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Abstract. We study two-player games of infinite duration that are played on finite or
infinite game graphs. A winning strategy for such a game is positional if it only depends on
the current position, and not on the history of the play. A game is positionally determined

if, from each position, one of the two players has a positional winning strategy.
The theory of such games is well studied for winning conditions that are defined in terms

of a mapping that assigns to each position a priority from a finite set C. Specifically, in
Muller games the winner of a play is determined by the set of those priorities that have
been seen infinitely often; an important special case are parity games where the least
(or greatest) priority occurring infinitely often determines the winner. It is well-known
that parity games are positionally determined whereas Muller games are determined via
finite-memory strategies.

In this paper, we extend this theory to the case of games with infinitely many priorities.
Such games arise in several application areas, for instance in pushdown games with winning
conditions depending on stack contents.

For parity games there are several generalisations to the case of infinitely many pri-
orities. While max-parity games over ω or min-parity games over larger ordinals than ω

require strategies with infinite memory, we can prove that min-parity games with priorities
in ω are positionally determined. Indeed, it turns out that the min-parity condition over ω

is the only infinitary Muller condition that guarantees positional determinacy on all game
graphs.

1. Motivation

The problem of computing winning positions and winning strategies in infinite games
has numerous applications in computing, most notably for the synthesis and verification of
reactive controllers and for the model-checking of the µ-calculus and other logics. Of special
importance are parity games, due to several reasons.
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(1) Many classes of games arising in practical applications admit reductions to parity
games (over larger game graphs). This is the case for games modeling reactive systems,
with winning conditions specified in some temporal logic or in monadic second-order
logic over infinite paths (S1S), for Muller games, but also for games with partial
information appearing in the synthesis of distributed controllers [1].

(2) Parity games arise as the model checking games for fixed point logics such as the
modal µ-calculus or LFP, the extension of first-order logic by least and greatest fixed
points [11, 14]. In particular the model checking problem for the modal µ-calculus
can be solved in polynomial time if, and only if, winning regions for parity games can
be computed in polynomial time.

(3) Parity games are positionally determined [10, 24]. This means that from every posi-
tion, one of the two players has a winning strategy whose moves depend only on the
current position, not on the history of the play. This property is fundamental for nu-
merous results in automata theory on infinite objects and for verification algorithms.

In most of the traditional applications of games in computer science, the arena, and
therefore also the number of priorities appearing in the winning condition, are finite. How-
ever, due to applications in the verification of infinite-state systems and other areas where
infinite structures become increasingly important, it is interesting to study infinite arenas
that admit some kind of finite presentation. The best studied class of such games are
pushdown games [21, 28], where the arena is the configuration graph of a pushdown au-
tomaton. Other relevant classes of infinite, but finitely presented, (game) graphs include
prefix-recognizable graphs, HR- and VR-equational graphs, graphs in the Caucal hierarchy,
and automatic graphs. On all these classes of graphs (with the exception of automatic
graphs [5]), monadic second-order logic can be evaluated effectively, which implies, for in-
stance, that winning regions of parity games with a finite number of priorities are decidable.
However, once we move to infinite game graphs, winning conditions depending on infinitely
many priorities arise naturally. In pushdown games, stack height and stack contents are
natural parameters that may take infinitely many values. In [7], Cachat, Duparc, and
Thomas study pushdown games with an infinity condition on stack contents, and Bouquet,
Serre, and Walukiewicz [6] consider more general winning conditions for pushdown games,
combining a parity condition on the states of the underlying pushdown automaton with
an unboudedness condition on stack heights. Similarly, Gimbert [12] considers games of
bounded degree where the parity winning conditions is combined with the requirement that
an infinite portion of the game graph is visited.

To establish positional determinacy or finite-memory determinacy is a fundamental
first step in the analysis of an infinite game, and is also crucial for the algorithmic con-
struction of winning strategies. In the case of parity games with finitely many priorities the
positional determinacy immediately implies that winning regions can be decided in NP ∩
Co-NP; with a little more effort it follows that the problem is in fact in UP ∩ Co-UP [17].
Further, although it is not known yet whether parity games can be solved in polynomial
time, all known approaches towards an efficient algorithmic solution make use of positional
determinacy, including the presently best deterministic algorithm from [19]. The same is
true for the polynomial-time algorithms that we have for specific classes of parity games,
including parity games with a bounded number of priorities [18], games where even and
odd cycles do not intersect, solitaire games and nested solitaire games [3], and parity games
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of bounded tree width [25], bounded entanglement [4], or bounded DAG-width [2, 26]. Po-
sitional determinacy is also the key point in the proofs of most of the known results on
pushdown games.

In general, the positional determinacy of a game may depend on specific properties
of the arena and on the winning condition. For instance, the previously known results
on pushdown games make use of the fact that the arena is a pushdown graph. However,
this is not always the case. As we show here, there are interesting cases, where positional
determinacy is a consequence of the winning condition only. Most notably this is the case for
the parity condition (little endian style) on ω. In fact, we completely classify the infinitary
Muller conditions with this property and show that they are equivalent to a parity condition.
This result gives a general, arena-independent explanation of the positional determinacy of
certain pushdown games. We hope and expect that it will be the first step for algorithmic
solutions for other infinite games with finitely presented arenas.

2. Introduction

2.1. Games and strategies. We study two-player games of infinite duration on arenas
with infinitely many priorities. An arena G = (V, V0, V1, E,Ω), consists of a directed graph
(V,E), with a partioning V = V0∪V1 of the nodes into positions of Player 0 and positions of
Player 1. The possible moves are described by the edge relation E ⊆ V × V . The function
Ω : V → C assigns to every position a priority. Occasionally we encode the priority function
by the collection (Pc)c∈C of unary predicates where Pc = {v ∈ V : Ω(v) = c}.

In case (v,w) ∈ E we call w a successor of v and we denote the set of all successors
of v by vE. To avoid tedious case distinctions, we assume that every position has at least
one successor. A play of G is an infinite path v0v1 . . . formed by the two players starting
from a given initial position v0. Whenever the current position vn belongs to Vσ, then
Player σ chooses a successor vn+1 ∈ vnE. A game is given by an arena and a winning
condition that describes which of the plays v0v1 . . . are won by Player 0, in terms of the
sequence Ω(v0)Ω(v1) . . . of priorities appearing in the play. Thus, a winning condition is a
set W ⊆ Cω of infinite sequences of priorities.

A (deterministic) strategy for Player σ is a partial function f : V ∗Vσ → V that assigns
to finite paths through G ending in a position v ∈ Vσ a successor w ∈ vE. A play v0v1 · · · ∈
V ω is consistent with f if, for each initial segment v0 . . . vi with vi ∈ Vσ, we have that
vi+1 = f(v0 . . . vi). We say that such a strategy f is winning from position v0 if every play
that starts at v0 and that is consistent with f is won by Player σ. The winning region of
Player σ, denoted Wσ, is the set of positions from which Player σ has a winning strategy.
A game G is determined if W0 ∪ W1 = V , i.e., if from each position one of the two players
has a winning strategy.

Winning strategies can be rather complicated. Of special interest are simple strategies,
in particular finite memory strategies and positional strategies. While positional strategies
only depend on the current position, not on the history of the play, finite memory strategies
have access to bounded amount of information on the past. Finite memory strategies can
be defined as strategies that are realisable by finite automata.

More formally, a strategy with memory M for Player σ is given by a triple (m0, U, F )
with initial memory state m0 ∈ M , a memory update function U : M × V → M and a
next-move function F : Vσ × M → V . Initially, the memory is in state m0 and after the
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play has gone through the sequence v0v1 . . . vm the memory state is u(v0 . . . vm), defined
inductively by u(v0 . . . vmvm+1) = U(u(v0 . . . vm), vm+1). In case vm ∈ Vσ, the next move
from v1 . . . vm, according to the strategy, leads to F (vm, u(v0 . . . , vm)). In case M = {m0},
the strategy is positional; it can be described by a function F : Vσ → V .

