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Abstract. Metric Temporal Logic (MTL) is a prominent specification formalism for real-
time systems. In this paper, we show that the satisfiability problem for MTL over finite
timed words is decidable, with non-primitive recursive complexity. We also consider the
model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed
automaton satisfy a given MTL formula. We show that this problem is decidable over finite
words. Over infinite words, we show that model checking the safety fragment of MTL—
which includes invariance and time-bounded response properties—is also decidable. These
results are quite surprising in that they contradict various claims to the contrary that have
appeared in the literature.

1. Introduction

In the linear-temporal-logic approach to verification, an execution of a system is mod-
elled by a sequence of states or events. This representation abstracts away from the precise
times of observations, retaining only their relative order. Such an approach is inadequate to
express specifications of systems whose correct behaviour depends on quantitative timing
requirements. To address this deficiency, much work has gone into adapting linear temporal
logic to the real-time setting; see, e.g., [6, 7, 9, 10, 24, 27, 32, 35].

Real-time logics feature explicit time references, typically by recording timestamps
throughout computations. In this paper, we concentrate exclusively on the dense-time,
or real-time, semantics, in which the timestamps are drawn from the set of real numbers.1

An important distinction among real-time models is whether one adopts a state-based se-
mantics [7, 21, 32] or an event-based semantics [16, 9, 10, 18, 19, 35]. In the former, an
execution of a system is modelled by a function that maps each point in time to the state
propositions that are true at that moment. In the latter, one records only a countable
sequence of events, corresponding to changes in the discrete state of the system. The dis-
tinction between these two semantic models is discussed, among others, in [8, 18]. As we will
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orders.
1By contrast, in discrete-time settings timestamps are usually integers, which yields more tractable the-

ories that however correspond less closely to physical reality [19, 5].
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explain, the main results of this paper crucially depend on our adoption of the event-based
model.

One of the earliest and most popular proposals for extending temporal logic to the
real-time setting is to replace the temporal operators by time-constrained versions—see [8]
and the references therein. Metric Temporal Logic (MTL), introduced fifteen years ago
by Koymans [24], is a prominent and successful instance of this approach.2 MTL extends
Linear Temporal Logic by constraining the temporal operators by (bounded or unbounded)
intervals of the real numbers. For example, the formula ✸[3,4] ϕ means that ϕ will hold
within 3 to 4 time units from now.

Unfortunately, over the state-based semantics, the satisfiability and model-checking
problems for MTL are undecidable [16]. This has led some researchers to consider var-
ious restrictions on MTL to recover decidability; see, e.g., [6, 7, 19, 35]. Undecidability
arises from the fact that MTL formulas can capture the computations of a Turing machine:
configurations of the machine can be encoded within a single unit-duration time interval,
since the density of time can accommodate arbitrarily large amounts of information. An
MTL formula can then specify that configurations be accurately propagated from one time
interval to the next, in such a way that the timed words satisfying the formula correspond
precisely to the halting computations of the Turing machine.

It turns out that the key ingredient required for this procedure to go through is punc-
tuality : the ability to specify that a particular event is always followed exactly one time
unit later by another one: �(p → ✸=1 q). It has in fact been claimed that, in the state-
based and the event-based semantics alike, any logic strong enough to express the above
requirement will automatically be undecidable—see [8, 9, 18, 20], among others. While the
claim is correct over the state-based semantics, we show in this paper that it is erroneous
in the event-based semantics. Indeed, we show that both satisfiability and model checking
for MTL over finite timed words are decidable, albeit with non-primitive recursive complex-
ity. Over infinite words, we show that model checking the safety fragment of MTL—which
includes invariance and punctual time-bounded response properties—is also decidable.

Upon careful analysis, one sees that the undecidability argument breaks down because,
over the event-based semantics, MTL is only able to encode faulty Turing machines, that is,
Turing machines suffering from insertion errors: while the formula �(p ↔ ✸=1 q) ensures
that every p is followed exactly one time unit later by a q, there might be some q’s that
were not preceded one time unit earlier by a p (indeed, by any event at all). Intuitively,
this problem does not occur over the state-based semantics because there the system is
assumed to be under observation at all instants in time, and therefore any insertion error
will automatically be detected thanks to the above formula.

MTL is also genuinely undecidable over the event-based semantics if in addition past
temporal operators are allowed [9, 16]. Indeed, in this setting insertion errors can be detected
by going backwards in time, and MTL formulas are therefore able to precisely capture the
computations of perfect Turing machines.3

The decidability results that we present in this paper are obtained by translating MTL
formulas into timed alternating automata. These generalise Alur-Dill timed automata, and,
unlike the latter, are closed under complementation. Building on some of our previous
work [28], using the theory of well-structured transition systems, we show that the language

2As of early 2006, http://scholar.google.com lists over three hundred and fifty papers on the subject!
3The original undecidability proof in [9] was carried out in a monadic first-order theory of timed words,

which subsumes both forward and past temporal operators.
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emptiness problem for one-clock timed alternating automata over finite timed words is
decidable, which then entails the decidability of MTL satisfiability over finite timed words.
We furthermore show how to extend these results to the model-checking problems discussed
earlier. In addition, we show that MTL formulas can capture the computations of insertion
channel machines; then, using a result of Schnoebelen about the complexity of reachability
for lossy channel machines [33], we give a non-recursive primitive lower bound for the
complexity of MTL satisfiability.

1.1. Related Work. Existing decidability results for MTL involve placing restrictions on
the semantics or the syntax of the logic to circumvent the problem of punctuality. Alur and
Henzinger [9] showed that the satisfiability and model-checking problems for MTL relative
to a discrete-time semantics are EXPSPACE-complete. Alur, Feder, and Henzinger [6, 7]
introduced Metric Interval Temporal Logic (MITL) as a fragment of MTL in which the
temporal operators may only be constrained by nonsingular intervals. They showed that
the satisfiability and model-checking problems for MITL relative to a dense-time semantics
are also EXPSPACE-complete. Wilke [35] considered MTL over a dense-time semantics
with bounded variability, i.e., the semantics is parameterised by a bound k on the number
of events per unit time interval. He showed that the satisfiability problem is decidable in
this semantics and that MTL with existential quantification over propositions is equally
expressive as Alur-Dill timed automata.

A notion of timed alternating automaton very similar to the one considered here has
recently and independently been introduced by Lasota and Walukiewicz [25]. They also
prove that the finite-word language emptiness problem is decidable for one-clock timed
alternating automata, and likewise establish a non-primitive recursive complexity bound
for this procedure. However they do not consider any questions related to MTL, or timed
logics in general.

A class of timed alternating tree automata has been defined by Dickhöfer and Wilke [14]
in the context of model checking a real-time version of Computation Tree Logic, called
TCTL. The language-emptiness problem for these automata is undecidable in general.
However, TCTL model checking reduces to a special case of language emptiness, which is
shown in [14] to be decidable using Alur and Dill’s clock regions construction. In contrast,
bounded-dimension clock regions do not suffice in the present paper: we combine clock
regions with the notion of well-quasi-orders.

Another closely related paper is that of Abdulla and Jonsson [4] on networks of one-
clock timed processes. This has a similar flavour to the work presented here in that it uses
abstractions based on clock regions and also Higman’s Lemma. The problems they study
are however very different from the ones considered in this paper.

All the decidability results presented in this paper concern timed alternating automata
over finite timed words, including the results that are ostensibly about infinite timed words.
In particular, our model-checking procedure for the safety fragment of MTL over infinite
timed words depends on the fact that any infinite timed word violating a safety property
has a finite bad prefix, that is, a finite prefix none of whose extensions satisfies the property.
Since writing the extended abstract of this paper [29], we have obtained some positive and
negative decidability results about the language emptiness problem for timed alternating
automata over infinite words. We discuss these results in the conclusion, Section 9.



4 J. OUAKNINE AND J. WORRELL

2. Timed Words and Timed Automata

A time sequence τ = τ1τ2τ3 . . . is a non-empty finite or infinite sequence of time values
τi ∈ R≥0 satisfying the following constraints (where |τ | denotes the length of τ):

• monotonicity : τi ≤ τi+1 for all i such that 1 ≤ i < |τ |
• progress: if τ is infinite, then {τi : i ≥ 1} is unbounded.

A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ1σ2σ3 . . . is a non-empty
finite or infinite word over Σ and τ is a time sequence of the same length as σ. We also rep-
resent a timed word as a sequence of timed events by writing ρ = (σ1, τ1)(σ2, τ2)(σ3, τ3) . . ..
Given a timed word ρ = (σ, τ) and n ≤ |ρ|, let ρ[1 . . . n] denote the prefix (σ1, τ1) . . . (σn, τn).
Finally, write TΣ∗ for the set of finite timed words over alphabet Σ, and TΣω for the set
of infinite timed words over Σ.

The requirement that infinite timed words be progressive is sometimes called non-
Zenoness or finite variability. It is equivalent to the requirement that an infinite number of
events not occur in a finite amount of time. Note however that, unlike [35], we place no a
priori bound on the number of events that can occur in a time interval of unit duration.

2.1. Timed Automata. Definition 2.1 recalls the standard notion of a timed automa-
ton [5]. Elsewhere in this paper we refer to the timed automata defined below as Alur-Dill
automata. This is to distinguish them from the more general class of timed alternating
automata, which we introduce in Section 3 and which is our primary focus.

Let X = {x1, . . . , xn} be a finite set of clock variables. Define the set ΦX of clock
constraints over X by the grammar

ϕ ::= true | x ⊲⊳ c | ϕ1 ∧ ϕ2 ,

where c ∈ N is a non-negative integer, x ∈ X, and ⊲⊳ ∈ {<,≤,≥, >}.

Definition 2.1. A timed automaton is a tuple A = (Σ, S, s0, F,X,∆), where

• Σ is a finite alphabet of events
• S is a finite set of locations
• s0 ∈ S is an initial location
• F ⊆ S is a set of accepting locations
• X is a finite set of clock variables
• ∆ ⊆ S×Σ×S ×ΦX × 2X is a finite set of edges. An edge (s, a, s′, ϕ,R) denotes an
a-labelled transition from s to s′, with precondition ϕ, and with the postcondition
that all clocks in R are reset to zero while all other clocks remain unchanged.

