a finite template ∆ can also be
formulated with an ω-categorical template.

In this article we study how the notion of the core of a finite relational structure can
be generalized to ω-categorical structures. We say that an infinite structure Γ is a core, if
every endomorphism e of Γ is an embedding, i.e., e is an isomorphism between Γ and the
structure induced by the image of e in Γ. This is indeed a generalization of the previous
definition for finite structures, since every embedding of a finite structure ∆ in ∆ is an
automorphism. As in the finite case, we say that Γ has a core ∆, if ∆ is a core and ∆ is
isomorphic to the structure induced in Γ by the image of some endomorphism of Γ.

Note that our definition of a core is fundamentally different from the notion of a core
structure as introduced in [28] in model theory. There, a structure Γ is called a core structure
of a first-order theory T if Γ is isomorphic to exactly one substructure of every model of T .

Results. We will show that every ω-categorical structure Γ has a core. Moreover, every ω-
categorical τ -structure Γ is homomorphically equivalent to a model-complete core Γc, which
is unique up to isomorphism, and which is finite or again ω-categorical.
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If Γ is expanded by all primitive positive definable relations, then Γ is homomorphically
equivalent to a homogeneous core Γc, which is unique up to isomorphism, and which is fi-
nite or ω-categorical. The condition that Γ is expanded by all primitive positive definable
relations is natural in the context of constraint satisfaction, since a relational structure and
its expansion by all primitive positive definable relations have the same computational com-
plexity (see e.g. [26]). Since Γc is in this case homogeneous, it admits quantified elimination
and has a ∀∃-axiomatization.

In Section 7 we also prove the following result, which has consequences for the theory of
constraint satisfaction. If we expand Γc by a singleton relation, then the resulting constraint
satisfaction problem has the same computational complexity as CSP(Γc). This was shown
for finite templates in [12], and is of fundamental importance for the so-called algebraic
approach to constraint satisfaction.

2. Cores

Let Γ and ∆ be relational structures with the same relational signature τ . We use
the same symbols for the relation symbols from τ and for the respective relations in Γ,
and the same symbols to denote a structure and its universe. A mapping f : Γ → ∆ is
called a homomorphism, if for all relation symbols R ∈ τ and x1, . . . , xn ∈ Γ the relation
R(f(x1), . . . , f(xn)) holds in ∆ whenever R(x1, . . . , xn) holds in Γ. A homomorphism is
called strong, if R(x1, . . . , xn) holds in Γ if and only if R(f(x1), . . . , f(xn)) holds in ∆.
An injective strong homomorphism from Γ to ∆ is also called an embedding ; if there exists
an embedding of Γ into ∆, then ∆ is called an extension of Γ. A homomorphism from Γ
to Γ is called an endomorphism of Γ, and a bijective strong endomorphism of Γ is called
an automorphism of Γ. Two structures Γ and ∆ are called homomorphically equivalent, if
there is a homomorphism from Γ to ∆ and a homomorphism from ∆ to Γ.

Definition 1. A (finite or infinite) structure Γ is a core if every endomorphisms of Γ is an
embedding. A core Γ is called a core of ∆ if Γ is the image of an endomorphism of ∆.

Homomorphisms that are not embeddings are called strict. The above definition says
that cores do not have strict endomorphisms. For finite cores it clearly holds that every
endomorphism is an automorphism, hence our definition is a generalization of the notion of
a core for finite structures.

The following proposition illustrates the relevance of cores for constraint satisfaction
problems.

Proposition 2. Let Γ be a relational structure. Then CSP(Γ) can be formulated as a
constraint satisfaction problem with a finite template if and only if Γ has a finite core.

Proof. Clearly, if Γ has a finite core ∆, then CSP(Γ) is equivalent to CSP(T ). Conversely,
suppose CSP(Γ) equals CSP(∆) for a finite template ∆. This implies that every finite
substructure of Γ homomorphically maps to ∆. A standard compactness argument shows
that there is a homomorphism from Γ to ∆, and therefore Γ has a finite core.
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3. Countably Categorical Structures

Finite structures are up to isomorphism determined by their first-order theory. We
can not expect this for infinite structures: by the theorem of Löwenheim-Skolem, every
consistent theory with a model of cardinality λ has models of arbitrary cardinality ≥ λ.
However, it might still be the case that all models of a certain cardinality are isomorphic.
If this is the case for the countably infinite models, we call the theory ω-categorical. A
countably infinite structure Γ is called ω-categorical, if its first-order theory Th(Γ) (i.e.,
the set of all first-order sentences that hold in Γ, where the atomic formulas are built from
the symbols in τ and equality) is ω-categorical. Throughout the paper we only consider
relational and at most countable structures and signatures. Despite the powerful theorems
quoted below, the class of ω-categorical structures remains somewhat mysterious, and all
classification results require some additional properties (stability in e.g. [29], or homogeneity
in [14]).

Let G be a permutation group, and let G act on X. For all k ≥ 1 there is a natural
action of G on the set Xk of k-tuples over X, defined by (x1, . . . , xk)π = (x1π, . . . , xkπ) for
permutations π from G. An orbit of k-tuples in G (with respect to this action) is a smallest
subset S of Xk such that x ∈ S implies that xπ ∈ S for all π ∈ G. All notions used here
are standard and can be found e.g. in [25].

