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Abstract. We propose an abstraction-based model checking method which relies on re-
finement of an under-approximation of the feasible behaviors of the system under analysis.
The method preserves errors to safety properties, since all analyzed behaviors are feasible
by definition. The method does not require an abstract transition relation to be gener-
ated, but instead executes the concrete transitions while storing abstract versions of the
concrete states, as specified by a set of abstraction predicates. For each explored transition
the method checks, with the help of a theorem prover, whether there is any loss of precision
introduced by abstraction. The results of these checks are used to decide termination or
to refine the abstraction by generating new abstraction predicates. If the (possibly infi-
nite) concrete system under analysis has a finite bisimulation quotient, then the method
is guaranteed to eventually explore an equivalent finite bisimilar structure. We illustrate
the application of the approach for checking concurrent programs.

1. Introduction

Over the last few years, model checking based on abstraction-refinement has become a
popular technique for the analysis of software. In particular the abstraction technique
of choice is a property preserving over-approximation called predicate abstraction [18]
and the refinement removes spurious behavior based on automatically analyzing abstract
counter-examples. This approach is often referred to as CEGAR (counter-example guided
automated refinement) and forms the basis of some of the most popular software model
checkers [4, 7, 22]. Furthermore, a strength of model checking is its ability to automate
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the detection of subtle errors and to produce traces that exhibit those errors. However,
over-approximation based abstraction techniques are not particularly well suited for this,
since the detected defects may be spurious due to the over-approximation — hence the
need for refinement. We propose an alternative approach based on refinement of under-
approximations, which effectively preserves the defect detection ability of model checking
in the presence of aggressive abstractions.

The technique uses a combination of (explicit state) model checking, predicate ab-
straction and automated refinement to efficiently analyze increasing portions of the feasible
behavior of a system. At each step, either an error is found, we are guaranteed no error
exists, or the abstraction is refined. More precisely, the proposed model checking technique
traverses the concrete transitions of the system and for each explored concrete state, it stores
an abstract version of the state. The abstract state, computed by predicate abstraction, is
used to determine whether the model checker’s search should continue or backtrack (if the
abstract state has been visited before). This effectively explores an under-approximation of
the feasible behavior of the analyzed system. Hence all counter-examples to safety proper-
ties are preserved.

Refinement uses weakest precondition calculations to check, with the help of a theorem
prover, whether the abstraction introduces any loss of precision with respect to each explored
transition. If there is no loss of precision due to abstraction (we say that the abstraction
is exact) the search stops and we conclude that the property holds. Otherwise, the results
from the failed checks are used to refine the abstraction and the whole verification process is
repeated anew. In general, the iterative refinement may not terminate. However, if a finite
bisimulation quotient [24] exists for the system under analysis, then the proposed approach
is guaranteed to eventually explore a finite structure that is bisimilar to the original system.

The technique can also be used in a lightweight manner, without a theorem prover,
i.e. the refinement guided by the exactness checks is replaced with refinement based on
syntactic substitutions [26] or heuristic refinement. The proposed technique can be used for
systematic testing, as it examines increasing portions of the system under analysis. In fact,
our method extends existing approaches to testing that use abstraction mappings [19, 35],
by adding support for automated abstraction refinement.

Our approach can be contrasted with the work on predicate abstraction for modal
transition systems [16, 31], used in the verification and refutation of branching time temporal
logic properties. An abstract model for such logics distinguishes between may transitions,
which over-approximate transitions of the concrete model, and must transitions, which
under-approximate the concrete transitions (see also [2, 10, 11, 30]). As we show in the
next section (and we discuss in more detail in Section 6), the technique presented here
explores and generates a structure which is more precise (contains more feasible behaviors)
than the model defined by the must transitions, for the same abstraction predicates. The
reason is that the model checker explores transitions that correspond not only to must

transitions, but also to may transitions that are feasible.
Moreover, unlike [16, 31] and over-approximation based abstraction techniques [4, 7],

the under-approximation and refinement approach does not require the a priori construction
of the abstract transition relation, which involves exponentially many theorem prover calls
(in the number of predicates), regardless of the size of (the reachable portion of) the analyzed
system. In our case, the model checker executes concrete transitions and a theorem prover
is only used during refinement, to determine whether the abstraction is exact with respect
to each executed transition. Every such calculation makes at most two theorem prover
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Figure 1: (a) Concrete system (b) May abstraction using predicate p = x < 2 (c) Must

abstraction using p (d) Concrete search with abstract matching using p (e) Con-
crete search with abstract matching using predicates p and q = x < 1

calls, and it involves only the reachable state space of the system under analysis. Another
difference with previous abstraction techniques is that the refinement process is not guided
by the spurious counter-examples, since no spurious behavior is explored. Instead, the
refinement is guided by the failed exactness checks for the explored transitions.

To the best of our knowledge, the presented approach is the first predicate abstraction
based analysis which focuses on automated refinement of under-approximations with the
goal of efficient error detection. We illustrate the application of the approach for checking
safety properties in concurrent programs.

The rest of the paper is organized as follows. Section 2 shows an example illustrating our
approach. Section 3 gives background information. Section 4 describes the main algorithm
for performing concrete model checking with abstract matching and refinement. Section 5
discusses correctness and termination; Section 6 discusses other interesting properties for the
algorithm. Section 7 proposes extensions to the algorithm. Section 8 illustrates applications
of the approach, Section 9 discusses related work, and Section 10 concludes the paper.

2. Example

The example in Figure 1 illustrates some of the main characteristics of our approach.
Figure 1 (a) shows the state space of a concrete system that has only one variable x;
states are labelled with the program counter (e.g. A, B, C, . . . ) and the concrete value
of x. Figure 1 (b) shows the abstract system induced by the may transitions for predicate
p = x < 2. Figure 1 (c) shows the abstract system induced by the must transitions for
predicate p.

Figure 1 (d) shows the state space explored using our proposed approach, for an ab-
straction specified by predicate p. Dotted circles denote the abstract states which are
stored, and used for matching, during the concrete execution of the system. The approach
explores only the feasible behavior of the concrete system, following transitions that cor-
respond to both may and must transitions, but it might miss behavior due to abstract
matching. For example, state (E, 1) is not explored, assuming a breadth-first search, since
(D, 0) was matched with (D, 1) — both have the same program counter and both satisfy
p. Notice that, with respect to reachable states, the produced structure is a better under-
approximation (it “covers” more states) than the must abstraction. Figure 1 (e) illustrates
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concrete execution with abstract matching, after a refinement step, which introduced a new
predicate q = x < 1. The resulting structure is an exact abstraction of the concrete system.

3. Background

3.1. Program Model and Semantics. To make the presentation simple, we use as a
specification language a guarded commands language over integer variables. Most of the
results extend directly to more sophisticated programming languages. Let V be a finite set
of integer variables. Expressions over V are defined using standard boolean (=, <,>) and
binary (+,−, ·, ...) operations.