Given a timed automaton A, let cmax be the maximum constant appearing in a clock
constraint in A. The set of clock values appropriate to A is defined to be Val = [0, cmax] ∪
{⊤}, where ⊤ represents any clock value strictly greater than cmax. ⊤ satisfies the expected
arithmetic and order-theoretic properties: if v ∈ [0, cmax] and t ∈ R+ are such that v+t>cmax

then we write v + t = ⊥; we also define ⊤ + t = ⊤ for all t ∈ R≥0; finally, we define ⊤> v
for all v ∈ Val.4 A clock valuation of A is a vector v = (v1, . . . , vn), where vi ∈ Val gives
the value of clock xi. If t ∈ R≥0, we let v + t be the clock valuation whose i-th component
is vi + t. A state of A is a pair (s,v), where s ∈ S is a location and v is a clock valuation.
Write Q = S × Val

n for the set of states of A.

4Identifying all clock values strictly greater than cmax is harmless since such values are indistinguishable
by clock constraints. Moreover this identification will later turn out to be technically advantageous.
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Automaton A induces a labelled transition system TA = (Q, ,−→) on the set of states,
where  ⊆ Q× R≥0 × Q is called the delay-step relation, and −→ ⊆ Q × Σ × Q is called
the discrete-step relation. Delay steps model the evolution of time while the automaton
remains in a given location, while discrete steps correspond to instantaneous transitions
between locations. The delay-step transition relation is deterministic, and is defined by

(s,v) t
 (s,v+ t), where t ∈ R≥0. The discrete-step relation is defined by (s,v) a−→ (s′,v′)

iff there is an edge (s, a, s′, ϕ,R) ∈ ∆ such that v satisfies ϕ, v′i = 0 for all xi ∈ R and
v′i = vi for all xi 6∈ R.

Let ρ = (σ, τ) be a timed word, and write di = τi − τi−1 for the time delay between the
(i − 1)th and ith events of ρ, where 1 ≤ i ≤ |ρ|, and, by convention, τ0 = 0. Define a run
of A on ρ to be an alternating sequence of time delays and discrete steps in TA:

(s0,v0)
d1
 (s1,v1)

σ1−→ (s2,v2)
d2
 (s3,v3)

σ2−→ · · ·
dn

 (s2n−1,v2n−1)
σn−→ · · · ,

where s0 is the initial location and v0 maps every clock variable to 0.
A finite run is accepting if the last location in the run is accepting. An infinite run is

accepting if infinitely many control states in the run are accepting. We write Lf (A) for the
set of finite timed words over which A has an accepting run, and we write Lω(A) for the
set of infinite timed words over which A has an accepting run.

3. Timed Alternating Automata

In this section we define timed alternating automata. These arise by extending alternat-
ing automata [11, 13, 34] with clock variables, in much the same way that Alur-Dill timed
automata extend nondeterministic finite automata. A similar notion has independently
been investigated by Lasota and Walukiewicz in a recent paper [25]. It will soon become
apparent that timed alternating automata strictly generalise Alur-Dill automata. However
we chose to introduce Alur-Dill automata separately, in Section 2, since by so doing we
can avoid considering timed alternating automata with Büchi acceptance conditions. (This
greatly simplifies the definition of a run of an alternating automaton because we can elide
the tree structure—see below.)

Timed alternating automata can in general be defined to have any number of clocks.
Our goal, however, is to use them to represent metric temporal logic formulas, for which
one clock suffices. Accordingly, we shall exclusively focus on one-clock timed alternating
automata in this paper.5 In this section we only consider timed alternating automata over
finite timed words.

3.1. One-clock Timed Alternating Automata. Let S be a finite set of locations and
let x be a distinguished clock variable. We define a set of formulas Φ(S) by the grammar:

ϕ ::= true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | s | x ⊲⊳ c | x.ϕ ,

where c ∈ N, ⊲⊳ ∈ {<,≤,≥, >}, and s ∈ S. A term of the form x ⊲⊳ c is called a clock
constraint, whereas the expression x.ϕ is a binding construct corresponding to the operation
of resetting the clock x to 0.

5We note in passing that virtually all decision problems, and in particular language emptiness, are
undecidable for timed alternating automata that have more than one clock; cf. Section 4.
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In the definition of a timed alternating automaton, below, the transition function maps
each location s ∈ S and event a ∈ Σ to an expression in Φ(S). Thus alternating au-
tomata allow two modes of branching: existential branching, represented by disjunction,
and universal branching, represented by conjunction.

Definition 3.1. A timed alternating automaton is a tuple A = (Σ, S, s0, F, δ), where

• Σ is a finite alphabet
• S is a finite set of locations
• s0 ∈ S is the initial location
• F ⊆ S is a set of accepting locations
• δ : S × Σ → Φ(S) is the transition function.

The notion of a run of a timed alternating automaton, defined below, is somewhat
involved, so we first give an example.

Example 3.2. We define an automaton A over the singleton alphabet Σ = {a} that
accepts all those finite timed words in which no two events are separated by exactly one
time unit. This language is known not to be expressible as the language of an Alur-Dill timed
automaton [22]. The required timed alternating automaton has set of locations {s0, s1},
with s0 initial, and both s0 and s1 accepting. The transition function is defined by:

δ(s0, a) = s0 ∧ x.s1

δ(s1, a) = s1 ∧ x 6= 1 .

A run of A starts in location s0. Every time an a-event occurs, the automaton makes a
conjunctive transition to both s0 and s1, thus opening up a new thread of computation.
The automaton resets a fresh copy of clock x whenever it transitions from location s0 to s1,
and the transition rule for s1 ensures that no event can happen when the value of this clock
equals one. Every run of this automaton is accepting, since every location is accepting, but
there is no run over any word in which two events are separated by exactly one time unit.

We now proceed to the formal definitions. Let cmax be the maximum constant men-
tioned in the definition of the transition function of A, and, as with Alur-Dill automata,
define the set of clock values relevant to A to be Val = [0, cmax] ∪ {⊤}. A state of A is a
pair (s, v), where s ∈ S is a location and v ∈ Val is a clock valuation. Write Q = S × Val

for the set of all states of A.
A set of states M ⊆ Q and a clock valuation v ∈ Val defines a Boolean valuation on

Φ(S) as follows:

• M |=v true

• M |=v ϕ1 ∧ ϕ2 if M |=v ϕ1 and M |=v ϕ2

• M |=v ϕ1 ∨ ϕ2 if M |=v ϕ1 or M |=v ϕ2

• M |=v s if (s, v) ∈M
• M |=v x ⊲⊳ c if v ⊲⊳ c
• M |=v x.ϕ if M |=0 ϕ.

We say that a set of states M is a minimal model of a formula ϕ ∈ Φ(S) with respect to
clock value v ∈ Val if M |=v ϕ and there is no proper subset M ′ ⊂M with M ′ |=v ϕ.6

6Our use of minimal models here is a technical convenience, since, as we will see later, the minimal models
of formula ϕ can be directly related to the syntactic structure of ϕ when the latter is given in disjunctive
normal form.
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Example 3.3. The minimal models of ϕ ≡ x.s0 ∧ (s1 ∨ s2) with respect to the clock value
v = 1.2 are {(s0, 0), (s1, 1.2)} and {(s0, 0), (s2, 1.2)}.

A configuration of A is a finite set of states; thus the set of configurations is the finite
powerset of the set Q of states, and is denoted ℘(Q). The initial configuration is {(s0, 0)}
and a configuration is accepting if every location that it contains is accepting. Note in
particular that the empty configuration is accepting. Given a configuration C and a time
delay t ≥ 0, denote by C + t the configuration {(s, v + t) : (s, v) ∈ C}.

The language accepted by a timed alternating automaton over finite words can be
described in terms of a transition system of configurations, defined below.

Definition 3.4. Given a timed alternating automaton A, we define the labelled transition
system TA = (℘(Q), ,−→) over the set of configurations as follows. The (R≥0)-labelled
transition relation  ⊆ ℘(Q)×R≥0 ×℘(Q) captures time evolutions, or delay steps, and is

defined by C t
 C ′ iff C ′ = C + t.

The Σ-labelled transition relation −→ ⊆ ℘(Q)×Σ×℘(Q) captures instantaneous tran-
sitions between locations, or discrete steps. Let C = {(si, vi)}i∈I . We include a transition
C a−→ C ′ iff one can write C ′ =

⋃
i∈I Mi, where, for each i ∈ I, Mi is a minimal model of

δ(si, a) with respect to vi.

Let ρ = (σ, τ) be a finite timed word with |ρ| = n, and write di = τi−τi−1 for 1 ≤ i ≤ |ρ|,
where, by convention, τ0 = 0. Define a run of A on ρ to be a finite alternating sequence of
time delays and discrete steps in TA:

C0
d1
 C1

σ1−→ C2
d2
 C3

σ2−→ · · ·
dn

 C2n−1
σn−→ C2n ,

where C0 is the initial configuration. We say that the run is accepting if the last configuration
C2n is accepting, and we say that the timed word ρ is accepted by A if there is some accepting
run of A on ρ. We write Lf (A) ⊆ TΣ∗ for the language of finite timed words accepted by

A.7

Example 3.5. A time-bounded response property such as ‘for every a-event there is a
b-event exactly one time unit later’ can be expressed by the following automaton. Let A
have two locations {s0, s1} with s0 the initial and only accepting location, and transition
function δ given by the following table:

a b
s0 s0 ∧ x.s1 s0
s1 s1 (x = 1) ∨ s1

Location s0 represents an invariant, and is present in every configuration in any run of A.
When an a-event occurs, the conjunction in the definition of δ(s0, a) results in the creation
of a new thread of computation, starting in location s1. Since this location is not accepting,
the automaton must eventually leave it. This is only possible if a b-event happens exactly
one time unit after the new thread was spawned.

7It is usual to define a run of an alternating automaton to be a tree of states. However, over finite words
the branching structure plays no role in the definition of acceptance, and we simply define a run to be a
sequence of configurations, where each configuration represents a given level of the run tree.
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3.2. Duality and Complementation. The following derivation shows that the class of
languages definable by timed alternating automata is closed under complement. Since
it is straightforward to show that this class is also closed under union, timed alternating
automata are closed under all Boolean operations. The arguments presented here are similar
to the untimed case [11, 13].

