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Abstract. We present a state-based regression function for planning domains where an
agent does not have complete information and may have sensing actions. We consider bi-
nary domains and employ a three-valued characterization of domains with sensing actions
to define the regression function. We prove the soundness and completeness of our regres-
sion formulation with respect to the definition of progression. More specifically, we show
that (i) a plan obtained through regression for a planning problem is indeed a progression
solution of that planning problem, and that (ii) for each plan found through progression,
using regression one obtains that plan or an equivalent one.

1. Introduction and Motivation

An important aspect in reasoning about actions and characterizing the semantics of
action description languages is to define a transition function that encodes the transition
between states due to actions. This transition function is often viewed as a progression

function in that it denotes the progression of the world by the execution of actions. The
‘opposite’ or ‘inverse’ of progression is referred to as regression.

Even for a simple case where we have only non-sensing actions and the progression
transition function is deterministic, there are various formulations of regression. For exam-
ple, let us consider the following. Let Φ be the progression transition function from actions
and states to states. I.e., intuitively, Φ(a, s) = s′ means that if the action a is executed in
the state s then the resulting state will be s′. One way to define a regression function Ψ1 is
to define it with respect to states. In that case s ∈ Ψ1(a, s

′) will mean that the state s′ is
reached if a is executed in s. Another way to define regression is with respect to formulas.
In that case Ψ2(a, f) = g, where f and g are formulas, means that if a is executed in a state
satisfying g then a state satisfying f will be reached.
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For planning using heuristic search, often a different formulation of regression is given.
Typically, a planning problem is specified by a set of actions, an initial state, and a goal
state, which is a conjunction of literals. As such, regression is often defined with respect to
a set of literals and an action. In that case the conjunction of literals (the goal) denotes a
set of states, one of which needs to be reached. This regression is slightly different from Ψ2

as the intention is to regress to another set of literals (not an arbitrary formula), denoting
a sub-goal.

With respect to the planning language STRIPS [9], where each action a has an add
list Add(a), a delete list Del(a), and a precondition list Prec(a), the progression function
is defined as Progress(s, a) = s + Add(a) −Del(a); and the regression function is defined
as Regress(conj, a) = conj + Prec(a) − Add(a), where conj is a set of atoms. Intuitively,
Regress(conj, a) represents a minimal requirement on states from which the execution of
a leads to states satisfying conj. The relation between these two, formally proven in [16],
shows the correctness of regression based planners; which, through use of heuristics (e.g.
[4, 14]), have done well in planning competitions. However, the focus of these papers has
been the regression function in domains where agents have complete knowledge about the
world. The following example shows that this property does not always holds.

Example 1.1. Consider the following do-or-die story1:

A wannabe prince faces the last task in his endeavor. He stands in front of two
rooms. In one room is a tiger and in the other is the princess, whom he wants to
marry. Opening the room with the tiger will result in him being eaten. Otherwise,
he will be able to rescue the princess and will get to marry her. He does not know
exactly in which room the princess is. However, he can use a specialized2 smell
sensor that can precisely tell him where the tiger is.

The story can be formalized as follows. Let us denote the rooms by 1 and 2. in(t, R)
(resp. in(p,R)) denotes that the tiger (resp. the princess) is in room R. Initially, the agent
(i.e., the want-to-be prince) is alive; he does not know what is behind the door of each
room (i.e., the truth value of in(t, R) and in(p,R) is unknown to him) but he knows that
the tiger and the princess are in different rooms (i.e., if in(t, 1) is true then in(p, 2) is true,
etc.); he can execute open(1) and open(2). Executing the action open(R), when in(t, R)
is true, causes him to be death (¬alive); otherwise, the princess gets rescued. The agent
can determine (by smelling) the truth value of in(t, 1) and in(t, 2). If he dies, he can not
execute any action.

It is easy to see that the only possible way for the agent to achieve his goal is to begin
by determining where the tiger is (by executing the action smell); after that, depending
on where the tiger is, he can open the other room to rescue the princess. Observe that
this plan involves the action smell whose execution does not change the world but changes
the knowledge of the agent. Furthermore, the second action of the plan depends on the
knowledge of the agent after the execution of the first action. We say that the agent needs
a conditional plan with sensing actions to achieve his goal.

Reasoning about the effects of actions and changes in the presence of sensing actions
and incomplete information has been the topic of intensive research (e.g., [10, 12, 13, 18, 20]

1This story was brought to us by a participant of a Texas Action Group (TAG) meeting at Lubbock in
2002 during a discussion on the need of sensing actions in reasoning about actions and changes and planning.

2Because the rooms are too close to each other, the natural smelling ability of a human is not quite
accurate.



STATE-BASED REGRESSION IN INCOMPLETE DOMAINS 3

and the discussion in these papers). In general, the progression function for action theories
with sensing actions and incomplete information is defined as a mapping from pairs of
actions and belief states to belief states, where each belief state is a set of possible states.
Intuitively, a belief state represents the set of possible states an agent thinks he might be in
given his knowledge about the world. For example, the initial belief state of the want-to-be-
prince in Example 1.1 consists of every possible state of the world; and, after the execution
of the action smell, his belief state consists of a single state in which he is alive and knows
the location of the tiger and the princess.

It has been also recognized that the planning problem in domains with sensing actions
and incomplete information has a higher complexity than the planning problem in domains
with complete information [1]. Furthermore, plans for achieving a goal in these domains
will sometime require sensing actions and conditionals [10, 20]. It should be noted that
there is an alternative approach to planning in the presence of incomplete information,
called conformant planning, where no sensing action is used and a plan is a sequence of
actions leading to the goal from every possible initial situation. Example 1.1 indicates that
this is inadequate for many planning problems. In the past, several planners capable of
generating conditional plans have been developed (e.g., [5, 11, 21]) in which some form of
the progression function has been used.

In this regards, two natural questions arise:

• How to define a regression function in the presence of incomplete information and sensing
actions?

• What should be the result of the regression of a state or a formula over a conditional
plan? and, how can it be computed?

In the literature, we can find several proposals addressing the first question [19, 18,
6, 20], among them only the proposal in [20] partly discusses the second one. Moreover,
all previous regression functions with respect to domains with incomplete information and
sensing actions are about regression of formulas.

In this paper we are concerned with domains where the agent does not have complete

information about the world, and may have sensing actions. For such domains, we define
a regression function with respect to states. We then formally relate our definition of
regression with the earlier notion of progression and show that planning using our regression
function will not only give us correct plans but also will not miss plans. In summary the
main contributions of our paper are:

• A state-based regression function for STRIPS domains with sensing actions and incom-
plete initial state;

• An extended regression function that allows for the regression from a (goal) state over a
conditional plan; and

• A formal result showing the soundness and completeness of our regression function with
respect to the progression function.

The rest of this paper is organized as follows. First, we review the necessary background
information for understanding the technical details of the paper. We then present the
regression formulation (Section 3) and prove its soundness and completeness with respect
to the progression function (Section 4). We relate our work to other work in regression in
Section 5 and conclude in Section 6.
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2. Background

In this section, we present our action and plan representation and its semantics.

2.1. Action and Plan Representation. We employ a STRIPS-like action representa-
tion [9] and represent a planning problem by a tuple P = 〈A,O, I,G〉 where A is a finite
set of fluents, O is a finite set of actions, and I and G are sets of fluent literals where a
fluent literal is either a fluent f ∈ A (a.k.a. positive fluent literal) or its negation ¬f (a.k.a.
negative fluent literal). Intuitively, I encodes what is known about the initial state and G
encodes what is desired of a goal state.

An action a ∈ O is either a non-sensing action or a sensing action and is defined as
follows:

• A non-sensing action a is specified by an expression of the form

action a :Pre Prea :Add Adda :Del Dela

where Prea is a set of fluent literals representing the precondition for a’s execution, Adda
and Dela are two disjoint sets of fluents representing the positive and negative effects of
a, respectively; and

• A sensing action a is specified by an expression of the form

action a :Pre Prea :Sense Sensa

where Prea is a set of fluent literals and Sensa is a subset of the fluents that do not appear
in Prea, .i.e., Prea ∩ ({¬f | f ∈ Sensa} ∪ Sensa) = ∅. As with non-sensing actions, a
sensing action might only be executed under certain condition, which is represented by
Prea. Intuitively, Prea is the condition under which a can be executed, and hence, needs
to be known to be true before the execution of a. On the other hand, Sensa is the set
of fluents that are unknown at the time of execution. For this reason, we require that
none of the fluents in Sensa appear in Prea. As an example of a sensing action with
precondition, consider the action of looking into the refrigerator to determine whether
there is some beer or not. This action requires that the refrigerator door is open and
can be represented by the action look with the condition Prelook = {door open} and
Senslook = {beer in fridge}.

The next example shows a simple domain in our representation.

Example 2.1. Figure (1) shows the actions of the “Getting to Evanston” domain from [17]
in our representation.

The first four rows of the tables describe different non-sensing actions (driving actions)
with their corresponding preconditions and add- and delete-effects. Each action can be
executed when the agent is at certain locations (the second column) and changes the location
of the agent after its completion. For instance, goto-western-at-belmont can be executed if
the agent is at-start; its effect is that the agent will be on-western and on-belmont (third
column) and no longer at-start (fourth column).

The last two rows represent two sensing actions, neither requires a precondition; one
allows the agent to check for traffic condition ( check-traffic) and the other one ( check-on-
western) allows for the agent to check whether it is ( on-belmont) or not.

The notion of a plan in the presence of incomplete information and sensing actions
has been extensively discussed in the literature [10, 12, 19, 20]. In this paper, we consider
conditional plans that are formally defined as follows.
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Action Name :Pre :Add :Del

goto-western-at-belmont {at-start} {on-western, {at-start}
on-belmont}

take-belmont {on-belmont, {on-ashland} {on-western}
traffic-bad}

take-ashland {on-ashland} {at-evanston}
take-western {¬traffic-bad, {at-evanston}

on-western}

Action Name :Pre :Sense

check-traffic ∅ {traffic-bad}
check-on-western ∅ {on-belmont}

Figure 1: Actions of the “Getting to Evanston” domain.

Definition 2.2 (Conditional Plan).

• An empty sequence of actions, denoted by [ ], is a conditional plan.
• If a is a non-sensing action, then a is a conditional plan.
• If a is a sensing action and ϕ1, . . . , ϕn are mutually exclusive conjunctions of fluent literals
and c1, . . . , cn are conditional plans, then

a; case(ϕ1 → c1, . . . , ϕn → cn)

is a conditional plan 3.
• If a is a non-sensing action and c is a conditional plan, then a; c is a conditional plan.
• Nothing else is a conditional plan.

Intuitively, to execute a plan a; case(ϕ1 → c1, . . . , ϕn → cn), first a is executed, ϕi’s are
then evaluated. If one of ϕi is true then ci is executed. If none of ϕi is true then the plan
fails. To execute a plan a; c, first a is executed then c is executed.

Example 2.3 (Getting to Evanston). The following is a conditional plan:
check -traffic;
case(

traffic-bad →
goto-western-at-belmont;
take-belmont;
take-ashland

¬traffic-bad →
goto-western-at-belmont;
take-western

)

2.2. The Progression Function. In the presence of incomplete information, the knowl-
edge of an agent can be approximately captured by three disjoint sets of fluents: the set
of fluents known to be true, false, and unknown to him, respectively. Thus, we represent
the knowledge of an agent by a pair 〈T, F 〉, called an approximate state (or a-state), where

3We often refer to this type of conditional plans as case plans .
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T⊆A and F⊆A are two disjoint sets of fluents. Intuitively, 〈T, F 〉 represents the knowledge
of an agent who knows that fluents in T (resp. F ) are true (resp. false) and does not have
any knowledge about fluents in A \ (T ∪F ). It can also be considered as the intersection of
all belief states satisfying T ∪ {¬f | f ∈ F}.

Given a fluent f , we say that f is true (resp. false) in σ if f ∈ T (resp. f ∈ F ). f
(resp. ¬f) holds in σ if f is true (resp. false) in σ. f is known (resp. unknown) in σ if
f ∈ (T ∪ F ) (resp. f 6∈ (T ∪ F )). A set L of fluent literals holds in an a-state σ = 〈T, F 〉
if every member of L holds in σ. A set X of fluents is known in σ if every fluent in X is
known in σ. An action a is executable in σ if Prea holds in σ. Furthermore, for two a-states
σ1=〈T1, F1〉 and σ2=〈T2, F2〉:

(1) We call σ1∩σ2=〈T1∩T2, F1∩F2〉 the intersection of σ1 and σ2.
(2) We say σ1 extends σ2, denoted by σ2�σ1 if T2⊆T1 and F2⊆F1. σ1\σ2 denotes the set

(T1\T2)∪(F1\F2).
(3) For a set of fluents X, we write X\〈T, F 〉 to denote X\(T∪F ). To simplify the presen-

tation, for a set of literals L, by L+ and L− we denote the set of fluents {f | f∈L, f is
a fluent } and {f | ¬f∈L, f is a fluent }.

