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Abstract. XPath is a simple language for navigating an XML-tree and returning a set
of answer nodes. The focus in this paper is on the complexity of the containment prob-
lem for various fragments of XPath. We restrict attention to the most common XPath
expressions which navigate along the child and/or descendant axis. In addition to basic
expressions using only node tests and simple predicates, we also consider disjunction and
variables (ranging over nodes). Further, we investigate the containment problem relative
to a given DTD. With respect to variables we study two semantics, (1) the original se-
mantics of XPath, where the values of variables are given by an outer context, and (2) an
existential semantics introduced by Deutsch and Tannen, in which the values of variables
are existentially quantified. In this framework, we establish an exact classification of the
complexity of the containment problem for many XPath fragments.

1. Introduction

XPath is a simple language for navigating an XML document and selecting a set of
element nodes [9]. At the same time it is also the main XML selection language. Indeed,
XPath expressions are used, for instance, as basic patterns in several XML query languages
like XQuery [5] and XSLT [3, 10]; they are used in XML Schema to define keys [11], and
in XLink [13] and XPointer [12] to reference elements in external documents. In every such
context an instance of the containment problem is present: optimizing XPath expressions
can be accomplished by an algorithm for containment, and XSLT rule selection and inference
of keys based on XPath expressions again reduces to containment. In this article we focus
on the complexity of the containment problem of various fragments of XPath 1.0 using only
the most common axes, / and //, and extensions in which variables can refer to data values.
Furthermore, the containment problem relative to a given DTD is investigated. In all cases,
we only consider the Boolean containment problem. Here, given two XPath expressions p
and q, the problem asks whether the fact that p selects some path from the root to a vertex
implies that also q selects some path from the root to a vertex. This restriction is justified
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as all complexity results we obtain easily transfer to unary and binary containment in the
spirit of Proposition 1 in [27].

The XPath containment problem already attracted quite some attention [14, 27, 28, 36,
37, 24]. We next discuss the known results together with our own contributions.

A general result establishing a strong upper bound for a large fragment of XPath is due
to Marx presented in [24]. It is shown there that the containment problem for navigational
XPath, allowing navigation along all axes, even relative to a DTD, is in exptime.

Other work has concentrated, like this article, on XPath expressions that can only
navigate downwards in an XML tree and do not use the order between siblings, i.e., the
fragment using only the / and // axis. Different fragments can be defined by allowing or
disallowing the use of the wild-card ∗ in node tests, and filter predicates in location steps.
In the spirit of the abbreviated syntax of XPath we use / to indicate the use of the child

axis, // for the descendant axis, ∗ for the wild-card and [ ] for filter predicates. We denote
XPath fragments by listing the allowed operators. For instance, XP(/,//,[ ]) denotes the
XPath fragment with the child and descendant axes in which the use of filter predicates
is allowed, but no wild-cards in node tests.

Among other results, Miklau and Suciu [27] obtain that containment for XP(/,//, [ ],∗)
is conp-complete [27]. Here, inside filter predicates and between location steps, no Boolean
operators are allowed.

Contributions. The first family of fragments we consider is obtained by allowing disjunction
(|) in filter predicates and in location steps. We show that, in principle, adding disjunction
to XP(/,//, [ ],∗) does not make the containment problem harder. Surprisingly, when the
set of allowed element names (labels) in XML documents is restricted, and given as part of
the input then the containment problem becomes much harder: complete for pspace. The
results on fragments with disjunction are shown in Table 1

/ // [ ] | ∗ Complexity Reference

+ + + + conp-complete [27]
+ + + + + conp-complete (3.2,3.1)
+ + conp-complete (3.2,3.1)

+ + conp-complete (3.2,3.1)
+ + + + + pspace-complete (given alphabet) (3.3,3.5)
+ + + pspace-complete (given alphabet) (3.3,3.5)

Table 1: The complexity of containment for expressions with disjunction. Square brackets
refer to the references, parentheses to results of this article.

Deutsch and Tannen [14] consider XPath containment in the presence of DTDs and
Simple XPath Integrity Constraints (SXICs) [14]. Here, the input to the containment
problem consists of two XPath expressions p, q, a DTD and/or a set of integrity constraints
and it is asked whether p selects a subset of the elements that q selects, in all documents
respecting the DTD and/or the constraints. They show that this problem is undecidable in
general and in the presence of bounded SXICs and DTDs. When only DTDs are present
they have a pspace lower bound and leave the exact complexity as an open question.

We indicate the presence of a DTD by XP(DTD,...). We give a simple proof that con-
tainment testing for XP(DTD,/,//,[ ],∗,|) is in exptime (although this result is covered by
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the above mentioned result of Marx [24]) and obtain that containment for XP(DTD,/,//,|)
and for XP(DTD,/,//,[ ],∗) are hard for exptime. We also study the complexity of more re-
strictive fragments in the presence of DTDs. It turns out that containment of XP(DTD,/,//)
is in PTime. On the other hand, containment of XP(DTD,/,[ ]) is conp-complete and con-
tainment of XP(DTD,//,[ ]) is conp-hard. It is not clear whether or how the upper bound
proof in the former case can be extended to include, for instance, the descendant operator.
The results about the containment problem in the presence of DTDs are summarized in
Table 2.

DTD / // [ ] | ∗ Complexity Reference

+ + + in p (4.1)
+ + + conp-complete (4.2,4.3,[35])
+ + + conp-hard (4.3,[35])
+ + + + + + exptime-complete (4.4,4.5)
+ + + + exptime-complete (4.4,4.5)

Table 2: The complexity of containment in the presence of DTDs.

The XPath recommendation allows variables to be used in XPath expressions on which
equality tests can be performed. For instance, //a[$x = @b][$y 6= @c] selects all a-
descendants whose b-attribute equals the value of variable $x and whose c-attribute differs
from the value of variable $y. However, under the XPath semantics the value of all variables
should be specified by the outer context (e.g., in the XSLT template in which the pattern
is issued). We indicate the use of variables with XPath semantics by XP(...,xvars,...). So
the semantics of an XPath expression is defined with respect to a variable mapping. We
show that the complexity of containment is pspace-complete under this semantics. For the
lower bound, it suffices to observe that with variables a finite alphabet can be simulated.
We obtain the upper bound by reducing the containment problem to the containment of
several expressions without variables.