Given ϕ ∈ Φ(S), we define the dual formula ϕ ∈ Φ(S) as follows. The dual of a
clock constraint is its negation (e.g., x < k = x ≥ k), whereas each location is self-dual:
s = s for s ∈ S. For the propositional connectives we have the usual de Morgan dualities:
true = false, false = true, ϕ1 ∨ ϕ2 = ϕ1 ∧ϕ2 and ϕ1 ∧ ϕ2 = ϕ1 ∨ϕ2. Finally, clock resets
distribute through the duality operator: x.ϕ = x.ϕ.

Let A = (Σ, S, s0, F, δ) be an alternating timed automaton, and denote by Q its set
of states. The complement automaton Ac is defined by Ac = (Σ, S, s0, S \ F, δ), where

δ(s, a) = δ(s, a) for each s ∈ S and a ∈ Σ. Thus we take the dual transition function and
the complement of the set of accepting locations.

Proposition 3.6. Let ϕ ∈ Φ(S) be a formula over set of locations S and let v ∈ Val be a
clock valuation. Given a set of states P ⊆ Q we have P |=v ϕ iff Q \ P 6|=v ϕ.

Proof. The proof is by structural induction on ϕ, and is straightforward from the definition
of ϕ.

Proposition 3.7. Lf (A) ∩ Lf (Ac) = ∅.

Proof. Suppose that both A and Ac have runs on the same timed word ρ = (σ, τ), with
|ρ| = n. Denote the run of A by

C0
d1
 C1

σ1−→ C2
d2
 C3

σ2−→ · · ·
dn

 C2n−1
σn−→ C2n ,

and denote the run of Ac by

D0
d1
 D1

σ1−→ D2
d2
 D3

σ2−→ · · ·
dn

 D2n−1
σn−→ D2n .

We show by induction on i ≤ 2n that Ci ∩Di is non-empty. In particular, we deduce that
C2n and D2n meet, so the two runs cannot both be accepting since A and Ac have disjoint
sets of accepting states.

The base case of the induction is just the observation that C0 = D0 = {(s0, 0)}. For
the induction step, suppose that (s, v) ∈ Ci ∩Di. In case i = 2j is even, that is, the next
transition is a time delay, then (s, v + dj+1) ∈ Ci+1 ∩Di+1. In case i = 2j + 1 is odd, that

is, the next transition is a discrete step, then Ci+1 |=v δ(s, σj+1) and Di+1 |=v δ(s, σj+1).
It follows from Proposition 3.6 that Ci+1 and Di+1 are not disjoint. This completes the
induction step.

Proposition 3.8. Lf (A) ∪ Lf (Ac) = TΣ∗.

Proof. We claim that, given a finite timed word ρ = (σ, τ) and a set of states P ⊆ Q, either
A has a run on ρ whose last configuration is a subset of P , or Ac has a run on ρ whose last
configuration is a subset of Q \ P . The proposition follows from the claim by taking P to
be the set of states in A whose underlying location is accepting.

We prove the claim by induction on |ρ| as follows. Let ρ = (σ, τ) and P ⊆ Q be given
as in the claim, with |ρ| = n+ 1. Also, let dn+1 = τn+1 − τn and write

pred(P ) = {(s, v) ∈ Q : P |=v+dn+1
δ(s, σn+1)} .
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Observe also that by Proposition 3.6

Q \ pred(P ) = {(s, v) ∈ Q : P 6|=v+dn+1
δ(s, σn+1)}

= {(s, v) ∈ Q : Q \ P |=v+dn+1
δ(s, σn+1)} . (3.1)

By induction, either A has a run on ρ[1 . . . n] whose last configuration C is a subset of
pred(P ), or Ac has a run on ρ[1 . . . n] whose last configuration D is a subset of Q \pred(P ).
In the former case, it is immediate that we can extend the given run of A into a run on ρ.
Indeed, since C ⊆ pred(P ), for each (s, v) ∈ C we can choose a finite subset of P that is
a minimal model of δ(s, σn+1) with respect to clock value v + dn+1. In the latter case, in
similar fashion, it follows from (3.1) that Ac has a run on ρ whose last configuration is a
subset of Q \ P .

Corollary 3.9. The class of languages definable by timed alternating automata is effectively
closed under all Boolean operations.

4. Decidability of Language Emptiness

It is well known that the universality problem for Alur-Dill timed automata is un-
decidable [5]. In fact the proof in [5] shows undecidability for the subclass of Alur-Dill
automata with at most two clocks. Since the class of timed alternating automata is closed
under complement and includes the class of Alur-Dill automata, it immediately follows that
the language-emptiness problem for two-clock timed alternating automata is undecidable.
However we show in this section that if we restrict to alternating automata with a single
clock, then language emptiness is decidable. The decision procedure that we present is a
generalisation of the algorithm for deciding universality for one-clock Alur-Dill automata
that appeared in the extended abstract [28].

In the remainder of this section we assume that A = (Σ, S, s0, δ, F ) is a one-clock
alternating automaton, and we denote by Q the set of states of this automaton. The
language-emptiness problem for A is equivalent to the following reachability question on
the derived transition system TA: ‘Is there a path from the initial configuration to an
accepting configuration?’. However it is not immediate how to decide this question since
TA has uncountably many states: indeed each state has uncountably many successors under
the delay-step relation.

4.1. The Bisimulation Lemma. In this section we isolate a sub-transition-system of TA,
denoted WA, that is effective and is, in a certain sense, bisimilar to TA.8 In particular, WA

has only countably many states and is finitely branching. Moreover the state space of WA

possesses an effective well-quasi-order, which we use to prove termination of our reachability
algorithm.

Recall that the set of clock values relevant to A is Val = [0, cmax] ∪ {⊤}. Define the
fractional part of v ∈ Val \ {⊤} by frac(v) = v− ⌊v⌋ (where ⌊·⌋ denotes the floor function).
It is also technically convenient to define frac(⊤) = 0.

8In the extended abstract of this paper WA was described as a quotient of TA, akin to the clock-region
quotient of an Alur-Dill automaton. However in our opinion the technical details are more straightforward
under the present approach.
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Definition 4.1 (Clock Regions). Define an equivalence relation ∼ on the set of clock
values Val by u ∼ v if either u, v = ⊤, or u, v 6= ⊤, ⌈u⌉ = ⌈v⌉ and ⌊u⌋ = ⌊v⌋ (where
⌈·⌉ denotes ceiling). The corresponding set of equivalence classes, or regions, is REG =
{r0, r1, . . . , r2cmax+1}, where r2i = {i} for i ≤ cmax, r2i+1 = (i, i + 1) for i < cmax, and
r2cmax+1 = {⊤}. Let reg(v) denote the equivalence class of v ∈ Val.

The intuition behind the transition system WA is that we can ignore those time delays
in TA that leave unchanged the regions of the clock values in a configuration. We only
consider time delays that take a configuration to its time successor :

Definition 4.2. Let C ⊆ Q be an A-configuration. If C is non-empty then define µ =
max{frac(v) : (s, v) ∈ C} to be the maximum fractional part of the clock values appearing
in C. Now define the time successor of C to be the configuration next(C) given by the
following clauses:

• if C = ∅ then next(C) = C
• if (s, v) ∈ C for some integer clock value v ∈ [0, cmax] then next(C) = C + (1−µ)/2
• if neither of the above cases hold then next(C) = C + (1 − µ).

Example 4.3. Suppose that the maximum constant appearing in A is cmax = 3. Consider
a configuration C = {(s, 1.25), (t, 2.5), (s, 0.75)}. Then next(C) = {(s, 1.5), (t, 2.75), (s, 1)}
(in which time has advanced by 0.25 units, and the clock value in C with largest fractional
part has moved to a new region while all other clock values remain in the same regions).
On the other hand, if C = {(s, 1), (t, 0.5)}, then next(C) = {(s, 1.25), (t, 0.75)} (in which
the clock value in C with fractional part zero moves to a new region, while all other clock
values remain in the same regions). Finally, the time successor of C = {(s, 0.5), (t, 3)} is
{(s, 0.75), (t,⊤)}.

Definition 4.4. Define the labelled transition system WA as follows.

• Alphabet. The alphabet of WA is Σ ∪ {ε}.
• States. The states of WA are those A-configurations C ⊆ Q in which all clock

values are rational (henceforth call such configurations rational).
• Transitions. Each state C has a unique ε-transition to its time successor next(C).

For a ∈ Σ, we postulate that C a−→ C ′ in WA if C a−→ C ′ in TA.

Thus WA differs from TA in containing only rational configurations and retaining only
those delay steps between a configuration and its time successor (renaming these as ε-
transitions). Next we show that WA and TA are bisimilar in a certain sense. To this end,
we first reexamine the notion of the minimal model of a formula ϕ ∈ Φ(S) over the set of
locations S of A (cf. Section 3).

Any formula ϕ ∈ Φ(S) can be written in disjunctive normal form ϕ ≡
∨

j∈J

∧
Aj ,

where each Aj is a set of terms of the form s, x.s, and x ⊲⊳ c (which we call atoms). The
minimal models of ϕ can be read off from the disjunctive normal form as follows. For a
set of atoms A and a clock valuation v ∈ Val, let A[v] ⊆ Q be the set of states given by
A[v] = {(s, v) : s ∈ A} ∪ {(s, 0) : x.s ∈ A}. Then each minimal model M of ϕ with respect
to v has the form M = Aj [v], for some j ∈ J , where v satisfies all the clock constraints in
Aj .

Example 4.5. For the formula ϕ ≡ x.s0 ∧ (s1 ∨ s2) from Example 3.3, the equivalent
disjunctive normal form is (x.s0 ∧ s1)∨ (x.s0 ∧ s2). Then the two minimal models of ϕ with
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respect to the clock value v ∈ Val are (x.s0 ∧ s1)[v] = {(s0, 0), (s1, v)} and (x.s0 ∧ s2)[v] =
{(s0, 0), (s1, v)}.

Definition 4.6. Define the relation ≡ ⊆ ℘(Q) × ℘(Q) by C ≡ C ′ iff there is a bijection
f : C → C ′ such that: (i) f(s, u) = (t, u′) implies s = t and u ∼ u′; (ii) if f(s, u) = (s, u′)
and f(t, v) = (t, v′), then frac(u) ≤ frac(v) implies frac(u′) ≤ frac(v′).

