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Abstract. We consider the problem of bounded model checking (BMC) for linear tempo-
ral logic (LTL). We present several efficient encodings that have size linear in the bound.
Furthermore, we show how the encodings can be extended to LTL with past operators
(PLTL). The generalised encoding is still of linear size, but cannot detect minimal length
counterexamples. By using the virtual unrolling technique minimal length counterexam-
ples can be captured, however, the size of the encoding is quadratic in the specification.
We also extend virtual unrolling to Büchi automata, enabling them to accept minimal
length counterexamples.

Our BMC encodings can be made incremental in order to benefit from incremental
SAT technology. With fairly small modifications the incremental encoding can be further
enhanced with a termination check, allowing us to prove properties with BMC.

An analysis of the liveness-to-safety transformation reveals many similarities to the
BMC encodings in this paper. We conduct experiments to determine the advantage of em-
ploying dedicated BMC encodings for PLTL over combining more general but potentially
less efficient approaches with BMC: the liveness-to-safety transformation with invariant
checking and Büchi automata with fair cycle detection.

Experiments clearly show that our new encodings improve performance of BMC con-
siderably, particularly in the case of the incremental encoding, and that they are very
competitive for finding bugs. Dedicated encodings seem to have an advantage over using
more general methods with BMC. Using the liveness-to-safety translation with BDD-based
invariant checking results in an efficient method to find shortest counterexamples that com-
plements the BMC-based approach. For proving complex properties BDD-based methods
still tend to perform better.
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Introduction

Bounded model checking [BCCZ99] was introduced as an alternative to binary decisions
diagrams (BDDs) to implement symbolic model checking. This paper describes some of the
key results of [Lat05, Sch06] on bounded model checking, and some extensions. The main
results have been published in [LBHJ04, LBHJ05, HJL05, SB04, SB05].

The basic idea behind bounded model checking (BMC) is to restrict the general model
checking problem to a bounded problem. Instead of asking whether the system M violates
the property ψ, we ask whether the systemM has any counterexample of length k to ψ. This
bounded problem is encoded into SAT, the propositional satisfiability problem, in order to
obtain the benefits of symbolic representations of states. In other words, a Boolean formula
|[M,¬ψ, k]| is generated which is satisfiable iff M has a counterexample to ψ of length k.
The satisfiability of this formula can then be checked with a SAT solver.

The key insight behind BMC for linear-time formalisms such as linear temporal logic
(LTL) is that a witness for LTL given as an infinite execution path of the system can
be captured by a finite path in two ways: either the finite path represents all its infinite
extensions or the finite path loops and in fact captures the behaviour of an infinite path.
Let π = s0s1s2 . . . be an infinite path of a system. We say that π is a (k, l)-loop if π =
(s0s1 . . . sl−1)(sl . . . sk)

ω such that 0 < l ≤ k and sl−1 = sk.
In BMC the transition relation T (s, s′) of a system M is represented symbolically as a

Boolean formula, where the states s, s′ are modelled as bit vectors. To capture the finite
paths of length k, we unroll the transition relation k times and obtain the following Boolean
formula:

|[M ]|k ⇔ I(s0) ∧

k∧

i=1

T (si−1, si).

Here I(s) is the initial state predicate and T (s, s′) a total transition relation predicate.
Since only counterexamples to the given LTL formula ψ should be accepted, additional
constraints must be generated to restrict the models of the Boolean formula. If we denote
the formula constraints by |[¬ψ]|k, the Boolean formula |[M,¬ψ, k]| ⇔ |[M ]|k ∧ |[¬ψ]|k is
satisfiable iff M has a counterexample of length k to ψ.

Compared with using BDDs to implement symbolic model checking, BMC has a few
advantages. BMC can leverage the impressive gains that have been achieved in SAT solver
technology in recent years [BS05]. The increase in efficiency of the solvers can directly be
translated to more effective BMC. The use of SAT procedures as a practical implementation
technique to search for bounded length executions of systems has also been used in the
context of SAT-based artificial intelligence (AI) planning [KS92, KS96] and in sequential
ATPG [KL93]. In practice, SAT solvers seem to be able to solve certain problems that are
not feasible for BDDs.

An important advantage of BMC is that the counterexamples produced by most BMC
encodings are minimal and that the counterexample is immediately available. Producing
short counterexamples using BDDs is a fairly involved process [CGMZ95] and minimality
is seldom guaranteed. In many cases producing the counterexample consumes more re-
sources than answering the model checking query [CGMZ95]. However, recently a BDD
model checking procedure [SB05] based on the BMC encoding of [LBHJ05] was presented
that provably produces minimal counterexamples. The method appears to consume more
memory than standard BDD model checkers, but can in some cases be faster.
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Boolean formulas, or more specifically circuits, are a more compact encoding than BDDs
for many Boolean functions: there are Boolean functions whose BDDs are exponential in the
number of propositional variables [Bry86] that still have polynomial circuits. However, since
BMC represents the length of the paths explicitly it is not always more space efficient than
using BDDs [CKOS04]. For instance, for a simple binary counter system an exponential
number of unrollings of the transition relation is required before the system loops and we
can be sure that the whole behaviour of the system has been covered.

Although BMC has been very successful in practice [BCRZ99, CFF+01, Str04], im-
proving BMC remains a high priority. Increasing the efficiency of BMC can be done in
several ways. Two important approaches are developing smarter encodings of the problem
to SAT and utilising improvements in solver technology. Better encodings of the problem
boil down to finding new representations of the formula |[M,¬ψ, k]|, which are easier for
the SAT solver. As a rule of thumb, good BMC encodings are compact but still propa-
gate information efficiently, thus minimising the non-deterministic choices the solver has to
make.

LTL with temporal operators that can reference the past is exponentially more succinct
than LTL [LMS02]. In many cases the future fragment of LTL, which is the only fragment
usually supported, is not expressive enough in practice. The main argument for adding
support for past operators is motivated by practice: LTL with past operators (PLTL) allows
more succinct and natural specifications. Especially compositional reasoning benefits from
the added succinctness [LPZ85]. Efficient encodings for LTL with past operators is therefore
one way to increase the usability, efficiency, and the scope of BMC. Utilising new solver
technology such as incremental SAT solvers can result in huge benefits for BMC [WKS01,
Str01]. When solving a sequence of similar SAT problems, as is the case in BMC, an
incremental solver can retain much of the learned clauses obtained while solving earlier
related instances. This can result in large time savings for solving the whole sequence of
problems. The benefits of incremental SAT technology can be maximised by adapting BMC
encodings to suit the incremental framework.

In this paper we will introduce several efficient BMC encodings for LTL that all have
linear size encodings in the bound k. Efficient encodings can make a big difference when the
specification is complex [LBHJ04]. We will present several encodings that take a slightly
different view of the problem. In particular we highlight the relation of BMC encodings
to the automata-theoretic approach to model checking [Kur94, VW86]. We also show how
our encodings can be efficiently generalised to PLTL. The generalised encoding is still of
linear size in the bound and in the size of the PLTL formula but does not detect minimal
length counterexamples. By increasing the size of the encoding to quadratic in the size of
the PLTL formula, minimal length counterexamples can be guaranteed. Our technique is
based on virtual unrolling [BC03]. We also show how virtual unrolling enables symbolic
Büchi automata to detect minimal length counterexamples.

Furthermore, with some modifications, our new more efficient encoding for PLTL can
be adapted to utilise incremental SAT technology. We try to maximise the number of learnt
clauses which can be kept when the solver moves from one problem instance to the next
(i.e., when the bound k is increased). Experiments show that the increase in efficiency can
be quite dramatic.

Model checking ω-regular properties depends on finding fair loops in the system. Using
the liveness-to-safety model transformation [SB04], fair loop detection can be integrated in
the system model. This effectively reduces the general unbounded model checking problem
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to reachability of bad states. We present the technique and discuss similarities with the
BMC approaches introduced in this paper. In experiments we compare the performance of
invariant checking, after translating liveness to safety, with dedicated BMC encodings for
PLTL.

From its inception BMC has been predominantly seen as an efficient method for finding
bugs. BDD-based methods have had the advantage of being complete and thus being able
to prove that no counterexample exists. However, several methods have been developed in
the recent years which can be used to achieve completeness with BMC (see for instance the
recent survey [PBG05]). Our incremental encoding can also be extended with a termination
check. The approach naturally integrates with our incremental approach and can prove
properties for full PLTL.

We implemented the BMC encodings and the liveness-to-safety transformation on top
of the NuSMV system [CCG+02], version 2.2.3. Starting with version 2.4.0, the BMC en-
coding variant published in [HJL05] and discussed in more detail in this work has recently
become a part of the standard distribution of NuSMV [NuS]. Based on the former, we have
experimentally evaluated the encodings using a large set of models with complex specifica-
tions. Compared to the original encoding [BCCZ99] and its newer versions [CPRS02, BC03],
our new linear encodings are clearly superior. We observed additional impressive perfor-
mance gains for the incremental versions. Alternative linear sized encodings to do BMC
based either on the liveness-to-safety transformation and invariant checking or on Büchi
automata and fair loop detection did not prove quite as effective as the dedicated BMC
encodings, although they were clearly more efficient than the original encoding and its rel-
atives. With the termination check activated our linear BMC encoding did not perform
quite as well as without it, but still better than old encodings. For proving properties
BDD-based methods perform better. It is clear that the termination check must developed
further in order for BMC to be competitive also for proving properties. Combining the
liveness-to-safety transformation with BDD-based invariant checking results in an efficient
BDD-based method to find shortest counterexamples. It significantly reduces the length of
counterexamples in comparison to the standard BDD-based algorithm. It performs com-
petitively with SAT-based methods for this purpose and complements them with respect to
solved examples. Using virtual unrolling for Büchi automata with the standard BDD-based
algorithm significantly increases running time and gives mixed results at best in terms of
counterexample length.

In the next section we will introduce basic notation and recall fundamental definitions
that will be used throughout the paper. In Sect. 2 the basics of bounded model checking
are described and the results of the original BMC-paper [BCCZ99] are discussed. Sec-
tion 3 presents our efficient BMC encoding for LTL published in [LBHJ04]. The section
also considers alternative encodings of the BMC problem and contrasts the encodings to
model checking based on symbolic Büchi automata. Section 4 presents the liveness-to-safety
transformation and discusses its connection to the presented BMC encodings. To extend
BMC to full PLTL, we use the technique of “virtual unrolling”. We present our generalised
BMC encoding that encompasses full PLTL in Sect. 5. We also show that virtual unrolling
also can be applied to symbolic Büchi automata. Section 6 shows how our encodings can
be adapted to the incremental setting [HJL05]. The adapted encodings are developed to
maximise the information learnt between the SAT solver invocations. In Sect. 7 we discuss
how BMC can be made complete. Specifically we show how our encodings can be extended
with a termination check to achieve completeness. Section 8 experimentally compares the
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different encodings presented in the paper. We discuss conclusions and directions of future
work in Sect. 9.

1. Preliminaries

1.1. Linear Temporal Logic with Past. Linear temporal logic with past (PLTL) is a
commonly used specification logic. Although all PLTL properties are definable using only
two basic temporal operators (U and X ), it has been argued that especially compositional
reasoning benefits from the use of past operators [LPZ85]. Using only the basic operators
results in a logic that is exponentially less succinct than PLTL [LMS02].

The syntax of PLTL is defined over a set of atomic propositions AP . Boolean operators
we use are negation, disjunction and conjunction. The temporal operators we will use are
“next time” (X ) and its two past-time counterparts, the “previous time” past temporal
operators (Y , Z ); the future temporal connectives “until” (U) and “release” (R) and their
past-time counterparts “since” (S) and “trigger” (T). We will call the commonly used
subset of PLTL that does not contain any past temporal operators linear temporal logic
(LTL).

The semantics of a PLTL formula is defined along infinite paths π = s0s1 . . .
1 of states

si where we assume a mapping L from each state to the set of atomic propositions true in
that state. Let πi denote the path π with a designated formula evaluation position i. The
semantics can then be defined inductively as follows:

πi |= p ⇔ p ∈ L(si) for p ∈ AP .
πi |= ¬p ⇔ πi 6|= p.

πi |= ψ1 ∨ ψ2 ⇔ πi |= ψ1 or πi |= ψ2.

πi |= ψ1 ∧ ψ2 ⇔ πi |= ψ1 and πi |= ψ2.

πi |= Xψ1 ⇔ πi+1 |= ψ1.

πi |= ψ1 U ψ2 ⇔ ∃j ≥ i such that πj |= ψ2 and πn |= ψ1 for all i ≤ n < j.

πi |= ψ1 R ψ2 ⇔ for all j ≥ i : πj |= ψ2 or πn |= ψ1 for some i ≤ n < j.

πi |= Y ψ1 ⇔ i > 0 and πi−1 |= ψ1.

πi |= Zψ1 ⇔ i = 0 or πi−1 |= ψ1.

πi |= ψ1 S ψ2 ⇔ ∃ 0 ≤ j ≤ i such that πj |= ψ2 and πn |= ψ1 for all j < n ≤ i.

πi |= ψ1 T ψ2 ⇔ for all 0 ≤ j ≤ i : πj |= ψ2 or πn |= ψ1 for some j < n ≤ i.

Commonly used abbreviations for PLTL formulas are the standard Boolean shorthands
⊤ ≡ p ∨ ¬p for some p ∈ AP , ⊥ ≡ ¬⊤, p ⇒ q ≡ ¬p ∨ q, p ⇔ q ≡ (p⇒ q) ∧ (q ⇒ p),
and the derived temporal operators Fψ1 ≡ ⊤ U ψ1 (’finally’), Gψ1 ≡ ¬F¬ψ1 (’globally’),
Oψ1 ≡ ⊤ S ψ1 (’once’), and Hψ1 ≡ ⊥ T ψ1 (’historically’).

It is always possible to rewrite any formula to positive normal form, where all negations
only appear in front of atomic propositions. This can be accomplished by using the dualities
¬ (ψ1 U ψ2) ≡ ¬ψ1 R ¬ψ2, ¬ (ψ1 R ψ2) ≡ ¬ψ1 U ¬ψ2, ¬Xψ1 ≡ X¬ψ1, ¬Y ψ1 ≡ Z¬ψ1,
¬Zψ1 ≡ Y¬ψ1, ¬ (ψ1 S ψ2) ≡ ¬ψ1 T¬ψ2, ¬ (ψ1 T ψ2) ≡ ¬ψ1 S¬ψ2, and DeMorgan’s rules
for propositional logic. In this paper we assume all formulas are in positive normal form
unless otherwise explicitly stated.

1We use commas between elements of a tuple (such as a state consisting of the valuations of several state
variables) and no separator between elements of a sequence (such as a path). While we generally follow the
latter convention also for composition of sequences, we sometimes prefer to emphasise composition using ◦,
e.g., if the entire sequence spans multiple lines.
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The maximum number of nested past operators of a PLTL formula is called the past
operator depth.

Definition 1.1. The past operator depth [LMS02, BC03] for a PLTL formula ψ is denoted
by δ(ψ) and is inductively defined as:

δ(p) = 0 for p ∈ AP ,
δ(◦ψ1) = δ(ψ1) for ◦ ∈ {¬,X } ,
δ(ψ1 ◦ ψ2) = max (δ(ψ1), δ(ψ2)) for ◦ ∈ {∨,∧,U,R} ,
δ(◦ψ1) = 1 + δ(ψ1) for ◦ ∈ {Y ,Z } , and
δ(ψ1 ◦ ψ2) = 1 + max (δ(ψ1), δ(ψ2)) for ◦ ∈ {S,T} .

The set of subformulas of a PLTL formula ψ is denoted by cl(ψ) and is defined as the
smallest set satisfying the following conditions:

ψ ∈ cl(ψ),
if ◦ ψ1 ∈ cl(ψ) for ◦ ∈ {¬,X ,Y ,Z } then ψ1 ∈ cl(ψ), and
if ψ1 ◦ ψ2 ∈ cl(ψ) for ◦ ∈ {∨,∧,U,R,S,T} then ψ1, ψ2 ∈ cl(ψ).

1.2. Kripke Structures. The states of a path are members of the finite set of states S of
a model (a Kripke structure) M = (S, T, I, L) with a total transition relation T , a set of
initial states I, and a mapping L : S 7→ 2AP indicating the set of atomic propositions that
are true in a state. L is extended to sequences of states (paths) in the natural way. A path is
initialised iff its first state belongs to I. The set of initialised infinite paths is denoted Π. The
language of a Kripke structure can then be defined as Lang(M) = {α | ∃π ∈ Π . L(π) = α}.

Sometimes we equip a Kripke structure with a number of acceptance sets (or fairness
constraints) F0, . . . , Ff , where each Fm, 0 ≤ m ≤ f is a subset of S. M = (S, T, I, L, F =
{F0, . . . , Ff}) is then called a fair Kripke structure. A path in M is fair iff it contains
infinitely many occurrences of states from each acceptance set. Π and Lang(M) are then
restricted to fair paths.

We usually construct a Kripke structure symbolically over a set of variables V . In that
case the set of states S is given by the set of valuations of V , possibly constrained by a set
of state invariants. Similarly, I, T , and F0, . . . , Ff are the largest subsets of S or S × S

fulfilling certain constraints. The valuation of a variable v in a state s is denoted v(s).
For a Kripke structure M we say that a formula ψ1 holds in M if for every infinite

initialised path π of M we have that π |= ψ1. This is denoted M |= ψ1. For a formula to
hold in a fair Kripke structure it is required to hold only along all fair paths.

1.3. Büchi Automata. Büchi automata are frequently used as an operational model of
the more descriptive PLTL formulae [VW86]. In this paper a Büchi automaton is simply
a fair Kripke structure. However, if we speak of a “model” we refer to a Kripke structure
that is to be verified (it is used as a language generator). When we say “Büchi automaton”
we intend a Kripke structure to serve as a specification (it is used as a language acceptor).

A Büchi automaton B has a run π on an infinite sequence α over 2AP iff π is an
initialised path in B with L(π) = α. The run is accepting iff it is fair. Hence, B has an
accepting run on α iff α ∈ Lang(B).

Typically a Büchi automaton B specifies undesirable behaviour. The question whether
a model M conforms to the specification then reduces to the question whether there is an
initialised fair path in the product M × B [VW86]. As both M and B are finite state the



LINEAR ENCODINGS OF BOUNDED LTL MODEL CHECKING 7

s
l−1sks

l−1 sl

k l( , )−loop

s
k−1 =s0

(a)

0s sk

(b) no−loop

Figure 1: The two possible cases for a bounded path

search for such a path can be restricted to lasso-shaped paths, i.e., paths which are of form
βγω, where β and γ are finite paths.

If a witness to the violation of the specification is to be extracted from an initialised
fair path in the product of M and B for debugging, it is desirable that this path is short. A
Büchi automaton is tight iff for every α = βγω ∈ Lang(B) it has an accepting run ρ = στω

such that α and ρ have the same shape: |β| = |σ| and |γ| = |τ | [SB05, KV01]. Hence,
the Büchi automaton can adapt as a chameleon to the shape of any potential lasso-shaped
witness.

2. Bounded Model Checking

The main idea of bounded model checking [BCCZ99] is to search for bounded witnesses
for a temporal property. A bounded witness is an initialised infinite path in which the
property holds, and which can be represented by a finite path of length k. A finite path can
represent infinite behaviour, in the following sense. In (a) the (k, l)-loop case the finite path
forms a loop and contains all infinite behaviour, or (b) the no-loop case when the finite path
represents all its infinite extensions. More formally, an infinite path π = s0s1s2 . . . of states
contains a (k, l)-loop, or just a k-loop, if π = (s0s1 . . . sl−1)(sl . . . sk)

ω such that 0 < l ≤ k

and sl−1 = sk. The two cases we consider are depicted in Fig. 1.
In BMC all possible k-length bounded witnesses of the negation of the specification are

encoded as a SAT problem. The bound k is increased until either a witness is found (the
instance is satisfiable) or a sufficiently high value of k to guarantee completeness is reached.

Note that as in [FSW02, BC03, LBHJ04, LBHJ05, HJL05] the shape of the loop and
accordingly the meaning of the bound k is slightly different from [BCCZ99]. In this paper
a finite path of length k always has k transitions, and an infinite path with a loop contains
the looping state twice, at position l − 1 and at position k.

Bounded model checking uses a bounded semantics of PLTL which safely under-approxi-
mates the normal semantics. It allows us to use a bounded prefix πk = s0s1 . . . sk of an
initialised infinite path π to check the formula. The semantics is split into two cases. If the
infinite path π is a k-loop a different semantics is used than in the case where it is not a
k-loop. The definition below assumes the formula is in positive normal form.

Definition 2.1. (See also [BCCZ99, FSW02].) Given an initialised infinite path π and
bound k ∈ N, π |=k ψ iff (a) π is a (k, l)-loop for some 0 < l ≤ k and π0 |= ψ, or (b)
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π0 |=nl ψ, where:

πi |=nl p ⇔ πi |= p.

πi |=nl ¬p ⇔ πi |= ¬p.
πi |=nl ψ1 ∧ ψ2 ⇔ πi |=nl ψ1 and πi |=nl ψ2.

πi |=nl ψ1 ∨ ψ2 ⇔ πi |=nl ψ1 or πi |=nl ψ2.

πi |=nl Xψ1 ⇔ i < k and πi+1 |=nl ψ1.

πi |=nl ψ1 U ψ2 ⇔ ∃i ≤ j ≤ k such that πj |=nl ψ2 and πn |=nl ψ1 for all i ≤ n < j.

πi |=nl ψ1 R ψ2 ⇔ ∃i ≤ j ≤ k such that πj |=nl ψ1 and πn |=nl ψ2 for all i ≤ n ≤ j.

πi |=nl Yψ1 ⇔ i > 0 and πi−1 |=nl ψ1.

πi |=nl Zψ1 ⇔ i = 0 or πi−1 |=nl ψ1.

πi |=nl ψ1 S ψ2 ⇔ ∃0 ≤ j ≤ i such that πj |=nl ψ2 and πn |=nl ψ1 for all j < n ≤ i.

πi |=nl ψ1 T ψ2 ⇔ for all 0 ≤ j ≤ i : πj |=nl ψ2 or πn |=nl ψ1 for some j < n ≤ i.

Because the language defined by the models of a PLTL formula belong to the ω-regular
languages, we can restrict ourselves to searching for ultimately periodic witnesses in our
models. Notice that for every ultimately periodic infinite path π, the bounded semantics
becomes equivalent to the exact semantics when the k grows large enough to represent π as
a (k, l)-loop. Thus for a model M and a PLTL property ψ there always exists some k ∈ N

such that the bounded semantics becomes exact, i.e., M |= ψ iff M |=k ψ.

2.1. Original BMC Encoding for LTL. The original encoding [BCCZ99] is defined
recursively over the structure of the LTL formula ψ and the current position i. It is param-
eterised by the bound k, the start of the loop l and closely follows the bounded semantics
of Def. 2.1. Therefore, for fixed i, k, and l, each subformula Fψ1 resp. Gψ1 of ψ requires
constraints of size O(k) using the encoding of ψ1 at various positions. The binary operators
U and R need constraints of size O(k2). Since the encoding of a subformula ψ2 is only de-
pendent on i, l, and k, and, in particular, multiple occurrences of the encoding of ψ2 under
the same set of parameters can be shared, the overall size can be bounded by O(|ψ| · k4).

Parts of the constraints can be shared for different i. This reduces the overall complexity
of the original encoding to O(|ψ| · k3). It can be reduced even further to O(|ψ| · k), if only
unary future temporal operators occur in ψ. As example consider the formula ψ ≡ FG p.
As shown in [CPRS02, LBHJ04] a linear encoding of ψ can be obtained by optimising the
original encoding using associativity and sharing. The encoding of, for instance, G (r → (pU
q)) is at least quadratic no matter what simplifications based on sharing and associativity
are used [LBHJ04].

Even if more sophisticated circuit optimisations would allow to reduce the cubic original
encoding to linear size, it is much more natural to start with a linear encoding in the first
place. Finally, the original encoding translates looping and non-looping witnesses separately,
while more advanced encodings, as discussed in this article, combine both.

It is tempting to use the recursive one step identities of the (unbounded) semantics of
temporal operators ψ1 Uψ2 ≡ ψ2∨(ψ1∧X (ψ1 Uψ2)) and ψ1 Rψ2 ≡ ψ2∧(ψ1∨X (ψ1 Rψ2))
without any notion of fairness to encode LTL in a straightforward way, as for instance
suggested in [BCC+03]. In order to represent all witnesses for G p in a Kripke structure
consisting of a single state with a self loop the following propositional formula can be used:

I(s0) ∧ T (s0, s0) ∧ |[G p]|0 ∧ (|[G p]|0 ⇔ p0 ∧ |[G p]|0).
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Note the direct translation of the one step identity of the semantics of G on the right side.
In this case, and in general for temporal operators with greatest fix-point semantics, this
construction is sound, because the existence of an arbitrary fix-point implies the existence
of the greatest fix-point and the recursively defined variable, denoted |[G p]|0, has only
positive occurrences.

If applied in a näıve way, the same construction is incorrect for temporal operators
with least fix-point semantics, as the following example shows. Again we are interested in
all witnesses consisting of a single state with a self loop, but now for the LTL formula F p.
Using the same construction as above, simply following the one step LTL identities of F
without any notion of fairness the following propositional encoding is obtained:

I(s0) ∧ T (s0, s0) ∧ |[F p]|0 ∧ (|[F p]|0 ⇔ p0 ∨ |[F p]|0).

This formula can always be satisfied as long the transition relation has a self loop in an
initial state by setting the boolean variable |[F p]|0 to ⊤. Therefore it will hold even if p is
false in the initial state, and the encoding is therefore incorrect.

