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Abstract. H is the theory extending β-conversion by identifying all closed unsolvables.
Hω is the closure of this theory under the ω-rule (and β-conversion). A long-standing
conjecture of H. Barendregt states that the provable equations of Hω form a Π

1

1-complete
set. Here we prove that conjecture.

1. Introduction

There is a strong need to make theorem provers such as COQ or ISABELL/HOL more
and more powerful (see e.g. [3], [2], [1]). In particular it seems very hard to automatically
set up inductive arguments to get universal conclusions. In this sense, the use of some
(constructive) kind of ω-rule is very appealing since one could get a universal conclusion
from, say, a finite number of cases. Typically, this happens when for every property P
of interest, there exists a computable upper bound k such that if every ground term of
complexity less than k satisfies P then ∀x.P (x) holds, so that a universal conclusion can be
obtained e.g. by a systematic search on a finite set of cases.

Therefore, it is important to precisely assess the logical power of the ω-rule in the
different computational contexts. Here we consider the ω-rule in the λβ-calculus. We have
already considered constructive forms of such rule in [6], obtaining recursively enumerable
λ-theories which are closed under the ω-rule. Moreover, in [7], we have considered the more
important problem of the ω-rule added to the pure λβ-calculus. We have shown that the
resulting theory is not recursively enumerable, by giving a many-one reduction of the set of
true Π0

2
sentences to the set of consequences of the lambda calculus with the ω-rule. This

solved in the affirmative a well known problem of H. Barendregt [4, 5]. More recently we
have obtained the result ([8]) that such theory is not even arithmetical.

Here we consider the problem of determining the computational power of the ω-rule
added to the theory H. H is the theory obtained extending λβ by identifying all closed
unsolvable terms. We prove that the resulting theory Hω is Π1

1
-complete, which solves

another long-standing conjecture of H. Barendregt (see [4] Conjecture 17.4.15).
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2. The System Hω

Notation will be standard and we refer to [4], for terminology and results on λ-calculus.
In particular:

• ≡ denotes syntactical identity;
• by the notation [X/x]Y we mean the replacement of term X for the variable x inside Y ,

with the usual proviso that no free variable y of X, with y 6≡ x, becomes bounded after
the substitution (see [4] 2.1.11-2.1.14);
• −→β, −→η and −→βη denote β-, η- and, respectively, βη-reduction and −→∗

β −→
∗

η and
−→∗

βη their respective reflexive and transitive closures;
• =β and =βη denote β- and, respectively, βη-conversion;
• combinators (i.e. closed λ-terms) such e.g. I have the usual meaning;
• k denotes the k-th Church numeral.

λ-terms are denoted by capital letters: in particular we adopt the convention that M,N,P,
Q, . . . are closed terms and U, V,X, Y,W,Z are possibly open terms.

The notion of λ-theory has the usual meaning of [4] Ch.4, that is a consistent set of
equations between closed terms, which is closed under the axioms and the rules of λβ-
calculus. We now briefly recall the λ-theories we are concerned with.

By λβ we denote pure β-convertibility (see [4]). H is the λ-theory extending λβ by
identifying all closed unsolvable terms, see [4] Definition 4.1.6. We recall that this λ-theory
can be formulated by adding to λβ all equations of the form M = Ω, where M is a closed
unsolvable term, the combinator Ω is defined as ωω and ω is λx.xx. Moreover, we recall
also that H is generated by the notion of reduction βΩ, see [4] Lemma 16.1.2. The notion of
reduction βΩ is defined by adding to the β-reduction rule, the (non constructive) reduction
rule:

M −→ Ω if M is unsolvable and M 6≡ Ω

see [4] Section 15.2.
Hω is the λ-theory obtained by adding the so called ω-rule to H, see [4] Definition

4.1.10 and Paragraph 4.2.
We formulate Hω differently. As the reader will see, we want a formulation of the

theory such that only equalities between closed terms can be proven.

Definition 2.1. Equality in Hω (denoted by =ω) is defined by the following axioms and
rules:

(1) Identity Axioms:
M =ω M

(2) Weak βΩ-Conversion Axioms:

(λx.U)N =ω [N/x]U

[N/x]U =ω [N/x]U

M =ω Ω

Ω =ω M

(with (λx.U)N closed)

(with (λx.U)N closed)

(with M closed and unsolvable)

(with M closed and unsolvable)

(3) Leibnitz Rule: Substitute Equals for Equals:

[M/z]X =ω [M/z]Y M =ω N

[N/z]X =ω [N/z]Y
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where terms X and Y have possibly z as free variable, and no other free variable.
(4) The ω-Rule:

∀M, M closed, PM =ω QM

P =ω Q

We call Hω the λ-theory specified above. In the next Section we prove that this
formulation gives rise to the same theory of [4].

3. Derived Rules

Now we prove that some rules are derived rules in Hω.

Proposition 3.1. (Symmetry) For every M and N , if M =ω N then N =ω M .

Proof. Axioms and rules of Hω are completely symmetric, so a proof of M =ω N can be
converted into one of N =ω M by reversing sides.

Proposition 3.2. (Transitivity) For every M , N and P , if M =ω N and N =ω P then
M =ω P .

Proof. Assume M =ω N . So, N =ω M . Then let X be z and Y be M . We have that
[N/z]X =ω [N/z]Y and

[N/z]X =ω [N/z]Y N =ω P

P =ω M

by one application of the Leibnitz Rule.

By βΩ-convertibility we mean the convertibility relation generated by the βΩ-reduction
mentioned above (see [4] Paragraph 15.2). By a context Z[ ] we mean a term with holes in
the sense of [4] Definition 2.1.18.

Proposition 3.3. For closed M and N , if M βΩ-converts to N then M =ω N .

Proof.

(1) Let a context Z[ ] and terms λx.U , V be given. Let z1...zt be an enumeration of all free
variables occurring in Z[ ], λx.U and V .

By induction on the complexity of Z[ ] one can prove that for all closed P1 . . . Pt we
have:

[P1/z1, ..., Pt/zt]Z[(λx.U)V ] =ω [P1/z1, ..., Pt/zt]Z[[V/x]U ] .