Lemma 4.7 (Bisimulation Lemma). Suppose that C and D are A-configurations such that
C ≡ D. Then for each transition C α−→ C ′, with α ∈ Σ ∪ {ε}, there exists a configuration
D′ and a transition D α−→ D′ such that C ′ ≡ D′.

Proof. Write C = {(si, ui)}i∈I and D = {(ti, vi)}i∈I , and let f : C → D, given by f(si, ui) =
(ti, vi), be the bijection witnessing C ≡ D.

Matching Σ-labelled transitions. Suppose C makes a transition C a−→ C ′ for some
a ∈ Σ. By the above considerations on minimal models, we know that C ′ =

⋃
i∈I Ai[ui],

where, for each i ∈ I, the set of atoms Ai is a clause in the disjunctive normal form
expression for δ(si, a). Writing D′ =

⋃
i∈I Ai[vi], we have D a−→ D′. (Here we rely on the

fact that ui ∼ vi, so that ui and vi satisfy the same clock constraints.) Now the set of clock
values appearing in C ′ is a subset of {ui : i ∈ I} ∪ {0} since Σ-labelled transitions either
leave clocks unchanged or reset them to 0. Thus C ′ ≡ D′ since we can define a bijection
f ′ : C ′ → D′ by f ′(s, ui) = (s, vi) if (s, ui) ∈ C

′ and f ′(s, 0) = (s, 0) if (s, 0) ∈ C ′.
Matching ε-transitions. Since each configuration makes a unique ε-transition to its

time successor, we need only show that next(C) ≡ next(D). Now next(C) has the form
{(si, u

′
i)}i∈I , where, for some time delay t > 0, u′i = ui + t; similarly next(D) has the form

{(ti, v
′
i)}i∈I , where, for some time delay t′> 0, v′i = vi + t′. The effect of the time delay t on

C is either to leave the order of the fractional parts of the clocks unchanged or to cyclically
permute the order by one place so that the clock with greatest fractional part in C has zero
fractional part in next(C). A similar statement holds for D. In any case, we have u′i ∼ v′i
for each i ∈ I, and the bijection f ′ : next(C) → next(D) defined by f ′(si, u

′
i) = (ti, v

′
i)

witnesses next(C) ≡ next(D).

Let ε∗−→ denote the reflexive transitive closure of the relation ε−→. The following simple
corollary of the Bisimulation Lemma shows that, up to ≡-equivalence, there is no loss in

expressiveness in replacing the delay-step transition relation with ε∗−→.

Corollary 4.8. Suppose that C,D ⊆ Q are A-configurations such that C ≡ D. Then for

any time delay C t
 C ′ there exists a configuration D′, with D ε∗−→ D′ and C ′ ≡ D′.

Proof. Observe that C t
 C ′ implies that C ′ ≡ nextn(C) for some n ≥ 0. From the

Bisimulation Lemma we get that nextn(C) ≡ nextn(D). The proposition follows by taking
D′ = nextn(D).

Proposition 4.9. If configuration C is reachable from the initial configuration C0 in TA,
then there is a rational configuration C ′, with C ≡ C ′, such that C ′ is reachable from C0 in
WA.

Proof. Given a path C0
d1
 C1

σ1−→ C2
d2
 C3

σ2−→ · · ·
σn−→ C2n in TA, we generate, step by

step, a ‘matching’ path of rational configurations in WA

C0
ε∗−→ C ′

1
σ1−→ C ′

2
ε∗−→ C ′

3
σ2−→ · · ·

σn−→ C ′
2n
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such that Ci ≡ C ′
i for 0<i ≤ 2n. Given C ′

i ≡ Ci, if i is odd we use the Bisimulation Lemma
to generate the next configuration C ′

i+1, and if i is even we use Corollary 4.8 to generate
C ′

i+1.

We have now reduced the language-emptiness problem for A to the following reach-
ability question for WA: ‘Is there a path from the initial configuration to an accepting
configuration?’. Although WA is simpler than TA, it still has infinitely many states (in-
deed, even the quotient of WA by ≡ is infinite-state, since ≡ only relates configurations
of the same cardinality). We circumvent this problem by exhibiting a well-quasi-order on
the state space of WA. This serves in lieu of finiteness to guarantee the termination of
a state-exploration algorithm that computes a conservative over-approximation of the set
of reachable states. This is described in the next subsection in terms of the theory of
well-structured transition systems [15].

4.2. Well-quasi-orders. Recall that a quasi-order (W,⊑) consists of a set W together
with a reflexive, transitive relation ⊑. An infinite sequence w1, w2, w3, . . . in (W,⊑) is said
to be saturating if there exist indices i < j such that wi ⊑ wj. (W,⊑) is a well-quasi-order
(wqo) if every infinite sequence in (W,⊑) is saturating.

We can extend a quasi-order (W,⊑) to a quasi-order (W ∗,⊑) on the set of finite words
over alphabet W as follows. Define w1 . . . wm ⊑ v1 . . . vn if there exists a strictly increasing
function f : {1 . . . m} → {1, . . . , n} such that wi ⊑ vf(i) for all i ∈ {1, . . . ,m}. The induced
order on W ∗ is known as the monotone domination order.

Lemma 4.10 (Higman’s Lemma [23]). If (W,⊑) is a wqo then (W ∗,⊑) is also a wqo.

Next we use Higman’s Lemma to construct a well-quasi-order on the state space of the
transition system WA. The first step is to define a class of abstract configurations, which
are intended as canonical representatives of ≡-equivalence classes of configurations.

Definition 4.11. An abstract configuration of the automaton A is a finite word over the
alphabet Λ of finite non-empty subsets of S × REG , where S is the set of locations of A
and REG is the set of regions.

Roughly speaking, each (concrete) A-configuration C gives rise to an abstract con-
figuration as follows. First, C is converted from a set to a list by ordering its elements
according to the fractional part of their clock values. Then each clock value is replaced by
the region it lies in. Formally, define an abstraction function H : ℘(Q) → Λ∗, yielding an
abstract configuration H(C) for each configuration C as follows. First, lift the function reg
to configurations by reg(C) = {(s, reg(v)) : (s, v) ∈ C}. Now given a configuration C, par-
tition C into a sequence of non-empty subsets C1, . . . , Cn, such that for all (s, v) ∈ Ci and
(t, v′) ∈ Cj, frac(v) ≤ frac(v′) iff i ≤ j (so (s, v) and (t, v′) are in the same block Ci iff v and
v′ have the same fractional part). Then define H(C) = reg(C1)reg(C2) . . . reg(Cn) ∈ Λ∗.

Example 4.12. Consider the automaton A from Example 3.2. The maximum clock con-
stant appearing in A is 1, thus the corresponding regions are r0 = {0}, r1 = (0, 1), r2 = {1}
and r3 = {⊤}. Given a concrete configuration C = {(s, 1), (t, 0.4), (s, 1.4), (t, 0.8)}, the
corresponding abstract configuration H(C) is the word {(s, r2), (s, r3)} {(t, r1)} {(t, r1)}.

The key fact about the abstraction function H, which is immediate from its definition,
is that its kernel is the equivalence on configurations described in Definition 4.6:
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Proposition 4.13. Given A-configurations C and D, C ≡ D iff H(C) = H(D).

Returning to Definition 4.11, notice that Λ, being finite, is trivially a wqo under the
subset order. It follows from Lemma 4.10 that the set of abstract configurations is a wqo
under the monotone domination order. Taking stock, we have defined a class of abstract
configurations that is the quotient of the set of A-configurations with respect to ≡, and
which carries a natural well-quasi-order. Next we show how to exploit this structure.

4.3. Well-Structured Transition Systems. The notion of well-structured transition sys-
tem (wsts) provides a uniform framework for expressing decidability results about a variety
of infinite-state systems, including Petri nets, broadcast protocols and lossy channel sys-
tems [1, 15]. Definition 4.14 presents a particular variant, called a downward wsts in [15].

Definition 4.14. A well-structured transition system is a triple W = (W,4,−→), where
(W,−→) is a finitely-branching (unlabelled) transition system equipped with a wqo 4 such
that:

• 4 is a decidable relation
• Succ(w) := {w′ : w −→ w′} is computable for each w ∈W
• 4 is downward-compatible: if w, v ∈W with w 4 v, then for any transition v −→ v′

there exists a matching sequence of transitions w (−→)∗ w′ with w′ 4 v′.

Note that downwards compatibility allows a single transition of v to be matched by zero or
more transitions of w.

Theorem 4.15. [15, Theorem 5.5] Let W = (W,4,−→) be a wsts. Let V ⊆ W be a
downward-closed (i.e. v′ 4 v and v ∈ V imply v′ ∈ V ) decidable subset of W . Then, given
a state u ∈ W , it is decidable whether there is a sequence of transitions starting at u and
ending in V .

We now seek to apply Theorem 4.15 to the case at hand.

Proposition 4.16. The transition system WA is a wsts (after forgetting the labels on the
transitions).

Proof. Define a quasi-order on the set of A-configurations by C 4 D iff H(C) ⊑ H(D), i.e.,
the word H(C) corresponding to C is dominated by the word H(D) corresponding to D.
It is straightforward to see that 4 inherits the property of being a well-quasi-order from
⊑. Moreover 4 is a decidable relation on rational configurations, since H is computable on
rational configurations and ⊑ is decidable.

It remains to prove that 4 is downward compatible. Now suppose that C 4 D and
that there is a transition D −→ D′. We show how to produce a matching sequence of
transitions for C. To this end, it is helpful to first observe that C 4 D implies that there
is a configuration D0 ⊆ D with C ≡ D0. We now consider two cases according to whether
the transition D −→ D′ arises from a Σ-labelled transition or an ε-labelled transition.