In addition to the XPath semantics, Deutsch and Tannen [14] considered an existential
semantics for variables: an expression matches a document if there exists a suitable assign-
ment for the variables. We denote variables with existential semantics by XP(...,evars,...).
In [14] it is shown that containment of XP(/,//,[ ],∗,evars) and XP(/,//,[ ],|,evars) is ΠP

2 -
hard, and that containment of XP(/,//, [ ],|,evars) under fixed bounded SXICs is in ΠP

2 . We
extend their result by showing that containment of XP(/,//,[ ],|,evars,6=), that is, inequality
tests on variables and attribute values are allowed, remains in ΠP

2 . Surprisingly, the further
addition of ∗ to this fragment makes the containment problem undecidable. The results
about XPath containment for fragments with variables are indicated in Table 3

Further related work. In [37], Wood shows that containment of XP(/,//,[ ],∗) in the presence
of DTDs is decidable. He also studies conditions for which containment under DTDs is in
ptime. Benedikt, Fan, and Kuper study the expressive power and closure properties of
fragments of XPath [2]. They also consider sound and complete axiom systems and normal
forms for some of these fragments. Hidders, and Benedikt, Fan, and Geerts considered
the complexity of satisfiability of XPath expressions [18, 1, 15]. The complexity of XPath
evaluation has been studied by Gottlob, Koch, and Pichler in [16, 17], while its expressive
power has been addressed by Marx in [26] and [25]. This article is based on [30].
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/ // [ ] ∗ | xvars evars 6= complexity Reference

+ + + + conp-hard (5.2)
+ + + + conp-hard (5.2)
+ + + + + + + pspace-complete (5.1,5.2)
+ + + + + + pspace-complete (5.1,5.2)
+ + + + conp-complete [14]
+ + + conp-complete [14], (5.3)
+ + + + + + Πp

2-complete [14]
+ + + Πp

2-complete [14], (5.3)
+ + + + Πp

2-complete (5.3,5.4)
+ + + + + + Πp

2-complete (5.3,5.4)
+ + + + + + + undecidable (5.6)

Table 3: The complexity of containment in the presence of variables. Note that xvars and
evars refer to the original XPath semantics and to existential semantics, respec-
tively.

Organization. This article is organized as follows. In Section 2, we define DTDs and the
basic XPath fragments. We also introduce the necessary machinery w.r.t. unranked tree
automata. In Section 3, 4, and 5 we consider disjunction, DTDs, and variables, respectively.
We conclude in Section 6.

2. Preliminaries

In this section, we define the tree abstraction of XML documents, DTDs and the frag-
ments of XPath that we consider.

2.1. XML-trees. For the rest of this paper, we fix an infinite set Σ of labels and an
infinite set D of data values. Only in Section 3.2, we consider XPath expressions over
a finite alphabet. The set A is always a finite set of attributes. An XML document is
faithfully modeled by a finite unranked tree with labels from Σ in which the attributes of
the nodes have D-values and in which the children of each node are ordered.

It is common to model the underlying tree as a tree domain. To this end, the edges
connecting a node with its children are numbered from 1 to n, according to the ordering of
its children. Each path from the root to a node then corresponds to a sequence of numbers.
Finally, each node is identified with this sequence. In particular, the root, which corresponds
to the document node [9], is represented by the empty string denoted by ε.

More formally, a tree domain D is a finite subset of N
∗ with the following closure

properties:

• If v · i ∈ D, where v ∈ N
∗ and i ∈ N, then v ∈ D.

• If i > 1 and v · i ∈ D, then also v · (i − 1) ∈ D.

We call the elements of D vertices. A vertex vi with i ∈ N is a child of a vertex v.
Conversely, v is called the parent of vi. A vertex vu with u ∈ N

+ is a descendant of v.
We also say that v is an ancestor of vu.
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Definition 2.1. An XML-tree (tree for short) is a triple t = (dom(t), labt, λt), where
dom(t) is a tree domain over N, and labt : dom(t) → Σ and, for each a ∈ A, λa

t : dom(t) → D
are partial functions. Intuitively, labt(v) is the label of v, while λa

t (v) is the value of v’s
a-attribute, if it has one.

Of course, in real XML documents there can be vertices with mixed content, but these
can easily be modeled by using auxiliary intermediate nodes as explained in [3]. We consider
attributes only in Section 5.

For a vertex v ∈ dom(t), we denote by tv the sub-tree of dom(t) rooted at v. As a
tree domain in itself, this is the set {w | vw ∈ dom(t)}.

2.2. DTDs. We formalize Document Type Definitions (DTDs) as context-free grammars
with regular expressions on the right-hand side of rules. As usual, we denote by L(r) the
language defined by the regular expression r.

Definition 2.2. A DTD is a tuple (d, Sd,Σd) where Σd is a finite subset of Σ, Sd ∈ Σd

is the start symbol, and d is a mapping from Σd to the set of regular expressions over Σd.
A tree t matches a DTD d iff labt(ε) = Sd and for every u ∈ dom(t) with n children,
labt(u1) · · · labt(un) ∈ L(d(lab(u))). We denote by L(d) the set of all trees that match d.

Note that DTDs do not constrain the value of attributes in any way. We usually refer
to a DTD by d rather than by (d, Sd,Σd).

2.3. XPath. We next define the core fragment of XPath that we will consider in Sections 3
and 4. In our definition we follow Marx [23]. In Section 5, we consider a larger fragment
which allows the use of attribute values.

Definition 2.3. An XPath expression is generated by the following grammar:

lpath ::= lstep | lpath ’/’ lpath | lpath ’|’ lpath
lstep ::= axis ’::’ node-test (’[’fexpr’]’)∗

axis ::= self | child | descendant
fexpr ::= lpath | lpath ’or’ lpath

Here, lpath is the start symbol which is short for location path; node-test is either a label
or the wild-card ’∗’.

We write |p| for the size of an XPath expression, which is the total number of occur-
rences in p of axes child and descendant (including those in filter expressions).

We use
⋃

to denote a big disjunction of expressions.
Note that, as we only consider expressions which navigate downwards in the tree, we

do not allow absolute location paths, i.e., paths requiring to be evaluated from the root. For
convenience, we further assume that location steps with the self-axis only occur at the
top-level. This is no loss of generality, as one can always translate a location path of the
form

axis :: σ[e1] · · · [ek]/self :: σ′[f1] · · · [fℓ]

into
axis :: γ[e1] · · · [ek][f1] · · · [fℓ]

where

γ =

{
σ if σ′ = ∗; and,
σ′ if σ = σ′ or σ = ∗.
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Of course, when σ 6= σ′ are two labels in the above expression, then it is unsatisfiable.
For notational brevity, we often use abbreviated syntax for XPath expressions [9]. Thus,

instead of
child:: a [child:: b][descendant:: e]/descendant:: c,

we simply write a[b][.//e]//c. Note that the sub-expression .//e is the abbreviated notation
for descendant-or-self:: ∗ / child:: e and thus accounts for descendant:: e.