3. Improved Encodings of Bounded Model Checking for LTL

In this section several alternative bounded model checking encodings for LTL (i.e.,
PLTL without past temporal operators) are presented. How to extend the approaches to
full PLTL containing also past temporal formulas is the topic of Sect. 5.

3.1. BMC for LTL with Fixpoint Evaluation. One of the key factors affecting the
efficiency of BMC is the size of the resulting SAT encoding. If the encoding produces
unnecessarily large formulas the solver can quickly be overwhelmed, and we may not be
able to proceed deep enough to find all violations to the specification in the design under
model checking.

In [LBHJ04] we presented a BMC encoding to SAT for LTL which is linear in k that
outperformed previous encodings. It consists of three types of constraints on the state
variables representing the possible paths of length k: model constraints, loop constraints
and LTL constraints. Model constraints |[M ]|k encode legal initialised finite paths of the
model M of length k:

|[M ]|k ⇔ I(s0) ∧

k∧

i=1

T (si−1, si),

where I(s) is the initial state predicate and T (s, s′) is a total transition relation predicate.
The loop constraints are used to non-deterministically select loops of paths encoded by
the model constraints. We introduce k + 1 fresh loop selector variables l0, . . . , lk which
determine where the path loops. At most one loop selector variable is allowed to be true.
If lj is true then sj−1 = sk, i.e., the bit vectors representing the state sj−1 and state sk
have bitwise identical values. In this case the LTL constraints treat the bounded path as a
(k, j)-loop. If no loop selector variable is true then the LTL constraints treat the path as not
having a loop (the no-loop case). Some counterexamples can be detected at lower bounds
with the no-loop case (informative safety counterexamples of [KV01] to be exact). The
loop constraints are encoded by conjuncting the constraints below. Only the loop selector
variables li require fresh unconstrained variables; everything else can be implemented as
constraints, i.e., variables that are constrained to be functionally dependent on the other
variables of the formula. We denote the constraints by |[LoopConstraints ]|k:
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Base l0 ⇔ ⊥

InLoop0 ⇔ ⊥

li ⇒ (si−1 = sk)

1 ≤ i ≤ k InLoopi ⇔ InLoopi−1 ∨ li,

InLoopi−1 ⇒ ¬li

LoopExists ⇔ InLoopk

InLoop i is true if the position i is in the loop part of the path. The loop selector variables
indicate where the bounded path loops and select either a (k, j)-loop when lj holds2 or the
no-loop case when no lj holds. In the (k, j)-loop case the variable LoopExists will be true
and in the no-loop case it will be false. Finally, the LTL constraints check if the bounded
path defined by the model constraints and loop constraints is a model of the LTL formula.
The LTL encoding utilises the fact that for (k, l)-loops the semantics of CTL and LTL
coincide, see e.g., [KV01, TH02]. The intuitive reason is that if each state has exactly one
successor (i.e., the path is lasso-shaped) then the semantics of the path quantifiers A and
E of CTL agree. An LTL formula can therefore be evaluated in a lasso-shaped Kripke
structure by a CTL model checker in linear time by prefixing each temporal operator by
an E path quantifier [TH02], which results in a CTL formula.3 The encoding can be seen
as a CTL model checker for lasso-shaped Kripke structures based on using the least and
greatest fixpoint characterisations of U and R. In CTL the until operator E(ψ1 U ψ2)
can be evaluated by computing the least fixed point E(ψ1 U ψ2) = µZ.ψ2 ∨ (ψ1 ∧ EXZ)
while the release operator E(ψ1 Rψ2) can be evaluated by computing the greatest fixpoint
E(ψ1 R ψ2) = νZ.ψ2 ∧ (ψ1 ∨ EXZ), see e.g., [CGP99]. The encoding model checks lasso-
shaped Kripke structures by computing the least and greatest fixpoints for U and R.

Given a formula ϕ we denote by |[ϕ]|i the Boolean formula for computing the truth
value of ϕ at position i. To evaluate whether a formula ϕ holds in the initial state we
must generate the formula for |[ϕ]|0. The computation of the fixpoints for U and R is done
in two parts. The auxiliary translation 〈〈·〉〉 computes an over-approximation for greatest
fixpoints and an under-approximation for least fixpoints. The approximations are refined
to exact values by |[·]|. The auxiliary translation 〈〈·〉〉 under-approximates ψ1 Uψ2-formulas
by assuming that ψ1 U ψ2 does not hold in the successor of the end state sk. Conversely,
ψ1 R ψ2 is over-approximated by assuming that ψ1 R ψ2 holds in the successor of the end
state sk. Both of these approximations are exact at the loop point j where lj holds, because
of the simple looping structure of the models.

The encoding can be understood as a recursively defined function where there is a case
for each logical or temporal connective. For propositional LTL formulas the encoding is as
follows:

|[ϕ]|i 0 ≤ i ≤ k

|[p]|i p ∈ L(si)

|[¬p]|i p 6∈ L(si)

|[ψ1 ∧ ψ2]|i |[ψ1]|i ∧ |[ψ2]|i

|[ψ1 ∨ ψ2]|i |[ψ1]|i ∨ |[ψ2]|i

2There is at most one index j where lj holds, as otherwise |[LoopConstraints ]|k would be unsatisfiable.
3Naturally, we could also use the A path quantifier.
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The encoding for temporal LTL formulas is as follows:

|[ϕ]|i 0 ≤ i < k i = k

|[Xψ1]|i |[ψ1]|i+1

Wk

j=1

“

lj ∧ |[ψ1]|j

”

|[ψ1 U ψ2]|i |[ψ2]|i ∨
`

|[ψ1]|i ∧ |[ψ1 U ψ2]|i+1

´

|[ψ2]|i ∨
“

|[ψ1]|i ∧
“

Wk
j=1

“

lj ∧ 〈〈ψ1 U ψ2〉〉j

”””

|[ψ1 R ψ2]|i |[ψ2]|i ∧
`

|[ψ1]|i ∨ |[ψ1 R ψ2]|i+1

´

|[ψ2]|i ∧
“

|[ψ1]|i ∨
“

Wk

j=1

“

lj ∧ 〈〈ψ1 R ψ2〉〉j

”””

The until (release) formulas at k refer to an auxiliary translation 〈〈ψ1 U ψ2〉〉j (〈〈ψ1 R ψ2〉〉j)
at the loop point j where lj holds. It computes an approximation of the semantics of until
(release). If a loop exists this approximation is, in fact, exact for ψ1 U ψ2 (ψ1 R ψ2) at the
loop index j corresponding to the time point k + 1 in the (k, j)-loop path. In the no-loop
case the effect of the encoding at index k is the same as if all subformulas at the index k+1
would be evaluated to ⊥.

The auxiliary encoding for temporal LTL formulas is as follows:

|[ϕ]|i 1 ≤ i < k i = k

〈〈ψ1 U ψ2〉〉i |[ψ2]|i ∨
(
|[ψ1]|i ∧ 〈〈ψ1 U ψ2〉〉i+1

)
|[ψ2]|k

〈〈ψ1 R ψ2〉〉i |[ψ2]|i ∧
(
|[ψ1]|i ∨ 〈〈ψ1 R ψ2〉〉i+1

)
|[ψ2]|k

Because the semantics of until is a least fixpoint, the encoding of 〈〈ψ1 U ψ2〉〉k is just
the simplified form of the expression |[ψ2]|k ∨ (|[ψ1]|k ∧ ⊥), where 〈〈ψ1 U ψ2〉〉k+1 has been
replaced by ⊥. Similarly, because the semantics of release is a greatest fixpoint, we have
|[ψ2]|k ∧ (|[ψ1]|k ∨ ⊤) for 〈〈ψ1 R ψ2〉〉k.

The conjunction of these three sets of constraints forms the full fixpoint evaluation
encoding of the bounded model checking problem into SAT:

|[M,ψ, k]| ⇔ |[M ]|k ∧ |[LoopConstraints ]|k ∧ |[ψ]|0.

We have the following result:

Theorem 3.1. Given a Kripke structure M and an LTL formula ψ, M has an initialised
path π such that π |= ψ iff there exists a k ∈ N such that the fixpoint evaluation encoding
|[M,ψ, k]| is satisfiable. In particular, if π |=k ψ then the fixpoint evaluation encoding
|[M,ψ, k]| is satisfiable. 4

Proof. We first prove a stronger result than the second part of the theorem: M has an ini-
tialised path π such that π |=k ψ iff the fixpoint evaluation encoding |[M,ψ, k]| is satisfiable.
The first part of the theorem follows from this together with the fact that when the bound
k is increased large enough M |= ψ iff M |=k ψ.

It is easy to see that the model constraints |[M ]|k encode all legal initialised finite paths
π′ of the model M of length k. Now consider the loop constraints |[LoopConstraints ]|k. As
in the definition of the semantics of |=k, we have two cases: (a) π′ is a (k, j)-loop for some
j inducing an infinite path π: In this case by setting lj to true and all other li to false
the truth values of all other variables in |[LoopConstraints ]|k are uniquely determined, in
particular LoopExists will be true. Because sj−1 = sk we can satisfy all constraints in
|[LoopConstraints ]|k. It is also easy to check that if more than one li variable is true, these
constraints are unsatisfiable. The second case is: (b) We are in the no-loop case: π′ is

4As immediate corollary minimal length (k, l)-loop counterexamples for LTL can be detected. The en-
coding also detects minimal length informative safety counterexamples for LTL.
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a finite prefix of some initialised infinite path π through the system. The only remaining
option is that all li variables are false. Now the truth values of all other variables in
|[LoopConstraints ]|k are again uniquely determined, in particular LoopExists will be false.
Thus all constraints in |[LoopConstraints ]|k are satisfied.

Consider a satisfying truth assignment of |[M ]|k ∧ |[LoopConstraints ]|k inducing an
initialised infinite path π. We want to check that it can be extended to a model of the
full encoding |[M,ψ, k]| iff π |=k ψ. Because the encoding |[ψ]|0 is just a Boolean circuit,
the truth value of each of its nodes are uniquely determined by the other variables of the
encoding, and we will evaluate these values in what follows.

We will prove by induction on the structure of the LTL formula ψ that for all ϕ ∈
cl(ψ), 0 ≤ i ≤ k: πi |=k ϕ iff |[ϕ]|i is true. In particular, π |=k ψ iff |[ψ]|0 is true.

The cases where ϕ is an atomic proposition or its negation are trivial in both cases
(a) and (b). The same holds for all propositional cases, where the claim holds for the
subformulas by the induction hypothesis.

What remains to be proven are the cases where ϕ is a temporal operator. Because the
encoding of |[ϕ]|i for all indices 0 ≤ i < k just uses the one-step identities for LTL formulas,

the claim holds for all of them provided that for the last index k it holds that πk |=k ϕ iff
|[ϕ]|k is true.

First consider the easier no-loop case (b): By the above we have that none of the li
variables is true. In this case we can simplify the encoding by substituting ⊥ for every li
variable and simplifying the result. After doing this it is easy to check that the encoding
of |[ϕ]|k behaves as if πk+1 6|= ψ1 for all subformulas ψ1 ∈ cl(ψ). It is now easy to check
that at index k this matches the definition of the no-loop semantics |=nl for all temporal
operators, and thus the semantics matches |=nl also for all indexes 0 ≤ i < k.

Now consider the (k, j)-loop case (a): Recall that an LTL formula can be evaluated in a
lasso-shaped Kripke structure by a CTL model checker by prefixing each temporal operator
by an E path quantifier [TH02], which results in a CTL state formula. Thus in a (k, j)-loop
we need to only consider the truth value of LTL formulas at indexes 0 ≤ i ≤ k, as the truth
values for any larger index, for example i = k + 1, can be reduced to evaluating the LTL
formula at the corresponding state of the model, in this case the loop state i = j.

By the above we know that lj is the only loop selector variable which is true, and
that the subformulas are correctly evaluated for all indices by the induction hypothesis. If
ϕ = Xψ1, the encoding of |[ϕ]|k picks the truth value of ψ1 from |[ψ1]|j corresponding to

the index k + 1 in the (k, j)-loop (recall that lj is the only loop selector variable which
holds), and we are done.

In the case ϕ = ψ1 Uψ2 we have to do a case analysis. First consider case (i): πi |= ψ2

for some j ≤ i ≤ k, and therefore πi |= ψ1Uψ2. Without loss of generality, pick the smallest
such i. Now clearly at index i the auxiliary translation 〈〈ψ1 U ψ2〉〉i is true. Because the
auxiliary translation 〈〈ψ1 U ψ2〉〉n for all indices j ≤ n ≤ i is just the one-step identity of
until, 〈〈ψ1 U ψ2〉〉n is true iff πn |= ψ1 U ψ2. In particular, at the loop point j we have:
〈〈ψ1 U ψ2〉〉j is true iff πj |= ψ1 U ψ2. Now consider case (ii): πi 6|= ψ2 for all j ≤ i ≤ k.

In this case clearly πj 6|= ψ1 U ψ2. It is now easy to check from the definition of the
auxiliary encoding that 〈〈ψ1 U ψ2〉〉n is false for all indices j ≤ n ≤ k. In both cases we
have 〈〈ψ1 U ψ2〉〉j is true iff πj |= ψ1 U ψ2, and because the encoding of |[ψ1 U ψ2]|k uses

〈〈ψ1 U ψ2〉〉j to obtain the value of πk+1 |= ψ1 U ψ2, we have πk |= ψ1 U ψ2 iff |[ψ1 U ψ2]|k
is true.
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In the case ϕ = ψ1Rψ2 we have to do a very similar (dual) case analysis. First consider
case (i): πi 6|= ψ2 for some j ≤ i ≤ k, and therefore π 6 |= ψ1 Rψ2. Without loss of generality,
pick the smallest such i. Now clearly at index i the auxiliary translation 〈〈ψ1 R ψ2〉〉i is
false. Because the auxiliary translation 〈〈ψ1 R ψ2〉〉n for all indices j ≤ n ≤ i is just the
one-step identity for release, 〈〈ψ1 R ψ2〉〉n is true iff πn |= ψ1Rψ2. In particular, at the loop
point j we have: 〈〈ψ1 R ψ2〉〉j is true iff πj |= ψ1 R ψ2. Now consider case (ii): πi |= ψ2 for

all j ≤ i ≤ k. In this case clearly πj |= ψ1 Rψ2. It is now easy to check from the definition
of the auxiliary encoding that 〈〈ψ1 R ψ2〉〉n is true for all indices j ≤ n ≤ k. In both cases
we have 〈〈ψ1 R ψ2〉〉j is true iff πj |= ψ1 R ψ2, and because the encoding |[ψ1 R ψ2]|k uses

〈〈ψ1 R ψ2〉〉j to obtain the value of πk+1 |= ψ1 R ψ2, we have πk |= ψ1 R ψ2 iff |[ψ1 R ψ2]|k
is true.

Thus by forcing the top level formula |[ψ]|0 to be true we get that M has an initialised
path π such that π |=k ψ iff |[M,ψ, k]| is satisfiable, from which the full theorem follows.

The encoding has a few desirable properties of which the most important one is that
when the encoding is seen as a Boolean circuit where the loop selector variables and the
atomic propositions of the model are input variables, the size of the generated formula is
O(|I|+k · |T |+k · |ψ|). The encoding also has a unique model property in the following sense:
if the (k, l)-loop is given (i.e., the computation π together with the lj variables are fixed),
the Boolean circuit representing the LTL encoding has no free variables. Consequently,
there is no nondeterminism in evaluating the circuit that evaluates the LTL formula, and
if the encoding is satisfiable the given (k, l)-loop defines a unique model of the Boolean
circuit.

If the loop selector variables, atomic propositions and their negations are seen as inputs
to the circuit, the circuit for the LTL encoding |[ψ]|0 is monotonic. This can be exploited
to devise an improved encoding of the Boolean circuit to conjunctive normal form (CNF)
formulas. A similar optimisation has been presented in the encoding of [FSW02].

The original encoding [BCCZ99] and its improved version [CPRS02] both result in for-
mulas that are at least quadratic w.r.t. k. Frisch et al. [FSW02] have presented an alternative
encoding based on normal forms for LTL. This so-called fixpoint encoding is more efficient
than previous attempts, but it produces formulas that are non-linear w.r.t. k [LBHJ04]. An
improved version of the fixpoint encoding, which includes a generalisation to PLTL, is linear
w.r.t. k but does not provide minimal length counterexamples for PLTL formulas [CRS04].
Note, that [CRS04] contains an ambiguity in its description that may lead an implementa-
tion choice that results in wrong handling of formulas containing past temporal operators.
For details see Sect. 5. The normal form used in the fixpoint encoding [FSW02] is similar
to tableau methods for constructing a symbolic Büchi automaton Aψ representing an LTL
formula ψ. It is also possible to do BMC by applying the automata theoretic approach and
symbolically encode a product system M × A¬ψ [dMRS02, CKOS05]. BMC is performed
by searching for fair loops in the product system. This approach produces a linear size en-
coding if the search for fair loops is encoded with an encoding such as [CPRS02, LBHJ04]
that can encode GF p in linear size. Since this method only searches for looping coun-
terexamples, it must sometimes go deeper than other methods also accepting no-loop safety
counterexamples.

See [HN03] for earlier work on linear size bounded model checking encodings for LTL
employing logic programs with the stable model semantics instead of using SAT. This work
does not directly give us a linear size SAT encoding because the best known automatic
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translation from logic programs with the stable model semantics into SAT are super-linear
(roughly O(n log2 n)), see [Jan04].

3.2. BMC for LTL with Eventualities. An alternative approach to encoding semantics
of LTL formulas is to use an eventuality encoding, which in the loop case requires that for
each until formula ψ1 U ψ2 the right hand side formula ψ2 holds at some point in the loop
(and dually for release). The main idea for until formulas is to first evaluate whether the
eventuality formula Fψ2 holds in the last state k, and use this knowledge to evaluate the
value of the main encoding. If we know that Fψ2 does not hold at k, then surely ψ1 U ψ2

cannot hold at k either. In all other cases the one-step LTL identities actually evaluate
the bounded LTL semantics correctly. A dual construction is applied for release formulas.
This idea above enables one to replace the auxiliary encodings of until and release with
simpler ones, but at the same time the encoding becomes a set of Boolean equations with
cyclic dependencies between variables instead of a Boolean circuit where no such cyclic
dependencies exist. Having cyclic dependencies allows for a slightly smaller encoding but
in our opinion makes the approach a bit harder to understand.

The eventuality encoding is quite similar to the fixpoint evaluation encoding, so only
the LTL part of the new encoding will presented. The encoding is no longer defined as
a recursive function over the LTL formula but as Boolean constraints over the so called
formula variables |[ϕ]|i, which are fresh unconstrained propositional variables. There is a
variable |[ϕ]|i for every subformula ϕ ∈ cl(ψ) and for all 0 ≤ i ≤ k + 1. The interpretation
of |[ϕ]|i is still that it is true iff ϕ holds at position i in the model. For propositional LTL
formulas the encoding is as follows:

ϕ 0 ≤ i ≤ k + 1

pi |[p]|i ⇔ p ∈ L(si)

¬pi |[¬p]|i ⇔ p 6∈ L(si)

ψ1 ∧ ψ2 |[ψ1 ∧ ψ2]|i ⇔ |[ψ1]|i ∧ |[ψ2]|i

ψ1 ∨ ψ2 |[ψ1 ∨ ψ2]|i ⇔ |[ψ1]|i ∨ |[ψ2]|i

The encoding for the temporal subformulas is changed to the following (the only thing that
changes is the encoding at index k):

ϕ 0 ≤ i ≤ k

Xψ1 |[Xψ1]|i ⇔ |[ψ1]|i+1

ψ1 U ψ2 |[ψ1 U ψ2]|i ⇔ |[ψ2]|i ∨
(
|[ψ1]|i ∧ |[ψ1 U ψ2]|i+1

)

ψ1 R ψ2 |[ψ1 R ψ2]|i ⇔ |[ψ2]|i ∧
(
|[ψ1]|i ∨ |[ψ1 R ψ2]|i+1

)

To compensate for the change at index k we will for each subformula ϕ ∈ cl(ψ) add the
following constraints |[LastStateFormula ]|k:

Base ¬LoopExists ⇒
(
|[ϕ]|k+1 ⇔ ⊥

)

1 ≤ i ≤ k li ⇒
(
|[ϕ]|k+1 ⇔ |[ϕ]|i

)

The constraints state that if there is no loop, all formula variables at index k + 1 should
evaluate to ⊥. This is the same as in the fixpoint evaluation encoding and results in
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the no-loop case in the the bounded LTL semantics. For the case when a loop exists,
the added constraints force all formula variables at index k + 1 to get their values from
the loop point j, where lj holds. Note that this can create a cyclic dependency between
variables in the Boolean equation system as |[ϕ]|j can depend indirectly through the states

j + 1, j + 2, . . . , k − 1, k on the value of |[ϕ]|k+1 which is constrained to be equal to |[ϕ]|j
itself.

The reader might be puzzled why the |[LoopConstraints ]|k contains constraints of the
form: li ⇒ (si−1 = sk) while |[LastStateFormula ]|k contains analogous constraint with off-
by-one indices: li ⇒

(
|[ϕ]|k+1 ⇔ |[ϕ]|i

)
. This is an optimisation which allows detection

of no-loop safety counterexamples one unrolling of the system transition relation earlier.
This optimisation (used also in [FSW02, BC03, LBHJ04, LBHJ05, HJL05]) could easily be
undone changing the loop shape of (k, l)-loops to match that of [BCRZ99] and requiring:

|[M ]|k ⇔ I(s0) ∧
∧ k+1
i=1 T (si−1, si) and li ⇒ (s i = s k+1 ), thus bringing the system and

formula indices back to synch.
There is still one final piece missing because the encoding as it stands so far has models

which do not agree with the semantics of LTL. The constraints introduced so far allow the
case where |[ψ1 U ψ2]| is true at all indices of the loop even if |[ψ2]| is true at no index of the
loop (this can happen when |[ψ1]| is true at all indices of the loop). This clearly violates the
semantics of until and needs to be taken care of. In such a case the SAT solver has found
a solution for the evaluation of the cyclic dependencies between until variables mentioned
above, but this solution is not the required least fixpoint solution (see also discussion on
this topic in Sect. 2.1). For release formulas the situation is less severe. It can be the case
that |[ψ2]| holds at all indices of the loop but |[ψ1 R ψ2]| holds in no index. This is not fatal
in the sense that in this case the semantics of release have been under-approximated (as
is also done by the no-loop safety case). In addition, the encoding has a satisfying truth
assignment where the semantics of release is, in fact, evaluated correctly.

To disallow assignments as described above, where the eventualities of until and release
are not fulfilled, we use a set of auxiliary constraints for until and release subformulas. The
constraints perform a similar function to the auxiliary encoding of until and release in the
fixpoint encoding. In the table below 〈〈ϕ〉〉i are new auxiliary formula variables used by the
constraints.

ϕ

Base ψ1 U ψ2 LoopExists ⇒ (|[ψ1 U ψ2]|k ⇒ 〈〈Fψ2〉〉k)

ψ1 R ψ2 LoopExists ⇒ (|[ψ1 R ψ2]|k ⇐ 〈〈Gψ2〉〉k)

ψ1 U ψ2 〈〈Fψ2〉〉0 ⇔ ⊥

ψ1 R ψ2 〈〈Gψ2〉〉0 ⇔ ⊤

1 ≤ i ≤ k ψ1 U ψ2 〈〈Fψ2〉〉i ⇔ 〈〈Fψ2〉〉i−1 ∨ (InLoopi ∧ |[ψ2]|i)

ψ1 R ψ2 〈〈Gψ2〉〉i ⇔ 〈〈Gψ2〉〉i−1 ∧ (¬InLoopi ∨ |[ψ2]|i)

We use the names 〈〈Fψ2〉〉i and 〈〈Gψ2〉〉i for the auxiliary variables because it describes the
function of the constraints well. The constraint LoopExists ⇒ (|[ψ1 U ψ2]|k ⇒ 〈〈Fψ2〉〉k)
intuitively ensures that in the loop case if ψ1 U ψ2 holds at k, then there is some index
in the loop where ψ2 holds. This is quite similar to, but not technically identical to, the
use of Büchi acceptance sets for ensuring the correct semantics for until, as will be shown
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later. The encoding for release is only required to get the exact LTL semantics for release
formulas. The constraint LoopExists ⇒ (|[ψ1 R ψ2]|k ⇐ 〈〈Gψ2〉〉k) could be safely dropped
if we allow the satisfying models of the encoding to safely under-approximate the bounded
semantics instead of exactly capturing it.5 Dropping the auxiliary constraints could also
be done for the fixpoint encoding of Sect. 3.1 by adding |[LastStateFormula ]|k constraints
for release subformulas. The intuitive idea of the auxiliary encoding is that if a loop exists,
〈〈Fψ2〉〉k (〈〈Gψ2〉〉k) is the evaluation of the formula Fψ2 (Gψ2) at πk.

We denote the constraints on the formula variables and the auxiliary variables above
with |[EventuallyLTL]|k. The conjunction of these four sets of constraints and requiring
that the formula holds in the initial state forms the full eventuality encoding of the boun-
ded model checking problem into SAT:

|[M,ψ, k]| ⇔ |[M ]|k ∧ |[LoopConstraints ]|k ∧ |[LastStateFormula]|k ∧ |[EventuallyLTL]|k ∧ |[ϕ]|0.

Theorem 3.2. Given a Kripke structure M and an LTL formula ψ, M has an initialised
path π such that π |= ψ iff there exists a k ∈ N such that the eventuality encoding |[M,ψ, k]|
is satisfiable. In particular, if π |=k ψ then the eventuality encoding |[M,ψ, k]| is satisfiable.