Σ-labelled transitions. Suppose that D a−→ D′ for some a ∈ Σ. Since D0 ⊆ D and since
the successors of a configuration under discrete steps are computed pointwise (cf. Definition
3.4), there is a configuration D′

0 ⊆ D′ with D0
a−→ D′

0. Now C ≡ D0, so the Bisimulation

Lemma yields a transition C a−→ C ′ with C ′ ≡ D′
0. But C ′ ≡ D′

0 and D′
0 ⊆ D′ together

imply C ′ 4 D′.
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ε-transitions. Suppose that D ε−→ D′. Then D′ = D + t for some t ≥ 0, and, writing
D′

0 = D0 + t, we have D′
0 ⊆ D′. By Corollary 4.8 there exists a configuration C ′ such that

C ε∗−→ C ′ and C ′ ≡ D′
0. But C ′ ≡ D′

0 and D′
0 ⊆ D′ together imply C ′ 4 D′.

We are now ready to state one of our main results.

Theorem 4.17. Let A be a one-clock timed alternating automaton and let B be an Alur-Dill
timed automaton. Then the language-emptiness problem ‘Lf (A) = ∅?’ and the language-
inclusion problem ‘Lf (B) ⊆ Lf (A)?’ are both decidable.

Proof. Since a configuration of WA is accepting if it only mentions accepting locations of
A, the set of accepting configurations of WA is downward-closed with respect to 4. By
Proposition 4.15 it is decidable whether an accepting configuration of WA is reachable
from the initial configuration. In turn this entails, by Proposition 4.9, that it is decidable
whether an accepting configuration of TA is reachable from the initial configuration. But
this question is equivalent to language emptiness for A. This proves the first assertion
of Theorem 4.17. The proof of the second assertion relies on the construction of a wsts
representing the execution of B and A in parallel. We omit the details since we treat at
length essentially the same construction in Section 8, where we consider a closely related
language inclusion problem over infinite timed words.

As noted earlier, these results have recently and independently been obtained by Lasota
and Walukiewicz [25], also building on our earlier paper [28].

5. Metric Temporal Logic

In this section we define the syntax and semantics of Metric Temporal Logic (MTL).
As discussed in the introduction, there are two different dense-time semantics for MTL:
event-based and state-based, and for our concerns the difference is crucial. Following [16, 9,
10, 18, 19, 35], among others, we adopt an event-based semantics using timed words. A key
observation about this semantics is that the temporal connectives quantify over a countable
set of positions in a timed word. In contrast, the state-based semantics, adopted in, e.g., [7,
21, 32], associates a state to each point in real time, and the temporal connectives quantify
over the whole time domain.9 In the state-based semantics one can use a formula of the type
�(p↔ ✸=1 q) to specify a perfect channel, whereas in the event-based semantics the same
formula only specifies a channel with insertion errors (see Section 7). This observation helps
understand why MTL is undecidable under the state-based semantics, whereas, at least over
finite words, it is decidable in the event-based semantics (Theorem 6.5).

In the event-based semantics the atomic propositions in MTL refer to particular events,
and the temporal connectives quantify over future events. This offers a natural idiom for
reasoning about real-time behaviours, as we demonstrate in Example 5.4.

Definition 5.1. Given an alphabet Σ of events, the formulas of MTL are built up from Σ
by Boolean connectives and time-constrained versions of the next operator © and the until
operator U as follows:

ϕ ::= a | true | ϕ1 ∧ ϕ2 | ¬ϕ | ©I ϕ | ϕ1 UI ϕ2 ,

9The state-based semantics views MTL as a subset of the monadic first-order theory of the non-negative
reals, while the event-based semantics views MTL as a subset of a monadic first-order theory of the naturals
with timestamps [9].
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where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open interval with endpoints in
N ∪ {∞}. If I = [0,∞), then we omit the annotation I in ©I and UI . We also use pseudo-
arithmetic expressions to denote intervals. For example, the expression ‘≥ 1’ denotes [1,∞)
and ‘= 1’ denotes the singleton {1}.

Additional temporal operators are defined following the usual conventions. We have
the constrained eventually operator ✸I ϕ ≡ true UI ϕ, and the constrained always operator

�I ϕ ≡ ¬✸I ¬ϕ. We define a dual until operator via the standard duality: ϕ1 ŨI ϕ2 ≡

¬(¬ϕ1 UI ¬ϕ2). We also define the dual of the time-constrained next operator by ©̃I ϕ ≡
¬©I ¬ϕ.10

Definition 5.2. Given a (finite or infinite) timed word ρ = (σ, τ) over alphabet Σ, a word
position i ≤ |ρ|, and an MTL formula ϕ, the satisfaction relation (ρ, i) |= ϕ (read ρ satisfies
ϕ at position i) is defined as follows:

• (ρ, i) |= a iff σi = a
• (ρ, i) |= true

• (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

• (ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ
• (ρ, i) |= ©I ϕ iff i < |ρ|, τi+1 − τi ∈ I and (ρ, i+ 1) |= ϕ
• (ρ, i) |= ϕ1 UI ϕ2 iff there exists j, i ≤ j ≤ |ρ|, such that (ρ, j) |= ϕ2, τj − τi ∈ I,

and (ρ, k) |= ϕ1 for all k with i ≤ k < j.

For future reference it is also helpful to detail the semantics of the derived operators dual
until and dual next :

• (ρ, i) |= ©̃I ϕ iff i = |ρ| or τi+1 − τi 6∈ I or (ρ, i+ 1) |= ϕ

• (ρ, i) |= ϕ1 ŨI ϕ2 iff for all j such that i ≤ j ≤ |ρ| and τj − τi ∈ I, either (ρ, j) |= ϕ2

or there exists k with i ≤ k < j and (ρ, k) |= ϕ1.

We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 1) |= ϕ. The set of finite models of an
MTL formula ϕ is given by Lf (ϕ) = {ρ ∈ TΣ∗ : ρ |= ϕ}. The set of infinite models of ϕ is
given by Lω(ϕ) = {ρ ∈ TΣω : ρ |= ϕ}.

Remark 5.3. Note that in the semantics of MTL, time is measured relative to the occur-
rence of the first event of a timed word. In particular, the semantics is translation invariant :
adding a fixed delay d to each timestamp in a timed word does not change whether that
word satisfies a formula or not. For this reason Wilke [35] restricts attention to timed words
in which the first event has timestamp 0. In this case one can think of the first event as an
initialisation event.

Example 5.4. The following example illustrates the convenience of event-based reasoning
in the real-time setting. Consider a set of events Σ = {req i, acq i, rel i : i = X,Y } denoting
the actions of two processes X and Y that request, acquire, and release a lock.

• ✷(acqX → ✷<3¬acqY ) says that Y cannot acquire the lock less than 3 seconds after
X acquires the lock.

• ✷(acqX → relX Ũ<3 ¬acqY ) says that Y cannot acquire the lock less than 3 seconds
after X acquires the lock, unless X first releases it.

• ✷(reqX → ✸<2(acqX ∧ ✸=1 relX)) says that whenever X requests the lock, it ac-
quires the lock within 2 seconds and releases it exactly one second later.

10Note that, unlike © in LTL, ©I is not self-dual.
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6. MTL over Finite Words

In this section we consider the satisfiability problem for MTL over finite words: ‘Given
an MTL formula ϕ, is Lf (ϕ) nonempty?’. We also consider the following model-checking
problem: ‘Given an MTL formula ϕ and an Alur-Dill timed automaton B, is it the case
that Lf (B) ⊆ Lf (ϕ)?’. In both cases we show decidability by translating the MTL formulas
into equivalent one-clock timed alternating automata and invoking Theorem 4.17. We also
show that both problems have non-primitive recursive complexity.

6.1. Translation to Automata. By using disjunction, falsity, dual until and dual next,
in addition to the standard MTL connectives, every formula can be put into a negation
normal form, in which negation is only applied to events a ∈ Σ. Given an MTL formula
ϕ in negation normal form, we define a one-clock alternating automaton Aϕ such that
Lf (Aϕ) = Lf (ϕ).

Definition 6.1. Define the closure of ϕ, denoted cl(ϕ), as follows:

• cl(ϕ) contains an element ϕinit , called the initial copy of ϕ

• cl(ϕ) contains each subformula of ϕ whose outermost connective is U or Ũ
• for each subformula ©I ψ of ϕ, cl(ϕ) contains an element (©I ψ)r, called the residual

copy of ©I ψ

• for each subformula ©̃I ψ of ϕ, cl(ϕ) contains an element (©̃I ψ)r, called the residual

copy of ©̃I ψ.

The closure cl(ϕ) forms the set of locations of Aϕ; thus states of Aϕ are pairs (ψ, v),
where ψ ∈ cl(ϕ) and v is a clock value. We define the transition function δ so that the
presence of state (ψ, 0) in a configuration during a run of Aϕ ensures that the input word
satisfies ψ at the current position. To enforce this requirement, when ψ is encountered the
automaton starts a fresh clock and thereafter propagates ψ from configuration to configu-
ration in the run until all the obligations that it stipulates are discharged.

Definition 6.2. Let ϕ be an MTL formula in negation normal form. The automaton Aϕ

has set of locations cl(ϕ). The initial location is ϕinit and the accepting locations are those

elements of cl(ϕ) of the form ϕ1 ŨI ϕ2 or (©̃Iψ)r. In order to give a smooth recursive
definition of the transition function δ, we define δ(ψ, a) for all subformulas ψ of ϕ, not just
those in cl(ϕ). The definition is given by the following clauses, where a, b ∈ Σ:

δ(ϕinit , a) = x.δ(ϕ, a)

δ(ψ1 ∨ ψ2, a) = δ(ψ1, a) ∨ δ(ψ2, a)

δ(ψ1 ∧ ψ2, a) = δ(ψ1, a) ∧ δ(ψ2, a)

δ(ψ1 UI ψ2, a) = ((x.δ(ψ2, a)) ∧ x ∈ I) ∨ ((x.δ(ψ1, a)) ∧ (ψ1 UI ψ2))

δ(ψ1 ŨI ψ2, a) = ((x.δ(ψ2, a)) ∨ x 6∈ I) ∧ ((x.δ(ψ1, a)) ∨ (ψ1 ŨI ψ2))

δ(©I ψ, a) = x.(©I ψ)r

δ((©I ψ)r, a) = (x ∈ I) ∧ x.δ(ψ, a)

δ(©̃I ψ, a) = x.(©̃I ψ)r

δ((©̃I ψ)r, a) = (x 6∈ I) ∨ x.δ(ψ, a)
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δ(b, a) =

{
true if a = b
false if a 6= b

δ(¬b, a) =

{
false if a = b
true if a 6= b.