Definition 1. A model is a tuple M = (V, T ). T = {t1, . . . , tk} is a finite set of transitions,
where ti = (gi(~x) 7−→ ~x := ei(~x)), gi(~x) is a guard and ei(~x) are assignments to the variables
represented by tuple ~x.

Throughout the paper, we write concurrent assignments ~x := ei(~x)) as sequences, to
improve readability. The semantics of program models uses transition systems.

Definition 2. A transition system over a finite set of atomic propositions AP is a tuple

(S,R, s0, L) where S is a (possibly infinite) set of states, R = {
i

−→} is a finite set of

deterministic transition relations:
i

−→⊆ S × S, s0 is an initial state, and L : S → 2AP is a
labeling function.

State s is reachable if there exists a sequence of zero or more transitions from the initial

state such that s0
i1−→ s1

i2−→ s2...
in−→ sn = s (denoted s0 −→∗ s). The set of reachable

labelings RL(T ) is {L(s) | s ∈ S : s0 −→∗ s}. The notation s 6
i

−→ means that there is no i
transition from the state s.

Definition 3. The concrete semantics of model M is transition system JMK = (S, {
i

−→},
s0, L) over AP , where:

• S = 2V →Z, i.e. states are valuations of variables,

• s
i

−→ s′ ⇔ s |= gi ∧ s′ = ei(s); the semantics of guards (boolean expressions) and
updates is as usual; guards are functions (V → Z) → {true , false}, written as s |= gi;
updates are functions ei : (V → Z) → (V → Z),

• s0 is the zero valuation (∀v ∈ V : s0(v) = 0),
• L(s) = {p ∈ AP | s |= p}.

3.2. Strongest Postcondition and Weakest Precondition. Let φ be a predicate rep-
resenting a set of states. Then the strongest postcondition of φ with respect to transition

i is sp(φ, i) = ∃s′.(s′
i

−→ s ∧ φ(s′)); sp(φ, i) defines the successors by transition i of the
states characterized by φ. The weakest precondition of φ with respect to transition i is

wp(φ, i) = ∀s′.(s
i

−→ s′ ⇒ φ(s′)); wp(φ, i) characterizes the largest set of states whose
successors by transition i satisfy φ. For guarded commands, the weakest precondition can
be expressed as wp(φ, i) = (gi ⇒ φ[ei(~x)/~x]). We will use the following property [18]:
sp(φ, i) ⇒ φ′ iff φ ⇒ wp(i, φ′).
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3.3. Predicate Abstraction. Predicate abstraction is a special instance of the framework
of abstract interpretation [9] that maps a (potentially infinite state) transition system into
a finite state transition system via a set of predicates Φ = {φ1, . . . , φn} over the program
variables. Let Bn be a set of bitvectors of length n. We define abstraction function αΦ : S →
Bn, such that αΦ(s) is a bitvector b1b2 . . . bn such that bi = 1 ⇔ s |= φi. Let Φs be the set of
all abstraction predicates that evaluate to true for a given state s, i.e. Φs = {φ ∈ Φ | s |= φ}.
For succinctness we sometimes write αΦ(s) to denote

∧
φ∈Φs

φ ∧
∧

φ/∈Φs
¬φ.

We also give here the definitions of may and must abstract transitions. Although not
necessary for formalizing our algorithm, these definitions clarify the comparison with related
work. For two abstract states (bitvectors) a1 and a2:

• a1
i

−→must a2 iff for all concrete states s1 such that αΦ(s1) = a1, there exists

concrete state s2 such that αΦ(s2) = a2 and s1
i

−→ s2,

• a1
i

−→may a2 iff there exists concrete state s1 such that αΦ(s1) = a1 and there exists

concrete state s2 such that αΦ(s2) = a2, such that s1
i

−→ s2.

Algorithms for computing abstractions using over-approximation based predicate ab-
straction are given in e.g. [4, 18] (they compute may abstract transitions automatically,
with the help of a theorem prover). In the worst case, these algorithms make 2n × n × 2
calls to the theorem prover for each program transition.

3.4. Bisimulation.

Definition 4. A symmetric relation R ⊆ S×S is a bisimulation relation iff for all (s, s′) ∈ R:

• L(s) = L(s′)

• For every s
i

−→ s1 there exists s′
i

−→ s′1 such that R(s1, s
′

1)

The bisimulation is the largest bisimulation relation, denoted ∼. Two transition systems
are bisimilar if their initial states are bisimilar. As ∼ is an equivalence relation, it induces a
quotient transition system whose states are equivalence classes with respect to ∼ and there
is a transition between two equivalence classes A and B if ∃s1 ∈ A and ∃s2 ∈ B such that

s1
i

−→ s2.

4. Concrete Model Checking with Abstract Matching

4.1. Algorithm. Figure 2 shows the reachability procedure that performs model checking
with abstract matching (αSearch). It is basically concrete state space exploration with
matching on abstract states; the main modification with respect to classical state space
search is that we store αΦ(s) instead of s. The procedure uses the following data structures:

• States is a set of abstract states visited so far,
• Transitions is a set of abstract transitions visited so far,
• Wait is a set of concrete states to be explored.

The procedure performs validity checking, using a theorem prover, to determine whether
the abstraction is exact with respect to each explored transition — see discussion below. The
set Φnew maintains the list of abstraction predicates. The procedure returns the computed
structure and a set of new predicates that are used for refinement. Note that we never
abstract the program counter.
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proc αSearch(M,Φ)
Φnew = Φ; add s0 to Wait; add αΦ(s0) to States

while Wait 6= ∅ do
get s from Wait

L(αΦ(s)) = {a ∈ AP | s |= a}
foreach i from 1 to n do

if s |= gi then
if αΦ(s) ⇒ gi is not valid

then add gi to Φnew fi
s′ = ei(s)
if αΦ(s) ⇒ αΦ(s′)[ei(~x)/~x] is not valid

then add predicates in αΦ(s′)[ei(~x)/~x] to Φnew fi
if αΦ(s′) 6∈ States then

add s′ to Wait

add αΦ(s′) to States

fi
add (αΦ(s), i, αΦ(s′)) to Transitions

else
if αΦ(s) ⇒ ¬gi is not valid

then add gi to Φnew fi
fi

od
od
A = (States,Transitions, αΦ(s0), L)
return (A,Φnew)

end

Figure 2: Search procedure with checking for exact abstraction

Figure 3 gives the iterative refinement algorithm for checking whether M can reach an
error state described by ϕ (which is a boolean combination of propositions from AP ). The
algorithm starts with AP as the initial set of abstraction predicates. At each iteration of the
loop, the algorithm invokes procedure αSearch to analyze an under-approximation of the
system, which either violates the property, it is proved to be correct (if the abstraction is
found to be exact with respect to all transitions), or it needs to be refined. Counter-examples
are generated as usual (with depth-first search order using the stack, with breadth-first
search order using parent pointers).