Thus for λ-closures λz1...zt.Z[(λx.U)V ] and λz1...zt.Z[[V/x]U ], we have that for all
closed P1...Pt:

(λz1...zt.Z[(λx.U)V ])P1...Pt =ω (λz1...zt.Z[[V/x]U ])P1...Pt ,

so λz1...zt.Z[(λx.U)V ] =ω λz1...zt.Z[[V/x]U ] by t applications of the ω-rule.
(2) Let a context Z[ ] and an unsolvable term V be given. Let z1...zt be an enumeration of

all free variables occurring in Z[ ] and V .
By induction on the complexity of Z[ ] one can prove that for all closed P1...Pt we

have [P1/z1, ..., Pt/zt]Z[V ] =ω [P1/z1, ..., Pt/zt]Z[Ω]. Thus for λ-closures: λz1...zt.Z[V ]
and λz1...zt.Z[Ω] , we have that for all closed P1...Pt:

(λz1...zt.Z[V ])P1...Pt =ω (λz1...zt.Z[Ω])P1...Pt

so λz1...zt.Z[V ] =ω λz1...zt.Z[Ω] by t applications of the ω-rule.
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Proposition 3.4. If X βΩ-converts to Y then the λ-closures of X and Y are provably
equal in Hω.

Proof. The proposition follows directly from the previous one.

By the previous results it follows that Hω is exactly the same theory defined in [4].
We observe also the following:

Proposition 3.5. The so-called η-conversion (that is (λx.Mx) = M) obviously holds in
Hω, for any closed term M . (With respect to the usual formulation of the η-conversion,
observe that since M is closed there is no need to require x fresh in M).

4. Weak βΩ-Reduction

We call weak βΩ-conversion the smallest congruence relation containing the equations
of Weak βΩ-Conversion Axioms above (see Definition 2.1.2). Observe that this relation
also includes the Identity Axioms. We write M ∼wβΩ N to denote the weak βΩ-conversion
relation. Moreover such equations can be oriented, giving rise to the following contraction
rules:
weak β-contraction rule

(λx.M)N −→wβ [N/x]M (with (λx.M)N closed)

weak Ω-contraction rule

M −→Ω Ω (with M closed and unsolvable and M 6≡ Ω)

We call weak βΩ-reduction the reduction relation generated by the two rules, after
closure under contexts (see [4] 3.1). It is easy to see that the weak βΩ-conversion is the
convertibility relation generated by the weak βΩ-reduction. We shall call the two contrac-
tion rules above also weak β-reduction rule and, respectively weak Ω-reduction rule. This
terminology includes the case that such rules are applied inside a context.
We write:

−→wβΩ and −→∗

wβΩ

to denote weak βΩ-reduction and, respectively, its reflexive and transitive closure.
We recall a result needed in the following.

Proposition 4.1. Weak βΩ-reduction is Church-Rosser.

Proof. Weak β- and, respectively, weak Ω-reductions are both Church-Rosser and commute.
Now, use the Hindley-Rosen Lemma (see [4], 3.3.5).

In the sequel, we shall need the following notions on reductions. We define the notions
of trace and extended trace (etrace) as follows. Given the reduction F −→∗

β G (or the

reduction F −→∗

wβΩ
G) and the closed subterm M of F , the traces of M in the terms of the

reduction are simply the copies of M until each is either deleted by a contraction of a redex
with a dummy lambda, replaced by Ω by an Ω-reduction (possibly of a superterm M ′ of
M) or altered by a reduction internal to M or a reduction with M at the head (when M
begins with lambda or when the reduction is an Ω-reduction). The notion of etrace is the
same except that we allow internal reductions, so that a copy of M altered by an internal
reduction continues to be an etrace.
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5. Normal Form for Hω Proofs

As usual proofs in Hω can be thought of as (possibly infinite) well-founded trees. We
distinguish between two cases.

• The proof ends with an application of the ω-rule.
• Otherwise. So, we can consider all nodes of the proof tree that have no premises of the

ω-rule as descendant. Or, in other terms, there are no occurrences of the ω-rule in the
path from the node to the conclusion of the proof. We call the set of such nodes the
endpiece of the proof.

Notice that the endpiece of a proof consists of a finite tree of Leibnitz Rule inferences
all of whose leaves are either instances of the Identity Axioms , instances of the Weak βΩ-
Conversion Axioms, or direct conclusions of the ω-rule. The tree reduces to a single node
in case the proof amounts to an instance of the Identity Axioms or to an instance of the
Weak βΩ-Conversion Axioms. We shall put this endpiece into a normal form.

Definition 5.1. An endpiece is in normal form iff it is of the form:

M =ω M M ∼wβΩ M1P1

M =ω M1Q1 P1 =ω Q1

M =ω M1Q1 M1Q1 ∼wβΩ M2P2

M =ω M2Q2 P2 =ω Q2

. . .

M =ω MtQt MtQt ∼wβΩ N

M =ω N

where each equality of the form Pi =ω Qi, for 1 ≤ i ≤ t, is a direct conclusion of the ω-rule.
We allow the degenerate case t = 0 and consider in normal form:

• an instance of the Identity Axioms;
• as well as the endpiece:

M =ω M M ∼wβΩ N

M =ω N

Remark. In the previous Definition, observe that the intuitive motivation of the notion of
normal form is to have a mean to separate - into the endpiece of a proof - the conclusions
of the ω-rule from the other components of the endpiece itself. The normal form diagram
represents a sequence of applications of the Leibnitz Rule, and in particular the odd lines
are instances of the transitivity rule, while the even ones are substitutions of the term Qi for
the equal term Pi in the applicative context Mi[ ]. Observe that the normal form diagram is
not, strictly speaking, a proof tree in Hω, since premises of the form MiQi ∼wβΩ Mi+1Pi+1

refer to the βΩ-conversion relation. (This explains why we need two degenerate cases, one
when the whole proof is an instance of Identity Axioms, and the other one when we have a
proof of the βΩ-convertibiliy of the terms M and N . Of course, the former could also be
considered a particular case of the latter). It is clear, however, by the result of Section 3,
that each βΩ-conversion can be expanded into a Hω proof tree.