Definition 2.1. A game is positionally determined, if it is determined, and each player has
a positional winning strategy on his winning region.

Clearly, if the arena is a forest, then all strategies are positional, so the game is posi-
tionally determined if, and only if, it is determined.

Throughout the paper, we assume the Axiom of Choice.

2.2. Games with infinitely many priorities. In the context of finite-memory determi-
nacy or positional determinacy of infinite games it is usually assumed that the range of the
priority function is finite, and the winning condition is defined by a formula on infinite paths
(from S1S or LTL, say) referring to the predicates (Pc)c∈C , or by an automata-theoretic
condition like a Muller, Rabin, Streett, or parity (Mostowski) condition (see e.g. [15, 9, 29]).
In Muller games the winner of a play depends only on the set of priorities that have been
seen infinitely often; it has been proved by Gurevich and Harrington [16] that Muller games
are determined and that the winner has a finite-memory winning strategy. An important
special case of Muller games are parity games where the least (or greatest) priority occurring
infinitely often determines the winner.

Here we will extend the study of positional determinacy to games with infinitely many
priorities. Specifically we are interested in games with priority assignments Ω : V → ω.
Besides the obvious theoretical interest, such games arise in several areas. For instance,
the winning conditions of pushdown games are specific instances of abstract winning con-
ditions in games with infinitely many priorities. It is interesting to study these games in a
general setting, and to isolate the winning conditions that lead to positional determinacy
on arbitrary arenas, not just on specific ones like pushdown games.

Based on priority assigments Ω : V → ω we will first consider the following classes of
games.

Infinity games: are games where Player 0 wins precisely those infinite plays in which
no priority appears infinitely often.

Parity games: are games where Player 0 wins the infinite plays where the least pri-
ority seen infinitely often is even, or where all priorities appear only finitely often.

Max-parity games: are games where Player 0 wins if the maximal priority occurring
infinitely often is even, or does not exist.

Note that we have chosen the definitions so that in case no priority appears infinitely
often, the winner is always Player 0. It is clear that these games are determined, because
the winning conditions are Borel sets, and a fundamental result due to Martin [22] states
that all Borel games are determined. To be more precise, the infinity and parity winning
conditions are on the Π0

3-level of the Borel hierarchy. Indeed, note that for any m ∈ ω

the set Am of words that contain infinitely many occurences of m is in Π0
2 since it is the

countable intersection of the open sets An
m := (ω∗m)nωω, for all n ∈ ω. Now the parity

condition can be expressed as the the set of infinite words x = x0x1x2 . . . such that for all
odd m, either x 6∈ Am or there is an even number k < m such that x ∈ Ak. Similarly, it is
easy to see that the max-parity condition is on the ∆0

4-level of the Borel hierarchy.
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For games with only finitely many priorities, min-parity and max-parity winning con-
ditions can be (and are) used interchangeably. This is not the case when we have infinitely
many priorities.

Proposition 2.2. Max-parity games with infinitely many priorities in general do not admit
finite memory winning strategies.

Proof. Consider the max-parity game with positions V0 = {0} and V1 = {2n + 1 : n ∈ N}
(where the name of a position is also its priority), such that Player 0 can move from 0 to
any position 2n + 1 and Player 1 can move back from 2n + 1 to 0. Clearly Player 0 has a
winning strategy from each position but no winning stategy with finite memory.

However, we will see that (min-)parity games with priorities in ω are positionally de-
termined.

2.3. Strategy forests. Let f be a strategy for Player σ in the game G = (V, V0, V1, E,Ω).
For any initial position v0 of the game, we can associate with f the strategy tree Tf , the
tree of all plays that start at v0 and that are consistent with f . In the obvious way, Tf

can itself be considered as a game graph, with a canonical homomorphism h : Tf → G. For
every position v of G, we call the nodes s ∈ h−1(v) the occurrences of v in Tf . Since we
assume that strategies are deterministic every occurence of a node v ∈ Vσ has precisely one
successor in the strategy forest Tf , whereas every occurrence of a node v ∈ V1 has precisely
as many successors in Tf as v has in G. If f is a winning strategy from v0, then every path
through Tf is a winning play for Player σ. If we consider a set of initial positions (like the
entire winning region Wσ) then Tf is a strategy forest with a separate tree for each initial
position.

By moving from game graphs to strategy forests we can eliminate the interaction be-
tween the two players and thus simplify the analysis. We already know that the games that
we study are determined. To prove positional determinacy we proceed as follows.

We take a winning strategy and define a collection of well-founded pre-orders on its
strategy forest. We then define a positional winning strategy for the original game, by
copying for each position in the winning region, the winning stategy from a minimal oc-
currence of the position in the strategy tree. We then show that the resulting positional
strategy is indeed winning.

To simplify the exposition we first discuss infinity games. Note that these can be seen
as a special case of parity games. Indeed, if we change the priorities of an infinity game G
so that all priorities become odd, by setting Ω′(v) := 2Ω(v) + 1, and replace the infinity
winning condition by the parity condition, then the resulting parity game G′ is equivalent
to G.

3. Infinity Games

We start with some remarks on arbitrary transition systems. We will then apply them
to strategy forests.

Given any transition system K = (S,E, P ) with set of states S, transition relation E

and atomic proposition P , we assign to each state s an ordinal α(s) or ∞. Informally, α(s)
tells us how often a path from s can hit P . To define this precisely, we proceed inductively.
For any ordinal α, let Xα be the set of all s ∈ S such that whenever a path from s hits a node
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t ∈ P , then all successors of t belong to
⋃

β<α Xβ. Finally, let α(s) = min{α : s ∈ Xα}. If

s is not contained in any Xα, the we put α(s) = ∞.

Remark. We can equivalently define α(s) in terms of closure ordinals in the modal µ-
calculus. Consider the formula µX.ϕ(X), with ϕ(X) := νY.(P → ✷X) ∧ ✷Y . It expresses
that on all paths, there are only finitely many occurrences of P . We define the stage
Xα of the least fixed point induction via ϕ(X) by Xα = {s : K, s |= ϕ(X<α)} where
X<α :=

⋃
β<α Xβ. It is easily seen that this coincides with the definition given above.

Remark. Note that although µX.ϕ(X) expresses that on every path there are only finitely
many occurrences of P the closure ordinals need not be finite. For a simple example,
consider an infinite path v0v1v2 . . . without occurences of P and attach to each vn another
infinite path on which P is seen precisely n times. On all these attached paths, α(s) will
take only finite values, but α(vn) = ω for all n.

The following lemma is a direct consequence of the definitions.

Lemma 3.1. Suppose that every path in K contains only finitely many occurrences of P

(i.e., K, s |= µX.ϕ(X) for all s). Then α(s) ≥ α(t) for all edges (s, t) of K, and the
inequality is strict for s ∈ P .

Assume next that we have a transition system K = (S,E, P0, P1, P2, . . .) with infinitely
many atomic propositions Pn. Proceeding as above for Pn instead of P , we obtain, for
each n, a function αn mapping states s ∈ S to ordinals. The signature of s is sig(s) :=
〈αn(s) : n < ω〉; we compare signatures lexicographically. Further, for each n < ω, let
sign(s) = 〈α0(s), . . . , αn(s)〉 and let s <n t denote that sign(s) < sign(t) (i.e., that the
signature of s is strictly smaller than the signature of t on the first n+1 positions). Similarly,
let s ≤n t denote that sign(s) ≤ sign(t).

Note that s <n t implies s <n+1 t and that each pre-order <n is well-founded (i.e.,
all descending chains are finite). On the other side, when we have infinitely many Pn, the
lexicographic order of unrestricted signatures admits infinite descending chains.

Theorem 3.2. Infinity games are positionally determined

Proof. Let W0 and W1 be the winning regions of the two players for the infinity game on
the arena G. Note that the situation for the two players is not symmetric, so we have to
consider them separately.

