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Abstract. The study of finite automata and regular languages is a privileged meeting
point of algebra and logic. Since the work of Büchi, regular languages have been classified
according to their descriptive complexity, i.e. the type of logical formalism required to
define them. The algebraic point of view on automata is an essential complement of this
classification: by providing alternative, algebraic characterizations for the classes, it often
yields the only opportunity for the design of algorithms that decide expressibility in some
logical fragment.

We survey the existing results relating the expressibility of regular languages in logical
fragments of monadic second order logic with successor with algebraic properties of their
minimal automata. In particular, we show that many of the best known results in this
area share the same underlying mechanics and rely on a very strong relation between
logical substitutions and block-products of pseudovarieties of monoids. We also explain
the impact of these connections on circuit complexity theory.

1. Introduction

Kleene’s theorem insures that finite automata and regular expressions have the same
expressive power and so we tend to forget that these two points of view on regular languages
are of a different nature: regular expressions are well suited to reflect the combinatorial
structure of a language while finite automata are first and foremost algebraic objects. It is
intuitively clear that the combinatorial properties of a regular language should somehow be
reflected in the structure of the corresponding automaton but this is difficult to formalize
without resorting to algebra.
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On one hand, the algebraic point of view on finite automata pioneered by Eilen-
berg [Eil76] has been a driving force in our understanding of regular languages: each letter
of an automaton’s alphabet defines a transformation of the set of states and one can identify
an automaton with its transition monoid, i.e. the finite monoid generated by these functions.
Any regular language L can then be canonically associated with the transition monoid of
its minimal automaton (the syntactic monoid of L) and many important classes of regular
languages defined combinatorially can be characterized by the algebraic properties of their
syntactic monoid.

On the other hand, Büchi showed in 1960 that the expressive power of monadic sec-
ond order logic with successor MSO[S] (or equivalently with order MSO[<]) was exactly
that of finite automata [Büc60]. Since then numerous results have related the expressive
power of various sublogics to well-known classes of regular languages. The most notable
example of this sort concerns languages definable by a first-order sentence using order. Mc-
Naughton and Papert showed that a regular language is definable in FO[<] if and only if it
is star-free [MP71], i.e. if and only if the language can be described by a regular expression
constructed from the letters of the alphabet, the empty set symbol, concatenation, union
and complementation.

The result of McNaughton and Papert is non-trivial but it is stating an equivalence
of two, not so different combinatorial descriptions of the class SF of star-free languages
and neither of these is of any help to decide if a given language belongs to SF . This is
precisely why the algebraic point of view on automata is so fruitful. Intuitively, the fact
that a language is star-free should translate into structural properties of the corresponding
automaton and indeed, an earlier result of Schützenberger shows that L ∈ SF if and only
if its syntactic monoid contains no non-trivial group [Sch65]. This immediately provides an
algorithm to decide definability in FO[<]. While it is fairly easy to show that a star-free
language has a group-free syntactic monoid, the converse requires a very good understanding
of the algebraic structure of these monoids.

Over the last thirty years, many of the most natural fragments of MSO[<], including
a number of temporal sublogics of LTL, have been characterized algebraically in the same
way. It seems surprising, at first glance, that so many questions about the expressivity of
logical fragments of MSO[<] have an algebraic answer but Straubing provided elements of
a meta-explanation of the phenomenon [Str02]. For the majority of results simultaneously
providing alternate logical, algebraic and combinatorial descriptions of a same class of reg-
ular languages, the greatest challenge is to establish the bridge between the combinatorial
or logical characterization and the algebraic one.

One objective of the present survey is to give an overview of the existing results in this
line of work and to provide examples illustrating the expressive power of various classes of
logical sentences. We also want to demonstrate that our understanding of the underlying
mechanics of the interaction between logic and algebra in this context has recently grown
much deeper. We have a much more systematic view today of the techniques involved in
bridging the algebraic and logical perspectives on regular languages and this seems primor-
dial if we hope to extend them to more sophisticated contexts such as the theory of regular
tree-languages.

We focus particularly on one such technique known as the block-product/substitution
principle. Substitutions are a natural logical construct: informally, a substitution replaces
the label predicates Qax of an MSO[<] sentence φ by a formula with free variable x. We
want to understand the extra expressive power afforded to a class of sentences Λ when we
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substitute the label predicates of the φ in Λ by formulas from a class Γ. Under the right
technical conditions, this logical operation can be put in correspondence with the block-
product operation on pseudovarieties, an algebraic construct tied to bilateral semidirect
products which reflects the combinatorial structure of substitutions. While this connection
is not always as robust as we would hope it to be, it is still sufficient to derive the results of
McNaughton-Papert and Schützenberger mentioned earlier, as well as results on temporal
logic [CPP93, TW98, TW02, TW04], first-order sentences augmented with modular quanti-
fiers [STT95] and sentences with a bounded number of variables [TW98, ST02, ST03, TT06].

Both logic and algebra have also contributed significantly in boolean circuit complexity.
In particular, the circuit complexity classes AC0, CC0 and ACC0 have interesting logical
and algebraic characterizations: a language L lies in AC0 if and only if it definable by
an FO sentence using arbitrary numerical predicates [GL84, Imm87] if and only if it can
be recognized by a polynomial-length program over a finite aperiodic monoid [BT88]. This
makes it possible to attack questions of circuit complexity using either the logical (e.g. [Str94,
Lib04, LMSV01, Lyn82a, Str92, RS06, KLPT06]) or the algebraic perspective (e.g. [BST90,
BS95, BS99, Bou05, GRS05, MPT91, Thé94]). Furthermore, the recent results on the
expressivity of two-variable logical sentences using order [EVW97, TW98, ST03] have found
surprising connections with regular languages which can be recognized by bounded depth
circuits that use only O(n) gates or O(n) wires [KLPT06, KPT05] and the communication
complexity of regular languages [TT05a, TT05b].

We begin by reviewing in Sections 2 and 3 the bases of the logical and algebraic approach
to the study of regular languages and introduce the block-product/substitution principle.
We then consider two types of applications of this principle in Sections 4 and 5 and finally
explore some of the connections to computational complexity in Section 6.

2. Logic on Words

We are interested in considering logical sentences describing properties of finite words
in Σ∗. Variables in these sentences refer to positions in a finite word.

Example 2.1.

Consider for instance the sentence

φ : ∃x∃y∀z


(x < y) ∧Qax ∧Qay ∧ [(x < z < y) ⇒ Qcz]


 .

We think of φ as being true on words of {a, b, c}∗ that have positions x and y each holding
the letter a so that any position in between them holds a c. We can therefore think of this
sentence as defining the regular language {a, b, c}∗ac∗a{a, b, c}∗.

There is a considerable amount of literature dealing with the expressive power of these
types of logics. Straubing’s book on the links between logic, algebra and circuit the-
ory [Str94] is certainly the reference which is closest in spirit to our discussion. Other
valuable surveys and books include [Lib04, Pin96, Pin01, Tho97].

More formally we construct formulas using variables corresponding to positions in a
finite word w ∈ Σ∗, usual existential and universal quantifiers, the boolean constants T and
F, and boolean connectives. Moreover, for every letter a ∈ Σ, we have a unary predicate
Qax (the ‘content’ or ‘label’ predicate) which over a finite word w is interpreted as ‘position
x in the word w holds the letter a’. We further allow numerical predicates from some
specified set N = {R1, . . . , Rk}: the truth value of a numerical predicate Ri(x1, . . . , xti)
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only depends on the values of the variables xi and on the length1 of the string w but not on
the actual letters in those positions and we thus formally consider Ri of arity ti as a subset
of N

ti+1.
A word structure over alphabet Σ and variable set V = {x1, . . . , xk} is a pair (w,−→p )

consisting of a word w ∈ Σ∗ and a list of pointers −→p = (p1, . . . , pk) with 1 ≤ pi ≤ |w| which
associate each variable xi ∈ V with a position pi in the string. We identify the word w with

the word structure (w,
−→
0 ). Following [TW04], we further define a pointed word to be a word

structure (w, p) with a single pointer p and a pointed language to be a set of pointed words.
Alternatively, we can view a pointed word (w, p) as a triples (u, a, v) ∈ Σ∗ × Σ × Σ∗ with
u = w1 . . . wp−1, a = wp and v = wp+1 . . . w|w|. Accordingly, we view pointed languages as
subsets of Σ∗ × Σ × Σ∗.

A simple extension of a word structure (w,−→p ) over Σ,V is a word structure (w,
−→
p′ )

over Σ, (V ∪ {xk+1}) such that xk+1 6∈ V and pi = p′i for 1 ≤ i ≤ k. We can now formally
define the semantics of our formulas in a natural way. If w = w1 . . . wt is a word and
−→p = (p1, . . . , pk) is a list of pointers to w, we have

(w,−→p ) |= Qaxi if wpi
= a;

(w,−→p ) |= Rj(xi1 , . . . , xitj ) if (pi1 , . . . , pitj , |w|) ∈ Rj ;

(w,−→p ) |= ∃xk+1(φ(xk+1)) if there exists a simple extension (w,
−→
p′ ) of (w,−→p )

such that (w,
−→
p′ ) |= φ(xk+1);

(w,−→p ) |= ∀xk+1(φ(xk+1)) if (w,
−→
p′ ) |= φ(xk+1) for all simple extensions (w,

−→
p′ ).

If φ is a sentence, i.e. a formula with no free variable, we denote as Lφ ⊆ Σ∗ the language

Lφ = {w : (w,
−→
0 ) |= φ}. Similarly, formulas naturally define a set of word structures and

it is often useful to consider the special case of formulas with a single free variable. Such a
formula defines a set of pointed words (w, p) with 1 ≤ p ≤ |w|, i.e. a pointed language. For
any formula φ having a single free variable and Φ a class of such formulas, we denote as Pφ
the pointed language Pφ = {(w, p) : (w, p) |= φ} and P(Φ) the class of all Pφ with φ ∈ Φ.

For a set of numerical predicates N , we denote as FO[N ] both the class of first-order
sentences constructed with predicates in N and, with a slight abuse of notation, the class
L(FO[N ]) of languages definable by such sentences. The expressive power of this logic is of
course highly dependent on the choice of numerical predicates used. In particular, various
results mentioned in our introduction can be combined to obtain:

Theorem 2.2. A language L is

• definable in FO[<] if and only if L is a starfree regular language [MP71];
• definable in FO[∗,+] (addition and multiplication) if and only if L lies in the boolean

circuit complexity class dlogtime-uniform AC0 [BIS90] (see Section 6);
• definable in FO with no restriction on the class of numerical predicates used if and

only if L lies in non-uniform AC0.

1 Allowing the truth value of numerical predicates to also depend on the length of w might seem non-
standard. It is equivalent to assuming that formulas have access to the constant max and since this constant
is easily definable in first-order, it would appear that this relaxed definition of numerical predicates is
unnecessary. However max cannot be defined in very weak fragments of FO or in logics using modular
quantifiers. In these cases the connection of logic to circuit complexity (see Section 6) is best preserved with
this slightly more general formulation.
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There is a considerable body of work concerning the case where the available numerical
predicates are order (¡), successor (S) or both. Of course FO[S] is contained in FO[<] =
FO[<,S] and that containment is known to be proper [Tho82]. In turn, FO[<] is clearly
contained in MSO[S] and Büchi’s theorem thus guarantees that all languages definable in
these first-order fragments are regular.

One can further augment the expressive power of first-order sentences by introduc-
ing modular quantifiers ∃imodmx φ(x) (for some m ≥ 2 and i ≤ m − 1). Intuitively
∃imodmx φ(x) holds true if property φ is true for i modulo m positions x. Formally

(w,−→p ) |= ∃imodmxk+1 (φ(xk+1)) if there exists i modulo m extensions (w,
−→
p′ )

of (w,−→p ) such that (w,
−→
p′ ) |= φ(xk+1).

The next three examples will serve to illustrate results of the later sections.

Example 2.3.

The sentence

∃0mod 2x∃y


Qax ∧ (y < x) ∧Qby ∧ [∀z ((y < z < x) ⇒ Qcz)]




holds true for words over the alphabet Σ = {a, b, c, d} in which there are an even number
of positions x holding an a and whose prefix lies in Σ∗bc∗. The sentence thus defines the
regular language

[(dc∗a ∪ c ∪ b)∗bc∗a(dc∗a ∪ c ∪ b)∗bc∗a]∗(dc∗a ∪ c ∪ b)∗.

Example 2.4.

The regular language K = (b∗ab∗a)∗bΣ∗ over the alphabet Σ = {a, b} is defined by the
sentence

∃x


Qbx ∧ ∃0mod 2y [(y < x) ∧Qay]


 .

Example 2.5.

The sentence

∃x∀y


Qax ∧ [(y < x) ⇒ ¬Qay] ∧ ∃0mod 2z [(x < z) ∧Qcz]




is true of words over the alphabet {a, b, c} such that the position x holding the first a has
a suffix containing an even number of c’s. Thus the language defined is

{b, c}∗a({a, b}∗c{a, b}∗c{a, b}∗)∗.

