
Logical Methods in Computer Science

Vol. 2 (5:3) 2006, pp. 1–7

www.lmcs-online.org

Submitted Jun. 9, 2006

Published Nov. 07, 2006

THE COMPLETENESS OF PROPOSITIONAL RESOLUTION

A SIMPLE AND CONSTRUCTIVE PROOF

JEAN GALLIER

CIS Department, University of Pennsylvania, Philadelphia, PA 19104, USA
e-mail address: jean@cis.upenn.edu

Abstract. It is well known that the resolution method (for propositional logic) is com-
plete. However, completeness proofs found in the literature use an argument by contra-
diction showing that if a set of clauses is unsatisfiable, then it must have a resolution
refutation. As a consequence, none of these proofs actually gives an algorithm for produc-
ing a resolution refutation from an unsatisfiable set of clauses. In this note, we give a simple
and constructive proof of the completeness of propositional resolution which consists of an
algorithm together with a proof of its correctness.

1. Introduction

The resolution method for (propositional) logic due to J.A. Robinson [4] (1965) is well-
known to be a sound and complete procedure for checking the unsatisfiability of a set
of clauses. However, it appears that the completeness proofs that can be found in the
literature (for instance, Chang and Lee [1], Lewis and Papadimitriou [3], Robinson [5]) are
existence proofs that proceed by contradiction to show that if a set of clauses is unsatisfiable,
then it must have a resolution refutation because otherwise a satisfying assignment can be
obtained. In particular, none of these proofs yields (directly) an algorithm producing a
resolution refutation from an unsatisfiable set of clauses. In that sense, these proofs are
nonconstructive. In Gallier [2] (1986), we gave a completeness proof based on an algorithm
for converting a Gentzen-like proof (using sequents) into a resolution DAG (see Chapter 4).
Such a method is more constructive than the others but, we found later on that it is possible
to give a simple and constructive proof of the completeness of propositional resolution which
consists of an algorithm together with a proof of its correctness. This algorithm and its
correctness are the object of this note.

It should be noted that Judith Underwood gave other constructive proof procedures in
her Ph.D. thesis, notably for the intuitionistic propositional calculus [6].

2000 ACM Subject Classification: F.4.1, I.2 .
Key words and phrases: Resolution method, Unsatisfiability, Completeness, Constructive proof.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-2 (5:3) 2006

c© J. Gallier
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. GALLIER

2. Review of Propositional Resolution

Recall that a literal , L, is either a propositional letter, P , or the negation, ¬P , of a
propositional letter. A clause is a finite set of literals, {L1, . . . , Lk}, interpreted as the
disjunction L1∨· · · ∨Lk (when k = 0, this is the empty clause denoted). A set of clauses,
Γ = {C1, . . . , Cn}, is interpreted as the conjunction C1 ∧ · · · ∧ Cn. For short, we write
Γ = C1, . . . , Cn.

The resolution method (J.A. Robinson [4]) is a procedure for checking whether a set
of clauses, Γ, is unsatisfiable. The resolution method consists in building a certain kind of
labeled DAG whose leaves are labeled with clauses in Γ and whose interior nodes are labeled
according to the resolution rule. Given two clauses C = A∪{P} and C ′ = B∪{¬P} (where
P is a propositional letter, P /∈ A and ¬P /∈ B), the resolvent of C and C ′ is the clause

R = A ∪ B

obtained by cancelling out P and ¬P . A resolution DAG for Γ is a DAG whose leaves are
labeled with clauses from Γ and such that every interior node n has exactly two predecessors,
n1 and n2 so that n is labeled with the resolvent of the clauses labeling n1 and n2. In a
resolution step involving the nodes, n1, n2 and n, as above, we say that the two clauses
C and C ′ labeling the nodes n1 and n2 are the parent clauses of the resolvent clause, R,
labeling the node n. In a resolution DAG, D, a clause, C ′ is said to be a descendant of a
clause, C, iff there is a (directed) path from some node labeled with C to a node labeled
with C ′. A resolution refutation for Γ is a resolution DAG with a single root whose label is
the empty clause. (For more details on the resolution method, resolution DAGs, etc., one
may consult Gallier [2], Chapter 4, or any of the books cited in Section 1.)

Here is an example of a resolution refutation for the set of clauses

Γ = {{P,Q}, {P,¬Q}, {¬P,Q}, {¬P,¬Q}}

shown in Figure 1:

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

�

Figure 1: A Resolution Refutation

3. Completeness of Propositional Resolution:

An Algorithm and its Correctness

Let Γ be a set of clauses. Thus, Γ is either the empty clause, , or it is a conjunction
of clauses, Γ = C1, . . . , Cn. We define the complexity , c(C), of a clause, C, as the number
of disjunction symbols in C; i.e., if C consists of a single literal (i.e., C = {L}, for some
literal, L), then c(C) = 0, else if C = {L1, . . . , Lm} (with m ≥ 2) where the Li’s are literals,

THE COMPLETENESS OF PROPOSITIONAL RESOLUTION A SIMPLE AND CONSTRUCTIVE PROOF3

then c(C) = m − 1 (we also set c() = 0). If Γ is a conjunction of clauses, Γ = C1, . . . , Cn,
then we set

c(Γ) = c(C1) + · · · + c(Cn).