Proof. We proceed similarly to the proof of Thm. 3.1, and will only give the changes to
the proof needed to reflect changes in the encoding. The only changes are the encoding
of temporal subformulas at index k, the use of proxy variables |[ϕ]|k+1, the new auxiliary
encoding |[EventuallyLTL]|k, and the new |[LastStateFormula ]|k constraints.

We will now prove by induction on the structure of the LTL formula ψ that the even-
tuality encoding is satisfiable and for all ϕ ∈ cl(ψ), 0 ≤ i ≤ k: πi |=k ϕ iff in the unique
satisfying truth assignment of the eventuality encoding |[ϕ]|i is true.

First consider the no-loop case (b): In this case, because LoopExists is false, it is easy
to see that the new |[LastStateFormula ]|k constraints will force the proxy variables |[ϕ]|k+1
to ⊥, and the encoding becomes exactly the same as in the fixpoint encoding case and thus
has a unique satisfying truth assignment. Also the new auxiliary encoding constraints will
lead to a unique satisfying truth assignment as as LoopExists is false.

Now consider the (k, j)-loop case (a): Recall from the proof of Thm. 3.1 that in a
(k, j)-loop we need to only consider the truth value of LTL formulas at indexes 0 ≤ i ≤ k,
as the truth values for any larger index, for example i = k+1, can be reduced to evaluating
the LTL formula at the corresponding state of the model, in this case the loop state i = j.

By earlier analysis we know that lj is the only loop selector variable which is true,
and that the the encoding for all subformulas are correctly evaluated for all indices by the
induction hypothesis. In this case the |[LastStateFormula ]|k constraints are satisfiable and
uniquely set the value of the proxy variable |[ϕ]|k+1 for every subformula ϕ ∈ cl(ψ) to be
equivalent to the value of the subformula at the loop point j, namely |[ϕ]|j . Therefore we
do not need to consider the index i = k + 1 in our proofs provided that the index i = j is
evaluated correctly.

If ϕ = Xψ1, the encoding differs from the fixpoint evaluation encoding only at the
index k. The encoding of |[ϕ]|k together with |[LastStateFormula ]|k picks the truth value of
ψ1 from |[ψ1]|j corresponding to the index k+ 1 in the (k, j)-loop (recall that lj is the only

5This is similar to the fact that most LTL to Büchi automata translations do not employ acceptance sets
for release.
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loop selector variable which holds), all constraints are satisfiable in a unique way, and we
are done.

For until and release formulas our proof strategy is the following. We first prove that if
there is a satisfying truth assignment then it must for the end point n = k have the property
that πn |=k ϕ iff |[ϕ]|n is true. After this we observe that for both until and release formulas
the following holds: the truth assignment that matches the bounded semantics of LTL for
all indexes is satisfiable. We will simultaneously prove uniqueness by noting that any truth
assignment which matches the bounded semantics of LTL at the index n = k will force all
other variables of the truth assignment to a unique value that matches the semantics of
LTL for all indexes, and also satisfies the auxiliary encoding in a unique way. This is the
case because when the truth value of |[ϕ]|k is fixed, for all other 0 ≤ n < k the formula
|[ϕ]|n will obtain a truth value in a functional way based on the value of |[ϕ]|n+1 matching
the bounded semantics of LTL. Also the encoding of |[ϕ]|k is satisfiable, as it matches the
bounded semantics of LTL, and |[ϕ]|k+1 matches the value of |[ϕ]|j at the loop point j. The
auxiliary encoding also has a unique satisfying truth assignment as the auxiliary encoding
contains no cyclic dependencies.

In the case ϕ = ψ1 Uψ2 we have to do a case analysis. First consider case (i): πi |= ψ2

for some j ≤ i ≤ k. Without loss of generality, pick the smallest such i (intuition: the cyclic
dependency over until subformulas is broken at index i). Clearly at index i the auxiliary
translation 〈〈Fψ2〉〉i is true. Because of this, the auxiliary translation 〈〈Fψ2〉〉k is true, and
the corresponding auxiliary translation Base constraint is satisfied. Therefore, πi |= ψ1Uψ2

and |[ψ1 U ψ2]|i is also true. Because the encoding follows the one-step identity of until we
also get for all j ≤ n ≤ i: |[ψ1 U ψ2]|n iff πn |= ψ1 U ψ2, and from encoding at k together

with |[LastStateFormula ]|k that |[ψ1 U ψ2]|k iff πk |= ψ1 U ψ2. Thus we have established
that for all indexes j ≤ n ≤ i and n = k the encoding matches the semantics of LTL,
and because of this and our proof strategy, the encoding has a unique satisfying truth
assignment that matches the semantics of LTL for all 0 ≤ n ≤ k. Now consider case (ii):
πi 6|= ψ2 for all j ≤ i ≤ k. In this case the auxiliary translation 〈〈Fψ2〉〉k is false. We

have that πk 6|= ψ1 Uψ2, and if we set |[ψ1 U ψ2]|k to be true then the auxiliary translation
Base constraint is not satisfied. Therefore we must set |[ψ1 U ψ2]|k to false (intuition: the
cyclic dependency over until subformulas is broken at index k) which matches the bounded
LTL semantics of until at n = k and also satisfies the auxiliary constraints. By our proof
strategy all other indices 0 ≤ i < k have a unique satisfying truth assignment obtained
from the one-step identity of until based on |[ψ1 U ψ2]|k matching the semantics of LTL,
and also leading to the satisfaction of the constraints |[LastStateFormula ]|k. In both cases
(i) and (ii) we have for all 0 ≤ n ≤ k that πn |= ψ1 U ψ2 iff in the unique satisfying truth
assignment |[ψ1 U ψ2]|n is true.

In the case ϕ = ψ1 R ψ2 we have to do a very similar (dual) case analysis. First
consider case (i): πi 6|= ψ2 for some j ≤ i ≤ k. Without loss of generality, pick the smallest
such i. Now clearly at index i the auxiliary translation 〈〈Gψ2〉〉i is false. Because of this,
the auxiliary translation 〈〈Gψ2〉〉k is false, and the corresponding auxiliary translation
Base constraint is satisfied. Hence πi 6|= ψ1 R ψ2, and |[ψ1 R ψ2]|i is also false. Because
the encoding follows the bounded LTL semantics of release we also get for all j ≤ n ≤ i:
|[ψ1 R ψ2]|n iff πn |= ψ1Rψ2, and from the encoding at k together with |[LastStateFormula ]|k
that |[ψ1 R ψ2]|k iff πk |= ψ1 R ψ2, and we can proceed similarly to the until case. Now
consider case (ii): πi |= ψ2 for all j ≤ i ≤ k. In this case the auxiliary translation 〈〈Gψ2〉〉k
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is true. We have that πk |= ψ1 Rψ2, and if we set |[ψ1 R ψ2]|k to be false then the auxiliary
translation Base constraint is not satisfied. Therefore we must set |[ψ1 R ψ2]|k to true,
satisfying the auxiliary constraints, and we can proceed similarly to the until case. In both
cases (i) and (ii) we have for all 0 ≤ n ≤ k that πn |= ψ1 R ψ2 iff in the unique satisfying
truth assignment |[ψ1 R ψ2]|n is true.

Now proceed similarly to the proof of Thm. 3.1 to complete the proof.

The eventuality encoding has the unique model property in a very similar sense as
the fixpoint evaluation encoding: after fixing the loop point and the valuation of atomic
propositions at all time points there can only be a unique valuation of the variables of
the encoding that satisfies all the constraints. However, this cannot be explained by the
fact that the encoding is a Boolean circuit (it is not, as it contains cyclic dependencies
between variables); it follows from Thm. 3.2 that all the formula variables of the encoding
are uniquely determined by the bounded semantics of LTL.

There is some similarity with the separated normal form (SNF) encodings of [FSW02,
CRS04] for BMC and the eventuality encoding presented here in the sense that the SNF
encodings first split a (strong) until to a conjunction of a weak until and an eventuality
formula, and use this to devise the BMC encoding for all time steps. We instead use the
eventuality formula to evaluate the correct value for the (strong) until formula at the last
state k only.

3.3. BMC for LTL with Büchi Automata. The knowledgeable reader has certainly
noticed the close correspondence between our eventuality encoding and the use of Büchi
automata symbolically implementing the tableau construction [LP85] for LTL model check-
ing, such as [BCM+92, CGH97, KPR98, Sch01]. Wolper, Vardi and Sistla were the first
to show how to compile LTL directly into Büchi automata [WVS83, VW94]. Gerth et
al. [GPVW95] suggested an algorithm that produces smaller automata. It has subsequently
been improved by a number of authors [Cou99, DGV99, SB00, EH00, GO01, GO03, ST03].
These improved versions are used today mainly in explicit-state (e.g., SPIN [Hol03]) but
also in some symbolic model checkers (e.g., VIS [VIS96]).

In symbolic treatment of LTL, a compact symbolic representation of the automaton has
mostly been preferred to a small number of states. Büchi automata for that purpose are
usually symbolic implementations of the tableau construction in [LP85]. A first application
of the tableau in symbolic context is given by Burch et al. [BCM+92]; for proofs and an
experimental evaluation see [CGH97]. A self-contained presentation of symbolic model
checking of LTL with past can be found in [KPR98]. Schneider exploits the temporal
hierarchy for further optimisations [Sch01].

Another consideration is the depth at which the verification procedure stops. A tight
Büchi automaton is required to accept shortest witnesses [SB05, Sch06, KV01]. Büchi au-
tomata constructed with an algorithm based on [GPVW95] typically fail this criterion;
methods based on [LP85] such as [BCM+92, CGH97] fulfil it for the future fragment
only [SB05, Sch06]. In Sect. 5.2 we apply the idea of virtual unrolling (see Sect. 5.1)
to Büchi automata to obtain a Büchi automaton with a small symbolic representation that
is tight for PLTL. On the other hand, Awedh and Somenzi [AS06] showed experimen-
tally that bounded model checking with constructions based on [LP85] often lead to larger
termination depths than with those based on [GPVW95] if the property holds [AS06].
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Following the automata-theoretic approach [VW86], Büchi automata are employed for
bounded model checking of infinite state systems in de Moura et al. [dMRS02], instead
of using a dedicated encoding. Clarke et al. employ Büchi automata to obtain complete-
ness bounds for arbitrary ω-regular properties [CKOS05]. Awedh and Somenzi present a
complete bounded model checking procedure based on such an encoding [AS04, AS06]. In
Sect. 8 we report on experiments comparing the performance of a dedicated encoding with
the automata-theoretic approach in bounded model checking. Below we first slightly modify
the eventuality encoding to obtain an encoding along the lines of [BCM+92, CGH97]. This
approach is then generalised to show how to encode emptiness checking of the product of a
model with an arbitrary Büchi automaton.

3.3.1. Modifying the Eventuality Encoding. Only minor changes are needed to obtain a
Büchi automata-based LTL encoding from the eventuality encoding. For every until and
release subformula we introduce new auxiliary variables 〈〈Acc(·)〉〉i. The auxiliary even-
tuality encoding needs to be replaced by the auxiliary Büchi encoding defined as follows:

ϕ 1 ≤ i ≤ k

Base ψ1 U ψ2 LoopExists ⇒ 〈〈Acc(ψ1 U ψ2)〉〉k, 〈〈Acc(ψ1 U ψ2)〉〉0 ⇔ ⊥

ψ1 R ψ2 LoopExists ⇒ 〈〈Acc(ψ1 R ψ2)〉〉k, 〈〈Acc(ψ1 R ψ2)〉〉0 ⇔ ⊥

ψ1 U ψ2 〈〈Acc(ψ1 U ψ2)〉〉i ⇔ 〈〈Acc(ψ1 U ψ2)〉〉i−1 ∨
`

InLoopi ∧
`

|[ψ2]|i ∨ ¬|[ψ1 U ψ2]|i
´´

ψ1 R ψ2 〈〈Acc(ψ1 R ψ2)〉〉i ⇔ 〈〈Acc(ψ1 R ψ2)〉〉i−1 ∨
`

InLoopi ∧
`

¬|[ψ2]|i ∨ |[ψ1 R ψ2]|i
´´

We denote the full set of modified LTL constraints with |[BüchiLTL]|k The conjunction of
the five sets of constraints forms the full Büchi encoding of the bounded model checking
problem into SAT:

|[M,ψ, k]| ⇔ |[M ]|k ∧ |[LoopConstraints ]|k ∧ |[LastStateFormula]|k ∧ |[BüchiLTL]|k ∧ |[ϕ]|0.

By comparing to the general Büchi encoding on (k, l)-loops below, it is easy to see
that our Büchi encoding is nothing else than an emptiness checker for a symbolic Büchi
automaton following [BCM+92, CGH97]. The initial state predicate |[ψ]|0 requires the top
level formula to hold at the initial state, the symbolic transition relation is given by the
encoding rules for propositional and temporal operators, and acceptance sets are defined by
the auxiliary translation as follows. For each until formula ψ1 U ψ2 we add an acceptance
set Fψ1Uψ2 into which the states satisfying |[ψ2]|i ∨ ¬|[ψ1 U ψ2]|i belong to, and for each
release formula ψ1 R ψ2 we add an acceptance set Fψ1Rψ2 into which the states satisfying
¬|[ψ2]|i ∨ |[ψ1 R ψ2]|i belong to.

Theorem 3.3. Given a Kripke structure M and an LTL formula ψ, M has an initialised
path π such that π |= ψ iff there exists a k ∈ N such that the Büchi encoding |[M,ψ, k]| is
satisfiable. In particular, if π |=k ψ then the Büchi encoding |[M,ψ, k]| is satisfiable.

Proof. We prove that the auxiliary eventuality encoding is satisfiable iff the auxiliary Büchi
encoding is. The claim then follows from Thm. 3.2.

We only show that LoopExists ⇒ (|[ψ1 U ψ2]|k ⇒ 〈〈Fψ2〉〉k) is satisfiable if and only if
LoopExists ⇒ 〈〈Acc(ψ1 U ψ2)〉〉k is satisfiable. The proof for R is similar.

The case ¬LoopExists is clear. Hence, assume LoopExists is true. We start with
the direction from left to right. First, let 〈〈Fψ2〉〉k be true. There must be 0 ≤ i ≤ k
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such that InLoopi ∧ |[ψ2]|i is true. This immediately gives that 〈〈Acc(ψ1 U ψ2)〉〉i and also
〈〈Acc(ψ1 U ψ2)〉〉k is true. Now, let ¬|[ψ1 U ψ2]|k be true. With LoopExists ⇔ InLoopk we
have 〈〈Acc(ψ1 U ψ2)〉〉k.

For the other direction assume 〈〈Acc(ψ1 U ψ2)〉〉k is true. Hence, there exists 0 ≤ i ≤ k

such that InLoopi ∧ (|[ψ2]|i ∨¬|[ψ1 U ψ2]|i) is true. If InLoopi′ ∧ |[ψ2]|i′ for some i′ we have
〈〈Fψ2〉〉i′ and, therefore, 〈〈Fψ2〉〉k. Otherwise, there is 0 ≤ i′ ≤ k such that InLoopi′ ∧
¬|[ψ1 U ψ2]|i′ . By definition of the encoding for U we obtain InLoopj ⇒ ¬|[ψ1 U ψ2]|j for

all 0 ≤ j < i′ and, via ¬|[ψ1 U ψ2]|k+1, ¬|[ψ1 U ψ2]|k.

Notice that the Büchi encoding above also generates no-loop safety counterexamples.
It also has the unique model property unlike in most other Büchi automata constructions
which do not employ acceptance sets for release formulas. The unique model property
allows us to read the exact bounded semantics for all LTL subformulas and all time indexes
considered directly from the truth assignment given by the SAT engine. As in the other
encodings, if the unique model property is not of interest to us, we can do what most other
Büchi automata constructions do and drop the constraint LoopExists ⇒ 〈〈Acc(ψ1 R ψ2)〉〉k
and the auxiliary translation for release to obtain a slightly smaller encoding.

3.3.2. General Approach. The above approach can easily be generalised to obtain an en-
coding to check existence of an initialised fair path in a fair Kripke structure. If M =
(S, T, I, L, F = {F0, . . . , Ff}) is a fair Kripke structure, it is sufficient to extend the loop
constraints with the following Büchi loop constraints:

0 ≤ m ≤ f

Base LoopExists ⇔ ⊤

LoopExists ⇒ 〈〈Accm〉〉k

〈〈Accm〉〉0 ⇔ ⊥

1 ≤ i ≤ k 〈〈Accm〉〉i ⇔ 〈〈Accm〉〉i−1 ∨ (InLoopi ∧ si ∈ Fm)

For each acceptance set Fm an additional constraint 〈〈Accm〉〉 is introduced to check satis-
faction of Fm in the loop. Hence, the following conjunction forms the general Büchi encoding
of the bounded model checking problem into SAT:

|[M,k]| ⇔ |[M ]|k ∧ |[LoopConstraints ]|k ∧ |[BüchiLoopConstraints ]|k.

Theorem 3.4. Given a Kripke structure M , M has a fair (k, l)-loop π for some 0 < l ≤ k

iff there exists a k ∈ N such that the general Büchi encoding |[M,k]| is satisfiable.

Proof. First we show that if |[M,k]| is satisfiable then M has a fair loop. Assume |[M,k]| is
satisfiable for some k. Fix an arbitrary satisfying assignment. As LoopExists is true, there is
a unique 0 < l ≤ k such that ll is true. It follows that sl−1 = sk. Hence, s0 . . . sl−1(sl . . . sk)

ω

is an initialised (k, l)-loop in M . Further, the loop is fair, as for each acceptance set Fm,
0 ≤ m ≤ f there is some 0 ≤ j ≤ k such that InLoopj is true and sj ∈ Fm.

In the second case let M have a fair loop. We need to prove that |[M,k]| is satisfiable
for some k ∈ N. Assume π = s0 . . . sl−1(sl . . . sk)

ω with sl−1 = sk is a fair loop in M . For
each 0 ≤ m ≤ f there is l ≤ im ≤ k such that sim ∈ Fm. With s0 . . . sk, LoopExists ⇔ ⊤,
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li ⇔ i = l, InLoopi ⇔ i ≥ l, and 〈〈Accm〉〉i ⇔ i ≥ im for all 0 ≤ m ≤ f we obtain a
satisfying assignment for |[M,k]|.

Note that the above variant only considers looping witnesses, as is often done in the
automata-theoretic approach to model checking of LTL. Finite (no-loop) witnesses to safety
properties help, as they do not need to close a loop, focus attention on that part of an infinite
path that is most relevant for violation of a safety property. In addition, minimising a no-
loop witness to a safety property minimises the distance between an initial state and the
actual point of violation. In contrast, minimising a looping witness just minimises the
total length of the looping path, regardless of where the property fails. To also obtain finite
witnesses, M can be given as the product of the model, a Büchi automaton accepting looping
witnesses, and an automaton on finite words accepting finite witnesses to the property.

4. Liveness Checking as Safety Checking

While verification of safety properties can be handled using (simple) reachability check-
ing, verification of liveness or, more generally, ω-regular properties requires detection of fair
loops. Traditionally, loop detection is an integral part of the search algorithm [LP85, VW86,
EL87]. Bounded model checking has to pull the algorithm out of the search procedure, i.e.,
the SAT solver, by making it part of the propositional formula submitted to the SAT
solver [BCCZ99]. Building on that, we below present an approach that fully integrates loop
detection into the model.

The liveness-to-safety transformation takes a fair Kripke structure M and transforms
it into another Kripke structure MS such that there is an initialised fair path in M iff
a certain set of states is reachable in MS. This method makes techniques available for
arbitrary ω-regular properties that have only been applicable to safety properties so far.
It has already proven to be useful as a method to find shortest looping counterexamples
with a BDD-based model checker [SB05], and to extend SAT-based interpolation [McM03]
and large-scale directed model checking [EJ06] to ω-regular properties. On selected exam-
ples, an exponential speedup can be observed compared to traditional BDD-based model
checking [SB04]. Still, because of its impact on the size of the state space (see below),
this approach may in many cases not be able to replace dedicated methods for verifying
ω-regular properties. In Sect. 8 we evaluate experimentally how invariant checking of a
transformed model performs in comparison to dedicated encodings for PLTL properties.
The liveness-to-safety transformation was originally proposed in [BAS02] and has been fur-
ther developed in [SB04, SB06, Sch06]. Bouajjani et al. independently applied the same
technique in the context of regular model checking [BHV04]. The presentation below con-
tains no new results, but deviates from previous work to emphasise similarities with the
bounded model checking approach at the core of this paper.

4.1. Transformation. A typical modelling language of a model checker allows only access
to the current and next states of a path. It is not directly possible to ask whether the
current state has been seen before, thus preventing a loop check in the model. On the
other hand, a bounded model checker has all states of the current path available on the
propositional formula level. Hence, in the latter situation the loop check is easy. The key
idea of the transformation is now to augment the model M with a second instance of the
state variables to hold a copy of one previously seen state of M . This avoids storing every
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line no constraint applies to

1 S SS

2 T TS

3 I IS

4 ls ⇔ ⊥ IS

5 InLoop ⇔ ⊥ IS

6 InLoop′ ⇔ InLoop ∨ ls
′ TS

7 InLoop ⇒ ¬ls
′ TS

8 (ls
′ ⇒ v̂′ = v) ∧ (¬ls

′ ⇒ v̂′ = v̂) TS

9 ∀0 ≤ m ≤ f : (〈〈Accm〉〉 ⇔ ⊥) IS

10 ∀0 ≤ m ≤ f : (〈〈Accm〉〉′ ⇔ 〈〈Accm〉〉 ∨ (InLoop′ ∧ v′ ∈ Fm)) TS

11 LoopClosed ⇒ InLoop SS

12 LoopClosed ⇒ v = v̂ SS

13 ∀0 ≤ m ≤ f : (LoopClosed ⇒ 〈〈Accm〉〉) SS

Figure 2: Formal definition of the liveness-to-safety transformation

state of a (then necessarily bounded) path. Triggered by an oracle, the augmented model
MS then at some point of a forward exploration guesses the loop start and records that
guess in the second instance of the state variables of M . Once the guess has been made,
the forward search proceeds as if moving forward from time point l to k in a witness for
a bounded model checker: record which acceptance sets have been visited (MS contains a
corresponding set of flags), and, once all of them have been visited, try to close the loop by
comparing the current state with the recorded guess.

Formally, the transformation is defined in Fig. 2. LetM = (S, T, I, L, F = {F0, . . . , Ff})
be a fair Kripke structure. Assume, its state space S is made up of a single state variable
v with range S. We construct MS = (SS, TS, IS, LS) as follows. The set of state variables
in MS consists of v, v̂, ls , InLoop, LoopClosed, and, for each acceptance set Fm, 〈〈Accm〉〉.
v and v̂ have range S, all other variables are Booleans. SS, TS and IS are the maximal
subsets of S × S ×B3 ×Bf+1, SS × SS, and SS, respectively, which fulfil the constraints in
the following table. LS is L extended with LoopClosed: LS(sS) = L(s) if ¬LoopClosed(sS),
L(s) ∪ {LoopClosed} otherwise.

The original instance of the state variables, v, is subject to the same constraints in MS

as in M (lines 1–3). For example, if sS ∈ SS, then it must also be the case that v(sS) ∈ S.

Similarly, (sS, sS
′
) ∈ TS only if (v(sS), v(sS

′
)) ∈ T . v̂ is the second instance of the state

variables. When the oracle ls becomes true, the loop start is guessed by recording the
previous value of v in v̂ (line 8). InLoop then becomes and remains true to signal the fact
that the loop has been started (line 6). It prevents ls from becoming true for a second time
(line 7), which, in turn, ensures that the recorded value in v̂ will not be overwritten (line
8). When InLoop is true, visiting an accepting set Fm is recorded in 〈〈Accm〉〉 (line 10).
LoopClosed can finally become true to signal that a fair loop has been found when MS is
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in the loop, all acceptance sets have been seen, and the valuation of the original instance of
the state variables, v, is equal to the guess kept in v̂ (lines 11–13).

Note the similarity with the encodings for bounded model checking presented in Sect. 3.
Lines 4–7 and line 11 correspond to the loop constraints. Lines 9, 10, and 13 are equivalent
to the part of the general Büchi encoding that handles acceptance sets. LoopExists has
been renamed to LoopClosed to emphasise that there is no implication from InLoop to
LoopClosed and LoopClosed is present in each state while there is only a single instance of
LoopExists in BMC. li has been turned into oracle ls , i.e., rather than indicating that a
loop exists between states with index l− 1 and k, it triggers saving the previous value of v
in v̂. The corresponding check for equality of v and v̂ has been shifted to LoopClosed.6

Theorem 4.1 states correctness of the construction.

Theorem 4.1. Let M = (S, T, I, L, F = {F0, . . . , Ff}) be a fair Kripke structure, let MS

be defined as above. M has an initialised fair path π iff some state sS is reachable in MS

such that LoopClosed(sS) is true.

Proof. For simplicity, we restrict the proof to a single acceptance set F0. Generalisa-
tion to multiple acceptance sets is straightforward. States in MS are written as tuples
(v, v̂, ls , InLoop,LoopClosed, 〈〈Acc0〉〉). Further, it is sufficient to prove the following bi-
implication [VW94]:

∃π = (s0 . . . sl−1)(sl . . . sm . . . sk)
ω initialised fair path in M

with k ≥ m ≥ l > 0 ∧ sl−1 = sk ∧ sl, . . . , sm−1 6∈ F0 ∧ sm ∈ F0

⇔
∃sS reachable in MS such that LoopClosed(sS) ⇔ ⊤

“⇒” Let π = (s0 . . . sl−1)(sl . . . sm . . . sk)
ω be an initialised fair path in M with k ≥ m ≥

l > 0, sl−1 = sk, sl, . . . , sm−1 6∈ F0, and sm ∈ F0. Clearly, for arbitrary ŝ0 ∈ S,
(s0, ŝ0,⊥,⊥,⊥,⊥) . . . (sl−1, ŝ0,⊥,⊥,⊥,⊥) is an initialised finite path in MS. We
extend that prefix to reach a state sSk with LoopClosed(sSk ) ⇔ ⊤ by distinguishing
four cases:
(1) k = m = l: Set sSk = sSm = sSl to (sk, sl−1,⊤,⊤,⊤,⊤).