We denote as FO+MOD[N ] the class of first-order sentences constructed with the
content predicates and numerical predicates in N and with existential, universal and mod-
ular quantifiers. We also denote as MOD[N ], the class of sentences in which only modular
quantifiers are used. Once again Büchi’s theorem guarantees that L(FO+MOD[<]) con-
tains only regular languages because the modular quantifiers can be simulated in monadic
second order.

Definition 2.6. Let Σ be an alphabet and Φ = {φ1(x), . . . φk(x)} be a set formulas over Σ
with at most2 one free variable, say x. A Φ-substitution σ over Σ is a function mapping any
sentence ψ over the alphabet 2Φ (the power set of Φ) to a sentence σ(ψ) over the alphabet
Σ as follows. We assume without loss of generality that the set of variables used in ψ is
disjoint from the set of variables in any φi and replace each occurrence of the predicate QSy
in ψ with S ⊆ Φ by the conjunction

∧

φi(x)∈S
φi(y) ∧

∧

φi(x)6∈S
¬φi(y).

2 It might be that some of the φi contain no occurrence of the free variable x and are thus sentences.
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The following lemma formalizes the semantics of substitutions.

Lemma 2.7. Let σ be a Φ-substitution and for any w = w1 . . . wn in Σ∗ let σ−1(w) be
the word u1 . . . un over the alphabet 2Φ with ui = {φj : (w, i) |= φj}. Then w |= σ(ψ) iff
σ−1(w) |= ψ.

The proof is straightforward and is omitted [TW04, TT05b].
If Γ is a class of sentences and Λ is a class of formulas with one free variable we denote

by Γ ◦ Λ the class of sentences which are Boolean combinations of sentences in Λ and of
sentences obtained by applying to a sentence ψ of Γ a Φ-substitution for some Φ ⊆ Λ.
Substitutions provide a natural way to decompose complex sentences into simpler parts.
For instance, the class of FO[<] sentences of quantifier depth k can be decomposed as
the class of sentences of depth 1 in which label predicates are replaced with formulas of
quantifier depth k − 1.

We are most interested in the case above where Γ is a class of sentences although the
definition of Γ ◦Λ can be naturally extended to the case where Γ is a class of formulas with
one free variable. Under this more general setting the substitution operator is associative:
if Γ,Λ,Ψ are classes of formulas with at most one free variable, then Γ◦(Λ◦Ψ) = (Γ◦Λ)◦Ψ.

3. Regular Languages, Finite Monoids and the Block Product/Substitution
Principle

We give in the first half of this section a brief introduction to the algebraic theory
of regular languages which is required for the sequel. A very thorough overview of the
subject can be found in the survey of Pin [Pin97] or his earlier book [Pin86]. We also
refer the interested reader to the survey of Weil which provides a shorter, more superficial
introduction but considers more broadly the notion of algebraic recognizability for trees,
infinite words, traces, pomsets and so on [Wei04]. In the section’s second half, we state
and prove the block-product/substitution principle which underlies many of the results
presented in Sections 4 and 5.

3.1. Regular Languages, Automata and Finite Monoids.

A semigroup S is a set with a binary associative operation which we denote multiplica-
tively. A monoid M is a semigroup with a distinguished identity element 1M . In the sequel,
S and M always denote respectively a finite semigroup and a finite monoid. The set Σ+ of
finite non-empty words over Σ forms a semigroup under concatenation (the free semigroup
over Σ) while the set Σ∗ of finite words over Σ is a monoid with identity ǫ, the empty word.

We say that M divides the monoid N and write M ≺ N if M is the homomorphic image
of a submonoid of N . A class V of finite monoids forms a pseudovariety if it is closed under
finite direct product, homomorphic images and formation of submonoids. In particular, the
following classes all form pseudovarieties:

• finite monoids M;
• finite groups G;
• finite solvable groups Gsol;
• finite Abelian groups Ab;
• finite solvable monoids Msol, i.e. monoids whose subgroups are solvable.
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A monoid M is said to be aperiodic or ‘group free’ if all its subgroups are trivial and
we denote as A the pseudovariety of finite aperiodic monoids. The pseudovariety SL of
semilattices consists of finite monoids which are idempotent (x2 = x) and commutative
(xy = yx) and it is easy to see that SL ⊆ A.

An element e of M is idempotent if e2 = e. For any finite monoid, there is always an
integer ω, the exponent of M such that xω is idempotent for all x ∈M . Pseudovarieties can
often be conveniently described3 as the class of monoids satisfying a certain set of identities.
For instance, the pseudovariety of groups G is the class of monoids satisfying xωy = yxω = y
(i.e. the only idempotent is the identity element of the group) and the pseudovariety A of
aperiodics is defined by the identity xω+1 = xω.

We say that the language L ⊆ Σ∗ is recognized by M if there exists a homomorphism
ρ : Σ∗ → M and a subset F ⊆ M such that L = ρ−1(F ). A simple variant of Kleene’s
theorem states that a language is regular if and only if it can be recognized by a finite
monoid. When one chooses to consider languages as subsets of Σ+ it is more natural to
define recognition by finite semigroups and, for technical reasons, the algebraic theory of
regular languages is slightly altered. The two parallel approaches coexist but cannot be
completely reconciled despite their close relationship [Pin97]. For simplicity, we focus on
the first case.

The syntactic congruence of a language L ⊆ Σ∗ is defined by setting x ≡L y if and only
if

uxv ∈ L⇔ uyv for all u, v ∈ Σ∗.

The Myhill-Nerode theorem states that ≡L has finite index if and only if L is regular. The
syntactic monoid M(L) of L is the quotient Σ∗/ ≡L and is thus finite if and only if L is
regular. It can be shown that M(L) recognizes L and divides any monoid also recognizing
L.

Example 3.1.

Consider the language L = (ab)∗. It is easy to see that for any word u containing two
consecutive a or two consecutive b we have u 6∈ L and, moreover, xuy 6∈ L for any x, y ∈
{a, b}∗. Thus, any two such u are equivalent under the syntactic congruence and we denote
the corresponding element of the syntactic monoid as 0 since it will satisfy 0m = m0 = 0
for all monoid elements m. Simple computation shows that the syntactic monoid of L is
the six-element monoid B2 = {1, a, b, ab, ba, 0} where multiplication is specified by aba = a,
bab = b, aa = bb = 0. It is often convenient to name elements of a syntactic monoid using
words in Σ∗ that are minimal-length representatives for the different equivalence classes of
the syntactic congruence.

For u ∈ Σ∗, the right-quotient of L by u is Lu−1 = {x : xu ∈ L} and the left-quotient is
defined symmetrically. A class V of languages is a variety of languages4 if it is closed under
boolean operations, left and right quotients and under inverse homomorphisms between
free monoids (i.e. if L ∈ V and ρ : Γ∗ → Σ∗ is a homomorphism then ρ−1(L) ∈ V). The

3 In fact, every pseudovariety has a possibly infinite set of defining pseudo-identities (see e.g. [Pin97] for
a formal treatment).

4 We should note that we are bypassing a technical yet important detail in our definition of varieties of
languages. Strictly speaking, a variety of languages should not be defined as a set of languages but rather
as an operator which assigns to each finite alphabet a set of languages over that alphabet. While that
distinction is occasionally important in technical proofs, we prefer the slightly less formal description given
here since it simplifies the presentation.
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very tight relationship existing between varieties of languages and pseudovarieties of finite
monoids is the cornerstone of algebraic automata theory.

Theorem 3.2 (Variety Theorem [Eil76]). There is a natural bijection between pseudovari-
eties of finite monoids and varieties of languages: If V is a pseudovariety of finite monoids,
then the class L(V) of regular languages recognized by some monoid in V forms a language
variety.

Conversely, if V is a variety of languages then the pseudovariety of monoids V generated
by the syntactic monoids of languages in V is such that L(V) = V.

One of the main objectives of algebraic automata theory is to explicitly relate natu-
ral varieties of regular languages with their algebraic counterpart or, conversely, describe
combinatorially the variety of regular languages corresponding to a given pseudovariety of
monoids. An algebraic characterization of a variety of languages V provides a natural ap-
proach for deciding if a given regular language L belongs to V: checking if K belongs to V
is equivalent to deciding if its syntactic monoid M(K) belongs to the pseudovariety V such
that L(V) = V. The latter formulation of the problem is often easier to handle. In par-
ticular, all the pseudovarieties introduced thus far in this survey are such that determining
membership of M(K) in V amounts to checking that the monoid satisfies some finite set of
defining identities (e.g. xω+1 = xω for the pseudovariety A of aperiodics). This requires an
amount of time polynomial in |M(K)|. Although, |M(K)| is in general exponentially larger
than the size of the representation of K, the problem of testing whether K ∈ L(V) for a K
specified by an automaton or a regular expression can be shown to lie in PSPACE for all
pseudovarieties considered thus far. There are however pseudovarieties for which member-
ship is undecidable and many problems in this line of work remain open [Alm94, Pin97].

The best-known instance of an algebraic characterization of a variety of languages is
Schützenberger’s theorem:

Theorem 3.3 ([Sch65]). A regular language is star-free if and only if its syntactic monoid
is group-free, i.e. L(A) = SF .

The theorem of McNaughton and Papert [MP71], whose proof we sketch in Section 4,
further shows a language is star-free if and only if it is definable in FO[<].

Example 3.4.

A simple calculation shows that the syntactic monoid of the language (ab)∗, which we
considered in Example 3.1, has exponent 2 and satisfies x3 = x2. It is therefore aperiodic
and so there must exist a star-free expression and an FO[<] sentence defining (ab)∗. To
construct a star-free expression, it suffices to note that (ab)∗ is the set of words starting with
a, ending with b and having no consecutive a’s or consecutive b’s. Since the complement of
the empty set ∅c is simply {a, b}∗, the following is a star-free expression defining (ab)∗:

a∅c ∩ ∅cb ∩ (∅caa∅c)c ∩ (∅cbb∅c)c

The corresponding FO[<] sentence is

∀x∀y


(Qbx→ [∃z (z < x)]) ∧ (Qax→ [∃z (x < z)])∧

([((x 6= y) ∧Qax ∧Qay) ∨ ((x 6= y) ∧Qbx ∧Qby)] → (∃z [(x < z < y) ∨ (y < z < x)]))


.

The notion of recognition of a language by a monoid can naturally be extended to
pointed languages: we say that the pointed language K̇ ⊆ Σ∗ × Σ × Σ∗ is recognized by M
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if there are homomorphisms hl, hr : Σ∗ → M and a set of triples T ⊆ (M × Σ ×M) such
that

K̇ = {(w, p) :
(
hl(w1 . . . wp−1), wp, hr(wp+1 . . . w|w|)

)
∈ T}.

For a pseudovariety V we denote as P(V) the set of pointed languages recognized by a
monoid in V. Abusing our terminology, it is convenient to think of ordinary words in Σ∗

as pointed words with p = 0 and thus view L(V) as a subset of P(V). Note that P(V) is
closed under boolean operations and inverse homomorphisms.

While relating star-freeness, aperiodicity and FO-definability is far from trivial, there
are cases in which such three-way equivalences are easy to obtain and the following lemma
is particularly useful in inductive arguments. Let FO1[<] denote the class of first-order
sentences with a single quantified variable and let FOF1[<] denote the class of first-order
formulas with a single quantified variable and at most one free variable. We similarly
denote MOD1[<] and MODF1[<] the analog classes when ordinary quantifier quantifiers
are replaced with modular ones.

Recall that SL and Ab respectively denote the pseudovarieties of semilattices and
Abelian groups.

Lemma 3.5.

(1) L(SL) is the Boolean algebra generated by languages of the form Σ∗aΣ∗ where Σ
is a finite alphabet and a ∈ Σ. Furthermore L(SL) = L(FO1[<]) and P(SL) =
P(FOF1[<]).

(2) L(Ab) is the Boolean algebra generated by languages of the form {w : |w|a ≡ i
(mod m)} with i,m ∈ N. Furthermore L(Ab) = L(MOD1[<]) and P(Ab) =
P(MODF1[<]).

Proof sketch. The syntactic monoid of the language Σ∗aΣ∗ of words containing an a is
the two-element semilattice {1, 0} with multiplication given by x0 = 0x = 0. Thus, any
boolean combination of such languages can be recognized by a direct product of copies of
this semilattice.

Conversely, if M is a semilattice and ρ : Σ∗ →M is a homomorphism, then by commu-
tativity and idempotency, the value of ρ(w) only depends on the set of letters occurring in
w. Thus, if F ⊆M then ρ−1(F ) is in the boolean algebra generated by the Σ∗aΣ∗.