For the definition of the semantics of XPath expressions we again basically follow [23].

Definition 2.4. For each tree t, each location path p induces a binary relation [[p]]t which
is inductively defined as follows:

• [[a :: n[e1] · · · [ek]]]t is the set of all pairs (u, v) for which all the following conditions
hold:

– if a is child then v is a child of u;
– if a is descendant then v is a descendant of u;
– if a is self then v = u;
– if n is a label then labt(v) = n, otherwise n is ∗ and the label of v can be

arbitrary; and,
– Et(v, ei) is true, for each i ≤ k. Here, Et is defined as follows:

∗ Et(v, p) is true for a vertex v and a location path p if and only if there is
a vertex w such that (v,w) ∈ [[p]]t.

∗ Et(v, e1 or e2) is true for a vertex v if and only if Et(v, e1) or Et(v, e2) is
true.

• [[p/q]]t = [[p]]t ◦ [[q]]t (where ◦ denotes the composition of binary relations); and,
• [[p | q]]t = [[p]]t ∪ [[q]]t.

So, the semantics definition associates with every tree t and every expression p a binary
relation. When the context vertex, i.e., the first vertex in pairs, is fixed to be the root then
every expression defines the set {v | (ε, v) ∈ [[p]]t}. Recall that ε denotes the root of a tree.
We say a tree t matches an expression p (written: t |= p) if there is some vertex v in t such
that (ε, v) ∈ [[p]]t. In the latter case we interpret an expression p as a Boolean query.

Symbol Meaning
/ child axis is allowed
// descendant axis is allowed
[ ] filter expressions are allowed
| disjunction (’or’ and |) is allowed
∗ wild-cards are allowed

Table 4: Symbols used in the notation for XPath fragments.

We denote sub-fragments of the above defined XPath fragment using the abbreviated
syntax. We use the notations explained in Table 4. If filter expressions are not allowed,
location steps are only of the form axis :: node-test. Disjunction is allowed in location paths
and in filter expressions. If wild-cards are not allowed, every node-test has to be a label.

We denote XPath fragments by XP(...) where inside the brackets the allowed features
are listed. For instance, we write XP(/,[ ],|) for the fragment, where the wild-card is not
allowed and the descendant axis can not be used.

In some proofs, we view expressions p from XP(/,//,[ ],∗) as tree patterns as described
by Miklau and Suciu [27]. For example, the expression a/b//c[d][∗/e] corresponds to the tree



COMPLEXITY OF XPATH CONTAINMENT 7

pattern in Figure 1. Single edge and double edge correspond to the child and descendant
axis, respectively. We denote the tree pattern associated with an expression p by τ(p).

From this point of view, t |= p if and only if there is a homomorphism h from τ(p) to t,
i.e., h maps the nodes of h(p) to the nodes of t such that (1) h(v) has the same label as v
unless v carries a wild-card, (2) h(v) is a child (descendant) of h(u) if and only if v is a child
(descendant) of u. So, h respects labels, child and descendant, and does not care about ∗.

Every tree pattern has one selecting node: all pairs (u, v) of nodes of the input tree are
selected, for which the root of the tree pattern can be mapped to u and the selecting node
to v. In Figure 1, the selecting node is labeled by x.

a

b

c x

d ∗

e

Figure 1: The tree pattern corresponding to a/b//c[d][∗/e]

We will frequently make use of the fact that every expression p from XP(/,//,[ ],∗,|) can
be written in disjunctive normal form, i.e., in the form p1 | · · · | pn, where each pi is an
expression from XP(/,//,[ ],∗). It should be noted that n can be exponential in |p|.

2.4. Containment. Corresponding to the three different interpretations of an XPath ex-
pression as a binary, unary or Boolean query, there are three different notions of query
containment.

Definition 2.5. For two XPath expressions p and q,

• p is contained as a binary query in q, denoted by p ⊆2 q, if [[p]]t ⊆ [[q]]t, for every
tree t;

• p is contained as a unary query in q, denoted by p ⊆1 q if, for each tree t and
each vertex v of t, (ε, v) ∈ [[p]]t implies (ε, v) ∈ [[q]]t; and

• p is contained as a Boolean query in q, denoted p ⊆ q, if, for every tree t, t |= p
implies t |= q.

Definition 2.6. XContainment is the algorithmic problem to decide for two XPath ex-
pressions p and q, whether p ⊆ q.

For a DTD d and two XPath expressions p and q, by p ⊆d q, we denote that t |= p
implies t |= q, for all trees t that match d.

Definition 2.7. XDContainment is the algorithmic problem to decide for two XPath
expressions p and q and a DTD, whether p ⊆d q.

The restriction to Boolean containment is justified: it is shown in [27] that for XP(/,//,[ ],∗)
the complexity of deciding binary (or k-ary, for any k) containment is the same as the com-
plexity of deciding Boolean containment. For binary queries, this result can be generalized
to all fragments we consider in this article. More precisely: all complexity results stated in
this article hold also for unary and binary containment. First of all, binary and unary con-
tainment are computationally equivalent in our framework as from a node v expressions can
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only navigate inside the subtree induced by v. Furthermore, to get from unary to Boolean
containment, it is easy to see that the result in [27] only requires the child axes, i.e., only
one node is added as a child of the selecting node of the tree pattern. It is straightforward to
get the same statement also in the presence of a DTD. For the fragment XP(//,|) a similar
approach works: for the label a of the selecting node a new label a′ is introduced and every
reference of a not-selecting node to a is replaced by a|a′. The lower bound we prove for
XP(//,[ ]) also goes through for the binary and unary case.

2.5. Unranked tree automata. We recall the definition of non-deterministic tree au-
tomata over unranked trees from [4]. These are used in the proofs of Theorem 4.1 and
Theorem 4.4. We refer the unfamiliar reader to [29] for a gentle introduction. The alter-
nating automata of Section 3.2 operate over ranked trees.

Definition 2.8. A nondeterministic tree automaton (NTA) is a tuple A = (Q,∆,
δ, F ), where Q is a finite set of states, ∆ is a finite alphabet, F ⊆ Q is the set of final states,

and δ is a function δ : Q × ∆ → 2(Q∗) such that δ(q, a) is a regular string language over Q
for every a ∈ ∆ and q ∈ Q.