4.2. Checking for Exact Abstraction and Refinement. We say that abstraction func-

tion αΦ is exact with respect to transition s
i

−→ s′ iff for all s1 such that αΦ(s) = αΦ(s1)

there exists s′1 such that αΦ(s′1) = αΦ(s′) and s1
i

−→ s′1. In other words, s
i

−→ s′ is exact

with respect to αΦ iff αΦ(s)
i

−→must αΦ(s′).
Moreover, the abstraction function αΦ is exact with respect to a state s iff the following

conditions hold: (1) αΦ is exact with respect to all transitions s
i

−→ s′ and (2) if s 6
i

−→ then

for all s1 such that αΦ(s) = αΦ(s1) we have s1 6
i

−→.
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proc RefinementSearch(M,ϕ)
j = 1; Φj = AP
while true do

(Ai,Φj+1) = αSearch(M,Φj)
if ϕ is reachable in Aj then return counter-example fi
if Φj+1 = Φj then return unreachable fi
j = j + 1

od
end

Figure 3: Iterative refinement algorithm

The notion of exactness is related to completeness in abstract interpretation (see [14]),
which states that no loss of precision is introduced by the abstraction. Checking that the

abstraction is exact with respect to a concrete transition s
i

−→ s′ amounts to checking that
sp(αΦ(s)) ⇒ αΦ(s′), equivalent to αΦ(s) ⇒ wp(αΦ(s′), i), is valid.

Note that wp(αΦ(s′), i) = (gi ⇒ αΦ(s′)[ei(~x)/~x]). Therefore αΦ(s) ⇒ wp(αΦ(s′), i) is
equivalent to αΦ(s) ⇒ (gi ⇒ αΦ(s′)[ei(~x)/~x]). The abstraction is exact with respect to
state s when the following conditions hold: (1) αΦ(s) ⇒ (gi ∧ αΦ(s′)[ei(~x)/~x]), equivalent
to (αΦ(s) ⇒ gi) ∧ (αΦ(s) ⇒ αΦ(s′)[ei(~x)/~x]), is valid for each i such that s |= gi and
(2) αΦ(s) ⇒ ¬gi is valid for each i such that s 6|= gi.

Checking the validity for these formulas is in general undecidable. As is customary, if
the theorem prover can not decide the validity of a formula, we assume that it is not valid.
This may cause some unnecessary refinement, but it keeps the correctness of the approach.
If the abstraction can not be proved to be exact with respect to some transition, then
the new predicates from the failed formula are added to the set of abstraction predicates.
Intuitively, these predicates will be useful for proving exactness in the next iteration.

5. Correctness and Termination

In this section we discuss the main properties of the iterative refinement algorithm. We
first state the main theorems, after which we give the technical lemmas and proofs (the
reader may wish to skip this technical material on the first reading).

5.1. Main Results. We first show that, if the iterative algorithm terminates then the
result is correct and moreover, if the error state is unreachable, the output structure is
bisimilar to the system under analysis:

Theorem 1. (Correctness) If RefinementSearch(M,ϕ) terminates then:

• if it returns a counter-example, then it is a real error,
• if it returns ‘unreachable’, then the error state is indeed unreachable in M and

moreover the computed structure is bisimilar to JMK.

In general, the proposed algorithm might not terminate (the reachability problem for
our modeling language is undecidable). However, the algorithm is guaranteed to eventually
find all the reachable labelings (including all the reachable errors) of the concrete program,
although it might not be able to detect that (to decide termination). Moreover, if the
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(reachable part of the) system under analysis has a finite bisimulation quotient, then the
algorithm eventually produces a finite bisimilar structure.

Theorem 2. (Termination) Let the αSearch use breadth-first search order and let A1,
A2, . . . be a sequence of transition systems generated during iterative refinement performed
by RefinementSearch(M,ϕ). Then

• there exists j such that RL(Aj) = RL(JMK),
• if the reachable part of the bisimulation quotient is finite, then there exists j such

that Aj ∼ JMK.

Note that a consequence of this theorem is that if an error is reachable it is eventually
reported by our algorithm. Also note that for the second part of the theorem, we do
not require that both the reachable and unreachable parts of the system have a finite
bisimulation quotient, but only the reachable part needs to be finite (of course, if both the
reachable and unreachable parts are finite, then it follows that the reachable part is also
finite; the converse is not true).

5.2. Technical Material. Here we provide several technical lemmas and the proofs for the
two main theorems. We use the following notation: a state s is visited during the search
if it is inserted into Wait; a state s is considered during the search if it is generated as a
successor of some state in the foreach loop; a state s1 is matched to a state s2 if the check
αΦ(s1) 6∈ States fails because αΦ(s1) = αΦ(s2) and s2 was visited before.

We say that transition s
i

−→ s′ is exact if αΦ is exact with respect to it. Note that
sometimes we let αSearch(M,Φ) denote just the structure A computed by the algorithm
and not the tuple (A,Φnew). Also note that RefinementSearch starts with AP as the
initial set of predicates. For the proofs, we need to refine the definition of bisimulation.

Definition 5. A symmetric relation R ⊂ S × S is a k-bisimulation relation iff:

• for all (s, s′) ∈ R : L(s) = L(s′)
• if k > 0 then there exists (k − 1)-bisimulation relation R′ such that for all (s, s′) ∈

R : (∀s
i

−→ s1 ⇒ ∃s′
i

−→ s′1 ∧ (s1, s
′

1) ∈ R′)

The k-bisimulation is the largest k-bisimulation relation, denoted ∼k. Note that the
bisimulation is a k-bisimulation relation for every k.

Proof of Theorem 1. We first show that the reachable labelings computed by the iterative
algorithm RefinementSearch is indeed an under-approximation of the reachable labelings
of the program under analysis (Lemmas 1 and 2). Therefore, all the reported counter-
examples correspond to real errors. We then show that when RefinementSearch reports
’unreachable’ (i.e. when the set Φnew of predicates returned for the current iteration is
equal to the set Φ of predicates from the previous iteration) then the computed structure
A is bisimilar to JMK (Lemmas 3 and 4).

Lemma 1. If a state s is reachable in JMK via exact transitions with respect to αΦ, then
there exists s′ such that s′ is visited during the αSearch(M,Φ) and αΦ(s) = αΦ(s′).

