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Abstract. We address the general problem of determining the validity of boolean com-
binations of equalities and inequalities between real-valued expressions. In particular, we
consider methods of establishing such assertions using only restricted forms of distributiv-
ity. At the same time, we explore ways in which “local” decision or heuristic procedures
for fragments of the theory of the reals can be amalgamated into global ones.

Let Tadd [Q] be the first-order theory of the real numbers in the language with symbols
0, 1,+,−, <, . . . , fa, . . . where for each a ∈ Q, fa denotes the function fa(x) = ax. Let
Tmult [Q] be the analogous theory for the language with symbols 0, 1,×,÷, <, . . . , fa, . . ..
We show that although T [Q] = Tadd [Q] ∪ Tmult [Q] is undecidable, the universal fragment
of T [Q] is decidable. We also show that terms of T [Q] can fruitfully be put in a normal
form. We prove analogous results for theories in which Q is replaced, more generally, by
suitable subfields F of the reals. Finally, we consider practical methods of establishing
quantifier-free validities that approximate our (impractical) decidability results.

1. Introduction

This paper is generally concerned with the problem of determining the validity of
boolean combinations of equalities and inequalities between real-valued expressions. Such
computational support is important not only for the formal verification of mathematical
proofs, but, more generally, for any application which depends on such reasoning about the
real numbers.

Alfred Tarski’s proof [23] that the theory of the real numbers as an ordered field admits
quantifier-elimination is a striking and powerful response to the problem. The result implies
decidability of the full first-order theory, not just the quantifier-free fragment. George
Collins’s [10] method of cylindrical algebraic decomposition made this procedure feasible
in practice, and ongoing research in computational real geometry has resulted in various
optimizations and alternatives (see e.g. [14, 6, 5]). Recently, a proof-producing version of
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an elimination procedure due to Paul Cohen has even been implemented in the framework
of a theorem prover for higher-order logic [20].

There are two reasons, however, that one might be interested in alternatives to q.e.
procedures for real closed fields. The first is that their generality means that they can be
inefficient in restricted settings. For example, one might encounter an inference like

0 < x < y → (1 + x2)/(2 + y)17 < (1 + y2)/(2 + x)10,

in an ordinary mathematical proof. Such an inference is easily verified, by noticing that
all the subterms are positive and then chaining through the obvious inferences. Computing
sequences of partial derivatives, which is necessary for the full decision procedure, seems
misguided in this instance. A second, more compelling reason to explore alternatives is
that decision procedures for real closed fields are not extensible. For example, adding
trigonometric functions or an uninterpreted unary function symbol renders the full first-
theory undecidable. Nonetheless, an inference like

0 < x < y → (1 + x2)/(2 + ey) < (2 + y2)/(1 + ex)

is also straightforward, and it is reasonable to seek procedures that capture such inferences.
The unfortunate state of affairs is that provability in most interesting mathematical

contexts is undecidable, and even when decision procedures are available in restricted set-
tings, they are often infeasible or impractical. This suggests, instead, focusing on heuristic
procedures that traverse the search space by applying a battery of natural inferences in a
systematic way (for some examples in the case of real arithmetic, see [7, 17, 25]). There has
been, nonetheless, a resistance to the use of such procedures in the automated reasoning
community. For one thing, they do not come with a clean theoretical characterization of the
algorithm’s behavior, or the class of problems on which one is guaranteed success. This is
closely linked to the fact that the algorithms based on heuristics are brittle: small changes
and additions as the system evolves can have unpredictable effects.

The strategy we pursue here is to develop a theoretical understanding that can sup-
port the design of such heuristic procedures, by clarifying the possibilities and limitations
that are inherent in a method, and providing a general framework within which to situate
heuristic approaches. One observation we exploit here is that often distributivity is used
only in restricted ways in the types of verifications described above. Arguably, any infer-
ence that requires factoring a complex expression does not count as “obvious.” Conversely,
multiplying through a sum can result in the loss of valuable information, as well as lead to
increases in the lengths of terms. As a result, steps like these are usually spelled out ex-
plicitly in textbook reasoning when they are needed. It is therefore natural to ask whether
one can design procedures that reasonably handle those inferences that do not make use of
distributivity, relying on the user or other methods to then handle the latter.

The “distributivity-free” fragment of the theory of the reals as an ordered field can
naturally be viewed as a combination of the additive and multiplicative fragments, each of
which is easily seen to be decidable. This points to another motivation for our approach. A
powerful paradigm for designing useful search procedures involves starting with procedures
that work locally, for restricted theories, and then amalgamating them into a global pro-
cedure in some principled way. For example, Nelson-Oppen methods are currently used to
combine decision procedures for theories that are disjoint except for the equality symbol,
yielding decision procedures for the universal fragment of their union. Shostak methods
perform a similar task more efficiently by placing additional requirements on the theories
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to be amalgamated. (See [18, 22] and the introduction to [3] for overviews of the various
approaches.) Such methods are appealing, in that they allow one to unify such decision
procedures in a uniform and modular way. This comes closer to what ordinary mathemati-
cians do: in simple, domain-specific situations, we know exactly how to proceed, whereas
in more complex situations, we pick out the fragments of a problem that we know how to
cope with and then try to piece them together. One would therefore expect the notion of
amalgamating decision procedures, or even heuristic procedures, to be useful when there is
more significant overlap between the theories to be amalgamated. For example, the Nelson-
Oppen procedure has been generalized in various ways, such as to theories whose overlap is
“locally finite” [15]. Our results here show what can happen when one tries to amalgamate
decision procedures for theories where the situation is not so simple.

Sections 2 and 3, below, provide general background. In Section 2, we discuss the
theoretical results that underly Nelson-Oppen methods for combining decision procedures
for theories that share only the equality symbol, or for theories with otherwise restricted
overlap. In Section 3, we describe some particular decision procedures for fragments of the
reals, which are candidates for such a combination.

In Section 4, we define the theories T [F ], which combine the additive and multiplicative
fragments of the theory of the reals, allowing multiplicative constants from a field F . The
theory T [F ], in particular, can, alternatively, be thought of as the theory of real closed fields
minus distributivity, except for constants in F . Because of the nontrivial overlap, Nelson-
Oppen methods no longer apply. In Section 5, we provide two examples that clarify what
these theories can do. On the positive side, we show that when a multivariate polynomial
has no roots on a compact cube, T [Q] is strong enough to prove that fact. On the negative
side, we show that the theories T [F ] cannot prove x2 − 2x + 1 ≥ 0, a fact which is easily
proved using distributivity.

In Sections 6–8 we establish our decidability results. Using a characterization of the
universal fragment of T [F ] developed in Section 6, we show, in Section 7, that whenever F
is an appropriately computable subfield of R, the universal fragment of T [F ] is decidable.
So, in particular, the universal fragment of T [Q] is decidable. In Section 8, we describe
normal forms for terms of T [F ], which make it easy to determine whether two terms are
provably equal. We also show that these provable equalities are independent of the parts
of the theory that have to do with the ordering.

In Sections 9–11, we establish our undecidability results. In Section 9, we present
a flexible technique that will allow us to build suitable models of the theories T [F ]. In
Section 10, we use this technique to reduce the problem of determining the truth of an
existential sentence over the field F to that of the provability of a related formula in T [F ].
As a result, if Diophantine equations in the rationals are unsolvable (which is generally
believed to be the case), then so is the set of existential consequences of T [Q]. In Section 11,
we reduce the problem of determining the solvability of a Diophantine equation in the
integers to the provability of a related ∀∀∀∃∗-sentence in any T [F ]. As a result, we have an
unconditional undecidability result for that fragment.

The procedure implicit in our decidability results is not useful in practice: it works
by reducing the question as to whether a universal sentence in provable in T [F ] to the
question as to whether a more complex sentence in provable in the theory of real closed
fields, and then appeals the the decidability of the latter. In Sections 12–14, we consider
the problem of designing pragmatic procedures that approximate our decidability results,
are more flexible than decision procedures for real closed fields, and work reasonably well
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on ordinary textbook inferences. In Section 12, we suggest a restriction of the theories T [F ]
which avoids disjunctive case splits, which are a key source of infeasibility. In Section 13, we
describe a search procedure that works along these lines, making use of the normal forms
introduced in Section 8. In Section 14, we indicate a number of directions in which one
might extend and improve our crude algorithm.

Finally, in Section 15, we offer some final thoughts and conclusions.

2. Combining decision procedures

In this section, we briefly review the mathematical foundation for the Nelson-Oppen
combination procedure [21]. For more detail, see [4, 11, 16, 24]; an important program
verification system based on these method is described in [13].

Let ∆ be the set of first-order formulas in the language of equality asserting that the
universe is infinite. A theory T is said to be stably infinite if whenever T ∪ ∆ proves a
universal sentence ϕ, then T proves it as well. Equivalently, T is stably infinite if whenever
a quantifier-free formula is satisfied in any model of T , it is satisfied in some infinite model
of T . In particular, if T only has infinite models, then T is stably infinite.

The Nelson-Oppen procedure for combining decidable theories of equality is based on
the following:

Theorem 2.1. Suppose T1 is a theory in a language L1, T2 is a theory in a language L2, T1
and T2 are stably infinite, and the languages L1 and L2 are disjoint except for the equality
symbol. Suppose the universal fragments of T1 and T2 are decidable. Then the universal
fragment of T1 ∪ T2 is decidable.

The proof of Theorem 2.1 is not difficult. The question as to whether T1 ∪ T2 proves
a universal formula is equivalent to the question as to whether it proves the quantifier-free
matrix. (One can treat the free variables as new constants, if one prefers, but here and below
we will speak in terms of proving or refuting sets of formulas with free variables.) Since any
quantifier-free formula can be put in conjunctive normal form, the problem reduces to that
of determining provability of disjunctions of literals, or, equivalently, that of determining
whether T1 ∪ T2 refutes a conjunction of literals.

Let Γ be a set of literals. The first step in the procedure is to introduce new vari-
ables to “separate terms.” For example, the universal closure of a formula of the form
ϕ(f(s1, . . . , sk)) is equivalent to the universal closure of x = f(s1, . . . , sk) → ϕ(x), where x
is a new variable. This is, in turn, equivalent to the universal closure of y1 = s1 ∧ . . .∧ yk =
sk ∧ x = f(y1, . . . , yk) → ϕ(x). By introducing new variables in this way, we can obtain
sets of equalities Π1 and Π2 in L1 and L2 respectively, and a set of literals, Π3, in which no
function symbols occur, such that T1 ∪ T2 refutes Γ if and only if it refutes Π1 ∪ Π2 ∪ Π3.
Let Γ1 be Π1 together with the literals in Π3 that are in L1, and let Γ2 be Π2 together with
the literals in Π3 that are in L2. Then each Γi is in the language of Ti, and T1 ∪ T2 refutes
Γ if and only if T1 ∪ T2 refutes Γ1 ∪ Γ2.

By the Craig interpolation theorem, T1 ∪ T2 refutes Γ1 ∪ Γ2 if and only if there is a
quantifier-free interpolant θ in the common language (i.e. involving only the equality symbol
and variables common to both Γ1 and Γ2) such that

T1 ∪ Γ1 ⊢ θ
and

T2 ∪ Γ2 ∪ {θ} ⊢ ⊥.
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By the assumption that T1 and T2 are stably infinite, we can assume without loss of gen-
erality that each includes ∆. Since the theory of equality in an infinite structure has
quantifier-elimination, θ is equivalent to a quantifier-free formula. In fact, we can assume
without loss of generality that θ is in disjunctive normal form. So we are looking for a
sequence θ1, . . . , θn of finite conjunctions of literals such that for each i,

T1 ∪ Γ1 ⊢ θ1 ∨ . . . ∨ θn
and

T2 ∪ Γ2 ∪ {θi} ⊢ ⊥
for each i.

Each disjunct θi describes relationships between the variables ~x of Γ1 ∪ Γ2, in the
language L1 ∩ L2, which has only the equality symbol. The key point is this: over ∆,
every “complete type” (that is, complete, consistent set of formulas with free variables ~x) is
determined by an exhaustive description of which of the variables are equal to one another
and which are not. Furthermore, there are only finitely many such descriptions. Without
loss of generality, we can assume that each θi is of this form, because otherwise it can be
rewritten as a disjunction of such. Thus we simply need to use the decision procedure
for T2 to determine all the complete types θi that can be refuted by T2 ∪ Γ2, and then
use the decision procedure for T1 to determine whether T1 ∪ Γ1 proves their disjunction.
Equivalently, we can use the decision procedures to determine all the complete types that
are consistent with either side; Γ can be refuted if and only if there is no complete type
that is consistent with both.

This naive procedure is not very efficient. In fact, the Nelson-Oppen procedure itera-
tively searches for a disjunction of equalities derivable from either T1 ∪ Γ1 or T2 ∪ Γ2, adds
this disjunction to the hypotheses, and then splits across the cases. It is not hard to show
that this variant is complete; one can view it in terms using both T1 ∪ Γ1 and T2 ∪ Γ2

to derive a sequence of increasingly strong disjunctions of conjunctions of positive literals,
until either a contradiction is reached or no further strengthening can be found. In the
latter case, one can read off a complete type consistent with both T1 ∪Γ1 and T2 ∪Γ2. The
procedure is much more efficient if either of the theories Ti is convex, that is, whenever ϕ is
a conjunction of literals and Ti∪ϕ ⊢ x1 = y1∨ . . .∨xk = yk then Ti∪ϕ ⊢ xi = yi for some i.
The linear theory of the reals has this property, though the multiplicative theory does not.
Shostak’s procedure provides further optimization under the assumptions that terms in the
theory are “canonizable” and “solvable,” again, features that are commonly satisfied.

For future use, we record the effects of “separating terms,” as described above. We no
longer assume L1 and L2 are disjoint languages.

Proposition 2.2. Let ϕ be any universal sentence in the language L1 ∪ L2. Then ϕ is
equivalent to a sentence of the form

∀~x (θ1(~x) ∧ θ2(~x) → θ3(~x)),

where θ1 is a conjunction of equalities in L1, θ2 is a conjunction of equalities in L2, and
θ3 is a quantifier-free formula in L1 ∪ L2 with no function symbols. As a result, ϕ can be
written as a conjunction of formulas of the form

∀~x (ϕ1(~x) ∨ ϕ2(~x)), (2.1)
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where each ϕi is a quantifier-free formula in Li. If all the relation symbols in L1 ∪ L2 are
common to both L1 and L2, or if the matrix of ϕ is equivalent to a disjunction of literals,
one conjunct of the form (2.1) suffices.

3. Decision procedures for fragments of the reals

The method described in Section 2 requires only that the universal fragments of the
theories T1 and T2 are decidable, and that for any sequence of variables, there are only
finitely many complete types in the common language, each of which can be described by
a single quantifier-free formula. In particular, we have the following:

Theorem 3.1. Let T1 and T2 be theories extending the theory of dense linear orders without
endpoints, with only < and = in the common language. If the universal fragments of T1
and T2 are decidable, then the universal fragment of T1 ∪ T2 is also decidable.

As was the case when equality was the only common symbol, this theorem can be stated
even more generally: we only need assume that T1 and T2 satisfy the property obtained
by replacing ∆ by the theory of dense linear orders without endpoints in the definition
of “stably infinite” above. Of course, Theorem 3.1 can be iterated to combine theories
T1, T2, T3, . . . with the requisite properties.

Let us consider some examples of fragments of the reals that admit quantifier-elimination,
and are hence decidable. Note that to eliminate quantifiers from any formula it suffices to
be able to eliminate a single existential quantifier, i.e. transform a formula ∃x ϕ, where ϕ
is quantifier-free, to an equivalent quantifier-free formula. Since ∃x (ϕ ∨ψ) is equivalent to
∃x ϕ ∨ ∃x ψ, we can always factor existential quantifiers through a disjunction. In partic-
ular, since any quantifier-free formula can be put in disjunctive normal form, it suffices to
eliminate existential quantifiers from conjunctions of atomic formulas and their negations.
Also, since ∃x (ϕ ∧ ψ) is equivalent to ∃x ϕ ∧ ψ when x is not free in ψ, we can factor out
any formulas that do not involve x. Furthermore, whenever we can prove ∀x (θ ∨ η), ∃x ϕ
is equivalent to ∃x (ϕ∧ θ)∨∃x (ϕ∧ η); so we can “split across cases” as necessary. We will
use all of these facts freely below.