(2) k = m > l: Proceed from sSl = (sl, sl−1,⊤,⊤,⊥,⊥) via

(sl+1, sl−1,⊥,⊤,⊥,⊥) . . . (sk−1, sl−1,⊥,⊤,⊥,⊥) to sSm = sSk =
(sk, sl−1,⊥,⊤,⊤,⊤).

(3) k > m = l: Continue from sSm = sSl = (sl, sl−1,⊤,⊤,⊥,⊤) via

(sl+1, sl−1,⊥,⊤,⊥,⊤) . . . (sk−1, sl−1,⊥,⊤,⊥,⊤) to sSk = (sk, sl−1,⊥,⊤,⊤,⊤).
(4) k > m > l: Combine cases (2) and (3) to obtain

(sl, sl−1,⊤,⊤,⊥,⊥)(sl+1, sl−1,⊥,⊤,⊥,⊥) . . . (sm−1, sl−1,⊥,⊤,⊥,⊥) ◦
◦ (sm, sl−1,⊥,⊤,⊥,⊤) . . . (sk−1, sl−1,⊥,⊤,⊥,⊤)(sk, sl−1,⊥,⊤,⊤,⊤)

“⇐” Let s̃S be a reachable state in MS with LoopClosed(s̃S) ⇔ ⊤. Hence, there is an

initialised finite path π̃S that ends in s̃S. Let πS = sS0 . . . s
S

k be the prefix of π̃S such

that sSk is the first (and only) state in πS with LoopClosed(sSk ) ⇔ ⊤. By definition

of MS, InLoop(sSk ) ⇔ ⊤, v̂(sSk ) = v(sSk ), and 〈〈Acc0〉〉(s
S

k ) ⇔ ⊤. Further, InLoop

6We state without proof that for a fair (k, l)-loop π there is an initialised path in the transformed model
and a satisfying assignment of the general Büchi encoding such that the valuations of ls, InLoop, and
〈〈Accm〉〉 coincide on corresponding indices of the path.
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starts off false at sS0 , switches to true when ls becomes true at some index l > 0,
and remains true up to sSk . Note, that ls is true only at index l > 0. This ensures,

that v̂ contains an arbitrary v̂(sS0 ) from index 0 to l − 1 and v(sSl−1) from index l

onward. Thus, we have v(sSk ) = v̂(sSk ) = v̂(sSl ) = v(sSl−1). 〈〈Acc0〉〉 also is false
initially and changes at some index l ≤ m ≤ k to true to remain there up to index
k. From the definition of 〈〈Acc0〉〉 we have v(sSm) ∈ F0 and ∀l ≤ i < m : v(sSi ) 6∈ F0.
It follows that, depending on the values of k, m, and l, πS corresponds to one of
the shapes (1) – (4) outlined in the first part of the proof. By the construction of
MS, in all cases π′ = s0 . . . sl . . . sm . . . sk = v(sS0 ) . . . v(sSl ) . . . v(s

S
m) . . . v(sSk ) is an

initialised finite path in M with sl−1 = sk, sl, . . . , sm−1 6∈ F0, and sm ∈ F0. Hence,
π = (s0 . . . sl−1)(sl . . . sm . . . sk)

ω is an initialised fair path in K as desired.

The following immediate corollary enables using methods such as [SSS00, ES03, McM03,
AFF+05] to obtain a complete bounded model checking procedure for PLTL:

Corollary 4.2. Given a fair Kripke structure M , M has an initialised fair path π iff there
exists a k ∈ N such that |[MS]|k ∧ LoopClosed(sSk ) is satisfiable.

The liveness-to-safety transformation roughly doubles the number of state variables in
the model. It can be shown that, with a small modification of the way acceptance sets are
handled, radius and diameter of MS increase only by a small, constant factor [Sch06]. If
forward breadth-first search is used for reachability analysis of MS, the proof of Thm. 4.1
implies that a shortest fair looping path in M is found. If M is the product of a model
M̃ and a tight Büchi automaton B for some property ψ, that implies that the path is a
shortest witness with respect to ψ in M̃ .

4.2. Optimising the Transformation.

BDD Variable Order. If a BDD-based model checker is used to determine reachability in
a transformed model it is important to use a variable order that interleaves the Boolean
variables making up s and sS. Otherwise the sizes of the BDDs representing MS may
explode [SB04].

Variable Optimisation. The overhead induced by the transformation of M into MS mostly
stems from the additional instance of the state variables of M present in MS. Hence, leaving
some of M ’s state variables out of loop detection might reduce that overhead. Kroening
and Strichman proved in the context of bounded model checking that input variables can
be ignored when computing the recurrence diameter for simple liveness properties of the
form F p [KS03]. Eén and Sörensson [ES03] use the same idea in temporal induction for
safety properties in incremental BMC. We show below that this idea can be extended to
the liveness-to-safety transformation.

We call a state variable vi a transition input variable iff its value in the next state, x′i,
is not constrained by its value in the current state, xi, and the values of other variables in
the current and next state: if ((x0, x1, . . . , xi, . . .), (x

′
0, x

′
1, . . . , x

′
i, . . .)) is a transition in T ,

then, for all x̃′i in the range of vi, ((x0, x1, . . . , xi, . . .)(x
′
0, x

′
1, . . . , x̃

′
i, . . .)) is also in T .

A state variable vi is irrelevant for fairness iff its value xi does not influence whether a
state is in an acceptance set or not: for all acceptance sets Fm, for all vi in Vi, we have that
(x0, x1, . . . , xi, . . .) is in Fm iff for all x̃i in the range of vi, (x0, x1, . . . , x̃i, . . .) is also in Fm.
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Let Vi be the set of transition input variables that are irrelevant for fairness. Elements
of Vi can be left out of loop detection:

Proposition 4.3. Let M be a fair Kripke structure with set of state variables V and set
of transition input variables that are irrelevant for fairness Vi ⊆ V . Let MS be defined as

above, let M̃S be the variant of MS that restricts loop detection (i.e., lines 8 and 12 in
the definition of MS) to the variables in V \ Vi. There is a reachable state sS such that

LoopClosed(sS) is true in MS iff there is one in M̃S.

Proof. The “⇒”-direction is trivial. For “⇐” it is sufficient to prove the following implica-
tion: if π̃ = s0 . . . sl−1 . . . sm . . . s̃k is an initialised finite path in M with k ≥ m ≥ l > 0,
v(s̃k) = v(sl−1) for all variables v ∈ V \ Vi, and sm ∈ F0, then π̃ with its last state replaced
by sl−1 is an initialised finite path in M with k ≥ m ≥ l > 0, sk = sl−1, and sm ∈ F0.

(1) By assumption, (sk−1, s̃k) ∈ T . Construct a sequence of states s̃k = t0, t1, . . . , t|Vi| =
sl−1 such that all tj , tj+1 differ at most by the value of one variable in Vi. By
definition, for each tj, tj+1, (sk−1, tj) ∈ T iff (sk−1, tj+1) ∈ T . Hence, (sk−1, sl−1) ∈
T .

(2) If k > m, sm ∈ F0. Otherwise, use the same sequence of states s̃k = t0, t1, . . . , t|Vi| =
sl−1 to show that sm = s̃k ∈ F0 iff sl−1 ∈ F0.

Note that the restriction w.r.t. acceptance sets can be dropped if visiting an acceptance
set is detected from index l − 1 to k − 1 rather than from l to k.

We remark that if the Kripke structure being transformed is the product of a model
and a Büchi automaton generated from a PLTL formula, the set of input variables must
be determined with respect to both. Hence, input variables of the model that appear in
the PLTL property to be verified may need to be included in the loop detection. Clearly,
variables that remain constant after initialisation need not be considered for loop detection
either. Leaving constant and input variables out of loop detection as described above is
referred to as variable optimisation.7 For more aggressive optimisations, which, however,
may not preserve length of counterexamples or even lead to false positives, see [Sch06].

Kroening and Strichman assume that input variables are a separate syntactic entity.
While a corresponding IVAR declaration is available in the NuSMV input language [CCJ+06],
many benchmarks were written before NuSMV was available or don’t make use of this
feature to retain compatibility to the original version of SMV [McM93, CMU]. Therefore,
Kroening and Strichman also use an approach based on the transition relation of the system.
Eén and Sörensson [ES03] additionally remove output variables. As ignoring these may lead
to shorter counterexamples on the reduced set of variables in our approach (though only by
one state), they are handled by the more aggressive optimisations in [Sch06].

5. BMC for PLTL

PLTL has features which impact the way model checking can be done. We illustrate
these features through a running example, taken from [BC03] and adapted to better suit
our setting. In this example the system to be model checked is a counter which uses a
variable x to store the counter value. The counter is initialised to 0, and the system adds

7Note that variable optimisation could also be applied in specialised algorithms for bounded model
checking such as the one presented in Sect. 6 but this is not currently implemented.
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Figure 3: Execution of the counter system

one to the counter variable x at each time step until the highest value 5 is reached. After
this the counter is reset to the value 2 in the next time step and the system starts looping
as illustrated in Fig. 3. Thus the system is deterministic and the counter values can be seen
as an infinite sequence (012)(3452)ω corresponding to a (6, 3)-loop of the system. Consider
the (6, 3)-loop of the counter system. The formula

((x = 3) ∧ YYY (x = 0))

holds only at time point 3 but not at any later time point. This demonstrates the (quite
obvious) fact that unlike pure future LTL formulas, the PLTL past formulas can distinguish
states which belong to different unrollings of the loop. We introduce the notion of a time
point belonging to a d-unrolling of the loop to distinguish between different copies of each
state in the unrolling of the loop part.

Definition 5.1. For a (k, l)-loop π we say that the period p(π) of π is (k− l) + 1, i.e., the
number of states the loop consists of. We define that a time point i ≥ 0 in π belongs to the
d-unrolling of the loop iff d ≥ 0 is the smallest integer such that i < l + ((d+ 1) · p(π)).

The formula Y Y Y (x = 0) holds at time point 3, which belongs to the 0-unrolling of
the loop. However, at time point 7 belonging to the 1-unrolling of the loop the formula
Y Y Y (x = 0) does not hold even though they both correspond to the first state in the
unrolling of the loop.

Benedetti and Cimatti [BC03] observed that encoding the BMC problem for PLTL
when the bounded path has no loop was fairly straightforward. It is simple to generalise
the no-loop case of Biere et al. [BCCZ99] to include past operators, as they have simple
semantics. In the no loop case our encoding reduces to essentially the same as [BC03].
When loops are allowed the matter is more complicated, and therefore we will focus on this
part in the rest of this section. The fact which enables us to do bounded model checking
of PLTL formulas (containing past operators in the loop case) is the following property
first observed by [LMS02] and later independently by [BC03]: for (k, l)-loops the ability to
distinguish between time points in different d-unrollings in the past is limited by the past
operator depth δ(ϕ) of a formula ϕ.

Proposition 5.2. Let ϕ be a PLTL formula and π be a (k, l)-loop. For all i ≥ l it holds
that if the time point i belongs to a d-unrolling of the loop with d ≥ δ(ϕ) then: πi |= ϕ iff
πj |= ϕ, where j = i− ((d− δ(ϕ)) · p(π)).

Proof. The proposition directly follows from Thm. 1 and Lemma 2 of [BC03].

The proposition above can be interpreted saying that after unrolling the loop δ(ϕ) times
the formula cannot distinguish different unrollings of the loop from each other. Therefore
if we want to evaluate a formula at an index i belonging to a d-unrolling with d > δ(ϕ), it
is equivalent to evaluate the formula at the corresponding state of the δ(ϕ)-unrolling.



LINEAR ENCODINGS OF BOUNDED LTL MODEL CHECKING 27

Consider again the running example where we next want to evaluate whether the for-
mula

F ((x = 3) ∧ O ((x = 4) ∧ O (x = 5))) (5.1)

holds in the counter system. The formula expresses that it is possible to reach a point at
which the counter has had the values 3, 4, 5 in decreasing order in the past. By using the
semantics of PLTL it is easy to check that this indeed is the case. The earliest time where
the subformula ((x = 3) ∧ O ((x = 4) ∧ O (x = 5))) holds is time 11 and thus the top-level
formula holds at time 0. In fact the mentioned subformula holds for all time points of the
form 11 + i · 4, where i ≥ 0 and 4 = p(π) is the period of the loop 3452. The time point 11
corresponds to a time step which is in the 2-unrolling of the loop 3452. This stabilisation at
the second unrolling is guaranteed by the past operator depth of the formula in question,
which is two. The subformula ((x = 4) ∧ O (x = 5)) has past operator depth δ(ϕ) = 1
and it holds for the first time at time step 8 which is in the 1-unrolling of the loop. Again
the stabilisation of the formula value is guaranteed by the past operator depth of one of
the formula in question. It will also hold for all time steps of the form 8 + i · 4, where
i ≥ 0. Thus, if we need to evaluate any subformula at a time step which belongs to a deeper
unrolling than its past operator depth, e.g., if we want to evaluate ((x = 4) ∧ O (x = 5))
at time step 16 in 3-unrolling, we can just take a look at the truth value of that formula at
the time step corresponding to the unrolling of the formula to its past operator depth, in
this case at time step 8 = 16 − (3 − 1) · 4.

The previous discussion suggests the following extension of the encodings presented in
Sect. 3. Intuitively, past temporal operators can be encoded in a similar way as the future
operators by using their characterisation in terms of previous and current state values.
The issue of stabilisation needs to be dealt with though. Otherwise a subformula can have
different truth values at equivalent positions in the path, which can lead to other subformulas
being incorrectly evaluated. One way to ensure stabilisation is to extend the loop check
li ⇒ (si−1 = sk) to also include the truth values of all formula variables (see [KPR98]).
While being intuitive and straightforward to implement, the approach just sketched requires
that the model is unrolled deep enough so that loop in the model is unrolled to guarantee
the stabilisation of all temporal formulas.

Benedetti and Cimatti [BC03] suggested an alternative. The transition relation of the
model is only unrolled virtually. Rather than having one variable representing the truth of

a subformula at a given index in the loop, several variables |[ϕ]|di are used per subformula
ϕ, which represent the truth of ϕ at the same relative position i to the underlying finite
path but at different unrollings d, see Fig. 4. The number of such variables required for
each subformula can be limited by Proposition 5.2.

The bound k at which a particular witness is reported may be different for both variants.
The first variant cannot guarantee that the minimal length witnesses are found. However,
if the bound required by the first variant is not much larger than that of the alternative,
even with a higher bound the first encoding may be more compact as only one variable
per subformula and index is introduced. On the other hand, if several unrollings of the
loop are required for stabilisation, the second variant may be more compact: in that case,
savings due to having fewer instances of the transition relation of the model will more than
compensate for the overhead introduced by the virtual unrolling of the formula variables.
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Figure 4: Black arcs show the Kripke structure induced by virtual unrolling of the loop for
k = 6 up to depth 2 (i.e., δ(ϕ) = 2) when l3 holds

Below we develop a propositional encoding of the BMC problem for PLTL that in-
tegrates both variants. We first use the idea of Benedetti and Cimatti [BC03] to extend
the eventuality encoding for LTL with past formulas as it is our encoding of choice for an
incremental SAT encoding to be presented in Sect. 6. Based on that we briefly discuss how
the other LTL encodings can also be extended to PLTL along similar lines. In fact, the
encoding presented in this section is essentially a non-incremental version of the incremental
PLTL encoding presented in [HJL05]. We then show that by adding a check for stabilisation
of all temporal subformulas, the level of virtual unrolling can be chosen freely between full
and no unrolling. Finally, we extend the idea of virtual unrolling to Büchi automata.

5.1. BMC for PLTL with Eventualities. The basic idea of the encoding is to virtually
unroll the path by making several copies of the original finite path. A copy of the original
path corresponds to a certain d-unrolling. If all loop selector variables li are false the
encoding collapses to the original path without a loop. The number of copies of the path
for a PLTL subformula ϕ is dictated by its past operator depth δ(ϕ). Since different
subformulas have different past depths, the encoding is such that subformulas with different
past depths see different Kripke structures. Figure 4 shows the running example unrolled
to depth d = 2, for evaluating the formula (5.1).

First of all the PLTL eventuality encoding contains the model constraints |[M ]|k and
the loop constraints |[LoopConstraints ]|k which are both encoded exactly as in the LTL
case.

To represent the original path and its copies, the PLTL formula variables |[ϕ]|di have
two parameters: d is the current d-unrolling and i is the index in the current d-unrolling.
The case where d = 0 corresponds to the original k-step path. Subformulas at virtual
unrolling depth beyond their past operator depth can by Proposition 5.2 be mapped to the
depth corresponding to the past operator depth. From this we get our first rule for each
subformula ϕ ∈ cl(ψ):

|[ϕ]|
d
i = |[ϕ]|

δ(ϕ)
i , when d > δ(ϕ).
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The rest of the encoding is split into cases based on the values of i and d. The encoding
for propositional formulas is the same as in the LTL case except that each subformula has
constraints for several different d-unrollings. Constraints for atomic propositions and their
negation are straightforward. We simply project the atomic propositions onto the original
path. The Boolean operators ∨ and ∧ are encoded to stay in the current d-unrolling.

ϕ 0 ≤ i ≤ k, 0 ≤ d ≤ δ(ϕ)

p |[p]|
d
i ⇔ p ∈ L(si)

¬p |[¬p]|
d
i ⇔ p 6∈ L(si)

ψ1 ∧ ψ2 |[ψ1 ∧ ψ2]|
d
i ⇔ |[ψ1]|

d
i ∧ |[ψ2]|

d
i

ψ1 ∨ ψ2 |[ψ1 ∨ ψ2]|
d
i ⇔ |[ψ1]|

d
i ∨ |[ψ2]|

d
i

The translation of the future operators is also a very straightforward generalisation
of the pure future LTL encoding of Sect. 3.2; we just have introduce constraints for all
d-unrollings.

ϕ 0 ≤ i ≤ k, 0 ≤ d ≤ δ(ϕ)

Xψ1 |[Xψ1]|
d
i ⇔ |[ψ1]|

d
i+1

ψ1 U ψ2 |[ψ1 U ψ2]|
d
i ⇔ |[ψ2]|

d
i ∨

(
|[ψ1]|

d
i ∧ |[ψ1 U ψ2]|

d
i+1

)

ψ1 R ψ2 |[ψ1 R ψ2]|
d
i ⇔ |[ψ2]|

d
i ∧

(
|[ψ1]|

d
i ∨ |[ψ1 R ψ2]|

d
i+1

)

The |[LastStateFormula ]|k constraints of the LTL case have to be changed in the PLTL
case to take care of binding the different unrollings of the encoding together in the way
shown by following the black arcs of Fig. 4 in the forward direction. The truth values of

|[ϕ]|dk+1 are picked from the loop point i of the next unrolling level |[ϕ]|d+1
i , or if we are at

the last level d = δ(ϕ) then from the loop point at the last level |[ϕ]|
δ(ϕ)
i . This is achieved

by the expression |[ϕ]|
min(d+1,δ(ϕ))
i . For all ϕ ∈ cl(ψ) the following constraints are created:

0 ≤ d ≤ δ(ϕ)

Base ¬LoopExists ⇒
(
|[ϕ]|

d
k+1 ⇔ ⊥

)

1 ≤ i ≤ k li ⇒
(
|[ϕ]|

d
k+1 ⇔ |[ϕ]|

min(d+1,δ(ϕ))
i

)

When d = δ(ϕ) we have reached the d-unrolling where the Kripke structure loops
back. At this depth we can guarantee that the satisfaction of all subformulas has stabilised
(see Proposition 5.2). Therefore at the maximum unrolling depth we add the auxiliary
translation constraints which, similarly to the LTL case, are needed to correctly evaluate
the until and release formulas along the loop.
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ϕ

Base ψ1 U ψ2 LoopExists ⇒
(
|[ψ1 U ψ2]|

δ(ϕ)
k ⇒ 〈〈Fψ2〉〉

δ(ψ2)
k

)

ψ1 R ψ2 LoopExists ⇒
(
|[ψ1 R ψ2]|

δ(ϕ)
k ⇐ 〈〈Gψ2〉〉

δ(ψ2)
k

)

ψ1 U ψ2 〈〈Fψ2〉〉
δ(ψ2)
0 ⇔ ⊥

ψ1 R ψ2 〈〈Gψ2〉〉
δ(ψ2)
0 ⇔ ⊤

1 ≤ i ≤ k ψ1 U ψ2 〈〈Fψ2〉〉
δ(ψ2)
i ⇔ 〈〈Fψ2〉〉

δ(ψ2)
i−1 ∨

(
InLoopi ∧ |[ψ2]|

δ(ψ2)
i

)

ψ1 R ψ2 〈〈Gψ2〉〉
δ(ψ2)
i ⇔ 〈〈Gψ2〉〉

δ(ψ2)
i−1 ∧

(
¬InLoopi ∨ |[ψ2]|

δ(ψ2)
i

)

The starting point for the encoding for the past operators is using their characterisation
in terms of the current and the previous state. This enables the encoding of the past
operators to fit in nicely with the future encoding. Since past operators look backwards,
we must encode the move from one copy of the path to the previous copy efficiently.

The simplest case of the encoding for past operators occurs at d = 0. At this depth,
the past is unique in the sense that the path cannot jump to a lower depth. We do not
need to take into account the loop edge, so the encoding follows from the characterisation
ψ1 S ψ2 and ψ1 T ψ2 in terms of the current and the previous state. Encoding Y ψ1 and
Zψ1 is trivial.8

ϕ i = 0, 0 ≤ d ≤ δ(ϕ) 1 ≤ i ≤ k, d = 0

ψ1 S ψ2 |[ψ1 S ψ2]|
d
i ⇔ |[ψ2]|

d
i |[ψ1 S ψ2]|

d
i ⇔ |[ψ2]|

d
i ∨

(
|[ψ1]|

d
i ∧ |[ψ1 S ψ2]|

d
i−1

)

ψ1 T ψ2 |[ψ1 T ψ2]|
d
i ⇔ |[ψ2]|

d
i |[ψ1 T ψ2]|

d
i ⇔ |[ψ2]|

d
i ∧

(
|[ψ1]|

d
i ∨ |[ψ1 T ψ2]|

d
i−1

)

Yψ1 |[Y ψ1]|
d
i ⇔ ⊥ |[Yψ1]|

d
i ⇔ |[ψ1]|

d
i−1

Zψ1 |[Zψ1]|
d
i ⇔ ⊤ |[Zψ1]|

d
i ⇔ |[ψ1]|

d
i−1

When d > 0 the key challenge of the encoding is to decide whether the past operator
should consider the path to continue in the current unrolling of the path or in the last state
of the previous unrolling. The decision is taken based on the loop selector variables, which
indicate whether we are in the loop state. In terms of our running example, we need to
traverse the straight black arrows of Fig. 4 in the reverse direction. We implement the choice
with an if-then-else construct (li ∧ ϕ1) ∨ (¬li ∧ ϕ2). The expression encodes the choice if
li is true then the truth value of the expression is decided by ϕ1, otherwise ϕ2 decides the
truth value of the expression.

ϕ 1 ≤ i ≤ k, 1 ≤ d ≤ δ(ϕ)

ψ1 S ψ2 |[ψ1 S ψ2]|
d
i ⇔ |[ψ2]|

d
i ∨

“

|[ψ1]|
d
i ∧

““

li ∧ |[ϕ]|d−1
k

”

∨
“

¬li ∧ |[ϕ]|di−1

”””

ψ1 T ψ2 |[ψ1 T ψ2]|
d
i ⇔ |[ψ2]|

d
i ∧

“

|[ψ1]|
d
i ∨

““

li ∧ |[ϕ]|d−1
k

”

∨
“

¬li ∧ |[ϕ]|di−1

”””

Yψ1 |[Y ψ1]|
d
i ⇔

“

li ∧ |[ψ1]|
d−1
k

”

∨
“

¬li ∧ |[ψ1]|
d
i−1

”

Zψ1 |[Zψ1]|
d

i ⇔
“

li ∧ |[ψ1]|
d−1
k

”

∨
“

¬li ∧ |[ψ1]|
d

i−1

”

8The column i = 0 has been included to make all unrollings evaluate exactly the same truth values in the
no-loop case, which has a slight advantage if the encoding is used in a complete model checking procedure
as described in Section 7.
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Combining the tables above we get the full PLTL encoding |[EventualityPLTL]|k for
ψ. Given a Kripke structure M , a PLTL formula ψ, and a bound k, the PLTL eventuality
encoding as a propositional formula is given by:

|[M,ψ, k]| = |[M ]|k ∧ |[LoopConstraints ]|k ∧ |[LastStateFormula]|k ∧ |[EventualityPLTL]|k ∧ |[ψ]|
0
0.

The correctness of our encoding is established by the following theorem.

Theorem 5.3. Given a Kripke structure M and a PLTL formula ψ, M has an initialised
path π such that π |= ψ iff there exists a k ∈ N such that the PLTL eventuality encoding
|[M,ψ, k]| is satisfiable. In particular, if π |=k ψ then the PLTL eventuality encoding
|[M,ψ, k]| is satisfiable. 9

Proof. We proceed similarly to the proof of Thm. 3.2, only changes are given below. The
main change to the future only LTL encoding is that all the subformulas ϕ ∈ cl(ψ) are
virtually unrolled to their past operator depth δ(ϕ). In addition the new past formula
encodings have been introduced.