We now give a recursive algorithm, buildresol, for constructing a resolution DAG
from any set of clauses and then prove its correctness, namely, that if the input set of
clauses is unsatisfiable, then the output resolution DAG is a resolution refutation. This
establishes the completeness of propositional resolution constructively.

Our algorithm makes use of two functions, percolate, and graft.
1. The function percolate(D,A,L)

The inputs are: a resolution DAG, D, some selected leaf of D labeled with a clause,
A, and some literal, L. This function adds the literal L to the clause A to form the clause
A ∪ {L} and then “percolates” L down to the root of D. More precisely, we construct the
resolution DAG, D′, whose underlying unlabeled DAG is identical to D, as follows: Since
D and D′ have the same unlabeled DAG we refer to two nodes of D of D′ as corresponding

nodes if they are identical in the underlying unlabeled DAG. Consider any resolution step
of D. If both parent clauses are not descendants of the premise A, then the corresponding
resolution step of D′ is the same. If the parent clauses in D are C and C ′ where C ′ is a
descendant of the premise A (resp. C is a descendant of the premise A) and if R is the
resolvent ot C and C ′ in D, then the corresponding parent nodes in D′ are labeled with C
and C ′ ∪ {L} and their resolvent node with R∪ {L} (resp. the corresponding parent nodes
in D′ are labeled with C∪{L} and C ′ and their resolvent node wih R∪{L}). If both parent
clauses C and C ′ in D are descendant of the premise A, then the corresponding parent
nodes in D′ are labeled with C ∪ {L} and C ′ ∪ {L} and their resolvent node with R ∪ {L}.

Observe that if ∆∪ {A} is the set of premises of D, then Γ = ∆∪ {A ∪ {L}} is the set
of premises of percolate(D,A,L).

For example, if D is the resolution DAG shown in Figure 2 (in fact, a resolution refu-
tation)

{P,Q} {¬P,Q} A = {¬Q}

{Q}

�

Figure 2: Resolution DAG D

then adding L = ¬P to A = {¬Q} in D yields the resolution DAG D′ produced by
percolate(D,A,L) shown in Figure 3:

{P,Q} {¬P,Q} {¬P,¬Q}

{Q}

{¬P}

Figure 3: Resolution DAG D′ = percolate(D,A,L)

2. The function graft(D1,D2)

4 J. GALLIER

Its inputs are two resolution DAGs, D1 and D2, where the clause, C, labeling the root
of D1 is identical to one of the premises of D2. Then, this function combines D1 and D2

by connecting the links to the premise labeled C in D2 to the root of D1, also labeled C,
obtaining the resolution DAG graft(D1,D2).

For example, if D1 and D2 are the resolution refutation DAGs shown in Figure 4 and
Figure 5

{P,Q} {¬P,Q} {¬P,¬Q}

{Q}

{¬P}

Figure 4: Resolution DAG D1

{P,Q} {P,¬Q} {¬P}

{P}

�

Figure 5: Resolution DAG D2

we obtain the resolution DAG in Figure 6

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

�

Figure 6: Resolution DAG graft(D1,D2)

where the edges coming from D2 are indicated with thicker lines. The algorithm buildresol

is shown below.
3. The algorithm buildresol(Γ)

The input to buildresol is a set of clauses, Γ.

function buildresol(Γ)

begin

if all clauses in Γ are literals then

if Γ contains complementary literals L and ¬L,

then return a resolution refutation with leaves L and ¬L

else abort

endif

THE COMPLETENESS OF PROPOSITIONAL RESOLUTION A SIMPLE AND CONSTRUCTIVE PROOF5

else select any nonliteral clause, C, in Γ and select any literal, L, in C;

let C = A ∪ {L}; let Γ = ∆ ∪ {C};

D1 = buildresol(∆ ∪ {A}); D2 = buildresol(∆ ∪ {L}); D′

1
= percolate(D1, A, L);

if D′

1 is a resolution DAG
then return D′

1

else D = graft(D′

1,D2); return D

endif

endif

end

Finally, we prove the correctness of our recursive algorithm buildresol.

Theorem 3.1. For every conjunction of clauses, Γ, if Γ is unsatisfiable, then the algorithm

builresol outputs a resolution refutation for Γ. Therefore, propositional resolution is

complete.