Theorem 3 (Engeler, Ryll-Nardzewski, Svenonius). The following properties of a countably
infinite structure Γ are equivalent:

(1) the structure Γ is ω-categorical;
(2) for each n ≥ 1, the automorphism group of Γ contains finitely many orbits of n-tuples;
(3) for each n ≥ 1, Γ admits finitely many inequivalent formulas with n free variables.

Permutation groups with the second property in Theorem 3 are called oligomorphic [13].
A famous example of an ω-categorical structure is (Q, <), the dense linear order of the
rational numbers. A famous structure that is not ω-categorical is (N, <). This structure
has an infinite number of orbits of pairs, and hence can not be ω-categorical, because
whenever x1 − x2 6= y1 − y2, then (x1, x2) can not be in the same orbit as (y1, y2).

Constraint satisfaction with ω-categorical templates is a strict extension of constraint
satisfaction with finite templates. Let ∆ be a finite template for a constraint satisfaction
problem. To formulate CSP(∆) with an ω-categorical template, add for each vertex v in
∆ a countably infinite number of copies v1, v2, . . . , such that for all i ≥ 1 the relation
R(. . . , vi, . . . ) holds in the resulting structure Γ if and only if R(. . . , v, . . . ) holds in ∆. It
is not hard to see that the structure Γ is ω-categorical, and that the core of Γ is isomorphic
to the core of ∆. Clearly, there are constraint satisfaction problems with ω-categorical
templates that can not be formulated with finite templates: all the classes of computational
problems mentioned in the introduction contain examples of such problems.

To illustrate the concepts we have seen so far, we formulate several well-known compu-
tational problems as constraint satisfaction problems with ω-categorical templates. In all
these examples, it is fairly easy to check that the chosen template is a core. We also do
not always prove ω-categoricity of these structures, and that they indeed have the specified
constraint satisfaction problem. But references with further illustration and proofs will be
given. Three more examples follow at the end of Section 3, and for these examples the ver-
ification that the structures are indeed cores is more interesting. We do not present these
examples here, because we need the concept of amalgamation to define them conveniently,
which will be introduced in Section 4.
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Betweenness. The hardness of many fragments of Allen’s Interval Algebra [4, 27] can be
proven easily by reduction from Betweenness, an important NP-hard problem that can be
found in Garey and Johnson [19]. Given a finite set V , and a collection C of ordered triples
(x, y, z) of distinct elements from V , the computational question is whether there is an
injective function f : V → {1, . . . , |V |} such that, for each (a, b, c) ∈ V , we have either
f(a) < f(b) < f(c) or f(c) < f(b) < f(a). The formulation as a constraint satisfaction
problem is straightforward, using for instance the rational numbers as the base set of the
template.

Switching-Acyclicity. Given a digraph D = (V ;E), can we partition the vertices V into two
parts, such that the graph that arises from D by switching all arcs between the two parts
is acyclic? To formulate this as a constraint satisfaction problem with an ω-categorical
template, consider a dense subset X of Q, and switch the order < between the elements of
X and Q −X, and leave the edges within X and within Q −X unchanged. The resulting
structure is called S(2) and is isomorphic for all choices of dense sets X, see e.g. [14]. The
constraint satisfaction problem of S(2) is the problem described above [11]. For equivalent
definitions of S(2) and an hardness-proof of its constraint satisfaction problem, see [7, 11].

Partial tree descriptions. Our next example is a computational problem that was studied
in computational linguistics [15]. A polynomial time algorithm can be found in [10]. Let
D be a digraph with two types of arcs, called ancestorship and non-ancestorship arcs. The
question is whether D is a consistent partial tree description, i.e., whether we can find a
forest with oriented edges on the vertex set of D, such that for every ancestor arc in D there
is a directed path in the forest, and for every non-ancestor arc there is no directed path
in the forest. As shown in [11], we can formulate this problem as a constraint satisfaction
problem with an ω-categorical template.

Non-cores. Of course, there are plenty of ω-categorical structures that are not cores, for
instance the Random graph R [13,25], whose core is the complete graph Kω on a countably
infinite set of vertices (the constraint satisfaction problem of R and Kω is trivial).

4. Homogeneous Structures and Amalgamation Classes

We need another concept, which is of a more combinatorial nature, and links ω-
categoricity via homogeneity and Fräıssé’s theorem to amalgamation classes. A structure is
homogeneous (sometimes also called ultra-homogeneous [25]) if every isomorphism between
finite substructures of Γ can be extended to an automorphism (in this paper, substructure
always means induced substructure, as in [25]). A structure Γ admits quantifier elimination,
if every first-order formula has in Γ a quantifier-free definition.

Proposition 4 (see e.g. 2.22 in [13], and [25]). An ω-categorical structure has quantifier
elimination if and only if it is homogeneous. A countable homogeneous structure Γ is ω-
categorical if Γ contains finitely many relations of arity k, for all k ≥ 1.
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For an example of a homogeneous structure that is not ω-categorical, consider the
expansion of a countably infinite structure Γ by unary singleton predicates for each element
in Γ. This structure is homogeneous, since there are no distinct isomorphic substructures
in Γ, and it is not ω-categorical, since the number of orbits in the automorphism group of
Γ is infinite.