First consider the (k, j)-loop case (a): We have the same induction scheme as in the
proof of Thm. 3.2. The main change is that we have to take the virtual unrolling into
account. We will prove by induction on the structure of the PLTL formula ψ that the PLTL
eventuality encoding is satisfiable with a unique satisfying truth assignment. Moreover, for
all pairs of indices i, d in 0 ≤ i ≤ k, 0 ≤ d ≤ δ(ϕ) such that d = 0 or i ≥ j (we are in

the black nodes of Fig. 4) it holds that πi+(d·p(π)) |=k ϕ iff in the unique satisfying truth

assignment of the PLTL eventuality encoding |[ϕ]|di is true.
For a future subformula ϕ ∈ cl(ψ) (the top-level subformula of ϕ is a future time

formula) we do this by first proving that if the encoding is satisfiable, the variable |[ϕ]|
δ(ϕ)
k

for the last state of the top unrolling of Fig. 4 is true iff πk+(δ(ϕ)·p(π)) |=k ϕ. This is done
similarly to the proof of Thm. 3.2; only small indexing changes are needed in order to always
refer to states in the unrolling δ(ϕ) both for the encoding and for the PLTL semantics. All
formulas referred to in the proof have in the unrolling δ(ϕ) stabilised by Proposition 5.2 and

thus we get that if the encoding is satisfiable, |[ϕ]|
δ(ϕ)
k is true iff πk+(δ(ϕ)·p(π)) |=k ϕ. Now

it is also easy to check that the encoding for all other pairs of indices i, d in 0 ≤ i ≤ k, 0 ≤
d ≤ δ(ϕ) such that d = 0 or i ≥ j follows the one-step identities of the bounded PLTL
semantics for ϕ in a functional manner (proof by induction following the straight black arcs
of Fig. 4 in the reverse direction jumping from one unrolling to the previous as shown by
the arcs) and thus the truth assignment matching the bounded PLTL semantics leads to
the only truth assignment satisfying all constraints of the encoding. The new part in this
proof compared to the future case is that we also have to prove for all pairs of indexes
0 ≤ i ≤ k, 0 ≤ d ≤ δ(ϕ) such that d > 0 and i < j the corresponding constraints are
satisfiable in a unique way. This is the case because these constraints can be seen to form
Boolean circuits where all inputs are fixed and the output is not constrained in any way.
We thus obtain a unique satisfying truth assignment for the full PLTL eventuality encoding
in a similar manner as in the proof of Thm. 3.2.

For a past formula ϕ ∈ cl(ψ) the proof starts by showing that if the encoding is

satisfiable, then |[ϕ]|00 corresponding to the first state of the bottom unrolling of Fig. 4 is true

9As immediate corollary minimal length (k, l)-loop counterexamples for PLTL can be detected. The
encoding also detects minimal length informative safety counterexamples for PLTL.
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iff π0 |=k ϕ. This can be easily checked by comparing the encoding of |[ϕ]|00 with the PLTL
semantics of past formulas combined with our induction hypothesis that the subformulas
are correctly evaluated. Now it is also easy to check that the rest of the encoding for all
other pairs of indices i, d in 0 ≤ i ≤ k, 0 ≤ d ≤ δ(ϕ) such that d = 0 or i ≥ j follows the
one-step identities of the bounded PLTL semantics for ϕ in a functional manner (proof by
induction following the straight black arcs of Fig. 4 in the forward direction jumping from
one unrolling to the next as shown by the arcs) and thus the truth assignment matching the
bounded PLTL semantics for ϕ leads to the only truth assignment satisfying all constraints
of the encoding. The new part in this proof compared to the future case is that we also
have to prove for all pairs of indexes 0 ≤ i ≤ k, 0 ≤ d ≤ δ(ϕ) such that d > 0 and i < j

the corresponding constraints are satisfiable in a unique way. This is the case because these
constraints can be seen to form Boolean circuits where all the inputs are fixed and the
output is not constrained in any way. We thus obtain a unique satisfying truth assignment
for the full PLTL eventuality encoding in a similar manner as in the proof of Thm. 3.2.

Next consider the no-loop case (b): We first note that in the no-loop case LoopExists
is false and in this case the encoding for all indexes d > 0 can be seen to form Boolean
circuits where all the inputs are fixed and the output is not constrained in any way. Thus
all of these constraints are satisfiable in a unique way.

Therefore we need to only consider the case d = 0, 0 ≤ i ≤ k. We proceed similarly to
the proof of Thm. 3.2 for future PLTL formulas, but due to the simplicity of the proof we
reproduce it here. Because LoopExists is false, it is easy to see that the |[LastStateFormula ]|k
constraints will force the proxy variables |[ϕ]|0k+1 to ⊥, and the encoding becomes exactly
the same as in the fixpoint encoding case and thus has a unique satisfying truth assignment.
Also the auxiliary encoding constraints will lead to a unique satisfying truth assignment as
as LoopExists is false.

For a past PLTL formula ϕ we first find that if the encoding is satisfiable, |[ϕ]|00 is

true iff π0 |=nl ϕ. This can be easily checked by comparing the encoding of |[ϕ]|00 with
the no-loop case PLTL semantics of past formulas combined with our induction hypothesis
that the subformulas are correctly evaluated. It is also easy to check that the rest of the
encoding for all other indices 0 < i ≤ k follows the one-step identities of the no-loop case
PLTL semantics for ϕ in a functional manner, and thus the truth assignment matching
the no-loop case PLTL semantics for ϕ leads to the only truth assignment satisfying all
constraints of the encoding.

The size of the encoding is O(|I|+ k · |T |+ k · |ψ| · δ(ψ)). The encoding for PLTL above
also has the unique model property in the same sense as in the LTL case. The unique model
property allows us to read the exact bounded semantics for all PLTL subformulas and all
time indexes considered directly from the truth assignment given by the SAT engine. In
fact, it also evaluates some value for the formula variables in the light nodes of Fig. 4. These
nodes could be easily detected and forced to some fixed value (e.g., ⊥) but that would make
the encoding slightly larger. For the BMC encoding we preferred not to do that, as the
truth values of these nodes do not matter because they cannot be referenced from |[ψ]|00 by
either forward or backward arcs.

Similarly to the LTL case, the PLTL eventuality encoding of this section (see Sect. 3.2
for the LTL version) can alternatively be replaced with either a PLTL fixpoint evaluation
encoding [LBHJ05] (see Sect. 3.1 for the LTL version) or the Büchi encoding (see Sect. 3.3
for the LTL case). Intuitively the main difference to the LTL case is evaluating the required
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auxiliary encoding at such an unrolling depth d = δ(ϕ) that the evaluated formula ϕ has
stabilised according to Proposition 5.2.

Partial Unrolling. An interesting feature of the PLTL encoding is that a simple modifi-
cation makes it sound even if we replace the function δ(·) with a constant function that
always returns 0. In this case the size of the encoding will be linear in |ψ|, and a Büchi en-
coding variant of the PLTL encoding becomes essentially a BMC encoding of [KPR98], see
also [SB05]. In fact, we can limit the maximum virtual unrolling depth of any subformula to
any value dmax between zero (minimal size encoding, potentially longer counterexamples)
and δ(ϕ) (minimal length counterexamples, larger encoding). Counterexamples will still be
detected but the bound required to do so will depend on the amount of unrolling done.

For the last unrolling we have to add the stabilisation forcing constraints shown below
which constrain the past formulas to also consider that the predecessor can be the last state
of the last unrolling. Such constraints are also required for the encoding of [CRS04] to work
correctly for formulas containing past operators; [CRS04] does not state this explicitly. The
intuition for the stabilisation forcing constraints is that they ensure that past formulas in
the loop state of the last unrolling evaluate to the same truth value, no matter whether it is
seen as the successor of the end state at current or the previous unrolling. In other words,
all subformulas have stabilised. Proposition 5.2 will guarantee that when we have unrolled
to the maximum depth δ(ϕ), these constraints will not remove any satisfying models of the
encoding as the truth values of all formulas, in particular all the past formulas themselves,
have stabilised when the last unrolling has been reached.

ϕ 1 ≤ i ≤ k, d = δ(ϕ)

ψ1 S ψ2 |[ψ1 S ψ2]|
d
i ⇔ |[ψ2]|

d
i ∨

(
|[ψ1]|

d
i ∧

((
li ∧ |[ϕ]|

d
k

)
∨

(
¬li ∧ |[ϕ]|

d
i−1

)))

ψ1 T ψ2 |[ψ1 T ψ2]|
d
i ⇔ |[ψ2]|

d
i ∧

(
|[ψ1]|

d
i ∨

((
li ∧ |[ϕ]|

d
k

)
∨

(
¬li ∧ |[ϕ]|

d
i−1

)))

Yψ1 |[Yψ1]|
d
i ⇔

(
li ∧ |[ψ1]|

d
k

)
∨

(
¬li ∧ |[ψ1]|

d
i−1

)

Zψ1 |[Zψ1]|
d
i ⇔

(
li ∧ |[ψ1]|

d
k

)
∨

(
¬li ∧ |[ψ1]|

d
i−1

)

The correctness of the stabilisation constraints is not difficult to see. If we assume that
for every past subformula ϕ ∈ cl(ψ) it holds that πj+(dmax·p(π)) |=k ϕ iff πk+1+(dmax·p(π)) |=k

ϕ then we can easily prove that the evaluated formula has stabilised for all subformulas at
all indices in the unrolling dmax.

To prove soundness of the modified encoding we proceed as follows. If the assumption
of stabilisation at dmax does not hold, we can find a past time subformula ϕ such that all
its subformulas have stabilised at dmax but πj+(dmax·p(π)) |=k ϕ iff πk+1+(dmax·p(π)) |=k ϕ

does not hold. In this case it is easy to see that the original constraints force |[ϕ]|dmaxj to

true iff πj+(dmax·p(π)) |=k ϕ, and it is easy to prove that the stabilisation forcing constraints

force |[ϕ]|dmaxj to true iff πk+1+(dmax·p(π)) |=k ϕ. Therefore the whole encoding becomes
unsatisfiable.

For completeness we note that Proposition 5.2 ensures that eventually all PLTL for-
mulas become periodic. This ensures that eventually all past subformulas will satisfy the
stabilisation assumption above with any value 0 ≤ dmax ≤ δ(ψ) when k is increased large
enough, for some value of j. If the assumption about stabilisation holds, then by using
min(dmax, δ(ϕ)) in the encoding and in the Proof of Thm. 5.3 instead of δ(ϕ), we can prove
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the encoding to be satisfiable and matching the bounded semantics of PLTL using our as-
sumption about the stabilisation at unrolling dmax instead of Proposition 5.2. The only new
thing that needs to be proven is that the stabilisation enforcing constraints are satisfiable,
and this is immediate by the new constraints and our assumption of the stabilisation of all
past subformulas at the unrolling level dmax.

As a historical note, at the point of writing [LBHJ05] we were unfortunately not aware
of the symbolic PLTL Büchi automata translation of [KPR98]. Quite late in writing [HJL05]
we became aware of it by stumbling on a bug — stemming from the ambiguity mentioned
above — in an unpublished prototype implementation of [CRS04] kindly provided to us by
its authors. After that we discovered that [KPR98] did not have that problem, we quickly
figured out how to use a similar optimisation in our context.

5.2. Virtual Unrolling for Büchi Automata. In this subsection we extend the idea
of virtual unrolling to Büchi automata. Starting from a Büchi automaton B̃ψ based
on [KPR98], which is tight only if ψ is a future time formula [SB05], we obtain a Büchi
automaton Bψ accepting the same language that is tight for all PLTL formulae ψ.

The situation is very similar to the BMC case: on a shortest witness, the original Büchi
automaton B̃ψ needs some additional unrollings of the transition relation of the model M
till both have a loop of the same length. Note, that the intuition provided by the example
below does not rely on the fact that B̃ψ is derived from [KPR98]. It only requires B̃ψ to
have an accepting loop of the same length as the witness. Further generalisation to arbitrary
Büchi automata is possible but so far of mostly theoretical interest [Sch06].

For technical reasons we have to deviate from the convention that li is true at index l
of a (k, l)-loop and InLoop is true from index l through index k. Rather, both are shifted
one state towards the initial state, i.e., li is true at index l− 1 (which could be regarded as
being the loop start as well) and, correspondingly, InLoop is true from l − 1 through k.

The construction of the tight Büchi automaton is by and large the same as in [SB05].
The presentation is changed to highlight similarities with the encoding of PLTL for BMC
in the previous subsection.

Example. We first walk through the steps of the construction using our running example
in Fig. 3. Figure 5a shows a run of a [KPR98]-like Büchi automaton B̃ψ on the path
(01)(2345)ω — remember, that we start the loop one state earlier in this subsection. The

model M enters a loop of length 4 at time point 2 while B̃ψ needs 6 more states until it
enters a loop of the same length. An accepting loop in the product M × B̃ψ can be closed
only at time point 12 (the last occurrence of x = 4 in Fig. 5a).

By virtually unrolling the transition relation of M (or, in other words, by folding in the

transition relation of B̃ψ) some parts of the run of B̃ψ can take place in parallel to reduce
some or all of the excess length (Fig. 5b,c). So far, there is no difference to the BMC case.
We now have to decide how to define states, transition relation, and acceptance sets of the
new automaton Bψ.

The states of Bψ consist of tuples of states of B̃ψ (Fig. 5d). Before the loop starts the

tuples need only have size 1, i.e., they are identical to the states of B̃ψ. After the loop
start the tuples must be able to accommodate the maximal excess length of an accepting
run of B̃ψ. If B̃ψ is derived from [KPR98] we can obtain a similar result as in Prop. 5.2 on

the excess length of accepting runs of B̃ψ [SB05]. Hence, the maximum required size of the
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Figure 5: Tightening [KPR98] by example
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tuples is given by the past operator depth of ψ plus one. In practice, the tuples before the
loop start also have that size but its constituent states at unrollings > 0 are disconnected
from the rest of the automaton. Note that the states of Bψ at time points 6–9 and 10–13
are the same as at time points 2–5.

Defining transitions not crossing a loop boundary is easy: there is a transition from one
tuple state to another in Bψ iff each pair of constituent states at the same unrolling has a
transition in B̃ψ (Fig. 5e). When crossing a loop boundary, a constituent state at unrolling
d − 1 in the pre-state is connected to a constituent state at unrolling d in the post-state.
In addition, there must be a transition in B̃ψ between the constituent states at the highest
unrolling of the pre- and post-state to ensure that a loop exists in B̃ψ.

Clearly, we cannot know in which state B̃ψ would be in an unrolling > 0 when first
entering the loop in Bψ (time point 2 in Fig. 5f). Hence, the corresponding constituent
states in Bψ are not constrained to the past.10 The constituent states at unrolling 0 at time
points 6 and 10 could in principle be forced to be identical to their predecessor at time point
2; however, it turns out that this is not required for correctness of the construction. The
loop boundaries are “detected” non-deterministically using oracle variables InLoop with the
same meaning as before and le indicating the last state of a loop iteration.

As acceptance of a run in B̃ψ is determined in its looping part, each tuple state in
Bψ is in the acceptance set F̃m of Bψ iff its constituent state in the top unrolling belongs
to the corresponding acceptance set Fm of B̃ψ (Fig. 5g). One additional acceptance set
is needed in Bψ to guarantee that infinitely often a loop boundary is guessed. Otherwise,
there might not be a connection between the bottom and top unrollings and, therefore,
acceptance might not be determined correctly. Finally, an accepting loop can be closed
(Fig. 5h).

Construction. We symbolically construct a Büchi automaton Bψ = (S, T, I, L, F ) for a

PLTL formula ψ as follows. For each ϕ ∈ cl(ψ), V contains state variables |[ϕ]|0, . . . , |[ϕ]|δ(ϕ)

meant to represent the truth of ϕ at unrollings 0 ≤ i ≤ δ(ϕ). Two oracles InLoop and le
signal the presumed start of the loop and the end of each loop iteration. The rest of the
encoding is developed step by step below.

line constraint applies to
1 InLoop ⇒ InLoop′ T

2 le ⇒ InLoop S

As in the BMC case we set |[ϕ]|d ⇔ |[ϕ]|δ(ϕ) if d > δ(ϕ). The state variables for atomic
propositions are unconstrained; their valuations are linked to the corresponding atomic
propositions via L, though.11 The valuation of the state variables for Boolean operators is
again the same as in the previous subsection:

10If B̃ψ is derived from [KPR98] some constraints similar to those in Sect. 5 of [HJL05] could be applied
for monotonic operators.

11Here we assume that the product of Kripke structures is formed by demanding that product states
match on shared atomic propositions, see, e.g., [Sch06]. In a symbolic setting atomic propositions often
correspond directly to valuations of state variables and, hence, the product can be formed more directly by
sharing these state variables.
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line ϕ 0 ≤ d ≤ δ(ϕ) applies to
3 p ⊤ S

4 ¬p ⊤ S

5 ψ1 ∧ ψ2 |[ψ1 ∧ ψ2]|
d
⇔ |[ψ1]|

d
∧ |[ψ2]|

d
S

6 ψ1 ∨ ψ2 |[ψ1 ∨ ψ2]|
d
⇔ |[ψ1]|

d
∨ |[ψ2]|

d
S

Within a loop iteration and on the stem the valuation of the variables for temporal operators
directly follows their characterisation in terms of current and next state values. Note that
stem and loop are disconnected at unrollings > 0. In the following tables we sometimes
use parentheses to disambiguate the scope of the next state operator ′ and ’applies to’
abbreviated with a.t.

line ϕ 0 ≤ d ≤ δ(ϕ) a.t.

7 Xψ1 ¬le ∧ ¬(¬InLoop ∧ InLoop′ ∧ d > 0) ⇒ (|[Xψ1]|d ⇔ (|[ψ1]|
d)′) T

8 ψ1 U ψ2 ¬le ∧ ¬(¬InLoop ∧ InLoop′ ∧ d > 0) ⇒ (|[ψ1 U ψ2]|d ⇔ |[ψ2]|
d ∨ (|[ψ1]|d ∧ (|[ϕ]|d)′)) T

9 ψ1 R ψ2 ¬le ∧ ¬(¬InLoop ∧ InLoop′ ∧ d > 0) ⇒ (|[ψ1 R ψ2]|d ⇔ |[ψ2]|
d ∧ (|[ψ1]|

d ∨ (|[ϕ]|d)′)) T

10 Yψ1 ¬le ∧ ¬(¬InLoop ∧ InLoop′ ∧ d > 0) ⇒ ((|[Yψ1]|d)′ ⇔ |[ψ1]|
d) T

11 Zψ1 ¬le ∧ ¬(¬InLoop ∧ InLoop′ ∧ d > 0) ⇒ ((|[Zψ1]|
d)′ ⇔ |[ψ1]|

d) T

12 ψ1 S ψ2 ¬le ∧ ¬(¬InLoop ∧ InLoop′ ∧ d > 0) ⇒ ((|[ψ1 S ψ2]|
d)′ ⇔ (|[ψ2]|d)′ ∨ ((|[ψ1]|d)′ ∧ |[ϕ]|d)) T

13 ψ1 T ψ2 ¬le ∧ ¬(¬InLoop ∧ InLoop′ ∧ d > 0) ⇒ ((|[ψ1 T ψ2]|d)′ ⇔ (|[ψ2]|
d)′ ∧ ((|[ψ1]|d)′ ∨ |[ϕ]|d)) T

When the end of a loop iteration is reached, subsequent unrollings (other than the topmost)
are linked by taking current state values from unrolling d and next state values from un-
rolling d+1. In the topmost unrolling current and next state values are taken from the same
unrolling to ensure stabilisation of all variables. This case corresponds to the loop-back case
in BMC.

line ϕ 0 ≤ d ≤ δ(ϕ) a.t.

14 Xψ1 le ⇒ (|[Xψ1]|d ⇔ (|[ψ1]|
min(d+1,δ(ϕ)))′) T

15 ψ1 U ψ2 le ⇒ (|[ψ1 U ψ2]|d ⇔ |[ψ2]|
d ∨ (|[ψ1]|

d ∧ (|[ϕ]|min(d+1,δ(ϕ)))′)) T

16 ψ1 R ψ2 le ⇒ (|[ψ1 R ψ2]|d ⇔ |[ψ2]|
d ∧ (|[ψ1]|

d ∨ (|[ϕ]|min(d+1,δ(ϕ)))′)) T

17 Yψ1 le ⇒ ((|[Y ψ1]|
min(d+1,δ(ϕ)))′ ⇔ |[ψ1]|

d) T

18 Zψ1 le ⇒ ((|[Zψ1]|min(d+1,δ(ϕ)))′ ⇔ |[ψ1]|
d) T

19 ψ1 S ψ2 le ⇒ ((|[ψ1 S ψ2]|min(d+1,δ(ϕ)))′ ⇔ (|[ψ2]|min(d+1,δ(ϕ)))′ ∨ ((|[ψ1]|
min(d+1,δ(ϕ)))′ ∧ |[ϕ]|d)) T

20 ψ1 T ψ2 le ⇒ ((|[ψ1 T ψ2]|min(d+1,δ(ϕ)))′ ⇔ (|[ψ2]|
min(d+1,δ(ϕ)))′ ∧ ((|[ψ1]|min(d+1,δ(ϕ)))′ ∨ |[ϕ]|d)) T

Variables representing past operators are initialised in unrolling 0 as usual:

line ϕ applies to

21 Yψ1 |[Y ψ1]|
0
⇔ ⊥ I

22 Zψ1 |[Zψ1]|
0
⇔ ⊤ I

23 ψ1 S ψ2 |[ψ1 S ψ2]|
0
⇔ |[ψ2]|

0
I

24 ψ1 T ψ2 |[ψ1 T ψ2]|
0
⇔ |[ψ2]|

0
I

Acceptance for U- and R-formulae is defined in their topmost unrolling but is otherwise
standard:

line ϕ applies to

25 ψ1 U ψ2 ¬|[ψ1 U ψ2]|
δ(ϕ)

∨ |[ψ2]|
δ(ϕ)

F

26 ψ1 R ψ2 |[ψ1 R ψ2]|
δ(ϕ)

∨ ¬|[ψ2]|
δ(ϕ)

F

Finally, we add |[ψ]|0 as an initial state constraint to ensure the desired semantics and {le}
as acceptance set to guarantee that ultimately all unrollings are linked. The labelling is
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defined as L(s) = {p ∈ AP(ψ) | |[p]|0 ∈ V ∧ |[p]|0(s) = ⊤} where AP(ψ) is the set of atomic
propositions occurring in ψ.

In the following we prove that Bψ accepts the desired language and is tight.

Lemma 5.4. Lang(Bψ) = {α | α |= ψ}

Proof. Let B̆ψ be defined as Bψ without the initial state constraint |[ψ]|0.

(Correctness) We show that on every initialised fair path ρ in B̆ψ the values of |[ϕ]|di(ρi)
represent the validity of the subformula ϕ at time point i, where di is either the number
of le’s seen up to time point i − 1 or δ(ϕ), whichever is smaller. Formally, let ρ be an

initialised fair path with L(ρ) = α in B̆ψ. For each time point i in ρ, let di = min(|{j | (j ≤
i−1)∧(le(ρj) ⇔ ⊤)}|, δ(ϕ)).12 The initial, invariant, transition, and fairness constraints on

|[ϕ]|di are identical to the constraints that a Büchi automaton based on [KPR98] imposes on

its state variables representing the corresponding subformula. Hence, αi |= ϕ⇔ |[ϕ]|di(ρi).

(Completeness) We show that there is an initialised fair path ρ in B̆ψ with L(ρ) = α for
each word α. Choose a set of indices U = {i0, i1, . . .} (for “up”) such that le(ρi) ⇔ i ∈ U .
Further, choose l ≤ i0 and set InLoop(ρj) ⇔ j ≥ l. We inductively construct a valuation

for |[ϕ]|d(ρi) for each subformula ϕ of ψ, d ≤ δ(ϕ), and i ≥ 0.

• If ϕ is an atomic proposition p, set |[p]|0(ρi) ⇔ (αi |= p).
• If the top level operator of ϕ is Boolean, the valuation follows directly from the

semantics of the operator.

• For X , each |[Xψ1]|
d(ρi) appears at most once in X ’s defining constraint (line 7).

• ϕ = Y ψ1 is similar. Note that δ(ψ1) = δ(ϕ)−1. Therefore, |[Y ψ1]|
δ(ϕ)′ ⇔ |[ψ1]|

δ(ϕ)

and |[Y ψ1]|
δ(ϕ)′ ⇔ |[ψ1]|

δ(ϕ)−1 are equivalent. |[Y ψ1]|
d(ρi) is unconstrained if d = 0

and i− 1 ∈ U as well as if d ≥ 1 and i = l.
• For ϕ = ψ1 U ψ2, start with the topmost unrolling δ(ϕ). If |[ψ2]|

δ(ψ2) remains

false from some id on, assign ∀i ≥ id . |[ϕ]|δ(ϕ)(ρi) ⇔ ⊥. Now work towards

decreasing i from each in with |[ψ2]|
δ(ψ2)(in) ⇔ ⊤, using line 8 in the definition

of T for U. Continue with unrolling δ(ϕ) − 1. Start at each i ∈ U by obtaining

|[ϕ]|δ(ϕ)−1(ρi) from the previously assigned |[ϕ]|δ(ϕ)(ρi+1) via line 15. Then work

towards decreasing i again using line 8 in the definition of T until |[ϕ]|δ(ϕ)−1 is
assigned for all ρi. This is repeated in decreasing order for each unrolling 0 ≤ d <

δ(ϕ) − 1.