Let f be any winning strategy for Player 0 on W0. If f is positional then we are done.
Otherwise, we consider the strategy forest Tf and the canonical homomorphism h : Tf → G.
In Tf every path is winning for Player 0, and thus hits each Pn only finitely often. Hence
the functions αn(s) are defined and satisfy the properties of Lemma 3.1.

We define a positional strategy f ′ for Player 0 as follows. Select a function s : W0 → Tf

that associates with each vertex v ∈ W0 of priority n a <n-minimal element s(v) ∈ h−1(v)
(i.e., a <n-minimal occurrence of v in the strategy forest). If v, and hence also s(v), is
a node of Player 0, then there is a unique successor t of s(v) in Tf ; define f ′(v) := h(t).
Further, we define values of αn (and hence sign) on W0 by αn(v) := αn(s(v)).

We claim that f ′ is winning from each node v0 ∈ W0. Otherwise there exists a play
v0v1v2 . . . that is consistent with f ′ and winning for Player 1. Let n be the least priority
seen infinitely often on this play; take a suffix of the play on which priorities smaller than
n do no longer occur. We claim that the values of sign never increase on this suffix.

To see this, consider a move from v to w in this suffix and the corresponding moves in Tf

from s := s(v) to t with h(t) = w. By construction, and since v and w have priorities ≥ n,
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we have sign(v) = sign(s) and sign(w) ≤ sign(t). By Lemma 3.1, we have αm(s) ≥ αm(t)
for all m and the inequality is strict if m is the priority of s. It follows that

sign(v) = sign(s) ≥ sign(t) ≥ sign(w)

and sign(v) > sign(w) in case v ∈ Pn. Since there are infinitely many nodes vi1, vi2 , . . . of
priority n in the suffix, we obtain an infinite descending chain

sign(vi1) > sign(vi2) > · · ·

which is impossible. Hence f ′ is indeed a winning strategy.

We now consider the case of Player 1. Let g be a strategy for Player 1 on W1, with
strategy forest Tg and canonical homomorphism h : Tg → G. We define the 0-ancestor of
a node s ∈ Tg to be the closest ancestor of s that has priority 0. Note that 0-ancestors
may be undefined. More generally, the m-ancestor of s is the closest ancestor of priority
m, provided it lies between s and the j-ancestor of s, for all j < m for which the j-
ancestor is defined. We can thus associate with every node s of priority m an (m+1)-tuple
a(s) = 〈a0(s), . . . , am(s)〉 ∈ (Tg ∪ {⊥})m+1 of ancestors, where ai(s) = ⊥ means that the
i-th ancestor of s is not defined. Observe that am(s) = s as s is an ancestor of itself.

We fix a well-order < on Tg ∪ {⊥} (with maximal element ⊥) and we compare tuples
of ancestors via the lexicographical order that is induced by <. We can then associate with
every v ∈ W1 of priority m the node s(v) ∈ h−1(v) with the minimal tuple of ancestors.
Note that s(v) is well-defined, because every position v ∈ W1 has at least one occurrence
s ∈ Tg, and am(s) = s if m has priority m (so at least one ancestor is defined). We extend
the ancestor function to W1 by setting a(v) := a(s(v)); this assigns to every node in W1 a
tuple of ancestors in Tg. To define the positional strategy g′, we select for any v ∈ V1 ∩ W1

the unique successor t of s(v) and set g′(v) := h(t).
We claim that this strategy is winning for Player 1. Suppose conversely that there

is a losing play respecting the strategy. Then no priority appears infinitely often on this
play. Consider the suffix of the play after the last appearance of priority 0. Let us look at
the 0-ancestors of the positions in this suffix. These ancestors can only get smaller as the
play proceeds. Indeed a move from v to w in such a play corresponds to a move from s(v)
to t in Tg with h(t) = w. Since w does not have priority 0, a0(s) = a0(t) and therefore
a0(v) = a0(s) = a0(t) ≥ a0(w). This means that from some moment on all positions in the
play will have the same 0-ancestor. Consider the suffix of the play consisting only of these
vertices. Next do the same with priority 1. We find a position after which the 1-ancestor
stabilises. Observe that it is a descendant of the 0-ancestor and that there is no occurrence
of priority 0 on the path between the two. Proceeding in this way we construct a path in
the strategy tree Tg on which no priority appears infinitely often. But this is impossible,
since g was a winning strategy for Player 1.

4. Parity games

For parity games we proceed quite similarly, but we have to consider more complicated
orderings on the strategy forests.

Consider a transition system K = (S,E, P,Q) with two atomic propositions P and Q.
We assign to each state s an ordinal β(s) or ∞ which, informally, tells us how often a path
from s can hit P before seeing Q. Let X0 be the set of all s such that all paths from
s hit Q before hitting P , and for β > 0, let Xβ be the set of all s such that whenever
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a path from s hits a node t ∈ P , then all successors of t belong to X<β. Finally, let
β(s) = min{β : s ∈ Xβ}.

Again, we have an equivalent definition in terms of the modal µ-calculus. This time,
consider the formula µX.ϕ(X), with ϕ(X) := νY.(¬P ∨✷X)∧ (Q∨✷Y ). It expresses that
on all paths, there are only finitely many occurrences of P before seeing Q. Then β(s) is
the stage at which the least fixed point induction defined by ϕ(X) becomes true at node s.

Lemma 4.1. Suppose that every path in K contains only finitely many occurrences of P

before hitting Q. Then β(s) ≥ β(t) for all edges (s, t) of K with s 6∈ Q, and the inequality
is strict for s ∈ P .

For infinity games we have defined ordinals αn(s) telling us how often a path from
s can see priority n, independently for each n. Now we need different bounds βn which,
informally, describe how often a path can hit the odd priority n before seeing a smaller one.

Let G be a parity game, and let Tf = (S,E, P0, P1, P2, . . .) be the strategy forest of a
winning strategy f for Player 0. Note that for every odd priority n, each path through Tf

sees only finitely many occurrences of n before seeing a priority < n. Hence, proceeding as
above for P := Pn and Q :=

⋃
m<n Pm we obtain, for each odd n, a function βn mapping

nodes s ∈ Tf to ordinals. The 0-signatures of s are sig0
n(s) := 〈β1(s), β3(s) . . . , βn′(s)〉,

where n′ = n for odd n and n′ = n − 1 for even n; let s <0
n t denote that sig0

n(s) < sig0
n(t).

Further, s ≤0
n t means that sig0

n(s) ≤ sig0
n(t).

For strategy forests Tg of winning strategies of Player 1, we proceed dually, associat-
ing with every node s ordinals βn(s), for even n. We then define 1-signatures sig1

n(s) =
〈β0(s), β2(s), . . . , βn′(s)〉 (where n′ is the largest even number not exceeding n) and the
corresponding signature orderings <1

n.
Again, we immediatley see that s <i

n t implies s <i
n+1 t and that each ≤i

n is a well-
founded. Further, these orderings have very useful properties on strategy forests.

Lemma 4.2. Let Tf be the strategy forest associated with a winning strategy for Player 0
for a parity game. Then t ≤0

Ω(s) s for all edges (s, t) of Tf and the inequality is strict if

Ω(s) is odd. In a strategy forest Tg of Player 1, we have t ≤1
Ω(s) s for all edges (s, t) and

the inequality is strict if Ω(s) is even.

Proof. If (s, t) is an edge in Tf , then by Lemma 4.1, βm(t) ≤ βm(s) for m ≤ Ω(s), and, if
n = Ω(s) is odd, and βn(t) < βn(s). Similarly for Tg.

Theorem 4.3. Parity games with priorities in ω are positionally determined.

Proof. The proof for Player 0 is precisely the same as for infinity games, using 0-signatures
and the associated orderings <0

n.
For Player 1 we combine the approach for infinity games based on ancestors in the

strategy forest with comparisons based on 1-signatures. As in the proof of Theorem 3.2
we associate with every node s of priority m in the strategy tree Tg the (m + 1)-tuple
a(s) = 〈a0(s), . . . , am(s)〉 ∈ (Tg ∪ {⊥})m+1 of ancestors.