The transition function (for progression) is defined next.

Definition 2.4 (Transition Function). For an a-state σ = 〈T, F 〉 and an action a, Φ(a, σ)
is defined as follows:

• if a is not executable in σ then Φ(a, σ) = {⊥};
• if a is executable in σ and a is a non-sensing action then

Φ(a, σ) = {〈(T \Dela) ∪Adda, (F \ Adda) ∪Dela〉};

• if a is executable in σ and a is a sensing action then

Φ(a, σ) = {σ′|σ � σ′ and Sensa \ σ = σ′ \ σ}.

Here, ⊥ denotes the “error state.” Φ(a, σ) = {⊥} indicates that the action a cannot be
executed in the a-state σ. The next example illustrates the above definition.

Example 2.5 (Getting to Evanston). Consider the a-state

σ = 〈{at-start}, {on-western, on-belmont, on-ashland, at-evanston}〉.

We have that check -traffic is executable in σ and

Φ(check -traffic, σ) = {σ1, σ2}

where:
σ1 = 〈{at-start, traffic-bad}, {on-western, on-belmont, on-ashland, at-evanston}〉,
σ2 = 〈{at-start}, {traffic-bad , on-western, on-belmont, on-ashland, at-evanston}〉.

Similarly,
Φ(goto-western-at-belmont, σ) = {σ3}

where: σ3 = 〈{on-western,on-belmont}, {at-start, on-ashland, at-evanston }〉.

The function Φ can be extended to define the function Φ∗ that maps each pair of a
conditional plan p and a-states σ into a set of a-states, denoted by Φ∗(p, σ). Φ∗ is defined

similarly to the extended function Φ̂ in [20].

Definition 2.6 (Extended Transition Function). For an a-state σ,

• if c = [ ], then Φ∗([ ], σ) = {σ};
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• if c = a and a is a non-sensing action, then Φ∗(c, σ) = Φ(a, σ);
• if c = a; case(ϕ1 → p1, . . . , ϕn → pn) is a case plan, then

Φ∗(c, σ) =
⋃

σ′∈Φ(a,σ)

E(case(ϕ1 → p1, . . . , ϕn → pn), σ
′)

where

E(case(ϕ1 → p1, . . . , ϕn → pn), γ) =

{
Φ∗(pj , γ), if ϕj holds in γ (1 ≤ j ≤ n);
{⊥}, if none of ϕ1, . . . , ϕn holds in γ.

• if c is a conditional plan and a is a non-sensing action, then

Φ∗(a; c, σ) =
⋃

σ′∈Φ(a,σ)

Φ∗(c, σ′).

Furthermore, Φ∗(c,⊥) = {⊥} for any conditional plan c.

Intuitively, Φ∗(c, σ) is the set of a-states resulting from the execution of the plan c in
σ.

Given a planning problem P = 〈A,O, I,G〉, the a-state representing I is defined by
σI = 〈I+, I−〉. ΣG = {σ | σG � σ}, where σG = 〈G+, G−〉, is the set of a-states satisfying
the goal G. We define a progression solution as follows.

Definition 2.7 (Progression Solution). A progression solution to the planning problem P

is a conditional plan c such that Φ∗(c, σI) ⊆ ΣG.

Note that, since⊥ is not a member of ΣG, we have that ⊥ 6∈ Φ∗(c, σI) if c is a progression
solution to P . In other words, the execution of c will not fail if c is a progression solution
of P .

Example 2.8 (Getting to Evanston - cont’d). Let P = 〈A,O, I,G〉 where A and O are
given in Figure (1) and

I = {at-start,¬on-western,¬on-belmont,¬on-ashland,¬at-evanston};
G = {at-evanston},

respectively. We can easily check that the conditional plan in Example 2.3 is a progression
solution of P .

2.3. Some Properties of the Progression Function Φ. There have been several pro-
posals on defining a progression function for domains with sensing actions and incomplete
information [10, 12, 13, 18, 20]. We will show next that for domains considered in this paper,
the function Φ (Definition 2.4) is equivalent to the transition function defined in [20]. By
virtue of the equivalent results between various formalisms, in [20], we can conclude that Φ
is equivalent to the progression functions defined in several other formalisms as well. First,
let us review the definition of the function in [20], which will be denoted by Φc. We need
the following notations. For an action theory given by a set of fluents A, a set of operators
O, and an initial state I, a state s is a set of fluents. A combined state (or c-state) of an
agent is a pair 〈s,Σ〉 where s is a state and Σ is a set of states. Intuitively, the state s in
a c-state 〈s,Σ〉 represents the real state of the world whereas Σ is the set of possible states
which an agent believes it might be in. A c-state ω = 〈s,Σ〉 is grounded if s ∈ Σ. A fluent
f is true (resp. false) in s iff f ∈ s (resp. f 6∈ s). f is known to be true (resp. false) in a
c-state 〈s,Σ〉 iff f is true (resp. false) in every state s′ ∈ Σ; and f is known in 〈s,Σ〉, if f
is known to be true or known to be false in 〈s,Σ〉.
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For an action a and a state s, a is executable in s if Pre+a ⊆ s and Pre−a ∩ s = ∅.
The state resulting from executing a in s, denoted by Res(a, s), is defined by Res(a, s) =
(s \ Dela) ∪ Adda. The function Φc is a mapping from pairs of actions and c-states into
c-states and is defined as follows. For a c-state ω = 〈s,Σ〉 and action a,

(1) if a is not executable in s then Φc(a, ω) is undefined, denoted by Φc(a, ω) = ⊥;
(2) if a is executable in s and a is a non-sensing action, then

Φc(a, ω) = 〈Res(a, s), {s′ | s′ = Res(a, s′′), ∃s′′ ∈ Σ s.t. a is executable in s′′}〉;

and
(3) if a is executable in s and a is a sensing action then

Φc(a, ω) = 〈s, {s′ | s′ ∈ Σ s.t. Sensa \ s = Sensa \ s
′, and a is executable in s′}〉.

The set of initial states of a planning problem P = 〈A,O, I,G〉 is Σ0 = {s | I+ ⊆ s, and I−∩
s = ∅}; and the set of initial c-states of P , denoted by ΩI , is given by ΩI = {〈s0,Σ0〉 |
s0 ∈ Σ0}. The function Φc can be extended to define an extended progression function
Φ∗
c over conditional plans and c-states, similar to the extended function Φ∗ in Definition

2.6. The notion of a progression solution can then be defined accordingly. The following
theorem states the equivalence between Φ and Φc for domains representable by the action
representation language given in the previous subsection.

Proposition 2.9. For a planning problem 〈A,O, I,G〉, a conditional plan c is a progression
solution with respect to Φ iff it is a progression solution with respect to Φc.

Proof. For an a-state σ = 〈T, F 〉, let Σσ = {s | T ⊆ s ⊆ A and F ∩ s = ∅}, ∆σ = {〈T ′, F ′〉 |
T ⊆ T ′ ⊆ A, F ⊆ F ′ ⊆ A, and T ′ ∩ F ′ = ∅}, and Ωσ = {〈s,Σσ)〉 | s ∈ Σσ}. Furthermore,

for an action a and a set of c-states Ω, let Φ̂c(a,Ω) = {Φc(a, ω) | ω ∈ Ω}. From the definition
of Φ and Φc, we can easily verify that the following properties hold:

(1) An action a is executable in σ iff a is executable in every c-state belonging to Ωσ.
(2) If a non-sensing action a is executable in σ and Φ(a, σ) = {〈T ′, F ′〉} then

T ′ =
⋂

u∈Σ,〈s,Σ〉∈Φ̂c(a,Ωσ)

u

and
F ′ =

⋂

u∈Σ,〈s,Σ〉∈Φ̂c(a,Ωσ)

(A \ u)

(3) If a sensing action a is executable in σ then

Φ̂c(a,Ωσ) =
⋃

σ′∈∆σ , σ′′∈Φ(a,σ′)

Σσ′′

The conclusion of the proposition can be verified using induction on the structure of a plan
and the fact that for a planning problem P , ΩI = ΩσI

.
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Remark 2.10. For the discussion on the complexity of planning using the progression
function Φ, it will be useful to note that Φ is also equivalent to the 0-approximation Φ0

defined in [20]. Indeed, this can be easily verified from the definitions of Φ0 and Φ. In the
notation of this paper, Φ0 is also a mapping from pairs of actions and a-states into a-states
and for an a-state σ = 〈T, F 〉 and an action a, Φ0(a, σ) is defined as follows:

• if a is not executable in σ then Φ0(a, σ) = {⊥};
• if a is executable in σ and a is a non-sensing action then

Φ0(a, σ) = {〈(T \Dela) ∪Adda, (F \ Adda) ∪Dela〉};

• if a is executable in σ and a is a sensing action then

Φ0(a, σ) = {σ′|σ � σ′ and Sensa \ σ = σ′ \ σ}.

This implies that Φ is identical to Φ0.

3. A State-Based Regression Formulation

In this section, we present our formalization of a regression function, denoted by R,
and prove that it is both sound and complete with respect to the progression function Φ.
R is a state-based regression function that maps each pair of an action and a set of a-states
into an a-state.

Observe that our progression formulation states that a plan p achieves the goal G from
an a-state σ if G holds in all a-states belonging to Φ∗(p, σ), i.e., G holds in ∩σ′∈Φ∗(p,σ)σ

′.
In addition, similar to [4], we will also define regression with respect to the goal. These
suggest us to introduce the notion of a partial knowledge state (or p-state) as a pair [T, F ]
where T ⊆ A and F ⊆ A are two disjoint sets of fluents. Intuitively, a p-state δ = [T, F ]
represents a collection of a-states which extend the a-state 〈T, F 〉. We denote this set by
ext(δ) and call it the extension set of δ. Formally, ext(δ) = {〈T ′, F ′〉 | T ⊆ T ′ ⊆ A,F ⊆
F ′ ⊆ A,T ′ ∩ F ′ = ∅}. Any a-state σ′ ∈ ext(δ) is called an extension of δ. Given a p-state
δ=[T, F ], we say a partial state δ′ = [T ′, F ′] is a partial extension of δ if T ⊆ T ′, F ⊆ F ′.
For a set of p-states ∆ = {δ1, . . . , δn}, ∆

′ = {δ′1, . . . , δ
′
n} is said to be an extension of ∆,

written as ∆ ⊑ ∆′ if δ′i is a partial extension of δi for every i = 1, . . . , n. For a fluent f ,
we say that f is true (resp. false, known, unknown) in δ if f ∈ T (f ∈ F , f ∈ T ∪ F ,
f 6∈ T ∪F ). A set of fluents S is said to be true (resp. false, known, unknown) in δ if every
fluent f in S is true (resp. false, known, unknown) in δ.

The regression function R will be defined separately for non-sensing actions and sensing
actions to take into consideration the fact that the execution of a non-sensing action (resp.
sensing action) in an a-state results in a single a-state (resp. set of a-states). Thereafter,
R is extended to define regression over conditional plans. The key requirement on R is
that it should be sound (i.e., plans obtained through regression must be plans based on
the progression function) and complete (i.e., for each plan based on progression, using
regression one should obtain that plan or a simpler plan with the same effects) with respect
to progression. We will also need to characterize the conditions under which an action should
not be used for regression. Following [4], we refer to this condition as “the applicability
condition.” We begin with non-sensing actions.
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3.1. Regression Over Non-Sensing Actions. We begin with the applicability condition
of non-sensing actions and then give the definition of the function R for non-sensing actions.

Definition 3.1 (Regression Applicability Condition – Non-Sensing Action). Given a non-
sensing action a and a p-state δ = [T, F ]. We say that a is applicable in δ if

(i) Adda ∩ T 6= ∅ or Dela ∩ F 6= ∅, and
(ii) Adda ∩ F = ∅, Dela ∩ T = ∅, Pre+a ∩ F ⊆ Dela, and Pre

−
a ∩ T ⊆ Adda.

Intuitively, the aforementioned applicability condition requires that a is relevant (item
(i)) and consistent (item (ii)) in δ. Item (i) is considered “relevant” as it makes sure that
the effects of a will contribute to δ after its execution. Item (ii) is considered “consistent”
as it makes sure that the situation obtained by progressing a, from a situation yielded by
regressing from δ through a, will be consistent with δ. Observe also that this definition
will exclude the conventional operator no-op from consideration for regression as it is never
applicable.

Since the application of a non-sensing action in an a-state results in a single a-state, the
regression of a p-state over a non-sensing action should result in a p-state. This is defined
next.

Definition 3.2 (Regression – Non-Sensing Action). Given a non-sensing action a and a
p-state δ = [T, F ],

• if a is not applicable in δ then R(a, δ) = ⊥;
• if a is applicable in δ then R(a, δ) = [(T \ Adda) ∪ Pre

+
a , (F \Dela) ∪ Pre

−
a ].