Proposition 3.2. The theory of 〈R, 0, 1,+,−, <〉 admits elimination of quantifiers, and
hence is decidable.

This theory is commonly known as linear arithmetic, and is the same as the theory of
divisible ordered abelian groups. The universal fragment coincides with that of the theory
of ordered abelian groups. The method of eliminating an existentially quantified variable
implicit in the proof is known as the Fourier-Motzkin procedure.

Proof. It is helpful to extend the language to include multiplication by rational coefficients,
though we can view this as nothing more than a notational convenience: for example, if
n is a natural number, we can take nx to abbreviate x + x + . . . + x, and when n,m, k, l
are natural numbers with m and l nonzero we can take (n/m)s = (k/l)t to abbreviate
nls = kmt.

Consider a sentence ∃x ϕ, where ϕ is quantifier-free. Writing s 6= t as s < t∨ t < s and
s 6< t as t < s∨ t = s, we can assume without loss of generality that ϕ is a positive boolean
combination of atomic formulas of the form s = t and s < t. Putting ϕ in disjunctive
normal form and factoring the existential quantifier though the disjunction we can assume
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ϕ is a conjunction of atomic formulas. Solving for x, we can express each of these in the
form x = s, x < s, or s < x, where s does not involve x (atomic formulas that do not
involve x can be brought outside of the existential quantifier).

If any of the conjuncts is of the form x = s, then ∃x ϕ(x) is equivalent to ϕ(s), which is
quantifier-free. So we are reduced to the case where ϕ is of the form (

∧
i si < x)∧(∧j x < tj).

In that case, it is not hard to verify that ∃x ϕ is equivalent to
∧

i,j si < tj .

For more on the Fourier-Motzkin procedure, see [1]. In fact, more efficient elimination
procedures are available, and are not much more complicated; see [19, 27].

Proposition 3.3. The theory of 〈R, 0, 1,−1,×,÷, <〉 with the convention x÷0 = 0 admits
elimination of quantifiers, and hence is decidable.

Proof. Since 〈R>0, 1,×,÷, <〉 is isomorphic to 〈R, 0,+,−, <〉, the previous argument shows
that the theory of this structure has quantifier-elimination. For the larger structure, consider
∃x ϕ, where ϕ is quantifier-free. As above, we can assume ϕ is a conjunction of equalities and
strict inequalities. Introducing case splits we can assume that ϕ determines which variables
are positive, negative, or 0. Temporarily replacing negative variables by their negations,
we can further assume that ϕ implies that all the variables are positive. Bringing negation
symbols to the front of each term, we are left with a conjunction of atomic formulas of the
form ±s < ±t, where s and t are products of variables assumed to be positive. But then
−s < t is equivalent to ⊤; s < −t is equivalent to ⊥; and −s < −t is equivalent to t < s.
Similarly, −s = −t is equivalent to s = t, and both s = −t and −s = t are equivalent to ⊥.
So, we are reduced to the case where all the variables are positive.

Proposition 3.4. The theory of 〈R, exp, ln , 0, 1, <〉, where exp(x) = ex and ln(x) = 0 for
non-positive x, admits quantifier-elimination, and hence is decidable.

Proof. Once again, we are reduced to the case of eliminating a quantifier of the form ∃x ϕ
where ϕ is a conjunction of equalities and strict inequalities. Expressions of the form
ln(exp(s)) simplify to s, and across a case split of the form s > 0 ∨ s ≤ 0 an expression of
the form exp(ln(s)) simplifies to s or 0. Using the equivalences s < t↔ exp(s) < exp(t) and
introducing case splits as necessary, we are reduced to the case where ϕ is a conjunction of
terms of the form u < expn(v), u > expn(v), and u = expn(v), where u and v are variables
and expn(u) denotes n applications of exp to u. If there is an equality using x, we can use
that to eliminate the existential quantifier. Otherwise, for suitable k we can arrange that ϕ
is a conjunction of formulas of the form si < expk(x) and expk(x) < tj, in which case ∃x ϕ
is equivalent to (

∧
i,j si < tj) ∧ (

∧
j 0 < tj).

From Theorem 3.1 we have:

Corollary 3.5. The universal fragment of the union of the three theories above is decidable.

The decision procedure implicit in the proof of Corollary 3.5 is, unfortunately, not very
useful. There is a sense in which is does too little, and another sense in which it does too
much.

A sense in which the procedure does too little is that the union of the three theories is
too weak. For example, it is not hard to show (either using the interpolation theorem or a
model-theoretic argument) that the theory does not prove 2̄ × 2̄ = 4̄, where 2̄ abbreviates
the term 1+1, and 4̄ abbreviates 1+1+1+1. Similarly, it fails to prove x+x = 2̄x. In the
next section, we will focus on the additive and multiplicative fragments of the reals, and
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respond to this problem by augmenting the structures to allow multiplication by arbitrary
rational constants, or, more generally, constants from a suitably computable subfield F of
the reals. Unfortunately, this means that the two structures share a language with infinitely
many function symbols, and so the methods described in the last section can no longer be
used. We will have to do a good deal of additional work to establish decidability in this
case.

A sense in which the algorithm implicit in the proof of Corollary 3.5 does too much
is that even in the absence of the new multiplicative constants, it is inefficient: the com-
bination procedure relies on the fact that one can enumerate all possible descriptions of
equalities and inequalities between variables, and, in general, the number of possibilities
grows exponentially. Our proof of decidability for the augmented theories involves a re-
duction to the theory of real-closed fields, and so it does not represent a practical advance
either. In Sections 12–14, we will address the issue of developing practical procedures that
approximate the theories we describe here.

4. The theories T [F ]

Let F denote any subfield of the reals. Let Tadd [F ] be the theory of the real numbers
for the language with symbols

0, 1,+,−, <, . . . , fa, . . .
where for a ∈ F , fa denotes the function fa(x) = ax. Let Tmult [F ] be the analogous theory
for the language with symbols

0, 1,×,÷, <, . . . , fa, . . .
where x ÷ y is interpreted as 0 when y = 0. Our central concern in this paper is the
union of these two theories, T [F ] = Tadd [F ]∪Tmult [F ]. It will also be useful to denote their
intersection, Tadd [F ]∩Tmult [F ], by Tcomm [F ]. It often makes sense to restrict one’s attention
to computable subfields F of the real numbers; in particular, Q, the minimal such subfield,
is a natural choice. We will see below that, in a sense, the field of real algebraic numbers A
represents a maximal choice. Intermediate choices are also possible; for example, one might
consider the smallest field containing Q and closed under taking roots of positive numbers.
It should be clear that each T [F ] proves, for example, 2̄× 2̄ = 4̄ and x+ x = 2̄x.

We claim that the theories T [F ] are natural, and are sufficient to justify many of the
inferences that come up in ordinary mathematical texts. The latter claim is an empirical
one, however, and we will not try to justify it here.

Each of Tcomm [F ], Tadd [F ], and Tmult [F ] has quantifier-elimination, and hence is com-
plete. The elimination procedures sketched in Section 3 can easily be extended to Tadd [F ]
and Tmult [F ], assuming the operations on F are computable, in which case these theories
are decidable as well. Similarly, a quantifier-elimination procedure for Tcomm [F ] is easily
obtained by extending the usual procedure for dense linear orders without endpoints, so
this theory is also complete, and decidable when F is computable.

Reflecting these elimination procedures yields complete axiomatizations of the relevant
theories. The theory Tcomm [F ] is axiomatized by the following:

(1) < is a dense linear order
(2) 0 < 1
(3) fa(fb(x)) = fab(x), for every a, b ∈ F
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(4) f0(x) = 0, f1(x) = x
(5) x < y ↔ fa(x) < fa(y) for 0 < a ∈ F
(6) x < y ↔ fa(x) > fa(y) for 0 > a ∈ F
(7) 0 < x→ x < fa(x) for 1 < a ∈ F

One obtains an axiomatization for Tadd [F ] by adding the following:

(1) 0,+, < is an ordered abelian group
(2) x− y = z ↔ x = y + z
(3) fa(x+ y) = fa(x) + fa(y)
(4) fa+b(x) = fa(x) + fb(x)

Similarly, one obtains an axiomatization of Tmult [F ] by adding the following to Tcomm [F ]:

(1) 1,×, < is a divisible ordered abelian group on the positive elements
(2) x/y = z ↔ (y = 0 ∧ z = 0) ∨ x = yz
(3) fa(xy) = fa(x)y

In Sections 9–11, we will prove undecidability results for fragments of T [F ]. We will
find it useful to work with the following alternative system, T [F ]∗, based on the symbols
0, 1,+,×, < together with constant symbols ca for a ∈ F . The axioms of T [F ]∗ fall naturally
into four groups:

(1) 0,+, < is an ordered abelian group
(2) 1,×, < is a divisible ordered abelian group on the positive elements
(3) (a) ca+b = ca + cb, for a, b ∈ F

(b) cab = ca × cb, for a, b ∈ F
(c) 0 < ca for 0 < a, a ∈ F

(4) (a) ca+b × x = (ca × x) + (cb × x), for a, b ∈ F
(b) ca × (x+ y) = (ca × x) + (ca × y), for a ∈ F

Note that the extra symbols in the language of T [F ] are easily definable in T [F ]∗. It is
straightforward to verify the following.

Lemma 4.1. Let ϕ be a formula in the language of T [F ] without −,÷. Let ϕ∗ be the result
of replacing each occurrence of fa(t) with ca × t, inductively, from innermost to outermost.
Then ϕ is provable in T [F ] if and only if ϕ∗ is provable in T [F ]∗.

Lemma 4.2. Let ϕ be a formula in the language of T [F ]∗. Let ϕ′ be the result of replacing
each occurrence of ca with fa(1). Then ϕ is provable in T [F ]∗ if and only if ϕ′ is provable
in T [F ].

Theorem 4.3. T [F ] and T [F ]∗ prove the same sentences involving only the symbols
0, 1,+,×, <.

Below we will call the symbols fa the auxiliary function symbols and the symbols ca the
auxiliary constant symbols. For readability, we will write ax instead of fa(x) or cax when
the context makes the meaning clear.

The following shows that as far as provability of formulas in the language of real closed
fields is concerned, there is never a need to go beyond the real algebraic numbers in choosing
F .

Theorem 4.4. T [R] is a conservative extension of T [A].

Proof. Since ÷ and − are definable in terms of the other symbols of T [F ], we can focus on
sentences in which these symbols do not occur, and use Theorem 4.3.
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Let d be a proof of a sentence ϕ in T [R]∗, where ϕ is in the language of T [A]∗. Assign
variables ~y to the auxiliary constant symbols occurring in ϕ, and let ψ(~y) define the corre-
sponding real algebraic numbers in the language of real closed fields. Assign variables ~z to
all the additional auxiliary constant symbols occurring in d, and let θ(~y, ~z) be the conjunc-
tion of all the axioms of T [R] used in d, with the constants replaced by the corresponding
variables. The assertion ∃~y, ~z (θ(~y, ~z)∧ψ(~y)) is true of the real numbers, and so, by transfer
(i.e. the completeness of the theory of real closed fields, of which both the reals the real

algebraic numbers are a model), it is true of A as well. Let ~a,~b be real algebraic numbers
witnessing the existential quantifiers. Because ψ(~a) determines ~a uniquely, ~a corresponds
to the original auxiliary constant symbols in ϕ. Thus we have the even stronger result that

d can be interpreted as a proof in T [A]∗, taking the constant symbols to denote ~a,~b.

This argument shows, more generally, that to prove a sentence with auxiliary function
symbols fa1 , . . . , fan , there is no need to go beyond the real algebraic closure of {a1, . . . , an}.

5. Examples

To provide a better feel for the theories T [F ], in this section we consider some theorems
that clarify their strength. The first theorem provides a lower bound by showing that a
decision procedure for the universal fragment of any T [F ] implies a decision procedure for
the existence of roots of a multivariate polynomial on the unit cube.

Theorem 5.1. Let F be any subfield of the real numbers, and let f(x1, . . . , xk) be a
multivariate polynomial with coefficients in F . Let I = [0, 1]k be the compact k-dimensional
unit cube. Then f is nonzero on I if and only if T [F ] proves that fact.

Proof. The “if” direction follows from the fact that the axioms of T [F ] are true of the real
numbers. On the other hand, by the intermediate value theorem, if a polynomial function
f is nonzero on I, then it is either strictly positive or strictly negative on I. So it suffices
to show that if f is strictly positive on I, then T [F ] proves that this is the case.

Suppose f(~x) =
∑

i<n ti(~x), where each ti is a monomial in x1, . . . , xl with a coefficient
in F , and suppose f is strictly positive on I. Given a point 〈a1, . . . , ak〉 in I, let r~a = f(~a) >
0, and for each i, let r~a,i = ti(~a). By continuity, we can find an open neighborhood U~a of

~a, such that for each ~b ∈ U~a, ti(~b) > ri,~a − r~a/3n. Shrinking U~a if necessary, we can assume
that U~a is a product of open intervals with rational endpoints.

By compactness, U is covered by a finite set of these open neighborhoods, say U~a1 , . . . , U~am .
Then:

(1) T [F ] proves ∀~x (~x ∈ I → ~x ∈ U~a1 ∨ . . . ∨ U~am). In fact, this can be proved by
Tcomm [F ], since it is purely a property of the ordering on the rational numbers.

(2) For each j < m and i < n, Tmult [F ] proves ~x ∈ U~aj → ti(~x) > qi,j, where qi,j is any
rational number less than r~aj ,i − r~aj/3n and greater than r~aj ,i − r~aj/2n.

(3) Using these lower bounds, for each j < m, Tadd [F ] can prove ~x ∈ U~aj → f(~x) >∑
i<n qi,j.

The result follows from the fact that in the last claim,
∑

i<n

qi,j >
∑

i<n

(r~aj ,i − r~aj/2n) = r~aj − r~aj/2 = r~aj/2 > 0.

This completes the proof.
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As an example of something T [F ] cannot do, consider the inequality x2 − 2x+ 1 ≥ 0.
That this is generally valid is clear from writing x2 − 2x+1 = (x− 1)2, but this equality is
a consequence of distributivity, which is not available in T [F ]. In fact, we have:

Theorem 5.2. For any F , T [F ] proves ∀x (x2 − 2x + 1 ≥ ε) if and only if ε < 0. In
particular, T [F ] does not prove ∀x (x2 − 2x+ 1 ≥ 0).

Moreover, proofs of ∀x (x2 − 2x+1 ≥ ε) in T [F ] necessarily get longer as ε approaches
0, and the results that follow provide explicit lower bounds. Focusing on the domain of the
function x2 − 2x+ 1 instead of the range, we also have:

Theorem 5.3. For any F ,

(1) T [F ] proves ∀x (x ≤ r → x2 − 2x+ 1 ≥ 0) if and only if r < 1.
(2) T [F ] proves ∀x (x ≥ r → x2 − 2x+ 1 ≥ 0) if and only if r > 1.

Theorem 5.3 implies Theorem 5.2. Assuming x ∈ [1 − δ, 1 + δ] for a small rational
constant δ, T [F ] can easily show x2 ≥ 1− 2δ+ δ2 and 2x ≤ 2+2δ, and hence x2− 2x+1 ≥
−4δ + δ2 ≥ −4δ. So, taking r to be 1 − δ and 1 + δ, respectively, in the two clauses
Theorem 5.3, we have the “if” direction of Theorem 5.2. But the “only if” direction is a
consequence of the fact that T [F ] does not prove ∀x (x2 − 2x+1 ≥ 0), which is immediate
from Theorem 5.3.

The two clauses of Theorem 5.3 are proved in a similar way, and so we will only prove
the first. Since T [F ] easily proves x < 0 → x2 − 2x + 1 ≥ 0, we can replace the first
statement in Theorem 5.3 by ∀x (0 ≤ x ≤ r → x2 ≥ 2x− 1). T [F ] proves this if and only
if it refutes the set of formulas

{0 ≤ x, x ≤ r, u = x2, u < 2x− 1}.
Recall that this happens if and only if there is an interpolant, θ, in disjunctive normal form,
such that

Tmult [F ] ∪ {0 ≤ x, x ≤ r, u = x2} ⊢ θ (5.1)

and
Tadd [F ] ∪ {u < 2x− 1} ∪ θ ⊢ ⊥. (5.2)

So it suffices to show:

Theorem 5.4. There is a DNF formula θ with at most n disjuncts satisfying (5.1) and
(5.2) if and only if r <= n/(n+ 1).