A run of A on a tree t is a labeling λ : dom(t) → Q such that for every v ∈ dom(t) with
n children we have that λ(v1) · · · λ(vn) ∈ δ(λ(v), labt(v)). Note that when v has no children,
the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is accepting iff the root is labeled with
an accepting state, that is, λ(ε) ∈ F . A tree is accepted if there is an accepting run. The
set of all accepted trees is denoted by L(A).

The regular languages encoding the transition function of an NTA are represented by
NFAs. The size of an NTA is then |Q| + |∆| plus the sizes of the NFAs.

A deterministic tree automaton (DTA) is an NTA where δ(q, a) ∩ δ(q′, a) = ∅ for
all a ∈ ∆ and q 6= q′ ∈ Q. The transition function of a DTA is represented by DFAs.

The following is well known.

Lemma 2.9. (1) Deciding whether, for a given NTA A, L(A) = ∅ is in ptime. [21,
Theorem 19]

(2) Testing whether, for given DTAs A and B, L(A) ⊆ L(B) is in ptime. [22, Theorem
3]

(3) Given a DTD d, a DTA Ad such that L(d) = L(Ad) can be constructed in exponential
time. (essentially, [4])

3. Containment in the presence of disjunction

Miklau and Suciu showed that XContainment for XP(/,//,[ ],∗) is conp-complete [27].
In this section, we consider the addition of disjunction to this fragment and show that
XContainment remains in conp. The problem remains hard for conp even if only the
child or only the descendant axis is allowed together with disjunction. Miklau and Suciu
already mention these results but do not provide full proofs [27] (with exception of the lower
bound for XP(/,|)). Therefore, we decided to include the proofs in this paper.

We were surprised by the fact that the conp upper bound strongly depends on the fact
that the alphabet Σ is infinite. Let XFContainment be the containment problem, where
additionally a finite set of labels is given as input and the containment only has to hold for
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documents with labels from this set. In Theorem 3.3, we show that even for XP(/,//,|) the
problem XFContainment is hard for pspace.

3.1. Unrestricted alphabet.

Theorem 3.1. XContainment for XP(/, //, [ ], ∗, |) expressions is in conp.

Proof. We develop a criterion which allows to check in np whether, for given expressions
p and q, p 6⊆ q. Let p and q be fixed and let p1| . . . |pl and q1| . . . |ql′ be the disjunctive
normal forms (DNFs) of p and q, respectively. Hence, each pi and qj is an expression from
XP(/, //, [ ], ∗). Let n and m denote the maximum number of nodes in an expression pi and
qj, respectively. Let T (n,m) be the set of trees with at most 2n(m + 2) nodes that are
labeled with symbols that occur in p and with the new symbol # not occurring in p nor in
q. We prove the following claim:

Claim. p 6⊆ q ⇔ there is a t ∈ T (n,m) such that t |= p but t 6|= q.

Clearly “⇐” holds. For the other direction we assume that there is a tree s matching
p but not q. Then s has to match one of the pi. Hence, there is a homomorphism f from
pi to s. i.e., h maps the nodes of the tree pattern of pi to the nodes of s such that (1) h(v)
has the same label as v unless v carries a wildcard, (2) h(v) is a child (descendant) of h(u)
if and only if v is a child (descendant) of u.

We construct t by transforming s in several steps. Let V denote the set of nodes of s
in the image of f . We delete all nodes in s that are neither in V nor an ancestor of a node
in V . The resulting tree, t1, has at most as many leaves as pi. We replace the labels of
those nodes of t1 which are not in V by # and obtain t2. Let V ′ be the set of branching
nodes of t2, i.e., those nodes that have more than one child. The set V ′ contains at most
n vertices. Let a pure path of t2 be a path without nodes from V ∪ V ′. In particular, the
nodes of a pure path are all labeled with #. We get t by replacing in t2 each maximal pure
path with > m+1 inner nodes by a path with m+1 #-labeled inner nodes. We refer to the
nodes of t which are inserted in this last step as special nodes. Clearly, there is a one-to-one
correspondence between non-special nodes in t2 and t. For a non-special node u in t, the
corresponding node in t2 is denoted by ũ.

It is easy to see that t ∈ T (n,m), that t |= pi and that t contains at most m + 2 times
|V | + |V ′|, hence ≤ 2n(m + 2), many nodes.

We have to show that t 6|= q. Towards a contradiction assume that t |= qj, for some
j. Hence, there is a homomorphism h : qj → t. Next, we show that h can be modified
to obtain a homomorphism from qj to s which leads to the desired contradiction. We first
define a homomorphism h2 from qj to t2 as follows. Whenever h(v) is a non-special node

then h2(v) = h̃(v).
Let v1, . . . , vk be nodes of qj such that h(v1), . . . , h(vk) are special nodes which lie on

some path of t2 which consists entirely of special nodes, ordered from the root to the leaves.
By the choice of m it holds that k ≤ m, therefore there must be an i such that h(vi+1) is
not a child of h(vi) or h(v1) is not the first node of the path or h(vk) is not the last node
of the path.

In either case, we can define h2 for nodes from {v1, . . . , vk} such that the child and
descendant relations are respected. In this way, we get a homomorphism h2 from qj to t2.
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Clearly, all nodes of qj which are not mapped to nodes in V must be labeled with a ∗.
Thus, h2 also defines a homomorphism from qj to t1 and to s, the desired contradiction.
This completes the proof of the claim.

It remains to show how the criterion of the above claim can be used for an np-algorithm
that checks whether p 6⊆ q. The algorithm simply guesses an expression pi from the DNF
of p (by non-deterministically choosing one alternative for each | in p) and a t ∈ T (n,m).
Then it checks that t |= pi and t 6|= q. The latter can be done in polynomial time as shown
in [17].

Theorem 3.2. (a) XContainment for XP(/, |) is conp-hard.
(b) XContainment for XP(//, |) is conp-hard.

Proof. (a) The hardness proof is the same proof that shows that containment of regular
expressions is conp-hard [20]. We give it for completeness sake and because the next
proof depends on it.We use a reduction from validity of propositional logic formulas in
disjunctive normal form which is known to be complete for conp [20]. Let ϕ =

∨m
i=1 Ci

be a propositional formula in disjunctive normal form over the variables x1, . . . , xn.
Here, each Ci is a conjunction of literals. For a disjunct C let C̃ be the expression
a1/ · · · /an where

ai :=





0 if ¬xi occurs in C;
1 if xi occurs in C;
(0|1) otherwise.