Like in the progression function, the symbol ⊥ indicates a “failure.” In other words,
R(a, δ) = ⊥ means that δ cannot be regressed on a (or the regression from δ over a fails).
For later use, we extend the regression function R for non-sensing actions over a set of
p-states and define

R(a, {δ1, . . . , δn}) = {R(a, δ1), . . . ,R(a, δn)}

where δ1, . . . , δn are p-states and a is a non-sensing action.

Example 3.3 (Getting to Evanston - con’t). The actions take-western and take-ashland
are applicable in δ = [{at-evanston}, {}].

R(take-western, δ) = [{on-western}, {traffic-bad}], and
R(take-ashland, δ) = [{on-ashland}, {}].

3.2. Regression Over Sensing Actions. Let a be a sensing action and σ be an a-state.
The definition of the progression function Φ states that the execution of a in σ results in a
set of a-states Φ(a, σ). Furthermore, if a is executable in σ then every member of Φ(a, σ)
extends σ by a set of fluents sa ⊆ Sensa and every f ∈ Sensa \ sa is known in σ. As such,
the regression over a sensing action should be with respect to a set of p-states and result in
a p-state. Moreover, our definition for the applicability condition of a sensing action must
account for the fact that the set of p-states, from which the regression is done, satisfies the
two properties: (i) Sensa is known in each of its members; and (ii) the difference between
two of its members is exactly Sensa. This leads to the following definition.

Definition 3.4 (Sensed Set of Fluents). Let ∆ = {δ1, . . . , δn} be a set of p-states and a be
a sensing action. A sensed set of fluents of ∆ with respect to a, denoted by p(a,∆), is a
non-empty subset of Sensa satisfying the following properties:
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• Sensa is known in ∆;
• n = 2|p(a,∆)|;
• for every partition4 (P,Q) of p(a,∆), there exists only one δi ∈ ∆ (1 ≤ i ≤ n) such that
δi.T ∩ p(a,∆) = P, δi.F ∩ p(a,∆) = Q; and

• δi.T \ p(a,∆) = δj .T \ p(a,∆) and δi.F \ p(a,∆) = δj .F \ p(a,∆) for every pair of i and
j, 1 ≤ i ≤ n and 1 ≤ j ≤ n.

It can be seen from Definition 2.4 (Case 2) that when a sensing action a is executed in an
a-state σ, the result is a set of a-states Φ(a, σ) where for each σ′ ∈ Φ(a, σ), σ′\σ = Sensa\σ.
The above definition captures the inverse of the progression process. Intuitively, p(a,∆)
is the set of fluents which are unknown before the execution of a and are known after its
execution; for example, if ∆ = Φ(a, σ), then p(a,∆) should encode the set Sensa \ σ. It
is easy to see that the second condition on p(a,∆) warrants that it is a maximal subset of
Sensa satisfying the four stated conditions. Observe also that due to the second condition,
∆ must be a non-empty set. The next lemma proves that the sensed set of a set of p-states
with respect to an action is unique.

Lemma 3.5. For every sensing action a and set of p-states ∆, p(a,∆) is unique if it exists.

Proof. Abusing the notation, we write p(a,∆) = ⊥ whenever p(a,∆) does not exist. Clearly,
the lemma holds if ∆ = ∅ as p(a,∆) = ⊥ for every a. So, we need to prove it for the case
∆ 6= ∅.

Assume that p(a,∆) exists but it is not unique, i.e, we can find different sensed sets of
∆ with respect to a, say X and X ′. By Definition 3.4, we have that X 6= ∅ and X ′ 6= ∅.

Since X 6= ∅, let us consider a fluent f ∈ X. By Definition 3.4, for two partitions
({f},X\{f}) and (X\{f}, {f}) of X, there exist δ ∈ ∆ and δ′ ∈ ∆ such that {f} = δ.T ∩X
and {f} = δ′.F ∩X, i.e. f is true in δ and false in δ′. [*].

Suppose that f 6∈ X ′. By Item 4, Definition 3.4, either f ∈ δ.T \X ′ or f ∈ δ.F \X ′ for
δ ∈ ∆, i.e f is either true or false in every δ ∈ ∆. In either case, this contradicts with [*].
Therefore, f ∈ X ′.

Symmetrically, we can argue that, if f ∈ X ′ then f ∈ X. Thus, f ∈ X iff f ∈ X ′, i.e.
X = X ′.

Definition 3.6 (Properness). A set of p-states ∆ is proper with respect to a sensing action
a if p(a,∆) 6= ⊥.

For convenience, we sometime write p(a,∆) = ⊥ to indicate that ∆ is not proper with
respect to a.

Example 3.7 (Getting to Evanston – Cond’t). Consider a set ∆1 = {δ1, δ2} where δ1 =
[{at-start, traffic-bad}, {on-western, on-belmont, on-ashland, at-evanston}] and

δ2 = [{at-start}, {traffic-bad , on-western, on-belmont, on-ashland, at-evanston}].

We can easily check that

p(check -traffic,∆1) = {traffic-bad}.

So, ∆1 is proper with respect to check-traffic.
On the other hand

p(check -traffic,∆2) = ⊥.

4For a set of fluents X, a partition of X is a pair of sets of fluents (P,Q) where P ∩Q = ∅ and P ∪Q = X.
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where ∆2 = {δ1, δ3} and δ3 = [{at-start}, {traffic-bad , at-evanston}]. This is because the
fourth condition (Definition 3.4) cannot be satisfied for any non-empty subset of traffic-bad .
So, ∆2 is not proper with respect to check-traffic .

We are now ready to define the applicability condition for sensing actions. The definition
is given in two steps. First, we define the strong applicability condition as follows.

Definition 3.8 (Strong Regression Applicability Condition – Sensing Action). Let a be a
sensing action and ∆ be a set of p-states. We say that a is strongly applicable in ∆ if

(i) p(a,∆) 6= ⊥; and
(ii) Pre+a ∩ δ.F = ∅ and Pre−a ∩ δ.T = ∅ for every δ ∈ ∆.

In the above definition, (i) and (ii) correspond to the “relevancy” and “consistency”
requirement for non-sensing actions (Definition 3.1) respectively. (i) corresponds to the fact

that executing a sensing action a in an a-state σ results in a set of 2|p(a,∆)| a-states, each
of which extends σ by p(a,∆) and (ii) guarantees that a must be executable prior to its
execution.

It is easy to see that if a sensing action a is strongly applicable in ∆, then for every
a-state σ′ extending the p-state

δ′ = [((
⋃

δ∈∆

δ.T ) \ p(a,∆)) ∪ Pre+a , ((
⋃

δ∈∆

δ.F ) \ p(a,∆)) ∪ Pre−a ]

it holds that every member of Φ(a, σ′) belongs to the extension of some δi ∈ ∆. As such,
δ′ could be viewed as the result of the regression from ∆ through a. Unfortunately, the
conditions in Definition 3.8 are sometime unnecessarily strong as the following example
demonstrates.

Example 3.9 (Strong Regression Applicability Condition). Let

P = 〈{f, g, h}, {sensef , a1, a2}, {h}, {g}〉

be a planning problem, where sensef is a sensing action with

Presensef = {h}, Senssensef = {f};

a1 and a2 are two non-sensing actions with

Prea1 = {h, f}, Adda1 = {g},Dela1 = ∅,

P rea2 = {¬f}, Adda2 = {g}, and Dela2 = ∅.

Clearly,
c = sensef ; case(f → a1,¬f → a2)

is a progression solution to P . Thus, it is reasonable to expect that if we regress from the
goal δ = [{g}, ∅] on c — step-by-step — we will receive a p-state δ′ such that 〈{h}, ∅〉 ∈
ext(δ′). This process begins with the regression on a1 and a2 from δ. Thereafter, we
receive a set of p-states from which the regression on sensef can be done. It is easy to see
that R(a1, δ) = [{h, f}, ∅] = δ1 and R(a2, δ) = [∅, {f}] = δ2. It is also easy to see that
the strong applicability condition implies that sensef is not applicable in {δ1, δ2} because
p(sensef , {δ1, δ2}) = ⊥. This means that, we cannot regress on c from the goal state.

Notice that the problem in the above example lies in the fact that {δ1, δ2} violates the
properness definition in that δ1 and δ2 do not have the same values on the set of fluents that
do not belong to Senssensef . To overcome the problem posed by the strong applicability
condition, we relax this condition.
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Definition 3.10 (Regression Applicability Condition – Sensing Action). Let a be a sensing
action and ∆ be a set of p-states. a is applicable in ∆ if

(i) there exists a set of p-states ∆′ such that ∆ ⊑ ∆′ and a is strongly applicable in ∆′;
and

(ii) Sensa is known in ∆.

Example 3.11 (Continuation of Example 3.9). It is easy to see that sensef is applicable
in {δ1, δ2} since it is strongly applicable in {δ1, δ

′
2} where δ′2 = [{h}, {f}] and {δ1, δ2} ⊑

{δ1, δ
′
2}.

Definition 3.12 (Sensed Set). Let ∆ be a set of p-states and a be a sensing action such
that a is applicable in ∆. We say that X is a sensed set of fluents of ∆ with respect to
a, denoted by Sa,∆, if there exists a set of p-states ∆′ such that ∆ ⊑ ∆′, a is strongly
applicable in ∆′, and X = p(a,∆′).

Again, we write Sa,∆ = ⊥ to say that the sensed set of fluents of ∆ with respect to a
does not exist. The next lemma states that Sa,∆ is unique.

Lemma 3.13. For every sensing action a and set of p-states ∆, Sa,∆ is unique if it exists.

Proof. Obviously, the lemma holds for ∆ = ∅. So, we need to prove it for the case ∆ 6= ∅.
Assume the contrary, Sa,∆ is not unique. This implies that there exists ∆′ and ∆′′ such

that ∆ ⊑ ∆′ and ∆ ⊑ ∆′′, p(a,∆′) 6= ⊥, p(a,∆′′) 6= ⊥, and p(a,∆′) 6= p(a,∆′′). Again,
by Definition 3.4 we can conclude that p(a,∆′) 6= ∅ and p(a,∆′′) 6= ∅. Without loss of
generality, we conclude that there exists some f ∈ p(a,∆′) \ p(a,∆′′).

Since p(a,∆′′) 6= ⊥, f ∈ Sensa, and f is known in ∆′′, by Definition 3.4, we must have
two cases.

(1) f ∈ δ′′.T \ p(a,∆′′) for every δ′′ ∈ ∆′′. Since f ∈ p(a,∆′), by Definition 3.4, for the
partition (p(a,∆′)\{f}, {f}) of p(a,∆′), there exists δ′ ∈ ∆′ such that δ′.F ∩p(a,∆′) =
{f}, i.e. f is false in δ′.

Because ∆ ⊑ ∆′, there exists some δ ∈ ∆ such that δ′ is a partial extension of δ. So,
we have that δ.F ⊆ δ′.F . Also, as Sensa is known in δ, we must have that f ∈ δ.F .

Since ∆ ⊑ ∆′′, we know that there exists some δ′′ ∈ ∆′′ which is a partial extension
of δ. This implies that δ.F ⊆ δ′′.F , i.e., f ∈ δ′′.F . This contradicts with the fact that
f ∈ δ′′.T .

(2) f ∈ δ′′.F \ p(a,∆′′) for every δ′′ ∈ ∆′′. Similarly to the first case, we can derive a
contradiction.

The above two cases show that if f ∈ p(a,∆′) then f ∈ p(a,∆′′).
This shows that p(a,∆′) = p(a,∆′′).

We illustrate the above definition in the next example.

Example 3.14 (Getting to Evanston - con’t). Consider the set ∆2 and the sensing action
check -traffic in Example 3.7. We have that

(i) check -traffic is not strongly applicable in ∆2 (because p(check -traffic,∆2) = ⊥, Ex-
ample 3.7); however,

(ii) check -traffic is applicable in ∆2. This is because ∆1 (Example 3.7) consists of partial
extensions of p-states in ∆2, and check -traffic is strongly applicable in ∆1.

We are now ready to define the regression function for sensing actions.
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Definition 3.15 (Regression – Sensing Action). Let a be a sensing action and ∆ be a set
of p-states.

• if a is not applicable in ∆ then R(a,∆) = ⊥; and
• if a is applicable in ∆

R(a,∆) = [((
⋃

δ∈∆

δ.T ) \ Sa,∆) ∪ Pre
+
a , ((

⋃

δ∈∆

δ.F ) \ Sa,∆) ∪ Pre
−
a ].

Example 3.16 (Getting to Evanston – Cond’t). The action check-traffic is applicable in
∆2 with respect to {traffic-bad} (see Example 3.14) and we have

R(check-traffic,∆2) =
[{at-start}, {on-western, on-belmont, on-ashland, at-evanston}].