Proof. We will first show that if θ has n disjuncts and satisfies (5.1) and (5.2) then r ≤
n/(n+ 1). We will then show that, in fact, for r = n/(n+ 1) such a θ exists.

Write θ = θ1 ∨ . . . ∨ θn, where each θi is a conjunction of literals involving only x and
u. It is not hard to see that each θi is equivalent to a conjunction of literals of the form

a ⊳ x ⊳ b ∧ c ⊳ u ⊳ d ∧ ex ⊳ u ⊳ fx
where each ⊳ is either < or ≤ (and some of the conjuncts may be absent). Tmult [F ] ∪ {0 ≤
x, x ≤ r, u = x2} proves this equivalent to a conjunction of the form

a ⊳ x ⊳ b ∧ a2 ⊳ u ⊳ b2 ∧ ax ⊳ u ⊳ bx (5.3)

for some a, b in [0, 1], and from the point of view of Tadd [F ] ∪ {2x − 1 < u}, each of these
disjuncts is no weaker than the original. Thus it suffices to prove the claim for interpolants
that are of the form (5.3).
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Now, Tadd [F ] ∪ {u < 2x− 1} refutes θ if and only if it refutes each disjunct. Thus the
following lemma is crucial to our analysis.

Lemma 5.5. For a, b in [0, 1), Tadd [F ] ∪ {2x− 1 < u} refutes (5.3), for any versions of the
relation ⊳, if and only if b ≤ 1/(2 − a).

Proof. If b < a, Tadd [F ] ∪ {2x − 1 < u} easily refutes (5.3), and b ≤ 1/(2 − a) holds. So it
suffices to consider the case a ≤ b.

We need only work through the Fourier-Motzkin procedure by hand. Eliminating u,
we obtain the inequalities a2 < 2x− 1 and ax < 2x− 1. (Note that we get strict inequality,
whether the initial ⊳’s are strict inequalities or not.) Solving for x, we obtain (a2+1)/2 < x
and 1/(2 − a) < x. Eliminating x, we get (a2 + 1)/2 < b and 1/(2 − a) < b. This yields
a contradiction if and only if b is less than or equal to the minimum of (a2 + 1)/2 and
1/(2 − a). A calculation shows that the latter is always smaller for a ∈ [0, 1), so we have
the desired conclusion.

We can now finish off the proof of Theorem 5.4. Suppose Tmult [F ] ∪ {0 ≤ x, x ≤ r, u =
x2} proves a disjunction θ1∨ . . .∨θn with each θi of the form (5.3) for some ai and bi. If any
of the intervals (ai, bi) overlap, we can strengthen some disjuncts (and eliminate redundant
ones) and obtain an equivalent interpolant where the intervals (ai, bi) are disjoint and are
listed so that for each i, ai < ai+1. On the other hand, Tadd [F ] ∪ {2x − 1 < u} refutes θ
if and only if it refutes each θi, and if this is the case, it is certainly true for any θ′i such
that Tadd [F ] ∪ {2x − 1 < u} proves θ′i → θi. Thus, from the point of view of proving the
“only if” direction of the theorem, we may assume, without loss of generality, that θ is a
disjunction of formulas of the form (5.3), and the intervals (ai, bi) corresponding to the a
and b in each θi are increasing and disjoint.

But then it is clear that Tmult [F ] ∪ {0 ≤ x, x ≤ r, u = x2} proves θ1 ∨ . . . ∨ θn if and
only if

(1) a0 = 0,
(2) bi = ai+1, for each i < n,
(3) an = r,

and the ⊳’s are chosen suitably. Lemma 5.5 guarantees that for each i, ai+1 ≤ 1/(2 − ai).
The largest possible value of r occurs when the inequality is replaced by an equality ai+1 =
1/(2 − ai), and a calculation shows that in that case, ai = i/(i + 1) for each i ≤ n.

This proves the “only if” direction of the theorem, establishing an upper bound on the
possible values of r. But the proof in fact yields an interpolant that shows that the upper
bound can be obtained: if each θi is the formula

ai ≤ x ≤ ai+1 ∧ a2i ≤ u ≤ a2i+1 ∧ aix ≤ u ≤ ai+1x

with ai = i/(i + 1), then Tmult [F ] ∪ {0 ≤ x, x ≤ r, u = x2} proves θ1 ∨ . . . ∨ θn, and
Tadd [F ] ∪ {2x− 1 < u} refutes each θi.

6. Provability of a universal sentence in T [F ]

In this section, we will provide various characterizations of provability of a universal
sentence in T [F ]. These will be used in Section 7 to establish our decidability results.

By Proposition 2.2, if ϕ is a universal sentence in the language of some T [F ], ϕ is
equivalent to a formula of the form ∀~x (ϕadd (~x) ∨ ϕmult (~x)), where ϕadd and ϕmult are in
the language of Tadd [F ] and Tmult [F ], respectively.
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Proposition 6.1. Let ϕ ≡ ∀~x (ϕadd (~x) ∨ ϕmult (~x)) be as above. Then the following are
equivalent:

(1) T [F ] proves ϕ.
(2) There is a quantifier-free formula θ(~x) in the language Tcomm [F ] such that Tadd [F ]∪

{θ(~x)} ⊢ ϕadd (~x) and Tmult [F ] ∪ {¬θ(~x)} ⊢ ϕmult (~x).
(3) There is a quantifier-free formula θ(~x) in the language Tcomm [F ] such that

∀~x (θ(~x) → ϕadd (~x)) and ∀~x (¬θ(~x) → ϕmult (~x))

hold of the real numbers, with the intended interpretation of the auxiliary function
symbols.

Proof. If 2 holds, then clearly T [F ] proves ϕadd (~x)∨ϕmult (~x). Thus 2 implies 1. Conversely,
if T [F ] proves ϕ, it proves ¬ϕmult (~x) → ϕadd (~x). Treating ~x as new constants and applying
the Craig interpolation lemma, we get an interpolant θ(~x) in the language of Tcomm [F ]
satisfying the conclusion of 2. Since Tcomm [F ] has quantifier-elimination, we can assume
without loss of generality that θ(~x) is quantifier-free.

The equivalence of 2 and 3 follows easily from the fact that each of Tadd [F ] and Tmult [F ]
is a complete theory that holds of the reals numbers with the intended interpretation of the
auxiliary function symbols.

From a model-theoretic perspective, it is useful to replace provability by nonexistence
of a countermodel. When we say Γ(~x) is a type over a theory T , we mean that Γ is a set of
formulas in the language of T , involving only the free variables ~x, such that Γ is consistent
with T . Saying Γ(~x) is a complete type means that for every formula ψ(~x), either ψ(~x) or
¬ψ(~x) is in Γ(~x).

Proposition 6.2. Let ϕ ≡ ∀~x (ϕadd (~x) ∨ ϕmult (~x)) be as above. Then the following are
equivalent:

(1) T [F ] does not prove ϕ.
(2) T [F ] ∪ {¬ϕ} is consistent.
(3) The union of Tadd [F ] ∪ {¬ϕadd (~x)} and Tmult [F ] ∪ {¬ϕmult (~x)} is consistent.
(4) There is a complete type Γ(~x) over Tcomm [F ] such that

Tadd [F ] ∪ Γ(~x) ∪ {¬ϕadd (~x)} and Tmult [F ] ∪ Γ(~x) ∪ {¬ϕmult (~x)}
are both consistent.

(5) There is a complete type Γ(~x) over Tcomm [F ] such that for every finite Γ′(~x) ⊆ Γ(~x),

Tadd [F ] ⊢ ∃~x (
∧

Γ′(~x) ∧ ¬ϕadd (~x))

and
Tmult [F ] ⊢ ∃~x (

∧
Γ′(~x) ∧ ¬ϕmult (~x)).

(6) There is a complete type Γ(~x) over Tcomm [F ] such that for every finite Γ′(~x) ⊆ Γ(~x),
there are real numbers ~x and ~y satisfying

Γ′(~x) ∧ ¬ϕadd (~x) ∧ Γ′(~y) ∧ ¬ϕmult (~y).

Proof. In light of the soundness and completeness of first-order logic, 1 is just a restatement
of 2, and the equivalence with 3 follows from the definition of ϕ in terms of ϕadd and
ϕmult . The equivalence of 3 with 4 follows by the Robinson joint consistency theorem, or,
equivalently, from the Craig interpolation theorem, using compactness.
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That statement 4 implies statement 5 follows from the fact that Tadd [F ] and Tmult [F ]
are both complete theories; for example, Tadd [F ] ∪ Γ′(~x) ∪ {¬ϕadd (~x)} is consistent if and
only if Tadd [F ] proves ∃~x (

∧
Γ′(~x) ∧ ¬ϕadd (~x)). The converse is immediate.

The equivalence of 5 and 6 follows from the fact that each of Tadd [F ] and Tmult [F ] is
the theory of the real numbers in the respective languages.

Note that the equivalence of 1–4 holds, in general, for any two theories. The equivalence
with 5 relies only on the fact that Tadd [F ] and Tmult [F ] are complete, and the equivalence
with 6 relies only on the additional fact that they are satisfied by the reals.

Statement 6 provides a nice characterization of provability in T [F ]. A universal sentence
ϕ is true of the reals if and only if every sequence ~x of reals satisfies either ϕadd (~x) or
ϕmult (~x). But a universal sentence ϕ is provable in T [F ] if and only if for every complete
type Γ(~x) in the language of Tcomm [F ], there is a finite subset Γ′(~x) such that either

∀~x (
∧

Γ′(~x) → ϕadd (~x)) or ∀~x (
∧

Γ′(~x) → ϕmult (~x))

holds in the reals. In particular, this has to hold whenever Γ(~x) is the type corresponding
to a sequence of real numbers; but we will see below that there are types in the language of
Tcomm [F ] that are not of this form. Thus, provability in T [F ] imposes a stronger require-
ment.

In the remainder of this section, we consider various representations of the quantifier-
free formulas ϕadd (~x), ϕmult (~x), and the possible interpolants θ(~x). We also consider rep-
resentations of the types Γ(~x). The former will be relevant to the discussion of heuristic
algorithms in Sections 12–14, whereas the latter will be used in our decidability proofs in
Section 7.

Let ϕ ≡ ∀~x (ϕadd (~x) ∨ ϕmult (~x)) be as above. Since ∀y ψ(y) is equivalent to ∀y >
0 ψ(y) ∧ ψ(0) ∧ ∀y > 0 ψ(−y), as in the proof of Proposition 3.3, any universal sentence
ϕ is equivalent to a conjunction of formulas of the form ∀~x > 0 (ϕadd (~x) ∨ ϕmult (~x)). We
can absorb the condition ~x > 0 into both ϕadd (~x) and ϕmult (~x). By adding a new variable
if necessary, we can also assume that each includes the condition x1 = 1, and it will be
notationally convenient to do so. Thus, for the rest of this section, we will assume that
ϕ is a universal formula of the form ∀~x (ϕadd (~x) ∨ ϕmult (~x)) where ϕadd (~x) and ϕmult (~x)
are quantifier-free in the language of Tadd [F ] and Tmult [F ], respectively, and ¬ϕadd (~x) and
¬ϕmult (~x) each implies ~x > 0 and x1 = 1. The question as to the decidability of the universal
fragment of T [F ] reduces to the question as to whether one can determine whether T [F ]
proves a sentence of this form. Let ∆(~x) be the set {~x > 0, x1 = 1}.
Proposition 6.3. Under hypotheses ∆(~x), a quantifier-free formula in the language of
Tcomm [F ] can be put in any of the following forms:

(1) a conjunction of disjunctions of atomic formulas of the form xi < axj or xi ≤ axj ,
with a > 0.

(2) a conjunction of disjunctions of atomic formulas of the form xi < axj , with a > 0,
or of the form xi = axj with a > 0 and i < j.

(3) either 1 or 2, with “conjunction” and “disjunction” switched.

Proof. Let θ be quantifier-free. First, put θ in negation-normal form, so that it is built up
from atomic formulas and negations of atomic formulas using ∧ and ∨. Replace s 6< t by
t ≤ s, replace s 6≤ t by t < s, and replace s 6= t by s < t ∨ t < s. As a result,all atomic
literals occur positively. One can further eliminate either s ≤ t in favor of s < t ∨ s = t, or
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one can eliminate s = t in favor of s ≤ t ∧ t ≤ s. The resulting formula can then be put in
either disjunctive or conjunctive normal form, without introducing negations.

In the end, all the atomic formulas are of the form axi < bxj , axi ≤ bxj, or axi = bxj .
Dividing through by b (and reversing an inequality when b is negative), we can assume that
in each case b = 1. With the assumptions in ∆, each atomic formula in which a is negative
can be replaced by either ⊤ or ⊥. Then inequalities axi < xj (resp. axi ≤ xj) can be
expressed as xi < (1/a)xj (resp. xi ≤ (1/a)xj), as necessary, and equalities xj = axi can be
rewritten xi = (1/a)xj when i < j.

Such normal forms can be useful in reducing the problem of proof search to restricted
cases. From an implementation point of view, not all these reductions are wise, however;
for example, using case splits to ensure that the x’s are all positive or to eliminate s ≤ t
in favor of s < t or s = t can result in an exponential blowup. In the absence of sign
information, the normal forms are more complicated. For example, although x2 > 2x3 can
be expressed as x3 < (1/2)x2, x2 > −x3 cannot be expressed in the form xi < axj. Also,
in the absence of sign information, neither of x2 < x3 and x2 < 2x3 implies the other. In
that case, one has to consider normal forms with atomic formulas from among xi < axj ,
xi ≤ axj, xi > axj, and xi ≥ axj . A little thought shows that in a single conjunction or
disjunction, for each pair i, j, no more than two such formulas are needed; see also the proof
of Proposition 12.2.

We can similarly classify the complete types over Tcomm [F ]. Let Γ(~x) ⊇ ∆(~x) be such
a type. Since Tcomm [F ] has quantifier elimination, Γ is determined by the atomic formulas
that it contains. Hence it is also determined by its subsets Γi,j(xi, xj), with i < j, where
Γi,j consists of the atomic formulas involving both xi and xj . If Γi,j contains a formula of
the form xi = axj , that determines the set Γi,j uniquely. We denote this type by Γxi/xj=a.
Otherwise, Γi,j contains the formula xi 6= axj for every a in F , and so Γi,j is determined by
the set of elements a such that Γi,j contains the formula xi < axj . This set is a downwards-
closed subset of the positive part of F ; think of it as the set of a such that xi/xj < a.
If this set is empty, that determines Γi,j uniquely, and we denote the corresponding type
Γxi/xj≈∞. Otherwise, the set has a greatest lower bound in the real numbers, say, r. If r is
not an element of F , then Γi,j contains xi < axj exactly when r < a, and this determines
Γi,j exactly; we denote the resulting type by Γxi/xj≈r. If, on the other hand, r is an element

a of F , there are two possibilities: Γi,j contains the formula xi < axj, or it does not (in
which case it contains the formula xj < (1/a)xi). Denote the first type by Γxi/xj≈a− , and
denote the second by Γxi/xj≈a+ .

In short, we have shown the following:

Proposition 6.4. Let Γ(~x) be any complete type over Tcomm [F ] that includes ∆(~x). Then
for each i < j, Γ includes exactly one of the following:

(1) Γxi/xj=a, for some a in F

(2) Γxi/xj≈r, for some r in R \ F
(3) Γxi/xj≈∞

(4) Γxi/xj≈a− , for some a in F

(5) Γxi/xj≈a+ , for some a in F

These data determine Γ uniquely.

Note that not every collection of sets Γxi/xj
determines a consistent type over Tcomm [F ];

for example, the sets Γx1/x2=2, Γx2/x3=2, and Γx1/x3=2 are jointly inconsistent.
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In the next section, we will combine the analysis given by Proposition 6.4, together with
equivalence 6 of Proposition 6.2, to show that, with general conditions on F , the universal
fragment of T [F ] is decidable.

7. Decidability

Let ϕ ≡ ∀~x (ϕadd (~x) ∨ ϕmult (~x)) be as in the previous section, so that ϕadd and ϕmult

are quantifier-free formulas in the language of Tadd [F ] and Tmult [F ] respectively, and each
of ¬ϕadd (~x) and ¬ϕmult (~x) implies ~x > 0 and x1 = 1. We have seen that the decidability of
the universal fragment of T [F ] reduces to the problem of determining whether T [F ] proves
a formula ϕ of this sort; and that T [F ] does not prove such a ϕ if and only if

there is a complete type Γ(~x) over Tcomm [F ] such that for every finite Γ′(~x) ⊆
Γ(~x), the sentence

∃~x (
∧

Γ′(~x) ∧ ¬ϕadd (~x)) ∧ ∃~x (
∧

Γ′(~x) ∧ ¬ϕmult (~x))

is true of the real numbers.