Let q̃ be the disjunction of the expressions C̃i, i = 1, . . . ,m. Further, let p be the
expression (0|1)/ · · · /(0|1) where (0|1) is repeated n times. Clearly, p ⊆ q̃ iff ϕ is valid.

(b) The reduction is similar to the one above except that we define C̄ as a1//a2// · · · //an,
q̄ as the disjunction of the expressions C̄i, i = 1, . . . ,m, and p as (0|1)// · · · //(0|1). We
show that p ⊆ q̄ ⇔ ϕ is valid. Suppose p ⊆ q̄, then in particular q̄ matches every
0-1-string of length n, hence, ϕ is valid. To prove the converse direction, suppose ϕ is
valid. If p matches a branch in a tree then there are in particular n positions with 0
or 1. The i-th such position can be seen as a truth assignment to xi. As ϕ is valid all
possible assignments are accounted for by q̄, and q̄ matches that branch.

3.2. Finite alphabet. As mentioned above, when the alphabet is finite, and given as part
of the input, containment becomes much harder. In the rest of this section, Σ is therefore
a finite alphabet.

Theorem 3.3. XFContainment for XP(/, //, |) is pspace-hard.

Proof. We make use of a reduction from corridor tiling which is known to be hard
for pspace [8]. Let T = (D,H, V, b̄, t̄, n) be a tiling system. Here, D = {a1, . . . , ak} is
a finite set of tiles; H,V ⊆ D × D are horizontal and vertical constraints, respectively;
b̄ = (b1, . . . , bn) and t̄ = (t1, . . . , tn) are n-tuples of tiles; and, n is a natural number in
unary notation. The question is whether there exists a number m and a valid tiling of a
board with n columns and m rows. Here, a tiling is valid if the following conditions are
fulfilled:

• The bottom row is tiled with b̄.
• The top row is tiled with t̄.
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• For each horizontal pair (x, y) of tiles, (x, y) ∈ H.
• For each vertical pair (x, y) of tiles (y above x), (x, y) ∈ V .

We use a string representation of the board where every row is delimited by # and the
last symbol is $. The expression q selects all strings that do not encode a tiling. As Σ we
take D ∪ {#, $}. For S = {c1, . . . , cn} ⊆ Σ, we abbreviate the expression (c1 | · · · | cn) by
S. For an expression r, ri denotes r/ · · · /r with i occurrences of r. The expression p is .//$
assuring that the string contains the symbol $. The expression q is the disjunction of the
following expressions.

• some row has the wrong format:
– some inner row has too few tiles:

⋃n−1
i=0 .//#Di#

– the first row has too few tiles:
⋃n−1

i=0 Di/#

– the last row has not enough tiles:
⋃n−1

i=0 .//#Di/$
– some row has too many tiles: .//Dn+1;

• $ occurs inside the string: .//$/(D ∪ {$} ∪ {#});
• the string does not begin with b̄:

⋃n
i=1 b1/ · · · /bi−1/(

⋃
aj 6=bi

aj);

• the string does not end with t̄:
⋃n

i=1 .//(
⋃

aj 6=ti
aj)/ti+1/ · · · /tn/$

• some vertical constraint is violated:
⋃

(d1,d2)6∈V .//d1/(D ∪ {#})n/d2; and,

• some horizontal constraint is violated:
⋃

(d1,d2)6∈H .//d1/d2.

Now, T has a solution iff p 6⊆ q. Clearly, if T has a solution then we can take the string
encoding of the tiling as a counter example for the containment of p and q. Conversely, if
p 6⊆ q then there is a, not necessarily unary, tree t with one branch s ending on a $ such
that s |= p and s 6|= q. So, this branch encodes a solution for T .

Actually, in the proof of Theorem 3.3, the restriction to a finite alphabet is only used to
express that a certain element name in the XML document does not occur in a certain set.
Therefore, if we extended the formalism with an operator ∗6∈S for a finite set S, expressing
that any symbol but one from S is allowed, then containment would also be hard for pspace.

For the upper bound we need the notion of alternating tree automata [33] which is
defined next. These automata operate on trees where every node has rank at most k (for
some fixed k). That is, every node has at most k children.

Definition 3.4. An alternating tree automaton (ATA) is a tuple A = (k,Q,Σ, q0, δ)
where k > 0, Q is a finite set of states, Σ is the finite alphabet, q0 ∈ Q is the initial state,
and δ : Q × Σ × {0, 1, . . . , k} → B+({0, 1, . . . , k} × Q) is the transition function. Here,
B+({1, . . . , k}×Q) denotes the set of positive Boolean formulas over the set {1, . . . , k}×Q.

A configuration on a tree t is a tuple [u, q] where u ∈ dom(t) and q ∈ Q. An accepting
run of A on t is a tree s where nodes are labeled with configurations such that the root of
s is labeled with [ε, q0], where ε is the root of t and, for every node u of s (including leaf
nodes), the following local consistency condition holds. Let u be labeled with [v, q] with n
children labeled [v1, q1], . . . , [vn, qn]. Then it must hold that

• each vi is a child of v or v itself; and,
• δ(q, labt(v),m) is satisfied by the truth assignment ρ, where m ≤ k is the number of

children of v in t, and ρ((ℓ, q′)) is true if for some i, qi = q′ and vi is the ℓ-th child
of v (where we view v itself as the 0-th child).

A tree is accepted by A if there is an accepting run. By L(A) we denote the set of trees
accepted by A.
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Note that ATAs as we defined them do not have final states. These are encoded by
transitions of the form δ(q, σ, 0) = true.

Theorem 3.5. XFContainment for XP(/, //, [ ], ∗, |) is in pspace.

Proof. We show first that p 6⊆ q implies that there is a counter example tree with small
degree and only a few branching nodes. More precisely, we call a tree k-bounded if it has
at most k non-unary nodes (that is, nodes with more than one child) and every node has
rank at most k. For an XP(/, //, [ ], ∗, |) -expression p let f(p) be the maximum number of
filter expressions in any disjunct of the DNF of p. We claim that p ⊆ q if and only if t |= p
implies t |= q on the class of f(p)-bounded trees.

Indeed, suppose there is a t such that t |= p and t 6|= q. Let the DNF of p and q be
p1| · · · |pn and q1| · · · |qm, respectively. Thus, for some i, t |= pi, but t 6|= qj, for all j. Let h
be a homomorphism from pi to t and let s be the tree obtained from t by deleting all nodes
that are neither in the image of h nor ancestors of such nodes. Clearly, s is f(p)-bounded,
s |= pi and s 6|= qj for all j (otherwise, t |= qj).