3.3. Regression Over Conditional Plans. We now extend R to define R∗ that allows
us to perform regression over conditional plans. For a conjunction of fluent literals, by ϕ+

and ϕ− we denote the sets of fluents occurring positively and negatively in ϕ, respectively.

Definition 3.17 (Extended Regression Function). Let δ be a p-state. The extended tran-
sition function R∗ is defined as follows:

• R∗([ ], δ) = δ.
• For a non-sensing action a, R∗(a, δ) = R(a, δ).
• For a conditional plan p = a; case(ϕ1→c1, . . . , ϕn→cn) where a is a sensing action and
ci’s are conditional plans,
– if R∗(ci, δ)=⊥ for some i, R∗(p, δ) = ⊥;
– if R∗(ci, δ)=[Ti, Fi] for i = 1, . . . , n, then

R∗(p, δ) = R(a, {R(ϕ1 → c1, δ), . . . , R(ϕn → cn, δ)})

where R(ϕi → ci, δ) = [Ti ∪ ϕ
+
i , Fi ∪ ϕ

−
i ] if ϕ

+
i ∩ Fi = ∅ and ϕ−

i ∩ Ti = ∅; otherwise,
R(ϕi → ci, δ) = ⊥.

• For p = a; c, where a is a non-sensing action and c is a conditional plan,

R∗(p, δ) = R(a,R∗(c, δ));

• R∗(p,⊥) =⊥ for every plan p.

The notion of a regression solution is defined as follows.

Definition 3.18 (Regression Solution). A conditional plan c is a regression solution to
the planning problem P = 〈A,O, I,G〉 if R∗(c, δG) 6= ⊥ and σI ∈ ext(R∗(c, δG)) where
δG = [G+, G−] and σI = 〈I+, I−〉.

The above definition is a generalization of the notion of a plan obtained by regression
in domains without sensing actions and with complete information about the initial state
to domains with sensing actions and incomplete information. An important property that
any regression function needs to satisfy is its soundness with respect to the corresponding
progression function. Here, we would like to guarantee that R and R∗ are sound with
respect to the progression function Φ and Φ∗, respectively. As such, we require that a
regression solution c to a planning problem P = 〈A,O, I,G〉 be a plan achieving the goal
G from I. This property is proved in Theorem 4.8.

As the soundness of the regression function with respect to the progression function is
guaranteed, it will be interesting to investigate its completeness. In this paper, we opt for a
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definition that — when used in planning — will give us optimal solutions in the sense that
regression solutions do not contain redundant actions. This is evident from Definitions 3.1
and 3.10 in which we require that the action, over which the regression is done, must add
new information to the regressed state. We will elaborate in more detail on this point in
the next section.

4. Soundness and Completeness Results

In this section, we show that our regression function R∗ is sound and complete with
respect to the progression function Φ.

4.1. Soundness Result. As with its definition, the soundness of R∗ is proved in two steps.
First, we prove the soundness of R, separately for non-sensing and sensing actions. Second,
we extend this result to regression solutions. To establish the soundness of R on non-sensing
actions, we need the following lemma.

Lemma 4.1. Let δ be a p-state. An a-state σ is an extension of δ (i.e. σ ∈ ext(δ)) iff σ

is an a-state of the form 〈δ.T ∪X, δ.F ∪ Y 〉 where X,Y are two disjoint sets of fluents and
X ∩ δ.F = ∅, Y ∩ δ.T = ∅.

Proof.

• Case “⇒”:
Let σ ∈ ext(δ) be an extension of δ. By the definition of an extension, σ is an a-state

where δ.T ⊆ σ.T and δ.F ⊆ σ.F . Denote X = σ.T \ δ.T and Y = σ.F \ δ.F . Clearly, X
and Y are two set of fluents where X ∩ Y = ∅ and X ∩ δ.F = ∅, Y ∩ δ.T = ∅.

• Case “⇐”:
Let σ be an a-state of the form 〈δ.T ∪X, δ.F ∪ Y 〉 where X,Y are two disjoint sets of

fluents and X ∩ δ.F = ∅, Y ∩ δ.T = ∅.
It’s easy to see that σ.T ∩ σ.F = ∅, i.e. σ is consistent. Furthermore, δ.T ⊆ σ.T and

δ.F ⊆ σ.F , i.e. by definition of an extension, σ is an extension of δ.

Intuitively, the soundness of R for a non-sensing action states that the regression over
a non-sensing action from a p-state yields another p-state such that the execution of the
action in any extension of the latter results in a subset of a-states belonging to the extension
set of the former. This is illustrated in Figure 2.

✛ δ
R(a,δ)

Φ(a,σ′′)
✻

δ′ 6=⊥

σ′′∈ext(δ′)
Progression

ExtensionExtension

Regression

✲

✻
Φ(a,σ′′)⊆ext(δ)

Figure 2: Illustration of Theorem 4.2.



16 L.-C. TUAN, C. BARAL, AND T. C. SON

Theorem 4.2 (Non-sensing Action). Let δ be a p-state and a be a non-sensing action. If
R(a, δ) = δ′ and δ′ 6= ⊥, then for every σ′′ ∈ ext(δ′) we have that Φ(a, σ′′) ⊆ ext(δ).

Proof. Let δ = [T, F ]. From the fact that R(a, δ) = δ′ 6= ⊥, we have that a is applicable in
δ.

By Definition 3.2,

δ′ = R(δ, a) = [(T \ Adda) ∪ Pre
+
a , (F \Dela) ∪ Pre

−
a ].

Let σ′′ ∈ ext(δ′). It follows from Lemma 4.1 that

σ′′ = 〈(T \ Adda) ∪ Pre
+
a ∪X, (F \Dela) ∪ Pre

−
a ∪ Y 〉,

where X and Y are two sets of fluents such that σ′′.T ∩ σ′′.F = ∅. We now prove that (i) a
is executable in σ′′ and (ii) Φ(a, σ′′) ⊆ ext(δ).

• Proof of (i):
Since Pre+a ⊆ σ′′.T and Pre−a ⊆ σ′′.F , we conclude that lem1−maintexta is exe-

cutable in σ′′.
• Proof of (ii):

By definition of the transition function Φ, we have that

Φ(a, σ′′) = {〈(((T \Adda)∪Pre
+
a ∪X)\Dela)∪Adda, (((F \Dela)∪Pre

−
a ∪Y )\Adda)∪Dela〉}

Since a is applicable in δ, we have that T ∩ Dela = ∅, F ∩ Adda = ∅. Furthermore,
Dela ∩ Adda = ∅. Therefore, we have that (((T \ Adda) ∪ Pre

+
a ∪X) \Dela) ∪ Adda =

((T \ Adda) ∪ ((Pre+a ∪ X) \ Dela)) ∪ Adda ⊇ T ∪ ((Pre+a ∪ X) \ Dela) ⊇ T . This
concludes that T ⊆ Φ(a, σ′′).T . Similarly, we have that F ⊆ Φ(a, σ′′).F . This shows that
Φ(a, σ′′) ⊆ ext(δ).

Observe that the conclusion of the theorem indicates that ⊥ 6∈ Φ(a, σ′′), i.e., a is
executable in σ′′. This shows that R can be “reversed” for non-sensing actions.

We will next establish a result similar to Theorem 4.2 for sensing actions. Intuitively,
the result should state that the regression over a sensing action from a set of p-states yields
a p-state such that the execution of the action in any extension of the latter results in a set
of a-states belonging to the union of the extension sets of the former, i.e., it should allow
us to conclude that R can be “reversed” for sensing actions. Figure 3 illustrates this idea.

✛ ∆
R(a,∆)

Φ(a,σ)

.

✻

δ′ 6=⊥

σ∈ext(δ′) ✲

.

✻
Φ(a,σ)⊆

⋃
δ∈∆ ext(δ)

Progression

ExtensionExtension

Regression

Figure 3: Illustration of Theorem 4.4.
.

We need the following lemma.
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Lemma 4.3. Let σ′ be an a-state and a be a sensing action executable in σ′. For any
Sa ⊆ Sensa and σ ∈ Φ(a, σ′), let σ.T ∩ Sa = S+

σ and σ.F ∩ Sa = S−
σ , we have that

S+
σ ∪ S−

σ = Sa and S+
σ ∩ S−

σ = ∅.

Proof. It is easy to see that the lemma is correct for the case Sa = ∅. Let us consider the
case Sa 6= ∅. Since S+

σ ⊆ σ.T and S−
σ ⊆ σ.F , we have that S+

σ ∩ S−
σ = ∅. . This also shows

Consider f ∈ S+
σ ∪ S−

σ , we have that f ∈ S+
σ or f ∈ S−

σ . In both cases, we have f ∈ Sa.
Consider f ∈ Sa. Since Sa ⊆ Sensa, we have that f ∈ Sensa. By the definition of Φ,

we have that f ∈ σ.T or f ∈ σ.F . From this fact, it’s easy to see that f ∈ S+
σ or f ∈ S−

σ .

With the help of the above lemma, we can prove the following theorem.

Theorem 4.4 (Sensing action). Let ∆ be a set of p-states and a be a sensing action. If
R(a,∆) = δ′ and δ′ 6= ⊥, then for every σ′′ ∈ ext(δ′), we have that Φ(a, σ′′) ⊆

⋃
δ∈∆ ext(δ).

Proof. From the fact that R(a,∆) = δ′ 6= ⊥, we have that a is applicable in ∆ with respect
to some set Sa,∆ ⊆ Sensa (Sa,∆ 6= ∅). By Definition 3.15 we have:

δ′ = R(a,∆) = [(
⋃

δ∈∆

δ.T \ Sa,∆) ∪ Pre
+
a , (

⋃

δ∈∆

δ.F \ Sa,∆) ∪ Pre
−
a ].

Let σ′′ ∈ ext(δ′) be an arbitrary extension of δ′. We will now prove (i) a is executable in
σ′′ and (ii) Φ(a, σ′′) ⊆

⋃
δ∈∆ ext(δ).

• Proof of (i): It follows from Lemma 4.1 that

σ′′ = 〈(
⋃

δ∈∆

δ.T \ Sa,∆) ∪ Pre
+
a ∪X, (

⋃

δ∈∆

δ.F \ Sa,∆) ∪ Pre
−
a ∪ Y 〉

where X and Y are two sets of fluents such that σ′′.T ∩ σ′′.F = ∅.

From the fact that Pre+a ⊆ σ′′.T and Pre−a ⊆ σ′′.F , we conclude that a is executable in
σ′′. [*]

• Proof of (ii): Consider an arbitrary σ ∈ Φ(a, σ′′). We need to prove that there exists
some δ ∈ ∆ such that σ ∈ ext(δ).

Since a is applicable in ∆, by Definition 3.10, there exists ∆′ such that ∆ ⊑ ∆′ and a
is strongly applicable in ∆′ and Sa,∆ = p(a,∆′).

Let S+
σ = σ.T∩Sa,∆ and S−

σ = σ.F∩Sa,∆. By Lemma 4.3, we have that S+
σ ∪S−

σ = Sa,∆
and S+

σ ∩ S−
σ = ∅.

By Definition 3.4, there exists δ′ ∈ ∆′ such that δ′.T ∩Sa,∆ = S+
σ and δ′.F ∩Sa,∆ = S−

σ .
Because ∆ ⊑ ∆′, there exists some δ ∈ ∆ such that δ′ is a partial extension of δ.

We will show that σ ∈ ext(δ), i.e., δ.T ⊆ σ.T and δ.F ⊆ σ.F .
Since δ.T ⊆ δ′.T , we have that δ.T ∩ Sa,∆ ⊆ δ′.T ∩ Sa,∆ = S+

σ . Therefore:

δ.T = (δ.T \ (δ.T ∩ Sa,∆)) ∪ (δ.T ∩ Sa,∆)
= (δ.T \ Sa,∆) ∪ (δ.T ∩ Sa,∆)
⊆ (δ.T \ Sa,∆) ∪ S

+
σ .

Similarly, we can show that δ.F ⊆ (δ.F \ Sa,∆) ∪ S
−
σ .

Since σ ∈ Φ(a, σ′′), by the definition of Φ, we have that σ′′.T ⊆ σ.T . Let σ.T \σ′′.T = ω,
we have that

σ.T = σ′′.T ∪ ω = ((
⋃

δ∈∆

δ.T ) \ Sa,∆) ∪ Pre
+
a ∪X ∪ ω.
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Since σ.T∩Sa,∆ = S+
σ and (((

⋃
δ∈∆ δ.T )\Sa,∆)∪Pre

+
a )∩Sa,∆ = ∅ (because Sensa∩Pre

+
a =

∅), we must have that (X ∪ ω) ∩ Sa,∆ = S+
σ , i.e. S+

σ ⊆ X ∪ ω. From the fact that
δ.T ⊆ (δ.T \ Sa,∆) ∪ S

+
σ and S+

σ ⊆ X ∪ ω, it is easy to see that δ.T ⊆ σ.T . Similarly, we
can show that δ.F ⊆ σ.F . From this fact, we conclude that σ ∈ ext(δ). [**]

From [*] and [**] the theorem is proved.