The language Σ∗aΣ∗ can be defined by the sentence ∃xQax and any FO1 sentence is a
boolean combination of sentences of that form and therefore L(SL) = L(FO1[<]). Similarly,
FOF1[<] formulas with free variable y and bound variable x are boolean combinations
of sentences of the form ∃x [(x ∗ y) ∧ Qax] where ∗ ∈ {<,>,=} and one can conclude
P(SL) ⊆ P(FOF1[<]).

The case of Abelian groups is handled similarly: one can show that the variety of
languages L(Ab) consists of languages L such that membership of a word w in L only
depends on the number of occurrences of each letter in w modulo some integer m.

The above lemma might give the impression that whenever V is a pseudovariety such
that the class of languages L(V) has a meaningful logical description, then the class of
pointed languages P(V) also has a meaningful (and closely related) logical description.
This is unfortunately not the case and, in fact, there are very few classes Λ of formulas
with one free variable whose expressive power can be characterized algebraically as P(V)
for some pseudovariety V.
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3.2. Block-Products and Substitutions.

Let M and N be finite monoids. To distinguish the operation of M and N , we denote
the operation of M as + and its identity element as 0, although this operation is not
necessarily commutative. A left-action of N on M is a function mapping pairs (n,m) ∈
N × M to nm ∈ M and satisfying n(m1 + m2) = nm1 + nm2, n1(n2m) = (n1n2)m,
n0 = 0 and 1m = m. Given a left-action of N on M , the semidirect product M ⋊N (with
respect to this action) is the monoid with elements in M × N and multiplication defined
as (m1, n1)(m2, n2) = (m1 + n1m2, n1n2). It can be verified that this operation is indeed
associative and that (0, 1) acts as the identity element.

Right actions are defined symmetrically and naturally lead to the notion of reverse
semidirect products. If we have both a right and a left-action of N on M that further satisfy
n1(mn2) = (n1m)n2, we define the bilateral semidirect product M ∗∗N as the monoid with
elements in M ×N and multiplication defined as (m1, n1)(m2, n2) = (m1n2 + n1m2, n1n2).
This operation is associative and (0, 1) acts as an identity for it. Semidirect products (resp.
reverse semidirect) can then be viewed as the special case of bilateral semidirect products for
which the right (resp. left) action on M is trivial. The block product of the pseudovarieties
V,W, denoted V � W is the pseudovariety generated by all bilateral semidirect products
M ∗∗N with M ∈ V, N ∈ W.

(Bilateral) semidirect products are useful to decompose finite monoids of potentially
complex structure into simpler components. For instance, it is well known that every finite
group is isomorphic to an iterated semidirect product G1 ⋊ (G2 ⋊ (. . . (Gk−1 ⋊ Gk) . . .))
where each Gi is a simple group and that a group is solvable if and only if there is such
a decomposition in which all Gi are cyclic groups of prime order. For monoids which
are not groups, the Krohn-Rhodes theorem [KR65] states that every finite monoid divides
an iterated semidirect product (bracketed as above) where every term is either a simple
group or the ‘set/reset monoid’ (or ‘flip-flop’) i.e. the three element monoid {1, s, r} with
multiplication satisfying 1x = x1 = x, xs = s and xr = r for each x. The bilateral
semidirect product allows decompositions with even simpler factors: every finite monoid
divides an iterated bilateral semidirect product of the form

M1∗∗(M2∗∗(M3∗∗(. . .Mk−1∗∗Mk)))

where each Mi is either a simple group or the two element semilattice [RT89].
Let V0 be the trivial pseudovariety (containing only the trivial monoid) and for i ≥ 0

define inductively the pseudovarieties V2i+1 = G �V2i and V2i+2 = SL �V2i+1. The last
result stated in the previous paragraph implies in particular that the pseudovariety M of all
finite monoids is the union of the Vi or, equivalently, that M is the smallest pseudovariety
W satisfying G � W = W and SL � W = W. The following theorem lists fundamental
results that similarly decompose important pseudovarieties in terms of block-products. All
results are either due to Rhodes and Tilson or can be inferred from their work [RT89].

Theorem 3.6.

(1) The pseudovariety A of aperiodic monoids is the smallest pseudovariety satisfying
SL � A = A.

(2) The pseudovariety Gsol of solvable groups is the smallest pseudovariety satisfying
Ab � Gsol = Gsol.

(3) The pseudovariety Msol of solvable monoids is the smallest pseudovariety satisfying
Ab � Msol = Msol and SL � Msol = Msol.
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The block product operation on pseudovarieties is not associative: it can be shown that
(U � V) � W ⊆ U � (V � W) but this inclusion is strict in general. The block product
is mostly used as a means of decomposing large and complex pseudovarieties into smaller,
simpler ones and the most classical applications of iterated block-products have relied on
the stronger right-to-left bracketing. Theorem 3.6 for instance states that the pseudovariety
of aperiodics is the union of all pseudovarieties of the form

SL � (SL � (. . . � (SL � SL) . . .)).

In Section 5 we show the relevance of the weaker left-to-right bracketing of iterated block-
products when analyzing the expressive power of two-variable sentences.

The languages recognized by V � W can be conveniently described in terms of lan-
guages recognized by V and W. For a monoid N ∈ W, an N -transduction τ is a function
determined by two homomorphisms hl, hr : Σ∗ → N and mapping words in Σ∗ to words in
(N × Σ ×N)∗. For a word w = w1 . . . wn ∈ Σ∗ we set

τ(w) = τ(w1)τ(w2) . . . τ(wn)

with
τ(wi) = (hl(w1 . . . wi−1), wi, hr(wi+1 . . . wn)) .

For a language K ⊆ (N × Σ ×N)∗, let τ−1(K) = {w ∈ Σ∗ : τ(w) ∈ K}.

Theorem 3.7. [Str94, Pin97] A regular language lies in L(V�W) iff it is the Boolean com-
bination of languages in L(W) and languages τ−1(K) for some K ∈ V and N -transduction
τ with N ∈ W.

Proof sketch. The proof is too technical to present in full detail but we give a brief
overview of the main idea for completeness. The argument relies on the very definition of
multiplication in the bilateral semidirect product M ∗∗N . Recall that (m1, n1)(m2, n2) =
(m1n2 + n1m2, n1n2) and so, by extension, if (m1, n1), (m2, n2), . . . , (mt, nt) are elements
of M ∗∗N then their product (m1, n1) · · · · · (mt, nt) in M ∗∗N is given by

(m1n2n3 . . . nt + n1m2n3 . . . nt + . . . + n1 . . . nt−2mt−1nt + n1 . . . nt−1mt, n1 . . . nt).

Fix an element in (m,n) ∈ M ∗∗N and consider the language E(m,n) ⊆ (M ∗∗N)∗

consisting of finite sequences (m1, n1), . . . , (mt, nt) of elements of M∗∗N that multiply out
to (m,n). Similarly, let E(m,∗) be the union over all n of all E(m,n) and let E(∗,n) be the union
over all m of the E(m,n): we thus have E(m,n) = E(m,∗)∩E(∗,n). Finally denote by Em ⊆M∗

the set of words of M∗ that multiply out to m in M . Let τ be the N -transduction which
maps w ∈ (M ∗∗N)∗ to τ(w) = τ(w1) . . . τ(w|w|) with τ(wi) = (n1 . . . ni−1,mi, ni+1 . . . nt).
If we identify these triples with the element n1 . . . ni−1mini+1 . . . nt of M then by the above
expression we obtain immediately that E(m,∗) is τ−1(Em). Note that if M ∈ V then Em ∈
L(V). On the other hand it is easy to see that if N ∈ W then E(∗,n) ∈ L(W). This argument
in fact suffices to establish that every language in L(V � W) is a Boolean combination of
languages in L(W) and languages τ−1(K) for some K ∈ V and N -transduction τ with
N ∈ W.

The converse statement, while more involved technically, proceeds along the same lines.
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There is a striking similarity between the notion of transduction and that of substi-
tution discussed in the previous section. We formalize this crucial correspondence in the
next lemma which we refer too as the block-product/substitution principle. Thérien and
Wilke [TW04] were the first to use this specific terminology although it is fair to say that
the idea was implicitly present in the work of Straubing [Str94]. In [TW04], the lemma is
stated for temporal logics. The formulation given here is taken from [TT05b].

Lemma 3.8 (Block-product/subsitution principle).
Let Γ be a class of FO+MOD[<] sentences and Λ a class of FO+MOD[<] formulas with
one free variable. If V,W are pseudovarieties of finite monoids such that L(Γ) = L(V) and
P(Λ) = P(W), then L(Γ ◦ Λ) = L(V � W).

Proof. Since L(V � W) is closed under Boolean combinations, the left-to-right containment
follows if we show that for any ψ ∈ Γ and any Λ-substitution σ we have Lσ(ψ) ∈ L(V � W).
Let w be some word in Σ∗ and Φ = {φ1, . . . φk} be the formulas used by σ. Since
P(W) = P(Λ), the pointed languages Pφj

: {(w, i) : (w, i) |= φj} can be recognized by
monoids N1, . . . , Nk in W and N = N1 × . . . ×Nk recognizes any Boolean combination of
them. This implies the existence of two morphisms hl, hr : Σ∗ → N such that the mem-
bership of a pointed word (w, i) in each Nj can be determined by the value of the triple
(hl(w1 . . . wi−1), wi, hr(wi+1 . . . wn)). Using these two homomorphisms, we therefore obtain
an N -transduction τ such that for each i, the value of τ(wi) is sufficient to determine the
set {φj : (w, i) |= φj}. Since we assume that Lψ is recognized by a monoid M in V, we
get that Lσ(ψ) = τ−1(K) for some K ⊆ (N × Σ × N)∗ also recognized by M . Hence, by
Theorem 3.7, Lσ(ψ) ∈ L(V � W).

For the right-to-left containment, we need to show that any language of L(V � W) can
be described by a sentence of Γ ◦Λ and we proceed similarly. If τ is an N -transduction for
some N ∈ W then for any triple (n1, a, n2) ∈ N × Σ ×N , the pointed language

T(n1,a,n2) = {(w, i) : τ(wi) = (n1, a, n2)}

is in P(W) and is thus definable by some formula φ(n1,a,n2) in P(Λ). Consider the substitu-
tion σ defined by these φn1,a,n2

and note that for any w ∈ Σ∗ and any position 1 ≤ i ≤ |w|,
exactly one of the φ(n1,a,n2) is true at i. Hence σ−1(wi) = {φ(n1,a,n2)|(w, i) |= φ(n1,a,n2)} is
always a singleton and the range of possible values can be identified with the set N×Σ×N .
Any language K ⊆ (N × Σ × N)∗ in L(V) is definable by some sentence ψK ∈ Γ. Now
the set of words such that τ(w) ∈ K is defined by the sentence obtained from ψK by a σ
substitution.

Many results giving algebraic characterizations of regular languages defined in a frag-
ment Λ of FO+MOD[<] more or less explicitly rely on some form of this lemma. It is
often rather easy to characterize algebraically the expressivity of very weak fragments of
FO+MOD[<] (e.g. Lemma 3.5). Furthermore, sufficiently robust classes Λ can typically be
decomposed through iterated substitutions of these weak fragments. Applying the block-
product/substitution principle we are thus able to characterize the expressive power of Λ
by analyzing an iterated block-product.

For a number of reasons, however, this general paradigm cannot be applied too generally.

• Straubing showed that the class of regular languages definable in the most natural
fragments of MSO[<] (in particular, fragments of first-order defined by quantifier
type, quantifier alternation, quantifier depth, number of variables and so on) are all
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Clm-varieties of languages (see [Str02] for a formal definition) and are varieties of lan-
guages in the sense we defined earlier when we consider subclasses of FO+MOD[<].
Thus the expressive power of these fragments have some algebraic characterization.
Preliminary investigations unfortunately indicate that classes of pointed languages
definable in similar fragments only rarely correspond to P(V) for some pseudovari-
ety V, as we noted after Lemma 3.5. This state of affairs limits the possible range
of applications of the block-product/substitution principle.

• We mentioned in Section 2 that the substitution operator is associative and the
block-product/subsitution principle might lead one to find this fact in apparent
contradiction with the non-associativity of the block-product. If Γ is a class of
sentences and Λ,Φ are classes of formulas with at most one free variable, then indeed
we have Γ ◦ (Λ ◦ Φ) = (Γ ◦ Λ) ◦ Φ. Suppose that U,V,W are pseudovarieties such
that L(Γ) = L(U), P(Λ) = P(V) and P(Φ) = P(W) then the principle insures us
first that L(Γ◦Λ) = L(U � V) and, with a second application, that L(Γ◦ (Λ◦Φ)) =
L((U � V) � W). However, we cannot in general infer P(Λ ◦ Φ) = P(V � W).