Proof: By induction with respect to the number of exact transitions from the initial
state necessary for reaching the state s. Basic step (k = 0) is trivial. For the induction

step, suppose that state s is reachable via sequence of exact transitions: s0
i0−→ . . .

ik−1
−→
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sk
ik−→ sk+1 = s. By the induction hypothesis there exists s′k such that s′k is visited and

αΦ(s′k) = αΦ(sk). Because the abstraction is exact with respect to sk
ik−→ s, there must be

s′ such that s′k
ik−→ s′ and αΦ(s′) = αΦ(s). This successor s′ is considered during the visit

of s′k. There are two cases to be analyzed.

(1) s′ is added to Wait and later visited,
(2) s′ is matched to a previously visited state s′′ such that αΦ(s′) = αΦ(s′′).

In both cases we get that some state with the same abstract counterpart as s is visited
during the search. �

Lemma 2. RL(αSearch(M,Φ)) ⊆ RL(JMK).

Proof: It is easy to verify that the following is an invariant of the search: ’Wait’ is a subset
of reachable states in JMK. The lemma follows. �

Lemma 3. Let AP ⊆ Φ. If for all reachable states s1, s2 it holds that αΦ(s1) = αΦ(s2) ⇒
s1 ∼ s2, then αSearch(M,Φ) ∼ JMK.

Proof: Consider relation R defined as: s1Rs2 iff s1 = s2 or s1 is matched to s2. Then R is
a bisimulation relation between αSearch(M,Φ) and JMK. �

Lemma 4. Let (A,Φnew) = αSearch(M,Φ). If Φnew = Φ, then A ∼ JMK.

Proof: Due to Lemma 3 it is sufficient to show that if Φnew = Φ then αΦ induces a
bisimulation relation on the reachable part of the transition system JMK. We first show
that every reachable state in JMK is reached by exact transitions. We proceed on induction
by the number of transitions from the initial state to s. Basic step (k = 0) is trivial. For
the induction step, suppose that state s is reachable via a sequence of exact transitions of
length k. By Lemma 1 some state s′ such that αΦ(s) = αΦ(s′) is visited during the search.
During the visit of the state s′ we check exactness of the abstraction (see Section 4.2).

Since Φnew = Φ it follows that the abstraction is exact for s′, i.e., s′ 6
i

−→ iff s 6
i

−→ and for

every outgoing transition s′
i

−→ s′1 and α(s) = α(s′) there exists s1 such that s
i

−→ s1

and α(s1) = α(s′1). Since i is deterministic, it follows that s1 is the only successor of

s by transition i and transition s
i

−→ s1 is also exact. Moreover, it satisfies the same
criterion for bisimulation, i.e. for all s′′ such that αΦ(s) = αΦ(s′′) there exists s′′1 such that

αΦ(s1) = αΦ(s′′1) and s′′
i

−→ s′′1. �

Proof: [of Theorem 1] The first claim follows from the fact that αSearch produces an
under-approximation (Lemma 2). The second claim follows from Lemma 4. �

Proof of Theorem 2. In order to prove Theorem 2, we study sequences {Aj}
∞

j=0 of transition
systems generated during RefinementSearch. We assume that αSearch uses breadth-
first search order. The basic idea of the proof is that any two states that are in different
bisimulation classes (s 6∼ s′) are eventually distinguished by the abstraction function, i.e.
∃j such that αΦj

(s) 6= αΦj
(s′) (Lemma 5). Moreover, each bisimulation class of JMK

is eventually visited by RefinementSearch (Lemma 6) and the finite set of reachable
labelings emerges (Lemmas 7 and 8).

Lemma 5. Let {Aj}
∞

j=0 be a sequence of transition systems generated during an infinite run

of RefinementSearch and Inf M = {s | there exists infinitely many j such that s ∈ Aj}.
If s 6∼ s′ and s ∈ Inf M then there exists j such that αΦk

(s) 6= αΦk
(s′) for all k ≥ j.
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Proof: By induction with respect to k where k is the smallest number such that s 6∼k s′.
Basic step: for k = 0 it means that L(s) 6= L(s′) and therefore αΦ1

(s) 6= αΦ1
(s′). Induction

step (k + 1): Let s1, s
′

1 be such that s
i

−→ s1, s
′ i
−→ s′1 and s1 6∼k s′1. Since s is visited

in infinitely many iterations of αSearch, s1 is considered in infinitely many iteration of
αSearch and therefore one of the following must hold:

(1) State s1 ∈ Inf M . Then we can apply induction hypothesis, i.e. there exits j such
that αΦk

(s1) 6= αΦk
(s′1) for all k ≥ j.

(2) State s1 is matched to some state in infinitely many runs of αSearch. Since we use
breadth-first order, there are only finitely many states to which it can be matched
(with breadth-first search order the state can be matched only to states with lower
or equal distance from the initial state). Therefore, there exists a state s2 such
that s1 is matched to s2 in infinitely many runs of αSearch, this means that
αΦj

(s1) 6= αΦj
(s2) for all j. From the induction hypothesis we get that s1 ∼k s2

and hence s2 6∼k s′1. Moreover, from the induction hypothesis we get that there
exists m such that αΦk

(s2) 6= αΦk
(s′1) for all k ≥ m. Therefore αΦk

(s1) 6= αΦk
(s′1)

for all k ≥ m.

In both cases we get that there exists j such that αΦj
is not exact with respect to s

i
−→ s1,

therefore wp(αΦj
(s1), ti) will be included in Φj+1 and therefore αΦj+1

(s1) 6= αΦj+1
(s′1). �

Lemma 6. For each reachable bisimulation class B of JMK there exists a state s ∈ B such
that s is visited by RefinementSearch(M,ϕ) infinitely often.

Proof: By induction with respect to the length of the shortest path by which some state
from B is reachable. Basic step is obvious. Induction step: let state from B be reachable

via path s0
i0−→ . . .

ik−1
−→ sk

ik−→ sk+1. By induction hypothesis some state s′ ∼ sk is reached

during the refinement search infinitely often. Consider state s′′ such that s′
ik−→ s′′. It holds

that s′′ ∼ sk+1 and from Lemma 5 we get that s′′ is visited infinitely often. �

Lemma 7. Let {Aj}
∞

j=0 be a sequence of transition systems generated during an infinite

run of RefinementSearch(M,ϕ). There exists j such that RL(Aj) = RL(JMK).

Proof: For each l ∈ RL(JMK) we choose some bisimulation class B such that s ∈ B ⇒
L(s) = l. In this way we obtain a finite set of bisimulation classes {B1, . . . , Bk} which
covers all labels in RL(JMK). Note that RL(JMK) is finite because AP is finite. Now we
show that there exists an iteration in which at least one state from each of these classes is
visited. This is done similarly to the proof of Lemma 6. �

Lemma 8. Let {Aj}
∞

j=0 be a sequence of transition systems generated during an infinite
run of RefinementSearch. If the reachable part of the bisimulation quotient is finite,
then there exists j such that Aj ∼ JMK.