Call this the “consistency criterion for ¬ϕ.” We also have a complete classification of
the relevant types Γ(~x). In this section, we will use the latter to show that when F is a
computable subfield of R and membership of a real algebraic number in F is decidable, the
consistency criterion for ¬ϕ is decidable.

Fix ϕ and F , and hence ϕadd (~x) and ϕmult (~x). If Γ(~x) is any set of atomic formulas
in the language of Tcomm [F ] involving the variables ~x and i < j, let Γi,j denote the set of
formulas in Γ involving xi and xj. Let S be the collection of sets Γ such that for each i < j,
Γi,j is one of the types described in Proposition 6.4. Since each such Γ consistent with
Tcomm [F ] uniquely determines the complete type that extends it, we can replace “complete
type Γ(~x) over Tcomm [F ]” by “Γ ∈ S” in the consistency criterion for ¬ϕ.

We now show that we can modify the collection of sets S to avoid the restrictions
“a ∈ F” in the clauses of Proposition 6.4. To do so, we consider types in the larger
language, Tcomm [R]. Let the types Γ̂xi/xj=a, Γ̂xi/xj≈r, Γ̂xi/xj≈∞, Γ̂xi/xj≈a− , and Γ̂xi/xj≈a+

be defined as in the paragraph before Proposition 6.4, except with respect to the language
of Tcomm [R]. Let Ŝ be the sets Γ̂ of atomic formulas in Tcomm [R] such that for each i < j,

Γ̂i,j is one of the following:

(1) Γ̂xi/xj=a, for some a in R

(2) Γ̂xi/xj≈r, for some r in R \ F
(3) Γ̂xi/xj≈∞

(4) Γ̂xi/xj≈a− , for some a in R

(5) Γ̂xi/xj≈a+ , for some a in R

Note that we have replaced “a ∈ F” by “a ∈ R” in the first item and in the last two items,
but we have left R \ F alone in the second item.

Lemma 7.1. The consistency criterion for ¬ϕ is satisfied by a set Γ ∈ S if and only if it is
satisfied by a set Γ̂ ∈ Ŝ.
Proof. Suppose the consistency criterion is satisfied by some Γ ∈ S. It is easy to check that
it is then satisfied by the corresponding set Γ̂ ∈ Ŝ.
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In the other direction, note that if a is in R \ F , then each of Γ̂xi/xj=a, Γ̂xi/xj≈a− ,

and Γ̂xi/xj≈a+ includes Γxi/xj≈a. Thus every set Γ̂ ∈ Ŝ includes a set Γ ∈ S. So, if the

consistency criterion is satisfied by some Γ̂ ∈ Ŝ, it is satisfied by some Γ ∈ S.
We now parameterize the finite subsets of each Γ̂ ∈ Ŝ. For each ε > 0, we define a

formula
Γ̂[ε] =

∧

i<j

Γ̂i,j[ε],

where

(1) Γ̂xi/xj=a[ε] is the formula xi = axj

(2) Γ̂xi/xj≈r[ε] is (r − ε)xj < xi < (r + ε)xj

(3) Γ̂xi/xj≈∞ is xi > (1/ε)xj

(4) Γ̂xi/xj≈a− is (a− ε)xj < xi < axj

(5) Γ̂xi/xj≈a+ is axj < xi < (a+ ε)xj

For every ε, Γ̂[ε] is implied by some finite subset of Γ̂. Conversely, every finite subset of Γ̂

is implied by Γ̂[ε] for some ε > 0, and, in fact, for an ε of the form 1/n for some n ∈ N.
Thus the consistency criterion for ¬ϕ is equivalent to the following:

there is a set Γ̂ ∈ Ŝ such that for every ε > 0, the sentence

∃~x (Γ̂[ε] ∧ ¬ϕadd (~x)) ∧ ∃~x (Γ̂[ε] ∧ ¬ϕmult (~x))

is true of the real numbers.

The sets Γ̂ ∈ Ŝ, and the corresponding formulas Γ̂[ε], are parameterized by tuples of symbols
from the set

{‘=a’ | a ∈ R} ∪ {‘≈r’ | r ∈ R \ F} ∪ {‘∞’} ∪ {‘≈a−’ | a ∈ R} ∪ {‘≈a+’ | a ∈ R}.
When F = R, there are no sets with parameters of the second kind, and so the consistency
criterion can be expressed in the language of real closed fields. By Theorem 4.4, T [R] is a
conservative extension of T [A]. Thus we have:

Theorem 7.2. The universal fragment of T [A] is decidable.

When F is a proper subfield of R, the revised consistency criterion for ¬ϕ can be
expressed as a sentence of the form

∃~r ∈ R \ F ∃~a ∈ R ∀ε > 0 ∃~x, ~x′ θ
where θ is a quantifier-free formula in the language of real closed fields. By quantifier-
elimination for real closed fields, this is equivalent to a sentence of the form ∃~r ∈ R \ F η,
where η is a quantifier-free formula in the language of real closed fields. Say F is a sufficiently

computable subfield of R if F is a computable subfield of R and there is an algorithm to
determine whether a real algebraic number a (described in terms of a definition, say, in the
language of real closed fields) is in F .

Theorem 7.3. For any sufficiently computable F ⊆ R, the universal fragment of T [F ] is
decidable.

By our analysis of the consistency criterion, Theorem 7.3 is a consequence of the fol-
lowing:
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Theorem 7.4. For any sufficiently computable F ⊆ R, there is an algorithm to decide
whether a sentence of the form ∃~x ∈ R \ F ϕ(~x) holds of the reals, where ϕ is a formula in
the language of real closed fields.

We will prove something more general. Let R be any real closed field. A function h(~x)
or a predicate E(~x) on R is said to be semialgebraic if it is definable in the language of
real-closed fields without parameters.

Theorem 7.5. Let R be any real closed field, and let F be any proper subfield of R. If
E, h1, . . . , hm are semialgebraic, then

∃x1 6∈ F . . . ∃xn 6∈ F (E(~x, ~y) ∧ h1(~x, ~y) 6∈ F ∧ . . . ∧ hm(~x, ~y) 6∈ F )

is equivalent to a positive boolean combination of assertions of the form D(~y) and g(~y) 6∈ F ,
where D and g are semialgebraic. Furthermore, there is an algorithm for determining an
expression of this form from (presentations of) E, h1, . . . , hm. This algorithm does not
depend on R or F .

In particular, when there are no variables ~y, Theorem 7.5 asserts that any assertion of
the form ∃~x ∈ R \ F E(~x) is effectively equivalent to a boolean combination of sentences
in the language of real-closed fields and assertions of the form g 6∈ F , where g is a real
algebraic constant. Thus Theorem 7.5 implies Theorem 7.4.

Proof. We use induction on n. When n = 0 there is nothing to do. Suppose the theorem is
true for n. Then

∃x1 6∈ F . . . ∃xn+1 6∈ F (E(~x, ~y) ∧ h1(~y) 6∈ F ∧ . . . ∧ hm(~y) 6∈ F )

is equivalent to ∃x1 6∈ F ψ(x1, ~y), where ψ has the requisite form. We can then write ψ as
a disjunction of formulas of the form

D(x1, ~y) ∧ g1(x1, ~y) 6∈ F ∧ . . . ∧ gl(x1, ~y) 6∈ F

where D, g1, . . . , gl are semialgebraic. Since we can factor the existential quantifier ∃x1
across the disjunction, it suffices to prove Theorem 7.5 for the special case n = 1.

So, resorting to the original notation, let E(x, ~y), h1(x, ~y), . . . , hm(x, ~y) be semialgebraic.
We need to show that

∃x ∈ R \ F (E(x, ~y) ∧ h1(x, ~y) 6∈ F ∧ . . . hm(x, ~y) 6∈ F ) (7.1)

is equivalent to a positive boolean combination of assertions D(~y) and g(~y) 6∈ F , for semi-
algebraic D and g.

By the theory of definability in real closed fields [6, 26], for each fixed ~y, the set
{x | E(x, ~y)} is a finite union of disjoint intervals (including intervals of the form (−∞, a),
(−∞, a], (a,∞), and [a,∞)) with endpoints that are definable in the parameters ~y. Simi-
larly, fixing ~y, for all but finitely many points x of R all the functions hi are either locally
increasing or locally decreasing or locally constant at x. A bound p on the number of such
intervals and exceptional points, independent of ~y, can be determined effectively from the
presentations of E, h1, . . . , hm. Furthermore, for fixed n, terms like “the left endpoint of
the nth interval (in increasing order) in the decomposition of {x | E(x, ~y)}, if there is one,
or 0 otherwise” and “the nth point at which one of the hi’s is neither locally monotone nor
locally constant, if there is one, or 0 otherwise” are semialgebraic functions of ~y.

As a result, for each fixed ~y, there is a sequence of at most p disjoint nonempty open
intervals J1, . . . , Jq and at most p exceptional points u1, . . . , ur such that



COMBINING DECISION PROCEDURES FOR THE REALS 19

• {x | E(x, ~y)} = J1 ∪ . . . ∪ Jq ∪ {u1, . . . , ur}, and
• on each interval Jn, all the functions hi are either monotone or constant.

Furthermore, all the following are semialgebraic in ~y:

• the predicates Dq,r(~y), where q, r ≤ p, which assert that there are exactly q intervals
in the decomposition of {x | E(x, ~y)} and r exceptional points;

• the predicate Gi,n(~y) which asserts that hi (as a function of x), is constant on Jn;
and

• the functions ki,n(~y) which return the value of hi on Jn, if hi is constant on Jn, or
0 otherwise.

Given ~y, assuming that there are q intervals Jn and r exceptional points, we claim that
(7.1) is equivalent to the following disjunction:

(1) there is an interval Jn, n = 1, . . . , q, such that for each function hi, if hi is constant
on Jn, then the value of hi on Jn is not in F ; or

(2) for one of the exceptional points un, n = 1, . . . , r, we have un 6∈ F, and hi(un) 6∈ F
for each i.

By the preceding paragraph, this can be expressed as a positive boolean combination ψq,r(~y)
of assertions of the form H(~y) and l(~y) 6∈ F , where H and l are semialgebraic. This means
that the expression ∨

q,r≤p

(Dq,r(~y) ∧ ψq,r(~y))

is of the requisite form. Thus, to complete the proof of Theorem 7.5, it suffices to establish
the equivalence of (7.1) with the disjunction of 1 and 2.

Suppose (7.1) holds, and, given ~y, let x 6∈ F witness the existential quantifier. Since
E(x, ~y) holds, either x is in Jn for some n, in which case clause 1 holds, or x is one of the
exceptional points un, in which case clause 2 holds.

Conversely, given ~y, suppose either 1 or 2 holds. If 2 holds, then that exceptional
value un witnesses the existential quantifier in (7.1). So assume 1 holds, and let J be an
interval on which all the functions that are constant take a value not in F . Renumbering,
let h1, . . . , hl be functions that are not constant on J . It suffices to show that there is an
x ∈ J \ F such that h1(x, ~y), . . . , hl(x, ~y) are not in F .

We consider two cases. First, suppose R properly contains the real algebraic closure of
F (~y) in R. Then one can choose an x transcendental over F (~y) in the interval J . This x has
the desired property: if hi(x, ~y) = a for some i = 1 . . . l, then hi(x, ~y)− a = 0 is a nontrivial
algebraic identity in ~y and elements of F , contradiction. Otherwise, R is equal to the real
algebraic closure of F (~y) in R. Since F is properly contained in R, we can choose an x with
sufficiently high algebraic degree over F (~y), in which case an equality hi(x, ~y) = a for some
i = 1 . . . l again yields a contradiction.

Note that in the instance of Theorem 7.5 needed for Theorem 7.4, R = R and F is a
countable subfield, in which case the implication from 1 to (7.1) in the last paragraph of
the preceding proof follows more easily from cardinality considerations.

8. Normal forms

When dealing with an associative and commutative operation like addition, it is com-
mon to put terms in an appropriate normal form. For example, one can always rearrange
a sum t1 + . . . + tn so that parentheses are associated, say, to the left, and t1, . . . , tn are
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ordered according to a fixed ordering of terms; this makes it easy to tell whether or not
two such sums agree up to the associativity and commutativity of addition. In the theories
T [F ], not only do we have addition and multiplication (as well as subtraction and division),
but also multiplication by constants from F . In this section, we will show that one can still,
fruitfully, put terms in T [F ] into a normal form. This provides an algorithm for testing
whether two terms are provably equal: just put them in normal form, and compare.

In fact, to show that normal forms are unique, we will take care to define an ordering
on these terms that is compatible with the axioms for < in T [F ]. This will enable us to
construct a term model of T [F ] in which different terms in normal form denote different
elements. It will also enable us to show that any equality between terms that can be
established in T [F ] can be proved without using the ordering.

We define a set of preterms inductively, each with an associated rank, as follows. For
each n, a preterm of rank 2n + 1 is called an “additive preterm,” and a preterm of rank
2n+2 is called a “multiplicative preterm.” A preterm of rank 0 is called a “basic preterm.”

• Each variable, x, y, z, . . . is a preterm of rank 0, as well as the constant, 1.
• For n greater than 0 and odd, if t1, . . . , tk are multiplicative or basic preterms of
rank at most n− 1, k ≥ 2, a1, . . . ak are nonzero elements of F , and at least one ti
has rank n− 1, then a1t1 + a2t2 + . . .+ aktk is a preterm of rank n.

• For n greater than 0 and even, if t1, . . . , tk are additive or basic preterms of rank at
most n− 1 and other than 1, i1, . . . , ik are nonzero integers, either k ≥ 2 or i1 6= 1,
and at least one ti has rank at least n− 2, then ti11 t

i2
2 · · · tikk is a preterm of rank n.

Here parentheses in products and sums are assumed to associate to the left, and for an
integer i, ti is the i-fold product of t with itself if i is positive, or 1 divided by the −i-
fold product of t with itself if i is negative. Note that there is no constant multiplier for
multiplicative preterms. The condition “k ≥ 2 or i1 6= 1” in the third clause allows x2, for
example, but rules out x1.

We now define, simultaneously, a normal form for preterms together with an ordering
s ≺ t on preterms in normal form. We assume that variables have been indexed x1, x2, . . ..
For each n, we define the notion of normal form, as well as the ordering, for terms of rank
at most n, as follows:

(1) n = 0: Each basic preterm is in normal form. These are ordered 1 ≻ x1 ≻ x2 ≻ . . .
(2) n > 0, odd: An additive preterm a1t1 + a2t2 + . . . + aktk is in normal form if and

only if each ti is in normal form, t1 ≻ t2 ≻ . . . ≻ tk, and a1 = 1.
To define s ≺ t when at least one of s and t has rank n and the other has rank

at most n, write
s = a1u1 + a2u2 + . . .+ akuk

and
t = b1u1 + b2u2 + . . . + bkuk

where u1 ≻ u2 ≻ . . . ≻ uk are preterms of rank at most n− 1, and now the ai’s and
bi’s are allowed to be 0. Then use lexicographic order: s ≺ t if and only if ai 6= bi
for some i and ai < bi for the least such i.

(3) n > 0, even: A multiplicative preterm ti11 t
i2
2 · · · tikk is in normal form if and only if

each tm is in normal form, and t1 ≻ t2 ≻ . . . ≻ tk. To compare two multiplicative
preterms of rank at most n, the procedure is slightly more complicated now, since
we now consider the standing of the subterms in relation to the basic preterm 1.
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Write the subterms si occurring in s and the subterms tj occurring t, together with
the preterm 1, in ≻-decreasing order as u1, . . . , um, 1, um+1, . . . , uk. Then express

s = ui11 u
i2
2 · · · uimm · 1 · uim+1

m+1 · · · uikk (8.1)

and
t = uj11 u

j2
2 · · · ujmm · 1 · ujm+1

m+1 · · · ujkk (8.2)

where now the in’s and jn’s may be 0. We now say s ≺ t if and only if
• there is an n ≤ m such that in 6= jn, and, for the least such n, in < jn; or
• For every n ≤ m, in = jn, but there is some n > m such that in 6= jn, and
in > jn for the largest such n.