The next theorem asserts that a countable homogeneous structure is up to isomorphism
characterized by its age. The age of a relational structure Γ is the set of finite structures that
embed into Γ (this is terminology that goes back to Fräıssé [18]). A class of finite relational
structures C is an amalgamation class if C is nonempty, closed under isomorphisms and
taking substructures, and has the amalgamation property, which says that for all A,B1, B2 ∈
C and embeddings e1 : A → B1 and e2 : A → B2 there exists C ∈ C and embeddings
f1 : B1 → C and f2 : B2 → C such that f1e1 = f2e2.

Theorem 5 (Fräıssé [18]). A countable class C of finite relational structures with countable
signature is the age of a countable homogeneous structure if and only if C is an amalgamation
class. In this case the homogeneous structure is up to isomorphism unique and called the
Fräıssé-limit of C.

The following templates of well-known constraint satisfaction problems are easily de-
fined with amalgamation classes.

Triangle-freeness. Given a graph G, is G triangle-free? Clearly, this problem can be solved
in polynomial time. However, it can not be formulated as a constraint satisfaction problem
with a finite template. To formulate this problem as a constraint satisfaction problem with
an ω-categorical template, note that the class of all triangle-free graphs is an amalgamation
class. Let us denote its Fräıssé-limit by ⋪. It is well-known and not hard to see [13] that
this graph is up to isomorphism uniquely determined by the fact that it is triangle-free and
has the following extension property: for all finite subsets A,B of vertices of ⋪ such that
all vertices in A are pairwise not adjacent there exists a vertex z in ⋪ that is not in A, not
in B, adjacent to all vertices in A, and not adjacent to all vertices in B. Clearly, CSP(⋪)
is the computational problem described above.

We claim that the structure ⋪ is a core. Suppose otherwise that there is a strict
endomorphism e. If e(u) = e(v), then u and v can not be connected in ⋪. We apply the
extension property twice to derive that there must be adjacent vertices w and w′ in ⋪ such
that w′ is connected to u and w is connected to v. But then, e(u) = e(v), e(w), e(w′) form
a triangle, a contradiction. Hence, since e is strict, there must be non-adjacent vertices a
and b such that e(a) is adjacent to e(b). Again by the extension property ⋪ contains a
vertex w that is adjacent to both a and b. But then e(a), e(w), e(b) form a triangle, again
a contradiction. Therefore every endomorphism of ⋪ is an embedding.

No-mono-tri. The structure [⋪,⋪], i.e., the structure that consists of two copies of ⋪, where
all vertices between the two copies are linked, has an interesting constraint satisfaction
problem, which can be formulated as follows: Given a graph, can we partition its vertices
into two parts such that both parts do not contain a triangle? This problem is a rather
typical example from the class monotone monadic SNP without inequality (MMSNP), a
fragment of existential second-order logic introduced in [17] in the context of constraint
satisfaction. A general result on so-called G-free colorability implies its NP-hardness [1].
Every constraint satisfaction problem in MMSNP can be formulated with an ω-categorical
template [9]. The construction given in [9] also shows that the above structure [⋪,⋪] is
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ω-categorical. Similarly as in the previous example for the graph ⋪, it is not hard to show
that [⋪,⋪] is a core.

Quartet compatibility. The next example is an important structure in the theory of infinite
permutation groups [13]. A boron tree is a finite tree in which all vertices have degree one
(hydrogen atoms) or degree three (boron atoms). On the hydrogen atoms of a boron tree
we can define a quaternary relation xy|uv that holds when the paths joining x to y and u

to v are disjoint. The class of all structures D with a quaternary relation that stem from
a boron tree as defined above is an amalgamation class [2]. Let D be the Fräıssé-limit of
D. Then CSP(D) is a well-known NP-hard problem [32] that was independently studied
in phylogenetic analysis (without any reference to constraint satisfaction), and is called
quartet-compatibility : Given a collection C of quartets xy|uv over a set X, is there some
tree with leaf set X such that for each quadruple xy|uv in C the paths from x to y and
from u to v do not have common vertices?

Rooted triple consistency. The next problem is studied in phylogenetic analysis, again with-
out notice that the problem can be stated as a constraint satisfaction problem. If we fix
a point a in the previous structure D and consider the ternary relation ‘:’ defined by
x : yz ⇔ ax|yz, we again obtain an ω-categorical structure (this is a C-set in [2]). The age
of this structure now contains the finite structures T that come from finite rooted trees, and
the relation x : yz says that the least common ancestor of y and z is strictly below the least
common ancestor of x, y, and z in the tree T . The corresponding constraint satisfaction
problem is known as the rooted triple consistency problem [32], and tractable. The first
polynomial time algorithm for this problem goes back to [3], motivated by a question in
database theory.

5. Existential Positive Expansions

In this section we study various syntactic restrictions of first-order logic. Recall that
if relations are added to a given τ -structure Γ then the resulting structure Γ′ is called an
expansion of Γ, and Γ is called the τ -reduct of Γ′.

A first-order formula φ is primitive (primitive positive), if it is of the form

∃x.ψ1 ∧ · · · ∧ ψk

where ψi are literals (atomic formulas) that might include the equality relation. It is called
existential (existential positive), if it is of the form ∃x.Ψ where Ψ is quantifier-free (and
negation-free). The strongest of these four syntactic restrictions, primitive positivity, is im-
portant for constraint satisfaction, since the expansion of a template with primitive positive
definable (short, pp-definable) relations does not change the complexity of the corresponding
constraint satisfaction problem. This is an easy observation, see e.g. [26].