To prove the final result about the correctness of R (and Theorem 4.27 in the next
section) we need a number of additional notations and definitions.

Definition 4.5 (Branching Count). Let c be a conditional plan, we define the number of
case plans of c, denoted by count(c), inductively as follows:

(1) if c = [ ] then count(c) = 0;
(2) if c = a, a is a non-sensing action, then count(c) = 0;
(3) if a is a non-sensing action and c is a conditional plan then count(a; c) = count(c);
(4) if c is a case plan of the form a; case(ϕ1 → c1, . . . , ϕn → cn) where a is a sensing action,

then count(c) = 1 +
∑n

i=1 count(ci).

Lemma 4.6 (Sequence of Non-sensing Action). For p-states δ and δ′, and a sequence of non-
sensing actions c = a1; . . . ; an (n ≥ 0), R∗(c, δ) = δ′ 6= ⊥ implies that Φ∗(c, σ′′) ⊆ ext(δ)
for every σ′′ ∈ ext(δ′).

Proof. By induction on n.

• Base Case: n = 1. This means that c has only one action a. Using Theorem 4.2, and
Definition 3.17 – item 2 – the base case is proved. Notice that for the case n = 0, i.e.
c = [ ], the lemma follows directly from Definitions 3.17 and 2.6.

• Inductive Step:
Assume that the lemma is shown for 1 ≤ n ≤ k. We now prove the lemma for n = k+1.
Let c′ = a2; . . . ; ak+1 and R∗(c′, δ) = δ∗. By Definition 3.17

R∗(c, δ) = R(a1,R
∗(c′, δ)) = δ′.

Since R(a1, δ
∗) = δ′ 6= ⊥, we have that δ∗ 6= ⊥.

Let σ′′ ∈ ext(δ′). By Theorem 4.2, we have that Φ(a1, σ
′′) = {σ} ⊆ ext(δ∗), i.e., σ ∈

ext(δ∗).

By the definition of Φ∗, we also have that Φ∗(c, σ′′) = Φ∗(c′,Φ∗(a1, σ
′′)). Using the

induction hypothesis for c′, where R∗(c′, δ) = δ∗ and σ ∈ ext(δ∗), we have:

Φ∗(c′,Φ∗(a1, σ
′′)) = Φ∗(c′, σ) ⊆ ext(δ).

Therefore, Φ∗(c, σ′′) ⊆ ext(δ).

Lemma 4.7. Let δ be a p-state and c be a conditional plan. If R∗(c, δ) = δ′ and δ′ 6= ⊥,
then for every σ ∈ ext(δ′), Φ∗(c, σ) ⊆ ext(δ).

Proof. By induction on count(c), the number of case plans in c.

• Base Case: count(c) = 0. Then c is a sequence of non-sensing actions. The base case
follows from Lemma 4.6.

• Inductive Step: Assume that we have proved the lemma for count(c) ≤ k (k ≥ 0). We
need to prove the lemma for count(c) = k + 1. By the definition of a conditional plan,
we have two cases:
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(1) c = a; p is a case plan where a is a sensing action and p = case (ϕ1 → p1, . . . , ϕm →
pm). Since count(c) = 1 +

∑m
j=1 count(pj) ≤ k + 1, we have that count(pi) ≤ k for

i = 1, . . . ,m. By Definition 3.17,

⊥ 6= δ′ = R∗(c, δ) = R(a, {R(ϕ1 → p1, δ), . . . , R(ϕm → pm, δ)}).

Let us denote R(ϕi → pi, δ) by δi (1 ≤ i ≤ m) and ∆ = {δ1, . . . , δm}. We have that
δi |= ϕi for 1 ≤ i ≤ m, and a is applicable in ∆.
From Theorem 4.4, we have that

Φ(a, σ) ⊆
⋃

δ′′∈∆

ext(δ′′)

for every σ ∈ ext(δ′).
Consider an arbitrary σ′ ∈ Φ(a, σ). Because of the above relation, we can con-
clude that there exists some i, 1 ≤ i ≤ m, such that σ′ ∈ ext(δi). Because
R∗(pi, δ).T ⊆ R(ϕi → pi, δ).T and R∗(pi, δ).F ⊆ R(ϕi → pi, δ).F , σ

′ ∈ ext(δi)
implies σ′ ∈ ext(R∗(pi, δ)). Using inductive hypothesis for count(pi) ≤ k, we have
that Φ∗(pi, σ

′) ⊆ ext(δ). Since this holds for every σ′ ∈ Φ(a, σ), from Definition 2.6,
we conclude that Φ∗(c, σ) ⊆ ext(δ).

(2) c = a; p where a is a non-sensing action and p is a conditional plan. Because
count(c) > 0, from Definition 2.2 we conclude that there exists a sequence of non-
sensing actions b1, . . . , bt and a case plan q such that c = b1; . . . ; bt; q. Let c′ =
b1; . . . ; bt and R∗(q, δ) = δ∗. Using the first case, we can show that for every
σ′ ∈ ext(δ∗), Φ∗(q, σ′) ⊆ ext(δ). Furthermore, because

δ′ = R∗(c, δ) = R∗(c′,R∗(q, δ))

and Lemma 4.6, we can show that for every σ ∈ ext(δ), Φ∗(c, σ) ⊆ ext(δ).

From cases 1 and 2, the lemma is proved.

We are now ready to prove the soundness of the extended regression function R∗ with
respect to the extended progression transition function Φ∗, which is illustrated in the next
figure.

✛ δG
R∗(c,δG)

Φ∗(c,σ)
✻

δ′ 6=⊥

σI∈ext(δ′) ✲

✻
Φ∗(c,σI )⊆ext(δG)

Progression

ExtensionExtension

Regression

Figure 4: Soundness of R∗.

Theorem 4.8 (Soundness of Regression). Let P = 〈A,O, I,G〉 be a planning problem
and c be a regression solution of P . Then, c is also a progression solution of P , i.e.,
Φ∗(c, σI) ⊆ ext(δG).

Proof. Let δ′ = R∗(c, δG). Since δ′ 6= ⊥ and σI ∈ ext(δ′) (Definition 3.18), the conclusion
of the theorem follows immediately from Lemma 4.7.
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4.2. Completeness Result. We now proceed towards a completeness result. Ideally, one
would like to have a completeness result that expresses that for a given planning problem,
any progression solution can also be found by regression. In our formulation, however, the
definition of the progression function allows an action a to execute in any a-state σ if a is
executable in σ, regardless whether or not a would add “new” information to σ. In contrast,
our definition of the regression function requires that an action a can only be applied in a
p-state (or a set of p-states) if a contributes something to the applied p-state(s) 5. Thus,
given a planning problem P = 〈A,O, I,G〉, a progression solution c of P may contain
redundant actions or extra branches. As a result, we may not obtain c via our regression,
i.e. R∗(c, δG) = ⊥. To illustrate this point, let us consider the following two examples.

Example 4.9 (Redundancy). Let P = 〈{f, g}, {b, c}, {f}, {g}〉 be a planning problem where
c is a non-sensing action with Prec = {f}, Addc = {g}, and Delc = ∅; b is also a non-sensing
action with Preb = {g}, Addb = {f}, and Delb = ∅. Clearly

p1 = c p2 = c; b p3 = c; c

are three progression solutions of P . Plan p1 indicates that b (in p2) and a copy (a.k.a. an
instance) of c (in p3) are redundant.

It is easy to check that

R∗(p2, [{g}, ∅]) = R∗(p3, [{g}, ∅]) = ⊥

whereas
R∗(c, [{g}, ∅]) = [{f}, ∅].

Example 4.10 (Redundancy). Let P = 〈{f, g}, {b, c}, {f}, {g}〉 be a planning problem.
Let c be a sensing action where Prec = ∅, Sensc = {f, g}; b is a non-sensing action where
Preb = {f,¬g}, Addb = {g}, and Delb = ∅. A plan achieving g is:

p = c; case(f ∧ ¬g → b, f ∧ g → [ ],¬f ∧ ¬g → [ ],¬f ∧ g → [ ]).

Notice that, the conditions ¬f ∧ ¬g and ¬f ∧ g are always evaluated to false after the
execution of c because f is true before the execution of c. Thus, the two last branches of p
are never used to achieve g.

We have that
R∗([], [{g}, ∅]) = [{g}, ∅]
R∗(b, [{g}, ∅]) = R(b, [{g}, ∅]) = [{f}, {g}]

We can also verify that

R(f ∧ ¬g → b, [{g}, ∅]) = [{f}, {g}] R(f ∧ g → [], [{g}, ∅]) = [{f, g}, ∅]
R(¬f ∧ ¬g → [], [{g}, ∅]) = ⊥ R(¬f ∧ g → [], [{g}, ∅]) = [{g}, {f}]

This implies that

R∗(p, [{g}, ∅]) = R(c, {[{f}, {g}], [{f, g}, ∅],⊥}) = ⊥.

Let p′ be the conditional plan obtained from p by removing the last two branches of p, i.e.,

p′ = c; case(f ∧ ¬g → b, f ∧ g → [ ]).

We can easily check that R∗(p′, [{g}, ∅]) = [{f}, ∅] 6= ⊥.

5Note that this condition is also applied for regression planning systems such as [4] and [14].
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The above discussion suggests us the following completeness result: if a conditional plan
can be found through progression we can find an equivalent conditional plan through re-
gression. The plan found through regression does not have redundancies, both in terms of
extra actions and extra branches. We refer to these notions as “redundancy” and “plan
equivalence”. We now formalize these notions.

Definition 4.11 (Subplan). Let c be a conditional plan. A conditional plan c′ is a subplan

of c if

• c′ can be obtained from c by
(i) removing an instance of a non-sensing action from c; or
(ii) removing a case plan or a branch ϕi → ci from a case plan in c; or
(iii) replacing a case plan a; case(ϕ1 → p1; cn . . . , ϕm → pm) in c with one of its branches

pi for some i, 1 ≤ i ≤ m; or
• c′ is a subplan of c′′ where c′′ is a subplan of c.

The above definition allows us to define redundant plans as follows.

Definition 4.12 (Redundancy). Let c be a conditional plan, σ be an a-state, and δ be a
p-state. We say that c contains redundancy (or is redundant) with respect to (σ, δ) if

(i) Φ∗(c, σ) ⊆ ext(δ); and
(ii) there exists a subplan c′ of c with respect to σ such that Φ∗(c′, σ) ⊆ ext(δ).

Note that, if c′ is a subplan of a conditional plan c then c′ 6= c. The equivalence of two
conditional plans is defined formally as follows.

Definition 4.13 (Equivalent Plan). Let σ be an a-state, δ be a p-state, and c be a condi-
tional plan such that and Φ∗(c, σ) ⊆ ext(δ). A conditional plan c′ is equivalent to c with
respect to (σ, δ) if Φ∗(c′, σ) ⊆ ext(δ).

Example 4.14 (Equivalence). Consider the plans in Example 4.9, we have that p1 is a
subplan of p3 which is equivalent to p3 with respect to (〈{f}, ∅〉, [{g}, ∅]).

Similarly, for planning problem in Example 4.10, p′ is a subplan of p and is equivalent to p
with respect to (〈{f}, ∅〉, [{g}, ∅]).

It is easy to see that if c′ and c′′ are equivalent to c with respect to (σ, δ) then c′ and
c′′ are equivalent with respect to (σ, δ). To prove the completeness result of our regression
formulation, we will need to introduce a few more definitions and notations. Recall that our
purpose is to use regression to find an equivalent conditional plan for a given progression
solution. To do that, we will provide conditions characterizing when a conditional plan
is regressable, i.e. when the R∗ function can be applied on it to produce a p-state. We
refer to conditional plans satisfying such conditions as regressable conditional plans. We
will later show that, for a given progression solution of a planning problem P there exists
an equivalent, regressable conditional plan that is also a regression solution of P .

To define a regressable conditional plan, we begin with some additional notations. For
a non-empty set of fluents S = {f1, ..., fk}, a binary representation of S is a formula of the
form l1 ∧ . . . ∧ lk where li ∈ {fi,¬fi} for i = 1, . . . , k.

For a non-empty set of fluents S, let BIN(S) denote the set of all different binary
representations of S. We say a conjunction φ of literals is consistent if there exists no
fluent f such that both f and ¬f appear in φ. A set of consistent conjunctions of literals
χ = {ϕ1, . . . , ϕn} is said to span over some set of fluents S if there exists a consistent
conjunction of literals ϕ 6∈ χ, such that:
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(1) S ∩ (ϕ+ ∪ ϕ−) = ∅ where ϕ+ and ϕ− denote the sets of fluents occurring positive and
negative in ϕ, respectively;

(2) ϕi = ϕ ∧ ψi where BIN(S) = {ψ1, . . . , ψn}.