• For S, start with |[ϕ]|0(ρ0) and proceed towards increasing i, also increasing d when
i ∈ U (lines 12, 19 in the definition of T for S). When d = δ(ϕ) is reached, assign

|[ϕ]|δ(ϕ)(ρi) for all i using line 12 in the definition of T . Then, similar to U, work
towards decreasing d and i from each i ∈ U .

• Z , R, and T are as their duals.

For state variables on the stem with d > 0 any assignment satisfying the constraints in
the definition of Bψ can be chosen. It is easy to verify that such assignment always exists.
Fairness follows from the definition of U , l, and the valuation chosen for U and R.

The claim is now immediate by the definition of I.

12In Fig. 5e this corresponds to the thick sequence of transitions starting in unrolling 0 at time point 0,
jumping to unrolling 1 between time points 5 and 6, and finally reaching unrolling 2 at time point 10.
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Lemma 5.5. Bψ is tight.

Proof. We show inductively that the valuations of the variables |[ϕ]|d(ρi) can be chosen such
that the valuation at a given relative index in a loop iteration is the same for each iteration
in an unrolling d. Formally, let α = βγω with α |= ψ. There exists a run ρ on α such that
for all subformulas ϕ of ψ

∀d ≤ δ(ϕ) . ∀i1, i2 ≥ |β| . ((∃k ≥ 0 . i2 − i1 = k|γ|) ⇒ (|[ϕ]|d(ρi1) ⇔ |[ϕ]|d(ρi2)))

Atomic propositions, Boolean connectives, and X are clear. Y is also easy, we only

have to assign the appropriate value from other iterations when |[ϕ]|d(i) is unconstrained.

For ϕ = ψ1 U ψ2, by the induction hypothesis, |[ψ2]|
δ(ψ2) is either always false (in which

case we assign |[ϕ]|δ(ϕ)(ρi) to false according to the proof of Lemma 5.4) or becomes true
at the same time in each loop iteration. Hence, the claim holds for unrolling δ(ϕ). From
there we can proceed to lower unrollings in the same manner as in the proof of Lemma 5.4.
For S we follow the order of assignments from the proof of Lemma 5.4. By induction, the
claim holds for unrolling δ(ϕ). From there, we proceed towards decreasing i and d. We
use, by induction, the same valuations of subformulas and the same equations (though in

reverse direction) as we used to get from |[ϕ]|0(ρ0) to unrolling δ(ϕ). Z , R, and T are as
their duals.

Theorem 5.6. Let ψ be a PLTL formula, let Bψ be defined as above. Then, Lang(Bψ) =
{α | α |= ψ} and Bψ is tight.

Proof. By Lemma 5.4 and 5.5.

As an optimisation, state variables representing atomic propositions, Boolean operators,
and values of subformulas ϕ at unrollings d > δ(ϕ) can be replaced with macros. If the
automaton is used with the liveness-to-safety transformation (with appropriate changes to
shift ls and InLoop back one state), InLoop can be taken directly from the transformation
and le can be defined as LoopClosed′.

6. Incremental SAT and BMC

We now present an incremental eventuality encoding for PLTL (see Sect. 5.1 for the
non-incremental version). The encoding has been first published in [HJL05] and is based
on an earlier PLTL fixpoint evaluation encoding published in [LBHJ05].

A promising technique for improving the performance of BMC is using incremental SAT
solving. When a solver is faced with a sequence of related problems, learned clauses (see e.g.,
[ZMMM01]) from the previous problems can drastically improve the solution time for the
next problem and thus for the whole sequence. BMC is a natural candidate for incremental
solving as two BMC instances for bounds k and k + 1 are very similar. Strichman [Str01]
and Whittemore et al. [WKS01] were among the first to consider incremental BMC. Both
papers presented frameworks for transforming a SAT problem to the next in the sequence by
adding and removing clauses from the current problem instance. Eén and Sörensson [ES03]
consider incremental BMC combined with the inductive scheme presented in [SSS00]. Their
approach is based on using the special syntactic structure of the BMC encoding for invariants
to forward all learned clauses, and therefore they do not need to perform any potentially
expensive conflict analysis for learned clauses between two sequential problem instances. Jin
and Somenzi [JS05] present efficient ways of filtering learned clauses when creating the next
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problem instance. In [BB04] a framework for incremental SAT solving based on incremental
compilation of the encoding to SAT is presented, however, their PLTL encoding is based
on the original and inefficient (for past formulas) encoding of [BC03].

The incremental encoding has been designed to allow easy separation of constraints that
remain active over all instances and constraints that should be removed when the bound is
increased. In addition, we have tried to minimise the number of constraints that must be
removed in order to allow maximal learning in a solver independent fashion. Both of these
are achieved while maintaining the efficiency of the original encoding [LBHJ05].

There are a few considerations that need to be taken into account for a good incremental
encoding. First of all, the encoding needs to be formulated so that it is easy to derive the
case k = i+1 from k = i. This is done by separating the encoding to a k-invariant part and
a k-dependent part. The information learned from the k-invariant constraints can be reused
when the bound is increased while the information learned from the k-dependent constraints
needs to be discarded. Thus we try to minimise the use of k-dependent constraints in our
encoding. The so-called Base constraints are also k-invariant, but they are conditions that
are constant for all values of k.

Keeping the number of k-dependent constraints small is achieved largely by the in-
troduction of proxy states, which serve as placeholders for the endpoint of a path. The
disentanglement of the constraints at index k from the fixpoint encoding to the eventuality
encoding by introducing formula variables also for index k+ 1 can be seen as a first step in
that direction. This is the reason we chose the eventuality encoding of Sect. 5.1 as the base
of our incremental encoding. Below only the differences needed to obtain incrementality
are given. All of the non-modified parts of the encoding are k-invariant.

The loop constraints |[LoopConstraints ]|k are modified to (changes are shown in blue
boxes):

Base l0 ⇔ ⊥

InLoop0 ⇔ ⊥

k−invariant li ⇒ (si−1 = s E )

1 ≤ i ≤ k InLoopi ⇔ InLoopi−1 ∨ li,

InLoopi−1 ⇒ ¬li

k−dependent LoopExists ⇔ InLoopk

sE = sk

Many k-dependent constraints of the non-incremental encoding of Sect. 5.1 have been elim-
inated by introducing a new special system state sE with fresh (unconstrained) state vari-
ables acting as a proxy state for the endpoint k of the path. In the k-dependent part the
proxy state sE is constrained to be equivalent to sk. The constraint defining the variable
LoopExists is k-dependent as it is defined in terms of InLoopk.

The |[LastStateFormula ]|k constraints are modified to (changes are shown in blue boxes):
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0 ≤ d ≤ δ(ϕ)

Base ¬LoopExists ⇒
(
|[ϕ]|d

L
⇔ ⊥

)

k−invariant, 1 ≤ i ≤ k li ⇒
(
|[ϕ]|

d

L
⇔ |[ϕ]|

d
i

)

k−dependent |[ϕ]|
d
E ⇔ |[ϕ]|

d
k

|[ϕ]|
d
k+1 ⇔ |[ϕ]|

min(d+1,δ(ϕ))
L

The proxy state sE has the corresponding new formula variables |[ϕ]|dE which have been
introduced to make the encodings for the past formulas k-invariant. For the future formulas
another proxy state with index L has been introduced. This loop proxy state introduces

new formula variables |[ϕ]|dL. All the formulas at the proxy states are bound to their
corresponding states at the same time point, implementing jumping from one unrolling to
another as shown in Fig. 4.

We need to extend the first rule of the PLTL encoding also to indices E and L, for each
subformula ϕ ∈ cl(ψ):

|[ϕ]|dE = |[ϕ]|
δ(ϕ)
E , when d > δ(ϕ); and

|[ϕ]|dL = |[ϕ]|
δ(ϕ)
L , when d > δ(ϕ).

The auxiliary formula encoding is modified to (as before, changes are shown in blue
boxes):

ϕ

Base ψ1 U ψ2 LoopExists ⇒
(
|[ψ1 U ψ2]|

δ(ϕ)

E
⇒ 〈〈Fψ2〉〉

δ(ψ2)

E

)

ψ1 R ψ2 LoopExists ⇒
(
|[ψ1 R ψ2]|

δ(ϕ)

E
⇐ 〈〈Gψ2〉〉

δ(ψ2)

E

)

ψ1 U ψ2 〈〈Fψ2〉〉
δ(ψ2)
0 ⇔ ⊥

ψ1 R ψ2 〈〈Gψ2〉〉
δ(ψ2)
0 ⇔ ⊤

k−invariant ψ1 U ψ2 〈〈Fψ2〉〉
δ(ψ2)
i ⇔ 〈〈Fψ2〉〉

δ(ψ2)
i−1 ∨

(
InLoopi ∧ |[ψ2]|

δ(ψ2)
i

)

1 ≤ i ≤ k ψ1 R ψ2 〈〈Gψ2〉〉
δ(ψ2)
i ⇔ 〈〈Gψ2〉〉

δ(ψ2)
i−1 ∧

(
¬InLoopi ∨ |[ψ2]|

δ(ψ2)
i

)

k−dependent ψ1 U ψ2 〈〈Fψ2〉〉
δ(ψ2)
E ⇔ 〈〈Fψ2〉〉

δ(ψ2)
k

ψ1 R ψ2 〈〈Gψ2〉〉
δ(ψ2)
E ⇔ 〈〈Gψ2〉〉

δ(ψ2)
k

Basically all references to the index k have been removed in the k-invariant parts by refer-
ences to E. The new k-dependent constraints constrain the auxiliary encodings at E to get
their values from the state at the current bound k.

We also have to modify the encoding of past formulas slightly, as they explicitly mention
the bound k used. The change is to replace the index k with the proxy end index E, and
after this the encoding becomes k-invariant. The case d = 0 does not have to be changed
and is therefore omitted. The indexing changes required are again shown in blue boxes.
The table below includes also the (optional) stabilisation forcing constraints.
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ϕ 1 ≤ i ≤ k, 1 ≤ d ≤ δ(ϕ)

ψ1 S ψ2 |[ψ1 S ψ2]|
d
i ⇔ |[ψ2]|

d
i ∨

„

|[ψ1]|
d
i ∧

„„

li ∧ |[ϕ]|d−1

E

«

∨
“

¬li ∧ |[ϕ]|di−1

”

««

ψ1 T ψ2 |[ψ1 T ψ2]|di ⇔ |[ψ2]|
d
i ∧

„

|[ψ1]|
d
i ∨

„„

li ∧ |[ϕ]|d−1

E

«

∨
“

¬li ∧ |[ϕ]|di−1

”

««

Yψ1 |[Yψ1]|di ⇔

„

li ∧ |[ψ1]|
d−1

E

«

∨
“

¬li ∧ |[ψ1]|
d
i−1

”

Zψ1 |[Zψ1]|di ⇔

„

li ∧ |[ψ1]|
d−1

E

«

∨
“

¬li ∧ |[ψ1]|
d
i−1

”

ψ1 S ψ2 |[ψ1 S ψ2]|
δ(ϕ)
i ⇔ |[ψ2]|

δ(ϕ)
i ∨

„

|[ψ1]|
δ(ϕ)
i ∧

„„

li ∧ |[ϕ]|
δ(ϕ)

E

«

∨
“

¬li ∧ |[ϕ]|
δ(ϕ)
i−1

”

««

ψ1 T ψ2 |[ψ1 T ψ2]|
δ(ϕ)
i ⇔ |[ψ2]|

δ(ϕ)
i ∧

„

|[ψ1]|
δ(ϕ)
i ∨

„„

li ∧ |[ϕ]|
δ(ϕ)

E

«

∨
“

¬li ∧ |[ϕ]|
δ(ϕ)
i−1

”

««

Yψ1 |[Yψ1]|
δ(ϕ)
i ⇔

„

li ∧ |[ψ1]|
δ(ϕ)

E

«

∨
“

¬li ∧ |[ψ1]|
δ(ϕ)
i−1

”

Zψ1 |[Zψ1]|
δ(ϕ)
i ⇔

„

li ∧ |[ψ1]|
δ(ϕ)

E

«

∨
“

¬li ∧ |[ψ1]|
δ(ϕ)
i−1

”

Combining the tables above we get the full incremental PLTL encoding |[IncPLTL]|k
for ψ. Given a Kripke structure M , a PLTL formula ψ, and a bound k, the incremental
PLTL eventuality encoding as a propositional formula is given by:

|[M,ψ, k]| = |[M ]|k ∧ |[LoopConstraints ]|k ∧ |[LastStateFormula]|k ∧ |[IncPLTL]|k ∧ |[ψ]|00.

The correctness of our encoding is established by the following theorem.

Theorem 6.1. Given a Kripke structure M and a PLTL formula ψ, M has an initialised
path π such that π |= ψ iff there exists a k ∈ N such that the incremental PLTL eventuality
encoding |[M,ψ, k]| is satisfiable. In particular, if π |=k ψ then the incremental PLTL
eventuality encoding |[M,ψ, k]| is satisfiable.

Proof. Note, that the fact that the encoding is used incrementally does not influence cor-
rectness of the claim. Hence, we show that the incremental PLTL eventuality encoding
is satisfiable iff the (non-incremental) PLTL eventuality encoding presented in Sect. 5 is
satisfiable. Correctness then follows from Thm. 5.3.

It’s not hard to verify that, essentially by applying substitutions to the proxy variables,
the incremental encoding can be transformed into the non-incremental version plus the
following set of constraints

sE = sk

¬LoopExists ⇒ (|[ϕ]|0L ⇔ ⊥)

∀1 ≤ i ≤ k : li ⇒ (|[ϕ]|0L ⇔ |[ϕ]|0i )

∀0 ≤ d ≤ δ(ϕ) : |[ϕ]|dE ⇔ |[ϕ]|dk

∀0 ≤ d ≤ δ(ϕ) : |[ϕ]|dk+1 ⇔ |[ϕ]|
min(d+1,δ(ϕ))
L

|[ϕ]|dE ⇔ |[ϕ]|
δ(ϕ)
E if d > δ(ϕ)

|[ϕ]|dL ⇔ |[ϕ]|
δ(ϕ)
L if d > δ(ϕ)

〈〈Fψ2〉〉
δ(ψ2)
E ⇔ 〈〈Fψ2〉〉

δ(ψ2)
k

〈〈Gψ2〉〉
δ(ψ2)
E ⇔ 〈〈Gψ2〉〉

δ(ψ2)
k
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without changing the set of satisfying truth assignments. It is easy to see that with li ⇒

(|[ϕ]|
δ(ϕ)−1
k+1 ⇔ |[ϕ]|

δ(ϕ)
i ⇔ |[ϕ]|

δ(ϕ)
k+1) the set of constraints is a conflict-free assignment of the

proxy variables.

The incrementality of the encoding works as follows. The encoding |[M,ψ, k + 1]| for
bound k+1 is obtained from the encoding |[M,ψ, k]| for bound k. First, all the k-dependent
rules, and everything learned from them by the SAT solver have to be dropped. After this
the encoding must be extended by all the constraints needed for encoding the new time
step k + 1.

We have taken care to keep most of the encoding rules k-independent, and to make all
of the k-dependent constraints as simple as possible (they are all just equivalences between
two variables) in order to make the size of the k-dependent part as small as possible. This
was made in order to make the overhead to a non-incremental version as small as possible.
The experimental results of Sect. 8 and [HJL05] confirm that the incremental approach does
lead to performance benefits.

7. Completeness: Proving Properties

In its basic form bounded model checking only finds counterexamples and does not
prove systems to be correct. To prove that a system has no counterexamples for a given
property with BMC, we must prove that no counterexample can be longer than a certain
bound, the completeness threshold, and prove that there are no shorter counterexamples.
The obvious upper bound for the completeness threshold is exponential in the number of
state bits in the system. We could thus obtain a complete BMC procedure by always doing
BMC until reaching this upper bound, but clearly such an approach is unacceptable and
we actually want a procedure that will in many practical cases terminate with a much
smaller bound. There are several approaches to making BMC complete in a more practical
sense, i.e., which are able to prove properties by more precisely approximating the required
completeness threshold.

A complete method for proving invariant properties is k-induction originally developed
by Sheeran et al. [SSS00]. They give several different variants for proving invariant prop-
erties. The variant closest to our approach is the following: If the invariant holds in every
state in each initialised path of length k, and there is no initialised loop-free path, which
does not visit an initial state, of length k+1; then we can conclude that the invariant holds
for the system. The longest initialised loop-free path in the state graph is called the recur-
rence diameter, which can be used as an upper bound for the completeness threshold when
proving invariants. Clearly the number of reachable states of the system gives a worst case
upper bound for the recurrence diameter. For a bound k a straightforward encoding of this
loop-free path predicate is of the size O(k2). Kroening and Strichman [KS03] show that the
size of this loop-free predicate can be optimised to O(k log2 k) using sorting networks. They
also suggest ways to leave out state bits from the loop-free predicate to improve efficiency
while maintaining completeness. The benefits of having a smaller predicate are two-fold: a
smaller predicate is easier to manage for the SAT solver and with fewer state variables we
can prove properties at shallower depths because the system loops earlier.

It is now easy to see that by combining the Büchi automata-based BMC encoding of
Sect. 5.2 for PLTL and the liveness to safety reduction of Sect. 4 with k-induction we get
a complete BMC method. The method can also be made incremental as shown in [ES03].
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In this section we show a more refined approach to completeness based on the incremen-
tal BMC encoding presented in Sect. 6. The approach has been first published in [HJL05].
It is based on similar ideas as [ES03] but due to the increased flexibility of the BMC encod-
ing, like the ability to refer to arbitrary states in the run, it is able to avoid the doubling of
the number of state bits as required by the liveness-to-safety transformation. This doubling
would increase the size of the already large loop-free predicate needed by the approach. Our
method also works in the forward direction only (we always have the initial state predicate
present), unlike some other approaches to obtaining completeness such as [ES03, AS06].

Practical experience seems to indicate that already model checking general safety prop-
erties using induction is challenging [AFF+05]. Simply synchronising a finite state automa-
ton (FSA) representing a safety property with the system to model check safety properties
from does not scale well, and forces model checkers to go deeper than the current capacity
of SAT solvers. One reason is the non-determinism in the FSA representing the prop-
erty [AFF+05]. It seems that specifications using deterministic FSAs can be treated more
efficiently [AEF+05, Lat03]. Our BMC encodings follow this line of reasoning by trying to
be as deterministic as possible.

Two papers that consider strengthening of induction without always doing deeper BMC
queries, which is expensive, are [dMRS03, AFF+05]. In [dMRS03] the inductive method
of [SSS00] is generalised to an induction scheme based on simulations. Inductive invariants
are automatically strengthened from failed induction proofs using a procedure based on
existential quantification. Since existential quantification is resource intensive, a method
for quantifying on demand is developed. Another approach is presented in [AFF+05]. They
develop a methodology for flexible manual strengthening of induction. The key idea is to
make the induction scheme part of the specification to allow a high degree of control of
the induction process. Counterexamples produced by the model checker aid the designer in
choosing new invariants.

Finding a completeness threshold for general LTL properties has proven fairly chal-
lenging. Clarke et al. [CKOS05] show how the completeness threshold can be computed
for general LTL properties by computing the recurrence diameter of the product of the
system and a Büchi automaton representing the negation of the property. Awedh and
Somenzi [AS06] apply the same approach, but they use a refined method for calculating
the completeness threshold. Both papers have the problem that they use an explicit rep-
resentation of Büchi automata in their implementations. Thus, they potentially use an
exponential number of state bits in the size of the formula to represent the Büchi automa-
ton. Additionally, our encoding is able to find counterexamples for full PLTL with smaller
bounds than previous methods for LTL [CKOS04, AS04], as these papers employ a method
for translating generalised Büchi automata to standard (non-generalised) Büchi automata
in a way (called the counter method in [AS06]) which does not preserve the minimal length
of counterexamples. Recently, the authors of [AS04] have refined their approach in [AS06]
to also in effect use generalised Büchi automata directly (called the flag method in [AS06]).

A different approach to proving completeness is taken by McMillan [McM03]. He uses
interpolants derived from unsatisfiability proofs of BMC counterexample queries to over-
approximate symbolic reachability. The deeper the BMC query is, the more exact the
over-approximation is. The method is complete and can be extended to LTL model check-
ing through the liveness-to-safety transformation discussed in Sect. 4. Although the method
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can in many cases converge more quickly than the recurrence diameter, which is the rele-
vant completeness threshold for most other methods, the unsatisfiability proofs can be of
exponential size and cause a blow-up.

Suggested BMC Procedure for Completeness. The incremental encoding of Sect. 6 can easily
be extended to also prove properties. The basic ideas used are similar to the variant of k-
induction of [SSS00] discussed above. However, the approach of [SSS00] is restricted to
proving invariants, while our approach can handle proving of all PLTL properties.

The procedure starts with bound k = 0. First we create a completeness formula,
denoted by 〈〈M,ψ, k〉〉, which is satisfied only for the initialised finite paths of length k

which one might be able to extend to a bounded witness of formula ψ (of length k or
longer). The completeness formula 〈〈M,ψ, k〉〉 we use consists of exactly the incremental
translation |[M,ψ, k]| of Sect. 6 with all k-dependent constraints removed. Because these
constraints are a subset of the constraints |[M,ψ, k′]| for every k′ ≥ k, if 〈〈M,ψ, k〉〉 is
unsatisfiable, so will also |[M,ψ, k′]| be.

Now, similarly to the k-induction method, we want to conjunct the completeness for-
mula 〈〈M,ψ, k〉〉 with a simple path formula which is satisfied for only initialised loop-free
paths. This formula is needed in order to guarantee termination of the procedure. However,
we use a certain product automaton instead of the Kripke structure itself. The states of
this product automaton at time point i consist of tuples of: (a) system state si, (b) a bit

vector of values of all formula variables |[ϕ]|di , denoted |[sϕ]|
i
, (c) a bit vector of values of all

auxiliary formula variables 〈〈ϕ〉〉di , denoted 〈〈sϕ〉〉i, and (d) value of the InLoopi predicate.
As an optimisation we disregard any differences in unrollings d > 0 between two indices
where InLoopi is false, as these bits are not constrained by the top-level formula, and thus
are always satisfiable (these are the light nodes of Fig. 4). To do so, we use |[sϕ]|0i to denote

|[sϕ]|
i
restricted to the bits |[ϕ]|0i . The simple path formula we use is the following:

|[SimplePath]|k ⇔
∧

0≤i<j≤k

(
si 6= sj ∨ InLoopi 6= InLoopj ∨ |[sϕ]|

0
i
6= |[sϕ]|

0
j
∨(

InLoopi ∧ InLoopj ∧
(
|[sϕ]|

i
6= |[sϕ]|

j
∨ 〈〈sϕ〉〉i 6= 〈〈sϕ〉〉j

)))
.

If at bound k the conjunction of the completeness 〈〈M,ψ, k〉〉 and the simple path formula
is unsatisfiable the model checked formula ¬ψ holds in the system and the procedure can be
terminated. Otherwise the witness formula |[M,ψ, k]| is created (and optionally conjuncted
with the simple path formula) and the result is satisfiable for bounded witnesses of length
k to the formula ψ (see Thm. 6.1). If the witness formula is satisfiable, the model checked
formula ¬ψ does not hold, and the procedure can terminate. Otherwise, the procedure is
repeated after incrementing k by one.

The |[SimplePath]|k constraint above is obviously quadratic in k. We could use the
standard simple path constraint used in other works employing k-induction by slight mod-
ifications to the encoding, e.g., forcing the light nodes of Fig. 4 to ⊥ in the encoding. This
would enable, e.g., using the optimisations of [KS03].

The procedure above has been designed to be easily implemented using one incremen-
tal SAT solver only, and this is what our implementation does. The only place where
constraints have to be dropped is moving from a witness formula |[M,ψ, k]| for bound k to
the completeness formula 〈〈M,ψ, k + 1〉〉 for bound k + 1, at which point all k-dependent
constraints of |[M,ψ, k]| and everything learned from them by the SAT solver have to be
dropped. We use implementation techniques similar to those of [ES03] to implement this.
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We have the following result:

Theorem 7.1. Given a Kripke structure M and a PLTL formula ψ, M |= ψ iff for some
k ≥ 0: 〈〈M,¬ψ, k〉〉 ∧ |[SimplePath]|k is unsatisfiable and |[M,¬ψ, i]| ∧ |[SimplePath]|i is
unsatisfiable for all 0 ≤ i < k.

The proof requires the following Lemma:

Lemma 7.2. Given a Kripke structure M and a PLTL formula ψ, if |[M,¬ψ, k]| is satis-

fiable for some k, there is k̃ ≤ k such that |[M,¬ψ, k̃]| ∧ |[SimplePath]|
k̃

is satisfiable.

Proof. We are given that |[M,¬ψ, k]| is satisfiable. If |[M,¬ψ, k]| ∧ |[SimplePath]|k is
already satisfiable for k we are done. Otherwise, the proof strategy is to show that for some
k̃ < k the encoding |[M,¬ψ, k̃]| is satisfiable, and repeating the process. By the finiteness
of k, this process can only be repeated a limited number of times. The base case is proved
by the fact that |[SimplePath]|0 is an empty set of constraints, thus proving termination

at some k̃ where |[M,¬ψ, k̃]| ∧ |[SimplePath]|
k̃

is satisfiable.
Consider the induction step where |[M,¬ψ, k]| is satisfiable but |[SimplePath]|k is not

satisfiable. Hence, there are 0 ≤ i < j ≤ k such that si = sj , InLoopi ⇔ InLoopj and
either (a): InLoopi ∧ InLoopj ∧ |[sϕ]|

i
= |[sϕ]|

j
∧ 〈〈sϕ〉〉i = 〈〈sϕ〉〉j, or (b): ¬InLoopi ∧

¬InLoopj ∧ |[sϕ]|0
i

= |[sϕ]|0
j
. In the following we show that also |[M,¬ψ, k̃]| is satisfiable

for k̃ = k − j + i, i.e., k̃ < k. Intuitively, we construct a satisfying truth assignment by
“cutting out” the part of the encoding between indices i + 1 and j (both inclusive) of the
satisfying truth assignment of |[M,¬ψ, k]| and “pasting together” the remaining parts by
reducing all variable indices to the right of the cut point by j − i, obtaining a satisfying
truth assignment for |[M,¬ψ, k̃]|.