4. Classical Results from the Block-Product/Subsitution Principle

4.1. Quantifier Depth.

Let us first see how the block-product/subsitution principle can provide a proof of
McNaughton and Papert’s characterization of FO[<] and Straubing, Thérien and Thomas’
characterization of FO+MOD[<]. For a sentence ψ, and a variable x not occurring in
ψ, let ψ[<x] and ψ[>x] respectively denote the formulas obtained from ψ by restricting the
scope of any quantified variable of ψ to values respectively strictly less than x and strictly
greater than x. We rely on the following lemma.

Lemma 4.1 ([STT95]). Any FO+MOD[<] formula φ(x) with a single free variable x can
be rewritten as a boolean combination of formulas of the form Qax∧ ρ[<x] ∧ χ[>x] such that
the formulas ρ and χ have the same quantifier signature as φ i.e. their quantifier depths
are equal and the order in which different types of quantifier types are nested (existential,
universal, mod m counting) are the same.

The proof is not conceptually difficult. By renaming variables we can assume that
φ(x) does not contain any bound occurrence of x and this is the starting point of the
construction. This rather trivial observation does not necessarily hold, however, when the
sentences considered are only allowed a bounded number of variables as in Section 5.

Let us first focus on the problem of definability in FO[<]. Let SDk and FDk respec-
tively denote the class of FO[<] sentences of quantifier depth k and FO[<] formulas of
quantifier depth k with at most one free variable. By definition of quantifier depth, we have
SDk+1 = SD1 ◦ FDk.

Theorem 4.2. Let V1 = SL and Vk+1 = SL � Vk. A regular language L can be defined
by an FO[<] sentence of quantifier depth k if and only if its syntactic monoid M lies in
Vk. In other words, L(SDk) = L(Vk).

Proof sketch. We argue by induction on k. The base case is provided by Lemma 3.5.
For the induction step we use the fact that SDk+1 = SD1 ◦ FDk. Since we know that
L(SD1) = L(SL) our inductive claim follows from the block-product/substitution principle
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if we can show that P(FDk) = P(Vk). This is precisely what Lemma 4.1 allows: any
formula φ(x) ∈ FDk can be rewritten as a boolean combination of formulas of the form
Qax ∧ ρ[<x] ∧ χ[>x] where ρ and χ are sentences of SDk.

Membership of M in any individual Vk is trivially decidable because these pseudovari-
eties are effectively locally finite [Pin97]: for each t, k we can effectively construct a monoid
Mt,k such that any monoid M ∈ Vk with at most t generators is a divisor of Mt,k. On the
logical side, this is essentially equivalent to noting that over a given alphabet there are only
finitely many equivalent first-order sentences of any fixed quantifier depth. The decidability
of individual Vk is in itself of moderate interest since one is typically not so interested in
determining whether L is definable in some specific quantifier depth but rather whether L is
FO[<]-definable at all. In algebraic terms, we are more interested in deciding membership
of M in the union of the Vk than in some specific Vk. By part (1) of Theorem 3.6 we know
that

⋃
Vk = A and this provides the missing link to obtain the theorem of McNaughton

and Papert which we combine with Schützenberger’s Theorem to obtain:

Corollary 4.3. L(FO[<]) = L(A) = SF .

Thus, deciding if a languageK is FO[<] definable is equivalent to testing ifK’s syntactic
monoid is aperiodic. The latter problem is clearly decidable and is in fact PSPACE-complete
when K is specified by a finite automaton [CH91].

The same proof methods also yield an algebraic characterization of languages definable
in FO+MOD[<] and MOD[<].

Theorem 4.4. A language L is FO+MOD[<]-definable if and only if its syntactic monoid
M is solvable. Furthermore, L is MOD[<]-definable if and only if M is a solvable group.

Proof sketch. By part (2) of Lemma 3.5 we have L(Ab) = L(MOD1[<]) as well as
P(Ab) = P(MODF1[<]). Using the inductive argument of Theorem 4.2 we get that the
class of languages definable in MOD[<] (resp. FO+MOD[<]) are those with syntactic
monoids in the smallest pseudovariety V satisfying Ab � V = V (resp. Ab � V = V and
SL � V = V). Theorem 3.6 completes the argument.

The theorem immediately provides an algorithm to decide expressibility in these two
logics. The result can be specialized to characterize the expressive power of FO+MOD[<]
and of MOD[<] sentences when the modular quantifiers are restricted to specific mod-
uli [BIS90, Str94, STT95].

4.2. Quantifier Alternation.

Quantifier depth is only one of many possible parameterizations of languages definable
in FO[<]. In particular it is natural to consider the hierarchy of first-order sentences
defined by quantifier alternation. The block-product/substitution principle seems to be
of no use in that case but the question can nevertheless be studied with algebraic and
combinatorial perspectives. There is a natural parametrization of star-free languages in
terms of concatenation depth. The Straubing-Thérien hierarchy is defined inductively as
follows: a language over Σ∗ has depth 0 if and only if it is ∅ or Σ∗. Level k + 1/2 of
the hierarchy consists of unions of languages of the form L0a1L1a2 . . . atLt where the ai
are letters of Σ and the Li’s are languages of depth k. Finally the (k + 1)st level of the
hierarchy is the boolean closure of the level k + 1/2. This hierarchy is closely related
to the Brzozowski-Cohen or dot-depth hierarchy [CB71] (the precise correspondence was
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established by Straubing [Str85, Pin97]). The Straubing-Thérien hierarchy is known to
be infinite and the union of all its levels clearly corresponds to the class SF of star-free
languages.

As usual, let Σk[<] and Πk[<] denote the subclasses of FO[<] sentences defined by
quantifier alternation.

Theorem 4.5 ([Tho82, PP86]). A language L is definable in Σk[<] if and only if L belongs
to level k + 1/2 of the Straubing-Thérien hierarchy.

In fact, the original result of Thomas [Tho82] relates the levels of the Brzozowski-Cohen
dot-depth hierarchy with definability in Σk[<,S] but the argument can be easily be adapted
to obtain the theorem just stated [PP86]. The ‘if’ part of the theorem is immediate from the
definition of the Straubing-Thérien hierarchy. Thomas’ argument for the second half of the
theorem does not involve any algebra and relies instead on Ehrenfeucht-Fräıssé games. In
particular it provides a way to relate FO[<]-definability and star-freeness without resorting
to algebra (this is also true of [MP71]).

It is not hard to show that the kth levels of the Straubing-Thérien hierarchy are closed
under inverse homomorphic images, left and right quotients, union and complementation
and thus form varieties of languages. The variety theorem therefore guarantees that these
classes correspond to some pseudovariety of finite monoids. Note in contrast that the k+1/2
levels do not form varieties of languages since they are not closed under complementation.
They still are closed under inverse homomorphic images, quotients, union and intersection
and therefore form what are known as positive varieties of languages. These can also be
analyzed from an algebraic perspective using ordered syntactic monoids and pseudovarieties
of ordered monoids [Pin86, Pin97]. The decidability of levels 1/2 and 1 of the Straubing-
Thérien hierarchy follow from Simon’s theorem on piecewise-testable languages [Sim75] and
later refinements [Pin95, Pin97]. Level 3/2 is also decidable but considerable work is needed
to establish this deep fact [PW97] (see [GS00] for an independent proof of the decidability
of level 3/2 of the dot-depth hierarchy) and the decidability of level 2 is one of the most
important open problems in algebraic automata theory [GS01, Pin97, PS81, PW97, PW01,
Str88, SW92, Wei89].

There is in fact a general lesson to be learned from Theorem 4.5. We argued in the
first half of this section that when Φ is a class of sentences and V is a pseudovariety such
that L(Φ) = L(V) then the class Γ of sentences which are boolean combinations of sen-
tences of the form ∃x [Qax ∧ ψ[<x] ∧ χ[>x]] with ψ,χ ∈ Φ is such that L(Γ) = L(SL � V).
Clearly, the languages in L(Γ) are boolean combinations of languages of the form L1aL2

with L1, L2 ∈ L(Φ). These facts provide us with a bridge linking, under the correct tech-
nical assumptions, the logical operation of adding an extra existential quantifier, the al-
gebraic operation of forming a block-product SL � V and the combinatorial operation of
concatenation of two languages. The same idea can be extended to obtain combinato-
rial and algebraic counterparts to the addition of a whole block of existential quantifiers
∃x1 . . . ∃xk φ(x1, . . . , xk) on the logical side.

For a variety of languages V, we define Pol(V) to be the class5 of languages which are
unions of languages of the form L0a1L1 . . . akLk for Li ∈ V. One can put in correspondence
the logical operation of adding a block of existential quantification with the combinatorial
operator of polynomial closure Pol(V) on varieties of languages. In other words, under some

5 Note that in general Pol(V) is not a variety of languages because it need not be closed under complement.
It does however form a positive variety in the sense of [Pin86, Pin97]



16 P. TESSON AND D. THÉRIEN

technical conditions, one can show that if Φ is a class of sentences and V is a language
variety such that L(Φ) = V then a language K belongs to Pol(V) if and only if it can be
defined as a positive boolean combination of sentences of the form

∃x1 . . . ∃xk [(x1 < . . . < xk) ∧Qa1x1 ∧ . . . ∧Qak
xk ∧ ψ

0
[<x1]

∧ ψ1
[>x1,<x2]

∧ . . . ∧ ψk[>xk]]

where each ψj is a formula in Φ and where the subscript ψj
[>xj ,<xj+1]

is the formula obtained

from ψj by restricting the quantified variables to lie between xj and xj+1.
In turn the operator Pol(V) on varieties of languages is linked to an algebraic operation

on pseudovarieties of monoids defined in terms of so-called Mal’cev products [PW97]. Sim-
ilarly, the addition of a block of modular quantifiers is related to the closure of a variety of
languages under products with counters which can also be described algebraically through
Mal’cev products [Wei92].

4.3. Sentences with Regular Predicates.

The numerical predicate successor (S) is definable in FO[<] and so the expressive power
of FO[<,S] (resp. FO+MOD[<,S]) is exactly that of FO[<] (resp. FO+MOD[<]).

The cases of MOD[<,S] and of the different Σk[<,S], however, are more subtle: the
algebraic characterization of languages definable in these fragments [Str94, STT95] would
require the introduction of the notions of syntactic semigroup, semigroup pseudovarieties
and +–varieties of languages which we chose to omit. Still, the fundamental tools of the
analysis are conceptually very similar to the ones we presented in this section.

If successor is the only available numerical predicate, then the expressive power of
first-order sentences is dramatically reduced. Thomas and later Straubing gave combinato-
rial and algebraic descriptions (the latter, again, in terms of syntactic semigroups) of the
languages definable in FO[S] and showed that these form a strict subclass of the star-free
regular languages [Str94, Tho82, Tho97]. The work of Thérien and Weiss [TW85] establishes
the decidability of this class. The cases MOD[S] and FO+MOD[S] are also investigated
in Chapter VI of Straubing’s book [Str94].

The extra expressive power afforded by the unary predicate ≡i,m x (which is true at x
if x ≡ i (mod m)) has also been considered [CPS06, Str02]. More generally, a numerical
predicate R ⊆ N

t is said to be regular if it is definable in FO+MOD[<]. Equivalently, R
is regular if it is definable in FO[<, {≡i,m}] (see [Pél92]) and the terminology comes from
yet another equivalent definition of regular predicates using finite automata [Str94]. Let
Reg denote the class of regular numerical predicates: it follows from our definition that
FO+MOD[Reg] ⊆ MSO[<] so this class consists only of regular languages and in fact
regular predicates form the largest class of numerical predicates with this property [Pél92].
By definition, FO+MOD[Reg] = FO+MOD[<] and the expressive power of the fragments
FO[Reg], MOD[Reg] (among others) can be characterized algebraically [BCST92, STT93,
Str94, Pél92].

5. Two-Variable Sentences and Temporal Logic

In the previous section, the application of the block-product/substitution principle was
particularly fruitful because of the decomposition of the pseudovarieties A,Gsol,Msol in
terms of iterated block products of semilattices and Abelian groups (Theorem 3.6). As
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we noted these iterated block products use the strong, right-to-left bracketing whereas the
present section relies on decompositions using the weaker left-to-right bracketing.

5.1. Sentences with a Bounded Number of Variables.

It is common practice to construct logical sentences in such a way that any subformula
φ(x) with a free variable x never contains an occurrence of x which is bound by a quantifier.
This certainly avoids possible confusions although it is quite possible to construct sentences
that do not obey this rule and still get unambiguous semantics by interpreting a variable
as bound by the previous quantifier6. We illustrate this in the following two examples:

Example 5.1.

The three variable sentence of Example 2.5:

∃x∀y


Qax ∧ [(y < x) ⇒ ¬Qay] ∧ ∃0mod 2z [(x < z) ∧Qcz]




can clearly be rewritten as the two-variable sentence

∃x∀y


Qax ∧ [(y < x) ⇒ ¬Qay] ∧ ∃0mod 2y [(x < y) ∧Qcy]


.

In many cases, the rewriting is not as trivial.

Example 5.2.