Note that the clause 1 of the definition of ≻ makes sense if we think of the variables as
being positive values, with each xi+1 infinitesimally small compared to xi and 1. Clause 2,
which treats the case where the term of highest rank is additive, is also intuitively consistent
with an interpretation of ≺ as denoting a relation, “is infinitely smaller than,” on positive
numbers. Clause 3, which treats the case where the term of highest rank is multiplicative,
has similarly been designed to admit such an interpretation. The main constraint there was
to ensure that the ordering cohere, in the following sense:

Lemma 8.1. Let n > 0 be even, and let s and t be preterms of rank less than or equal to
n. Then the ordering of s and t is equivalent to the order obtained under clause 3, when s
and t are put in the form (8.1) and (8.2), respectively.

Lemma 8.1 is needed to prove Lemma 8.6. The proof proceeds by running through the
cases where each of s and t is a variable, the constant 1, an additive term, or a multiplicative
term. For example, if s and t are additive and 1 ≻ s ≻ t, one easily verifies that 1s1t0 ≻ 1s0t1

under Clause 3. The other cases are similarly straightforward.
Say that a term is in normal form if it is either 0 or of the form at, where t is a preterm

in normal form and a is a nonzero element of F . Let T ′
add

[F ] be the restriction of Tadd [F ] to
the language without the ordering <. Let T ′

mult
[F ] be corresponding restriction of Tmult [F ].

Let T ′[F ] = T ′
add

[F ] ∪ T ′
mult

[F ]. It is straightforward to verify the following:

Theorem 8.2. For every term t, there is a term t̂ in normal form, such that T ′[F ] proves
t = t̂.

Our main goal, in this section, is to prove the following:

Theorem 8.3. If ŝ and t̂ are terms in normal form, and T [F ] proves ŝ = t̂, then ŝ = t̂.

Note that the last equality is syntactic equality; in other words, T proves that two
terms in normal form are equal if and only if they are the same term.

As corollaries, we obtain the following:

Corollary 8.4. There is an efficient procedure for determining whether T [F ] proves s = t.

Proof. Just put s and t in normal form, and compare.

Corollary 8.5. T [F ] and T ′[F ] have the same provable equalities.

Proof. If T [F ] proves s = t, then s and t have the same normal form u. Since T ′[F ] proves
s = u and t = u, it proves s = t.
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To prove Theorem 8.3, first let us extend the ordering ≺ from preterms in normal form
to terms in normal form, as follows: if s and t are preterms in normal form, then

• 0 ≺ at if and only if a > 0.
• at ≺ 0 if and only if a < 0.
• 0 6≺ 0
• as ≺ bt if and only if:

– a is negative, and b is positive
– a and b are both positive, and either s ≺ t or s = t and a < b
– a and b are both negative, and either s ≻ t or s = t and a < b

It suffices to show

Lemma 8.6. There is a model M of T [F ] such that if ŝ and t̂ are terms in normal form
and ŝ ≺ t̂, then ŝ < t̂ holds in M.

Proof. Note that operations of addition, subtraction, multiplication, and division are natu-
rally defined on terms in normal form. For example, suppose a(a1s1+a2s2+ . . .+aksk) and
b(b1t1 + b2t2 + . . .+ blsl). To express their sum as a term in normal form, multiply through
by a and b, respectively, combine terms, and express the sum as c1u1 + c2u2 + . . .+ cmum,
where u1 ≻ u2 ≻ . . . ≻ um and each ci 6= 0, or 0. In the former case, the desired normal-
form term is c1(u1 + (c2/c1)u2 + . . . + (cm/c1)um). This term model almost satisfies the
claim of Lemma 8.6; it satisfies all the axioms of T [F ] indicated in Section 4, except for the
axiom that asserts that the multiplicative group of positive elements is divisible. That is,
all that is missing are nth roots of positive elements. To remedy the situation, we embed
this term model in an expanded set of formal terms, defined as follows.

Let F ′ be the smallest subfield of R that includes F and is closed under nth roots of
positive elements, for positive n. Define the set of extended preterms inductively, as above,
with the following changes:

• in the additive extended preterms a1t1+ . . .+aktk, the coefficients ai are taken from
F ′; and

• multiplicative extended preterms are taken to be formal products ti11 t
i2
2 . . . t

ik
k where

now the exponents ij are rational numbers.

Define the set of extended preterms in normal form, the ordering on these, the set of
extended terms in normal form, and the ordering on these, exactly as before. Once again,
operations of addition and multiplication can be defined on extended terms in normal form.
Lemma 8.1, as well as the analogue for additive preterms, carry over to extended preterms
as well.

Let M be the model whose universe is the set of extended terms in normal form, with
the associated ordering and operations of addition and multiplication. Clearly there is an
embedding of the set of terms in normal form into the set of extended terms in normal form
which preserves all the operations. So it suffices to show that M satisfies T [F ].

We simply run through the axioms given in Section 4. Verifying the axioms of Tcomm [F ]
is straightforward, as well as the fact that the terms form an abelian group under addition,
and the positive terms form an abelian group under multiplication.

To show that the ordering is compatible with multiplication of positive elements, we
need to show that s ≺ t → su ≺ tu holds of positive terms s, t, u in normal form. Let
s = as′, t = bt′, and u = cu′ where s′, t′, and u′ are preterms in normal form, and a, b, and
c are positive. Then su = (ac)s′u′ and tu = (bc)t′u′. Since s ≺ t, we have either s′ ≺ t′,
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or s′ = t′ and a < b. In the first case, Lemma 8.1 and Clause 3 of the definition of ≺
guarantees that s′u′ ≺ t′u′, and hence su ≺ tu. In the second case, s′u′ = t′u′ and ac < bc,
so, again, su ≺ tu.

Showing that the ordering is compatible with addition is similarly straightforward. So
we only need to show that the multiplicative group of positive elements is divisible. Let at
be an extended term in normal form satisfying at ≻ 0. Then a > 0, and we can view t as
a multiplicative preterm ti11 t

i1
2 . . . t

ik
k , possibly with k = 1 and i1 = 1. But this has nth root

n
√
at

i1/n
1 t

i1/n
2 . . . t

ik/n
k , where this is identified with n

√
at1 if k = 1 and i1/n = 1.

We note that the complicated definition of ≺ in the multiplicative clause of the ordering
of preterms was designed to ensure that ≺ is compatible with the axioms of T [F ]. This,
in turn, was used to construct the term model in the proof of Theorem 8.3. Theorem 8.3
remains true, however, for a simpler version of ≺, in which we simply use a lexicographic
ordering at the multiplicative stage. This simpler ordering, and the associated normal forms,
are more amenable to implementation. (Indeed, it may also be natural to order terms of
lower rank before terms of higher rank.) To derive the variant of Theorem 8.3 for these
normal forms, it suffices to show that the map from terms in the simpler normal form to
the normal form we have used here is injective. In other words, it suffices to show that if s
and t are in the simpler normal form, u a term in the normal form we have used here, and
T [F ] proves both s = u and t = u, then s and t are syntactically identical. This can be
done by a careful induction on the maximum rank of s and t.

Note also that it is harmless, and again useful from an implementation point of view,
to extend the language of T [F ] to include exponentiation to arbitrary integers. Since nth
roots of positive elements can be defined in T [F ], one can similarly expand the language
of T [F ] to allow nth root functions for positive n, or even exponentiation to any rational
power. One has to be careful, however, to provide a consistent interpretation of the nth
root function on negative elements, and natural simplifications may depend on knowing the

sign of the relevant terms. For example,
√
x2 can be simplified to x if x is positive and −x if

x is negative. For that reason, determining an appropriate normal form representation for
terms involving nth roots is more complicated. Similar complications arise in obtaining an
adequate handling of absolute value, max, and min. The issue of obtaining useful canonical
representations for such extensions is of practical importance, and is discussed further in
Section 14 below.

Finally, we note that the method of computing normal forms only gives a decision
procedure for provable equations in the absence of hypotheses. For example, T [F ] proves
1+x2+y2 6= 0 (or, equivalently, 1+x2+y2 = 0 → 0 = 1), but this is not provable in T ′[F ].

9. Building models of T [F ]

In Sections 10 and 11, our goal will be to prove undecidability results (and conditional
undecidability results) for the theories T [F ]. Recall the alternative formulations T [F ]∗

introduced in Section 4, in the language with symbols 0, 1,+,×, < and constants ca for
each a ∈ F . In light of Theorem 4.3, we will work exclusively with the theories T [F ]∗. Our
strategy will be to build models of T [F ]∗ in which F and Z are, respectively, definable. In
this section, we will develop techniques for building such models.
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Let R = 〈R,<,+,−,×〉 be an ordered real closed field extending the countable ordered
subfield F ⊆ R. More specifically, we assume that F is a subfield of R, where the ordering
on F agrees with the ordering in R.

Definition 9.1. We say that h is an F -bijection of R if and only if

(1) h : R→ R is an order preserving bijection.
(2) h(0) = 0 and h(1) = 1.
(3) For all x ∈ R and a ∈ F , we have h(ax) = ah(x).

Given an F -bijection h, we define the structure h−1[R] in the language of T [F ]∗ as
follows. The domain of h−1[R] is R. The symbols 0, 1,+, and < are interpreted as in R.
For a ∈ F , ca is interpreted as a. The symbol × is interpreted in h−1[R] as ⊗, defined by
the equation

x⊗ y = h−1(h(x)h(y)).

It follows from the definition that x⊗ y = z if and only if h(x)h(y) = h(z). Hence h is an
isomorphism from 〈R,⊗, <〉 onto 〈R,×, <〉.
Theorem 9.2. Let h be an F -bijection of R. The model h−1[R] satisfies T [F ]∗.

Proof. Recall the axiomatization of T [F ]∗ given in Section 4. We first verify axioms 1,2 in
h−1[R]. The group given by 0,+, < is obviously an ordered commutative group. Since h is
an isomorphism from 〈R,⊗, <〉 onto 〈R,×, <〉, we have that 1,×, < is a divisible ordered
commutative group on the positive elements of R.

Axioms 3a-3c obviously hold in h−1[R]. For axioms 4a,4b, note that for all a ∈ F ,

a⊗ x = h−1(h(a)h(x)) = h−1(ah(x)) = ah−1(h(x)) = ax.

Hence
(a+ b)⊗ x = (a+ b)x = ax+ bx = a⊗ x+ b⊗ x

and

a⊗(x+y) = a(x+y) = ax+ay = (a⊗x)+(a⊗y).
So far, we have only assumed that R is an ordered real closed field extending the count-

able ordered subfield F ⊆ R. We will now need to assume that R obeys some additional
conditions. Note that R is a densely ordered set. An interval in R is a J ⊆ R such that for
all x < y < z, x, z ∈ J , y ∈ R, we have y ∈ J . J is said to be nontrivial if and only if J has
infinitely many elements. This is the same as saying that J has at least two elements.

By a standard saturation argument, we will fix an ordered real closed field R, such that
the following hold:

(1) R is countable.
(2) R extends F in the sense above.
(3) Let n ≥ 1. Suppose that for all i ≥ 1, gi, hi : R

n → R are R-definable, where n
may depend on i. Then ∪igi[F

n] has an upper bound. Furthermore, suppose each
gi[F

n] lies strictly below each hj [F
n]. Then the interval strictly above each gi[F

n]
and strictly below each hj [F

n] is nontrivial.

Here, as always, R-definability allows the use of parameters from R, and the notation f [S]
denotes the forward image of f on S. The existence of such a field can be proved by starting
with a countable ordered real closed subfield R0 of R containing F , and then building a
countably infinite chain of elementary extensions. At each stage, use compactness to ensure
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that the required upper bounds in 3 exist, and also that there are x < y forming the required
nontrivial intervals. (For similar constructions see, for example, [9, Chapter 5].)

Below, we will refer to condition 3 as the “saturation condition on F,R.” We will use
the terms “lower bound” and “upper bound” in the weak sense (≤, ≥), and we will use
the terms “strict lower bound” and “strict upper bound” in the strong sense (<, >). For
x1, . . . , xn ∈ R, we write F [x1, . . . , xn] for the subfield of R obtained by adjoining x1, . . . , xn
to F .

Lemma 9.3. Let x1, . . . , xn, y, z ∈ R, where y < z. There exists y < w < z such that w is
not algebraic over F [x1, . . . , xn].

Proof. Let x1, . . . , xn, y, z be as given. Let g1, g2, . . . be R-definable functions where the
union of their images over appropriate Cartesian powers of F consists of all elements 1/(u−
y), where u > y is algebraic over F [x1, . . . , xn]. By the saturation property of F,R, these
elements have a strict upper bound b. Hence y + 1/b is a strict lower bound on these
elements. Set w = y + 1/b.

Our goal in the next two sections will be to construct F -bijections of R such that
properties of Q or Z are coded into h−1[R]. Our strategy will be to iteratively extend
partial F -homomorphisms until they become total and onto. The following definitions and
lemmas will support our constructions.

Definition 9.4. Let V [F,R] be the family of all sets E ⊆ R such that for some x1, . . . , xn ∈
R, n ≥ 0,

E = {axi | 1 ≤ i ≤ n ∧ a ∈ F}.
Let W [F,R] be the set of all partial one-one functions h from R into R such that the
following hold:

(1) dom(h) ∈ V [F,R].
(2) h is order preserving.
(3) h(0) = 0 and h(1) = 1.
(4) For all x ∈ dom(h) and a ∈ F , we have h(ax) = ah(x).

Note that for all h ∈W [F,R], rng(h) ∈ V [F,R].

Lemma 9.5. Every E ∈ V [F,R] is the image of an R-definable function on some Fn.
Every h ∈W [F,R] is the restriction of an R-definable function to its domain.

Proof. The first claim follows immediately from the definition. For the second claim, fix
x1, . . . , xn ∈ R such that dom(h) = {axi | 1 ≤ i ≤ na ∈ F}. Then h = h1 ∪ . . . ∪ hn, where
each hi : {axi | a ∈ F} → {ah(xi) : a ∈ F} is given by hi(axi) = ahi(xi).

Lemma 9.6. For all h ∈W [F,R], h−1 ∈W [F,R].

Proof. Let h ∈ W [F,R]. For all x, y ∈ rng(h) = dom(h−1), if x < y, then h(h−1(x)) <
h(h−1(y)), and so h−1(x) < h−1(y). Similarly, h−1(0) = h−1(h(0)) = 0 and h−1(1) =
h−1(h(1)) = 1. For any a in F and x in rng(h), h−1(ax) = h−1(h(a)h(h−1(x))) =
h−1(h(ah−1(x))) = ah−1(x), as required.
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The following proposition provides a connection between types over Tcomm [F ], which
were discussed in Section 6, and the elements of W [F,R].

Proposition 9.7. Let x1, . . . , xn, y1, . . . , yn be elements of R. Then there is an h ∈W [F,R]
satisfying h(xi) = yi for every i if and only if ~x and ~y have the same types over Tcomm [F ].

We will not use Proposition 9.7 below, and so we omit the proof, which is straightfor-
ward.

We now determine ways in which elements ofW [F,R] can be extended. We write fld(h)
for dom(h) ∪ rng(h). The F -multiples of x ∈ R are the elements ax, for a ∈ F . We write
h ⊆1 h

′ if and only if the following hold:

(1) h, h′ ∈W [F,R].
(2) h ⊆ h′.
(3) There exists x ∈ dom(h′)\dom(h) such that dom(h′) = dom(h)⊎{ax | a ∈ F \{0}}.

Here, ⊎ denotes a disjoint union. Then h ⊆1 h
′ is equivalent to the following assertions.

(1) h, h′ ∈W [F,R].
(2) h ⊆ h′.
3’ There exists y ∈ rng(h′) \ rng(h) such that rng(h′) = rng(h) ⊎ {ay | a ∈ F \ {0}}.

Note that h ⊆1 h
′ if and only if h−1 ⊆1 h

′−1. Note also that in 3,3’ above, x and y are not
unique, but they are unique up to multiplication by an element of F .

Lemma 9.8. Let h ∈W [F,R] and x ∈ R\dom(h), x > 0. There exists a nontrivial interval
J such that the following holds: for all y ∈ J , there exists h ⊆1 h

′ such that h′(x) = y.

Proof. Let h, x be as given. Obviously rng(h) = h[dom(h)↾<x] ⊎ h[dom(h)↾>x], where
h[dom(h)↾<x] lies strictly below h[dom(h)↾>x].