For each i ∈ ω we fix a well-order ✁i extending <1
i . Moreover we assume that ⊥ is

bigger in the ✁i-order than all the nodes. Let s, s′ be two nodes of Tg of the same priority
m. We write s ≺m s′ if there is i ≤ m such that ai(s) ✁i ai(s

′) and aj(s) = aj(s
′) for all

j < i. Observe that ≺m is a well order on vertices of priority m.
For any position v ∈ W1 of priority m we now take the ≺m-minimal occurrence s(v)

in Tg and define ancestors by a(v) := a(s(v)). For v ∈ V1 ∩ W1 we consider the unique
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successor t of s(v) and set g′(v) := h(t). This defines a positional strategy g′ for Player 1
on G.

We claim that this strategy is winning on W1. Suppose conversely that there is a losing
play respecting the strategy. Then either no priority appears infinitely often on this play,
or the smallest priority occurring infinitely often is even.

If no priority occurs infinitely often, then we can proceed as in the proof of Theorem 3.2
to show that all ancestors eventually stabilise on the play, and thus obtain an infinite path
in Tg on which no priority appears infinitely often. This is impossible since g is a winning
strategy for Player 1. If the minimal priority p appearing infinitely often is even, then
we consider a suffix of the play that contains only priorities ≥ p. By the same reasoning
as in the first case it follows that all q-ancestors, for q < p, eventually stabilise on the
play. Consider the suffix of the play after this has happened. A move from v to w on
this suffix corresponds to a move from s(v) to t in Tg. By definition, the p-ancestor of v is
ap(v) = ap(s(v)) and ap(w) �p ap(t). On Tg we obviously have ap(t) = t if Ω(t) = p and
ap(t) = ap(s(v)) if Ω(t) > p. Now t is a descendant of ap(s), so by Lemma 4.2 we have
t <1

p ap(s); for the case that Ω(t) = p this means that ap(t) = t <1
p ap(s). Since ≺p extends

<1
p on nodes of priority p, we have that ap(w) �p ap(v) and that the inequality is strict if

Ω(w) = p. But on the suffix we have an inifinite sequence of positions with priority p, and
hence an infinite ≺p-decreasing chain of p-ancestors, which is impossible.

Remark: Parity games over larger ordinals. We can also define parity games with
a priority function Ω : V → α taking values in a larger set of ordinals than ω. Recall that
any ordinal can be written in a unique way as a sum λ + n where λ is a limit ordinal and
n < ω. We call λ+n even if n is. The question arises whether the positional determinacy of
parity games over ω extends to larger ordinals. However, a tiny modification of the game in
Proposition 2.2 shows that this is not the case. Indeed, if we replace in that game priority 0
by ω, and use the (min-)parity winning condition, then Player 0 has a winning strategy from
each position but no winning strategy with finite memory. For larger ordinals, a similar
construction applies. This proves that parity games over ordinals α > ω in general do not
guarantee finite memory winning strategies.

Essentially the same construction shows that finite-memory determinacy also fails for
some other variants of parity games over ω, such as

• parity games where the priority function is partial (i.e., not all vertices have a
priority),

• parity games with priorities on edges rather than vertices.

5. Muller games

Why do parity games and max parity games behave differently? Both are Muller
conditions (i.e. they refer only to the set of priorities seen infinitely often) and the question
arises which properties of Muller conditions are responsible for positional determinacy or
determinacy with finite memory. In this section we assume that the set of priorities is
countable. This is reasonable as on each play one can see only a countable number of them.

Definition 5.1. A Muller condition over a set C of priorities is written in the form (F0,F1)
where F0 ⊆ P(C) and F1 = P(C) − F0. A play in a game with Muller winning condition
(F0,F1) is won by Player σ if, and only if, the set of priorities seen infinitely often in the
play belongs to Fσ .
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For infinity games, we have F0 = {∅} and F1 = P(ω) − {∅}. For parity games,

F0 = {X ⊆ ω : min(X) is even} ∪ {∅}

F1 = {X ⊆ ω : min(X) is odd}

For max-parity games, we have

F0 = {X ⊆ ω : if X is finite and non-empty,

then max(X) is even}

F1 = {X ⊆ ω : X is finite, non-empty, and

max(X) is odd}

Definition 5.2. We say that (F0,F1) guarantees positional winning strategies if all games
with winning condition (F0,F1) are positionally determined.

Following McNaughton [23] and Zielonka [29] we say that Fσ has a strong split if there
exist sets X0,X1 ∈ Fσ with X0∩X1 6= ∅ and X0∪X1 ∈ F1−σ . Zielonka [29] has shown that
a Muller condition over a finite set of priorities guarantees positional winning strategies if,
and only if,

(P0): F0 and F1 have no strong splits.

Remark. A weak split is a pair of disjoint sets with X0,X1 ∈ Fσ and X0 ∪ X1 ∈ F1−σ .
Muller conditions over finite sets of priorities may have weak splits and still guarantee
positional winning strategies. The simplest case is when F0 consists of the set {0, 1}, but
{0} and {1} belong to F1.

We want to find a similar characterisation of Muller conditions with positional winning
strategies for the case of infinite sets of priorities.

We observe that for infinity games and parity games F0 and F1 are closed under unions
and non-empty intersections of chains:

(P1): For every infinite descending chain X1 ⊇ X2 ⊇ . . . of elements of Fσ either⋂
i<ω Xi = ∅ or it is an element of Fσ.

(P2): For every chain X1 ⊆ X2 ⊆ . . . of elements of Fσ , also
⋃

i<ω Xi belongs to Fσ.

On the other side, for the max-parity condition, F0 is not closed under non-empty
intersections of chains (take Xi = {1} ∪ {n : n > i}) and F1 is not closed under unions of
chains (take Xi = {j : j ≤ 2i + 1}). Condition (P1) fails also for min-parity condition for
ordinals α > ω. Indeed we have F1 = {X ⊆ α : min(X) is odd} which is not closed under
non-empty intersections of chains (take Xi = {ω} ∪ {n : 2i + 1 ≤ n < ω}).

We will show first, that condition (P1) is necessary for the positional determinacy of a
Muller condition.

Lemma 5.3. If there is an infinite sequence X1 ⊇ X2 ⊇ · · · of elements of F1−σ with⋂
Xi = Y 6= ∅ and Y ∈ Fσ then there is game with winning condition (F0,F1) that

Player σ wins, but needs infinite memory to do so.

Proof. Consider the following game where circles denote positions of Player σ and boxes
positions of Player (1 − σ).



POSITIONAL DETERMINACY 11

a

a

a

...

X1

X2

...

a

Y

Here a is some arbitrary element of Y . A play in this game is an infinite sequence of
subplays; in each subplay Player σ first decides from which Xi the opponent is going to
choose next. After Player (1− σ) has made his choice, Player σ can select an element from
Y .

If Player σ allows her opponent to choose from some Xi infinitely often then Player (1−
σ) can make all elements of Xi appear infinitely often on the play. This means that in order
not to lose, Player σ must permit Player (1− σ) to choose from each Xi only finitely often.
If she does this then she wins as she can make sure that each element of Y is seen infinitely
often thanks to the last part of the each subplay. Thus Player σ has a winning strategy,
but none that uses only finite memory.

To show the necessity of conditions (P0) and (P2) we consider the following game.

a

Y

a

Y

Here, Y is a set and a ∈ Y . The arrows to the ovals with Y mean that the player can
choose any element of Y . Clearly, if Y ∈ Fσ, then Player σ can win by visiting all elements
of Y infinitely often. However, if Player σ plays memoryless then she must select a fixed
element b, and her opponent can chose an arbitrary set X ⊆ Y of nodes and make sure that
the set of nodes visited infinitely often is {a, b} ∪X. More generally, if Player σ plays with
a finite memory strategy this amounts to selecting a finite set B; Player (1 − σ) can then
win if there exists a set X ∈ F1−σ with {a} ∪ B ⊆ X ⊆ Y .