Proof. We prove the correctness of the algorithm buildresol by induction on c(Γ). Let
Γ = C1, . . . , Cn. We may assume Γ 6= , since the case Γ = is trivial. We proceed by
induction on c(Γ).

If c(Γ) = 0, then every clause, Ci, contains a single literal and if Γ is unsatisfiable,
then there must be two complementary clauses, Ci = {P} and Cj = {¬P}, in Γ. Thus, we
instantly get a resolution refutation by applying the resolution rule to {P} and {¬P}.

Otherwise, c(Γ) > 0, so there is some clause in Γ that contains at least two literals.
Pick any such clause, C, and pick any literal, L, in C. Write C = A ∪ {L} with A 6=
and write Γ = ∆, C (∆ can’t be empty since Γ is unsatisfiable). As Γ = ∆, A ∪ {L} is
unsatisfiable, both ∆, A and ∆, L must be unsatisfiable. However, observe that

c(∆, A) < c(Γ) and c(∆, L) < c(Γ).

Therefore, by the induction hypothesis, the algorithm buildresol produces two resolution
refutations, D1 and D2, with sets of premises ∆, A and ∆, L, respectively. Now, consider
the resolution DAG, D′

1
= percolate(D1, A, L), obtained from D1 by adding L to the

clause A and letting L percolate down to the root.
Observe that in D′

1
, every clause that is a descendant of the premise A ∪ {L} is of the

form C ∪ {L}, where C is the corresponding clause in D1. Therefore, the root of the new
DAG D′

1 obtained from D1 is either labeled (this may happen when the other clause in
a resolution step involving a descendent of the clause A already contains L) or L. In the
first case, D′

1 is already a resolution refutation for Γ and we are done. In the second case,
we can combine D′

1 and D2 using graft(D′

1,D2) since the root of D′

1 is also labeled L, one
of the premises of D2. Clearly, we obtain a resolution refutation for Γ.

As an illustration of our algorithm, consider the set of clauses

Γ = {{P,Q}, {P,¬Q}, {¬P,Q}, {¬P,¬Q}}

as above and pick C = {¬P,¬Q}, L = ¬P and A = {¬Q}. After the two calls
buildresol(∆∪{A}) and buildresol(∆∪{L}), we get the resolution refutations D1 shown
in Figure 7:

6 J. GALLIER

{P,Q} {¬P,Q} {¬Q}

{Q}

�

Figure 7: Resolution DAG D1 = buildresol(∆ ∪ {A})

and D2 shown in Figure 8:

{P,Q} {P,¬Q} {¬P}

{P}

�

Figure 8: Resolution DAG D2 = buildresol(∆ ∪ {L})

When we add L = ¬P to A = {¬Q} in D1, we get the resolution DAG
D′

1 = percolate(D1, A, L) shown in Figure 9:

{P,Q} {¬P,Q} {¬P,¬Q}

{Q}

{¬P}

Figure 9: Resolution DAG D′

1
= percolate(D1, A, L)

Finally, we construct the resolution refutation D = graft(D′

1,D2) shown in Figure 10:

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

�

Figure 10: Resolution DAG D = graft(D′

1
,D2)

where the edges coming from D2 are indicated with thicker lines.
Observe that the proof of Theorem 3.1 proves that if Γ is unsatisfiable, then our al-

gorithm succeeds no matter which clause containing at least two literals is chosen and no
matter which literal is picked in such a clause.

Furthermore, as pointed out by one of the referees, although the proof of completeness
is constructive in the sense that it shows an algorithm is correct, it does not explicitly use
constructive logic. Nevertheless the logical proof can be recovered from the algorithm and
it is constructive.

THE COMPLETENESS OF PROPOSITIONAL RESOLUTION A SIMPLE AND CONSTRUCTIVE PROOF7

Acknowledgement

The author wishes to thank Robert Constable and the referees for very helpful com-
ments.

References

[1] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, first edition, 1973.

[2] Jean H. Gallier. Logic For Computer Science. Wiley, first edition, 1986.
[3] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall,

first edition, 1981.
[4] J.A. Robinson. A machine oriented logic based on the resolution principle. J.ACM, 12(1):23–41, 1965.
[5] J.A. Robinson. Logic: Form and Function. North-Holland, first edition, 1979.
[6] Judith Underwood. The tableau algorithm for intuitionistic propositional calculus as a constructive

completeness proof. In Basin D., Fronhofer B., Hahnle R., Posegga J., and Schwind C., editors, Second

Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Marseille, France, pages
245–248. Max–Planck–Institut fur Informatik, Saarbrucken, Germany, 1993.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Review of Propositional Resolution
	3. Completeness of Propositional Resolution: An Algorithm and its Correctness
	Acknowledgement
	References