Case 1. dom(h)↾> x is empty. Let J be the interval of elements of R strictly above
rng(h). By Lemma 9.5 and the saturation property of F,R, fld(h) has a strict upper bound.
Hence J is nontrivial. Let y ∈ J , and define h′(ax) = ay, for all a ∈ F . We have only to
verify that h′ ∈W [F,R].

It suffices to show that h′ is order preserving. First, suppose ax < a′x, a, a′ ∈ F \ {0}.
Then a < a′, and so h′(ax) = ah′(x) < a′h′(x) = h′(a′x).

Next, suppose v < ax, a ∈ F \ {0}, v ∈ dom(h). If a < 0 then v/ − a > x, which is
impossible. Hence a > 0. Now h(v/a) < h′(x). Hence h(v) < ah′(x) = h′(ax).

Finally, suppose ax < v, a ∈ F \ {0}, v ∈ dom(h). If a > 0 then x < v/a, which is
impossible. Hence a < 0. Now h(v/a) < h′(x), so h(v)/a < h′(x), h(v) > ah′(x) = h′(ax),
and h′(ax) < h(v).

Case 2. dom(h)↾<x and dom(h)↾>x are nonempty. Let J be the interval lying strictly
above h[dom(h)↾<x] and strictly below h[dom(h)↾>x]. By Lemma 9.5, these two sets are
each images of an R-definable function on some Fn. Hence by the saturation condition on
F,R, J is nontrivial. Let y ∈ J , and define h′(ax) = ay, for all a ∈ F . We have only to
verify that h′ ∈W [F ].

It suffices to show that h′ is order preserving. Suppose ax < a′x, a, a′ ∈ F \ {0}. Then
a < a′, and so h′(ax) = ah′(x) < a′h′(x) = h′(a′x).

Suppose v < ax, a ∈ F \ {0}, v ∈ dom(h). First assume a > 0. Then v/a < x, and
so h(v/a) < h′(x), h(v)/a < h′(x), and h(v) < ah′(x) = h′(ax). Now assume a < 0. Then
v/a > x, and so h(v/a) > h′(x), h(v)/a > h′(x), and h(v) < ah′(x) = ah′(ax).
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Finally, suppose ax < v, a ∈ F \ {0}, v ∈ dom(h). First assume a > 0. Then x < v/a,
and so h′(x) < h(v/a) = h(v)/a, ah′(x) < h(v), h′(ax) < h(v). Now assume a < 0. Then
x > v/a, and so h′(x) > h(v/a) = h(v)/a, ah′(x) < h(v), and h′(ax) < h(v).

Lemma 9.9 (First Extension Lemma). Let h ∈ W [F ] and x 6∈ dom(h). Then there exists
a nontrivial interval J such that the following holds: for all y ∈ J , there exists h ⊆1 h

′ such
that h′(x) = y.

Proof. Let h,x be as given. The case x > 0 is given by Lemma 9.8. So, suppose x < 0.
Apply Lemma 9.8 to the case −x > 0, obtaining a nontrivial J such that for all y ∈ J ,
there exists h ⊆1 h

′ such that h′(−x) = y.
We claim that −J is a nontrivial interval such that for all y ∈ −J , there exists h ⊆1 h

′

such that h′(x) = y. To see this, let y ∈ −J . Then −y ∈ J , and hence there exists h ⊆1 h
′

such that h′(−x) = −y. But h′(−x) = −y implies h′(x) = y, as required.

Lemma 9.10 (Second Extension Lemma). Let h ∈ W [F ] and x 6∈ rng(h). There exists a
nontrivial interval J such that the following holds: for all y ∈ J , there exists h ⊆1 h

′ such
that h′(y) = x.

Proof. We obtain this from Lemma 9.9 as follows. Let h, x be as given. Then h−1 ∈ W [F ]
and x 6∈ dom(h−1). By Lemma 9.8, let J be a nontrivial interval such that for all y ∈ J ,
there exists h−1 ⊆1 h

′ such that h′(x) = y.
We claim that for all y ∈ J , there exists h ⊆1 h

′′ such that h′′(y) = x. To see this, let
h ⊆1 h

′ be such that h′(x) = y. Then h−1 ⊆1 h
′−1 and h′−1(y) = x. That is, we can set

h′′ = h′−1.

10. Existential consequences of T [F ]

The existential theory of F consists of all sentences

∃x1, . . . , xn ∈ F ϕ(x1, . . . , xn)

where ϕ is a quantifier free formula involving +,×,<, and is interpreted in R. Here we show
that the existential theory of F can be effectively reduced to the existential consequences
of T [F ] without auxiliary functions. This yields, in particular, a conditional undecidability
result for T [Q]; see Corollary 10.6 below.

We adhere strictly to the convention that if an equation holds, then both sides must be
defined. Also, a term is defined if and only if each subterm is defined. For example,

h−1(h(x)h(1 + x)) = x+ h−1(h(x)2)

implies that both sides of this equation are defined. In particular, the above equation
implies that x, 1 + x ∈ dom(h).

Let h ∈ W [F,R]. We write alg(F, h) for the elements that are algebraic over some
F [x1, . . . , xn], x1, . . . , xn ∈ fld(h). We write trans(F, h) for R \ alg(F, h).

Note that by Lemma 9.5, there exists x1, . . . , xn ∈ R such that every element of alg(F, h)
is algebraic over F [x1, . . . , xn]. This allows us to use Lemma 9.3 to obtain an element of
trans(F, h) in every nontrivial interval.

Lemma 10.1. Let h ∈W [F,R] be such that for every x, if

h−1(h(x)h(1 + x)) = x+ h−1(h(x)2),
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then x ∈ F . Let b 6∈ dom(h). There exists h ⊆1 h
′ ∈ W [F,R], h′(b) defined, such that h′

has the same property; i.e. for every x, if

h′−1(h′(x)h′(1 + x)) = x+ h′−1(h′(x)2),

then x ∈ F .

Proof. Let h,b be as given. By Lemmas 9.9 and 9.3, define h ⊆1 h′ such that h′(b) ∈
trans(F, h). We first show the conclusion for all ab, a ∈ F . We assume

h′−1(h′(ab)h′(1 + ab)) = ab+ h′−1(h′(ab)2).

and derive a contradiction. Clearly h′(ab)2 = (ah′(b))2 = a2h′(b)2 ∈ rng(h′). Since a ∈ F
and h′(b) ∈ trans(F, h), a2h′(b)2 ∈ rng(h′) \ rng(h), which consists of the nonzero F -
multiples of h′(b). This contradicts that h′(b) ∈ trans(F, h).

Finally, we show the conclusion for all x ∈ dom(h) \ F . We assume

h′−1(h′(x)h′(1 + x)) = x+ h′−1(h(x)2) (10.1)

and derive a contradiction. By the hypothesis on h, (10.1) does not hold with h′ replaced
by h. Hence if we replace h′ by h, at least one side of (10.1) is undefined.

Case 1. h(1 + x) is undefined. Let 1 + x = ab, a ∈ F \ {0}. Hence
h′−1(h(x)ah′(b)) = x+ h′−1(h′(ab−1)2).

Hence h(x)h′(b) ∈ rng(h′). Since h′(b) ∈ trans(F, h), h(x)h′(b) ∈ rng(h′) \ rng(h). Hence
h(x)h′(b) is a nonzero F -multiple of h′(b). This contradicts that h(x) 6∈ F .

Case 2. h(1 + x) is defined, but h−1(h(x)h(1 + x)) is not defined. Then h(x)h(1 + x)
is a nonzero F -multiple of h′(b). Since x 6= −1, this product is nonzero. This contradicts
that h′(b) ∈ trans(F, h).

Case 3. h−1(h(x)h(1 + x)) is defined, but h−1(h(x)2) is undefined. Then h(x)2 is a
nonzero F -multiple of h′(b). This contradicts that h′(b) ∈ trans(F, h).

Lemma 10.2. Let h ∈W [F,R] be such that for every x, if

h−1(h(x)h(1 + x)) = x+ h−1(h(x)2)

then x ∈ F . Let b 6∈ rng(h). Then there exists h ⊆1 h
′ ∈ W such that h′−1(b) is defined,

and for every x, if
h′−1(h′(x)h′(1 + x)) = x+ h′−1(h′(x)2)

then x ∈ F .

Proof. Let h, b be as given. By Lemmas 9.10 and 9.3, let h ⊆1 h′, where h′−1(b) ∈
trans(F, h). Write c = h′−1(b).

We first show the conclusion for all ac, a ∈ F \ {0}. We assume

h′−1(h′(ac)h′(1 + ac)) = ac+ h′−1(h′(ac)2)

and derive a contradiction. From the assumption, we have 1 + ac ∈ dom(h′). Since c ∈
trans(F, h), 1 + ac ∈ dom(h′) \ dom(h). Hence 1 + ac is a nonzero F -multiple of c. This
contradicts c ∈ trans(F, h).

Finally, we show the conclusion for all x ∈ dom(h) \ F . We assume

h′−1(h(x)h′(1 + x)) = x+ h′−1(h(x)2) (10.2)

and derive a contradiction. By the hypothesis on h, (10.2) does not hold with h′ replaced
by h. Hence if we replace h′ by h, at least one side of (10.2) is undefined.
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Case 1. h−1(h(x)2) is undefined. Then h(x)2 is a nonzero F -multiple of b and h′−1(h(x)2)
is a nonzero F -multiple ac of c. Clearly the left side of (10.2) either lies in dom(h) or is a
nonzero F -multiple ac of c. Both possibilities contradict that c ∈ trans(F, h).

Case 2. h−1(h(x)2) is defined and h(1 + x) is undefined. Then h(1 + x) is a nonzero
F -multiple of b and 1+x is a nonzero F -multiple of c. This contradicts that c ∈ trans(F, h).

Case 3. h−1(h(x)2) and h(1+x) are defined, but h−1(h(x)h(1+x)) is undefined. Hence
h(x)h(1 + x) is a nonzero F -multiple of b and h′−1(h(x)h(1 + x)) is a nonzero F -multiple
of c. But the right side of (10.2) is algebraic in fld(h). This is a contradiction.

Theorem 10.3. There is a model M of T [F ]∗ with domain R, with the same 0,1,+,< of
R, in which for all b, b(1 + b) = b+ b2 holds if and only if b ∈ F . In this equation, we use
the multiplication of M to multiply b and 1 + b.

Proof. Let h be the identity function on F . Then h ∈W [F,R], and trivially we have that

• for every x, if h−1(h(x)h(1 + x)) = x+ h−1(h(x)2) then x ∈ F ; and
• for every x ∈ F , h−1(h(x)h(1 + x)) = x+ h−1(h(x)2).

Thus we can iterate Lemmas 10.1 and 10.2, starting with the identity function on F , diago-
nalizing over the countably many elements of R. We then obtain h ∈W [F,R] with domain
R, such that

for every x in R, h−1(h(x)h(1 + x)) = x+ h−1(h(x)2) if and only if x ∈ F .

The required model M of T [F ]∗ is h−1[R]. Calculating in M, we have

x⊗ (1 + x) = h−1(h(x)h(1 + x))

and
x+ (x⊗ x) = x+ h−1(h(x)2)

Hence, for every x in R, we have x⊗(1+x) = x+(x⊗x) if and only if x ∈ F , as required.

Corollary 10.4. An existential sentence ϕ over F in the language of ordered fields is true
if and only if in any model of T [F ]∗, ϕ has witnesses among the b with b(1 + b) = b+ b2.

Proof. Suppose ϕ has the form ∃x1, . . . , xn ψ(x1, . . . , xn) with ψ quantifier-free, and suppose
ψ(a1, . . . , an) holds with a1, . . . , an ∈ F . Let M be a model of T [F ]∗. Then for all 1 ≤ i ≤ n,
T [F ]∗ proves ϕ(ca1 , . . . , can) and cai(1 + cai) = cai + c2ai .

For the converse, LetM be a model of T [F ]∗ given by Theorem 10.3. Then the witnesses
must lie in F .

Corollary 10.5. The existential theory over F is effectively reducible to the existential
consequences of T [F ]∗ without auxiliary constants, and to the existential consequences of
T [F ] without auxiliary functions. The reduction can be accomplished in linear time.

Proof. From Theorem 4.1 and Corollary 10.4. By Theorem 4.3, the we can use T [F ] in
place of T [F ]∗.

Corollary 10.6. If Hilbert’s 10th Problem over the rationals is undecidable (as expected),
then the existential consequences of T [Q] and T [Q]∗, not mentioning auxiliary constants or
auxiliary functions, respectively, are each undecidable. The former can be reduced to the
latter by a linear time reduction.

Proof. Immediate from Corollary 10.5.
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11. ∀∀∀∃∗ consequences of T [F ]

We use Z+ for the set of all positive integers, and N for the set of all nonnegative
integers.

Lemma 11.1. There exists µ, κ, λ ∈ R such that

(1) For every n in N, we have n < µ, µn < κ, and κn < λ.
(2) [µ,∞) ∩ F = ∅.

Proof. By the saturation condition on F,R.

We fix µ,κ,λ given by Lemma 11.1. Let K[F,R] be the set of all functions h such that

(1) h ∈W [F,R].
(2) h is the identity on {µ, κ, λ, µκ, µλ, κλ}.

We will build a bijection h ∈ K[F,R], h : R → R, such that for all x ∈ R, 1 ≤ x ≤ µ, the
equation

(κ+ x)(λ+ x) = κλ+ κx+ λx+ x2

holds in h−1[R] if and only if x ∈ N. That is, for all x ∈ R, 1 ≤ x ≤ µ,

f−1(f(κ+ x)f(λ+ x)) =

f−1(f(κ)f(λ)) + f−1(f(κ)f(x)) + f−1(f(λ)f(x)) + f−1(f(x)2)

if and only if x ∈ Z+. In other words, for all x ∈ R, 1 ≤ x ≤ µ,

f−1(f(κ+ x)f(λ+ x)) = κλ+ f−1(κf(x)) + f−1(λf(x)) + f−1(f(x)2)

if and only if x ∈ Z+.

Lemma 11.2. Let h ∈ K[F,R], where for every x in [1, µ], if

h−1(h(κ + x)h(λ+ x)) = κλ+ h−1(κh(x)) + h−1(λh(x)) + h−1(h(x)2),

then x is in Z+. Let b 6∈ dom(h). Then there exists h ⊆1 h
′ such that h′(b) is defined and

for every x in [1, µ], if

h′−1(h′(κ+ x)h′(λ+ x)) = κλ+ h′−1(κh′(x)) + h′−1(λh′(x)) + h′−1(h′(x)2),

then x is Z+.

Proof. Let h,b be as given. By Lemmas 9.9 and 9.3, let h ⊆1 h
′, where h′(b) ∈ trans(F, h).

Note that rng(h′) \ rng(h) consists of the nonzero F -multiples of h′(b).
We first show the conclusion for all ab, a ∈ F \ {0}. We assume

h′−1(h′(κ+ ab)h′(λ+ ab)) = κλ+ h−1(κh(ab)) + h−1(λh(ab)) + h′−1(h′(ab)2)

and derive a contradiction.
Clearly h′−1(h′(ab)2) = h′−1(a2h′(b)2) is defined. Since h′(b) ∈ trans(F, h), a2h′(b)2 ∈

rng(h′) \ rng(h). Hence a2h′(b)2 is an F -multiple of h′(b). This contradicts that h′(b) ∈
trans(F, h).

Finally, we show the conclusion for all x ∈ dom(h) \ Z+, 1 ≤ x ≤ µ. We assume

h′−1(h′(κ+ x)h′(λ+ x)) = κλ+ h′−1(κh(x)) + h′−1(λh(x)) + h′−1(h(x)2) (11.1)

and derive a contradiction. By the hypothesis on h, (11.1) does not hold with h′ replaced
by h. Hence if we replace h′ by h, at least one side of (11.1) is undefined.
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First, we claim that h−1(h(x)2) is defined. Otherwise, h(x)2 is a nonzero F -multiple of
h′(b). This contradicts that h′(b) ∈ trans(F, h).

Second, we claim that h−1(κh(x)) is defined. Otherwise, κh(x) is a nonzero F -multiple
of h′(b).

Third, we claim that h−1(λh(x)) is defined. Otherwise, λh(x) is a nonzero F -multiple
of h′(b).