Lemma 5.4. If F1−σ contains a strong split, then there is a game with winning condition
(F0,F1) that is won by Player σ, but not with a positional strategy.
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Proof. Let X0 ∪ X1 ∈ Fσ with X0,X1 ∈ F1−σ and X0 ∩ X1 6= ∅. Take the game above
with Y = X0 ∪ X1 and a ∈ X0 ∩ X1. Player σ wins since Y = X0 ∪ X1 ∈ Fσ. However,
she cannot win positionally. Indeed the single element b selected by a positional strategy
of Player σ belongs to Xi (i = 0 or 1), and Player 1 − σ can win by making sure that all
elements of Xi, and only these, are visited infinitely often.

Lemma 5.5. If F1−σ is not closed under unions of chains, then there is a game with
winning condition (F0,F1) that Player σ wins, but needs infinite memory to do so.

Proof. Let X1 ⊆ X2 ⊆ · · · be an infinite ascending chain in F1−σ with
⋃

i Xi ∈ Fσ. Take
the game described above with Y =

⋃
i Xi and a ∈ X1. Again Player σ wins since Y ∈ Fσ.

But if Player σ plays with finite memory, this amounts to selecting a finite set B ⊆ Y

of elements that she visits infinitely often. Since B is finite B ⊆ Xi for some i; hence
Player 1−σ can make sure that the set of elements visited infinitely often is Xi and wins.

In the remaining part of the section we will characterise the Muller conditions satisfying
(P0), (P1) and (P2) in a different way, via Zielonka paths, and then show that any such
condition can be reformulated as a parity condition over an ordinal α ≤ ω. In particular,
this implies that these closure properties are necessary and sufficient to guarantee positional
determinacy on all game graphs.

Definition 5.6. The Zielonka tree of a Muller condition (F0,F1) over C is a tree Z(F0,F1)
whose nodes are labelled with pairs (X,σ) such that X ∈ Fσ . Let σ be the player that wins
with the set of all priorities, i.e. C ∈ Fσ with C =

⋃
F0∪

⋃
F1. The Zielonka tree Z(F0,F1)

exists, if for every maximal Y ∈ F1−σ the Zielonka tree Z(F0 ∩ P(Y ),F1 ∩ P(Y )) exists
and every set in F1−σ is a subset of some maximal set in F1−σ. In that case Z(F0,F1)
consists of a root, labeled by (C, σ), to which we attach as subtrees the Zielonka trees
Z(F0 ∩P(Y ),F1 ∩P(Y )), for the maximal sets Y ∈ F1−σ . (In particular, if F1−σ = ∅, then
the Zielonka tree consists of a single node.)

For Muller conditions over a finite set C, the Zielonka tree always exists, and it is a
fundamental tool for analysing the memory that is required for solving Muller games [9].
For infinite sets C, the Zielonka tree need not exist, since there is no guarantee, that for
X ∈ Fσ, the set P(X) ∪ F1−σ contains maximal elements. For instance the max-parity
condition does not have a Zielonka tree.

Proposition 5.7. For every Muller condition satisfying property (P2) the Zielonka tree
exists.

Proof. By (P2) the union over any chain Y0 ⊆ Y1 ⊆ . . . in P(X) ∩ Fσ is again contained
P(X) ∩ Fσ. Hence, by Zorn’s Lemma, P(X) ∩ Fσ has maximal elements.

Now let S be the set of elements of P(X) ∩ Fσ that are not below a maximal element.
For any Y ∈ S there exists a set Y ′ ) Y which must again belong to S. Further, the union
over any chain in S is again contained in S. If S were non-empty, then, again by Zorn’s
Lemma, S would contain maximal elements, which is absurd.

We say that a Muller condition (F0,F1) is described by a Zielonka path of co-finite sets
if the Zielonka tree Z(F0,F1) exists, and it is a finite or infinite path, consisting of co-finite
sets, and possibly the empty set at the end.

Proposition 5.8. Every Muller condition on a countable set C, satisfying properties (P0),
(P1), and (P2), is described by a Zielonka path of co-finite sets.
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Proof. We already know that the Zielonka tree for (F0,F1) exists. The set that labels the
root of the Zielonka tree is C which is co-finite. Consider now any node of the Zielonka tree,
labelled (X, 1 − σ). If all subsets of X belong to F1−σ (in particular if X = ∅), then the
node is a leaf of the Zielonka tree. Otherwise, by Proposition 5.7, we know that P(X)∩Fσ

contains a maximal element Y . If X \ Y was infinite then one could consider any infinite
descending chain X1 ) X2 ) . . . of sets in P(X) ∩ F1−σ whose intersection is Y . But,
unless Y = ∅, this would violate property (P1). Hence, Y is either co-finite or empty. Now
suppose that there are two distinct maximal elements Y1, Y2 in P(X) ∩ Fσ. Since Y1, Y2

are both co-finite, Y1 ∩ Y2 6= ∅. By property (P0), Y1 ∪ Y2 ∈ Fσ which is impossible by the
maximality of Y1 and Y2. This means that the node (X, 1−σ) has a unique sucessor (Y, σ),
with Y being the greatest element in P(X) ∩ Fσ.

Thus, the Zielonka tree is indeed a finite or infinite path of co-finite sets and, if it is
finite, with possibly the empty set at the end.

Next we have to make precise what it means that a Muller condition reduces to a parity
condition.

Definition 5.9. A Muller condition (F0,F1) on C, with ∅ ∈ Fσ, reduces to a parity
condition on α, if there is a function f : C → α such that,

(1) for every non-empty X ⊆ C we have that

X ∈ Fσ ⇐⇒ min f(X) is even,

(2) f−1(d) is finite for every d ∈ α, unless d = max f(C) and d is even.

Note that such a reduction may have to switch the role of the two players. Indeed, if
∅ ∈ F1, then the role of Player 1 in the Muller game must be taken by Player 0 in the parity
game since, by convention, a play of a parity game in which no priority is seen infinitely
often is won by Player 0.

Proposition 5.10. If a Muller condition (F0,F1) reduces to a parity game on some α ≤ ω,
then it guarantees positional winning strategies.

Proof. Since (F0,F1) guarantees positional winning strategies if, and only if, (F1,F0) does,
we may assume that ∅ ∈ F0. With the function f : C → α we can relabel any Muller game
G with winning condition (F0,F1) to a parity game G′ on the same game graph. Since G′ is
positionally determined it suffices to show that every play π in G is won by the same player
as the corresponding play in G′. Let X be the set of priorities occurring infinitely often in
π. In the corrsponding play in G′, the set of priorities seen infinitely often is either f(X)
or f(X) ∪ {d}, where d = max f(C) is even. If X is empty, then so is f(X), and hence
the minimal priority seen infinitely often in π′ is either d, which is even, or does not exist.
Otherwise, X ∈ F0 if, and only if, min f(X) is even. Hence Player 0 wins π if, and only if,
she wins π′.

We want to prove that any Muller condition described by a Zielonka path of co-finite
sets reduces to a parity condition. Before we do so, we illustrate the reduction by two
examples. First, consider the case that, for certain a, b, c, d ∈ ω,

F0 = {X ⊆ ω : a ∈ X ∨ b ∈ X ∨ {c, d} ∩ X = ∅}

F1 = {X ⊆ ω : {a, b} ∩ X = ∅ ∧ (c ∈ X ∨ d ∈ X)}
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The Zielonka path for (F0,F1) is

(ω, 0) −→ (ω \ {a, b}, 1) −→ (ω \ {a, b, c, d}, 0)

and we can immediately read off an appropriate reduction f from (F0,F1) to a parity
condition with three priorities, namely f(a) = f(b) = 0, f(c) = f(d) = 1, and f(x) = 2 for
all other x ∈ ω. However, if we change the condition just a little bit, by moving the empty
set from F0 to F1, the reduction becomes quite different. The Zielonka path now has the
form

(ω, 0) −→ (ω \ {a, b}, 1) −→ (ω \ {a, b, c, d}, 0) −→ (∅, 1).