We claim that the following FO[<] sentence can also be rewritten using only two variables.

∃x∀y∃z


Qax ∧ [(x < y) ⇒ ¬Qay] ∧Qdz ∧ (x < z) ∧ [(x < y < z) ⇒ Qcy]


.

This sentence is true for words over Σ = {a, b, c, d} in which there exists a position x that
holds the last occurrence of a and whose suffix begins with some c’s (possibly none) followed
by a d. Thus the sentence defines the language Σ∗ac∗d{b, c, d}∗.

We claim that the following two-variable sentence defines the very same language.

∃x


Qax ∧ [∀y ((x < y) ⇒ ¬Qay)]∧

∃y [(x < y) ∧Qdy ∧ ∀x [((x < y) ∧ ¬Qcx) ⇒ (∃y [(x ≤ y) ∧Qay])]]


.

The first part of this second sentence also identifies x as the location of the last a. To
understand how the rest of the sentence imposes the condition on the suffix of this position,
it is more convenient to look first at the meaning of the most deeply nested subformulas
and work back towards the outermost quantifiers: the most deeply nested subformula

φ(x) : ∃y [(x ≤ y) ∧Qay)]

with free variable x is true at position x if there is an a occurring at x or a later position.
Now,

ψ(y) : ∀x [((x < y) ∧ ¬Qcx) ⇒ (∃y [(x ≤ y) ∧Qay])]

which has y as a free variable is true at position y if all positions x before y that do not
hold a c satisfy the property φ(x). Finally,

η(x) : ∃y [(x < y) ∧Qdy ∧ ∀x [((x < y) ∧ ¬Qcx) ⇒ (∃y [(x ≤ y) ∧Qay])]]

checks that there is a y > x holding d and satisfying ψ(y). Putting it all together, we see
that if x holds the last a then it satisfies η(x) iff its suffix lies in c∗d{b, c, d}∗. Indeed, any

6 A more formal discussion is given in [ST03]
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y occurring after the last a satisfies ψ(y) if and only if all positions between that last a and
y hold a c.

We denote as FOk[N ], MODk[N ] and FO+MODk[N ] the different classes of first-
order sentences constructed with at most k distinct variables.

5.1.1. The First-Order Case.
Kamp showed that a language is starfree if and only if it can be defined in LTL (linear

temporal logic) [Kam68]. We formally describe this logic in the next subsection and show
how an LTL formula can easily be translated into an equivalent FO3[<] sentence. Thus

Theorem 5.3. L(FO[<]) = L(FO3[<]) = L(LTL) = L(A) = SF

Lemma 3.5 provides us with a characterization of the expressive power of FO1[<]. The
case of two-variable sentences was first studied by Etessami, Vardi and Wilke who showed
that a language is definable in FO2[<] if and only if it can be defined in unary temporal
logic, i.e. by an LTL sentence using only unary temporal operators [EVW02]. The problem
of deciding whether a language was definable in this logic was later settled through the
algebraic characterization of this class, given by Thérien and Wilke [TW98].

Let us quickly review the mechanics of our proofs in Section 4. We decompose sentences
of quantifier depth k+ 1 as images of sentences of depth 1 under a substitution of formulas
of quantifier depth k. Since by Lemma 4.1 any formula φ(x) of quantifier depth k can be
written as boolean combinations of formulas of the form Qax∧ρ[<x]∧χ[>x] we can conclude
that the pointed languages definable by such formulas are exactly the pointed languages in
P(Vk) and this makes our inductive proof possible.

In the case of two-variable sentences, we cannot hope to find an analog of Lemma 4.1: if
ρ is a sentence using only two variables x, y it is not possible to construct the relativization
ρ[<x] without introducing new variables. To circumvent this problem we choose to decom-
pose two-variable sentences of depth k + 1 as the images of sentences of depth k under a
substitution of formulas of quantifier depth 1.

When considering substitutions in the two-variable context, we need to worry about
preserving the two-variable property. In other words, if Λ is a class of two-variable sentences
and Γ is a class of two variable formulas with at most one free variable, we denote as Λ◦Γ the
class of sentences which are boolean combinations of sentences in Γ and sentences obtained
from a Λ sentence by replacing each occurrence of a predicate Qax (resp. Qay) by a formula
φa(x) of Λ (resp. φa(y)). The block-product/substitution principle still holds true under
this restricted notion of substitutions [TT05b].

While we analyzed FO[<] sentences by starting from the outermost quantifiers it is
much more convenient to begin our study of a two-variable FO2[<] sentence φ by looking
at an innermost quantifier. Indeed, since φ uses only two variables, its most deeply nested
subformula containing a quantifier is always of the form ∃y ψ(x, y) or ∃x ψ(x, y), where
ψ(x, y) is quantifier-free. We therefore isolate the FOF1[<] subformulas of φ which are
boolean combinations of formulas of the form ∃y [(x ∗ y) ∧ Qay] for ∗ ∈ {<,>,=} and
formulas of this form with the roles of x and y reversed.

Let Q2,k denote the class of FO2[<] sentences of quantifier depth at most k. From the
observations of the previous paragraph we have Q2,k+1 = Q2,k ◦FOF1[<] and one obtains

Lemma 5.4. Let W1 = SL and Wi+1 = Wi �SL for each i ≥ 1. Then for each k ≥ 1 we
have L(Wk) = L(Q2,k).
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Proof. The proof is a straightforward induction. The base case

L(W1) = L(SL) = L(FO1[<]) = L(Q2,1)

is given by Lemma 3.5.
For the induction step, assume L(Wk) = L(Q2,k). We know by Lemma 3.5 that

P(SL) = P(FOF1[<]) and by the block-product/substitution principle

L(Q2,k+1) = L(Q2,k ◦FOF1[<]) = L(Wk � SL) = L(Wk+1).

Thus, a language L is definable by an FO2[<] sentence if and only if its syntactic
monoid M belongs to one of the pseudovarieties

Wk = (. . . ((SL � SL) � SL) � . . .SL
︸ ︷︷ ︸

k times

).

Note that this iterated block product uses the weaker left-to-right bracketing. The union
of the Wk is the smallest pseudovariety W satisfying W � SL = W. Let DA denote the
pseudovariety of monoids satisfying (xy)ωy(xy)ω = (xy)ω.

Theorem 5.5 ([ST02]). The pseudovariety DA is the smallest satisfying DA �SL = DA.

Combining this result with Lemma 5.4 we get the following theorem of Thérien and
Wilke [TW98]:

Corollary 5.6. L(FO2[<]) = L(DA).

This immediately provides an algorithm for deciding if a regular language is definable by
an FO2[<] sentence because the pseudovariety DA is decidable. This pseudovariety admits
a number of interesting characterizations [TT02] and, in particular, the regular languages
whose syntactic monoids lie in DA have a nice combinatorial description. In fact, the origi-
nal proof of Corollary 5.6 relied upon this characterization rather than on the decomposition
of DA in terms of weakly iterated block products. For regular languages L0, . . . , Lk ⊆ Σ∗

and letters a1, . . . , ak ∈ Σ, we say that the concatenation L = L0a1L1 . . . akLk is unambigu-
ous if for each w ∈ L there exists a unique factorization of w as w = w0a1w1 . . . akwk with
wi ∈ Li.

Theorem 5.7 ([Sch76]). A language L ⊆ Σ∗ has its syntactic monoid in DA if and only if
L is the disjoint union of unambiguous concatenations of the form Σ∗

0a1Σ
∗
1 . . . akΣ

∗
k, where

ai ∈ Σ and Σi ⊆ Σ.

Furthermore, Pin and Weil show that L lies in L(DA) if and only if both L and its
complement lie in the second level of the Straubing-Thérien hierarchy. Thus, L is definable
in FO2[<] if and only if it is definable in both Σ2[<] and in Π2[<].

Theorem 5.8 ([TW98]). FO2[<] = Σ2[<] ∩ Π2[<].

Example 5.9.

In Example 5.2, we gave two first-order sentences defining the language L = Σ∗ac∗d{b, c, d}∗,
the second of which was FO2[<]. Note first that this concatenation is unambiguous: if a
word w belongs to L then there is a unique factorization w = w0aw1dw2 such that w1 ∈ c∗

and w2 ∈ {b, c, d}∗ because w1 must start right after the last occurrence of the letter a in
w and must end at the first occurrence of d after this a. Hence, the syntactic monoid of L
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lies in DA. We can also define L using the following Σ2[<] sentence which simply reflects
the structure of the regular expression for L:

∃x∃y∀z


(x < y) ∧Qax ∧Qdy ∧ [(x < z < y) → Qcz] ∧ [(z > y) → (Qbz ∨Qcz ∨Qdz)]




But the following Π2[<] sentence also defines L:

∀x∀y∀z∃s∃t∃u


Qat ∧Qdu∧

[((x < y) ∧Qax ∧Qdy) → ([(x < z < y) → Qcz] ∨ ((x < s) ∧Qas) ∨ ((x < s < y) ∧Qds))]




Indeed, this sentence relies on the fact that a word belongs to L if it contains at least one a,
contains at least one d and is such that for any position x holding a and any later y holding
d either all positions between x and y hold c or there exists an a occurring later than x or
a d occurring between x and y.

Example 5.10.

We gave in Example 2.1 a Σ2[<] sentence defining the language K = {a, b, c}∗ac∗a{a, b, c}∗.
Elementary computations can show that the syntactic monoid U of K consists of the six
elements {1, a, b, ab, ba, 0} with multiplication specified7 by aa = 0, bb = b, aba = a, bab = b
and 0u = u0 = 0 for all u ∈ U . In particular, ba is idempotent and if x = b and y = a, we
have

(ba)ωa(ba)ω = baaba = 0 6= (ba)ω.

Thus U does not belong to DA and K cannot be defined by a Π2[<] sentence or by an
FO2[<] sentence.

5.1.2. Two-Variable Sentences with Modular Quantifiers.
To characterize the expressive power of MOD2[<] and FO+MOD2[<] sentences, we

can precisely follow the proof paradigm used in the FO2[<] case above. Since we have
L(MOD1[<]) = L(Ab) and P(MOD1[<]) = P(Ab) we are naturally led to consider the
smallest pseudovariety V such that V �Ab = V (for the MOD2[<] case) and the smallest
pseudovariety W such that W�Ab = W and W�SL = W (for the FO+MOD2[<] case).

Theorem 5.11 ([ST02]). The pseudovariety Gsol is the smallest pseudovariety satisfying
Gsol � Ab = Gsol.

The pseudovariety DA�Gsol is the smallest pseudovariety satisfying (DA�Gsol)�Ab =
DA � Gsol and (DA � Gsol) � SL = DA � Gsol.

This theorem yields

Corollary 5.12 ([ST03]). A language L is definable in FO+MOD2[<] if and only if its
syntactic monoid M(L) lies in DA � Gsol and is furthermore definable in MOD2[<] if
M(L) is a solvable group.

7 Note that despite the similarity, the monoid U is not isomorphic to the syntactic monoid B2 of (ab)∗

because bb = b in U and bb = 0 in B2.



LOGIC MEETS ALGEBRA: THE CASE OF REGULAR LANGUAGES ∗ 21

Let us denote as Σ2 ◦ MODF[<] the class of FO+MOD[<] sentences which, as the
terminology suggests, are positive8 boolean combinations of sentences obtained by applying
to a Σ2[<] sentence a substitution using formulas containing only modular quantifiers. We
define Π2 ◦ MODF[<] similarly. Straubing and Thérien obtained the following analog of
Theorem 5.8:

Theorem 5.13 ([ST03]). (Σ2 ◦ MODF[<]) ∩ (Π2 ◦ MODF[<]) = FO+MOD2[<].

Although Corollary 5.12 gives an exact algebraic characterization of FO+MOD2[<],
it does not provide an effective way of testing if a given regular language is definable in
this logic because the pseudovariety DA � Gsol is not known to be decidable. We have
DA � Gsol ⊆ (DA � G) ∩ Msol and the latter two pseudovarieties are decidable but the
containment is strict. Straubing and Thérien show that DA � Gsol is decidable if and
only if the smaller pseudovariety SL � Gsol is decidable [ST03]. The latter question is an
outstanding open problem in combinatorial group theory with deep implications [MSW01].

Example 5.14.

Let us once again consider the language L = (ab)∗. Recall that L’s syntactic monoid is
the six element monoid B2 = {1, a, b, ab, ba, 0} whose multiplication is specified by aba = a,
bab = b, aa = 0, bb = 0 and x0 = 0x = 0 for all x ∈ B2. We mentioned that B2 is aperiodic
and gave an FO[<] sentence defining L. However, in B2 we have (ab)ωb(ab)ω = 0 6= (ab)ω

and so B2 6∈ DA. Hence, L is not definable in FO2[<]. On the other hand one can show that
B2 belongs to the pseudovariety DA �Gsol. While we could argue for this fact in algebraic
terms, it is sufficient to show that the language L can be defined by an FO+MOD2[<]
sentence. The language (ab)∗ consists of words of even length with a on every odd position
and b on every even position so it is defined by the two-variable sentence

(∃0mod 2x T) ∧ ∀x [(Qax→ ∃0mod 2y (y < x)) ∧ (Qbx→ ∃1mod 2y (y < x))].