From these three claims, we see that the right side of (11.1) is defined if we replace h′

by h. Therefore h−1(h(κ + x)h(λ+ x)) is undefined.
Case 1. h(κ+ x) and h(λ+ x) are undefined. Then h′(κ+ x),h′(λ+ x) are nonzero F -

multiples of h′(b). Since h′(b) ∈ trans(F, h), the product h′(κ+x)h′(λ+x) ∈ rng(h′)\rng(h).
Hence h′(κ+x)h′(λ+x) is a nonzero F -multiple of h′(b). Also h′(κ+x)h′(λ+x) is a nonzero
F -multiple of h′(b)2. This contradicts that h′(b) ∈ trans(F, h).

Case 2. h(κ + x) is undefined, but h(λ + x) is defined. Since λ + x 6= 0, we have
h(λ+x) 6= 0. Now h′(κ+x) is a nonzero F -multiple of h′(b). Since h′(b) ∈ trans(F,fld(h)),
h′(κ + x)h(λ + x) ∈ rng(h′) \ rng(h). Hence h′(κ + x)h(λ + x) is a nonzero F -multiple of
h′(b). Therefore h(λ + x) ∈ F , and hence h(λ + x) = λ+ x ∈ F . In particular, λ + x ∈ F
and x ≥ 0. This contradicts Lemma 11.1.

Case 3. h(κ + x) is defined, h(λ + x) is undefined. Since κ + x 6= 0, we have h(κ +
x) 6= 0. Now h′(λ + x) is a nonzero F -multiple of h′(b). Since h′(b) ∈ trans(F,fld(h)),
h(κ + x)h′(λ + x) ∈ rng(h′) \ rng(h). Hence h(κ + x)h′(λ + x) is a nonzero F -multiple of
h′(b). Therefore h(κ + x) ∈ F , and hence h(k + x) = κ + x ∈ F . In particular, κ + x ∈ F
and x ≥ 0. This contradicts Lemma 11.1.

Case 4. h(κ + x) and h(λ + x) are defined. Since h−1(h(κ + x)h(λ + x)) is undefined,
h(κ+x)h(λ+x) is a nonzero F-multiple of h′(b). This contradicts that h′(b) ∈ trans(F, h).

Lemma 11.3. Let h ∈ K[F,R] be such that for every x in [1, µ], if

h−1(h(κ + x)h(λ+ x)) = κλ+ h−1(κh(x)) + h−1(λh(x)) + h−1(h(x)2),

then x is in Z+. Let b 6∈ rng(h). Then there exists h ⊆1 h
′ such that h′−1(b) defined and

for every x in [1, µ], if

h′−1(h′(κ+ x)h′(λ+ x)) = κλ+ h′−1(κh′(x)) + h′−1(λh′(x)) + h′−1(h′(x)2),

then x is in Z+.

Proof. and 9.3, let h ⊆1 h
′, where h′−1(b) ∈ trans(F,fld(h)). Write c = h′−1(b). Note that

dom(h′) \ dom(h) consists of the nonzero F -multiples of c.
We first show the conclusion for all ac, a ∈ F \ {0}. We assume

h′−1(h′(κ+ ac)h′(λ+ ac)) = κλ+ h−1(κh(ac)) + h−1(λh(ac)) + h′−1(h′(ac)2)

and derive a contradiction. In particular, the assumption implies that h′(κ+ac) is defined,
and so κ + ac ∈ dom(h) or κ+ ac is an F -multiple of c. Both alternatives contradict that
c ∈ trans(F,fld(h)).

Finally, we show the conclusion for all x ∈ dom(h) \ Z+, 1 ≤ x ≤ µ. We assume

h′−1(h′(κ+ x)h′(λ+ x)) = κλ+ h′−1(κh(x)) + h′−1(λh(x)) + h′−1(h(x)2) (11.2)

and derive a contradiction.
There are five terms in (11.2). The four terms other than κλ are each either a nonzero

F -multiple of c or an element of fld(h). Since c ∈ trans(F,fld(h)), the ones that are nonzero
F -multiples of c must cancel.
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We now use the inequalities on x,µ,κ, and λ. Note that

• (κ+ x)(λ+ x) > κλ.
• h′((κ + x)(λ+ x)) > h′(κλ) = κλ.
• h′−1(h′(κ+ x)h′(λ+ x)) > h′−1(κλ) = κλ.
• x ≤ µ.
• h(x) ≤ h(µ) = µ.
• κh(x) ≤ µκ.
• h′−1(κh(x)) ≤ h′−1(µκ) = µκ.
• λh(x) ≤ µλ.
• h′−1(λh(x)) ≤ h′−1(µλ) = µλ.
• h(x)2 ≤ µ2 < κ.
• h′−1(h(x)2) ≤ h′−1(κ) < κ.
• h′−1(h′(κ + x)h′(λ + x)) > κλ > µκ + µλ + κ ≥ h′−1(κh(x)) + h′−1(λh(x)) +
h′−1(h(x)2).

It is now obvious that the terms that are nonzero F -multiples of c cannot include h′−1(h′(κ+
x)h′(λ+ x)).

This leaves h′−1(κh(x)), h′−1(λh(x)), h′−1(h(x)2) as the terms that might be nonzero
F -multiples of c. Using the above, we have

• h′−1(h(x)2) < κ.
• h′−1(κh(x)) ≤ µκ.
• h′−1(λh(x)) ≤ µλ.
• x ≥ 1.
• h(x) ≥ h(1) = 1.
• κh(x) ≥ κ.
• h′−1(κh(x)) ≥ h′−1(κ) = κ.
• h(x) ≥ h(1) = 1.
• λh(x) ≥ λ.
• h′−1(λh(x)) ≥ h′−1(λ) = λ.

Hence

• h′−1(h(x)2) < κ.
• κ ≤ h′−1(κh(x)) ≤ µκ.
• λ ≤ h′−1(λh(x)).

It is now clear that none of h′−1(κh(x)), h′−1(λh(x)), h′−1(h(x)2) can be a nonzero F -
multiple of c. Hence

h′−1(h′(κ+ x)h′(λ+ x)), h′−1(κh(x)), and h′−1(λh(x)), h′−1(h(x)2)

all lie in dom(h). Therefore

h′(κ+ x)h′(λ+ x), κh(x), λh(x), and h(x)2

lie in rng(h). We claim that h′(κ + x), h′(λ + x) ∈ rng(h). To see this, first suppose both
are not in rng(h). Then κ + x and λ+ x are F -multiples of c, and so (κ + x)(λ + x) is of
the form aa′c2, where a, a′ ∈ F . This contradicts the fact that c is in trans(F, h).

Now suppose one of them, say, by symmetry, h′(κ + x), is an F -multiple of c, and the
other, h′(λ+x), lies in rng(h). Since λ+x 6= 0, we have h′(λ+x) 6= 0. Then h′(κ+x)h′(λ+x)
is of the form acu, where a ∈ F \ {0} and u ∈ rng(h). But h′(κ + x)h′(λ + x) ∈ rng(h).
Hence acu ∈ rng(h) \ {0}. This contradicts the fact that that c is in trans(F, h).
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From h′(κ + x), h′(λ + x) ∈ rng(h), we obtain that κ + x, λ + x ∈ dom(h). Thus we
see that both sides of (11.2) are defined if we replace h′ by h. Hence (11.2) holds with h′

replaced by h. This is a contradiction.

We want to iterate Lemmas 11.2 and 11.3, but we first need to deal with the base case.
Let

S = {κ+ x : x ∈ Z+} ∪ {λ+ x : x ∈ Z+} ∪ {κλ+ κx+ λx+ x2 | x ∈ Z+}∪
{1, µ, κ, λ, µκ, µλ, κλ}.

Let S′ be the set of all F -multiples of elements of S.

Lemma 11.4. Let x ∈ S′, 1 ≤ x ≤ µ. If κ+x ∈ S′ then x ∈ Z+. If λ+x ∈ S′ then x ∈ Z+.

Proof. Let x be as given. Suppose κ + x ∈ S′. Since κ + x < 2κ, clearly κ + x is not a
nonzero F -multiple of any element of

{λ+ x | x ∈ Z+} ∪ {κλ+ κx+ λx+ x2 | x ∈ Z+} ∪ {λ, µκ, µλ, κλ}.
Since κ + x is greater than every µn, n ∈ Z+, κ + x is not a nonzero F -multiple of any
element of {1, µ}.

Now suppose κ + x is an F -multiple of κ + y, y ∈ N. Write κ + x = a(κ + y), a ∈ F .
Then κ = (ay − x)/(1 − a) or a = 1. Now |ay − x| ≤ |ay| + |x| ≤ µ + µ = 2µ. Also
1/|1 − a| ≤ µ or a = 1. Hence κ ≤ 2µ2 or a = 1. Therefore a = 1. Hence κ + x = κ + y,
and x = y. Therefore x ∈ Z+.

Suppose λ+ x ∈ S′. Since λ+ x < 2λ, clearly λ+ x is not a nonzero F -multiple of any
element of {µλ, κλ} ∪ {κλ + κx + λx+ x2 | x ∈ N}. Since λ+ x is greater than every κn,
n ∈ Z+, λ+x is not a nonzero F -multiple of any element of {κ+x : x ∈ Z+}∪{1, µ, κ, µκ}.

Now suppose λ + x is a nonzero F -multiple of λ + y, y ∈ Z+. Argue as above that
x ∈ Z+.

Lemma 11.5. There exists a bijection h ∈ K[F,R], h : R → R, such that the following
holds. For all x ∈ dom(h) with 1 ≤ x ≤ µ, we have

h−1(h(κ + x)h(λ+ x)) = κλ+ h−1(κh(x)) + h−1(λh(x)) + h−1(h(x)2)

if and only if x is in Z+.

Proof. Let h be the identity function on S′. Obviously h ∈ K[F,R]. By Lemma 11.4, for
all x ∈ dom(h) such that 1 ≤ x ≤ µ, if

h−1(h(κ + x)h(λ+ x)) = κλ+ h−1(κh(x)) + h−1(λh(x)) + h−1(h(x)2)

then x ∈ Z+. This is because for the relevant x, if h(κ+ x) is defined then x ∈ Z+.
For the reverse, let x ∈ Z+, and note that

h−1(h(κ+ x)h(λ + x)) = h−1((κ+ x)(λ+ x)) = h−1(κλ+ κx+ λx+ x2) =

κλ+ κx+ λx+ x2.

So

κλ+ h−1(κh(x)) + h−1(λh(x)) + h−1(h(x)2) =

κλ+ h−1(κx) + h−1(λx) + h−1(x2) = κλ+ κx+ λx+ x2.
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Lemma 11.6. There exists a bijection h ∈ K[F,R], h : R → R, such that the following
holds. For all x ∈ R with 1 ≤ x ≤ µ, we have

h−1(h(κ + x)h(λ+ x)) = κλ+ h−1(κh(x)) + h−1(λh(x)) + h−1(h(x)2)

if and only if x is in Z+.

Proof. Start with the h given by Lemma 11.5, and iterate Lemmas 11.2 and 11.3, diagonal-
izing over the countably many elements of R.

Theorem 11.7. There is a model M of T [F ]∗ with domain R, with the same 0, 1,+, < as
R, with three elements µ, κ, λ such that the following holds. For all x ∈ R with 1 ≤ x ≤ µ,
we have (κ+ x)(λ+ x) = κλ+ κx+ λx+ x2 if and only if x is in Z+. In this equation, we
use the multiplication of M.

Proof. By Theorem 9.2 and Lemma 11.6.

We say that a quadruple 〈M,µ, κ, λ〉 has property (*) if and only if

(1) M is a model of T [F ]∗.
(2) µ, κ, λ ∈ dom(M).
(3) The x ∈ dom(M) for which 1 ≤ x ≤ µ and (κ + x)(λ + x) = κλ + κx + λx + x2

contain 1 and are closed under +1.

There is the stronger property (**) of 〈M, µ, κ, λ〉 that asserts the following.

(1) M is a model of T [F ]∗.
(2) µ, κ, λ ∈ dom(M).
(3) The x ∈ dom(M) for which 1 ≤ x ≤ µ and (κ+ x)(λ+ x) = κλ+ κx+ λx+ x2 are

exactly the positive integers in M.

Corollary 11.8. Let D be a Diophantine equation over the positive integers. Then D has
a solution in nonnegative integers if and only if the following holds. For all quadruples
〈M, µ, κ, λ〉 with property (*), D has a solution over the x such that 1 ≤ x ≤ µ and
(κ+ x)(λ+ x) = κλ+ κx+ λx+ x2.

Proof. Let D be as given. SupposeD has a solution in the positive integers. Let 〈M, µ, κ, λ〉
have property (*). Then the x such that 1 ≤ x ≤ µ and (κ+x)(λ+x) = κλ+κx+λx+x2

must contain the positive integers.
Conversely, suppose that for all quadruples 〈M,µ, κ, λ〉 with property (*), D has a

solution over the x such that 1 ≤ x ≤ µ and (κ + x)(λ + x) = κλ + κx + λx + x2. By
Theorem 11.8, there exists 〈M, µ, κ, λ〉 with property (**). Hence D has a solution over
the positive integers.

Theorem 11.9. The set of consequences of T [F ]∗ without auxiliary constants, and of T [F ]
without auxiliary functions, is undecidable. In fact, the set of ∀∀∀∃∗ consequences of T [F ]∗
without auxiliary constants, and of T [F ] without auxiliary functions, is complete r.e.

Proof. We use Corollary 11.8 and that Hilbert’s 10th problem over Z+is complete r.e. We
can express

〈M, µ, κ, λ〉 has property (*)
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as the formula ϕ(µ, κ, λ) given by

(κ+ 1)(λ+ 1) = κλ+ κ+ λ+ 1∧
∀x ((1 ≤ x ≤ µ ∧ (κ+ x(λ+ x) = κλ+ κx+ λx+ x2) →

(1 ≤ x+ 1 ≤ µ ∧ (κ+ (x+ 1))(λ + (x+ 1)) = κλ+ κ(x+ 1) + λ(x+ 1) + (x+ 1)2)).

Then we can write

for all quadruples 〈M, µ, κ, λ〉 with property (*), D has a solution over the
x such that 1 ≤ x ≤ µ and (κ+ x)(λ+ x) = κλ+ κx+ λx+ x2

as the assertion that

∀µ, κ, λ (ϕ(µ, κ, λ) →
D has a solution over the x such that 1 ≤ x ≤ µ and

(κ+ x)(λ+ x) = κλ+ κx+ λx+ x2)

is provable in T [F ]∗. Note that the sentence above is in the form ∀∀∀∃∗. By Theorem 4.3,
we can replace T [F ] by T [F ]∗.

12. Avoiding disjunctions

In Section 7, we saw that the universal fragment of T [Q] is decidable. The proof,
however, involves a complex reduction to the language of real closed fields. As a result, the
procedure is of little practical importance: T [Q] is weaker than the theory of real closed
fields, our decision procedure works for only the universal fragment of the language, and
it does so less efficiently than procedures for the corresponding fragment of real closed
fields. The procedure we describe is in no sense more extensible to larger languages than
procedures for real closed fields. It may therefore seem as though we have taken a step in
the wrong direction.

We maintain, however, that the analysis provides guidance in designing heuristic pro-
cedures for the reals that address the aims outlined in Section 1. An obvious strategy for
capturing inferences like the ones described there is to work backwards from the desired
conclusion, using the obvious monotonicity laws. For example, when the terms s, t, and u
are known to be positive, one can prove st ≤ uv by proving s ≤ u and t ≤ v. The examples
presented in Section 1 can be verified by iteratively applying such rules.

There are drawbacks to such an approach, however. For one thing, excessive case splits
can lead to exponential blowup; e.g. one can show st > 0 by showing that s and t are either
both strictly positive or both strictly negative. And the relevant monotonicity inferences
are generally nondeterministic: one can show r+s+ t > 0 by showing that two of the terms
are nonnegative and the third is strictly positive, and one can show r + s < t+ u+ v + w,
say, by showing r < u, s ≤ t+ v, and 0 ≤ w.

In “straightforward” inferences that arise in practice, however, sign information is typi-
cally available. This is the case with the examples in Section 1, where all the relevant terms
are easily seen to be positive. It is also the case with the following representative example,
taken from the first author’s formalization of the prime number theorem [2]: verify

(1 +
ε

3(C + 3)
) · n < Kx
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using the hypotheses

n ≤ (K/2)x

0 < C

0 < ε < 1.