Next, we show that for every XP(/, //, [ ], ∗, |) expression p there is an ATA Ap such
that for every f(p)-bounded tree t, t |= p iff Ap accepts t. Moreover, Ap can be constructed
in logspace.

To this end, let p be an XP(/, //, [ ], ∗, |) expression. As the alphabet is finite and fixed,
we can replace every ∗ with a disjunction of the alphabet symbols. Hence, we assume p
does not contain ∗. Let k = f(p). We define Ap = (k,Q,Σ, q0, δ) where q0 = p and Q is
the set of sub-expressions of p, all filter expressions of p and all node tests of p. Intuitively,
a pair [v, q] in an accepting run of Ap on a tree t means that q holds in the sub-tree of t
rooted at v. For all m ≤ k, the transition function is inductively defined as follows:

• δ(self :: σ[e1] · · · [eℓ]/p
′, σ,m) = (0, p′) ∧

∧ℓ
i=1(0, ei);

• δ(child :: σ[e1] · · · [eℓ]/p
′, τ,m) =

∨m
j=1[(j, σ) ∧ (j, p′) ∧

∧ℓ
i=1(j, ei)];

• δ(descendant :: σ[e1] · · · [eℓ]/p
′, τ,m) =∨m

j=1(j, [[descendant :: σ[e1] · · · [eℓ]/p
′]]t ∨ ((j, σ) ∧ (j, p′) ∧

∧ℓ
i=1(j, ei));

• δ(σ, σ,m) = true;
• δ(p | q, σ,m) = (0, p) ∨ (0, q); and,
• δ(e1 | e2, σ,m) = (0, e1) ∨ (0, e2).

The combinations δ(p, σ,m) that are not mentioned are false. For location paths of
length 1, i.e., if in one of the first three transitions there is no p′, the atoms (0, p′) or
(j, p′) are removed, respectively. It is straightforward to prove by a nested induction on
the structure of the tree and the expression that the pairs [v, q] have the intended meaning.
Therefore, a tree t has an accepting run of Ap if and only if t |= p.

Thus, to decide p ⊆ q it is sufficient to test whether every f(p)-bounded tree accepted
by Ap is also accepted by Aq. Note that f(p)-bounded trees can be easily encoded by
strings. We say that a node is a fork if it has more than one child. As there are at most
f(p) forks, every tree consists of at most k := f(p) × f(p) unary paths that are joined at
the at most f(p) forks. To every path we associate its lower fork (or none if there is no
such fork). Next, we assign a unique number to each path such that higher paths get lower
numbers. Let si be the concatenation of the labels on path i and let i1, . . . , iℓ be the paths
rooted at the fork below branch i. Let ai := si i1 · · · iℓ#. Every f(p)-bounded tree t can
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then be encoded by the string a1 · · · am. Let A′
p and A′

q be the alternating string automata
that simulate Ap and Aq on the string representations of bounded trees. Basically, whenever
the automaton reaches the end of (the encoding of) a path, the numbers i1, . . . , iℓ indicate
the positions of the children paths and it can reach a path ij by skipping everything before
its occurrence. This is possible as all paths are ordered and higher numbered paths occur
to the right. Finally, let A be the automaton that checks whether the input string is a valid
encoding of a bounded tree. The problem then reduces to testing whether A∩ A′

p ∩ ¬A′
q is

empty. The latter can be done in pspace [7]. We arrive at the desired result.

4. Containment in the presence of DTDs

In this section we study the XDContainment problem, i.e., the containment problem
relative to a DTD. Deutsch and Tannen [14] show a pspace lower bound for XDCon-
tainment for XP(/,//,[ ],∗,|). Marx [24] gives an exptime upper bound for a much larger
fragment, including all axes and negation in filter expressions.

We show here that XDContainment for XP(/,//,[ ],∗,|) problem is actually exptime-
complete. We also exhibit a simple fragment with tractable XDContainment and a mod-
est np-completeness result on the fragment using only / and [ ]. We do not know how to
extend the upper bound proof to include // or ∗. The results of this section are summarized
in Table 2.

We illustrate by a simple example that the presence of a DTD can complicate matters.
Consider the DTD

a → ab | ε

b → c

c → ε

and the expressions p = a/a and q = .//b/c. Although p and q are seemingly unrelated
and, in particular, it is not the case that every path matching p also matches q, it holds
that each tree which respects the DTD and matches p also matches q.

We remark that it can be tested in polynomial time whether, for a DTD d and a symbol
a, there exists a tree t ∈ L(d) with a vertex labeled a. Therefore, we assume in the following
that each input DTD contains only useful symbols. In particular, for each d and each symbol
a ∈ Σd, there is a tree valid with respect to (d, a,Σd).

4.1. A tractable fragment. We start with a fragment in p.

Theorem 4.1. XDContainment of XP(DTD, /, //)-expressions is in P.

Proof. Let d be a DTD and p, q be expressions of XP(DTD, /, //).
We first show how to construct a non-deterministic top-down automaton Ap which

checks that, for a tree t, t |= p holds. To this end, let p = p1//p2// · · · //pk, where in each
pi only the child axis is used. For each i, let pi contain iℓ child-axis location steps.

Intuitively, Ap guesses a path in t which matches p and, for each node v on this path it
maintains the lexicographically maximal (i, j) such that the path from the root to v matches

the expression p1// · · · //pi−1//p
j
i , where pj

i consists of the first j location steps of pi (along
the child-axis).
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It should be stressed here, that Ap needs non-determinism only to guess the path. The
computation of the pairs (i, j) is completely deterministic and similar to the case of the
standard string pattern matching automata [32]. The automaton, Ap enters an accepting
state on the leaf u of the distinguished (guessed) path if and only if the computed pair for
u is (k, ik). On all other leaves it takes an accepting state in any case.

An automaton Aq which accepts all trees that do not match q can be constructed along
the same lines. It computes a pair (i, j) with the same intended meaning as above, for every
node v of the tree and takes an accepting state at all leaves that have not reached (k, ik).
This automaton is actually deterministic.

By combining Ap with Aq and the canonical non-deterministic automaton Ad which
tests t |= d, we obtain an automaton which accepts all counterexamples to p ⊆d q. As this
automaton is of polynomial size in p, q, d and testing emptiness of non-deterministic tree
automata is in ptime (Lemma 2.9(1)), we obtain the stated upper bound.