Theorem 5.2. For every proof T in Hω there exists a proof T ′ of the same conclusion
with the endpiece in normal form.

We shall use several lemmata.



6 B. INTRIGILA AND R. STATMAN

Lemma 5.3. Proofs in normal forms are closed under symmetry and transitivity rules.

Proof.

• (symmetry)
To see this, observe that a proof in normal form of M =ω N can be reversed into a proof in
normal form of N =ω M . Indeed, each direct conclusion of the ω-rule Pi =ω Qi can be re-
versed in a direct ω-rule conclusion of Qi =ω Pi, since for every premise PiR =ω QiR there
is (by Proposition 3.1) a premise QiR =ω PiR. Moreover the sequences Qt, Qt−1 . . . Q1

and Pt, Pt−1 . . . P1 take the place of P1, P2 . . . Pt and, respectively, of Q1, Q2 . . . Qt.
• (transitivity)

Given proofs in normal form of M =ω N and of N =ω P , to obtain a proof in normal
form of M =ω P contract the last row of M =ω N :

M =ω MtQt MtQt ∼wβΩ N

M =ω N

and the first row of N =ω P :

N =ω N N ∼wβΩ M ′

1Q
′

1

N =ω M ′

1Q
′

1

as follows:
M =ω MtQt MtQt ∼wβΩ M ′

1Q
′

1

M =ω M ′

1Q
′

1

and then follows the proof in normal form of N =ω P replacing every left-side occurrence
of N with M .

Lemma 5.4. If there is a proof in normal form of M =ω N then for every X, with a unique
free variable z, there is a proof in normal form, with the same length, of [M/z]X =ω [N/z]X.

Proof. Let the proof of M =ω N be of the form:

M =ω M M ∼wβΩ M1P1

M =ω M1P1 P1 =ω Q1

M =ω M1Q1 M1Q1 ∼wβΩ M2P2

M =ω M2P2

. . .

To get a proof in normal form of [M/z]X =ω [N/z]X, transform it as follows:

[M/z]X =ω [M/z]X [M/z]X ∼wβΩ (λu.(λz.X)(M1u))P1

[M/z]X =ω (λu.(λz.X)(M1u))P1 P1 =ω Q1

[M/z]X =ω (λu.(λz.X)(M1u))Q1 (λu.(λz.X)(M1u))Q1 ∼wβΩ (λu.(λz.X)(M2u))P2

[M/z]X =ω (λu.(λz.X)(M2u))P2

. . .
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Lemma 5.5. Proofs with the endpiece in normal form are closed under Axioms and Rules
of Hω .

Proof. We argue by induction on the complexity of the proof of M =ω N .

(1) If the proof consists of an instance of the identity axiom, then there is nothing to prove.
(2) If the proof consists of an instance of the Weak βΩ-Conversion Axioms, then use the

fact that the sequences P1, . . . , Pt and Q1, . . . , Qt can be empty (i.e. t = 0).
(3) If the proof ends with an instance of the ω-rule then it can be put in normal form as

follows:
M =ω M M ∼wβΩ IM

M =ω IM M =ω N
M =ω IN IN ∼wβΩ N

M =ω N

(4) Assume that the proof ends with an instance of the Leibnitz Rule of the form:

[P/z]X =ω [P/z]Y P =ω Q

[Q/z]X =ω [Q/z]Y

with M ≡ [Q/z]X and N ≡ [Q/z]Y . By induction hypothesis and Lemmata 5.3 and
5.4, there are proofs in normal form of:

[P/z]X =ω [P/z]Y , [Q/z]X =ω [P/z]X and [P/z]Y =ω [Q/z]Y

and therefore by Lemma 5.3 again, we get a proof in normal form of [Q/z]X =ω [Q/z]Y .

Remark. Observe that the transformation of an instance of the ω-rule into a proof with an
endpiece in normal form has only an auxiliary character. In other words, this transformation
can be done if needed, but we do not want to perform it systematically.

Proof of Theorem 5.2. It is clear that, from the previous lemmas, Theorem 5.2 follows.

Remark. Theorem 5.2 is essentially a particular case of a general result about Leibnitz
Rule due to the second author of the present paper. For more details the reader should
consult [11].

Now consider a proof with an endpiece in normal form:

M =ω M M ∼wβΩ M1P1

M =ω M1Q1 P1 =ω Q1

M =ω M1Q1 M1Q1 ∼wβΩ M2P2

M =ω M2Q2 P2 =ω Q2

. . .

M =ω MtQt MtQt ∼wβΩ N

M =ω N

We represent this proof as a computation viz

M ∼wβΩ M1P1 =ω M1Q1 ∼wβΩ M2P2... ∼wβΩ MtPt =ω MtQt ∼wβΩ N (5.1)

Remark. We include the degenerate cases as follows:

• M =ω M gives rise to the computation M ∼wβΩ M ;
• M ∼wβΩ N can be directly considered as a computation.
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Definition 5.6. We shall call the sequence (5.1) the end piece computation of a proof.

6. Ordinals

Since proofs are infinite trees T they can be described by countable ordinals. In the
following, we shall need a few facts about countable ordinals. For completeness, we recall
the main notions involved. For more details, see e.g. [10].

(a) Cantor Normal Form to the Base Omega (ω). Every countable ordinal α can be
written uniquely in the form ωα1 ∗ n1 + ... + ωαk ∗ nk where n1, ..., nk are positive integers
and α1 > ... > αk are ordinals.

Note that in the special case when α is a fixed point of ordinal exponentiation (like ǫ0)
we have ωα ∗ 1 as Cantor normal form of α.

(b) Hessenberg Sum. Write α = ωα1 ∗n1 + ...+ωαk ∗nk and γ = ωα1 ∗m1 + ...+ωαk ∗mk

where some of the ni and mj may be 0. Then the Hessenberg Sum is defined as follows:
α⊕ γ =def ωα1 ∗ (n1 + m1) + ... + ωαk ∗ (nk + mk).

The Hessenberg sum is strictly increasing on both arguments. That is, for α, γ different
from 0, we have: α, γ < α⊕ γ.