Proof: By contradiction. Suppose that ∀j : Aj 6∼ JMK. From Lemma 3 we get that there
exists reachable s, s′ such that ∀j : αφj

(s) = αφj
(s′) and s 6∼ s′. We show (similarly to the

proof of Lemma 1) that there exists such s which is visited infinitely often. From Lemma 5
we get that eventually αφj

(s) 6= αφj
(s′) which is the contradiction. �

Proof: [of Theorem 2] This theorem is a direct consequence of Lemmas 7 and 8. �
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pc = 0 ∧ y ≥ 0 7−→ y := y + x
pc = 0 ∧ y < 0 7−→ pc := 1

Figure 4: Example illustrating non-terminating refinement for finite state systems

6. Properties

Having discussed correctness and termination, we now turn to other interesting prop-
erties of the algorithm.

6.1. Non-termination for Finite State System. We should note that the proposed
iterative algorithm is not guaranteed to terminate even for a finite state program. This
situation is illustrated by the example from Figure 4; x and y are initialized to zero. The
property that we check is that ”pc=1” is unreachable. Although the program is finite state
(and therefore the problem can be easily solved with classical explicit model checking), it is
quite difficult to solve using abstraction refinement techniques. The iterative algorithm does
not terminate on this example: it keeps adding predicates y ≥ 0, y + x ≥ 0, y + 2x ≥ 0, . . ..
Note that, in accordance with Theorem 2, it eventually produces a bisimilar structure.
However, the algorithm is not able to detect termination, and it keeps refining indefinitely.
The reason is that the algorithm keeps adding predicates that refine the unreachable part
of the system under analysis.

Also note that the same problem occurs with over-approximation based abstraction
techniques that use refinement based on weakest precondition calculations [7, 26]. Those
techniques introduce the same predicates. Moreover, unlike our technique, they will keep
generating spurious counter-examples. For this example no may/must abstraction based on
predicates and refinement with weakest precondition calculations can produce a structure
that is bisimilar to the concrete system (the concrete system is rather trivial — it has only
one state).

This example also illustrates another difference between the method presented here
and over-approximation based predicate abstraction with refinement, in particular [26].
If the analyzed system has a reachable finite bisimulation quotient then our algorithm is
guaranteed to find it (see Theorem 2 and Lemma 8). In contrast, the method in [26] will
fail to compute a finite state abstraction for the example; this result seems to contradict the
bisimulation completeness claim (Theorem 3) from [26]. We conjecture that the method
in [26] is not guaranteed to compute a finite state abstraction unless both the reachable and

unreachable quotient is finite.
To solve the problem of non-termination for finite state systems, we propose to use the

following heuristic. If there is a transition for which we cannot prove that the abstraction
is exact in several subsequent iterations of the algorithm, then we add predicates describing
the concrete state; i.e. in the example from Figure 4 we would add predicates x = 0 and
y = 0. The abstraction eventually becomes exact with respect to each transition. And since
the number of reachable transitions is finite, the algorithm must terminate.

Corollary 1. If the reachable part of JMK is finite state then the modified algorithm
terminates.
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Program State space

A

B

x:=1

C

x:=0

D

E

x:=x+2

x:=x+4

F

A,0

B,1 C,0

C,1 E,2 D,0

D,1 E,3 F,2 E,4

E,5 F,3 F,4

F,5

Figure 5: Example illustrating non-monotonic refinement

6.2. Search Order and Non-Monotonicity. The search order used in αSearch (depth-
first or breadth-first) influences the size of the generated structure, the newly computed
predicates, and even the number of iterations of the main algorithm. If there are two
states s1 and s2 such that αΦ(s1) = αΦ(s2) but s1 6∼ s2 then, depending on whether s1

or s2 is visited first, different parts of the transition system will be explored. For our
implementation, we use breadth-first search order.

Also note that the refinement algorithm is non-monotone, i.e. a labeling which is
reachable in one iteration may not be reachable in the next iteration. However, the algorithm
is guaranteed to converge to the correct answer. The example in Figure 5 illustrates this
non-monotonic behavior. Figure 5 (left) shows the transitions of the example program (for
clarity of presentation, we depict the program in a graphical notation); the program has
only one variable x; the program counter ranges over A, B, C . . . . Figure 5 (right) shows
the whole concrete state space of the program. As usual, states are labeled by the program
counter and the concrete value of program variable x. Let us consider the first iteration of
the algorithm, with abstraction predicate x ≥ 3 and with breadth-first search order – the
following states are visited: (A, 0), (B, 1), (C, 0), (E, 2), (D, 0), (F, 2), (E, 4), (F, 4). Assume
now that the refinement step adds a new predicate x = 1; then, in the second iteration, the
following states are visited: (A, 0), (B, 1), (C, 0), (C, 1), (E, 2), (D, 0), (D, 1), (E, 3), (F, 2),
(F, 3). States (E, 4) and (F, 4) are visited during the first iteration and they are not visited
during the second one.
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6.3. Relation to Other Abstractions. We discuss now the relationship between our ab-
straction based iterative algorithm and other (under-approximating) abstractions, in par-
ticular with the must abstractions from [30, 31] and with the abstractions induced by the
refined definition of must transitions presented in [3]. We first remark that the abstract
state space explored by our approach is (potentially) a better approximation than the must

abstraction. This is formulated by the following lemma.

Lemma 9. Let AP ⊆ Φ. Then RL(αSearch(M,Φ)) is a superset of the reachable labelings
in the must abstraction induced by Φ.

Proof: The lemma is a direct consequence of Lemma 1. �

As mentioned, the iterative refinement in our algorithm is non-monotonic. A simi-
lar problem occurs in the context of must abstractions: the set of must transitions is not
generally monotonically non-decreasing when predicates are added to refine an abstract
system [16, 31]. This problem is addressed in [30, 31], by creating hyper must transitions
(representing sets of must transitions). Note that the approaches presented in [3, 30, 31]
require the a-priori construction of abstract must (and hyper must) transitions and there-
fore make an exponential number of theorem prover calls. In contrast our approach does
not require the computation of abstract transitions, since it executes directly the concrete
transitions (and it only makes theorem prover calls during refinement).

Recently, Ball et al. [3] defined an extension of the must abstraction based on so called

must− transitions: a1
i

−→must− a2 iff for all concrete states s2 such that αΦ(s2) = a2, there

exists concrete state s1 such that αΦ(s1) = a1 and s1
i

−→ s2 (for some Φ).
They call the classical must transitions must+ transitions and they describe a reacha-

bility analysis that uses both must− and must+ transitions; the set of reachable labelings
is defined as {L(s) | s ∈ S : s0 −→∗

must−
si −→∗

must+
s}. This results in an under-

approximation of the set RL(JMK) and at the same time it is a better under-approximation
then the one obtained by classical must transitions.