A mapping of a τ -structure Γ to a τ -structure ∆ is called elementary, if it preserves all
first-order τ -formulas (this is a standard notion in model-theory [25]). A theory T is called
model-complete, if all embeddings between models of T are elementary. In the case that T
is the theory of a structure Γ, we also say that Γ is model-complete, as usual. If T is a first-
order theory, then Γ is called an existentially complete model of T if for every existential
formula φ, every tuple a in Γ, and every model ∆ of T such that Γ is a substructure of ∆
and φ(a) holds in ∆, the formula φ(a) also holds in Γ.
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Model-completeness can be characterized in many different ways. We say that two
formulas φ,ψ are equivalent with respect to a theory T if in every model of T the formulas
φ and ψ define the same relations.

Proposition 6 (Theorem 7.3.1 in [25]). Let T be a first-order theory. Then the following
are equivalent.

• T is model-complete
• Every model of T is an existentially complete model of T
• Every first-order formula is equivalent to an existential formula with respect to T .

An ω-categorical structure is model-complete if and only if its first-order theory is
equivalent to a set of ∀∃-sentences, i.e., sentences of the form ∀x∃yφ(x, y), where φ is
quantifier-free (see e.g. Theorem 7.3.3 and 7.3.4 in [25]). The following proposition follows
directly from Theorem 7.2.1 in [25].

Proposition 7. Let Γ be a relational structure, and let T be the set of all ∀∃-sentences that
hold in Γ. Then there exists an extension of Γ that is an existentially complete model of
T .

The case that all existential formulas are equivalent to existential positive formulas can
be characterized in a different way.

Lemma 8. Let T be a first-order theory such that every homomorphism between models of
T is an embedding. Then every existential formula is equivalent to an existential positive
formula with respect to T .

Proof. A formula φ is equivalent to an existential positive formula with respect to a theory
T if φ is preserved by all homomorphisms1 between models of T ; this fact is stated as
Exercise 2 in Section 5.5 in [25]. Let f be a homomorphism between two models of T .
By assumption, f is an embedding, and therefore clearly preserves all existential formulas.
Hence, all existential formulas are equivalent to an existential positive formula with respect
to T .

The following lemma will be useful to construct homogeneous models.

Lemma 9. If Γ is a structure that has been expanded by all primitive definable relations,
then there is a homogeneous structure with the same age as Γ.

Proof. Let a = (a1, . . . , ak) be a tuple of elements from Γ, let B1, B2 be finite induced
substructures of Γ and e1 : a → B1 and e2 : a → B2 be embeddings. Since there are
relation symbols for every primitive formula in the signature, there is a relation R1 that
holds on the tuple e1(a) in Γ, and is defined by the following primitive formula φ. Let
b1, . . . , bm be the elements of B1. The formula φ has k free variables x1, . . . , xk and has the
form φ := ∃xk+1, . . . , xmψ. The formula ψ is a conjunction of literals defined as follows.
If there is an l-ary relation symbol R in the signature of Γ such that R holds on elements
bi1 , . . . , bil in B, 1 ≤ i1, . . . , il ≤ m, then ψ contains the conjunct R(xi1 , . . . , xil). If the
relation R does not hold on bi1, . . . , bil in B, then ψ contains the conjunct ¬R(xi1, . . . , xil).
Moreover, ψ contains conjuncts of the form xi 6= xj for all distinct indices i, j from 1, . . . ,m.

1We say that a formula φ is preserved by all homomorphisms between models of T if whenever h is a
homomorphism from M1 to M2 that maps a tuple a of elements from M1 pointwise to a tuple b of elements
from M2, where M1 and M2 are models of T , and a satisfies φ in M1, then b satisfies φ in M2.
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We also have a relation R2 corresponding in an analogous way to B2 where the points
from B2 − e2(a) are existentially quantified, and which holds on e2(a) in Γ. Since e1 and
e2 are embeddings, these relations also hold on a in Γ. They assert that we can find an
extension C of the structure induced by a and embeddings f1 : B1 → C, f2 : B2 → C

such that f1e1 = f2e2. Thus, the age of Γ has the amalgamation property, and Theorem 5
implies that there is a homogeneous structure with the same age.

We can combine Lemma 8 and Lemma 9 and obtain the following.

Corollary 10. Let Γ be a structure that has been expanded by all existential positive defin-
able relations. If all homomorphisms between models of Th(Γ) are embeddings, then there
is a homogeneous structure with the same age as Γ.

Proof. Proposition 8 shows that every existential, and in particular every primitive formula
is in Γ equivalent to an existential positive formula. Hence, Γ is also expanded by all
primitive definable relations, and Proposition 9 shows that there is a homogeneous structure
that has the same age as Γ.

6. Cores of Countably Categorical Structures

In this section we state and prove the main results of the paper. We start with a
proposition on the existence of a ‘youngest’ endomorphic image of an ω-categorical structure.
The proof employs a typical technique for ω-categorical structures.

Proposition 11. Let Γ be an ω-categorical relational τ -structure. Then there exists an
endomorphism c of Γ such that for every other endomorphism g, all finite substructures of
c(Γ) embed into g(Γ). This is, there exists an endomorphic image of Γ of smallest age.