(c) Hessenberg Product . We only need this for product with an integer. We put:
α⊙ n =def α⊕ ...⊕ α n-times.

Coming back to proofs, observe first that we can assume that if a proof has an endpiece,
then this endpiece is in normal form (see the previous Section). The ordinal that we want
to assign to a proof T (considered as a tree) is the transfinite ordinal ord(T ), the order of
T , defined recursively by:

Definition 6.1. Let ⊕ be the Hessenberg sum of ordinals defined above.

• If T ends in an endpiece computation of the form (5.1) and we are in the degenerate
case t = 0 then ord(T ) =def 1;
• If T ends in an instance of the ω-rule whose premisses have trees resp. T1, . . . Ti, . . . then

ord(T ) =def ωθ, with θ = Sup{ord(T1)⊕ ...⊕ ord(Ti) : i = 1, 2, ...};
• If T ends in an endpiece computation of the form (5.1), with t > 0, and the equations

P1 =ω Q1,..., Pt =ω Qt, have resp. trees T1, . . . ,Tt then ord(T ) =def 1 ⊕ ord(T1) ⊕ ... ⊕
ord(Tt).

Fact 1. If T ends in an endpiece computation of the form (5.1), with t > 0, and the
equations P1 =ω Q1,..., Pt =ω Qt, have resp. trees T1, . . . ,Tt then ord(T ) > ord(Ti), for
each i = 1, ..., t.

Proof. ord(Ti) > 0 and ⊕ is strictly increasing on its arguments.

Fact 2. Assume that T ends in an instance of the ω-rule whose premisses have, respectively,
trees T1, . . . ,Tt, ... Then for any integers t, n1, . . . , nt

ord(T ) > ord(T1)⊙ n1 ⊕ ...⊕ ord(Tt)⊙ nt .

Proof. Let ord(Ti) = αi, for 1 ≤ i ≤ t and put all α1, ..., αt into Cantor normal form:

α1 = ωβ1 ∗ n11 + ... + ωβk ∗ n1k . . . αt = ωβ1 ∗ nt1 + ... + ωβk ∗ ntk .
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Let n = max{nr, nj1}+ 1, with j, r = 1...t . Then

α1 ⊙ n1 ⊕ ...⊕ αt ⊙ nt < α1 ⊙ n⊕ ...⊕ αt ⊙ n = α1 ⊕ ...⊕ αt)⊙ n ≤ ωβ1 ∗ n2 ∗ t .

Now let θ = Sup{ord(T1) ⊕ ... ⊕ ord(Ti) : i = 1, 2, ...}. We have ωβ1 < θ ≤ ωθ = ord(T ).
But ord(T ) is a countable ordinal of the form ωγ and is thus closed under addition. Hence
ωβ1 ∗ n2 ∗ t < ord(T ).

7. Cascades of Beta Reductions

Recall that, as usual, we consider only closed terms. We define the set of weak βΩ head
normal forms (whnf) as follows:

(1) an unsolvable term is in whnf iff it is Ω;
(2) a solvable term is in whnf iff it has not a head weak β-redex that is it has not the form

λx1 . . . xn. (λx.U)V M1 · · ·Mk, with (λx.U) and V closed.

Now we want to prove that the set weak βΩ head normal forms is cofinal w.r.t. weak
βΩ-reduction, in the sense of the following theorem.

Theorem 7.1. For every M there exists an N in whnf, such that M −→∗

wβΩ N

Proof. If M is unsolvable, then M −→∗

wβΩ Ω.

Assume M solvable. Then M −→∗

β M ′ by a sequence of head β-reductions, where M ′

has the form λx1 . . . xn.xiV1 . . . Vm (see [4] 8.3.11). If every β-reduction is a weak one then
take N ≡M ′, otherwise N is the first term in the sequence where a weak head β-reduction
cannot be performed.

By the Church-Rosser theorem for weak βΩ-reductions, an endpiece computation

M ∼wβΩ M1P1 =ω M1Q1 ∼wβΩ M2P2... ∼wβΩ MtPt =ω MtQt ∼wβΩ N (7.1)

can be put in the form (that we still call an endpiece computation)

M −→∗

wβΩ R1
∗

wβΩ←−M1P1 =ω M1Q1 −→
∗

wβΩ R2
∗

wβΩ←−M2P2

... −→∗

wβΩ MtPt =ω MtQt −→
∗

wβΩ Rt+1
∗

wβΩ←− N

Now, we want to show that special conditions can be imposed on the weak βΩ-reductions
occurring in each endpiece computation.

Definition 7.2. An endpiece computation of the form

M −→∗

wβΩ R1
∗

wβΩ←−M1P1 =ω M1Q1 −→
∗

wβΩ R2
∗

wβΩ←−M2P2

... −→∗

wβΩ MtPt =ω MtQt −→
∗

wβΩ Rt+1
∗

wβΩ←− N

is called a a cascade of weak βΩ -reductions iff

(1) all the confluence terms Ri, 1 ≤ i ≤ t + 1 are in whnf ;
(2) all the reductions of the form Ri

∗

wβΩ
←−MiPi, with 1 ≤ i ≤ t occurring in the endpiece

are one step β-reductions of the form [Pi/x]X wβΩ ←− (λx.X)Pi, for some X, and
moreover such X has not the form λy1 . . . yr.xX1 · · ·Xm.

Note that this puts no restriction on left facing arrows.

Definition 7.3. The notion of a cascaded proof is defined inductively as follows.
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(1) A proof with a degenerate endpiece is a cascaded proof if it has the form:

M −→∗

wβΩ R ∗

wβΩ←− N

with R in whnf.
(2) A proof ending with an instance of the ω-rule is a cascaded proof if the proofs of the

premisses of the instance are cascaded.
(3) Otherwise a proof is cascaded if its endpiece is a cascade of weak βΩ-reductions and all

the proofs of the leaves which are direct conclusions of the ω-rule are cascaded.

In the following, we need the following well known fact about Hω.

Proposition 7.4. If M =ω N then BT(M) =η BT(N), that is M and N have η-equal
Böhm trees.

Proof. By Proposition 16.2.7 of [4], this holds for equality in the theory H∗. Moreover, by
Section 17.2 of [4], we have that Hω is included in H∗.