Here we show that under-approximations based on must+/must− transitions and our
algorithm based on αSearch are incomparable. The (trivial) example in Figure 6 (a)
illustrates that αSearch can be more precise than the analysis based on must+/must−

transitions. If we consider the abstraction with respect to a single predicate x ≥ 0 we see
that the program transition is neither must+ nor must− (hence the set of reachable labelings
produced by the analysis from [3] contains only a labeling x ≥ 0) whereas αSearch executes
the transition and finds a labeling x < 0.

On the other hand, consider the example in Figure 6 (b) and an abstraction with
respect to a single predicate x ≥ 3. Due to state matching on the states represented by
(pc = 1, x = 1) and (pc = 1, x = 2), αSearch computes a different set of labelings,
depending on which of the first two transitions is traversed first from the initial state.
Therefore, the resulting set of reachable labelings contains only one of (pc = 3, x < 3),
(pc = 3, x ≥ 3). Under-approximation based on must+/must− transitions contains both of
these labelings.
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(a) x ≥ 0 7−→ x := x − 1

(b)

pc = 0 7−→ pc := 1, x := 1
pc = 0 7−→ pc := 1, x := 2
pc = 1 7−→ pc := 2, x := x + 1
pc = 2 ∧ x ≥ 3 7−→ pc := 3
pc = 2 ∧ x < 3 7−→ pc := 3

Figure 6: Examples showing that under-approximations based on αSearch and
must+/must− transitions are incomparable

7. Extensions

In this section we propose several extensions of the main algorithm.

7.1. Open Systems. Until now, we have discussed our approach in the context of “closed”
systems. However, the approach can be extended to handling “open” systems (i.e. programs
with inputs). In order to model open systems, we extend the guarded commands language
by allowing assignments of the form x := input , which assigns to program variable x an
arbitrary value from the input domain (in our case the set of integers). We can also allow
the initial values of the program variables to be unspecified, in which case the transition
system representing the open program has several (possibly unbounded) initial states.

In order to apply our approach, we need to compute, for each input variable, explicit
concrete values that drive the concrete execution of the program. What we really want here
is to pick one input value for each satisfiable valuation of the abstraction predicates. We can
directly use the original algorithm — it will simply try all the possible values and continue
the program execution only from values that satisfy the predicate combinations (most of
the states that contain such input values will be matched if they lead to the same valuation
of abstraction predicates). This “brute force” approach requires enumerating eventually
the whole input domain, which is impossible for infinite input domains. Note however that
the approach might still be very useful at detecting errors.

Alternatively, we can use a constraint solver for computing the input values that are so-
lutions of the satisfiable combinations of abstraction predicates (provided that satisfiability
is decidable for the abstraction predicates). The decision whether to use the “brute force”
approach or the satisfiability approach depends on the number of abstraction predicates and
the size of the input domain. With the brute force approach, the the whole input domain
needs to be enumerated eventually. With the satisfiability approach, there are at most 2k

satisfiability queries (where k is number of predicates which depend on the input variable).

7.2. Transition Dependent Predicates. The predicates that are generated after the
validity check for one transition are used ‘globally’ at the next iteration. This may cause
unnecessary refinement — the new predicates may distinguish states which do not need
to be distinguished. To avoid this, we could use ‘transition dependent’ predicates. The
idea is to associate the abstraction predicates with the program counter corresponding to
the transition that generated them. New predicates are then added only to the set of
the respective program counter. However, with this approach, it may take longer before
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predicates are ‘propagated’ to all the locations where they are needed, i.e. more iterations
are needed before an error is detected or an exact abstraction is found. We need to further
investigate these issues. Similar ideas are presented in [8, 21], in the context of over-
approximation based predicate abstraction.

7.3. Light-weight Approach. As mentioned, the under-approximation and refinement
approach can be used in a lightweight but systematic manner, without using a theorem
prover for validity checking. Specifically, for each explored transition ti refinement adds
the new predicates from αΦ(s′)[ei(~x)/~x], regardless of the fact that the abstraction is exact
with respect to transition ti. This approach may result in unnecessary refinement. A similar
refinement procedure was used in [26] for over-approximation predicate abstraction.

We are also considering several heuristics for generating new abstraction predicates.
For example, it is customary to add the predicates that appear in the guards and in the
property to be checked. One could also add predicates generated dynamically, using tools
like Daikon [13], or predicates from known invariants of the system, generated using static
analysis techniques. Section 8 shows an example where a statically computed invariant
helped with the termination of the presented iterative algorithm.

In order to extend the applicability of the proposed technique to the analysis of full-
fledged programming languages, we are investigating abstractions that record information
about the shape of the program heap, to be used in conjunction with the abstraction
predicates. We have reported about these experiments in [34].

8. Implementation and Applications

We have implemented our approach for the guarded command language. Our imple-
mentation is done in the language Ocaml1 and it uses the Simplify theorem prover [12].
The implementation has just 590 lines of code (parsing + definition of semantics: 390 lines,
αSearch algorithm: 170 lines, RefinementSearch algorithm: 30 lines). The implemen-
tation uses several optimizations for reducing the number of theorem prover calls:

• When updating Φnew for refinement, we add only those conjuncts of αΦ(s′)[ei(~x)/~x]
for which we cannot prove validity.

• We cache queries to ensure that Simplify is not called twice for the same query.
• All queries have the form of implication. Before calling the theorem prover for the

implication, we check whether the right hand side is a tautology (in such case the
implication is clearly satisfied). The results of these checks are also cached.

8.1. Experiments. We discuss the application of our implementation for error detection
and property verification in several multi process programs. The examples are: the ticket
mutual exclusion protocol, RAX (Remote Agent Experiment), a component extracted from
an embedded spacecraft-control application, and the bakery mutual exclusion protocol. We
also analyzed a single process device driver taken from [5], which is a “classic” example
analyzed with predicate abstraction techniques. We analyzed defective and correct versions
of each example program. The RAX and device driver had known errors that we checked
for. For the other examples, we seeded faults to obtain the defective versions.

1http://caml.inria.fr/
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Example Iterations Concrete States Abstract States New Predicates Queries
(per iteration) (per iteration)

ticket2-err 2 15, 31 9, 17 5 38
ticket3-err 1 102 44 4 14
RAX-err 1 69 44 0 10

bakery-err 1 356 191 14 89
driver-err 1 10 10 0 2
ticket2 4 15, 15, 15, 15 9, 9, 9, 9 6 124
ticket3 5 52, 58, 58, 58, 58 25, 31, 31, 31, 31 11 603
RAX – – – – –

bakery 3 278, 410, 537 152, 221, 292 24 1598
driver 2 10 9 0 7

Table 1: Experimental results

Note that in the described experiments, we always start the first iteration of the re-
finement algorithm with the program predicates which occur in guards. All the reported
results are for the breadth-first search order.