Notice that for a non-empty set S, we can easily check whether the set χ = {ϕ1, . . . , ϕn}
spans over S. We say that a set χ = {ϕ1, . . . , ϕn} is factorable if it spans over some non-
empty set of fluents S.

Example 4.15 (Getting to Evanston – Cond’t). Consider a set S = {traffic-bad}, a con-
junction ϕ = on-ashland and a set of conjunctions χ = {on-ashland ∧ traffic-bad, on-
ashland ∧ ¬traffic-bad}.

We have that BIN(S) = {traffic-bad,¬traffic-bad} and χ spans over S.

We can show that for a non-empty set of consistent conjunctions of literals χ =
{ϕ1, . . . , ϕn} be a non-empty set if χ is factorable, then there exists a unique non-empty
set of fluents S such that χ spans over S. This allows us to define the notion of regressable
plans as follows.

Definition 4.16 (Potentially Regressable Case Plan). A case plan

p = a; case(ϕ1 → c1, . . . , ϕn → cn)

is potentially regressable if

(i) there exists a non-empty set ∅ 6= Sa ⊆ Sensa such that {ϕ1, . . . , ϕn} spans over Sa,
and

(ii) for 1 ≤ i ≤ n, Sensa ⊆ (ϕ+
i ∪ ϕ−

i ).

Definition 4.17 (Regressable Conditional Plan). Let c be a conditional plan, σ be an
a-state, and δ be a p-state. We say c is regressable with respect to (σ, δ) if

(i) every case plan occurring in c is potentially regressable,
(ii) Φ∗(c, σ) ⊆ ext(δ), and
(iii) c is not redundant with respect to (σ, δ).

We will now prove a series of lemmae that will be used in the proof of the completeness
of R∗. Lemma 4.18 is about the uniqueness of a set of literals over which a factorable set of
conjunctions spans. Lemmae 4.19-4.20 state that the regressable property of a sequence of
non-sensing actions is maintained by the function R∗. Lemma 4.21-4.23 extend this result
to regressable conditional plans. Lemmae 4.24-4.26 show that for each progression solution
there exists an equivalent regressable plan which can be found through regression.

Lemma 4.18. Let χ = {ϕ1, . . . , ϕn} be a non-empty set of consistent conjunctions of
literals. If χ is factorable, then there exists a unique non-empty set of fluents S such that
χ spans over S.

Proof. Since χ is factorable, there exists a non-empty set of fluents S such that χ spans
over S, i.e. there exists ϕ such that ϕi = ϕ ∧ ψi where ψi ∈ BIN(S) for i = 1, . . . , n and
BIN(S) = {ψ1, . . . , ψn}. Assume that S is not unique. This means that there exists a
non-empty set S′ 6= S such that χ spans over S′, i.e. there exists ϕ′ such that ϕi = ϕ′ ∧ ψ′

i

where ψ′
i ∈ BIN(S′) for i = 1, . . . , n.

Consider f ∈ S \S′. For every 1 ≤ i ≤ n, we have that ϕi = ϕ′ ∧ψ′
i. Since f 6∈ S′ and ϕi is

consistent (1 ≤ i ≤ n), f must occur either positively or negatively in ϕ′. This means that
f occurs either positively or negatively in all ϕi for 1 ≤ i ≤ n.
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Consider the case that f occurs positively in all ϕi for 1 ≤ i ≤ n [*]. Since f ∈ S, there
exists a binary representation ψj ∈ BIN(S) (1 ≤ j ≤ n) such that f appears negatively
in ψj i.e. f appears negatively in ϕj . This contradicts with [*]. Similarly we can show a
contradiction in the case that f occurs negatively in all ϕi for 1 ≤ i ≤ n. We conclude that
S is unique.

Lemma 4.19. Let σ be an a-state, δ be a p-state, and c = a1; . . . ; an (n ≥ 1) be a
sequence of non-sensing actions. Assume that c is regressable with respect to (σ, δ). Then,
R∗(an, δ) = δ′, δ′ 6= ⊥, and c′ = a1; . . . ; an−1 is regressable with respect to (σ, δ′).

Proof. By induction on n.

• Base Case: n = 1. Similar to the inductive step, we can show that a1 is applicable in
δ. Let δ′ = R(a1, δ) and Φ(a1, σ) = {σ′}. We have that, δ′.T = (δ.T \ Adda1) ∪ Pre

+
a1

and σ′.T = (σ.T \Dela1) ∪ Adda1 . Using the facts σ′ ∈ ext(δ), Adda1 ∩Dela1 = ∅, and
the above equations, we can show that δ′.T ⊆ σ.T . Similarly, δ′.F ⊆ σ.F . Since [ ] is
not redundant with respect to (σ, δ′), we have that [ ] is a plan that is regressable with
respect to (σ, δ′).

• Inductive Step: Assume that we have proved the lemma for 0 < n ≤ k. We need to prove
the lemma for n = k + 1.

Let Φ∗(a1; . . . ; ak, σ) = {σk}, we have that

Φ∗(c, σ) = Φ(ak+1, σk) = {σ′} ⊆ ext(δ).

We will prove that (1) ak+1 is applicable in δ, (2) R(ak+1, δ) = δ∗ 6= ⊥ and σk ∈ ext(δ∗),
and (3) c′ = a1; . . . ; ak is regressable with respect to (σ, δ∗).

– Proof of (1): We first show that Addak+1
∩ δ.T 6= ∅ or Delak+1

∩ δ.F 6= ∅. Assume the
contrary, Addak+1

∩ δ.T = ∅ and Delak+1
∩ δ.F = ∅. By Definition 2.4, we have that

σ′.T = (σk.T \Delak+1
) ∪Addak+1

and
σ′.F = (σk.F \Addak+1

) ∪Delak+1
.

Since σ′ ∈ ext(δ), we have δ.T ⊆ σ′.T . By our assumption, Addak+1
∩ δ.T = ∅, we

must have that δ.T = δ.T \Addak+1
⊆ σ′.T \Addak+1

. Because for arbitrary sets X,Y ,
(X ∪ Y ) \ Y = X \ (X ∩ Y ), we have that

σ′.T \ Addak+1
= ((σk.T \Delak+1

) ∪Addak+1
) \ Addak+1

=

(σk.T \Delak+1
) \ ((σk.T \Delak+1

) ∩Addak+1
) ⊆ σk.T,

i.e. δ.T ⊆ σk.T \ Delak+1
. This shows that δ.T ⊆ σk.T . Similarly, we can show that

δ.F ⊆ σk.F . We conclude that σk ∈ ext(δ), i.e. c is redundant with respect to (σ, δ).
This is a contradiction. Therefore, Addak+1

∩ δ.T 6= ∅ or Delak+1
∩ δ.F 6= ∅. (i)

Since σ′ ∈ ext(δ), we have δ.T ⊆ σ′.T and δ.F ⊆ σ′.F . As ak+1 is executable in σk, we
have Addak+1

∩σ′.F = ∅ and Delak+1
∩σ′.T = ∅. This concludes that Addak+1

∩δ.F = ∅
and Delak+1

∩ δ.T = ∅. (ii)

Now, assume that there exists f ∈ Pre+ak+1
∩ δ.F and f 6∈ Delak+1

. By Definition

2.4, it’s easy to see that f ∈ σ′.T and f ∈ σ′.F . This is a contradiction, therefore
Pre+ak+1

∩ δ.F ⊆ Delak+1
. Similarly, we can show that Pre−ak+1

∩ δ.T ⊆ Addak+1
. (iii).

From (i), (ii), and (iii) we conclude that ak+1 is applicable in δ.
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– Proof of (2): Because ak+1 is applicable in δ, we have that R(ak+1, δ) = δ∗ for some
partial state δ∗ 6= ⊥. We will show that σk ∈ ext(δ∗). From the fact σ′ ∈ ext(δ), by
Definition 2.4, we have

δ.T ⊆ σ′.T = (σk.T \Delak+1
) ∪Addak+1

and
δ.F ⊆ σ′.F = (σk.F \ Addak+1

) ∪Delak+1
.

By Definition 3.2 we have

δ∗.T = (δ.T \Addak+1
) ∪ Pre+ak+1

and
δ∗.F = (δ.F \Delak+1

) ∪ Pre−ak+1
.

Since ak+1 is executable in σk, we have that Pre+ak+1
⊆ σk.T and Pre−ak+1

⊆ σk.F .

Therefore, to prove that δ∗.T = (δ.T \ Addak+1
) ∪ Pre+ak+1

⊆ σk.T , we only need to

show that δ.T \ Addak+1
⊆ σk.T . As δ.T ⊆ (σk.T \Delak+1

) ∪Addak+1
, we have

δ.T \Addak+1
⊆ ((σk.T \Delak+1

) ∪Addak+1
) \Addak+1

.

From the proof of item (1), we have that ((σk.T \Delak+1
)∪Addak+1

)\Addak+1
⊆ σk.T .

This concludes that δ.T \Addak+1
⊆ σk.T . Similarly, we can show that δ.F \Delak+1

⊆
σk.F , i.e., σk ∈ ext(δ∗) or {σk} ⊆ ext(δ∗).

– Proof of (3): Suppose that c′ is redundant with respect to (σ, δ∗). By Definition 4.12,
there exists a subplan c′′ of c such that Φ∗(c′′, σ) = {σ′′} ⊆ ext(δ∗). By Theorem 4.2,
we have that Φ(ak+1, σ

′′) ⊆ ext(δ). Since

Φ∗(c′′; ak+1, σ) = Φ(ak+1, σ
′′) ⊆ ext(δ),

we have that c is redundant with respect to (σ, δ). This contradicts with the assumption
that c is not redundant with respect to (σ, δ). Since c′ has no case plan, this concludes
that c′ is not redundant with respect to (σ, δ∗). Since Φ∗(a1; . . . ; ak, σ) = {σk} ⊆ ext(δ∗)
we have that c′ is regressable with respect to (σ, δ∗).

Lemma 4.20. Let σ be an a-state and δ be a p-state. Let c = a1; . . . ; an be a sequence
of non-sensing actions that is regressable with respect to (σ, δ). Then, there exists some
p-state δ∗ 6= ⊥ such that R∗(c, δ) = δ∗ and σ ∈ ext(δ∗).

Proof. By induction on n.

• Base Case: n = 0. Then c is an empty sequence of non-sensing actions. The base case
follows from Definition 3.17 (with δ∗ = δ and [ ] is not redundant with respect to (σ, δ)).

• Inductive Step: Assume that we have proved the lemma for 0 ≤ n ≤ k. We need to
prove the lemma for n = k+1. It follows from Lemma 4.19 that δ′ = R(ak+1, δ), δ

′ 6= ⊥,
and c′ = a1; . . . ; ak is a plan that is regressable with respect to (σ, δ′). By inductive
hypothesis, we have that R∗(c′, δ′) = δ∗ 6= ⊥ and σ ∈ ext(δ∗). The inductive step follows
from this and the fact R∗(c, δ) = R∗(c′,R(ak+1, δ)).
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Lemma 4.21. Let σ be an a-state, a be a sensing action which is executable in σ. Let
Sa = Sensa \ σ. Then, we have that

(1) Φ(a, σ) = {σ1, . . . , σm} where m = 2|Sa|,
(2) a is strongly applicable in ∆ = {δ1, . . . , δm} where δi = [σi.T, σi.F ], i = 1, . . . ,m, and
(3) R(a,∆) = [σ.T, σ.F ].

Proof.

(1) From Definition 2.4, we have that

⊥ 6∈ Φ(a, σ) = {σ′|Sensa \ σ = σ′ \ σ}

and, for every σ′ ∈ Φ(a, σ), σ′ \ σ = (σ′.T \ σ.T ) ∪ (σ′.F \ σ.F ). Denote σ′.T \ σ.T by

P and σ′.F \ σ.F by Q, we have that (P,Q) is a partition of Sa. Since there are 2|Sa|

partitions of Sa, we have that m ≤ 2|Sa|. Furthermore, for a partition (P,Q) of Sa there
exists an a-state σ′ = 〈P ∪ σ.T,Q ∪ σ.F 〉 ∈ Φ(a, σ) because σ′ \ σ = P ∪Q. Therefore
2|Sa| ≤ m. We conclude that m = 2|Sa|.

(2) We first show that ∆ is proper with respect to Sa, i.e. Sa is a sensed set of ∆ with
respect to a. Indeed, by Definition 2.4 and the proof of (1), we have that the first
three conditions of Definition 3.6 are satisfied. The fourth condition of Definition 3.6 is
satisfied because we have that δi.T \Sa = σi.T \Sa = σ.T and δi.F \Sa = σi.F \Sa = σ.F

(1 ≤ i ≤ m). Therefore, we conclude that p(a,∆) = Sa.
Since a is an action that is executable in σ we have that (Pre+a ∪Pre−a )∩Sensa = ∅

and Pre+a ∩ σ.F = ∅, Pre−a ∩ σ.T = ∅, therefore Pre+a ∩ δi.F = ∅, Pre−a ∩ δi.T = ∅
(1 ≤ i ≤ m). By Definition 3.8, we conclude that a is strongly applicable in ∆.