Now, we want to prove the following important fact about cascaded proofs.

Proposition 7.5. If M =ω N then there is a cascaded proof of M =ω N .

Proof. We prove this proposition by induction on the ordinal ord(T ) of a proof T in normal
form of M =ω N .

For the base case just suppose that M ∼wβΩ N and use the Church-Rosser theorem.

Induction step. Assume first that M =ω N is the direct conclusion of the ω-rule. This
follows directly from the induction hypothesis.

Otherwise, M =ω N is the conclusion of a chain of equality inferences:

M ∼wβΩ M1P1 =ω M1Q1 ∼wβΩ M2P2 ∼wβΩ ... ∼wβΩ MtPt =ω MtQt ∼wβΩ N

where t > 0 and each MiPi =ω MiQi is the conclusion of an instance of the ω-rule. Again
by the Church-Rosser theorem we have the following computation:

M −→∗

wβΩ R1
∗

wβΩ←−M1P1 =ω M1Q1 −→
∗

wβΩ R2
∗

wβΩ←−M2P2 −→
∗

wβΩ

... −→∗

wβΩ Rt+1
∗

wβΩ←− N .

Clearly each Ri can be replaced by any weak βΩ-reduct of Ri.
Consider a reduction from M1P1 to R1 with all the weak Ω-reductions (that is re-

ductions of the form −→Ω) at the end; such a reduction exists by [4] Proposition 15.2.9.
Moreover, we can assume that no term in the reduction is unsolvable, for otherwise M and
N are both unsolvable, by the previous proposition, and we simply have the cascaded proof
M −→wβΩ Ω wβΩ←− N .

We follow all etraces of P1 in the reduction of M1P1 to R1 attempting to simulate this
with a reduction of M1Q1. On the M1Q1 side we skip reductions internal to etraces of P1.
When we come to redexes (λu.U)V where P1 −→

∗

wβΩ
λu.U , let V = [V1/x1, ..., Vr/xr]X

showing all the etraces of P1 in V . Then:

(*) Q1([Q1/x1, ..., Q1/xr]X) =ω [([Q1/x1, ..., Q1/xr]X)/u]U

(via the equality Q1([Q1/x1, ..., Q1/xr]X) =ω P1([Q1/x1, ..., Q1/xr]X)) by a proof with
ordinal (much) less than ord(T ). So, in the M1Q1 side we replace the reduction of (λu.U)V ,
taking place in the M1P1 side, with the computation:

Q1([Q1/x1, ..., Q1/xr]X) =ω P1([Q1/x1, ..., Q1/xr]X) −→wβΩ [[Q1/x1, ..., Q1/xr]X/u]U .
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Assume now that, in the M1P1 side, we come to an Ω-reduction containing etraces of
P1, say of the form U −→wβΩ Ω. Then if we replace every occurrence of etraces of P1 in U
with Q1, we obtain - by the previous proposition - a term U ′ which is also unsolvable. So,
in the M1Q1 side, we perform the reduction U ′ −→wβΩ Ω.

In the end we obtain R1 as [V1/x1, ..., Vr/xr]X for some X where V1, ..., Vr are the
remaining etraces of P1. On the M1Q1 side we obtain [Q1/x1, ..., Q1/xr]X. Since there are
only finitely many instances of (*), we have that [Q1/x1, ..., Q1/xr]X =ω N by a proof with
ordinal < ord(T ) (use Fact 2 of the Section 6). Thus there exists a cascaded proof T + of
[Q1/x1, ..., Q1/xr]X =ω N .

Subcase 1. X ≡ x so that R1 is an etrace of P1.
Let L be given. Since there are only finitely many instances of (*), we have that ML =ω NL
by a proof with ordinal < ord(T ) (again, use Fact 2 of the Section 6). Thus there exists
a cascaded proof of ML =ω NL. Since this holds for every L we obtain a cascaded proof
M =ω N , by an application of the ω-rule with cascaded proofs for all the premisses.

Subcase 2. Otherwise.
By the Church-Rosser theorem there exists a common reduct V of all the V1, ..., Vr. In
addition, by induction hypothesis, there exists a cascaded proof T ++ of V =ω Q1. We
distinguish two cases.

Subcase 2.1. X begins with some variable xj, say X ≡ xjX1 . . . Xs.
In this case, since there are only finitely many instances of (*), to which we add a proof of:

Vj([Q1/x1, ..., Q1/xr]X1)...([Q1/x1, ..., Q1/xr]Xs) =ω

=ω Q1([Q1/x1, ..., Q1/xr]X1)...([Q1/x1, ..., Q1/xr]Xs)

we have that Vj([Q1/x1, ..., Q1/xr]X1)...([Q1/x1, ..., Q1/xr]Xs) =ω N has a proof with or-
dinal < ord(T ). So, there exists a cascaded proof T ∗ of this equality.

Thus, in this case, the desired cascaded proof of M =ω N is obtained concatenating
the following pieces:

(1) M −→∗

wβΩ
Vj([V/x1, ..., V/xr ]X1)...([V/x1, ..., V/xr ]Xs)

(2) Vj([V/x1, ..., V/xr ]X1)...([V/x1, ..., V/xr ]Xs) wβΩ←−

wβΩ←− (λx.Vj([x/x1, ..., x/xr]X1)...([x/x1, ..., x/xr ]Xs))V
(3) (λx.Vj([x/x1, ..., x/xr ]X1)...([x/x1, ..., x/xr ]Xs))V =ω

(λx.Vj([x/x1, ..., x/xr ]X1)...([x/x1, ..., x/xr ]Xs))Q1

(4) (λx.Vj([x/x1, ..., x/xr ]X1)...([x/x1, ..., x/xr ]Xs))Q1 −→wβΩ

−→wβΩ Vj([Q1/x1, ..., Q1/xr]X1)...([Q1/x1, ..., Q1/xr]Xs)
(5) Vj([Q1/x1, ..., Q1/xr]X1)...([Q1/x1, ..., Q1/xr]Xs) =ω N

Observe that Vj([V/x1, ..., V/xr ]X1)...([V/x1, ..., V/xr ]Xs) is still in whnf since this class is
closed under internal reductions. This ends the proof of Subcase 2.1.