Since ∅ ∈ F1 we have to change the role of the players. Moreover, we can no longer map
all elements of ω \ {a, b, c, d} to the same priority since a play in the Muller game may see
this set infinitely often without seeing any of of its elements more than a finite number of
times. Hence an appropriate reduction f : ω → ω is now defined by

f(x) =





1 for x = a and x = b

2 for x = c and x = d

2x + 3 for x ∈ ω \ {a, b, c, d}.

Proposition 5.11. Every Muller condition that is described by a Zielonka path of co-finite
sets reduces to a parity game on an ordinal α ≤ ω.

Proof. Let (F0,F1) be a Muller condition with ∅ ∈ F0. Otherwise we replace (F0,F1) by
(F1,F0).

The Zielonka path for (F0,F1) gives, for some β ≤ ω a descending sequence (Zi)0≤i<β

(in case C ∈ F0) or (Zi)1≤i<β (in case C ∈ F1), which consists of co-finite sets, and possibly
the empty set at the end, such that

• Z2i ∈ F0, Z2i+1 ∈ F1.
• If Y ⊆ Z2i and Y 6⊆ Z2i+1, then Y ∈ F0. Similarly, if Y ⊆ Z2i+1 and Y 6⊆ Z2i+2,

then Y ∈ F1.

To define the reduction f : C → α, we distinguish three cases.

(1) If the Zielonka path is infinite, set α := ω, and let f(c) be the biggest i ∈ ω such that
c ∈ Zi. Since

⋂
i∈ω Zi = ∅ this is well-defined.

(2) If the Zielonka path is finite and does not end with the empty set, let α := β and
define f(c) as in the first case.

(3) If the Zielonka path is finite, and ends with Z2j+2 = ∅, let α = ω and define f : C → ω

as follows. For i < 2j +1 we put f(c) = i for all c ∈ Zi \Zi+1. For c ∈ Z2j+1 we define
f(c) by means of a bijection from the (infinite) set Z2j+1 to the set of yet unused odd
priorities {2n + 1 : n ≥ j}.

Cleary, for any non-empty X, we have that X ∈ F0 if, and only if, min f(X) is even.
Further, f−1(i) is infinite only in the case that f−1(i) = Zi is the last set in the Zielonka
path. In that case i is even and is the maximal element in the range of f . Hence f defines
an appropriate reduction from (F0,F1) to a parity condition.

We can now summarize the characterisation of the Muller conditions that guarantee
positional determinacy.

Theorem 5.12. For any Muller condition (F0,F1) over a countable set C of priorities, the
following are equivalent.

(1) (F0,F1) guarantees positional winning strategies.
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(2) F0 and F1 are closed under union of chains, non-empty intersections of chains, and
have no strong splits.

(3) (F0,F1) is described by a Zielonka path of co-finite sets.
(4) (F0,F1) reduces to a parity condition on an ordinal α ≤ ω.

Determinacy of Muller Games. Theorem 5.12 classifies the Muller conditions that
imply positional determinacy on all game graphs. We remark that for Muller games, deter-
minacy itself is an issue that deserves investigation. If either F0 or F1 is countable, then
the Muller condition (F0,F1) is Borel (on level Σ0

4 or Π0
4), so determinacy follows from

Martin’s Theorem. In general however, Muller conditions over countable sets of priorities
need not be Borel. This can be seen via a simple counting argument. There are only 2ℵ0

Borel sets since each of them is described by a countable infinitary formula. But there are

22ℵ0 Muller conditions. Indeed, on the basis of Boolean Prime Ideal Theorem, which is a
weak form of the Axiom of Choice, it is not too difficult to construct non-determined Muller
games.

Theorem 5.13. There exist non-determined infinitary Muller games.

Proof. We slightly modify a well-known construction of a non-determined Gale-Stewart
game. The Boolean Prime Ideal Theorem implies that there exists a free ultrafilter1 U ⊆
P(ω). Let F0 = U and construct a game graph such that by playing the game, the players
define a strictly increasing sequence a0 < a1 < a2 < . . . , where the numbers a2n are
chosen by Player 0, and numbers a2n+1 by Player 1, such that precisely the priorities in
X :=

⋃
n∈ω(a2n, a2n+1] are seen infinitely often.

We claim that the resulting Muller game is not determined. Assume that Player 0 has
a winning strategy f which maps any increasing sequence a0 < a1 < · · · < a2n−1 of even
length to a2n = f(a0a1 . . . a2n−1) > a2n−1. We consider two intertwined counter-strategies
of Player 1, forcing essentially Player 0 to simultaneously perform two plays against himself.
In reply to the first move a0, Player 1 selects an arbitrary a1 > a0 and then sets up the two
plays as follows: In the first one she replies to a0 by a1 and waits for the answer a2 = f(a0a1)
by Player 0. She then uses a2 as her own reply to a0 in the second play and gets the answer
a3 = f(a0a2) by Player 0, which she now uses as her next move in the first play. There
Player 0 responds by a4 = f(a0a1a2a3) which is again used by Player 1 as her answer to
a0a2a3 in the second play. And so on.

In this way, the two infinite plays result in sequences a0 < a1 < a2 < . . . and a0 <

a2 < a3 < . . . . Since Player 0 plays with his winning strategy in both plays. it follows that
X =

⋃
n∈ω(a2n, a2n+1] ∈ U , but also X ′ = (a0, a2] ∪

⋃
n>0(a2n+1, a2n+2] ∈ U . By closure

under intersection, it follows that X ∩ X ′ = (a0, a1] ∈ U . But U is a free ultrafilter, so it
cannot contain a finite set.

By almost precisely the same argument, it also follows that Player 1 cannot have a
winning strategy.

1An ultrafilter in 〈P(ω),⊆〉 is a set U ⊆ P(ω) that does not contain ∅, that includes with any set also
all its supersets, with any two sets also their intersection, and such that for any set x ⊆ ω either x ∈ U or
ω \ x ∈ U . An ultrafilter is free if it contains all co-finite sets. As a consequence, it does not contain any
finite set.
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6. Further results

6.1. Uncountable sets of priorities. In the previous section we have assumed that the
set of all priorities is countable. However, it can be shown that the characterization of
the Muller conditions that guarantee positional winning strategies remains the same for
uncountable sets of priorities. As in each play, there appear only countably many priorities,
uncountable sets play no role in a Muller condition. Still, the argument is slightly more
involved than in Theorem 5.12 because we cannot start the construction from the set C of
all priorities. Nevertheless, we can show that if every restriction of the Muller condition to
a countable subset of C satisfies (P0), (P1), (P2) then it is equivalent to a parity condition.

Let (F0,F1) be a Muller condition over an uncountable set C of priorities.

Definition 6.1. A set X ∈ F0 is called a 0-limit set if whenever X ⊆ X ′ then X ′ ∈ F0.
Similarly for 1-limit sets.

Lemma 6.2. There exists a countable 0 or 1-limit set.

Proof. If not then we can construct an infinite increasing sequence of countable sets such
that even indexed sets are from F0 and odd indexed sets are from F1.

Lemma 6.3. If there is a 0-limit set then there is no 1-limit set.

Proof. Otherwise there is a 0-limit set X and a 1-limit set Y . Consider X∪Y . By definition
of limit sets it should belong to both F0 and F1.

Lemma 6.4. Suppose that Y ∈ F1 and that Y ∪ {a} ∈ F0 is a 0-limit set. In this case {a}
is a 0-limit set.