Remark 6.3. Notice the connection between the notion of duality for MTL formulas and
the notion of duality for transition functions (described in Subsection 3.2). In particular,

we have δ(ψ1 UI ψ2, a) = δ(ψ1 ŨI ψ2, a) and δ((©I ψ)r, a) = δ((©̃I ψ)r, a).

Proposition 6.4. Given an MTL formula ϕ in negation normal form, Lf (Aϕ) = Lf (ϕ).

Proof. We first show that Lf (Aϕ) ⊆ Lf (ϕ). To this end, let ρ = (σ, τ) be a timed word in
Lf (Aϕ), with |ρ| = n. As usual, write di = τi − τi−1 for 1 ≤ i ≤ n. Suppose that Aϕ has
an accepting run on ρ:

C0
d1
 C1

σ1−→ C2
d2
 C3

σ2−→ · · ·
σn−→ C2n .

We claim that for each subformula ψ of ϕ and each i such that 1 ≤ i ≤ n, (ρ, i) |= ψ
whenever C2i |=0 δ(ψ, σi). We prove this claim by structural induction on ψ.

The base case, in which ψ ≡ a or ψ ≡ ¬a for an atomic formula a ∈ Σ, is immediate.
The only non-trivial cases in the induction step are when the outermost connective of ψ is
a temporal modality. We consider the cases ψ ≡ ©I ψ1 and ψ ≡ ψ1 UI ψ2; the cases for the
dual temporal connectives are similar.

Case ψ ≡ ©I ψ1. If C2i |=0 δ(ψ, σi) then, since δ(ψ, σi) = x.(©I ψ1)
r, we must have

((©I ψ1)
r, 0) ∈ C2i. In turn, this entails that C2i+2 |=0 δ(ψ1, σi+1) and τi+1 − τi ∈ I. By

the induction hypothesis we have (ρ, i+ 1) |= ψ1, whence (ρ, i) |= ©I ψ1.
Case ψ ≡ ψ1 UI ψ2. Suppose C2i |=0 δ(ψ, σi). We consider two possibilities, corre-

sponding to the two disjuncts in the definition of δ(ψ, σi). One possibility is that C2i |=0

δ(ψ2, σi) and 0 ∈ I. In this case, by the induction hypothesis, we have (ρ, i) |= ψ2, whence
(ρ, i) |= ψ1 UI ψ2. On the other hand, we may have C2i |=0 δ(ψ1, σi) and (ψ, 0) ∈ C2i. Then
the definition of the transition function δ ensures that for each successive value of j ≥ i
we have that C2j |= δ(ψ1, σj) and (ψ, τj − τi) ∈ C2j until at some point C2j |= δ(ψ2, σj)
and τj − τi ∈ I. (Note that the latter must eventually occur since ψ is not an accepting
location.) From the induction hypothesis it is clear that this implies that (ρ, i) |= ψ. This
completes the proof of the claim.

Having proved the claim, we observe that (ϕinit , 0) ∈ C0, and, since δ(ϕinit , σ1) =
x.δ(ϕ, σ1), we have C2 |=0 δ(ϕ, σ1). Thus, applying the claim in case i = 1 and ψ ≡ ϕ, we
immediately get that ρ |= ϕ. This completes the proof that Lf (Aϕ) ⊆ Lf (ϕ).

It remains to show the converse inclusion: Lf (ϕ) ⊆ Lf (Aϕ). To this end, we show
that, up to renaming of locations, A¬ϕ = (Aϕ)c, that is, the automaton representing ¬ϕ
is the complement of the automaton representing ϕ. Indeed the set of locations of (Aϕ)c

is the same as the set of locations of Aϕ: it is just cl(ϕ). On the other hand, the set of
locations of A¬ϕ is cl(¬ϕ), which consists of the duals of the formulas in cl(ϕ). Thus the
map sending a formula to its dual is a bijection between the locations of A¬ϕ and (Aϕ)c.
But now Remark 6.3 shows that the respective transition functions of A¬ϕ and (Aϕ)c are
identical (modulo the bijection between the respective sets of locations).

Now, using the inclusion that we have just proved, we have

TΣ∗ \ Lf (Aϕ) = Lf ((Aϕ)c) = Lf (A¬ϕ) ⊆ Lf (¬ϕ) = TΣ∗ \ Lf (ϕ) .

But this directly gives Lf (ϕ) ⊆ Lf (Aϕ), which completes the proof.
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In conjunction with Theorem 4.17, Proposition 6.4 immediately yields:

Theorem 6.5. The satisfiability and the model-checking problems for MTL over finite words
are both decidable.

7. Complexity

In this section, using a result of Schnoebelen [33] about lossy channel systems, we prove
that the satisfiability and model-checking problems for MTL have non-primitive recursive
complexity.

A channel machine consists of a finite-state automaton acting on an unbounded FIFO
channel, or queue. More precisely, a channel machine is a tuple C = (S,M,∆), where S is a
finite set of control states, M is a finite set of messages, and ∆ ⊆ S×Σ×S is the transition
relation over label set Σ = {m!,m? : m ∈ M}. A transition labelled m! writes message m
to the tail of the channel, and a transition labelled m? reads message m from the head of
the channel.

We define an operational semantics for channel machines as follows. A global state of
C is a pair γ = (s, x), where s ∈ S is the control state and x ∈ M∗ represents the contents
of the channel. The rules in ∆ induce a Σ-labelled transition relation on the set of global

states thus: (s,m!, t) ∈ ∆ yields a transition (s, x) m!−→ (t, x · m) that writes m ∈ M to

the tail of the channel, and (s,m?, t) ∈ ∆ yields a transition (s,m·x) m?−→ (t, x) that reads
m ∈ M from the head of the channel. If we only allow the transitions indicated above,
then we call C an error-free channel machine. A computation of such a machine is a finite
sequence of transitions between global states

(s0, x0)
α0−→ (s1, x1)

α1−→ · · ·
αn−1

−→ (sn, xn) . (7.1)

We also consider channel machines that are subject to insertion errors. Given x, y ∈
M∗, write x ⊑ y if x is a subword of y, i.e., x can be obtained from y by deleting any
number of letters; for example, sub ⊑ stubborn, as indicated by the underlining. (This is
a special instance of the monotone domination order introduced earlier.) Following [33]
we model insertion errors by extending the transition relation on global states with the
following clause: if (s, x) α−→ (t, y), x′ ⊑ x and y ⊑ y′, then (s, x′) α−→ (t, y′). Dually, we
define lossy channel machines by adding a clause: if (s, x) α−→ (t, y), x ⊑ x′ and y′ ⊑ y,
then (s, x′) α−→ (t, y′). The notion of a computation of a channel machine with insertion
errors or lossiness errors is defined analogously to the error-free case, but with the extended
transition relations.

The control-state reachability problem asks, given a channel machine C = (S,M,∆) and
two distinct control states sinit , sfin ∈ S, whether there is a finite computation of C starting
in global state (sinit , ε) and ending in global state (sfin , x) for some x ∈M∗. This problem
was proved to be decidable for lossy channel machines by Abdulla and Jonsson [4]. Later
Schnoebelen [33] showed that it has non-primitive recursive complexity.

The dual control-state reachability problem asks, given a channel machine C = (S,M,∆)
and two distinct control states sinit , sfin ∈ S, whether there is a finite computation of
C starting in control state (sinit , x) and ending in state (sfin , ε), for some initial channel
contents x ∈M∗.

Note that the difference between the control-state reachability problem and the dual
control-state reachability problem depends on whether the initial or final channel is required
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to be empty. This difference is significant. For instance, the control-state reachability prob-
lem is trivial for channel machines with insertion errors. In this case there is a computation
from (sinit , ε) to (sfin , x) for some x ∈M∗ iff there is a path from sinit to sfin in the under-
lying control automaton. Indeed, given such a path we can always construct a matching
computation of the channel machine by using insertion errors to ensure that every read-
transition along the path is enabled. In contrast, for the dual control-state reachability
problem we have the following result.

Proposition 7.1. The dual control-state reachability problem for channel machines with
insertion errors has non-primitive recursive complexity.

Proof. Given a channel machine C = (S,M,∆), the opposite channel machine is defined by
Cop = (S,M,∆op) where

∆op = {(s,m!, t) : (t,m?, s) ∈ ∆} ∪ {(s,m?, t) : (t,m!, s) ∈ ∆} .

Note that C has a computation from (s, x) to (t, y) with lossiness errors iff Cop has a
computation from (t, yop) to (s, xop) with insertion errors, where (−)op : M∗ →M∗ reverses
the order of a word. Thus the dual control-state reachability problem for C with insertion
errors is equivalent to the control-state reachability problem for Cop with lossiness errors.
But, as we mentioned above, this last problem is known to be decidable with non-primitive
recursive complexity.

Theorem 7.2. The satisfiability and model-checking problems for MTL over finite words
have non-primitive recursive complexity.

Proof. We give a reduction of the dual control-state reachability problem for channel ma-
chines with insertion errors to the satisfiability problem for MTL. Let C = (S,M,∆) and
sinit , sfin ∈ S be an instance of the dual control-state reachability problem. The idea is to
encode computations of C as timed words over the alphabet Σ = S∪{m!,m? : m ∈M}. For
instance, the computation (7.1) is represented by a timed word whose sequence of events
is s0α0s1 . . . αn−1sn. In this encoding the key idea is to choose timestamps that mirror
the FIFO discipline of the channel. This is done by requiring that every write-event m! be
followed one time unit later by a matching read-event m?.

In the following we describe an MTL formula ϕREACH that describes all timed words
that encode computations of C starting in sinit and ending in state sfin with empty channel.
Thus ϕREACH is satisfiable iff C is a positive instance of the dual control-state reachability
problem.

We use the formula ϕCHAN , below, to capture the behaviour of a channel: every write-
event is followed one time unit later by a matching read-event. However, there is no guar-
antee that every read-event is preceded one time unit earlier by a write-event, so the channel
may have insertion errors.

ϕCHAN ≡
∧

m∈M �(m! → ✸=1m?) .