Subcase 2.2. Otherwise.
Then the endpiece of the desired cascaded proof is as follows:

(1) M −→∗

wβΩ
[V/x1, ..., V/xr ]X

(2) [V/x1, ..., V/xr ]X wβΩ←−

wβΩ←− (λx.[x/x1, ..., x/xr ]X)V
(3) (λx.[x/x1, ..., x/xr ]X)V =ω

(λx.[x/x1, ..., x/xr ]X)Q1

(4) (λx.[x/x1, ..., x/xr ]X)Q1 −→wβΩ

−→wβΩ [Q1/x1, ..., Q1/xr]X
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(5) [Q1/x1, ..., Q1/xr]X =ω N

This ends the proof of Subcase 2.2, and the proof of Proposition 7.5 is complete.

In the following lemma, we recall that M and N (possibly with indexes) always stand
for closed terms.

Lemma 7.6. Suppose that:

(1) U1, U2 contain the free variable u and no other free variable;
(2) V1, V2 contain at most the free variable u and no other free variable;
(3) V1U1M1...Mm and V2U2N1...Nm are solvable;
(4) T is a cascaded proof, not ending in the ω-rule, of λu.V1U1M1...Mm =ω λu.V2U2N1...Nm.

Then for each i, with 1 ≤ i ≤ m, Mi =ω Ni.

Proof. By induction on ord(T ).

Base case. ord(T ) = 1. In this case no head β-redex with a reduct of Ui, i = 1, 2, as
the argument can be contracted as a weak β-redex. Neither Ui can be part of a head weak
Ω-redex. Thus the proof contains weak βΩ-conversions of the Mi to the Ni.

Induction step. ord(T ) is infinite. We can freely assume that T has the form:

λu.V1U1M1...Mm −→
∗

wβΩ R1 wβΩ←− L1P1 =ω

=ω L1Q1 −→
∗

wβΩ R2 wβΩ←− L2P2 =ω L2Q2 −→
∗

wβΩ ... LtPt =ω

=ω LtQt −→
∗

wβΩ Rt+1
∗

wβΩ←− λu.V2U2N1...Nm .

We claim that each Rj, with 1 ≤ j ≤ t + 1, must have the form λu.V ′

1jU
′

1jM
′

1j ...M
′

mj , for

some V ′

1j , U
′

1j ,M
′

1j , ...,M
′

mj , with λu.V ′

1j =ω λu.V1, λu.U ′

1j =ω λu.U1, and, for 1 ≤ i ≤ m,

M ′

ij =ω Mi.

To prove the claim observe that it is true for R1. So let R1 ≡ λu.V ′

11U
′

11M
′

11...M
′

m1.
Consider now R2. Since T is cascaded, the reduction R1 wβΩ←− L1P1 implies that L1 has
the form λxu.V ∗

1 U∗

1 X∗

1 ...X∗

m and that V ′

11 ≡ [P1/x]V ∗

1 , U ′

11 ≡ [P1/x]U∗

1 , and, for 1 ≤ i ≤ m,
M ′

i1 ≡ [P1/x]X∗

i . So, it is clear that R2 has the required form. Repeating this argument we
get the claim.

By the claim, it follows that T contains a proof of Mi =ω Ni for each i, with 1 ≤ i ≤ m.

8. Barendregt’s Construction

The present Section requires acquaintance with Section 17.4 of [4]. However, we will
modify Barendregt’s construction in a number of minor points, in order to have a better
control of the behavior of the terms. On the other hand, the two constructions are almost
identical, and we hope that the reader could be able to reconstruct the correspondences
between them.
Assume that an effective coding of finite sequences of natural numbers with natural numbers
has been fixed. We call the coding numbers sequence numbers and we denote them by
symbols s, s′, etc. We write s′ ≤ s (s′ < s) to denote that s′ is a subsequence (resp. a proper
subsequence) of s. Let f be a function from natural numbers to natural numbers; following
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again [4], we denote by f̄(n) the sequence number of the sequence 〈f(0), . . . , f(n−1)〉. Now,
let P (n) be a Π1

1
predicate. Then:

P (n)⇐⇒ ∀f ∃m R(f̄(m), n)

for some recursive relation R. A sequence number s is n-secured iff ∃s′ < s. R(s′, n),
otherwise n-unsecured. Observe that, for n fixed the set of n-unsecured sequence numbers
is closed under the subsequence relation and therefore is a tree (possibly empty). Thus P (n)
holds iff this tree is well-founded, i.e. not s0 < s1 < s2 · · · for some infinite sequence of
n-unsecured sequence numbers. Moreover, the notion ”s is n-unsecured” is recursive. We
can sum up our discussion by the following well known theorem (see [9] Ch.16 Th.20).

Theorem 8.1. The set of (indices of) well founded recursive trees is Π1

1
-complete.

Now, let again the Π1

1
predicate P (n) be fixed. Let n be fixed once for all, we denote

by T the tree of all n-unsecured sequence numbers. Now we recall (a version of) Lemma
17.4.11 of [4].

Lemma 8.2. There is a closed term � such that:

�s =ω

{

K∗ if s ∈ T
Ω otherwise

where K∗ ≡ λab.b.

Proof. The lemma follows from the fact that T is recursive (see 16.1.10 of [4]).

As shown by Lemma 17.4.11 of [4], one can have a term � which is uniform in n, i.e.
such that, given n, it returns a term representing the corresponding tree. More in general,
Barendregt shows that all the construction can be done uniformly in n. To simplify a little
the construction, we have everywhere suppressed this dependency. This will not affect our
results.

On the other hand, we need the following slightly stronger version of the previous
lemma:

Lemma 8.3. There is a closed term D such that:

(1) For every numeral m, Dxm has a βΩ-normal form beginning with x and containing m.
(Where m is a parameter needed in the following).

(2) For every s

Ds =ω

{

K∗ if s ∈ T
Ω otherwise

(3) if s belongs to the tree, then Ds −→∗

wβΩ
K∗ by head weak β-reductions.