An exception to the above rule are the formula variables with unrolling index d > 0
such that InLoopi is false, i.e., the light nodes of Fig. 4. By similar reasoning as used in the
proof of Thm. 5.3 their constraints can never lead to the unsatisfiability of the encoding, and
they can therefore be ignored in constructing the (now actually partial) truth assignment
below. In other words a satisfying truth assignment for them always exists, and will be fully
determined by the partial truth assignment for all the other variables to be constructed
below.

Note, that in the case a loop exists: either i < j < l or l ≤ i < j as InLoopi ⇔ InLoopj .
Hence, the loop start at index l is never cut out. For ease of notation we define a function
f mapping indices from the new to the old assignment:

f(n) = if n ≤ i then n else n+ j − i

With that we define:

∀0 ≤ n ≤ k̃ : s̃n = sf(n)

∀0 ≤ n ≤ k̃ : l̃n ⇔ lf(n)

∀0 ≤ n ≤ k̃ : ˜InLoopn ⇔ InLoopf(n)

˜LoopExists ⇔ LoopExists
s̃E = sE

We start with the model constraints. Let π be an initialised path in M induced by a
satisfying truth assignment of |[M,¬ψ, k]|. Because si = sj the path π̃ constructed from π

by cutting out indices i + 1 and j (both inclusive) is still an initialised path of M . Hence,
the model constraints are satisfied.
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For the loop constraints note first that s̃k̃ = sk both in the case j < k and in the case
j = k. Furthermore, a loop point is never cut out. Hence, if some ll was true in the original
assignment, there is l̃ such that l

l̃
is true in the new assignment. In this case we also have

s̃
l̃−1 = sl−1. Thus by simple case analysis of the loop constraints we get that they are

satisfiable also in |[M,¬ψ, k̃]|.

What remains to be done is to prove that the formula encoding ˜|[ϕ]|00 is still satisfiable

in |[M,¬ψ, k̃]|. We do this by analysing the structure of the encoding rules for temporal
formulas. Below, in each case we consider the mapped pairs of indices i, d such that d = 0 or
InLoopi is true. For simplicity all indices below refer to the original encoding |[M,¬ψ, k]|.

For all future formulas in |[M,¬ψ, k]| at index i the references to formula values at

i + 1 have been replaced in the encoding |[M,¬ψ, k̃]| with references to formula variables
at index j + 1 (note that potentially j + 1 = k + 1). Now because both the formula values
at i and j are identical and the future formula constraints at i and j are identical modulo
index changes, the constraints at i will still be satisfiable with the same truth assignment
when all references to i+ 1 have been replaced with references to j + 1.

For all past formulas in |[M,¬ψ, k]| at index j + 1 (at the loop index l, when j = k)

the references to formula values at j have been replaced in the encoding |[M,¬ψ, k̃]| with
references to formula variables at index i. Now because the formula values at i and j are
identical, the constraints at j + 1 (at the loop index l, when j = k) will still be satisfiable
with the same truth assignment when all references to j have been replaced with references
to i.

For the auxiliary encoding all the constraints are also satisfied by replacing all references
to index j in |[M,¬ψ, k]| with references to index i in |[M,¬ψ, k̃]|. This is the case because
〈〈sϕ〉〉i = 〈〈sϕ〉〉j holds in case (a) due to the simple path constraint 〈〈sϕ〉〉i = 〈〈sϕ〉〉j, and

in case (b) because the encoding for auxiliary variables keeps them constant for all indices
0 ≤ i < j < l.

Now combining all the cases above we were able to “cut out” a part of the encoding
|[M,¬ψ, k]| while still retaining its satisfiability. Thus |[M,¬ψ, k̃]| will also be satisfiable.

We can now continue with the proof of Thm. 7.1:

Proof. “⇒” We only deal with finite models M and finite formulas ¬ψ. |[SimplePath]|k
must therefore become and remain unsatisfiable from some k onward. From correctness of
the incremental PLTL eventuality encoding (Thm. 6.1) we have that |[M,¬ψ, i]| is unsatis-
fiable for all i ≥ 0 if M |= ψ.

“⇐” Assume that 〈〈M,¬ψ, k〉〉 ∧ |[SimplePath]|k is unsatisfiable for some k ≥ 0 and
|[M,¬ψ, i]| ∧ |[SimplePath]|i is unsatisfiable for all 0 ≤ i < k. As noted above, unsatis-
fiability of 〈〈M,¬ψ, k〉〉 implies unsatisfiability of |[M,¬ψ, k′]| for all k′ ≥ k. Similarly, if
|[SimplePath]|k is unsatisfiable, so is |[SimplePath]|k′ for all k′ ≥ k. Hence, we have that
|[M,¬ψ, i]| ∧ |[SimplePath]|i is unsatisfiable for all i ≥ 0. Using Thm. 6.1 together with
Lemma 7.2 in the reverse direction we can conclude M |= ψ.

We could also increase the bound k by more than one at a time if the witness formula is
not conjuncted with the simple path formula. The proof requires the fact that if |[M,¬ψ, k]|
is satisfiable for some k, it is satisfiable for all k′ ≥ k.
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Lemma 7.3. Given a Kripke structure M and a PLTL formula ψ, if |[M,¬ψ, k]| is satis-
fiable for some k, then |[M,¬ψ, k′]| is satisfiable for all k′ ≥ k.

Proof. Assume π = s0 . . . sk is a bounded witness for ¬ψ. We show below that π can
be extended by one state so that the result is again a bounded witness for ¬ψ. By
Thm. 6.1, |[M,¬ψ, k + 1]| is then also satisfiable. Repeated application gives satisfiabil-
ity of |[M,¬ψ, k′]| for any k′ ≥ k.

Consider the no-loop case first. By definition of |=nl, π extended with an arbitrary suc-
cessor of sk, sk+1, is also a bounded no-loop witness for ¬ψ. If π is a (k, l)-loop, we rewrite π
into a (k+1, l+1)-loop by delaying the loop start by one state: π′ = s0 . . . slsl+1 . . . sksk+1 =
sl. Clearly, π′ interpreted as (k+ 1, l+ 1)-loop represents the same infinite path as π inter-
preted as (k, l)-loop and, hence, also satisfies ¬ψ.

Theorem 7.4. Given a Kripke structure M and a PLTL formula ψ, M |= ψ iff for some
k ≥ 0: 〈〈M,¬ψ, k〉〉 ∧ |[SimplePath]|k is unsatisfiable and either k = 0 or |[M,¬ψ, k − 1]|
is unsatisfiable.

Proof. The “⇒” direction is exactly as in the proof of Thm. 7.1. For “⇐” assume that for
some k ≥ 0 we have that 〈〈M,¬ψ, k〉〉 ∧ |[SimplePath]|k is unsatisfiable and either k = 0 or
|[M,¬ψ, k − 1]| is unsatisfiable. In the case k = 0 the result follows directly from Thm. 7.1.
Now consider the case k > 0. By Lemma 7.3, we have that |[M,¬ψ, k′]| is unsatisfiable for
all 0 ≤ k′ < k. Therefore also obviously |[M,¬ψ, k′]| ∧ |[SimplePath]|k′ is unsatisfiable for
all 0 ≤ k′ < k and the result follows from Thm. 7.1.

8. Experiments and Comparisons

In this section we experimentally evaluate and compare the approaches presented in
this paper. The benchmarks, implementations, and scripts are available at

http://www.tcs.hut.fi/Software/benchmarks/LMCS-2006

8.1. Benchmark Instances. We mostly use examples of nontrivial complexity. The ma-
jority are taken from the NuSMV distribution [CCG+02], one is from the examples of the
Rebeca tool [SMSdB04], and two are from previous work of the authors [SB03, LBHJ05].
Table 1 provides a brief description of the models. For “1394” and “dme” we use instances
of different sizes (indicated by the numerical parameters). For “1394” a buggy variant is
used as well (denoted “1394b”).

Table 2 gives templates of the properties used. The first column states the name of the
model. Columns 2–4 indicate names and truth of the properties. To save space we combine
a property and its negated version in a single line. The negation of property “p” is later
referred to as “¬p”. Truth is indicated by “t” for true, “f” for false, “?” for unknown (if
none of our approaches terminated successfully), and “–” for not used. Sometimes we make
the resulting witnesses more interesting by requiring that the request of a request-response
property holds infinitely often (marked “nv”). We also prefix a property with “F ” to turn
a safety property into a liveness property. For “1394” the first entry in column 3 refers
to the correct, the second to the buggy version. The last two columns give past operator
depth and the template of the property.

http://www.tcs.hut.fi/Software/benchmarks/LMCS-2006
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model state-
bits

description source

1394{b}-[345]-[23] 97–197 IEEE 1394 FireWire tree identify protocol with 3–5 nodes and
2 or 3 ports per node

[SB03]

abp4 30 alternating bit protocol for 4 bits [CCG+02]

brp 45 bounded retransmission protocol [CCG+02]

counter 3 3-bit counter [CCG+02]

csmacd 126 MAC sublayer of CSMA/CD protocol [SMSdB04]

dme[35] 54, 90 asynchronous distributed mutual exclusion circuit with 3 or 5
nodes

[CCG+02]

mutex 5 mutual exclusion with 2 participants [CCG+02]

pci 64 PCI Bus protocol [CCG+02]

prod-cons 26 producer consumer [CCG+02]

production-cell 54 production cell control model [CCG+02]

bc57-sensors 78 reactor system model [CCG+02]

ring 3 3 inverters forming a cycle [CCG+02]

short 2 simple request handler [CCG+02]

srg5 8 5 bit shift register [LBHJ05]

Table 1: Models used in the experiments

8.2. Implementations. Following the automata-theoretic approach to LTL [VW86], a mo-
del checking procedure consists of encoding the property and subsequent fair cycle detection.
As a special case, the second step can be performed by applying the liveness-to-safety trans-
lation and doing invariant checking. Where available we use off-the-shelf model checking
procedures that include all steps to evaluate a particular approach. We make the following
exceptions to that rule. Our implementation of the liveness-to-safety translation has the
encoding of the property included but needs to be complemented with an algorithm to check
invariants. To determine whether the effort of a dedicated implementation of a BMC en-
coding with the corresponding opportunities for optimisation is worthwhile we also combine
our BMC encodings with the liveness-to-safety translation and with separately generated
Büchi automata (Fig. 7(e), (f)). Finally, when comparing a tight with a non-tight Büchi
automaton in BDD-based symbolic model checking we invoke the conversion from LTL to a
Büchi automaton externally for both variants to minimise the influence of different variable
orders (Fig. 7(j)).

Encoding of PLTL properties for model checking has been widely researched (for ref-
erences see Sect. 3.3). However, in symbolic model checking, the dominating encodings are
still more or less close to a symbolic implementation of the tableau construction [LP85]
in [BCM+92, CGH97]. This shifts a potential exponential blow-up from generation of the
Büchi automaton to the search for a fair cycle. All encodings presented in this paper fall in
this category. The question whether optimised Büchi automata constructions actually yield
better overall performance in symbolic model checking algorithms is still open: while actual
search for a fair cycle seems to benefit from optimised Büchi automata, there are cases where
those benefits are more than offset by generating the Büchi automaton [STV05, CRST06].
Note, finally, that we currently don’t have a construction that yields an explicit Büchi au-
tomaton that is both, small and tight. In Fig. 7(f) below we evaluate whether there is any
overhead in forming the product of the model and the Büchi automaton for the property
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model property truth δ(ψ) template
p ¬p

1394{b} 1 t f 0 F((p) ∨ ((q ∨ (r)))
-[345]-[23] 2

t/f
– 4 G((O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O(¬(p))))))))) → (F(G(X(¬(p))))))

3
t/f

– 6 G((O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O(¬(p))))))))))))) →
(F(G(X(¬(p))))))

4
t/f

– 8 G((O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O((¬(p)) ∧ (O((p) ∧ (O((¬(p)) ∧ (O((p) ∧
(O(¬(p))))))))))))))))) → (F(G(X(¬(p))))))

5 t f 0 (G(p)) ∨ ((q) U (G((r) ∨ (s))))
abp4 0 f t 2 G((p) → (Y(H(q))))

1 t – 0 G(F(p))
2 f – 0 G((p) → (X((¬(p)) U ((q) ∧ (((¬(r)) ∧ (s)) ∨ ((r) ∧ (t)))))))
3 t – 0 G((p) → (X(((p) U (¬(p))) U ((q) ∧ (((¬(r)) ∧ (s)) ∨ ((r) ∧ (t)))))))

brp 0 t f 2 F(G((p) → (O((q) → (O(r))))))
¬ 0, nv f – 2 ¬((F(G((p) → (O((q) → (O(r))))))) ∧ ((G(F(p))) ∧ (G(F(q)))))

1 t f 0 (G((p) → ((X((q)∨((r)∨(s)))) R (p))))∧((G((q) → ((X((t)∨(s))) R (q))))∧((G((t) →
((X((p) ∨ (s))) R (t)))) ∧ ((G((q) → ((X((p) ∨ (s))) R (q)))) ∧ (G((s) → ((X(p)) R

(s)))))))
counter 0 t f 0 F(G(p))
csmacd 0 f f 0 G((p) → (F(q)))

1 ? f 0 (p) ∧ ((F(q)) → ((((((r) U (s)) U (t)) U (u)) U (v)) U (q)))
dme[35] 0 f f 2 G((p) → ((p) T ((¬(p)) T (¬(q))))

¬ 0, nv f – 2 ¬((G((p) → ((p) T ((¬(p)) T (¬(q)))))) ∧ (G(F(p))))
1 t f 0 G(((p) ∧ (X(¬(p)))) → (X((G(¬(p))) ∨ (((¬(p)) U (q)) U (r)))))

mutex 0 t f 0 G((p) → (F(q)))
pci 0 f f 4 G((p) → (G(((q) ∧ (Y((r) ∧ (O((s) ∧ (O((t) ∧ (O(u))))))))) →

(O((v) ∧ (O((w) ∧ (¬(O(x))))))))))
F 0 f – 4 F(G((p) → (G(((q) ∧ (Y((r) ∧ (O((s) ∧ (O((t) ∧ (O(u))))))))) →

(O((v) ∧ (O((w) ∧ (¬(O(x)))))))))))
1 ? f 0 (((((G((o) → ((o) U (p)))) ∧ (G((q) → ((q) U ((r) ∨ (o)))))) ∧ (G((s) → ((s) U

((t) ∨ ((q) ∨
(o))))))) ∧ (G((u) → ((u) U ((v) ∨ ((s) ∨ ((q) ∨ (o)))))))) ∧ (G((w) → ((w) U ((x) ∨

((w) ∨ ((u) ∨
((q) ∨ (o))))))))) ∧ (G((y) → ((y) U ((z) ∨ ((y) ∨ ((w) ∨ ((u) ∨ ((q) ∨ (o)))))))))

prod-cons 0 f f 1 ((G(¬(p))) ∧ (G(F((q) ∧ ((q) S (r)))))) ∧ (G(F(((q) ∧ ((q) S (r))) → ((s) S (t)))))
1 t – 4 G((p) → ((p) S ((q) S ((r) S ((s) S (t))))))

¬ 1, nv f – 4 ¬((G((p) → ((p) S ((q) S ((r) S ((s) S (t))))))) ∧ (G(F(p))))
2 f – 0 G((p) → (F(((q) ∧ (r)) ∧ (s))))
3 f – 0 G((p) → (F(q)))
4 t – 0 G((p) → (F(q)))
5 t f 0 (X(((X(((X(p)) R (q)) ∧ (r))) R (s)) ∧ (t))) R (u)

production-
cell

0 t f 6 G(F(((p) ∨ (q)) ∧ (O((r) ∧ (O(((s) ∨ (t)) ∧ (O((u)∧
(O(((s) ∨ (t)) ∧ (O(((v) ∨ (w)) ∧ (O(x))))))))))))))

1 t f 12 G(F(((p) ∨ (q)) ∧ (Y(O((r) ∧ (Y(O(((s) ∨ (t)) ∧ (Y(O((u)∧
(Y(O(((s) ∨ (t)) ∧ (Y(O(((v) ∨ (w)) ∧ (Y(O(x))))))))))))))))))))

2 t f 10 G(F(((¬(p)) ∨ (¬(q))) ∧ (O((¬(r)) ∧ (Y(O(((¬(s)) ∨ (¬(t))) ∧ (O((¬(u)) ∧
(Y(O(((¬(s)) ∨ (¬(t))) ∧ (Y(O(((¬(v)) ∨ (¬(w))) ∧ (Y(O(x))))))))))))))))))

3 t f 0 (((((((((((((1) U ((e)∧(¬(f)))) U ((e)∧(f))) U ((g)∧(h∧((i)∧(j))))) U ((k)∧((l)∧((i)∧
(j))))) U ((k) ∧ ((l) ∧ (m)))) U ((n) ∧ ((l) ∧ (o)))) U ((p) ∧ (q))) U ((r) ∧ (q))) U

((s) ∧ (q))) U

((t) ∧ ((u) ∧ (v)))) U ((w) ∧ ((u) ∧ (x)))) U ((y) ∧ (¬(z)))) U ((y) ∧ (z))
4 t f 0 ((((((((((((((((1) U ((a) ∧ (¬(b)))) U ((a) ∧ (b))) U ((c) ∧ ((d) ∧ ((e) ∧ (f))))) U

((g) ∧ ((h) ∧ ((e) ∧
(f))))) U ((i) ∧ ((j) ∧ (k)))) U ((l) ∧ ((j) ∧ (m)))) U ((n) ∧ (o))) U ((p) ∧ (o))) U

((q) ∧ (o))) U

((r) ∧ ((s) ∧ (t)))) U ((u) ∧ ((s) ∧ (v)))) U ((w) ∧ (¬(x)))) U ((w) ∧ (x))) U ((y) ∧
((z) ∧ ((aa) ∧
((ab) ∧ ((ac) ∧ (ad))))))) U ((ae) ∧ ((af) ∧ (ag)))) U ((a) ∧ (¬(b)))

bc57 0 t f 2 G(F((p) ∧ (O((q) ∧ (F((r) ∧ (O(s))))))))
1 t f 0 (((((G((a) → (((b) ∧ ((c) ∧ (d))) R ((e) ∧ (f))))) ∧ (G((g) → (((b) ∧ ((h) ∧ (i))) R

((j) ∧ (k)))))) ∧
(G((l) → (((b) ∧ ((m) ∧ (n))) R ((o) ∧ (p)))))) ∧ (G((q) → (((b) ∧ ((r) ∧ (s))) R

((t) ∧ (u)))))) ∧
(G((v) → (((b)∧((w)∧(¬(x)))) R ((e)∧(y))))))∧(G((z) → (((b)∧((aa)∧(¬(ab)))) R

((ac) ∧
(ad)))))

2 t f 0 (((((G((a) → (((b) ∧ ((c) ∧ (d))) U ((e) ∧ (f))))) ∧ (G((g) → (((b) ∧ ((h) ∧ (i))) U

((j) ∧ (k)))))) ∧
(G((l) → (((b) ∧ ((m) ∧ (n))) U ((o) ∧ (p)))))) ∧ (G((q) → (((b) ∧ ((r) ∧ (s))) U

((t) ∧ (u)))))) ∧
(G((v) → (((b)∧((w)∧(¬(x)))) U ((e)∧(y))))))∧(G((z) → (((b)∧((aa)∧(¬(ab)))) U

((ac) ∧
(ad)))))

3 f – 0 (((((G(F(p))) ∨ (G(F(q)))) ∨ (G(F(r)))) ∨ (G(F(s)))) ∨ (G(F(t)))) ∨ (G(F(u)))
ring 0 t f 0 (G(F(p))) ∧ (G(F(¬(p))))
short 0 t f 0 G((p) → (F(q)))
srg5 0 t f 4 (((F(G(¬(p)))) ∧ (G(F(q)))) ∧ (G(F(r)))) → (F((s) S ((t) S ((u) S ((v) S (w))))))

¬ 0, nv f – 4 ¬(((((F(G(¬(p)))) ∧ (G(F(q)))) ∧ (G(F(r)))) →
(F((s) S ((t) S ((u) S ((v) S (w))))))) ∧ (((F(G(¬(p)))) ∧ (G(F(q)))) ∧ (G(F(r)))))

Table 2: Templates of the properties used in the experiments

first and have the conversion to SAT only encode the search for a fair cycle compared to
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encoding the property in a way very similar to such Büchi automaton as part of the con-
version to SAT (which our encodings do). Therefore, the translation of a PLTL formula
into a Büchi automaton in Fig. 7(f) is chosen to be similar to our BMC encoding. Com-
paring the performance of optimised translations from PLTL into Büchi automata with
SAT-based approaches is out of the scope of this work. Similar reservations apply to our
other experiments.

The details of the approaches and implementations used in the experiments are listed
below. The first four approaches include all steps while the latter three are partial.

CAV2005(c,u,o): means an implementation of a linear, incremental BMC procedure
for PLTL on top of NuSMV 2.2.3. The exact BMC encoding is described in Sect. 6
and is essentially the encoding given in [HJL05]. The parameters describe

• whether the completeness check of Sect. 7 is enabled (c = compl) or not (c =
nocompl),

• whether full virtual unrolling is applied (u = unroll) or not (u = nounroll), and
• whether the optimisations described in Sect. 5 of [HJL05] are active (o = opt)

or not (o = noopt).
VMCAI2005: stands for an implementation of a linear, non-incremental BMC pro-

cedure for PLTL on top of NuSMV version 2.2.3. The exact BMC encoding is
described in [LBHJ05]; it is very similar to the non-incremental PLTL encoding
given in Sect. 5.1 except that it uses the fixed point encoding similar to that in
Sect. 3.1 instead of the eventuality encoding.

NuSMV(BMCLTL): is an example of a non-linear, non-incremental BMC encoding.
It is the standard way to perform SAT-based bounded model checking for PLTL in
NuSMV [CCG+02], version 2.2.3. For a description see [BC03].

NuSMV(BDDLTL): is the standard method for BDD-based PLTL model checking in
NuSMV [CCG+02], version 2.2.3. The property is translated into a symbolic Büchi
automaton with [KPR98]. Cycle detection is performed with the backward version
of the Emerson-Lei algorithm [EL86]; we always enabled the restriction to the set
of reachable states. Neither dynamic reordering nor model-specific variable orders
are used.

L2S(t,o): is the liveness-to-safety transformation. The implementation of the trans-
formation is based on previous work [SB04, Sch06] rather than on the formulation
in Sect. 4. The encoding of the automaton representing the property is based on the
construction outlined in Sect. 5.2 but is slightly modified for a tighter integration
with the liveness-to-safety transformation. As an example, the signals indicating
the start of the looping part and the end of a loop iteration are provided directly
by the reduction rather than being separate input variables. The result is close to
[LBHJ05] — in fact, [LBHJ05] was the starting point of our construction of a tight
Büchi automaton.

The first parameter states which degree of virtual unrolling is used in the encoding
of the property:

• t = tight means full virtual unrolling up to the past operator depth of the
property, and

• t = notight performs no virtual unrolling at all.
The second parameter, o, indicates whether variable optimisation (see Sect. 4.2) is

• enabled (o = ic), or
• not (o = none).
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Identification of input and constant variables is largely based on (conservative) syn-
tactic criteria: a variable v in an SMV model clearly is an input variable if v appears
only on the right-hand side of next assignments such that v is not itself in the scope
of a next operator. Sometimes knowledge of a model was used to conclude that a
variable is either a constant or an input variable.

A full model checking procedure is obtained in combination with any of the pre-
vious four or with NuSMV(BDDINVAR) below. We only use CAV2005 and
NuSMV(BDDINVAR).

B(t): stands for a symbolic implementation of a Büchi automaton. The parameter t
indicates whether a tight (t = tight) version is used or not (t = notight). The former
corresponds to Sect. 5.2 while the latter is produced by NuSMV’s ltl2smv tool,
which implements [KPR98].13 To obtain a model checking procedure we combine
B(t) either with NuSMV(BDDLTL) or with CAV2005.

NuSMV(BDDINVAR): is BDD-based forward invariant checking with version 2.2.3
of NuSMV [CCG+02]. We use this to perform BDD-based model checking with the
liveness-to-safety transformation. State variables of the original model and their
second instances are interleaved, but neither dynamic reordering nor a model-specific
variable order are employed.

8.3. Results and Comparisons.

8.3.1. Setting and notation. We ran the benchmarks on Linux PC machines with a AMD
Athlon(tm) 64 3200+ processor and 2 GB of memory. The memory limit for each run was
set to 1.5 GB and the time limit to 1 hour by using the Linux ulimit command. For all
SAT-based BMC procedures we used zChaff [MMZ+01], version 2004.11.15, as the SAT
solver.