In order that there be no confusion in matching write-events with their corresponding
subsequent read-events, we require that time be strongly monotonic (no two events can
occur at the same time). This is captured by the formula ϕSM :

ϕSM ≡ (©>0 true) U ¬© true .
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We encode the finite control of C using the formula ϕCONT :

ϕCONT ≡
∧

s∈S

(s→
∨

(s,µ,t)∈∆

(©µ ∧©© t)) .

We then use ϕRUN to assert that a run must start in control state sinit and obey the
discrete controller until it terminates in control state sfin with empty channel:

ϕRUN ≡ sinit ∧ (ϕCONT U (sfin ∧ ¬© true)) .

Finally, we combine all these requirements into ϕREACH :

ϕREACH ≡ ϕCHAN ∧ ϕSM ∧ ϕRUN .

Suppose we are given a timed word ρ satisfying ϕREACH ; then we can construct a
computation of C as follows. First, observe that ρ consists of an alternating sequence of
events from S and events from {m!,m? : m ∈ M}. This gives the sequence of control
states and transitions in the desired computation; it remains to construct the contents of
the channel at each control state. Suppose event s ∈ S occurs at some point along ρ with
timestamp t. Then the channel contents associated to this occurrence of s is the sequence of
read-events occurring in ρ in the time interval (t, t+1). Observe how this definition ensures
that a message can only be read from the head of the channel, and how each write-event
adds a message to the tail of the channel. Finally, observe that any timed word satisfying
ϕREACH must have sfin as its last event; this ensures that the channel is empty at that
point.

Conversely, suppose we are given a computation of C,

(s0, x0)
α0−→ (s1, x1)

α1−→ · · ·
αn−1

−→ (sn, xn)

with s0 = sinit , sn = sfin and xn = ε. We then derive a timed word ρ = (σ, τ) that satisfies
ϕREACH . We define σ = s0α0s1α1 . . . sn; this guarantees that ρ satisfies ϕRUN . It remains
to choose a sequence of timestamps τ such that ϕCHAN ∧ ϕSM is also satisfied.

Since the given computation of C ends with the empty channel, every message that is
written to the channel is eventually read from the channel. Thus for each write-event m!
in σ there is a ‘matching’ read-event m? later on. We choose the sequence of timestamps
τ so that each such matching pair is separated by one time unit. This captures the FIFO
discipline of the channel: messages are read from the channel in the same order that they
were written to the channel. Formally we choose the τi sequentially, starting with τ1 = 0 and
maintaining the following invariant: τi is chosen such that for each matching pair σj = m!
and σk = m?, if j < k = i then τi − τj = 1, and if j < i < k then τi − τj < 1. It is clearly
possible to do this using the density of time.

Thus a channel machine C = (S,M,∆) and pair of control states sinit , sfin ∈ S is a
positive instance of the dual reachability problem iff the formula ϕREACH is satisfiable.
This shows that the satisfiability problem for MTL has non-primitive recursive complexity.

Finally, consider a universal Alur-Dill timed automaton, i.e., one that accepts all finite
timed words. Model checking this automaton against a given MTL formula is equivalent
to asking whether the formula is valid, i.e., whether its negation is unsatisfiable. The
complexity of model checking MTL is therefore also non-primitive recursive.
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8. Infinite Words: Safety MTL

In this section we adapt constructions from Section 4 to prove the decidability of the
model-checking problem over infinite words for a subset of MTL, called Safety MTL. Safety
MTL consists of those MTL formulas whose negation normal form only includes instances
of the constrained until operator UI in which interval I has bounded length. Note that no

restrictions are placed on the dual-until operator ŨI .
Safety MTL can express time-bounded response properties, but not arbitrary response

formulas. For instance, the formulas ϕ1 ≡ �(a→ ✸=1 b) and ϕ2 ≡ �(a→ ✸≤5(b ∧ ✸=1 c))
are in Safety MTL, but ϕ3 ≡ ✸a is not. Note in passing that, intuitively, ϕ2 is much harder
to model check than ϕ1. To find a counterexample to ϕ1, one need only guess an a-event,
and check that there is no b-event one time unit later—a task requiring only one clock. On
the other hand, to find a counterexample to ϕ2 one must not only guess an a-event, but
also check that every b-event in the ensuing five time units fails to have a matching c-event
one time unit later—a task requiring a potentially unbounded number of clocks.

To explain the name Safety MTL, recall from [17] that a language L ⊆ TΣω defines a
safety property relative to the divergence of time if for every ρ 6∈ L there exists n ∈ N such
that no infinite timed word in TΣω extending ρ[1 . . . n] is contained in L. In this case we
say that ρ[1 . . . n] is a bad prefix of ρ.

Proposition 8.1. For every Safety MTL formula ϕ, Lω(ϕ) is a safety property relative to
the divergence of time.

Proof. It is straightforward to prove this result by structural induction on ϕ. However, we
do not give details since we do not use this result in the sequel and since, in any case, it
follows directly from Proposition 8.2 and Proposition 8.3.

To model check a Safety MTL formula ϕ on an Alur-Dill automaton B we need only
check whether any of the bad prefixes of ϕ are prefixes of words accepted by B. We can
do this by invoking a variant of the idea used in the proof of Theorem 4.17. To set up
this model-checking procedure we first define a translation of ϕ into a one-clock alternating

automaton Asafe
ϕ in which every location is accepting.

Asafe
ϕ is a modification of the automaton Aϕ from Section 6.1. Asafe

ϕ has the same

alphabet, locations and initial location as Aϕ, but we declare every location of Asafe
ϕ to be

accepting. To compensate for this last change, we modify a single clause in the definition
of the transition function δ—the clause for ϕ1 UI ϕ2—as indicated below.

δ(ϕ1 UI ϕ2, a) = ((x.δ(ϕ2, a)) ∧ x ∈ I)∨

((x.δ(ϕ1, a)) ∧ (ϕ1 UI ϕ2) ∧ (x ≤ sup(I))) .

Intuitively, the above definition uses a ‘timeout’ rather than an acceptance condition to
ensure that the second argument of UI eventually becomes true. In a non-Zeno run, the
automaton cannot get stuck forever in location ϕ1 UI ϕ2 since the clock constraints in the
definition of δ(ϕ1 UI ϕ2, a) only allow transitions when the value of clock x is no greater
than sup(I).

Recall that so far we have only considered alternating automata on finite words. In

order to state the correctness of the definition of Asafe
ϕ we consider runs of timed alternat-

ing automata on infinite words. Our task is simplified by the fact that we only consider
automata in which every location is accepting. (Technically this means that, as with au-
tomata over finite words, we can elide the tree structure that is usually associated with runs
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of alternating automata.) Suppose then that A is a timed alternating automaton in which
every location is accepting. A run of A on an infinite timed word ρ = (σ, τ) is an infinite
alternating sequence of time delays and discrete steps in TA:

C0
d1
 C1

σ1−→ C2
d2
 C3

σ2−→ · · ·
dn

 C2n−1
σn−→ · · · ,

where C0 is the initial configuration and di = τi − τi−1. We define Lω(A) to be the set
of non-Zeno timed words ρ ∈ TΣω over which A has a run. (Since every location of A is
accepting, there is no need to consider an acceptance condition here.)

Proposition 8.2. Lω(ϕ) = Lω(Asafe
ϕ ) for each Safety MTL formula ϕ.

Proof. The proof of Proposition 6.4 carries over almost verbatim to the present setting.
Referring to the details of that proof, the only change is to observe that it is the ‘timeout’
in the definition of δ(ϕ1 UI ϕ2, a), rather than the fact that ϕ1 UI ϕ2 is non-accepting,
that ensures that whenever (ϕ1 UI ϕ2, 0) lies in some configuration C2i in a run, then there
exists j ≥ i such that C2j |= δ(ϕ2, σj).

8.1. The Model-Checking Procedure. In this section, let B be an Alur-Dill timed au-
tomaton with n clocks, and let A be a one-clock alternating automaton in which every
location is accepting. We describe a decision procedure for the model-checking problem
‘Lω(B) ⊆ Lω(A)?’. Combining this procedure with Proposition 8.2 gives a method for
model checking Safety MTL formulas on Alur-Dill automata.

The following proposition enables us to decide whether Lω(B) ⊆ Lω(A), while only
considering finite runs of A. The idea is that for any word ρ ∈ TΣω \ Lω(A), there is a
finite bad prefix ρ[1 . . . n] none of whose (non-Zeno) extensions lies in Lω(A).

Proposition 8.3. Let A be a timed alternating automaton in which every state is accepting.
Then ρ ∈ TΣω \ Lω(A) iff there exists n ∈ N such that ρ[1 . . . n] ∈ Lf (Ac).

Proof. We first consider the ‘if’ direction. Suppose that ρ[1 . . . n] ∈ Lf (Ac).11 By Propo-
sition 3.7 there can be no run of A on the finite word ρ[1 . . . n]. (Any such run would be
accepting, since every location of A is accepting.) A fortiori there can be no run of A on ρ.

Now we show the ‘only if’ direction. If ρ 6∈ Lω(A) then A does not have a run on ρ.
Moreover we observe that for each n ≥ 1 there are only finitely many ways to extend a
run of A on the finite prefix ρ[1 . . . n] to a run on ρ[1 . . . (n+ 1)]. Thus, by König’s lemma,
there exists n ∈ N such that A does not have a run on ρ[1 . . . n]. For this choice of n the
complement automaton Ac accepts ρ[1 . . . n].

From this point on, the explanation of the model-checking procedure closely follows
Section 4. In fact, the remainder of this section recapitulates definitions and propositions
from Section 4, mutatis mutandis. Briefly, the main difference between Section 4 and the
present section is that rather than just considering a wsts generated by a timed alternating
automaton, we consider a wsts generated by the timed alternating automaton Ac and the
Alur-Dill automaton B executing in parallel. We reduce the language emptiness problem
‘Lω(B) ∩ Lω(Ac) = ∅?’ (which is equivalent to ‘Lω(B) ⊆ Lω(A)?’) to reachability on this
wsts.