Proof. First of all, we can assume that � of Lemma 8.2, has the property that if s belongs
to the tree, then �s −→∗

wβΩ
K∗ by head weak β-reductions. This can be obtained by the

representation of recursive functions by λ-terms. We can also assume that � has the form
λx.X. Transform the term X as in [12], by replacing (inside out) each β-redex in X of the
form (λz.Z)W into the term xII(λz.Z)W , where I is the identity combinator. Let Y be the
resulting term, which is obviously in β-normal form and let D ≡ λx.xIIY . Observe that
for every term s (actually a numeral) representing a sequence number we have that:

sII −→∗

wβΩ I , by head weak β-reductions,
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so that for every s:

Ds −→∗

wβΩ K∗ , by head weak β-reductions, if s ∈ T ,

and:
Ds −→∗

wβΩ Ω , otherwise.

Finally, it is obvious that for every numeral m, Dxm has a βΩ-normal form beginning with
x and containing m.

We now come back to the representation of sequences. For simplicity we denote the
term representing the concatenation function by the infixed operator ∗. We can freely
require that s ∗ z has a βΩ normal form beginning with z (using the same technique of the
previous proof).

Now, we define several terms.

(1) Θ ≡ (λab.b(aab))(λab.b(aab)) (Turing’s fixed point).
(2) Z ≡ Θ(λaxf.[fx, x(λu.uΩ)y(a(x+)f)]), where by x+ we denote the application of the

successor function to x. Observe that y is free in Z.
(3) F0 ≡ λwxy.Dx0(λab.b(aab))(λab.b(aab))(λaxf.[fx, x(λu.uΩ)y(a(x+)f)])0(λz.w(x∗z))
(4) B0 ≡ ΘF0

(5) F1 ≡ λwxy.Dx1(λab.b(aab))(λab.b(aab))(λaxf.[fx, x(λu.uΩ)y(a(x+)f)])0(λz.w(x∗z))
(6) B1 ≡ ΘF1

First of all observe that both Θ and Z are not subterms of F0 (and neither of F1);
however these terms are generated during the reduction of F0 and F1 (see below). To relate
the previous definitions to [4] page 463, we first observe that Z (with suitable arguments)
behaves like the term Π of 17.4.8 of [4]. Indeed the following lemma holds.

Lemma 8.4. For all M , N and natural number m the following are equivalent:

• for every P , ([P/y]Z)mM =ω ([P/y]Z)mN
• for every natural number m′, with m ≤ m′ Mm′ =ω Nm′.

Proof. Notice that for every P and M , and for every m:
([P/y]Z)mM =ω [Mm, PΩ∼m(([P/y]Z)m+M)]
(where notations ∼ m and [M1,M2, . . .] are as in [4] page 25, and, respectively, page 169)
then argue as in Theorem 17.4.9 of [4].

Now, we consider the behavior of B0 and B1, which correspond (with minor modifica-
tions) to the terms Bn

0 and, respectively, Bn
1 of 17.4.13 of [4].

The terms B0 and B1 have the same behavior and are distinguishable only by the
passive parameters 0 and, respectively, 1.

Consider, e.g., B0. We have, with 3 head reduction steps:

B0 −→wβΩ (λb.b(Θb))F0

−→wβΩ F0(ΘF0)

−→wβΩ λxy.Dx0(λab.b(aab))(λab.b(aab))(λaxf.[fx, x(λu.uΩ)y(a(x+)f)])0(λz.B0(x ∗ z))
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and if s belongs to the tree then, with a sequence of head weak β-reductions:

B0s −→
∗

wβΩ λy.Ds0(λab.b(aab))(λab.b(aab))(λaxf.[fx, x(λu.uΩ)y(a(x+)f)])0(λz.B0(s ∗ z))

−→∗

wβΩ λy.Θ(λaxf.[fx, x(λu.uΩ)y(a(x+)f)])0(λz.B0(s ∗ z))

−→∗

β (head β-reductions)λy.[(λz.B0(s ∗ z))0, 0(λu.uΩ)(y(Z(0+)(λz.B0(s ∗ z))))]

−→∗

wβΩ λy.[B0(s ∗ 0), y(Z(0+)(λz.B0(s ∗ z)))]

We refer to the reduct λy.[(λz.B0(s ∗ z))0, 0(λu.uΩ)(y(Z(0+)(λz.B0(s ∗ z))))] as the pivot
point, and similarly for B1 and B1s. So, a head reduction of B0s or B1s begins with 3 head
reductions followed by a head reduction of Ds which either terminates in K∗ or fails to
terminate. In the first case the next head reduction is of the K∗i (i = 0, 1) redex followed
by I(λab.b(aab)) −→wβΩ (λab.b(aab)) and Θ −→wβΩ λb.b(Θb). In the weak βΩ case this
is the end of the head reduction sequence since y is contained in the argument of the head
redex. In unrestricted βΩ-reduction there are 3 more reductions to the pivot point. This
ends the description of the behavior of terms B0 and B1.

Let T (s) denote the subtree of T rooted at the sequence s. Here we include the empty
tree, in case s is not in T . As in [4] 17.4.14, we have that:

Theorem 8.5. For every sequence s, if T (s) is well founded then B0s =ω B1s

Proof. Actually in [4] 17.4.14, this is proved for the empty sequence 〈 〉. However the same
proof carries on, since for every sequence s′, with s ≤ s′ :

• if s′ 6∈ T then B0s
′ =ω Ω =ω B1s

′ ;
• if s′ ∈ T then, as shown above, B0s

′ =ω λy.[B0(s
′ ∗ 0), y(Z(0+)(λz.B0(s

′ ∗ z)))] and
B1s

′ =ω λy.[B1(s
′ ∗ 0), y(Z(0+)(λz.B1(s

′ ∗ z)))].
On the other hand, by Lemma 8.4, if for every m, B0(s

′ ∗m) =ω B1(s
′ ∗m) then for

every P , ([P/y]Z)0(λz.B0(s
′ ∗ z)) =ω ([P/y]Z)0(λz.B1(s

′ ∗ z)). By the ω-rule it follows
that: λy.Z0(λz.B0(s

′ ∗ z)) =ω λy.Z0(λz.B1(s
′ ∗ z)).