Table 1 summarizes the results for each of the runs of our algorithm. The first part
of the table reports the analysis results for the defective examples (denoted with the -err

suffix), while the second part of the table reports the results for the correct examples. For
each example we report numbers for: refinement iterations, generated concrete states and
stored abstract states, generated predicates, and queries to the theorem prover. A ”–” for
RAX denotes that our analysis did not finish for this example (see discussion below). Note
that for the concrete and abstract states, we report separate numbers for each iteration.
For example, running our tool on the error version of the ticket protocol with two processes
(ticket2-err) discovered the error after 2 iterations; in the first iteration, the tool gen-
erated 15 concrete states and it stored 9 abstract states, while in the second iteration, it
generated 31 concrete states and it stored 17 abstract states. We discuss the experiments
in more detail below (full details are available at [27]).

8.2. Ticket Protocol. This is a protocol for mutual exclusion [1]; we use the formalization
of the algorithm from [6]. The algorithm is based on a simple “ticket” procedure: a process
which wants to enter the critical section draws a ticket number that is one larger than
the number held by any other process. The process then waits until all processes with
smaller numbers are served: this is checked by a “display” variable which shows the value
of the ticket number which is currently the smallest. The model of the protocol is given in
Figure 7. The property of interest is mutual exclusion in critical section (¬(pc1 = 2∧ pc2 =
2 ∨ pc2 = 2 ∧ pc3 = 2 ∨ pc1 = 2 ∧ pc3 = 2)). The state space is infinite (the ticket numbers
increase without any bound), but it has a finite bisimulation quotient.

We used our tool to prove successfully that the property holds. We analyzed several ver-
sions of the protocol. The intermediate analysis results for the protocol with three processes
are given in Table 2. We report the following results for each iteration of the refinement
algorithm: the number of generated concrete states, the number of stored abstract states,
the number of queries to the theorem prover, the number of hits to a queries cache, and the
newly generated predicates.
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pc1 = 0 7−→ pc1 := 1, a1 := t, t := t + 1
pc1 = 1 ∧ a1 ≤ s 7−→ pc1 := 2
pc1 = 2 7−→ pc1 := 0, s := s + 1

pc2 = 0 7−→ pc2 := 1, a2 := t, t := t + 1
pc2 = 1 ∧ a2 ≤ s 7−→ pc2 := 2
pc2 = 2 7−→ pc2 := 0, s := s + 1

pc3 = 0 7−→ pc3 := 1, a3 := t, t := t + 1
pc3 = 1 ∧ a3 ≤ s 7−→ pc3 := 2
pc3 = 2 7−→ pc3 := 0, s := s + 1

Figure 7: Ticket protocol (instance for three processes)

Iteration Concrete Abstract Num. Cache New predicates
states states queries hits

1 52 25 14 18 a1 ≤ s + 1, a2 ≤ s + 1, a3 ≤ s + 1,
t ≤ s

2 58 31 70 152 a1 ≤ s + 2, a2 ≤ s + 2, a3 ≤ s + 2,
t ≤ s + 1, t + 1 ≤ s

3 58 31 151 475 t ≤ s + 2
4 58 31 173 585 t ≤ s + 3
5 58 31 195 657 -

Table 2: Ticket protocol for three processes: intermediate results

As discussed, we also seeded an error in the protocol and used our tool for error de-
tection. The error was seeded by changing the assignment s := s + 1 into s := s + 2. For
an instance with two processes the error is found after two iterations. For an instance with
three processes the error state can be reached by suitable interleaving in the first round of
the protocol and the tool finds the error in the first iteration.

8.3. RAX. The RAX example (illustrated in Figure 8) is derived from the software used
in the NASA Deep Space 1 Remote Agent experiment, which deadlocked during flight [33].
We encoded the deadlock check as “pc1 = 4 ∧ pc2 = 5 ∧ w1 = 1 ∧ w2 = 1 is unreachable”.
The error is found after one iteration; the reported counter-example has 8 steps.

Note that the state space of the program is unbounded, as the program keeps incre-
menting the counters e1 and e2, when pc2 = 2 and pc1 = 6, respectively. We also ran our
algorithm to see if it converges to a finite bisimulation quotient. Interestingly, the algorithm
does not terminate for the RAX example, although it has a finite reachable bisimulation
quotient. The results are shown in Table 3. However, if we assume that the counters in the
program are non-negative, i.e. we introduce two new predicates, e1 ≥ 0, e2 ≥ 0 (which can
be easily discovered using static analysis), then the algorithm terminates after two itera-
tions. The tool reports the following results : 69 concrete and 44 abstract states explored
in the first iteration, 101 concrete and 65 abstract states in the second iteration, two new
predicates and 40 queries.
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pc1 = 1 7−→ c1 := 0, pc1 := 2
pc1 = 2 ∧ c1 = e1 7−→ pc1 := 3
pc1 = 3 7−→ w1 := 1, pc1 := 4
pc1 = 4 ∧ w1 = 0 7−→ pc1 := 5
pc1 = 2 ∧ c1 6= e1 7−→ pc1 := 5
pc1 = 5 7−→ c1 := e1, pc1 := 6
pc1 = 6 7−→ e2 := e2 + 1,w2 := 0, pc1 := 2

pc2 = 1 7−→ c2 := 0, pc2 := 2
pc2 = 2 7−→ e1 := e1 + 1,w1 := 0, pc2 := 3
pc2 = 3 ∧ c2 = e2 7−→ pc2 := 4
pc2 = 4 7−→ w2 := 1, pc2 := 5
pc2 = 5 ∧ w2 = 0 7−→ pc2 := 6
pc2 = 3 ∧ c2 6= e2 7−→ pc2 := 6
pc2 = 6 7−→ c2 := e2, pc2 := 2

Figure 8: RAX example

Iteration Concrete Abstract Num. Cache New predicates
states states queries hits

1 69 44 10 10 e1 = 0, e2 = 0
2 101 65 20 44 e1 = −1, e2 = −1
3 101 65 26 64 e1 = −2, e2 = −2
4 101 65 32 84 . . .

Table 3: RAX example: intermediate results

8.4. Bakery Protocol. This is another well-known protocol for mutual exclusion. The
protocol is similar to the ticket protocol (the ticket protocol requires special hardware in-
struction like Fetch-and-Add, whereas the bakery protocol is applicable without any special
instructions). The model has 10 variables. The property of interest is again mutual ex-
clusion. The state space is infinite with a finite bisimulation quotient. The property can
be proved by the algorithm in three iterations, using 31 predicates. For this example, we
seeded an error by changing a guard num1 < num0 into num1 > num0 which creates a
nontrivial error in the protocol. The tool can find the error in the first iteration.