Proof. Assume conversely that there is a Y ′ ∈ F1 containing a. We have Y ∪Y ′ = Y ∪Y ′ ∪
{a} ∈ F0 by the assumption that Y ∪{a} is a limit set. Let Y1 be the greatest element of F1

included in Y ∪ Y ′; it exists by construction from Thm 5.12. As Y, Y ′ ∈ F1, we have then
Y ⊆ Y1 and Y ′ ⊆ Y1, but this is impossible as it implies that Y1 = Y ∪ Y ′ ∈ F0 ∩F1 = ∅.

Lemma 6.5. For every limit set X there is a priority a ∈ X such that {a} is a limit set.

Proof. Take a limit set X ∈ F0 and the greatest set Y ⊆ X from F1. The set D := X \Y is
finite by the construction from Thm 5.12. Take an arbitrary element a ∈ D. If Y ∪{a} is a
0-limit set then we are done by the previous lemma. If not then we take Y ′ ∈ F1 containing
Y ∪ {a}. Then we take a next priority b ∈ D and consider Y ′ ∪ {b}. As D is finite and
Y ∪ D = X is a limit set we can repeat these steps at most |D| number of times.

The above lemma allows to introduce the notion of a limit priority. Let us remove all
the limit priorities from C and consider the Muller condition (F ′

0,F
′
1) obtained by restricting

(F0,F1) to this set of priorities. Clearly it also satisfies the conditions P1, P2, P3.

Lemma 6.6. In (F ′
0,F

′
1) there is no limit set from F ′

0.

Proof. If there were a limit set in F ′
0 then this set would be also a limit set with respect

to the original condition (F0,F1). But then it would contain a limit priority which is
impossible by the definition of (F ′

0,F
′
1).
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Hence in (F ′
0,F

′
1) there is a limit set in F1 and we can choose limit priorities for the

other player. Repeat the construction for ω steps. We obtain a sequence of nonempty sets
of priorities A1, B1, . . . . If after ω steps the set of remaining priorities is nonempty then
we take a countable subset R of the priorities that are left and have a decreasing sequence
R1, R2, . . . , where R2i−1 =

⋃
{ai, bi, ai+1, bi+1, . . . }∪R and R2i =

⋃
{bi, ai+1, bi+1, . . . } ∪R.

But the existence of such a sequence contradicts the condition P1.

6.2. Games of bounded degree. The question arises whether the class of winning condi-
tions that guarantee positional winning strategies becomes larger if we only consider game
graphs of finite degree, or game graphs of finite and bounded degree. In particular this
question has been asked for max-parity games and for parity games over larger ordinals
than ω, where the counter-example that we have presented has infinite degree. It turns
out that parity games over ω + 1 are determined, while those over ω + 2 are not. How-
ever, it seems quite difficult to give an exact characterisation of the Muller conditions that
guarantee positional winning strategies on all game graphs of bounded finite degree.

Proposition 6.7. Max-parity games with infinitely many priorities in general do not admit
finite memory strategies, even for solitaire games and even for game graphs with maximimal
degree two.

Proof. Consider the following game where every vertex has degree one or two.

2 1 1 1

3 5 7

2 2 2

Assuming the max-parity winning condition it is obvious that there is an infinite memory
strategy for Player 0 to enforce that the set of priorities seen infinitely often is {1, 2}, but
that any finite memory strategy is losing.

The same construction works for (min-)parity games on ordinals α > ω + 1. Indeed, if
we replace priorities 2 and 1 by ω and ω + 1, we obtain a min-parity game that requires an
infinite memory winning strategy.

However there is an interesting case where parity games of bounded degree behave
differently than games of unbounded degree.

Theorem 6.8. Parity games of bounded degree with priorities in ω + 1 are positionally
determined.

Proof. We first consider the case of Player 1. Extending the argument from Theorem 4.3
we show that in any parity game with priorities in ω + 1, Player 1 has a positional winning
strategy on his winning region. Note that for this case we do not need the assumption of
bounded degree.

Let G a parity game with priorities in ω + 1, let g be a winning strategy for Player 1
on his winning region in G and let Tg be the associated strategy forest. In the following,
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positions labeled by ω will be called ω-positions and the other positions will be called natural
positions. Since every path through Tg is winning for Player 1, it must contain infinitely
many natural positions. This means that the definitions of 1-signatures that we have used
in the proof for parity games on ω carry over here. Recall that <1

i denotes the signature
order (which is strict and partial). Let ✁i be a total well-order extending <1

i , and assume
that ⊥ is the biggest element in this order.

As in the proof of Theorem 4.3 we associate with every node s of Tg of priority m < ω

the (m + 1)-tuple a(s) = 〈a0(s), . . . , am(s)〉 ∈ (Tg ∪ {⊥})m+1 of ancestors. As before, we
write s ≺m s′ if there is i < m such that ai(s) ✁i ai(s

′) and aj(s) = aj(s
′) for all j < i.

Observe that ≺m is a well-order on vertices of priority m. For a position v of priority m we
now take the ≺m-minimal representant of v in Tg, i.e., the minimal s with h(s) = v where
h is the canonical homomorphism from Tg to G. We denote this representant by s(v). We
can also define the tuple of ancestors by a(v) = a(s(v)).

In order to define s(v) for positions of priority ω we use ≺m to compare vertices in Tg

of different, but finite, priority. We define s ≺ s′ if either s ≺m s′ for m being the minimum
of the priorities of s and s′, or the tuple (a0(s), . . . , am(s)) has (a0(s

′), . . . , am′(s′)) as a
strict prefix. We claim that this is a well-ordering on vertices of finite priority. To reason
by contradiction, suppose that there is an infinite descending chain s0 ≻ s1 ≻ . . . in this
ordering. Let us look at the chain a0(s0), a0(s1), . . . of first elements of the tuples. This
chain is not increasing in the ✁0-ordering, so it must eventually stabilise on some element
a0. Let i0 be the position where it stabilises. Observe that this implies that there cannot
be a vertex of priority 0 after s0. By a similar argument we find a1 that stabilizes after a0

stabilizes. Continuing like this we get an infinite sequence a0, a1, . . . . Observe that infinitely
many of the elements in the sequence are not ⊥. Indeed, there are vertices of infinitely many
priorities, and when we see a vertex s of priority i then ai(s) is not ⊥ so ai cannot be ⊥.
To finish the argument we observe that for each i = 0, 1, . . . , if ai 6= ⊥ then it is a vertex of
priority i and it is an ancestor of all aj 6= ⊥ for j > i. Moreover, there can be no vertices
of priority i between ai and aj 6= ⊥ for j > i. Thus, the sequence a0, a1, . . . determines an
infinite path in Tg where no priority, except possibly ω, appears infinitely often. This is a
contradiction as we have assumed that all paths in Tg are winning for Player 1.

There are two more notions that we need. For each vertex s ∈ Tg of priority ω we
define the max-distance to be the maximal length of a path of ω-vertices starting from s.
This is well defined as on every path from s there is eventually a vertex of a finite priority.
Secondly, for s we define its anchor to be the closest ancestor of finite priority.

Now we are ready to define s(v) for positions v of priority ω. Among all the represen-
tants of v, i.e., vertices s such that h(s) = v, we choose one with the ≺-smallest anchor. If
there are more than one with this property then among them we choose the one with the
smallest max-distance. If this still does not identify a unique representant then we choose
one arbitrarily.

Having defined s(v) for all v in the winning region for Player 1 in G we define a positional
strategy g′. We set g′(v) = h(t) where t is the unique successor of s(v) in Tg. We claim
that this strategy is winning. Suppose conversely that there is a loosing play respecting the
strategy. Then either no natural number appears infinitely often or the smallest number
appearing infinitely often is even.