This sentence is in fact Π1 ◦MODF1[<].

In particular this example proves that (DA � Gsol) ∩ A 6= DA and so, somewhat
counter-intuitively, there are star-free languages, i.e. FO[<] definable languages, which are
not definable in FO2[<] but are definable in FO+MOD2[<]. On the other hand the
syntactic monoid U presented in Example 5.10 is the smallest aperiodic monoid that does
not lie in DA � Gsol and so Σ∗ac∗aΣ∗ is definable in FO[<] but not in FO+MOD2[<].

One can extend Corollary 5.12 to show that the pointed languages definable by a
MODF2[<] formula are exactly the pointed languages recognized by solvable groups. This
yields an interesting corollary: any two-variable FO+MOD2[<] sentence is equivalent to
a two-variable sentence in which no existential or universal quantifier appears in the scope
of a modular quantifier9. Indeed this class of sentences is just FO2[<] ◦ MODF2[<] and,
once again, the block-product/substitution principle yields

L(FO2[<] ◦ MODF2[<]) = L(DA � Gsol) = L(FO+MOD2[<]).

In fact, it is possible to provide explicit rules for rewriting a two-variable FO+MOD sen-
tence so that all modular quantifiers are pushed within the scope of existential and universal

8 Note that since the negation of a Σ2[<] sentence is not in general a Σ2[<] sentence, we must avoid
negation in the definition of the class.

9 Note that this is not true in the case of sentences with an unbounded number of variables.
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quantifiers [ST03] but the detour through algebra avoids the technical complications of this
construction.

It is natural to ask whether one can symmetrically rewrite any FO+MOD2[<] sentence
such that no modular quantifier lies in the scope of an existential or universal quantifier.
In other words, we would like to understand the expressive power of the class of sentences
MOD2[<] ◦ FOF2[<]. Unfortunately, we cannot directly use the block-product substitu-
tion principle because we do not have an algebraic characterization of the class of pointed
languages P(FOF2[<]). Rather, we choose to view this class of sentences as the union over
all k of the classes

MOD2[<] ◦FOF1[<] ◦ . . . ◦ FOF1[<]
︸ ︷︷ ︸

k times

.

Since P(FOF1[<]) = P(SL) it follows that a language L is definable by an FO+MOD2[<]
sentence in which no modular quantifier appears in the scope of an existential or universal
quantifier if and only if the syntactic monoid M(L) lies in one of the pseudovarieties

Sk = (. . . ((Gsol � SL) � SL) . . .SL) � SL
︸ ︷︷ ︸

k times

;

and is furthermore definable by an FO+MOD2[<] sentence in which no modular quantifier
appears in the scope of any other quantifier if and only if M(L) lies in one of the

Tk = (. . . ((Ab � SL) � SL) . . .SL) � SL
︸ ︷︷ ︸

k times

.

It is possible to show that for any k the pseudovarieties Sk, Tk are decidable using
the notion of kernels of monoid morphisms [Til87] (see also [TW04] for an application to
logic). In any case, we are once again more interested in deciding membership in the union
of the Sk or the Tk. Let DO be the pseudovariety of finite monoids satisfying the identity
(xy)ω(yx)ω(xy)ω = (xy)ω.

Lemma 5.15 ([TT05b]). Let DO∩Msol and DO∩Ab denote the pseudovarieties consisting
of monoids in DO whose subgroups are respectively solvable and Abelian. Then

⋃

k Sk =

DO ∩ Msol and
⋃

k Tk = DO ∩ Ab.

This immediately yields

Corollary 5.16. A language L is definable by an FO+MOD2[<] sentence in which no
modular quantifier appears in the scope of an existential or universal quantifier if and only
if its syntactic monoid M lies in DO∩Msol and definable by a sentence in which no modular
quantifier appears in the scope of another quantifier if and only M lies in DO ∩ Ab.

Example 5.17.

Let us return to Example 2.4. It can be explicitly shown that the syntactic monoid M(K)
of K = (b∗ab∗a)∗bΣ∗ lies in DA�Gsol and, correspondingly, there exists an FO+MOD2[<]
sentence defining K:

∃x [Qbx ∧ ∃0mod 2y [(y < x) ∧Qay]].

The modular quantifier lies in the scope of the existential quantifier and we want to show
that it cannot be pulled out. Indeed, by simple calculation one can see that M(K) contains
elements {1, a, b, ab, ba, aba, 0} with multiplication given by aa = 1, bb = b, bab = b, abab = 0
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and 0s = s0 = 0 for all s. In particular aba and b = baa are idempotents. Choosing u = a
and v = ba, we have

(uv)ω(vu)ω(uv)ω = (aba)ω(baa)ω(aba)ω = abababa = 0 6= (aba)ω = (uv)ω

so M(K) violates the identity defining DO and K cannot be defined by an FO+MOD2[<]
sentence in which the modular quantifiers lie outside the scope of the ordinary quantifiers.

The same type of argument also shows that (ab)∗ cannot be defined by an FO +
MOD2[<] sentence in which the modular quantifiers lie outside the scope of the ordinary
quantifiers.

Example 5.18.

Consider for contrast the language of Example 2.5: we noted at the start of this section
that the language L of words over {a, b, c}∗ such that the position holding the first a has a
suffix containing an even number of c’s is definable by the FO+MOD2[<] sentence

∃x∀y [Qax ∧ ((y < x) ⇒ ¬Qay) ∧ ∃0mod 2y ((x < y) ∧Qcy)].

One can verify that the syntactic monoid of L lies in DO∩Ab. In the above sentence, the
modular quantifier appears within the scope of the leading existential quantifier but can in
fact be pulled out: the sentence

∃0mod 2x [Qcx ∧ (∃y ((y < x) ∧Qay ∧ (∀x [(y < x) ⇒ ¬Qax])]

asserts that there are an even number of c’s which appear after the first occurrence of a
and thus also defines L.

To conclude our discussion on two-variable sentences, note that although the successor
relation is definable in FO[<] it is not possible in general to transform an FO+MOD2[<,S]
sentence into an equivalent FO+MOD2[<] sentence. A precise characterization of the class
FO2[<,S] in terms of syntactic semigroups is nonetheless given in [TW98].

5.2. Temporal Logic.

The idea of using weakly-iterated block-products to characterize the expressive power
of two-variable FO+MOD[<] sentences came originally from the study of temporal logics.
Such logics are widely used in hardware and software verification because they are able to
express properties of dynamic processes in a natural and intuitive way.

A linear temporal logic formula (LTL) over the alphabet Σ is built from atomic formulas
which are either one of the boolean constants t and f or one of the letters in Σ. We want
to think of a word w satisfying the formula a at ‘time’ i if the ith letter of w is an a. More
complex formulas are constructed from these atomic ones using boolean connectives and a
certain set of temporal operators. We focus here on the cases where these operators are the
unary operators (eventually in the future) and (eventually in the past) or the binary
operators U (until) and S (since). The terminology of course stresses the intended meaning
of these operators and we can formally define the semantics of an LTL formula φ over Σ
for pointed words (w, p) with w ∈ Σ∗ as follows.

• For any (w, i) we have (w, i) |= t and (w, i) 6|= f;
• For a ∈ Σ we have (w, i) |= a if and only if wi = a;
• (w, i) |= φ if there exists i < j ≤ |w| such that (w, j) |= φ;
• (w, i) |= φ if there exists 1 ≤ j < i such that (w, j) |= φ;
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• (w, i) |= φUψ if there exists i < j ≤ |w| such that (w, j) |= ψ and (w, i′) |= φ for all
i < i′ < j;

• (w, i) |= φSψ if there exists 1 ≤ j < i such that (w, j) |= ψ and (w, i′) |= φ for all
j < i′ < i;

Note that the LTL sentences φ and tUφ are equivalent and so the Until and Since
operators are sufficient to obtain the full expressive power of LTL. Any LTL formula φ
naturally defines a pointed language Pφ = {(w, i) : (w, i) |= φ}. We also associate to φ
the language Lφ = {w : (w, 0) |= φ}. If Φ is a class of LTL formulas, we similarly denote
by L(Φ) and P(Φ) respectively the classes languages and pointed languages defined by a
formula of Φ.

As we mentioned earlier, Kamp [Kam68] showed that L(LTL) = L(FO[<]) and in fact
P(LTL) = P(FOF[<]). The containment from left to right is rather easy to obtain by
induction on the structure of the LTL formulas. The atomic LTL formula a defines the set
of pointed words (w, i) having the letter a in position i and thus corresponds to the formula
Qax. Suppose by induction that for the LTL formulas φ and ψ we can construct FOF[<]
formulas τ(x), ρ(x) such that P(φ) = P(τ(x)) and P(ψ) = P(ρ(x)) then the LTL formula
φUψ defines the same pointed language as

η(x) : ∃y∀z ρ(y) ∧ ((x < y < z) ⇒ τ(z)).

The translation of the other three temporal operators can be obtained similarly. Note also
that the structure of η(x) allows us to construct this formula using only three variables and
so L(LTL) ⊆ L(FO3). The inclusion L(FO[<]) ⊆ L(LTL) essentially amounts to showing
L(FO[<]) ⊆ L(FO3[<]) [Kam68, IK89].

For two classes Λ,Γ of LTL formulas we denote as Λ ◦ Γ the class of LTL formulas
which are boolean combinations of formulas in Γ and formulas obtained from a Λ formula
by replacing each occurrence of the atomic formula a by a formula φa ∈ Γ. The block-
product/substitution principle carries over to temporal logic: if there are pseudovarieties
V,W such that L(Λ) = L(V), P(Γ) = P(W) and L(Γ) ⊆ L(V � W) then L(Λ ◦ Γ) =
L(V � W).

The class of unary temporal logic formulas UTL is the subclass of LTL consisting
of formulas constructed without the binary operators U,S. There is a natural hierarchy
UTL1 ⊆ UTL2 ⊆ . . . within UTL defined by the nesting depth of the , operators. We
clearly have

UTLk = UTL1 ◦ . . . ◦ UTL1
︸ ︷︷ ︸

k times

.

Lemma 5.19. L(UTL1) = L(SL) and P(UTL1) = P(SL).

Proof sketch. Any UTL1 formula is a boolean combination of formulas of the form a,
a or a. The rest of the argument is similar to the proof of part 1 of Lemma 3.5.

Thus, the block-product/substitution principle insures:

Corollary 5.20 ([EVW02, TW02, ST02]).
For each k, L(UTLk) = L((. . . (SL � SL) � . . .) � SL)). Moreover,

L(UTL) = L(DA) = L(FO2[<]) = L(Σ2[<]) ∩ L(Π2[<]).

Example 5.21. We argued in Example 5.9 that the syntactic monoid of the language
L = Σ∗ac∗d{b, c, d}∗ lies in DA and exhibited Σ2[<] and Π2[<] sentences defining L (an
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equivalent FO2[<] sentence was also given in Example 5.2). In temporal terms, L can be
described as the set of words which contain an a that has no other a in its future but has in
its future an occurrence of d with the property that each b or d in the past of this occurrence
of d contains an a in its future.

[
a ∧ (¬ a) ∧ ( (d ∧ [¬ ((b ∨ d) ∧ ¬ a)]))

]
.

By contrast K = {a, b, c}∗ac∗a{a, b, c}∗ has a syntactic monoid which is aperiodic but
outside of DA (Example 5.10) and so K is definable in LTL but not in UTL.

The Until/Since hierarchy {USHk}k≥0 within LTL corresponds to the nesting depth
of the Until and Since operators (the unary operators do not contribute to the depth of a
formula). We set LTL0 = UTL. We have

USHk = UTL ◦USH1 ◦ . . . ◦ USH1
︸ ︷︷ ︸

k times

.

The Until/Since hierarchy was introduced by Etessami and Wilke [EW00] who proved that
the hierarchy was infinite. The algebraic characterization of the levels of the Until/Since
hierarchy was given by Thérien and Wilke [TW04]:

Theorem 5.22. Let RB be the pseudovariety of monoids satisfying x2 = x and xyxzx =
xyzx. Then

L(USHk) = L(((DA � RB) � RB) . . .) � RB
︸ ︷︷ ︸

k times

).

Roughly speaking, the proof links pointed languages of USH1 and pointed languages
of P(RB). However a number of technical hurdles have to be overcome. This theorem also
guarantees that the levels of the Until/Since hierarchy are decidable although the complexity
of the algorithms provided in [TW04] is prohibitive.