(3) Since a is executable in σ, we have that Pre+a ⊆ σ.T and Pre−a ⊆ σ.F . From the proof
of (2), δi.T \ Sa = σ.T and δi.F \ Sa = σ.F (1 ≤ i ≤ m). The proof follows from
Definition 3.15.

Lemma 4.22. Let σ be an a-state, δ be a p-state, and c = α; c′ is a conditional plan where
α is a non-empty sequence of non-sensing actions and c′ = a; case(ϕ1 → p1, . . . , ϕm → pm).
If c is regressable with respect to (σ, δ), then

(1) there exists some a-state σ1 6= ⊥ such that Φ∗(α, σ) = {σ1};
(2) m = 2|Sa| where Sa = Sensa \ σ1;
(3) {ϕ1, . . . , ϕm} spans over Sa;
(4) For each i, 1 ≤ i ≤ m, there exists a unique a-state σ′ ∈ Φ(a, σ1) such that pi is

regressable with respect to (σ′, δ).

Proof.

(1) By Definition 2.6, we have that

Φ∗(c, σ) =
⋃

σ′∈Φ∗(α,σ)

Φ∗(c′, σ′).

Since c is regressable with respect to (σ, δ) we have that ⊥ 6∈ Φ∗(c, σ). This implies
that ⊥ 6∈ Φ∗(α, σ). Furthermore, because α is a sequence of non-sensing actions, we
conclude that there exists some a-state σ1 6= ⊥. such that Φ∗(α, σ) = {σ1}.

(2) By definition of Sa we conclude that Sa is the set of fluents that belong to Sensa
which are unknown in σ1. By Definition 2.4, we conclude that Φ(a, σ1) consists of 2

|Sa|
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elements where for each σ′ ∈ Φ(a, σ1), σ
′ \ σ1 = Sa. Because

⊥ 6∈ Φ∗(c, σ) =
⋃

σ′∈Φ(a,σ1)

E(case(ϕ1 → p1, . . . , ϕm → pm), σ′)

we conclude that for each σ′ ∈ Φ(a, σ1) there exists one j, 1 ≤ j ≤ m, such that ϕj is
satisfied in σ′. Since ϕ’s are mutual exclusive we conclude that for each j, 1 ≤ j ≤ m,
there exists at most one σ′ ∈ Φ(a, σ1) such that ϕj is satisfied in σ′. This implies that

m ≥ 2|Sa|. The non-redundancy property of c implies that m ≥ 2|Sa|. Thus, m = 2|Sa|.
(3) Since c is regressable with respect to (σ, δ) we have that a; (case(ϕ1 → p1, . . . , ϕm → pm)

is potentially regressable. This implies that {ϕ1, . . . , ϕm} spans over a set of fluents
S ⊆ Sensa and there exists a ϕ such that for every i, ϕi = ψi ∧ ϕ where ψi ∈ BIN(S)
and S ∩ (ϕ+ ∪ ϕ−) = ∅. From Lemma 4.18 we know that S is unique. We will show
now that S = Sa. Assume the contrary, S 6= Sa. We consider two cases:
• S \ Sa 6= ∅. Consider a fluent f ∈ S \ Sa. Because {ϕ1, . . . , ϕm} spans over S, there
exists some i such that f occurs positively in ϕi. From the proof of the previous
item and the fact that f 6∈ Sa, we conclude that f must be true in σ1 (otherwise,
we have that the subplan c′ of c, obtained by removing the branch ϕi → pi, satisfies
⊥ 6∈ Φ∗(c′, σ) ⊆ ext(δ), which implies that c is redundant with respect to (σ, δ)).
Similarly, there exists some j such that f occurs negatively in ϕj , and hence, f must
be false in σ1. This is a contradiction. Thus, this case cannot happen.

• Sa \ S 6= ∅. Consider a fluent f ∈ Sa \ S. Again, from the fact that c is regressable
with respect to (σ, δ), we conclude that f occurs either positively or negatively in
ϕi. Because f 6∈ S, we have that f occurs in ϕ, and hence, f occurs positively or
negatively in all ϕi. In other words, f is true or false in every σ′ ∈ Φ(a, σ1). Thus, f
is true or false in σ1. This contradicts the fact that f ∈ Sa = Sensa \ σ1. Thus, this
case cannot happen too.

The above two cases imply that Sa = S. This means that {ϕ1, . . . , ϕm} spans over Sa.
(4) Consider an arbitrary i, 1 ≤ i ≤ m. From the proof of the second item, we know

that there exists a unique σ′ ∈ Φ(a, σ1) such that ϕi is satisfied by σ′. We will show
now that pi is regressable with respect to (σ′, δ). From the fact that c is regressable,
we conclude that every case plan in pi is potentially regressable. Furthermore, because
Φ∗(pi, σ

′) ⊆ Φ∗(c, σ), we have that⊥ 6∈ Φ∗(pi, σ
′) ⊆ ext(δ). Thus, to complete the proof,

we need to show that pi is not redundant with respect to (σ′, δ). Assume the contrary,
there exists a subplan p′ of pi such that ⊥ 6∈ Φ∗(p′, σ′) ⊆ ext(δ). This implies that the
subplan c′ of c, obtained by replacing pi with p

′, will satisfy that ⊥ 6∈ Φ∗(c′, σ) ⊆ ext(δ),
i.e., c is redundant with respect to (σ, δ). This contradicts the condition of the lemma,
i.e., our assumption is incorrect. Thus, pi is not redundant with respect to (σ′, δ), and
hence, pi is regressable with respect to (σ′, δ).

Lemma 4.23. Let σ be an a-state, δ be a p-state, and c is a conditional plan that is regress-
able with respect to (σ, δ). Then, there exists some p-state δ′ 6= ⊥ such that R∗(c, δ) = δ′

and σ ∈ ext(δ′).

Proof. By induction on count(c), the number of case plans in c.

• Base Case: count(c) = 0. Then c is a sequence of non-sensing actions. The base case
follows from Lemma 4.20.

• Inductive Step: Assume that we have proved the lemma for count(c) ≤ k. We need
to prove the lemma for count(c) = k + 1. Since c is a conditional plan, we have that
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c = α; c′ where α is a sequence of non-sensing actions and c′ = a; p and p = case (ϕ1 →
p1, . . . , ϕm → pm). Because α is a sequence of non-sensing actions we have that Φ∗(α, σ)
is a singleton. Let Φ∗(α, σ) = {σ1}.

Let Sa = Sensa \ σ1. Since c is not redundant with respect to (σ, δ) we conclude that
Sa 6= ∅.

It follows from the fact that c is regressable with respect to (σ, δ) and Lemma 4.22 that
{ϕ1, . . . , ϕm} spans over Sa and for every i, 1 ≤ i ≤ m, there exists a unique σ′ ∈ Φ(a, σ1)
such that pi is regressable with respect to (σ′, δ). By inductive hypothesis for pi, we
conclude that R∗(pi, δ) = δi 6= ⊥ and σ′ ∈ ext(δi). Because ϕi is satisfied by σ′ we have
that R(ϕi → pi, δ) = [δi.T ∪ ϕ+

i , δi.F ∪ ϕ−
i ] is consistent and hence R(ϕi → pi, δ) 6= ⊥.

This also implies that σ′ ∈ ext(R(ϕi → pi, δ)) and R(ϕi → pi, δ) 6= R(ϕj → pj, δ) for
i 6= j.

Let ∆ = {R(ϕi → pi, δ) | i = 1, . . . ,m}. We will show next that a is applicable in ∆.
Consider ∆′ = Φ(a, σ1), we have that for each i, 1 ≤ i ≤ m, there exists one σ′ ∈ ∆′ and
σ′ ∈ ext(R(ϕi → pi, δ)). It follows from Lemma 4.21 that a is strongly applicable in ∆′.
Thus, a is applicable in ∆.

By definition of R, we have that

R(a,∆) = [((
⋃m

i=1R(ϕi → pi, δ).T ) \ Sa) ∪ Pre
+
a ,

((
⋃m

i=1R(ϕi → pi, δ).F ) \ Sa) ∪ Pre
−
a ] = δ∗ 6= ⊥.

Since a is executable in σ1, from Lemma 4.21, and the fact that for each σ′ ∈ Φ(a, σ1)
there exists an i such that σ′ ∈ ext(R(ϕi → pi, δ)), we can conclude σ1 ∈ ext(δ∗).

To continue our proof, we will now show that q = α is not redundant with respect to
(σ, δ∗). Assume the contrary, there exists a subplan q′ of q such that Φ∗(q′, σ) ⊆ ext(δ∗).
This, together with the fact that R∗(c′, δ) = δ∗ and Theorem 4.8 implies that Φ∗(c′′, σ) ⊆
ext(δ) for c′′ = q′; c′, i.e., c is redundant with respect to (σ, δ). This contradicts the
assumption of the lemma, i.e., we have proved that q is not redundant with respect to
(σ, δ∗).

Applying the inductive hypothesis for the plan q and (σ, δ∗), we have that R∗(q, δ∗) =
δ′ 6= ⊥ and σ ∈ ext(δ′). The inductive hypothesis is proved because R∗(c, δ) = R∗(q, δ∗).

Lemma 4.24. Let σ be an a-state, δ be a p-state, and c be a sequence of non-sensing actions
such that Φ∗(c, σ) ⊆ ext(δ). Then, there exists a subplan c′ of c that is not redundant with
respect to (σ, δ) and c′ is equivalent to c with respect to (σ, δ).

Proof. Notice that the length of c is finite6. Consider two cases:

• Case (i): c is not redundant with respect to (σ, δ).
It’s easy to see that c′ = c satisfies the condition of the lemma.

• Case (ii): c is redundant with respect to (σ, δ).
By definition of redundancy, there exists a subplan of c which are equivalent to c with

respect to (σ, δ). Let c′ be a subplan of c which is equivalent to c with respect to (σ, δ)
whose length is minimal among all subplans which is equivalent to c with respect to (σ, δ).
To prove the lemma, it suffices to show that c′ is not redundant with respect to (σ, δ).
Assume the contrary, there exists a subplan c′′ of c′ which is equivalent to c with respect

6By this we mean that c is given and hence its length (the number of actions in c) is finite.
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to (σ, δ). Trivially, the number of actions in c′′ is smaller than the number of actions in c′.
By definition, we have that c′′ is also a subplan of c which is equivalent to c with respect
to (σ, δ). This contradicts the fact that c′ has the minimal length among all subplans of c
which are equivalent to c. So, we conclude that c′ is not redundant with respect to (σ, δ).
The lemma is proved.

Lemma 4.25. Let σ be an a-state and c = a; case (ϕ1 → p1, . . . , ϕm → pm) be a case plan
such that ⊥ 6∈ Φ∗(c, σ). Then, if Sensa \ σ 6= ∅, there exists a potentially regressable plan
c′ = a; case (ϕ′

1 → p′1, . . . , ϕ
′
n → p′n) such that Φ∗(c, σ) = Φ∗(c′, σ).

Proof. We prove the lemma by constructing c′. Let S = {ϕ1, . . . , ϕm} and Sa = Sensa \ σ.
Let L = {f | f ∈ Sa} ∪ {¬f | f ∈ Sa}. First, observe that because of ⊥ 6∈ Φ∗(c, σ) we have
that a is executable in σ. Furthermore, for each σ′ ∈ Φ(a, σ) there exists one ϕi ∈ S such
that ϕi is satisfied in σ′. Without loss of generality, we can assume that for each ϕi ∈ S,
there exists (at least) one σ′ ∈ Φ(a, σ) such that ϕi is satisfied in σ′.

It is easy to see that for each i, we can write ϕi = ψi ∧ χi where ψi is the conjunction
of literals occurring in ϕi and belonging to L and χi is the conjunction of literals that
do not belong to L. From the above observation, we have that χi is satisfied by σ. So,
ϕ = ∧m

i=1χi holds in σ. Thus, the conditional plan c1 = a; case (ϕ′
1 → p1, . . . , ϕ

′
m → pm)

where ϕ′
i = ψi ∧ ϕ satisfies that Φ∗(c, σ) = Φ∗(c1, σ).

Since ψi is a consistent conjunction of literals from L and ψi’s are mutual exclusive, there
exists a partition (S1, . . . , Sm) of BIN(Sa) such that for every η ∈ Si, η = ψi ∧ η

′. Let

c2 = a; case(

γ11 → p1, . . . , γ
|S1|
1 → p1,

γ12 → p1, . . . , γ
|S2|
2 → p2,

. . .

γ1m → p1, . . . , γ
|Sm|
m → pm,

)

where
γ
j
i = η

j
i ∧ ϕ ∧ γ

Si = {η1i , . . . , η
|Si|
i } for i = 1, . . . ,m, and

γ =
∧

f∈Sensa∩σ.T f ∧
∧

f∈Sensa∩σ.F ¬f .