If no natural number appears infinitely often then we proceed as in the proof of The-
orem 3.2. Consider the suffix of the play after the last appearance of priority 0. Let us
look at 0-ancestors of the positions in this suffix. These ancestors can only get smaller as
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the play proceeds. This means that from some moment all positions in the play will have
the same 0-ancestor. Next, we find a position where the 1-ancestor stabilizes. Observe that
it will be a descendant of the 0-ancestor and that there will be no occurrences of priority
0 between the two. Proceeding this way we construct a path in the strategy tree Tg on
which no priority, accept possibly ω, appears on infinite number of times. Notice, that it is
important for this argument that the sequences of ω-nodes are finite. The remaining case
when the smallest number appearing infinitely often is even is very similar to that from the
proof of Theorem 4.3.

To show that Player 0 can win with a positional strategy we transform a game G with

priorities from ω + 1 into a game Ĝ and then to G̃, such that G̃ has no ω-positions. Then

we translate the positional winning strategy form G̃ to G.

We first describe the transformation from G to Ĝ. Take a position s of G labeled with
ω. For any i ∈ ω ∪ {ω} consider a gadget Ki

s:

i

i i. . . . . .

Ki
s ≡

Each round vertex represents a strategy of Player 1 from s permitting him to leave the
region of ω-labeled positions. The oval below such a vertex represents the possible exits,
i.e., the natural positions that Player 0 can reach when Player 1 uses the chosen strategy.
Observe that if Player 0 has a strategy to stay in ω-positions then the root of Kω

s has no
successors. To be conform with our definition of the game, in this case we assign a priority
0 to the root of Kω

s and add a self-loop. This way we make it winning for Player 0. We call
such a gadget degenerate.

The transformation from G to Ĝ is the following. Take an ω-position s and replace it
by the gadget Kω

s . The leaves of this gadget are natural positions in G, hence we only add
one position of Player 1 and some positions of Player 0. Redirect every arrow going from a
natural position to s to the root of Kω

s . Repeating this for all ω-positions (of the game G)

we obtain the game Ĝ. This game has the property that sequences of ω-vertices can have

length at most 2. Moreover there is an easy correspondence between strategies in G and Ĝ.

Next we describe the transformation from Ĝ to G̃. The idea is to eliminate the priorities
ω. If we come to a gadget from a position of priority i then we can as well assume that
we see i in place of ω. The result of an infinite play will be the same as we at most triple
the number of i’s seen. For example, if ω was the only priority appearing infinitely often
then after the change no priority at all would appear infinitely often, which gives the win

to the same player. The transformation from Ĝ to G̃ is as follows. For each priority i ∈ ω

and each non-degenerate gadget Kω
s we create a gadget Ki

s, which has priority ω replaced

by the priority i. For each position u of priority i in Ĝ with an arrow to the root of Kω
s we

redirect this arrow to the root of Ki
s. Of course we need not to create Ki

s if there are no
such u. Repeating this procedure for each gadget Kω

s we get rid of all positions of priority

ω. The result is the game G̃.
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There is a canonical homomorphism h̃ : G̃ → Ĝ which maps the root of Ki
s to the root

of Kω
s . It should be clear that there is a winning strategy in G̃ if, and only if, there is one in

Ĝ (the image of a path is winning for Player 0 if, and only if, the path is a winning play for

Player 0). As in G̃ there are no vertices of priority ω we know that Player 0 has a positional
winning strategy on his winning region. We will show how to translate it into a positional

winning strategy in G (using Ĝ on the way).

Take a positional winning strategy f for Player 0 in G̃. Consider the signature as-

signment in G̃ defined by the strategy (as described in the section on parity games). This
defines a signature assignment on natural positions of G. It remains to define signatures
for ω-positions and then use it to define a winning strategy. For each ω-position s consider
the gadget Ki

s for some i. If the gadget is degenerated then in G Player 0 has a strategy
from s to stay in ω-positions. We are done in this case as we can assume that Player 0 has
one global positional strategy on all vertices with this property. We call such s immediately
winning. Suppose then that Ki

s is not degenerate and f is winning from its root. Each leaf
of the gadget has assigned a signature. We can define the signature of s, denoted also by
sig0(s), by taking inf in nodes of Player 0 in Ki

s and then sup in s. Here inf and sup are
in the lattice of ω-vectors of ordinals. Observe that sig0(s) does not depend on the choice
of i in Ki

s. In order to have a uniform notation let ≤0
ω denote the standard lexicographic

ordering on ω-tuples of ordinals. Notice that this is not a well-order while ≤0
i for i ∈ ω

are. With this definition of signatures we have that if s is a position of Player 1, then for
every successor t that is not immediately winning we have sig(t) ≤0

i sig(s) where i is a
priority of s. Similarly, if s is a position of Player 0, then it has a successor t which is either
immediately winning or satisfies the same property. Having this property we can define a
positional strategy for Player 0 that consists of choosing the smallest possible signature.
The proof that this strategy is winning is the same as in the case of parity games.

This theorem indicates that when we limit ourselves to game graphs of finite degree the
class of Muller conditions guaranteeing positional winning strategies becomes larger. There
also exist Muller conditions that do not reduce to parity conditions over any ordinal but
still guarantee positional winning strategies on all game graphs of finite degree. For finite
sets of priorities, such examples are well-known. In the simplest one, the set of priorities is
C = {0, 1}, with F0 = {{0, 1}} and F1 = {{0}, {1}}.

Similar examples with an infinite set of colours can be constructed as follows. Let Y

be any infinite set with e 6∈ Y and set C = Y ∪ {e}. Put

F0 = P(Y ) ∪ {{e}} ∪ {∅} F1 = {Z : e ∈ Z ∧ Z ∩ Y 6= ∅}

It should be clear that (F0,F1) is not equivalent to a parity condition because each
priority individually is winning for Player 0. By arguments that are similar to the proof of
Theorem 6.8 one can show that such a condition guarantees positional determinacy on all
game graphs of finite degree.

It is an open problem to give a complete characterisation of all such conditions.

6.3. Finite appearance of priorities. We may also ask whether the characterisation of
positionally determined Muller conditions changes if we only consider games where Ω−1(c)
is finite for every priority c. This is not the case. Indeed, the counter-examples for prop-
erties (P0) and (P2) are games with this property, and in the counter-example for (P1) we
can easily eliminate infinite occurrences of priorities. Consider the figure in the proof of
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Lemma 5.3. It suffices to omit the sets X2,X3, . . . and redirect, for every i ≥ 2, each arrow
from a to an element xi ∈ Xi to the element xi ∈ X1.

6.4. Related work. There has recently been some interesting research on similar questions
for games in somewhat different settings. For instance, Colcombet and Niwiński [8] have
studied positional determinacy of games where edges, rather than vertices are labeled by
priorities. This changes the situation completely. For instance, it is easily seen that there
are edge-labeled parity games with infinitely many priorities that require winning strategies
with infinite memory. Also there are some very simple non-Muller winning conditions that
guarantee positional determinacy on vertex-labeled games but fail to do so on edge-labeled
ones. An example is the set (0 + 1)∗(01)ω whare Player 0 has to make sure that from some
point onwards the priorities 0 and 1 alternate. If she can achieve this on a vertex-labelled
game then she can also do this positionally. However, when the priorities are on the edges,
then this is not the case: consider the game with a single vertex and two self-loops with
priorities 0 and 1. In fact, Colcombet and Niwiński prove that the only prefix-independent
winning conditions that guarantee positional determinacy on all edge-labeled game graphs
are precisely the parity conditions with a finite number of priorities. In a similar vein,
Kopczynski [20] characterises the winning conditions that guarantee positional determinacy
for one player on edge-labeled game graphs.

Serre [27] exhibits examples of winning conditions on a countable set of priorities that
have high Borel complexity, but still admit positional winning strategies. Recall that in our
setting, if the set of priorities is countable then the conditions are at most at levels Σ0

4 or
Π0

4 of the Borel hierarchy.
Gimbert and Zielonka [13] consider edge-labeled games with real valued pay-offs. They

characterise those pay-off functions that guarantee optimal positional strategies for both
players on all finite game graphs. As in the case studied by Colcombet and Niwiński the
payoffs are on edges and not on vertices.
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