The two temporal operators next and previous are also often used in the construction of
LTL sentences. The additional expressive power offered by these operators is closely linked
to the extra power afforded by the successor numerical predicate in first-order sentences
and, at least intuitively, this is not a major surprise. Standard methods allow algebraic
characterizations of the expressive power of the various levels of the Until/Since hierarchy
and of UTL when next and previous operators are available [TW98, TW04].

In the context of software and hardware verification, ‘future’ operators U, , next are
more suited to express properties and the ‘past’ operators and S are not so standard in
LTL. Kamp in fact shows that the until operator U is sufficient to obtain the full expressive
power of LTL = FO[<]. When future operators are the only ones available substitutions
only allow additional information on the suffix of a given position and so the two-sided
nature of the block-product makes it unsuited for the analysis. However, one can instead
consider reverse semidirect products and obtain the correct analog of the principle. Cohen,
Pin and Perrin used this idea to characterize the expressive power of unary future temporal
logic [CPP93] and Thérien and Wilke later extended the idea to characterize the levels of the
Until hierarchy [TW02]. Baziramwabo, McKenzie and Thérien also considered the extension
of LTL in which new modular counting temporal operators are introduced [BMT99]. An
early survey of Wilke provides an overview of the semigroup theoretic approach in the
analysis of temporal logics [Wil01].
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6. Logic, Algebra and Circuit Complexity

6.1. Boolean Circuits.

We have so far considered only the case of first-order formulas with order (<) as the
sole numerical predicate. When FO+MOD sentences have access to non-regular predicates,
their expressive power is dramatically increased and they can provide logical characteriza-
tions for a number of well-known classes of boolean circuit complexity.

A boolean circuit C on n boolean variables w1, . . . , wn is a directed acyclic graph with a
distinguished output node of outdegree 0. A node of in-degree 0 is called an input node (or
input gate) and is either labeled by one of the boolean constants 0, 1 or by some boolean
literal wi or wi. Any other node g of C (including the output node) is labeled by some
symmetric boolean function fg chosen from some predetermined base. The most standard
case has each inner node labeled either by the Or or the And function but we also consider
the case where gates are labeled by the boolean function Modm which is 1 if the sum of its
inputs is divisible by m and is 0 otherwise. Any gate g of a boolean circuit on n variables
naturally computes a boolean function vg : {0, 1}n → {0, 1}. If the gate g is an input node
labeled by wi (resp. wi) then vg(w) = 1 if and only if wi = 1 (resp. wi = 0). If g is an
inner node then a gate g′ is an input to g if there is a directed edge (g′, g) in the graph C.
Naturally, if g1, . . . , gk are the inputs of g we set

vg(w) = fg(vg1(w), . . . , vgk
(w)).

If out is the output node of C then the function computed by the circuit is C(w) = vout(w).
The language accepted by the circuit is the set {w ∈ {0, 1}n : C(w) = 1} of n-bit strings on
which the circuit outputs 1.

The depth d of a circuit C is the length of the longest path from an input node to
the output node. The size s of C is the number of gates in C. We are also interested
in considering circuits in which inputs wi are not booleans but rather take values in some
finite alphabet Σ. This can be handled either by using a binary encoding of Σ or by labeling
input nodes by functions wi = a for some a ∈ Σ. The rest of our discussion is unaffected
by these implementation details.

By definition a boolean circuit can only process inputs of some fixed length n but we
are interested in using circuits as computing devices recognizing languages in Σ∗. This can
be done by providing an infinite family C of circuits C = {Cn}n≥0 where the circuit Ci
processes inputs of length i. In this case, we define the size s(C) and the depth d(C) of a
circuit family as functions of the input size.

Note that for any subset K ⊆ N, the language {w : |w| = k ∧ k ∈ K} can be recognized
by a family of circuits of depth 0 and size 1 since inputs of a given length are either all
accepted or all rejected. If we do not impose any constraints on the constructibility of circuit
families, boolean circuits are thus able to recognize undecidable languages. Uniformity
restrictions on circuit families impose the existence of an (efficient) algorithm that computes
some representation of the nth circuit Cn of a family. We say that a family of circuits C
is uniform if such an algorithm exists and furthermore say that C is P-uniform (resp. L-
uniform) if there is a polynomial time (resp. logarithmic space) algorithm which on input 1n

constructs Cn. An even more stringent requirement is that of dlogtime-uniformity which
requires the existence of an algorithm which on input (n, i, j) computes in time O(log |n|)
the type of the ith and jth gates of Cn and determines whether these gates are connected
by a wire [BIS90].
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We define some classical circuit complexity classes:

Definition 6.1. The boolean circuit complexity class non-uniform AC0 is the class of
languages which are computable by a family C = {Cn}n≥0 of circuits constructed with And
and Or gates with depth d(C) = O(1) and size s(C) = O(nk) for some k.

Similarly, non-uniform CC0 is the class of languages computable by families of circuits
of bounded depth and polynomial size and constructed with gates Modm for some m ≥ 2.
Non-uniform ACC0 is the class of languages computable by families of circuits of bounded
depth and polynomial size and constructed with gates And, Or and Modm for somem ≥ 2.

Finally, non-uniform NC1 is the class of languages computable by families of circuits of
depth O(log n), polynomial-size and constructed with And and Or gates of fan-in 2.

There are natural uniform versions of the above classes. By definition both AC0 and
CC0 are subclasses of ACC0 ⊆ NC1. Moreover, L-uniform-NC1 is a subclass of L (logspace).
The containment AC0⊆ ACC0 is known to be strict because the parity function (i.e. the
Mod2 function) cannot be computed by bounded depth And,Or circuits of subexponential
size [Ajt83, FSS84, Smo86]. It is conjectured that CC0 is also strictly contained in ACC0

and, in particular, that the And function requires bounded depth Modm circuits of super-
polynomial size. Despite an impressive body of work in circuit complexity [All97, Vol99], no
such lower bound is known and even much weaker statements such as dlogtime-uniform
CC0 6= NP still elude proof.

These circuit classes have nice logical descriptions which were made explicit by Gure-
vich, Lewis, Barrington, Immerman and Straubing [GL84, Imm87, BIS90, Str94].

Theorem 6.2.

AC0 = FO (i.e. FO extended with all numerical predicates) and dlogtime-AC0 = FO[+, ∗].
CC0 = MOD and dlogtime-CC0 = MOD[+, ∗].
ACC0 = FO+MOD and dlogtime-ACC0 = FO+MOD[+, ∗].

Proof sketch. The statements about dlogtime uniformity are too technical to present
succinctly [BIS90] but it is rather straightforward to prove, for instance, that AC0 = FO.
For the right to left containment, we need to build for any FO sentence φ a non-uniform
AC0 circuit family C that accepts exactly Lφ. We assume without loss of generality that φ
is in prenex normal form:

φ : Q1x1Q2x2 . . .Qkxk ψ(x1, . . . , xk)

where ψ is quantifier free and each Qi is ∃ or ∀. Circuit Cn is obtained by using Or
and And gates to respectively represent the existential and universal quantifiers. Each of
those gates has fan-in n so that a wire into the gate representing Qixi represents one of
the n possible values of xi. Finally, for any choice of values (x1, . . . , xk) we need to build
subcircuits computing the value of ψ(x1, . . . , xk): the atomic formulas of the form Qaxi
are evaluated using a query to the input variable xi and the value of a numerical predicate
R(xi1 , . . . , xit) can be hardwired into the nth circuit since the value of R only depends on
the value of the xij and the input length n. Note that the size of the nth circuit built in

this way is at most c · nk+1 for some c ≥ 1.
To show AC0 ⊆ FO, we first normalize our circuit family C so that each Cn of C is

a tree of depth k which is leveled so that gates at level i in any circuit of the family are
either all Or or all And gates. Moreover, we insure that every non-input gate has fan-in
exactly n so that we can think of these n wires as being indexed by positions in the input.
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By extension, any sequence of k input positions can be viewed as a path from the output
gate back to some input gate.

It is a simple exercise to show that the normalization process of our circuit family can
be done so that the resulting family still has bounded depth and polynomial-size. The
construction of an FO sentence defining the language accepted by C then follows naturally:
if the family of circuits has depth k, the sentence has k quantifiers where existential and
universal quantifiers are used to respectively represent levels of And gates and Or gates.
We complete the construction by using a k + 1-ary numerical predicate R(i, x1, . . . , xk)
which is true if the path (x1, . . . , xk) from the output gate back to the input queries the ith
bit of the input. Note also that the non-uniformity of the family of circuits can be handled
easily since we allow the value of the numerical predicates to depend on the length of the
input word.

Note that the polynomial-size restriction in the definition of AC0, CC0 and ACC0 is
in some sense built into this correspondence with first-order logic. Lautemann [KLPT06]
further noted that when arbitrary numerical predicates are used, the restriction of FO,
FO+MOD and MOD to two variables correspond to a linear-size restriction on the cor-
responding circuits.

Theorem 6.3. A language L is computable by a family of AC0 (resp. CC0, ACC0) circuits
of size O(n) if and only if L is definable by a two-variable FO2 (resp. MOD2, FO+MOD2)
sentence with arbitrary numerical predicates.

AC0, CC0 and ACC0 (as well as a number of other important circuit complexity
classes) also admit very interesting algebraic characterizations using the programs over finite
monoids formalism. The idea first appeared in Chandra, Stockmeyer and Vishkin [CSV84]
but was formalized and further developed by Barrington and Thérien [Bar89, BT88]. A
number of lower bounds for restricted classes of circuits can be obtained through this
approach [BST90, BS94, ST06]. A detailed account of this line of work is beyond our
scope but we refer the interested reader to Straubing’s book [Str94] or one of the sur-
veys [MPT91, Str00, TT04, TT06].

6.2. Bounding the Expressive Power of FO+MOD: Partial Results.

The logical description of circuit classes suggests a natural incremental approach to
obtaining strong complexity separation results such as the strict containment of non-uniform
CC0 in ACC0 or of non-uniform-ACC0 in Logspace. Such results amount to bounding
the expressive power of FO+MOD or MOD and while this seems a deep mathematical
challenge we can hope that for sufficiently simple classes of numerical predicates N it is
at least possible to bound the expressive power of FO+MOD[N ] and MOD[N ]. On one
hand FO+MOD[Reg] = FO+MOD[<] contains only the regular languages with solvable
monoids but, on the other hand, even bounding the expressive power of FO+MOD[+, ∗] is
beyond the capabilities of current lower bound technology and so it makes sense to consider
classes of numerical predicates with intermediate expressive power.

The obvious target is of course N = {+}. Lynch proved that Parity is not expressible
in FO[+] [Lyn82a, Lyn82b] (see also [BIL+01]). Building on work exposed in Libkin’s
book [Lib04], Roy and Straubing further showed that if p is a prime that does not divide
q then the language Modp is not expressible in FO+MODq[+] where the q subscript
indicates that only quantifiers counting modulo q are used [RS06]. In later work, Behle
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and Lange [BL06] translated the restriction of N to {+} into a uniformity restriction on
circuits. Lautemann et al. [LMSV01], Schweikardt [Sch05] and Lange [Lan04] all provided
further evidence of the fairly weak expressive power of addition even in the case where FO

is augmented by so-called counting quantifiers or majority quantifiers.
In a somewhat different direction, Nurmonen [Nur00] and Niwiński and Stolboush-

kin [SN97] considered logics equipped with numerical predicates of the form y = kx for some
integer k and in particular establish that there is no FO+MODq[<, {y = qx}] sentence that
defines the set of words whose length is divisible by p where p does not divide q.

If we are trying to exhibit a language L who cannot be defined in FO+MOD[N ] for
some class N of numerical predicates, it makes sense to choose L so that the predicates in N
seem particularly impotent in a sentence defining L. This intuition is of course difficult to
formalize but it led to the study of languages with a neutral letter. A letter e ∈ Σ is said to
be neutral for L ⊆ Σ∗ if for all u, v ∈ Σ∗ it holds that uev ∈ L⇔ uv ∈ L. In other words e is
neutral for L if e is equivalent to the empty word ǫ under the syntactic congruence of L. At
least intuitively, it is difficult to construct circuits to recognize languages having a neutral
letter because they cannot rely on the precise location of the relevant (i.e. non-neutral)
letters of their input. By the same token, access to arbitrary numerical predicates seems
of little help to define these languages. Lautemann and Thérien conjectured that every
language with a neutral letter recognized in AC0 is in fact a star-free regular language. The
so-called Crane-Beach conjecture, was in fact refuted in [BIL+01]: if Le denotes the class
of languages with a neutral letter, then there is a language in (FO[+, ∗] ∩ Le) − FO[<].
Nevertheless, the same authors proved

FO[+] ∩ Le = FO[<] ∩ Le

and
BC(Σ1) ∩ Le = BC(Σ1[<]) ∩ Le

where BC denotes the boolean closure. Let MODp be the class of languages definable by a
MOD sentence using only quantifiers that count modulo p for some prime p and arbitrary
numerical predicates. Lautemann and the two current authors have shown [LTT06] that

Le ∩ MODp = MODp[<] ∩ Le.