Proof. Let S be the set of all finite τ -structures S such that there is an endomorphism g of
Γ so that S does not embed into g(Γ). We have to show that there is an endomorphism c

such that no structure from S embeds into c(Γ). For the construction of c we consider the
following tree. Let a1, a2, . . . be an enumeration of Γ. The vertices on level n of the tree
are labeled with equivalence classes of good homomorphisms from the structure induced
by {a1, . . . , an} to Γ. A homomorphism h is good, if no structure from S embeds into the
structure induced by h({a1, . . . , an}) in Γ. Two homomorphisms g1 and g2 are equivalent,
if there exists an automorphism α of Γ such that g1 = g2α. Clearly, if a homomorphism
is good, then all equivalent homomorphisms and all restrictions are also good. A vertex
u on level n + 1 in the tree is connected to a vertex v on level n, if some homomorphism
from u is the restriction of some homomorphism from v. Because of ω-categoricity, the
tree is finitely branching. We want to show that the tree has vertices on each level n,
and iteratively construct a sequence h1, h2, . . . , hk of homomorphisms from {a1, . . . , an}
to Γ, where the last endomorphism hk induces a good homomorphism. Initially, if no
structure from S imbeds into the structure induced by {a1, . . . , an}, we can choose the
identity as a good homomorphism. Otherwise, there is a structure S ∈ S that embeds into
the structure induced on {a1, . . . , an}, and an endomorphism e such that e(Γ) does not
contain S. The mapping h1 restricted to {a1, . . . , an} is a strict homomorphism, because
if it was an embedding, S embeds into the structure induced by the image of {a1, . . . , an}
under this mapping, which is by assumption impossible.
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In step i, if no structure in S embeds into the structure induced by hi({a1, . . . , an}), then
hi is a good homomorphism, and we are again done. Otherwise there is an endomorphism e

of Γ and a structure S ∈ S that embeds into the structure induced by hi({a1, . . . , an}), such
that S does not embed into e(Γ). We can then define a homomorphism hi+1 : {a1, . . . , an} →
Γ by hi+1(x) := e(hi(x)), which is again a strict homomorphism. Since in the sequence of
structures induced by h1({a1, . . . , an}), h2({a1, . . . , an}), . . . either the number of vertices
decreases or the number of tuples in relations increases, and since Γ is ω-categorical, the
sequence has to be finite. Hence, there exists a good homomorphism from {a1, . . . , an} to
Γ, for all n ≥ 0. By König’s tree lemma, there exists an infinite path in the tree. Since
adjacency in the tree was defined by restriction between homomorphisms, this path defines
an endomorphism c of Γ. By construction, no structure in S embeds into c(Γ).

In the following, c(Γ) denotes the structure induced by the image of the endomorphism
c in Γ that was constructed in Proposition 11. Note that Proposition 11 says that all cores
of Γ have the same age as c(Γ). We will use the following well-known lemma several times
(see e.g. Section 2.6 in [13]). It can be shown by a similar application of König’s lemma as
in the proof of the previous proposition.

Lemma 12. Let Γ be a relational structure whose age is contained in the age of an ω-
categorical structure ∆. Then Γ embeds into ∆.

The following lemma is a central step in our arguments.

Lemma 13. Let Γ be an ω-categorical τ -structure that contains all existential positive
definable relations. Then every homomorphism between two structures Γ1 and Γ2 of the
same age as c(Γ) is an embedding.

Proof. Since Γ is ω-categorcial and because the age of Γ1 and Γ2 is contained in the age of Γ,
Lemma 12 implies that both Γ1 and Γ2 embed into Γ. For simplicity of notation, we assume
that Γ1 and Γ2 are substructures of Γ. Now suppose for contradiction that f : Γ1 → Γ2

is a homomorphism that is not an embedding, this is, for some tuple u = (u1, . . . , uk) of
elements and some k-ary relation R in Γ1 the mapping f does not preserve the formula
¬R(u) or does not preserve the formula u1 6= u2. We will then construct an endomorphism
h of Γ such that h(Γ) does not contain a copy of the substructure S induced by u in Γ1.
This is a contradiction: On the one hand S is a substructure of c(Γ), since Γ1 has the same
theory and thus the same age as c(Γ). On the other hand, since S is not a substructure of
h(Γ), Proposition 11 says that S is not a substructure of c(Γ).

To construct this homomorphism h we consider an infinite but finitely branching tree.
The vertices on level n in this tree will be labeled by equivalence classes of good homomor-
phisms from {a1, a2, . . . , an} to Γ, where a1, a2, . . . is an enumeration of Γ. A homomor-
phism g on level n is good, if the structure induced by g({a1, . . . , an}) does not contain an
induced copy of S. Two homomorphisms g1 and g2 are equivalent if there exists an auto-
morphism α of Γ such that g1 = g2α. Adjacency is defined by restriction; this is, two nodes
on level n and n+1 are adjacent in the tree if there are representatives g1 and g2 from these
nodes such that g1 is a restriction of g2. Clearly, all restrictions of a good homomorphism
are again good homomorphisms, and all homomorphisms in an equivalence class are good,
or all are not good. By ω-categoricity of Γ, the tree has only a finite number of vertices
on level n, and in particular it follows that the tree is finitely branching. The crucial step
is that the tree contains vertices on every level, i.e., there exists a good homomorphism
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hn : {a1, . . . , an} → Γ for each n ≥ 1. We show this in the following; and here we use the
assumption that Γ contains all existential positive definable relations.

To find hn for each n ≥ 1, we consider a sequence (hi
n)i≥0 of homomorphisms to Γ,

where the domain of h0
n is {a1, . . . , an}, and the domain of hi+1

n equals the image of hi
n.