It should be mentioned that in [30] we claimed that XDContainment of XP(DTD, /, //,
∗)-expressions is in p. Unfortunately, we were not able to extend the proof sketch given
there into a complete proof. In fact, we conjecture that this problem is conp-hard.

4.2. Fragments in conp. Next, we consider a fragment in conp. It is open whether
XP(DTD, /, [ ]) is a maximal fragment whose complexity of containment w.r.t. DTDs is in
conp.

Theorem 4.2. XDContainment for XP(DTD, /, [ ]) is in conp.

Proof. The obvious idea is to guess a tree t which matches P but not q. A complication
arises from the fact that the smallest such tree t might be of exponential size due to the
constraints from d. Thus, we give a non-deterministic algorithm CheckPnotq (d, a, P, q)
which checks, given a DTD d, a non-terminal a of d, a set P = {p1, . . . , pn} of XP(/, [ ])-
expressions, and an XP(/, [ ])-expression q, whether there is a tree t with root symbol a
which conforms to d, matches all expressions in P but does not match q. But it does not
explicitly construct such a tree. Clearly, invoking this algorithm with d, q, P = {p} and a as
the start symbol of d checks whether p 6⊆d q. We note that we allow a set P of expressions
as input for CheckPnotq because the algorithm uses such sets for recursive calls.

Algorithm CheckPnotq makes use of two algorithms with slightly simpler tasks. Algo-
rithm CheckP checks on input d, s, P whether there is a tree t with root s conforming to
d which contains all the expressions from P . Algorithm Checknotq checks on input d, q
whether there is a tree conforming to d with a root labelled by the root symbol of q which
does not match q.

We assume in the following that all labels of P and q occur in d and that d only
contains symbols from which a tree can be derived. By s(p) we denote the root symbol of
an expression p, i.e., the label of the root of τ(p). A level 1 sub-expression of an expression
p is an expression corresponding to a child of the root in τ(p). Let l denote the overall
number of depth-1-nodes in expressions of P .

The algorithms are given in Figure 2. The algorithms follow a top-down approach and
work recursively. The correctness can be shown by induction on the number of recursive
calls. Checknotq and CheckP are quite straightforward.

An important point is that in CheckP it is sufficient to consider strings u of length at
most (|d|+1)(l+2). It can be shown by a simple pumping argument that if a tree matching
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Checknotq(d, a, q)
(Returns TRUE if there exists a tree with root a which does not match q)

1. If s(q) 6= a return TRUE.
2. If τ(q) has only one node return FALSE.
3. Guess a string u ∈ d(a) of length ≤ |d| and a level 1 sub-expression q′ of q.
4. If b := s(q′) does not occur in u return TRUE.
5. Return Checknotq(d, b, q′).

CheckP(d, a, P = {p1, . . . , pn})
(Returns TRUE if there exists a tree with root a matching all pi)

1. If some expression in P does not have the root symbol a return FALSE.
2. Guess a string u ∈ d(a) of length ≤ (|d| + 1)(l + 2).
3. For each i ∈ {1, . . . , n}, guess a mapping fi from the level 1 sub-expressions

of pi to the positions of u.
4. For each position j of u, which is in the image of at least one of the mappings

fi

(a) Let P ′ be the set of level 1 sub-expressions p with fi(p) = j.
(b) Call CheckP(d, uj , P

′).
5. Return TRUE iff all the recursive calls return TRUE.

CheckPnotq(d, a, P = {p1, . . . , pn}, q)
(Returns TRUE if there exists a tree with root a matching all pi but not q)

1. If some expression in P does not have the root symbol a THEN return
FALSE.

2. If s(q) 6= a return CheckP(d, a, P ).
3. If τ(q) has only one node return FALSE.
4. Guess a level 1 sub-expression q′ of q.
5. Guess a string u ∈ d(a) of length ≤ (|d| + 1)(l + 2).
6. If b := s(q′) occurs in u call CheckPnotq(d, b, ∅, q′).
7. For each i ∈ {1, . . . , n}, guess a mapping fi from the level 1 sub-expressions

of pi to the positions of u.
8. For each position j of u, which is in the image of at least one of the mappings

fi

(a) Let P ′ be the set of level 1 sub-expressions p with fi(p) = j.
(b) Call CheckPnotq(d, uj , P

′, q′).
9. Return TRUE iff all the recursive calls return TRUE.

Figure 2: Algorithms Checknotq, CheckP and CheckPnotq used in the proof of Theorem
4.2.

P has a level with more children then there is a sub-sequence of these children which is not
in the image of any mapping and can be removed without leaving d(a).

CheckPnotq is basically a combination of Checknotq and CheckP. It has to check that
there is a path in q which does not match any path in the counter-example tree. Step 6 is
needed to verify that this also holds in those parts of the tree which are not needed to fulfil
P .
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It remains to show that this (non-deterministic) algorithm works in polynomial time.
This follows directly from the fact that for each node in τ(p) and each node v in τ(q) there
is at most one recursive call of CheckPnotq in which v is the root of some expression in P
(or q′).

The next theorem follows directly from [35].

Theorem 4.3. (a) XDContainment for XP(/, [ ]) is conp-hard.
(b) XDContainment for XP(//, [ ]) is conp-hard.

Proof. In [35], the following problem is shown to be conp-hard.

sibling constraint implication (sc imp):
Given: Regular expression r over alphabet Σ, a set S ⊆ Σ, and a ∈ Σ.
Question: Does every string w ∈ L(r) that contains all the symbols in S also contain the
symbol a (denoted r |= S → a)?

We reduce sc imp to XP(/, [ ]) and XP(//, [ ]) . Thereto, assume given r, S = {s1, . . . , sk},
and a. Construct the DTD d consisting of the sole rule start → r, where start 6∈ Σ, then
start[s1] · · · [sk] ⊆d start[a] iff start[.//s1] · · · [.//sk] ⊆d start[.//a] iff r |= S → a.

4.3. Fragments in exptime. When both the child and descendant axes are allowed, then
adding filter expressions and wild-card or disjunction raises the complexity of XDContain-
ment to exptime.

Although in [24] it is shown that XDContainment is in exptime even for full navi-
gational XPath by a reduction to propositional dynamic logic, we give here a simpler proof
of the result for our downwards navigating fragment.

First, we introduce two concepts. Let p be an XPath-expression. An expression is a
sub-expression of an expression p if it is generated by an lpath node in the derivation tree
of p according to the grammar in Definition 2.3.