8.5. Device Driver. This is a “classic” example analyzed using predicate abstraction [5].
The property of interest is the correct use of a lock. Our tool can prove that the property
holds after one iteration (using just the predicates from guards): the algorithm explores
10 concrete states, 9 abstract states and casts 3 queries to the theorem prover. For an
erroneous version of the driver, the tool finds an error in the first iteration as well.

8.6. Discussion. These preliminary experiments show the merits of our approach. The ap-
proach proves to be effective in computing finite bisimilar structures of non-trivial infinite
state systems and in finding errors using under-approximation based predicate abstraction.
Of course, much more experimentation is necessary to really assess the practical benefits
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of the proposed technique and a lot more engineering is required to apply it to real pro-
gramming languages. Extensions for handling complex features such as pointers, arrays and
procedures, are tedious but conceptually not very hard.

We also note that in some cases (e.g. ticket2, ticket3 and RAX) the number of ex-
plored concrete and abstract states stays the same after the first iteration; however our
algorithm needs more than two iterations to discover all the necessary abstraction predi-
cates, according to the exactness criteria that we defined. The results suggest that it is
possible to relax these criteria and still provide a guarantee that the relevant state space of
the analyzed program has been explored. We leave this topic for future work.

8.7. Comparison and Combination with Over-approximation Based Approaches.
We should mention that the application of over-approximation based predicate abstraction
to a Java version of RAX is described in detail in [33]. In that work, four different predicates
were used to produce an abstract model that is bisimilar to the original program. In
contrast, the work presented here allowed more aggressive abstraction to recover feasible
counter-examples. Our technique explores transitions that are guaranteed to be feasible.
In contrast, the over-approximation based techniques such as the ones from [4, 7, 22] may
also explore transitions that are spurious and therefore could require additional refinement
before reporting a real counter-example.

As mentioned, over-approximation based abstraction techniques involve exponentially
many theorem prover queries (in the number of predicates), at each iteration. This com-
putation is performed regardless of the size of (the reachable portion of) the analyzed
system. In our case, theorem prover queries are only performed during refinement and they
involve only the reachable state space of the system under analysis. On the other hand,
over-approximation based techniques are good at proving properties (as they compute ab-
stractions that are coarser than the bisimulation quotient but sufficient to prove safety
properties). We believe however that the technique presented here is complementary to
over-approximation abstractions and it should combined (rather than compared) with such
techniques. Our technique could be used for discovering efficiently feasible counter-examples
in the space bounded by the abstraction predicates (that are used in the over-approximation
analysis). In the future, we plan to study more the strengths and weaknesses of each ap-
proach and to investigate their integration.

9. Related Work

Throughout the paper, we have already discussed the relationship between our work
and predicate abstraction (see the previous section and also Section 6, where we compared
our work with over-approximation approaches, in particular the work of Namjoshi and
Kurshan [26], and with under-approximation approaches using must transitions [3, 30, 31]).
We discuss here other approaches that are closely related to ours.

The work of Grumberg et al. [20] uses a refinement of an under-approximation to
improve analysis of multi-process systems. The procedure in [20] checks models with an
increasing set of allowed interleavings of the given processes, starting from a single inter-
leaving. It uses SAT-based bounded model checking for analysis and refinement, whereas
here we focus on explicit model checking and predicate abstraction, and we use weakest
precondition calculations for abstraction refinement.
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Another closely related work is that of Lee and Yannakakis [24], which proposes an on-
the-fly algorithm for computing the bisimulation quotient of an (infinite state) transition
system. Similar to our approach, the algorithm from [24] traverses concrete transitions
while computing blocks of equivalent states; if some transition is found to be unstable

the block is split into sub-blocks. Note however that unlike [24] our algorithm is geared
towards error detection and it is formulated in terms of predicate abstraction with a clear
separation between state exploration and refinement. There are other important differences
between our approach and the work presented in [24]. We use refinement globally while
the block splitting in [24] is local. This makes the approach in [24] more efficient in the
number of visited states. On the other hand, the global refinement has the advantage of
faster propagating the new predicates across the system but it may lead to unnecessary
refinement. As a consequence of this global refinement, our algorithm may not compute
the bisimulation quotient (as in [24]) but rather just a bisimilar structure (due to extra
refinement). We view the experimental comparison of the two approaches as an interesting
topic for future work.

In previous work [28], we developed a technique for finding feasible counter-examples in
abstracted programs. The technique essentially explores an under-approximation defined by
the must abstract transitions (although the presentation is not formalized in these terms).
The work presented here explores an under-approximation which is more precise than the
abstract system defined by the must transitions. Hence it has a better chance of finding
bugs while enabling more aggressive abstraction and therefore more state space reduction.

Model-driven software verification [23] advocates the use of abstraction mappings during
concrete model checking in a way similar to what we present here. In their approach,
the abstraction function needs to be provided by the user. The CMC model checking
tool [25] also attempts to store state information in memory using aggressive compressing
techniques (which can be seen as a form of abstraction), while the detailed state information
is kept on the stack. These techniques allow the detection of subtle bugs which can not
be discovered by classical model checking, using e.g. breadth first search or by state-less
model checking [15]. While these techniques use abstractions in an ad-hoc manner, our
work contributes the automated generation and refinement of abstractions.

Directed automated random testing (DART) [17] performs a concrete execution on
random inputs and it collects the path constraints along the executed paths. These path
constraints are then used to compute new inputs that drive the program along alternative
paths. The approach in [17] is similar to ours as it combines concrete program execution
with a symbolic analysis. However, DART applies only to sequential programs, not to
concurrent programs as we do here. Moreover, DART attempts to cover all the feasible
paths through the program, not the reachable (abstract) states as we do in our approach.
DART does not perform any state matching, and therefore it can not detect if an (abstract)
state has been visited before. As a result, DART can potentially explore redundant states,
e.g. for looping, reactive, programs. Another (methodological) difference is that DART
uses symbolic evaluation while our method uses predicate abstraction with refinement.

Dataflow and type-based analyzes have been used to check safety properties of soft-
ware (e.g. [32]). Unlike our work, these techniques analyze over-approximations of system
behavior and may generate false reports due to infeasible paths.
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10. Conclusions and Future Work

We presented a model checking algorithm based on refinement of under-approximations,
which effectively preserves the defect detection ability of model checking in the presence
of powerful abstractions. The under-approximation is obtained by traversing the concrete
transition system and performing the state matching on abstract states computed by pred-
icate abstraction. The refinement is done by checking exactness of abstractions with the
use of a theorem prover. We illustrated the application of the algorithm for checking safety
properties of concurrent programs. In the future, we plan to investigate whether we can
extend the algorithm with property driven refinement and with checking liveness properties.
We also plan to investigate the integration of our approach with over-approximation based
abstraction refinement and to do an extensive evaluation on large systems.
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