This is easily verified by noting that 1 + ε
3(C+3) is strictly less than 2, and so the product

with n is strictly less than 2(K/2)x = Kx. In this case, backchaining does not work, unless
one thinks of replacing Kx by 2((K/2)x) in the goal inequality.

This example suggests that some form of forward search may be more fruitful: starting
from the hypotheses, iteratively derive useful consequences, until the goal is obtained. Alter-
natively, we negate the conclusion and add it to the list of hypotheses, and then iteratively
derive consequences until we obtain a contradiction. Our analysis shows that if we separate
terms, we can in fact use Tadd [F ] and Tmult [F ] independently to derive consequences, and
that we only have to consider consequences in the language of Tcomm [F ]. This procedure
is complete for the universal consequences of T [F ], and works equally well if we combine
other local decision procedures for languages that are disjoint except for = and ≤.

But what consequences shall we look for? Once again, our analysis shows us that a
single well-chosen interpolant suffices: if we pick the right θ, Tadd [F ] will be able to derive
θ from our initial set of hypotheses, while Tmult [F ] will be able to prove ¬θ. According to
Proposition 6.3 and the discussion after it, we can assume, without loss of generality, that θ
is a conjunction of disjunctions of literals of the form xi < axj , xi ≤ axj, xi > axj, xi ≥ axj ,
and comparisons between variables and constants in F . As a result, if the initial sequence
of hypotheses can be refuted, there is a sequence θ1, θ2, . . . , θn of disjunctions of atomic
formulas of the form above, such that Tadd [F ] proves each formula θi from the initial set of
hypotheses, and Tmult [F ] proves a contradiction from these hypotheses and θ1, . . . , θn. Of
course, the situation is symmetric, so we can just as well switch Tadd [F ] and Tmult [F ] in the
previous assertion.

This reduces the task to that of deriving appropriate disjunctions θi of atomic formulas
xi ≤ axj from the initial hypotheses. The problem is that there are always infinitely many
disjunctions that one can prove, and it may not be clear which ones are likely to be useful.
For example, from x + y ≥ 0, Tadd [F ] can prove x ≥ a ∨ y ≥ −a for any a, and, a priori,
any of these may be useful to Tmult [F ].

One solution is simply to ignore disjunctions. By Proposition 2.2, with some initial case
splits we can reduce the problem of proving a universal formula to refuting a finite number
of sets of formulas of the form ∆add ∪∆mult ∪∆comm , where

• ∆add is a set of formulas of the form xi = t, where t is a term in the language of
Tadd [F ];

• ∆mult is a set of formulas of the form xi = t, where t is a term in the language of
Tmult [F ];

• ∆comm is a set of formulas of the form xi < axj, xi ≤ axj, xi > axj, xi ≥ axj, or a
comparison between a variable and a constant.

Definition 12.1. Let ∆ = ∆add ∪∆mult ∪∆comm be as above. Say T [F ] refutes ∆ without

case splits if there is a sequence of atomic formulas θ0, . . . , θ2n such that the following hold:

• for m < 2n, θm has the same form as the formulas in ∆comm ;
• θ2n is ⊥;
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• for each m < n,

Tadd [F ] ∪∆add ∪∆comm ∪ {θ0, . . . , θ2m−1} ⊢ θ2m;

• for each m < n,

Tmult [F ] ∪∆mult ∪∆comm ∪ {θ0, . . . , θ2m} ⊢ θ2m+1.

In other words, T [F ] refutes ∆ without case splits if Tadd [F ] and Tmult [F ] can itera-
tively augment a database of derivable atomic formulas in the common language until a
contradiction is reached. This is a proper restriction on the theories T [F ], which is to say,
there are sets ∆ that can be refuted by T [F ], but not without case splits. It takes some
effort, though, to cook up an example. Here is one. Let

∆add = {x+ y ≥ 2, w + z ≥ 2}
From this, Tadd [F ] proves (x ≥ 1 ∨ y ≥ 1) ∧ (w ≥ 1 ∨ z ≥ 1). Let

∆mult = {ux2 < ux, uy2 < uy, uw2 > uw, uz2 > uz}.
From this, Tmult [F ] proves u > 0∨u < 0, and hence (x < 1∧ y < 1)∨ (w < 1∧ z < 1). As a
result, T [F ] refutes ∆add ∪∆mult . But one can check that there are no atomic consequences
involving the common variables, x, y, z and w, that follow from either set. (Strictly speaking,
our characterization of ∆ has us using new variables to name the additive and multiplicative
terms in ∆add and ∆mult , respectively, and then putting the comparisons in ∆comm . But
the net effect is the same.)

Situations like this are contrived, however, and we expect that focusing on atomic con-
sequences will be effective in many ordinary situations. The following proposition provides
some encouragement.

Proposition 12.2. Let ∆ be a set of atomic formulas in the language of Tadd [F ]. Let u
and v be any two variables. Then there is a consequence, θ, of Tadd [F ]∪∆ in the language
of Tcomm [F ], involving only u and v, that implies all the consequences of the form u < av,
u ≤ av, v < au, or v ≤ au that can be derived from Tadd [F ]∪∆. In fact, θ can be expressed
as a conjunction of at most two formulas of the form u < av, u ≤ av, u > av, u ≥ av,
v < 0, v ≤ 0, v > 0, or v ≥ 0.

Proof. Use a linear elimination procedure to eliminate all variables except for u and v
from ∆. The result is a set of linear inequalities involving u and v, which implies every
other relation between u and v that is derivable from Tadd [F ] ∪∆. (If a relation is not a
consequence of the resulting set of linear inequalities, its negation is consistent with them,
and hence with Tadd [F ]∪∆.) This set of linear inequalities determines a convex subset of the
cartesian plane. Considering extremal points, one can determine the minimal intersection
of at most two half planes through the origin that includes this convex subset.

An efficient algorithm for determining the convex polygon determined by a sequence of
half-planes can be found in [12, Section 4.2]. Keep in mind that there may be no nontrivial
consequences of ∆, in which case we can take θ to be the empty conjunction, ⊤. Or ∆ may
contradictory, in which case we can take θ to be ⊥, or v < 0 ∧ v > 0. Furthermore, θ may
not be strong enough to determine whether u and v are positive, negative, etc. In that case,
as in the discussion after Proposition 6.3, determining whether one inequality is stronger
than another can be confusing. For example, θ may be u > 2v ∧ u > 3v; in the absence of
sign information, neither conjunct is stronger. If one adds the information v > 0, θ becomes
v > 0 ∧ u > 3v.
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On the multiplicative side, we have to assume we know the signs of the variables, and
that F is closed under nth roots.

Proposition 12.3. Let ∆ be a set of atomic formulas in the language of Tmult [F ]. Assume
that for each variable x occurring in ∆, ∆ contains either the formula x > 0 or the formula
x < 0. Assume also that F is closed under nth roots of positive numbers for positive integers
n. Let u and v be any two variables. Then there is a consequence, θ, of Tmult [F ]∪∆ in the
language of Tcomm [F ], involving only u and v, that implies all the consequences of the form
u < av, u ≤ av, v < au, or v ≤ au that can be derived from Tmult [F ]∪∆. In fact, θ can be
expressed as a conjunction of at most two formulas of the form u < av, u ≤ av, u > av, or
u ≥ av.

The good news is that the proof is even easier in this case.

Proof. Introduce a new variable w, and the equation w = u/v. Eliminate all variables
except for w. The result is a set of inequalities of the form w < a, w ≤ a, w > a, and w ≥ a,
of which we can choose the strongest and then replace w by u/v.

The requirement that we have sign information on the variables is generally needed to
carry out the elimination procedure for Tmult [F ]. We can always ensure that this information
is present using case splits, though this can be computationally expensive. The requirement
that F is closed under taking roots is also needed for the conclusion; for example, from
{u > 0, u2 > 2v2} we would like to conclude u >

√
2v. For practical purposes, however, we

will suggest, in the next section, that one should choose Q for F in an implementation, and
avoid case splits. In that case, we can only hope for an approximation to Proposition 12.3.
For example, when trying to put a multiplicative equation in pivot form, if we do not have
sufficient sign information to determine the appropriate direction of an inequality, we can
simply ignore this equation. And when required to take nth roots at the very end of the
procedure, we can rely on crude approximations, such as n

√
a > 1 whenever a > 1. Once

again, we expect that even with these concessions, the resulting procedure will be helpful
in verifying commonplace inferences.

This strategy, then, will form the basis for the heuristic procedure that we will suggest in
the next section. We leave open one interesting theoretical question, though: is it decidable
whether a theory T [F ] can refute a set ∆ without case splits? The proof of Theorem 5.2
shows that trying to refute the set ∆ corresponding to x2 + 2x− 1 < 0 leads to an infinite
iteration, so the obvious search procedure is not guaranteed to terminate.

13. Towards a heuristic procedure

In this section, we discuss some possible avenues towards developing heuristic decision
procedures, based on the analysis we have provided here. We are, of course, sensitive to the
tremendous gap between neat decidability results and heuristic procedures that work well in
practice. But we expect that the former can serve as a useful guide in the development of the
latter, by clarifying the inherent possibilities and limitations of the method, and separating
heuristic issues from theoretical ones. Of course, different heuristic approaches will have
distinct advantages and disadvantages, and so different procedures can be expected to work
better in different domains. We expect the type of algorithm we propose here to be fruitful
for the kinds of examples discussed in Section 1.
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Given a quantifier-free sequent in the language of T [Q], first, put all terms in normal
form, as described in Section 8. This will make it possible to identify subterms that are
provably equal. For that purpose, one can use the simpler normal form described at the
end of Section 8.

Next, use new variables, recursively, to name additive and multiplicative subterms.
These will form the sets ∆add and ∆mult . With these renamings, the original sequent will
be equivalent to one in the language of Tcomm [Q].

Convert the resulting sequent to a finite sequence of sets ∆comm of inequalities x < ay,
x ≤ ay, x > ay, x ≥ ay, to be refuted. For example, proving the sequent

x = y,w < z ⇒ u < v

amounts to refuting the set ∆comm of formulas

{x ≥ y, x ≤ y,w < z, v ≤ u}.
Note that the equality in the hypothesis is replaced by two inequalities. This seems to
be a reasonable move, since with ∆add and ∆mult , x and y may name complex terms; we
imagine that this procedure will be called after obvious simplifications and rewriting have
been performed. Also note that the task of proving an equality u = v splits into two tasks,
namely, refuting u > v and refuting u < v. Again, this seems reasonable, since we envision
this procedure being called when direct methods for proving equalities have failed.

Now, try to refute each set ∆comm , with the following iterative procedure. First, for each
pair of variables x, y in ∆comm , use Tadd [Q] ∪∆comm to derive new or stronger inequalities
of the form x < ay, x ≤ ay, x > ay, or x ≥ ay, as well comparisons between x and
constants for each variable x. Add the new inequalities to ∆comm , removing ones that are
subsumed by the new information. ∆comm can be represented as a table of comparisons for
each pair {x, y} (for each pair, at most two formulas need to be stored), as well as a table
of comparisons with constants for each variable x. Even though the procedure implicit in
Proposition 12.2 invokes a linear elimination procedure (see the discussion and references in
Section 3), the work can be shared when cycling through all possible pairs. For example, to
determine all inequalities obtainable from a set with n variables, eliminate the first variable,
x, and recursively determine all the inequalities obtainable from the resulting set with n
variables; then determine all the inequalities that can be obtained with x and one other
variable. Furthermore, at least initially, for most pairs no information will be available at
all, and so will be eliminated quickly. We expect that for the types of problems that arise
in ordinary practice, the number of variables and named subterms will be small enough to
make the procedure manageable. If not, heuristics can be used to focus attention on pairs
that are likely to provide useful information.

Do the same with Tmult [Q]∪∆mult . First, use the information in ∆mult to determine the
variables for which one has comparisons with 0. For a defining equation such as u = x2y4,
the multiplicative procedure can infer u ≥ 0 at the start, and add it to ∆comm for possible
use by the additive procedure. With limited sign information on the variables, let the
procedure for Tmult [Q] ∪∆mult do the best it can to eliminate variables. If it cannot make
use of an inequality xks < t to eliminate x because the sign of s is not known, simply ignore
the inequality at this stage. It may become useful later on, if the sign of s becomes known.

Iterate the additive and multiplicative steps, until one of ∆add∪∆comm or ∆mult∪∆comm

yields a contradiction. Of course, there is the question as to when to give up. One can
certainly report failure when no new inequalities have been derived. But as noted at the
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end of Section 12, nonterminating iterations are possible; in that case, the procedure can
simply give up after a fixed amount of time, or rely on the user to halt the procedure.

14. Extending the heuristic

There are many ways that one may extend the proposal in the previous section. These
fall into general classes.

Improvements to the heuristic. There are likely to be better ways of searching for useful
comparisons between terms. For example, one can have a list of “focus” formulas – initially,
one wants to include the goal formula as a focus formula – and search for inequalities
between subterms of those. Also, one does not need to search for comparisons between two
variables unless information has been added to ∆comm since the last such search that could
potentially yield new information. Thus, a wise choice of data structures and representations
of information in the database may yield significant improvements.

Extensions to stronger fragments of T [Q]. The procedure we have described does not try
to derive disjunctions, which requires potentially costly case splits. Are there situations in
which it makes sense to introduce such splits? For example, it may be useful to split on
the sign of a variable, x ≥ 0 ∨ x < 0; or to split on a comparison between two variables,
x ≥ y ∨ x < y, where x and y name terms in the search.

Conservative extensions of T [Q]. The functions which return nth roots, absolute value,
minimums, and maximums can all be defined in T [Q], and it would be useful to extend the
heuristic to languages that include these. But, as discussed at the end of Section 8, one has
to either introduce case splits at the outset to simplify terms appropriately, or simplify a
term like

√
x2 to x when x ≥ 0 is determined in the course of the search. What is the best

way to handle such extensions?

Nonconservative extensions of T [Q], in the same language. An obvious shortcoming of
T [Q] is that it fails to capture straightforward inferences that are easily obtained using
distributivity. On the other hand, using distributivity to simplify an expression before
calling a decision procedure for T [Q] can erase valuable information; for example, after
simplification, T [Q] can no longer verify (x+ 1)2 ≥ 0. A better strategy is to perform such
simplifications as the search proceeds, when occasion seems to warrant it, perhaps retaining
the factored versions as well.

As noted in Section 1, it is reasonable to claim that any validity that requires complex
factoring falls outside the range of the “obvious,” and hence outside the scope of the problem
we are concerned with here. But one would expect a good procedure to multiply through in
at least some contexts, i.e. only use distributivity in the “left-to-right” direction to simplify
expressions at hand. The question is how to work this in to the procedures described below
in a principled way. It would also be nice to have a better theoretical framework to discuss
provability with equalities “applied only in the left-to-right direction.”

Amalgamating other decision and heuristic procedures. A major advantage of the method
described in Section 13 is that it can easily be scaled to allow other procedures to add
facts to the common database. For example, one can easily make use of the equivalence
x < y ↔ f(x) < f(y) for a strictly monotone function f . One can similarly add procedures
that make use of straightforward properties of transcendental functions like exp, ln, sin,
cos , and so on.
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Extending the overlap. Just as one might make use of limited forms of distributivity, one
can add restricted uses of laws like ex+y = exey, for the exponential function.

Handling subdomains, like Z and Q, and extended domains, like C. For example, it is known
that the linear theory of the reals with a predicate for the integers is decidable (see, for
example, [28]). Handling mixed domains involving N, Z, Q, R, and/or C is an important
challenge for heuristic procedures.

15. Conclusions

In order to obtain useful methods for verifying inferences in nontrivial mathematical
situations, undecidability and infeasibility should encourage one to search for novel ways
of delimiting manageable, restricted classes of inferences that include the ones that come
up in ordinary mathematical practice. We hope our study of inferences involving inequali-
ties between real-valued expressions that can be verified without using distributivity is an
interesting and fruitful investigation along these lines. We also feel that the paradigm of
amalgamating decision or heuristic procedures when there is nontrivial overlap between the
theories is an important one for automated reasoning.

However, we expect that similar investigations can be carried out in almost any math-
ematical domain. This yields both theoretical and practical challenges. On the theoretical
side, for example, there are questions of decidability and complexity. On the practical side,
there is always the question of how to implement proof searches that work well in practice.
As a result, we feel that this type of research represents a promising interaction between
theory and practice.
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