Tables 3 and 4 show the results for selected approaches. The a columns tell whether
the property was found to be true (t) or false (f) in the instance (model,property) by the
approach in question. The running times in t-columns are given in seconds except that
TO (MO) means that the instance was not solved because of a timeout (running out of
memory). For L2S(t,o)+X and B(t)+X approaches the running time does not include the
liveness-to-safety transformation or Büchi automaton generation time, but only the solving
time of X.14

The BMC-based approaches were run in the usual way: starting with the bound 0 and
increasing it by one until (i) a counterexample or a proof was found, or (ii) the time or
memory limit was reached. In the incremental approaches (CAV2005) there is only one
SAT instance that is updated and solved again when the bound increases, while in the non-
incremental approaches (VMCAI2005,NuSMV(BMCLTL)), the SAT instance for each
bound is independently generated and checked. The k-columns give the bound that was

13Note, that the notight version still accepts shortest counterexamples for the future fragment of LTL.
This is in contrast to the notation used in [AS06] where “tight” refers to an automaton based on [CGH97]
(i.e., [KPR98] restricted to the future fragment of PLTL) and “non-tight” to one based on [SB00].

14Note that both the liveness-to-safety transformation and the Büchi automaton generation are performed
symbolically and, therefore, can be done in polynomial time in the length of the description of the model
and the formula.
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reached. In particular, if the problem was solved (no TO or MO in the t-column), the k
column gives the length of the counterexample or the bound required to prove the property.

For BDD-based approaches, the |cex|-column gives the length of the produced coun-
terexample.

Fig. 6 shows scatter plots comparing the running times of different approaches to solve
the benchmark instances. Red squares denote benchmark instances where the property is
false (i.e., they have a counterexample), and black diamonds denote instances where the
property holds. As mentioned earlier, the time limit was set to 3600 seconds (1 hour):
timeouts are denoted by the time “value” 7200 and running out of memory by the time
“value” 14400 in the scatter plots.

8.3.2. Evaluation of different approaches. Comparing the columns NuSMV(BMCLTL)
and VMCAI2005 of Table 3, plotted against each other also in Fig. 6(a), we can see
the positive effect of having a more compact BMC encoding for PLTL formulae. Most of
the properties we use involve past operators and for such formulae the encoding of VM-

CAI2005 [LBHJ05] is linear in k while the encoding of NuSMV(BMCLTL) [BC03] is
not.

From the columns VMCAI2005 and CAV2005(nocompl,unroll,opt) of Table 3 and
from Fig. 6(b) we see that by adapting the compact encoding of VMCAI2005 to exploit
modern incremental SAT solvers gives an additional major performance boost. Note that
although VMCAI2005 uses a fixed point encoding while CAV2005(nocompl,unroll,opt)
uses eventuality encoding, we can claim that the major part of the observed performance
boost is due to incrementality because of the results in Table 1 of [HJL05]: VMCAI2005

and CAV2005(nocompl,unroll,opt) with no incrementality seem to behave very similarly.
As we can see from Fig. 6(c), the effect of doing virtual unrolling on the running times

is not clear. However, there are slightly more cases in which unrolling helped than where
it made things slower. This is due to the fact that unrolling can shorten counterexamples
for formulas with past operators. Figure 7(a) illustrates that removing virtual unrolling
may increase the counterexample length not only in theory but in practice, too. We also
experimented with the option of not applying the optimisations of [HJL05, Sect. 5] in
CAV2005 and found that the optimisations don’t seem to have noticeable effect in practice,
except that they sometimes reduce the bound required to prove a property when virtual
unrolling is applied.

Figure 6(d) shows the effect of adding the completeness check described in Sect. 7 to
the incremental PLTL BMC procedure CAV2005(nocompl,unroll,opt). The results demon-
strate that the completeness check (i) enables one to sometimes also prove properties and not
only find counterexamples, and (ii) generally slows down the BMC procedure by a factor of
2 or 3. However, if we compare the incremental and complete CAV2005(compl,unroll,opt)
to the non-incremental and incomplete VMCAI2005, we see that incremental SAT solving
techniques allows us to have a complete BMC procedure that almost always outperforms
a non-incremental and incomplete state-of-the-art BMC procedure on the benchmarks we
ran.

In Fig. 6(e) and (f) we compare bounded model checking with the specialised BMC
encoding CAV2005(nocompl,unroll,opt) with an encoding based on the liveness-to-safety
transformation (requiring only invariant checking in the BMC procedure) and based on using
a tight Büchi automaton (requiring only fair loop detection in the BMC procedure). There is
a noticeable overhead when using the liveness-to-safety transformation while, based on our
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set of experiments, we cannot conclude that a specialised encoding improves performance
over the Büchi automaton. A main benefit of the specialised BMC encoding is, however,
that it can also capture no-loop counterexamples.

Figure 6(g) contrasts finding shortest counterexamples using a BMC-based and a BDD-
based method. While the former solves slightly more instances (that have a counterexample)
within the given resource bounds, there are also some instances that it can not solve but
the latter can. With respect to running time there is no clear winner either.

If we compare standard BDD-based PLTL model checking (NuSMV(BDDLTL)) and a
state-of-the-art complete BMC procedure (CAV2005(compl,unroll,opt)), refer to Fig. 6(h),
we can see that they are quite incomparable. Although the BDD-based approach seems
to be better in proving properties as it produces less timeouts and memouts, there are
instances that BMC proves much faster. And vice versa for properties having counterexam-
ples: NuSMV(BDDLTL) solves (brp,¬0,nv) much faster but it (or any of the BDD-based
methods we experimented) cannot solve the properties appearing in Tables 3 and 4 on the
1394-5-2 and 1394b-6-4 models.

Using a tight Büchi automaton with standard BDD-based model checking incurs a
severe performance penalty (Fig. 6(i)). The lengths of the counterexamples produced by
the tight and non-tight variants are very different with neither being consistently better
(Fig. 7(b)). Note that B(tight)+NuSMV(BDDLTL) does not necessarily produce shortest
possible counterexamples although it uses tight automata: the fair path finding algorithm
employed in NuSMV(BDDLTL) does not produce shortest fair (k, l)-loops.

Tightness tends to come with a price in the liveness-to-safety and BDD-based approach
as seen in Fig. 6(j), though less noticeable than in the standard BDD-based approach. While
there is a price that grows with increasing past operator depth for some examples (1394-
4-2,p2–4 and production-cell,p0/2/1), there is also the opposite case (1394b-4-2,p2–4). For
the production-cell examples the partial unrolling optimisation proved valuable (not shown
here): one level of unrolling (i.e., treating the specification as having past operator depth
1) gives shortest counterexamples as with a tight encoding but takes time only as with a
non-tight encoding.

BDD-based model checking using the liveness-to-safety transformation is often faster
than the standard approach of using BDDs (Fig. 6(k)) when the property is false, while
it is typically slower for true properties. Further analysis indicates that early termi-
nation might play a role in this behaviour. Another, yet unexplored factor could be
that L2S(t, o)+NuSMV(BDDINVAR) uses a forward invariant checking algorithm while
NuSMV(BDDLTL) uses the backward version of the Emerson-Lei algorithm. While not
shown, L2S(t, o) + NuSMV(BDDINVAR) tends to use more memory for both, false
and true properties [Sch06]. However, it produces significantly shorter counterexamples
(Fig. 7(c)) and is able to solve some examples where the standard approach reaches the
time or memory limit. Note that the gain in counterexample length in (Fig. 7(c)) is the
same when using CAV2005 with unrolling.

The plot in Fig. 6(l) illustrates that the variable optimisation presented in Sect. 4.2
helps in BDD-based model checking with the liveness-to-safety transformation as expected,
and it does not seem to have any adverse side effects.

We also experimented with a combination of the liveness-to-safety transformation and
the temporal induction of [ES03]. That is, we use L2S(t,ic) to transform the PLTL problem
to an invariant problem and then apply the temporal induction algorithm implemented
in NuSMV (the command check invar bmc inc -a zigzag). We were surprised that the
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resulting approach could not prove any of the true properties among the benchmarks we ran.
We have no explanation for this behaviour at the moment, but we suspect that the liveness-
to-safety transformation and the backwards working completeness checking of [ES03] might
not fit together well.

9. Discussion and Conclusions

When comparing BMC approaches, the linear sized dedicated BMC encodings for PLTL
offer better performance than alternative approaches based either on symbolic Büchi au-
tomata using the liveness-to-safety transformation or the original BMC encodings. The
main advantage of the dedicated encodings over approaches using symbolic Büchi automata
with fair loop detection is the ability of the dedicated encodings to also detect no-loop coun-
terexamples. Adapted to incremental SAT solving techniques, BMC based on our encodings
offers an efficient method for finding bugs. Virtual unrolling proved a useful technique to
obtain both BMC encodings and Büchi automata that accept shortest counterexamples.
The BMC experiments also show that the shorter counterexamples often lead to shorter
times needed to find counterexamples to PLTL properties.

Using the liveness-to-safety translation with BDD-based invariant checking represents
a competitive way to produce shortest counterexamples. For both SAT- and BDD-based
approaches that find minimal length counterexamples there are problem instances that are
solved by one approach but not by the other. Thus neither approach dominates the other.

When it comes to proving complex properties, the BMC approach presented here cannot
yet compete with BDD-based methods. However, there are cases where our BMC approach
is faster than the BDD-based approaches. Improving the capability to prove properties with
BMC is therefore an important research direction.

There are at least two complementary research directions on proving properties of
larger systems with BMC. One direction is based on generating stronger invariants than
the current completeness formula. This can be done by adding invariants to formula states

such as |[ϕ]|dk+1 to bind variables that are free. The invariants can be deduced from PLTL
semantics. Another approach for generating invariants is formulating invariants based on
the system’s behaviour [dMRS03, AFF+05]. The capability to prove properties can also
be greatly improved if the |[SimplePath]|k-predicate would have to include fewer state
bits. A cone-of-influence reduction [CGP99] tailored for full PLTL or implementing the
variable optimisations mentioned in Sect. 4.2 also for BMC could make this possible. Some
insights might be gained by understanding why the combination of k-induction and the
liveness-to-safety transformation performs so poorly for proving properties. We would also
like to investigate methods based on Craig interpolants [McM03] to better understand the
implementation techniques needed and performance obtainable from that method.

In this work we have concentrated on BMC encodings of PLTL properties. There are
also other places where BMC can be improved. For example, [She04] discusses methods
to improve CNF generation employed inside a prototype NuSMV variant used in [CRS04],
an area we have not covered in our BMC implementations. Using SAT preprocessors,
such as [EB05], to simplify the CNF after generation, is an alternative. Usually bounded
model checking papers take the system transition relation T (s, s′) as given and do not
try to exploit any special properties it might have. By more careful encoding of T (s, s′)
significant performance gains can be obtained, at least for special classes of systems such
as asynchronous systems [Hel01, HN03, JHN05, Jus05].
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Table 3: Results of the experiments 1
NuSMV VMCAI2005 CAV2005 CAV2005

(BMCLTL) (nocompl,unroll,opt) (compl,unroll,opt)
model prop. a k t a k t a k t a k t

1394-3-2 1 45 TO 40 TO 1237 MO t 16 45
1394-3-2 ¬1 f 11 17 f 11 31 f 11 9 f 11 12
1394-3-2 5 47 TO 49 TO 946 TO 65 TO
1394-3-2 ¬5 f 11 19 f 11 17 f 11 8 f 11 11
1394-4-2 1 17 TO 18 TO 24 TO 24 TO

1394-4-2 ¬1 f 16 1316 f 16 1676 f 16 424 f 16 679
1394-4-2 2 17 TO 22 TO 33 TO 29 TO
1394-4-2 3 8 TO 21 TO 31 TO 29 TO
1394-4-2 4 5 TO 22 TO 30 TO 29 TO
1394-4-2 5 26 TO 26 TO 43 TO 38 TO

1394-4-2 ¬5 f 16 1287 f 16 1371 f 16 338 f 16 551
1394-5-2 1 14 TO 14 TO 15 TO 16 TO
1394-5-2 ¬1 f 14 2937 f 14 2749 f 14 976 f 14 1295
1394-5-2 5 16 TO 16 TO 21 TO 20 TO
1394-5-2 ¬5 f 14 3360 f 14 3425 f 14 938 f 14 1200

1394b-4-2 2 f 11 172 f 11 44 f 11 12 f 11 24
1394b-4-2 3 8 TO f 11 46 f 11 15 f 11 23
1394b-4-2 4 5 TO f 11 43 f 11 17 f 11 25
1394b-5-3 2 f 11 832 f 11 654 f 11 223 f 11 505
1394b-5-3 3 8 TO f 11 665 f 11 484 f 11 426

1394b-5-3 4 5 TO f 11 775 f 11 385 f 11 259
1394b-6-4 2 10 TO 10 TO f 11 1875 f 11 2241
1394b-6-4 3 8 TO 10 TO f 11 1930 f 11 2070
1394b-6-4 4 5 TO 9 TO f 11 2125 f 11 2738
abp4 0 f 16 62 f 16 46 f 16 27 f 16 20

abp4 ¬0 47 TO 52 TO 354 TO 46 TO
abp4 1 30 TO 29 TO 45 TO 38 TO
abp4 2 f 17 70 f 17 36 f 17 39 f 17 59
abp4 3 29 TO 30 TO 37 TO 36 TO
brp 0 31 TO 241 TO 3040 TO 86 TO

brp ¬0 f 1 0 f 1 0 f 1 0 f 1 0
brp ¬0, nv 22 TO 21 TO f 24 600 f 24 573
brp 1 25 TO 38 TO 196 TO 78 TO
brp ¬1 f 1 0 f 1 0 f 1 0 f 1 0
counter 0 202 TO 1263 MO 11849 TO t 23 0

counter ¬0 f 8 0 f 8 0 f 8 0 f 8 0
csmacd 0 18 TO 18 TO 19 TO 19 TO
csmacd ¬0 f 6 3 f 7 5 f 6 2 f 6 5
csmacd 1 22 TO 24 TO 33 TO 29 TO
csmacd ¬1 f 6 3 f 7 5 f 6 2 f 6 4

dme3 0 27 MO 49 TO 48 TO f 62 2547
dme3 ¬0 f 1 0 f 1 0 f 1 0 f 1 0
dme3 ¬0, nv 27 MO f 59 2330 f 59 641 f 59 1136
dme3 1 42 TO 53 TO 58 TO 65 TO
dme3 ¬1 f 1 0 f 1 0 f 1 0 f 1 0

dme5 0 27 MO 57 TO 74 TO 67 TO
dme5 ¬0 f 1 0 f 1 0 f 1 0 f 1 0
dme5 ¬0, nv 27 MO 58 TO 75 TO 69 TO
dme5 1 42 TO 44 TO 48 TO 68 TO
dme5 ¬1 f 1 0 f 1 0 f 1 0 f 1 0

mutex 0 226 TO 950 MO 10624 TO t 18 0
mutex ¬0 f 6 0 f 6 0 f 6 0 f 6 0
pci 0 17 TO f 18 3092 f 18 1339 f 18 1631
pci ¬0 f 0 0 f 0 0 f 0 0 f 0 0
pci F0 14 TO f 18 1121 f 18 514 f 18 610

pci 1 16 TO 18 TO 20 TO 20 TO
pci ¬1 f 1 0 f 1 0 f 1 0 f 1 0
prod-cons 0 f 21 972 f 21 63 f 21 14 f 21 35
prod-cons ¬0 25 TO f 26 390 f 26 96 f 26 233
prod-cons 1 16 TO 68 TO 180 TO 72 TO

prod-cons ¬1, nv 16 TO f 21 49 f 21 16 f 21 29
prod-cons 2 f 24 114 f 24 101 f 24 2 f 24 10
prod-cons 3 f 24 145 f 24 140 f 24 15 f 24 47
prod-cons 4 65 TO 63 TO 259 TO 91 TO
prod-cons 5 44 TO 49 TO 233 TO 82 TO

prod-cons ¬5 f 21 79 f 21 58 f 21 13 f 21 32
production-cell 0 6 TO 87 TO 1255 TO 149 MO
production-cell ¬0 6 TO 66 TO 73 TO f 81 53
production-cell 1 4 TO 82 TO 619 TO 105 MO
production-cell ¬1 4 TO 63 TO f 81 301 f 81 104

production-cell 2 4 TO 85 TO 1115 MO 115 MO
production-cell ¬2 4 TO 66 TO f 81 104 f 81 85
production-cell 3 5 TO 19 TO 2391 MO t 110 103
production-cell ¬3 6 TO 19 TO f 81 234 f 81 42
production-cell 4 4 TO 15 TO 2295 MO t 110 111

production-cell ¬4 5 TO 16 TO f 81 73 f 81 46
bc57-sensors 0 20 TO 300 MO 1845 MO 130 MO
bc57-sensors ¬0 20 TO 99 TO f 103 863 101 TO
bc57-sensors 1 57 TO 101 TO 101 TO 111 TO
bc57-sensors ¬1 56 TO 96 TO f 103 1078 94 TO

bc57-sensors 2 56 TO 130 TO 1709 MO 132 MO
bc57-sensors ¬2 57 TO 97 TO f 103 1215 92 TO
bc57-sensors 3 89 TO 99 TO f 103 1173 f 103 3158
ring 0 184 TO 312 TO 756 MO t 65 1012
ring ¬0 f 7 0 f 7 0 f 7 0 f 7 0

short 0 213 TO 1132 MO 3414 TO t 10 0
short ¬0 f 1 0 f 1 0 f 1 0 f 1 0
srg5 0 13 TO 312 TO 805 MO 56 TO
srg5 ¬0 f 1 0 f 1 0 f 1 0 f 1 0
srg5 ¬0, nv f 6 8 f 6 0 f 6 0 f 6 0
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Table 4: Results of the experiments 2
NuSMV L2S(notight,ic)+ L2S(tight,ic)+ L2S(tight,ic)+ B(tight)+

(BDDLTL) NuSMV NuSMV CAV2005 CAV2005
(BDDINVAR) (BDDINVAR) (nocompl,unroll,opt) (nocompl,unroll,opt)

model prop. a |cex| t a |cex| t a |cex| t a k t a k t

1394-3-2 1 t 5 t 7 t 7 696 MO 1190 MO
1394-3-2 ¬1 f 12 15 f 11 5 f 11 5 f 11 18 f 11 8
1394-3-2 5 t 3 t 13 t 13 177 MO 1099 TO
1394-3-2 ¬5 f 11 25 f 11 7 f 11 7 f 11 25 f 11 8
1394-4-2 1 t 505 t 445 t 445 20 TO 26 TO

1394-4-2 ¬1 f 20 721 f 16 336 f 16 336 f 16 689 f 16 462
1394-4-2 2 t 271 t 470 t 615 24 TO 27 TO
1394-4-2 3 t 288 t 610 t 825 24 TO 28 TO
1394-4-2 4 t 300 t 726 t 1276 23 TO 28 TO
1394-4-2 5 t 318 t 811 t 811 27 TO 40 TO

1394-4-2 ¬5 f 19 1231 f 16 536 f 16 535 f 16 902 f 16 368
1394-5-2 1 MO MO MO 15 TO 15 TO
1394-5-2 ¬1 MO MO MO f 14 1097 f 14 896
1394-5-2 5 MO MO MO 18 TO 20 TO
1394-5-2 ¬5 MO MO MO f 14 1634 f 14 908

1394b-4-2 2 f 20 131 f 15 110 f 11 90 f 11 41 f 11 21
1394b-4-2 3 f 23 140 f 18 132 f 11 97 f 11 48 f 11 25
1394b-4-2 4 f 26 152 f 21 183 f 11 100 f 11 32 f 11 20
1394b-5-3 2 MO MO MO f 11 1601 f 11 577
1394b-5-3 3 MO MO MO f 11 850 f 11 202

1394b-5-3 4 MO MO MO f 11 524 f 11 198
1394b-6-4 2 TO TO TO 10 TO f 11 2839
1394b-6-4 3 TO TO TO f 11 2857 f 11 1521
1394b-6-4 4 TO TO TO f 11 2505 f 11 3415
abp4 0 f 37 1 f 19 11 f 16 6 f 16 33 f 16 17

abp4 ¬0 t 0 t 0 t 0 58 TO 51 TO
abp4 1 t 0 t 58 t 58 33 TO 38 TO
abp4 2 f 40 2 f 17 11 f 17 11 f 17 153 f 17 38
abp4 3 t 0 t 62 t 62 24 TO 38 TO
brp 0 t 0 TO TO 312 TO 106 TO

brp ¬0 f 6 4 f 1 0 f 1 0 f 1 0 f 1 0
brp ¬0, nv f 68 14 f 24 81 f 24 85 f 24 1485 f 24 579
brp 1 t 4 TO TO 26 TO 29 TO
brp ¬1 f 23 3 f 1 0 f 1 0 f 1 0 f 1 0
counter 0 t 0 t 0 t 0 2277 TO 1598 TO

counter ¬0 f 8 0 f 8 0 f 8 0 f 8 0 f 8 0
csmacd 0 MO f 27 439 f 27 438 18 TO 18 TO
csmacd ¬0 MO f 6 2 f 6 2 f 6 7 f 6 3
csmacd 1 TO TO TO 30 TO 21 TO
csmacd ¬1 MO f 6 2 f 6 2 f 6 10 f 6 3

dme3 0 f 215 42 f 63 8 f 63 8 f 63 1488 f 63 670
dme3 ¬0 f 1 0 f 1 0 f 1 0 f 1 0 f 1 0
dme3 ¬0, nv f 217 39 f 59 5 f 59 7 f 59 477 f 59 513
dme3 1 t 17 t 246 t 246 62 TO 64 TO
dme3 ¬1 f 68 56 f 1 0 f 1 0 f 1 0 f 1 0

dme5 0 f 343 1289 f 103 303 f 103 299 71 TO 76 TO
dme5 ¬0 f 1 10 f 1 1 f 1 1 f 1 0 f 1 0
dme5 ¬0, nv f 344 1371 f 99 271 f 99 309 74 TO 76 TO
dme5 1 t 483 TO TO 46 TO 57 TO
dme5 ¬1 f 108 1465 f 1 1 f 1 1 f 1 0 f 1 0

mutex 0 t 0 t 0 t 0 392 MO 1958 TO
mutex ¬0 f 7 0 f 6 0 f 6 0 f 6 0 f 6 0
pci 0 f 23 214 MO MO f 18 2971 13 TO
pci ¬0 f 3593 f 1 0 f 1 1 f 1 0 f 1 0
pci F0 f 40 212 MO MO f 18 2450 f 18 893

pci 1 TO MO MO 15 TO 20 TO
pci ¬1 f 6 374 f 1 0 f 1 0 f 1 0 f 1 0
prod-cons 0 f 36 1200 f 21 78 f 21 85 f 21 49 f 21 14
prod-cons ¬0 f 69 42 f 26 188 f 26 204 f 26 210 f 26 122
prod-cons 1 t 1 MO TO 48 TO 30 TO

prod-cons ¬1, nv f 53 43 f 21 37 f 21 51 f 21 25 f 21 14
prod-cons 2 f 57 308 f 24 50 f 24 50 f 24 7 f 24 16
prod-cons 3 f 42 119 f 24 50 f 24 50 f 24 44 f 24 24
prod-cons 4 t 15 MO MO 72 TO 196 TO
prod-cons 5 t 3 TO TO 140 TO 169 TO

prod-cons ¬5 f 54 191 f 21 65 f 21 65 f 21 61 f 21 16
production-cell 0 t 694 t 3 t 12 192 MO 498 TO
production-cell ¬0 f 85 1094 f 83 6 f 81 10 f 81 219 f 81 13
production-cell 1 t 95 t 6 TO 168 MO 358 TO
production-cell ¬1 f 146 37 f 126 8 TO 66 TO f 81 95

production-cell 2 t 81 t 6 t 517 171 MO 390 TO
production-cell ¬2 f 126 34 f 125 11 f 81 256 70 TO f 81 17
production-cell 3 t 1657 t 5 t 5 1188 MO 1726 MO
production-cell ¬3 f 271 3050 f 81 11 f 81 11 f 81 457 f 81 19
production-cell 4 MO t 8 t 8 1130 MO 1584 MO

production-cell ¬4 MO f 81 26 f 81 26 f 81 551 f 81 35
bc57-sensors 0 t 65 t 2430 t 2192 101 TO 116 TO
bc57-sensors ¬0 f 112 206 f 103 109 f 103 102 f 103 2793 f 103 1198
bc57-sensors 1 t 152 t 3388 t 3391 93 TO 111 TO
bc57-sensors ¬1 f 104 909 f 103 99 f 103 99 f 103 2819 f 103 1084

bc57-sensors 2 t 39 t 2347 t 2352 82 TO 120 TO
bc57-sensors ¬2 f 104 866 f 103 101 f 103 101 f 103 3501 f 103 1317
bc57-sensors 3 TO f 103 96 f 103 95 f 103 2973 f 103 1109
ring 0 t 0 t 0 t 0 90 TO 639 MO
ring ¬0 f 13 0 f 7 0 f 7 0 f 7 0 f 7 0

short 0 t 0 t 0 t 0 336 MO 3288 TO
short ¬0 f 3 0 f 1 0 f 1 0 f 1 0 f 1 0
srg5 0 t 0 t 0 t 0 117 TO 241 MO
srg5 ¬0 f 16 0 f 1 0 f 1 0 f 1 0 f 1 0
srg5 ¬0, nv f 15 0 f 6 0 f 6 1 f 6 0 f 6 0
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Scatter plots comparing the running times (in seconds) of different approaches
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(a)

(b)

(c)

Figure 7: Counterexample length comparisons
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Although PLTL is exponentially more succinct than LTL, it cannot express all ω-
regular properties unlike some industry standard specification languages such as Accellera’s
PSL [Acc04, IEE05]. There are some encouraging initial results on bounded model checking
of ω-regular properties very recently published [HJK+06], building on top of the work
presented here. For an alternative approach to handling ω-regular properties, see [BCP+06].
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