But λy.Z0(λz.B0(s
′ ∗ z)) =ω B0s

′ and λy.Z0(λz.B1(s
′ ∗ z)) =ω B1s

′, and thus B0s
′ =ω

B1s
′.

Now argue by bar induction as in [4] 17.4.14.

Theorem 8.6. For every sequence s, if B0s =ω B1s then T (s) is well founded.

Proof. By induction on the ordinal ord(T ) of a cascaded proof T of B0s =ω B1s. We shall
assume that the weak head normal form restrictions on confluence terms are in effect.

Base case. ord(T ) = 1. Under the hypothesis that ord(T ) = 1 we have that B0s and B1s
weak βΩ-convert. We shall show that s does not belong to T and that B0s =ω Ω =ω B1s.
We proceed by induction on the lengths of standard βΩ-reductions to a common reduct
(note here that standardization does not in general hold for weak βΩ-reduction so we revert
to plain βΩ). Assume that s actually belongs to T . First we show that both reductions must
proceed all the way to the pivot point. Clearly both head reductions must complete the
head reduction of Ds and the reduction K∗i −→wβΩ I to project the index i (where i = 0, 1).
Since each succeeding term in the head reduction to the pivot point has, respectively, 5,
4, 3, 2, 1 components, if both reductions to the pivot point are not completed then they
must stop to a term with the same number of components. It follows that λz.B0(s ∗ z) and
λz.B1(s ∗ z) have shorter standard βΩ-reductions to a common reduct. But this is clearly
impossible by the conditions on D and ∗, which imply that λz.B0(s ∗ z) and λz.B1(s ∗ z)



16 B. INTRIGILA AND R. STATMAN

have Böhm trees which are not η-equal. Thus both reductions proceed to the pivot point.
Thus there are shorter standard confluent βΩ-reductions from:

(λz.B0(s ∗ z))0 and (λz.B1(s ∗ z))0 ,

and from:

0(λu.uΩ)y(Z(0+)(λz.B0(s ∗ z))) and 0(λu.uΩ)y(Z(0+)(λz.B1(s ∗ z))) .

In particular by similar reasoning there exists shorter confluent standard reductions from:

Θ(λaxf.[fx, x(λu.uΩ)y(a(x+)f)])(0+)(λz.B0(s ∗ z))

and
Θ(λaxf.[fx, x(λu.uΩ)y(a(x+)f)])(0+)(λz.B1(s ∗ z)) .

Now we can repeat the above argument with minor modifications forever since no Ω-
reductions are possible. This is impossible and proves that s cannot be in T .

Induction step. ord(T ) is infinite.
We distinguish twocases.

Case 1. T ends with a direct conclusion of the ω-rule.
Thus for each closed term M and any sequence H1...Ht of closed terms:

B0sMH1...Ht =ω B1sMH1...Ht

has a cascaded proof of ordinal smaller than ord(T ). To see this observe that for any M ,
B0sM =ω B1sM has a cascaded proof of ordinal, say γ, smaller than ord(T ), which is - by
definition of ord(T ) - of the form ωθ for some θ > γ. Actually, for every k, θ > γ⊕ k. Now,
B0sMH1...Ht =ω B1sMH1...Ht can be obtained from the endpiece:

B0sMH1...Ht ∼wβΩ (λx.xH1...Ht)(B0sM) =ω (λx.xH1...Ht)(B1sM) ∼wβΩ B1sMH1...Ht ,

which clearly has a cascaded proof of ordinal smaller than γ ⊕ k, for some k, and therefore
smaller than ωθ .

Now for any m, we can choose M,H1, ...Htm to Böhm out, as in Theorem 17.4.9 of [4],
B0(s ∗m) and B1(s ∗m) from B0s and, respectively, B1s.

Thus for each m, B0(s ∗m) =ω B1(s ∗m) is provable by a proof with ordinal smaller
than ord(T ). Hence, by induction hypothesis, the subtree T (s ∗m) of T rooted at s ∗m is
well founded. It follows that the subtree of T rooted at s is well founded as well.

Case 2. Otherwise.
So T has an endpiece. Since T is cascaded, the endpiece has the form:

B0s −→
∗

wβΩ R1 wβΩ←−M1P1 =ω M1Q1 −→
∗

wβΩ R2 wβΩ←−M2P2 =ω M2Q2 −→
∗

wβΩ

... −→∗

wβΩ Rt+1
∗

wβΩ←− B1s .

Where each Ri is in whnf and all left-arrow reductions (with the possible exception of the
last one) are one step weak β-reductions not of the form (λxy1 . . . yr.xX1 · · ·Xm)U .

We shall show that also in this case s is not in T . By contradiction, assume s in T .
Since the weak head normal form restrictions are in effect, the head reduction part of the
reduction to R1 terminates in:

λy.λb.b(Θb)(λaxf.[fx, x(λu.uΩ)y(af(x+))])0(λz.B0(s ∗ z))

and similarly the head reduction part of the reduction from B1s to Rt+1 terminates in:

λy.λb.b(Θb)(λaxf.[fx, x(λu.uΩ)y(af(x+))])0(λz.B1(s ∗ z)) .
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Now, let:

• V1 ≡ V2 ≡ λb.b(Θb)
• U1 ≡ U2 ≡ λaxf.[fx, x(λu.uΩ)y(af(x+))]
• M1 ≡ N1 ≡ 0
• M2 ≡ λz.B0(s ∗ z)
• N2 ≡ λz.B1(s ∗ z)

Thus by the Lemma 7.6 there exists a proof of λz.B0(s ∗ z) =ω λz.B1(s ∗ z). But this
is impossible because these terms have Böhm trees which are not η-equal. This completes
the proof.

Corollary 8.7. The set {(M,N)|M =ω N} is Π1

1
-complete.

Proof. Let P (n) be a Π1

1
predicate. Given any natural number n, to compute the truth

value of P (n), construct the recursive tree T of all n-unsecured sequence numbers. Then
construct the terms B0 and B1. Then use Theorem 8.5 and Theorem 8.6 to determine (via
equality in Hω) if T is well founded.
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