Hence, we can define the following composed homomorphism h
(i)
n : {a1, . . . , an} → Γ by

h
(i)
n (x) := hi

n(. . . h1
n(h0

n(x)) . . . ). We now define the sequence (hi
n)i≥0. The homomorphism

h0
n is the identity. For i > 0, if the structure induced by the domain of hi

n does not contain

an induced copy of S, we are done, because then h
(i−1)
n is a good homomorphism from

{a1, . . . , an} to Γ. Otherwise, there are elements (bi1, . . . , b
i
k) in the domain of hi

n that
induce in Γ a structure isomorphic to S. We now define hi

n(bij) := f(uj) for 1 ≤ j ≤ k,

and want to extend this mapping to a (strict) homomorphism hi
n on the other elements

bik+1, . . . , b
i
m, m ≤ n, in the domain of hi

n. Consider the formula φ := ∃xi
k+1, . . . , x

i
mψ with

free variables xi
1, . . . , x

i
k, where ψ is a conjunction of atomic formulas defined as follows. We

use the structure induced by bi1, . . . , b
i
m in Γ to define ψ. For all j1, . . . , jl ≤ m, the formula

ψ contains a conjunct R(xi
j1
, . . . , xi

jl
) iff R holds on bij1, . . . , b

i
jl

in Γ. It is then clear that

the formula φ holds for bi1, . . . , b
i
k.

Since Γ contains all existential positive definable relations, the existential positive for-
mula φ also holds on u1, . . . , uk, since these vertices induce the same structure as bi1, . . . , b

i
k.

Since f preserves existential positive formulas, φ also holds on f(u1), . . . , f(uk) in Γ. We
thus can find witnesses rk+1, . . . , rm in Γ for the variables xi

k+1, . . . , x
i
m of the existential

quantifiers in φ, and extend hi by hi
n(bij) := rj for k + 1 ≤ j ≤ m. Then hi

n clearly is a ho-
momorphism to Γ, which is also strict, because it does not preserve some of the inequalities

or negated relations that hold on bi1, . . . , b
i
k. Therefore the sequence (h

(i)
n )i of homomor-

phisms must be finite, because ω-categoricity of Γ implies that there are only finitely many
non-isomorphic homomorphic images of the structure induced by {a1, . . . , an} in Γ. Let

h
(i0)
n be the last homomorphism in this sequence. By construction, this mapping is a good

homomorphism hn for every n ≥ k.
Therefore, the constructed tree contains vertices on all levels, and König’s tree lemma

asserts that the tree contains an infinite path. Since adjacency is defined by restriction, this
path defines an infinite endomorphism h of Γ. The image h(Γ) does not contain an induced
copy of S. This contradicts the minimality property of c(Γ) formulated in Proposition 11.
Hence, every homomorphism from Γ1 to Γ2 is an embedding.

Corollary 14. Every ω-categorical τ -structure Γ has a core.

Proof. Let ∆ be the expansion of Γ by all existential positive definable relations, and let
c(∆) be the structure induced by the endomorphism c constructed in Proposition 11 for
∆. Lemma 13 shows in particular that endomorphisms of c(∆) are cores. Let Γ0 be the
τ -reduct of c(∆). Clearly, since c(∆) is a core, Γ0 must be a core as well. Because c is also
an endomorphism of Γ, we have that Γ0 is a core of Γ.

We already mentioned that the core of a finite structure is unique up to isomorphism,
As we will see now, an ω-categorical structure might have non-isomorphic cores.

Example. Consider the following ω-categorical structure Γ. Let Q be the set of rational
numbers, and let X be a disjoint countably infinite set. The domain of Γ is Q∪X, and the
signature contains two binary relation symbols < and 6=, and one unary relation symbol P .
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For two elements x, y in Γ the relation x < y holds iff x, y ∈ Q and x is a strictly smaller
number than y. The relation x 6= y holds iff x and y are distinct elements in Γ. Finally,
P (x) holds iff x > 0 holds. It is easy to verify that Γ is ω-categorical. One way to see this
is by Proposition 4, because the expansion of Γ by the unary relation N := {x ∈ Q | x ≤ 0}
is homogeneous.

The structure Γ has a model-complete core, which is unique up to isomorphism, namely
the structure ∆ := (Q+, <, 6=, P ), where Q+ is the set of all positive rational numbers,
where the interpretation of < and 6= is as before, and where P denotes the trivial unary
relation that contains all elements of the domain. The structure ∆ is indeed the image of an
endomorphism c of Γ, for instance the endomorphism that maps Q in an order-preserving
way to the set {x ∈ Q | x > 3}, and maps X bijectively onto {x ∈ Q | 0 < x ≤ 3}
in an arbitrary way. Let ∆ be the structure that is induced by the image Q+ of this
endomorphism. It is easy to verify that ∆ is a core, and hence ∆ is a core of Γ. It will
follow from Theorem 16 below that all other model-complete cores of Γ are isomorphic to
∆.