The neutral letter hypothesis has shown useful in other similar contexts, in particular
to obtain superlinear lower bounds for bounded-width branching programs [BS95] and in
communication complexity [RTT98, TT05a, CKK+07].

6.3. The Circuit Complexity of Regular Languages.

Regular languages are a fascinating case study in circuit complexity [BCST92, CS01,
Pél92, PST97, Str94, TT06]. As we mentioned earlier, one of the most celebrated results in
complexity theory is the lower bound on the size of AC0 circuits computing the regular lan-
guage parity. Moreover, from the results of [BT88, MPT91] the main current conjectures
on separations of circuit complexity classes amount to answering questions about the circuit
complexity of specific regular languages. For instance, CC0 is strictly contained in ACC0

if and only if And is not in CC0 and ACC0 is strictly contained in the circuit class NC1 if
and only if regular languages with non-solvable syntactic monoids are not recognizable in
ACC0.
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Some of these questions can be recast in purely model-theoretic terms [BCST92, Str92,
Str94, STT93, Pél92]. Intuitively, the only numerical predicates that can be of any sig-
nificant use in defining regular languages are the regular predicates described at the end
of Section 4. For example, [BCST92] used the fact that the Modp-functions do not lie in
AC0 to show that a regular language is definable in FO iff it is definable in FO[Reg]. If R
denotes the class of regular languages then the conjectured separation of ACC0 from NC1

is equivalent to the statement

R∩ FO+MOD = FO+MOD[Reg].

and, similarly, CC0 6= ACC0 is equivalent to

R∩ MOD = MOD[Reg].

These equivalences are discussed in full detail in [Str94] and we simply sketch here the
argument for the first of them. Assume that ACC0 = NC1: since every regular language is
in NC1, we have R∩FO+MOD = R∩ACC0 = R∩NC1 = R whereas FO+MOD[Reg] =
FO+MOD[<] contains only those regular languages whose syntactic monoid is solvable
(Theorem 4.4).

On the other hand, Barrington and Thérien [BT88] showed that any regular language
whose syntactic monoid is not solvable (and therefore not definable in FO+MOD[Reg],
is complete for NC1 under very simple reductions known as non-uniform projections or
programs. Therefore, if ACC0 6= NC1 then none of these languages lies in ACC0 and
R∩ FO+MOD = FO+MOD[<].

We can refine our questions about the circuit complexity of regular languages and ask
how small the AC0, CC0 and ACC0 circuits recognizing them can be. For AC0, a surprising
partial answer was provided by Chandra, Fortune and Lipton [CFL85] who show that any
regular language computed by an AC0 circuit can in fact be computed by an AC0-circuit
with only O(ng−1(n)) wires (and thus gates) for any primitive recursive function g. The
result in fact extends to ACC0. The only regular languages known to be (and believed to be)
in CC0 are those definable in MOD2[Reg] and, by Theorem 6.3, these can all be recognized
with circuits with O(n) gates. It is tempting to further conjecture that any regular language
which is not definable in FO2[Reg] (resp. FO+MOD2[Reg]) is in fact not definable in FO2

(resp. FO+MOD2) and therefore requires superlinear-size AC0 (resp. ACC0) circuits. In
other words, superlinear-size lower bounds for AC0 and ACC0 circuits can conceivably be
obtained through logical methods such as Ehrenfeucht-Fräıssé games showing that a given
language is not FO2 or FO+MOD2 definable.

Kouck, Pudlk and Thérien considered the class of regular languages (with a neutral
letter) which are recognizable by ACC0 circuits with only O(n) wires.

Theorem 6.4. If L is a regular language with a neutral letter then L can be recognized by a
family of ACC0 circuits with O(n) wires if and only if L ∈ L(DO ∩Ab) if and only if L is
definable by an FO+MOD2[<] in which no modular quantifier lies in the scope of another
quantifier.

The superlinear lower bound needed to obtain this theorem requires significant work and
relies on an extension of deep combinatorial results of Pudlk on superconcentrators [Pud94]
and on a linear lower bound [TT05a] on the communication complexity of regular languages
which do not belong to L(DO ∩Ab).

The upper bound is based on a result of Bilardi and Preparata [BP90] which exhibits
an AC0 circuit with n inputs x1, . . . , xn, 2n input gates and only O(n) wires which on
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input {0, 1}n computes the Or function of each prefix x1 . . . xi and each suffix xi+1 . . . xn
of the input. To build circuits with O(n) wires recognizing languages in L(DO ∩ Ab) it is
convenient [TT05b] to make use of their logical characterization given by Corollary 5.16: any
such language is definable by an FO+MOD2[<] sentence in which no modular quantifier
appears in the scope of another quantifier. We illustrate the upper bound on an example.

Example 6.5.

Consider the language L = {b, c}∗a({a, b}∗c{a, b}∗c{a, b}∗)∗ which we already studied in
Examples 2.5, 5.1 and 5.18. We saw that L can be defined by the FO+MOD2[<] sentence

φ : ∃0mod 2x [Qcx ∧ (∃y (y < x) ∧ (Qay ∧ ∀x [(y < x) ⇒ ¬Qax]))]

We want to build a circuit C with O(n) wires verifying w |= φ. As a first step, we build
a subcircuit Cψ with O(n) outputs which simultaneously computes for all 1 ≤ y ≤ n the
boolean value of the subformula

ψ(y) : Qay ∧ ∀x [(y < x) ⇒ ¬Qax].

This subformula is true at y if and only if y contains the first occurrence of a in w. Using
Bilardi and Preparata’s construction we can build a subcircuit with O(n) wires and n
outputs which simultaneously tells us for each y if the suffix following y contains an a and
this allows the construction of Cψ.

We can now use the same idea to build a subcircuit Cη with O(n) wires and n output
gates which uses the outputs of Cψ as inputs in order to compute simultaneously for all x
the value of

η(x) : Qcx ∧ (∃y [(y < x) ∧ ψ(y)]) .

Finally, we complete the construction of our circuit C by feeding the n outputs of Cη into
a Mod2 output gate for C.

This example has a straightforward generalization providing the upper bound for all
regular languages in L(DO ∩ Ab). We know from Theorem 6.3 that a language K is
computable by a family of ACC0 circuits with O(n) gates if and only if it K is FO+MOD2

definable given arbitrary numerical predicates but there is no similar logical characterization
for the class of ACC0 circuits with O(n) wires. Theorem 6.4 indicates that the fine line
separating O(n) gates and O(n) wires may be related to the ability or incapacity of pulling
out modular quantifiers in FO+MOD2 sentences.

7. Conclusion

We believe that the block-product/substitution principle largely explains the success
of semigroup theory in the analysis of the expressive power of fragments of FO+MOD[<]
and LTL. In particular, we have tried to show that it underlies some of the most important
results about the expressivity of fragments of FO+MOD[<] because it translates these
logical questions into algebraic questions about decomposition of pseudovarieties through
iterated block-products.

Considerable efforts have been invested in the development of an analogous algebraic
approach to regular tree-languages. There currently exists no known algorithm for de-
ciding whether a tree language is definable in FO[<] where < is the descendant relation
in trees. While most agree that this question will inevitably be solved using some alge-
braic framework, it is rather unclear what the correct framework is. For instance, one
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can define the syntactic monoid of a regular-tree language L as the transition monoid of
the minimal tree-automaton for L. It is known that if a regular tree language is FO[<]-
definable then its syntactic monoid is aperiodic but that condition is known to be insuf-
ficient [Heu91, PT93]. This strongly suggests that the combinatorial properties of regular
tree-languages are not properly reflected in the algebraic properties of its syntactic monoid.
Ésik and Weil proposed to consider instead syntactic pre-clones. They obtain an analog of
the block-product/substitution principle and show that a tree language is FO[<]-definable
iff its syntactic preclone belongs to the smallest pseudovariety of pre-clones containing a
very simple pseudovariety of preclones and closed under block product [ÉW05]. Unfortu-
nately, too little is known about this pseudovariety to make this characterization effective.
That the block-product/substitution principle generalizes to more complex settings is not
much of a surprise since it simply provides a scheme to reformulate a logical question into
algebraic terms but there are no known preclone analogs of the block-product decomposition
results that exist for monoids and this impedes progress.

There are decidability results for subclasses of FO[<] definable tree languages (e.g.
[BW04]), some of which rely on the study of tree algebras proposed by Wilke [Wil96]. This
first led to an effective algebraic characterization of frontier testable tree languages [Wil96]
and, more recently, Benedikt and Segoufin used a similar framework to provide an effective
algebraic characterization10 of tree languages definable in FO[S] (where S is the child
relation) [BS05]. The recent results of Bojańczyk et al. on pebble automata [BSSS06] also
seem to be tightly connected to some variant of block-products although the authors do not
explicitly give an algebraic interpretation of their work.

We focused in this survey on the case where logical sentences are interpreted over
finite words. However, Büchi’s Theorem also holds for infinite words: an ω-language is
ω-regular if and only if it can be defined by an MSO[<]-sentence. The algebraic theory of
ω-regular languages is well-developed although not as robust as the one presented here for
the case of finite words [PP04]. Still, the class of ω-languages definable in FO[<] and LTL

are exactly the starfree ω-languages [Tho79, SPW91, Coh91] which, in turn, are exactly
those recognizable by aperiodic ω-semigroups [Per83]. Because the results for finite words
often extend to the infinite case [Lib04, PP04, Pin96, Pin01, Tho97], it is tempting to
overlook the related caveats. It would be interesting to specifically consider how the block-
product/substitution principle extends to the case of infinite words to unify the existing
results. The work of Carton [Car00] probably provides all the necessary tools for this
investigation.

More generally, as Weil clearly demonstrates in [Wei04], there are numerous extensions
of the algebraic point of view on finite automata and regular languages which have proved to
be successful in the analysis of more sophisticated machines and more sophisticated logical
formalisms. These include regular sets of traces [DR95], series-parallel pomsets [Kus03,
LW00] and graphs, as well as timed automata [BDM+06, FK03, MP04, BPT03].

Acknowledgements: We want to thank the anonymous referees for their suggestions to
improve the readability of the paper. We also want to thank Luc Segoufin and Jean-Éric
Pin for useful discussions.

10 Segoufin has recently acknowledged that the characterization given in the conference paper is incorrect,
but the decidability result still stands [Seg] and a corrected manuscript is available from Segoufin’s home
page.



LOGIC MEETS ALGEBRA: THE CASE OF REGULAR LANGUAGES ∗ 33

References

[Ajt83] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24: 1–48, 1983.

[All97] E. Allender. Circuit complexity before the dawn of the new millennium. Tech. Rep. 97-49, DI-
MACS, 1997.

[Alm94] J. Almeida. Finite Semigroups and Universal Algebra. Series in Algebra, Vol 3. World Scientific,
1994.

[Bar89] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1. J. Comput. Syst. Sci., 38(1): 150–164, 1989.

[BCST92] D. A. M. Barrington, K. J. Compton, H. Straubing and D. Thérien. Regular languages in NC1.
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[BPT03] P. Bouyer, A. Petit and D. Thérien. An algebraic characterization of data and timed languages.
Information and Computation, 182: 137–162, 2003.

[BS94] D. A. M. Barrington and H. Straubing. Complex polynomials and circuit lower bounds for
modular counting. Computational Complexity, 4(4): 325–338, 1994.

[BS95] D. A. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-width branching
programs. J. Comput. Syst. Sci., 50(3): 374–381, 1995.

[BS99] D. A. M. Barrington and H. Straubing. Lower bounds for modular counting by circuits with
modular gates. Computational Complexity, 8(3): 258–272, 1999.

[BS05] M. Benedikt and L. Segoufin. Regular tree languages definable in FO. In Proc. 22nd Symp. on
Theoretical Aspects of Comp. Sci. (STACS’05), pp. 327–339. 2005.
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[RTT98] J.-F. Raymond, P. Tesson and D. Thérien. An algebraic approach to communication complexity.

In Proc. 25th Int. Coll. on Automata Languages and Programming (ICALP’98), pp. 29–40. 1998.
[Sch65] M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and Com-

putation, 8(2): 190–194, 1965.
[Sch76] M. P. Schützenberger. Sur le produit de concaténation non ambigu. Semigroup Forum, 13: 47–75,

1976.
[Sch05] N. Schweikardt. Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput.

Log., 6(3): 634–671, 2005.
[Seg] L. Segoufin. Personal communication.
[Sim75] I. Simon. Piecewise testable events. In Proc. 2nd GI Conf., pp. 214–222. 1975.
[Smo86] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.

In Proc. 19th ACM STOC, pp. 77–82. 1986.
[SN97] A. P. Stolboushkin and D. Niwinski. y = 2x vs. y = 3x. J. Symb. Log., 62(2): 661–672, 1997.



36 P. TESSON AND D. THÉRIEN
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