11Note that since none of the locations of Ac is accepting, Ac can only accept a word by moving to the
empty configuration.
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Denote by cmax the maximum clock constant appearing in A and B, and let Val =
[0, cmax] ∪ {⊤} be a set of clock values appropriate to A and B. Recall that a state of B
is a pair γ = (s,v), where s is a location of B and v ∈ Val

n is a clock valuation. Define a
B-Ac-configuration to be a pair (γ,C), where γ is a state of B and C is a configuration of
Ac. Following the pattern of Definition 4.4, we define a labelled transition system TB,Ac ,
representing B and Ac executing in parallel.

Definition 8.4. The set of states of TB,Ac is the set of B-Ac-configurations. Following

Definition 4.4 we define an (R≥0)-labelled delay-step transition relation by (γ,C) t
 (γ +

t, C + t) for t ≥ 0, and a Σ-labelled discrete-step transition relation by (γ,C) a−→ (γ′, C ′) if
γ a−→ γ′ in TB and C a−→ C ′ in TAc , where a ∈ Σ.

A configuration (γ,C) of TB,Ac is said to be initial if γ is the initial state of B and
C is the initial configuration of Ac. Recall that Ac can only accept a word by moving to
the empty configuration. Thus a timed word ρ ∈ Lω(B) fails to lie in Lω(A) iff there is a
computation of Ac on a finite prefix of ρ that reaches ∅. Motivated by this observation, we
say that a B-Ac-configuration (γ,C) is doomed if C = ∅ (i.e., Ac has reached an accepting
configuration) and B can accept some infinite non-Zeno word starting in state γ. Then
Lω(B) 6⊆ Lω(A) iff there is a doomed configuration (γ, ∅) that is reachable from the initial
configuration of TB,Ac . Below we sketch how we can use Theorem 4.15 to prove that this
reachability problem is decidable.

To set up the application of Theorem 4.15 we reuse constructions from Section 4 to
show that TB,Ac contains a sub-transition-system WB,Ac that is a wsts. The first step is to
adapt the notion of the time successor of a configuration to the present setting.

Definition 8.5. Let (γ,C) be a B-Ac-configuration, where γ = (s,v), and let E = {vi :
1 ≤ i ≤ n} ∪ {v : (t, v) ∈ C} be the set of clock values appearing in (γ,C). Write
µ = max{frac(v) : v ∈ E} for the maximum fractional part of the clock values in E. Now
define the time successor of (γ,C) to be the configuration next(γ,C) = (γ+d,C+d), where
d = (1 − µ)/2 if E contains an integer, and d = 1 − µ otherwise.

Definition 8.6. Define the labelled transition system WB,Ac as follows.

• Alphabet. The alphabet of WB,Ac is Σ ∪ {ε}.
• States. The states of WB,Ac are those configurations (γ,C) in which all clock values

are rational (henceforth call such configurations rational).
• Transitions. Each configuration (γ,C) makes a unique ε-transition to its time

successor next(γ,C). For a ∈ Σ, we declare that (γ,C) a−→ (γ′, C ′) in WB,Ac iff

(γ,C) a−→ (γ,C ′) in TB,Ac.

Continuing to shadow the development in Section 4, we adapt the Bisimulation Lemma,
Lemma 4.7, to the present setting. We define an equivalence relation ≡ on B-Ac configura-
tions that abstracts away from precise clock values, recording only their integer parts and
the relative order of their fractional parts.

Definition 8.7. Suppose that (γ,C) and (γ′, C ′) are B-Ac configurations such that γ =
(s, (v1, . . . , vn)), γ′ = (s′, (v′1, . . . , v

′
n)), C = {(si, ui)}i∈I and C ′ = {(s′i, u

′
i)}i∈I . (In particu-

lar, we require that C and C ′ have the same cardinality.) Then we define (γ,C) ≡ (γ′, C ′)
if the following hold, where ⊲⊳ ∈ {<,=, >}:

• s = s′ and si = s′i for each i ∈ I
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• ui ∼ u′i for i ∈ I and vj ∼ v′j for j ∈ {1, . . . , n}
• frac(ui) ⊲⊳ frac(uj) iff frac(u′i) ⊲⊳ frac(u′j) for i, j ∈ I

• frac(vi) ⊲⊳ frac(vj) iff frac(v′i) ⊲⊳ frac(v′j) for i, j ∈ {1, . . . , n}
• frac(ui) ⊲⊳ frac(vj) iff frac(u′i) ⊲⊳ frac(v′j) for i ∈ I, j ∈ {1, . . . , n}.

The first four clauses of this definition ensure that (γ,C) ≡ (γ′, C ′) implies that γ
and γ′ are region equivalent in the sense of [5] and that C ≡ C ′ in the sense of Definition
4.6. However Definition 8.7 doesn’t just involve comparing fractional parts among the clock
values in C, and separately among the clock values in γ: the fifth clause compares between
values in γ and values in C. This is essential for ≡ to be a congruence with respect to the
time-successor operation, as the following example shows.

Example 8.8. Let (γ,C) and (γ,C ′) be B-Ac configurations, with γ = (s, (1.1, 0.6)), C =
{(s1, 0.5)} and C ′ = {(s1, 0.7)}. Note that C ≡ C ′ (cf. Definition 4.6) and so, without the
final clause in Definition 8.7, we would have (γ,C) ≡ (γ,C ′). But it is clearly the case
that next(γ,C) 6≡ next(γ,C ′). In fact, next(γ,C) has the form (γ′,D) for some γ′ with
D = {(s1, 0.9)}, while next(γ,D′) has the form (η,D′) for some η with D′ = {(s1, 1)}.

Lemma 8.9 (Bisimulation Lemma). Suppose that (γ,C) and (η,D) are B-Ac configurations
such that (γ,C) ≡ (η,D). Then for each transition (γ,C) α−→ (γ′, C ′), with α ∈ Σ ∪ {ε},
there exists a configuration (η′,D′) such that (η,D) α−→ (η′,D′) and (γ′, C ′) ≡ (η′,D′).

Proof. The proof is almost identical to that of Lemma 4.7.

Proposition 8.10. If configuration (γ,C) is reachable from the initial configuration in
TB,Ac, then there is a rational configuration (γ′, C ′), with (γ,C) ≡ (γ′, C ′), such that (γ′, C ′)
is reachable from the initial configuration in WB,Ac.

Proof. The proof is almost identical to that of Proposition 4.9.

To complete the correspondence with Section 4, it remains to show that WB,Ac is a
wsts. As we now explain, this requires a slight variation of the construction used in Propo-
sition 4.16.

Suppose that A has set of locations S and that B has set of locations T , where S and
T are disjoint. Define a finite alphabet Λ to be the set of non-empty subsets of ((T ×
{1, . . . , n})∪S)×REG, where REG is the set of clock regions as defined in Subsection 4.1.
Following Definition 4.11, an abstract B-Ac-configuration is a finite word over Λ.

We reuse the abstraction function H from Section 4 to map B-Ac-configurations to
abstract configurations as follows: map a configuration ((s,v), C) of TB,Ac to the word
H({((s, 1), v1), . . . , ((s, n), vn)} ∪ C) ∈ Λ∗. From this word we can reconstruct all clock
values in ((s,v), C) up to the nearest integer and also the relative order of the fractional
parts of the clocks. As in Proposition 4.13 this observation implies that the kernel of H
agrees with the notion of equivalence of B-Ac-configurations, that is, H(γ,C) = H(γ′, C ′)
implies (γ,C) ≡ (γ′, C ′).

Proposition 8.11. Define a quasi-order on B-Ac-configurations by (γ,C) 4 (γ′, C ′) iff
H(γ,C) ⊑ H(γ′, C ′), where ⊑ refers to the subword order on Λ∗. Then WB,Ac is a wsts
when equipped with this quasi-order.

Proof. The proof is almost identical to that of Proposition 4.16.
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Theorem 8.12. Let B denote an Alur-Dill automaton, and A a one-clock alternating au-
tomaton in which every state is accepting. Then the language inclusion problem ‘Lω(B) ⊆
Lω(A)?’ is decidable.

Proof. The inclusion Lω(B) ⊆ Lω(A) holds iff it is not possible to reach a doomed state from
the initial state in WB,Ac . Now the set of doomed states in WB,Ac is trivially downward-
closed with respect to the monotone domination order (recall that (γ,C) is doomed only
if C = ∅). The set of doomed states is also decidable: to decide doom of (γ, ∅) we have
to check whether B can accept a non-Zeno timed word starting from γ. This last problem
is essentially the language-emptiness problem for Alur-Dill automata over infinite timed
words, which is well-known to be decidable—see [5]. Theorem 4.15 now yields a decision
procedure for the language inclusion question ‘Lω(B) ⊆ Lω(A)?’.

Corollary 8.13. The model-checking problem for Safety MTL over infinite words is decid-
able: given an Alur-Dill automaton B and a Safety MTL formula ϕ, there is an algorithm
to decide whether or not Lω(B) ⊆ Lω(ϕ).

Proof. Apply Theorem 8.12 in case A = Asafe
ϕ , using the result of Proposition 8.2 that

Lω(ϕ) = Lω(Asafe
ϕ ).

9. Conclusion

In this paper, we have shown that Metric Temporal Logic is decidable over finite timed
words in its standard dense-time, point-based semantics, with non-primitive recursive com-
plexity. Over infinite words, we have shown that the important safety fragment of Metric
Temporal Logic can be model checked.

To prove the decidability results above, we introduced the class of timed alternating au-
tomata, and showed that the language-emptiness problem for one-clock timed alternating
automata over finite words is decidable. In the words of [21], one-clock timed alternat-
ing automata constitute a fully decidable specification formalism for timed languages in
that they are closed under all Boolean operations and language emptiness is decidable. In
contrast to Alur-Dill timed automata, one-clock timed alternating automata do not admit
finite untimed quotients. In fact, it is straightforward to define a one-clock timed alternat-
ing automaton A such that the untimed language obtained from Lf (A) (by forgetting all
timestamps) is the classic non-regular language {anbm : 0 ≤ n ≤ m}. Reflecting this fact,
the termination proof for our language emptiness algorithm used a well-quasi-order derived
from Higman’s Lemma.

The focus of this paper has exclusively been on MTL over finite words. Recently we
have obtained both positive and negative decidability results for MTL over infinite words.
In particular, we have shown that the satisfiability problem for Safety MTL is decidable [31],
whereas the satisfiability problem for MTL is undecidable [30]. Thus restricting to safety
properties is crucial to obtaining decidability.
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