However, we claim that (V,<, 6=, P ) has other cores that are not isomorphic to ∆, and
not model-complete. For instance, let Γ′ be the substructure of Γ induced by Q+ \ (1, 2),
i.e., the set of positive rational numbers without the open interval (1, 2). Then Γ′ is the
image of an endomorphism c′ constructed similarly as above, with the only difference that
c′ maps X bijectively onto {x ∈ Q | 0 < x ≤ 1 or 2 ≤ x ≤ 3}. It can be verified easily that
the structure Γ′ is a core. To see that Γ′ is not model-complete, consider the restriction d

of the mapping c′ to the elements of Γ′. Since Γ′ is a core, the mapping d is an embedding
of Γ′ into Γ′. However, it is not an elementary embedding, since the formula ∃z. x < z < y

holds for x = d(1) and y = d(2) in Γ′, but does not hold for x = d(1) and y = d(2) in the
structure induced by d(Γ′).

We will show that every ω-categorical structure Γ is always homomorphically equivalent
to a model-complete core, which is unique up to isomorphism. For that, we first prove a
stronger result for structures that are expanded by all existential positive definable relations.

Proposition 15. Let Γ be an ω-categorical τ -structure. If Γ contains all existential positive
definable relations, then Γ is homomorphically equivalent to a homogeneous core Γc, which
is unique up to isomorphism. Moreover, Γc is finite or ω-categorical.

Proof. Let T be the set of all universal sentences that are true in the structure c(Γ) con-
structed in Proposition 11. Proposition 7 shows that there is an extension ∆ of c(Γ) that
is an existentially complete model of T . Since ∆ satisfies the same universal sentences as
c(Γ), the two structures have the same age. Because Γ is ω-categorical, and because the
age of ∆ is contained in the age of Γ, we can apply Lemma 12 to show that ∆ embeds into
Γ. Assume for simplicity of notation that ∆ is a substructure of Γ.

Let φ be an existential formula, and let t be a tuple from ∆. We claim that φ holds
on t in Γ if and only if φ holds on t in ∆. One direction is clear, because ∆ embeds into
Γ. Now, consider the restriction d of c to ∆. Because d(∆) is a substructure of c(Γ), and
c(Γ) is a substructure of ∆, d is a endomorphism of ∆. Because ∆ and c(Γ) have the same
age, Lemma 13 implies that d is an embedding. Hence, the structure induced by d(∆) is
isomorphic to ∆. The embedding d preserves the existential formula φ, and therefore φ
holds on d(t) in ∆. Because ∆ and thus also d(∆) are existentially complete models of
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T , the formula φ also holds on d(t) in the structure d(∆) (not only in ∆). Since d is an
embedding, we then know that φ holds on t in ∆.

Therefore, because the structure Γ is expanded by all existential positive relations, the
structure ∆ is also expanded by all existential positive relations. All models of Th(∆) must
have the same age as ∆ and c(Γ), and hence Lemma 13 shows that every homomorphism
between two models of Th(∆) is an embedding. By Corollary 10 there is a homogeneous
structure Γc with the same age as ∆ and c(Γ). Theorem 5 shows that this structure is
unique up to isomorphism. The structure Γc might be finite. If Γc is infinite, and since Γc

contains only finitely many k-ary relations for each k ≥ 1, Proposition 4 shows that Γc is
ω-categorical.

To conclude the proof, we have to show that Γc is homomorphically equivalent to Γ. But
this is clear since Γ homomorphically maps to c(Γ), which embeds into Γc by Lemma 12.
Lemma 12 also shows that Γc embeds into Γ, because it has a smaller age than Γ and
because Γ is ω-categorical.

We can now prove one of the main results.

Theorem 16. Every ω-categorical τ -structure Γ is homomorphically equivalent to a model-
complete core Γc, which is unique up to isomorphism. The core Γc is ω-categorical or finite.
All orbits of k-tuples in Γc are pp-definable in Γc.

Proof. Let ∆ be the expansion of Γ by all existential positive definable relations. By the
previous Proposition, ∆ has a homogeneous core ∆c, which is finite or ω-categorical. By
Proposition 4, the structure ∆c has quantifier elimination, and therefore every first-order
formula is equivalent to a quantifier-free formula (in the expanded signature of ∆ and ∆c).
Moreover, ∆c is ω-categorical. Let Γc be the τ -reduct of ∆c. It is well-known (and follows
from Theorem 3; see [25]) that Γc is ω-categorical as well.

We want to show that Γc is a model-complete core. Suppose that e is an endomorphism
of Γc. We have to show that e is an elementary embedding. Let φ be a first-order formula.
Then φ is in ∆c equivalent to a quantifier-free formula ψ. Note that e preserves existential
positive formulas, and because ∆c is a core, e preserves ψ as well. Therefore, e is elementary.

Now suppose that Γ′ is some model-complete core of Γ. We show that Γ′ is isomorphic
to Γc. In fact, we will show that ∆c and the expansion ∆′ of Γ′ by all existential positive
definable relations have the same age and are both homogeneous. Then Theorem 5 implies
that ∆c and ∆′, and hence also Γc and Γ′ are isomorphic.

Similarly as in the proof of Proposition 15 we prove that every existential formula that
holds on tuples from ∆′ in ∆ also hold in ∆′. This also shows that ∆′ is ω-categorical. To
show that ∆′ is homogeneous, by Proposition 4 it suffices to show that ∆′ has quantifier
elimination. Let φ be a first-order formula. Since Γ′ is model-complete, Proposition 6 shows
that φ is in Γ′ and therefore also in ∆′ equivalent to an existential formula. Since ∆′ is
ω-categorical and a core, we can then apply Lemma 8 to show that φ is equivalent to an
existential positive formula in ∆′. Since ∆′ contains all existential positive formulas, we
have shown that ∆′ admits quantifier elimination.