We have that Φ∗(c, σ) = Φ∗(c2, σ). It is easy to see that the set {γ11 , . . . , γ
|Sm|
m } spans over

Sa and Sensa ⊆ (γji )
+ ∪ (γji )

−. Thus, c2 is potentially regressable. The lemma is proved
with c′ = c2.

Lemma 4.26. Let σ be an a-state, let δ be a p-state, and let c be a conditional plan such
that Φ∗(c, σ) ⊆ ext(δ). There exists a plan c′ such that c′ is regressable with respect to
(σ, δ) and c′ is equivalent to c with respect to (σ, δ).

Proof. By induction on count(c), the number of case plans in c.

• Base case: count(c) = 0
This follows from Lemma 4.24.
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• Inductive Step: Assume that we have proved the lemma for count(c) ≤ k. We need to
prove the lemma for count(c) = k + 1.

By construction of c, we have two cases
(1) c = a; p where p = case (ϕ1 → p1, . . . , ϕm → pm). Here, we have two cases.

(a) Sensa \ σ = ∅. In this case, we have that there exists some j such that ϕj is
satisfied by σ and Φ∗(c, σ) = Φ∗(pj , σ). Thus, c is equivalent to pj with respect
to (σ, δ). Since count(pj) < count(c), by the inductive hypothesis and transitivity
of the equivalence relation, we conclude that there exists a plan c′ such that c′ is
regressable with respect to (σ, δ) and c′ is equivalent to c with respect to (σ, δ).

(b) Sensa \ σ 6= ∅. Without loss of generality, we can assume that for each ϕi ∈ S,
there exists (at least) one σ′ ∈ Φ(a, σ) such that ϕi is satisfied in σ′. Using
Lemma 4.25, we can construct a plan c1 = a; case (ϕ′

1 → p′1, . . . , ϕ
′
n → p′n) which

is potentially regressable and Φ∗(c1, σ) = Φ∗(c, σ). From the construction of c1,
we know that for each σ′ ∈ Φ(a, σ) there exists one and only one j, 1 ≤ j ≤ n,
such that ϕ′

j is satisfied in σ′. Applying the inductive hypothesis for (σ′, δ) and

the plan p′i, we know that there exists a regressable plan qi which is equivalent
to p′i with respect to (σ′, δ). This implies that c′ = a; case (ϕ′

1 → q1, . . . , ϕ
′
n →

qn) is equivalent to c with respect to (σ, δ). Furthermore, every case plan in c′

is potentially regressable and each qi is regressable with respect to (σ′, δ). To
complete the proof, we will show that c′ is not redundant with respect to (σ, δ).
Because for each σ′ ∈ Φ(a, σ) there exists at most one j such that ϕ′

j is satisfied

in σ′, none of the branches can be removed. Since Sensa \ σ 6= ∅ there are
more than one a-state in Φ(a, σ). Therefore, we cannot replace c′ by one of its
branches. This, together with the fact that qj is not redundant with respect
to (σ′, δ), implies that c′ is not redundant with respect to (σ, δ). The inductive
hypothesis is proved for this case as well.

(2) c = α; c1 where α is a sequence of non-sensing actions and c1 is a case plan. Let
Pα = {α′ | α′ is a subplan of α and there exists some c′′1 such that α′; c′′1 is equivalent
to c with respect to (σ, δ)}. Let β be a member of Pα such that |β| = min{|α′| | α′ ∈
Pα}

7. Since Pα 6= ∅, β exists. We have that β is a sequence of non-sensing actions,
and so, Φ∗(β, σ) = {σ1}. It follows from the above case and the inductive hypothesis
that there exists a regressable plan c′1 which is equivalent to c1 with respect to (σ1, δ).
Consider the plan c′ = β; c′1. We have that c′ is a potentially regressable conditional
plan. To complete the proof, we will show that c′ is not redundant with respect to
(σ, δ). Assume the contrary, we will have three cases:
(a) There exists a subplan β′ of β such that q = β′; c′1 is equivalent to c′ with respect

to (σ, δ). This implies that β′; c1 is equivalent to c′ with respect to (σ, δ) which
contradicts the construction of β.

(b) There exists a subplan c′′ of c′1 such that q = β; c′′ is equivalent to c′ with respect
to (σ, δ). This implies that c′′ is equivalent to c′1 with respect to (σ1, δ) which
contradicts the construction of c′1.

(c) There exists a subplan β′ of β and a subplan c′′ of c′1 such that q = β′; c′′ is
equivalent to c′ with respect to (σ, δ). This implies that β′ ∈ Pα and |β′| < |β|,
which is a contradiction on the construction of β. Thus this case cannot happen
as well.

7For a sequence of actions γ, |γ| denotes the length of γ.
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This shows that c′ is not redundant with respect to (σ, δ). So, we have proved that c′

is regressable and equivalent to c with respect to (σ, δ). The inductive step is proved
for this case.

We are now ready to prove the completeness of our regression formulation, which is
illustrated by Figure 5.

Theorem 4.27 (Completeness of Regression). Given a planning problem P = 〈A,O, I,G〉
and a progression solution c of P , there exists a regression solution c′ of P such that c′ is
not redundant and is equivalent to c with respect to (σI , δG).

✛ δG
R∗(c′,δG)

Φ∗(c,σI)

δ 6=⊥,σI∈ext(δ)

σI ✲

❄

✻

Φ∗(c,σI )⊆ext(δG)

c

Progression

Equivalent w.r.t. (σI , δG)

Regression

c’

Figure 5: Illustration of Theorem 4.27.

Proof. Lemma 4.26 implies that there exists a regressable plan c′ with respect to (σI , δG)
which is equivalent to c with respect to (σI , δG). The non-redundancy of c′ follows from
the fact that it is a regressable plan. The conclusion of the theorem follows directly from
Lemma 4.23 and Theorem 4.8.

5. Related Work

Waldinger [25] is probably the first to discuss regression in Artificial Intelligence. In his
paper, Waldinger uses the concept of regression in plan modification. To plan for several
goals simultaneously, say P and Q, his strategy was to first find a plan to achieve P , then
modify that plan to achieve Q. In order to achieve Q, regression is used to make sure that
any action added to the existing plan will not interfere with P . Waldinger’s regression is
based on the idea of “weakest precondition” proposed by Dijkstra in 1975 [8](see also, e.g.,
[2, 7]). Intuitively, regression from a logical sentence that is represented by a conjunction
of goals, conj, via an action, A, yields another logical sentence that encodes what must be
true before A is performed to make conj true immediately afterwards. This is computed
by the formula

S′ = Prec(A) ∪ (S \ Add(A)),

where S denotes the set of goals in the conjunction conj, S′ denotes subgoals in the regressed
conjunction, Pre(A) denotes the set of preconditions of A, and Add(A) denotes the set of
add conditions of A; something similar to what is proposed in [26]. Following Waldinger,
Nilsson [15] discusses regression with respect to partially grounded actions and proposes a
regression algorithm for plan generation.

Another early effort in formulating regression over simple (non-sensing) actions is due
to Pednault [16]. In his Ph.D. thesis [16], Pednault proposed the language ADL (Action
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Description Language) that extends STRIPS and allows, amongst other things, conditional
effects. In addition, Pednault also presents sound and complete formula-based regression
operators for ADL actions. Addressing a similar problem, Reiter [18] also presents a sound
and complete formula-based regression formulation over simple actions within the Situation
Calculus framework. It reduces reasoning about future situations to reasoning about the
initial situation using first-order theorem proving. Regression operators are provided for
the formulae, with and without functional fluents.

Scherl and Levesque [19] were probably the first to extend the regression formulation
for simple actions to include sensing actions. They directly formalize regression in first
order logic, within the framework of Situation Calculus. Their formula-based regression
operator is defined with respect to a set of successor state axioms which was based on
Moore’s formulation of accessible worlds [13]. They show that, for any plan P expressed
by a ground situation term sgr (a ground situation term is built on the initial situation by
repeatedly applying the function do on it), the axiomatization F of a domain including the
successor state axioms Fss, G is an arbitrary sentence then

F |= G(sgr) ⇔ F \ Fss |= R∗[G(sgr)],

where R∗(ϕ) indicates that the regression operator is repeatedly applied until the regressed
formulae is unchanged. Intuitively, this shows that the regression is sound and complete.
However, Scherl and Levesque do not define regression over conditional plans. Later, Reiter
adapts the work of Scherl and Levesque in his book [18]. He does not, however, consider
regression on conditional plans. De Giacomo and Levesque [6] consider a generalized action
theory where successor state axioms and sensing information are conditionally applicable.
For example the following conditional successor state axiom [6] expresses that if a robot is
alone in a building, then the status of the door is only defined by the robot’s actions open
and close.

Alone(s) ⊃
DoorOpen(x, do(a, s) ≡

a = open(x) ∨ (a 6= close(x) ∧DoorOpen(x, s)).
Here the sensor fluent formula Alone(s) expresses the condition that the robot is alone

in the building in a situation s, DoorOpen(x, do(a, s) expresses the fact that a door x is open
in the situation after the robot performs an action in the situation s, and DoorOpen(x, s)
expresses the fact the door x is open in the situation s. Similarly, the following conditional
sensed fluent axiom [6] expresses the condition that if the robot is outdoors, then its on-
board thermometer always measures the temperature around the robot.

Outdoor(s) ⊃
OutDoorTemperature(n, s) ≡ thermometer(s) = n.

Their formula-based regression is then defined over histories. A history is defined as a
sequence (−→v0).(A1,

−→v1), . . . , (An,
−→vn) where each Ai is an action, −→vi represents a vector of the

values 〈vi,1, . . . , vi,m〉 and vi,j represents the reading value of jth sensor after the ith action.
However, they showed that the regression although sound, does not guarantee completeness
in some circumstances. They also did not consider regression on conditional plans.

In another direction, Son and Baral [20] study regression over sensing actions using the
high-level action language AK . In this work, they provide a state-based transition function
and a formula-based regression function with respect to the full semantics. Different from
the work of [6, 18], Son and Baral define regression over conditional plans. They also prove
that their regression formulation is both sound and complete with respect to the transition
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function. However in [20], Son and Baral do not consider precondition of actions in their
regression formulation.

The regression formalism presented in this paper differs from earlier notion of regression
for action theories with sensing actions in [18, 19, 20] in that our definition is a state-
based regression formalism while the earlier definitions are formula-based. With regards
to regression on conditional plans, we are not aware of any other work except [20]. For
regression on non-sensing actions, our definition is close to the formula used in [4].

6. Conclusion, Discussion, and Future Work

In this paper, we developed a state-based regression function in domains with sensing
actions, incomplete information, and actions without conditional effects. We also extended
the regression function to allow for the regression over conditional plans. We proved the
soundness of the extended regression function with respect to the definition of the progres-
sion function and developed a relaxed notion of completeness for the regression function.

It is interesting to note that for planning problems described in this paper, the progres-
sion function developed in this paper is equivalent to the full semantics for domains with
sensing actions and incomplete information and to the 0-approximation developed in [20].
This implies that the regression function R (and hence R∗) is also complete with respect to
the full semantics for planning problems as defined in Section 2.1. Since the complexity of
(conditional) planning with respect to the 0-approximation is lower than that with respect
to the full semantics of sensing actions, this means that the conditional planning problem
for domains presented in this paper has a lower complexity than it is in general. In other
words, the complexity of the conditional planning problem presented in this paper in NP-
complete, whereas the complexity of the conditional planning problem for action theories
with conditional effects is Σ2

P -complete [1]. We observe that this complexity results are
somewhat different than the complexity results in [3], as the planning problems in [3] do
not contain sensing actions and are complete.

It should be noted that the notion of a conditional plan in this paper is not as general
as in [20]. For example, we do not consider plans of the form c1; c2 where c1 and c2 are case
plans. This is done to make the presentation of the proofs easier to follow. Indeed, in [22],
we proved that all of the theorems in this paper are valid with respect to conditional plans
defined in [20].

Finally, we would like to mention that we have developed a regression-based planner,
called CPR, using the regression formulation proposed in this paper [23]. The planner
employs the best first search strategy with a heuristic function similar to the HSP-r heuristic
function [4]. Due to the fact that most of the available benchmarks in planning with
sensing actions allow disjunction in the initial state and conditional effects, an experimental
evaluation ofCPR against other planners could not be done with respect to the benchmarks.
We have therefore developed our own domains to test CPR. Our initial experimental result
shows that CPR performs reasonably well [23]. The code of CPR and the domains are
available at http://www.cs.nmsu.edu/~tson/CPR.

Our main goal in the near future is to extend the regression formalism proposed in
this paper to allow conditional effects and disjunctive initial states. This will allow us to
extend CPR to deal with conditional effects and to evaluate the planning approach based
on regression against forward chaining approaches.

http://www.cs.nmsu.edu/~tson/CPR
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