Finally, let R be an orbit R of k-tuples in the automorphism group of Γc. All k-tuples in
R induce isomorphic substructures S in ∆c. Because ∆c is homogeneous, all k-tuples in ∆c

that are isomorphic to S are contained in R. Thus, R has a definition as a conjunction ϕ of
atomic formulas. We replace all relation symbols in ϕ that are contained in the signature of
∆c but not in the signature of Γc by their existential positive definition. Then the resulting
formula can be re-written as a disjunction of primitive positive formulas. Every disjunct is
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either false or already defines R, because R is an orbit of k-tuples in Aut(Γc). Hence, the
formula is equivalent to a single disjunct, and R is pp-definable in Γc.

Corollary 17. If Γ is an ω-categorical structure that is expanded by all pp-definable re-
lations. Then Γ is homomorphically equivalent to a homogeneous core Γc (which is again
unique up to isomorphism).

Proof. Let Γc be the ω-categorical model-complete core that is homomorphically equivalent
to Γ. Theorem 16 shows that every orbit of k-tuples in the automorphism group of Γc has
a pp-definition in Γc, and the proof of Theorem 16 shows that because Γ is expanded by all
pp-definable relations, Γc contains all pp-definable relations as well. We have also seen that
in Γc, every first-order definable relation has a quantifier-free definition in the expanded
structure that contains all existential positive formulas. Every existential positive formula
is a disjunction of primitive positive formulas, and therefore the structure Γc has quantifier-
elimination as well. Proposition 4 implies that Γc is homogeneous.

We also obtain alternative characterizations of when a model-complete ω-categorical
structure is a core. A set of functions F from Γ to Γ locally generates a function g, if for
every finite subset A of Γ there is a function f ∈ F such that g(a) = f(a) for all a ∈ A (this
is a standard notion in universal algebra [33]).

Theorem 18. Let Γ be a model-complete ω-categorical structure. Then the following are
equivalent.

(1) Γ is a core.
(2) Every first-order formula is in Γ equivalent to an existential positive formula.
(3) Every endomorphism of Γ is an elementary embedding.
(4) The automorphism group of Γ locally generates the endomorphism monoid of Γ.

Proof. Every first-order definable k-ary relation R in Γ is the union of a finite number of
orbits of k-tuples of Aut(Γ). Theorem 16 shows that each of these orbits has a pp-definition.
A disjunction of primitive positive formulas can be equivalently written as an existential
positive formula, and we obtain an existential positive definition for R, showing that 1
implies 2.

Since endomorphisms clearly preserve existential positive formulas, 2 implies that every
endomorphism is elementary.

A function from Γ to Γ is in the local closure of the automorphism group of Γ if and
only if it preserves all first-order definable relations. If we assume that every endomorphism
is elementary, then the automorphism group locally generates all endomorphisms of Γ, and
therefore 3 implies 4.

To prove that 4 implies 1, assume that Γ has a strict endomorphism f , i.e., there is a tu-
ple (u1, . . . , uk) in Γ such that f(u1) = f(u2), or R(f(u1), . . . , f(uk)) and not R(u1, . . . , uk).
Clearly, such a function f cannot be locally generated by automorphisms.

7. Adding Constants to the Signature

In relational structures Γ we can use singleton relations, i.e., relations of the form
{c} for an element c from the domain of Γ, to model the concept of constants in first-
order structures [25]. One of the main results in [12] says that if Γ is a finite core, then
adding a singleton-relation does not increase the complexity of the corresponding constraint
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satisfaction problem. We show that the same holds for constraint satisfaction problems
where the template is an ω-categorical model-complete core. Note that this directly applies
to all the computational problems presented in the introduction and Sections 3 and 4.

Theorem 19. Let Γ be a model-complete ω-categorical core, and let Γ′ be the expansion of
Γ by a unary singleton relation C = {c}. If CSP(Γ) is tractable, then so is CSP(Γ′). (If
CSP(Γ′) is NP-hard, then so is CSP(Γ).)

Proof. We show how to solve CSP(Γ′) in polynomial time, under the assumption that
CSP(Γ) can be solved in polynomial time. Let S′ be an instance of CSP(Γ′). Let P be
the orbit of c in the automorphism group of Γ. By Theorem 16, P is primitive positive
definable in Γ. Thus we can assume without loss of generality that Γ and Γ′ contain the
relation P . Replace all occurrences of the relation C in S′ by the relation P . Solve the
resulting instance S of CSP(Γ); by assumption this is possible in polynomial time. If S is
not satisfiable, then in particular S′ was not satisfiable. On the other hand, if there is a
homomorphism h from S to Γ, we claim that there is a homomorphism from S′ to Γ′. Since
P is the orbit of the element c, there is an automorphism α of Γ such that hα is a solution
of the instance S′ of CSP(Γ′).

If an ω-categorical model-complete core Γ is expanded by a singleton relation, the
resulting structure Γ′ is again an ω-categorical model-complete core. The fact that ω-
categoricity is preserved by such expansions is well-known, see e.g. [25]. Suppose that Γ′ is
not a model-complete core, i.e., there is a non-elementary endomorphism e of Γ′. Then e is
also a non-elementary endomorphism of Γ, a contradiction. Hence, we can apply Theorem 19
several times, and obtain that Theorem 19 also holds for expansions by a finite number of
singleton relations.
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