The self-closure of p, denoted by self(p), is inductively defined as follows: for a lo-
cation step p1 = axis :: σ[e1] · · · [ek] its self-closure, is self :: σ[e1] · · · [ek]. For expressions
p1/p2 and p1 | p2, their self-closure is self(p1)/p2 and self(p1) | self(p2), respectively.

Theorem 4.4. XDContainment for XP(/, //, [ ], ∗, |) is in exptime.

Proof. We provide a translation to containment of unranked deterministic tree automata
whose size is exponential in the input. By Lemma 2.9(2), the latter is in exptime.

We first show that for each XP(/, //, [ ], ∗, |)-expression p, one can construct in expo-
nential time an exponential size deterministic tree automaton Ap = (Q,Σd, δ, F ) such that
Ap accepts a tree t if and only if t |= p. Here, Σd is the finite alphabet associated to the
given DTD d. The states of Ap are pairs (S,D) where S and D are sets of sub-expressions
of p or the self-closure of sub-expressions of p.

The intended meaning of the states is as follows. If p1 ∈ S at some vertex v of a tree
t then tv |= p1. If p1 ∈ D then there is some node w below v in t such that tw |= p1. So,
S describes all expressions that hold at the current node, while D describes all expressions
that hold at descendants of the current node.

Set F = {(S,D) | p ∈ S}. It remains to define the transition function for each
δ((S,D), a). Recall that the corresponding DFA operates on strings of the form: (S1,D1) · · · (Sℓ,Dℓ).
Then S should contain exactly the XPath-expressions generated by the following rules.
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• child :: σ[e1] · · · [ek]/p
′ ∈ S iff there is an i ≤ ℓ such that self :: σ[e1] · · · [ek]/p

′ ∈
Si;

• descendant :: σ[e1] · · · [ek]/p
′ ∈ S iff there is an i ≤ ℓ such that self :: σ[e1] · · · [ek]/p

′ ∈
Si ∪ Di;

• self :: σ[e1] · · · [ek]/p
′ ∈ S iff σ = a or σ = ∗, p′ ∈ S and ei ∈ S for i = 1, . . . , k;

• p1 | p2 ∈ S iff p1 ∈ S or p2 ∈ S; and,
• p1 or p2 ∈ S iff p1 ∈ S or p2 ∈ S.

For the case without a sub-expression p′ the first three rules are adapted in the obvious
way.

For each expression p, p ∈ D if p ∈ Si ∪ Di, for some i.
It remains to describe how a DFA B of exponential size can execute the above rules.

There is a linear number of sub-expressions of p and self-closures of those. The DFA B
keeps for each of them one bit in memory indicating whether the corresponding expression
is in S or D. Initially none of them are. An expression is put in a set if one of the above
rules fire. Every rule should be checked at every transition step. So, the size of each B
is exponential in p. As Ap contains an exponential number of such DFAs, its size is also
exponential.

Let Ad be the exponential size deterministic automaton accepting d (cf. Lemma 2.9(3)).
Then deciding whether p ⊆d q reduces to testing whether L(Ad) ∩ L(Ap) ⊆ L(Aq). By
Lemma 2.9(2), the latter can be done in exptime.

Theorem 4.5. XDContainment for XP(/, //, |) is hard for exptime.

Proof. The proof makes use of a reduction from two-player corridor tiling. This is
the extension of corridor tiling, used in the proof of Theorem 3.3, to two players. Let
T = (D,H, V, b̄, t̄, n) be a tiling system. Again, D is a finite set of tiles; H,V ⊆ D × D
are horizontal and vertical constraints, respectively; b̄ and t̄ are n-tuples of tiles; and n is
a natural number. There are two players (I and II) that place tiles in turn on an n × N

board. On this board the bottom row is tiled with b̄. Player I starts on the first square
of the second row from the bottom. Each player in turn places a tile on the next free
square going from left to right and from bottom to top. While player I tries to construct
a corridor tiling from b̄ to t̄, player II tries to prevent it. If player II places a tile which
is not consistent with respect to the horizontal and vertical constraints then player I can
answer with a special tile ‘!’. Player I wins if a tiling is constructed satisfying the horizontal
and vertical constraints with the top row tiled with t̄, or if she answers an inconsistent tile
placed by II with ‘!’. We say that player I has a winning strategy if she can always win no
matter how II plays. It is well-known that it is exptime-complete to determine whether
I has a winning strategy [8]. This result even holds if the number of tiles in a row is forced
to be even. Thus we assume in the following that n is even.

We encode strategies for player I as trees. For each position in the game in which II

moves, the tree contains all possible moves of player II and, for each I-position, it contains
only one move. Thus, such a tree encodes a winning strategy if and only if each path
corresponds to a correct tiling or to a wrong move of II.

To this end, we use symbols of the form (a, i), where a ∈ D and i ∈ {1, 2} plus some
additional auxiliary symbols: $ to indicate the borders between rows, # to mark the end of
a tiling and the “protest symbol” ‘!’. Inner nodes of the tree correspond either to moves of
I or II. Nodes corresponding to I are labeled (a, 1) where a is the tile chosen by I in this
move. They have one child for every tile corresponding to the possible next moves of II.
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Nodes corresponding to II are labeled (a, 2) and have only one child which is the unique
answer move of I according to her strategy or one of $, # or ‘!’. Nodes with label $ have
one child corresponding to a move of I. Nodes with label # or ‘!’ are leaves. The root of
the tree is labeled S and represents an empty (dummy) move which has to be answered by
I. It has one child. On each path from the root, I-nodes and II-nodes alternate (when we
ignore the intermediate $ nodes).

Now we describe the reduction in more detail. Let D = {d1, . . . , dm}. We use the
following DTD f which defines all possible strategy trees for player I:

S → (d1, 1) + · · · + (dm, 1)
$ → (d1, 1) + · · · + (dm, 1)
and for every d ∈ D, we have the rules
(d, 1) → (d1, 2) · · · (dm, 2)
(d, 2) → (d1, 1) + · · · + (dm, 1) + # + $+!
! → ε
# → ε

Note that # and ‘!’ are the only terminal symbols. Thus, each path in the tree either ends
with # or ‘!’.

A derivation tree encodes a strategy tree (or game tree) for I. As the bottom and the
top row are fixed we do not represent them in these trees, i.e., only intermediate rows are
represented. We assume that the tiling consisting only of the top and bottom row is not
valid. Therefore any strategy tree has to represent at least one row.

We have to check whether there is a tree encoding a valid strategy tree for I. We will
construct an expression q which selects a tree if and only if it does not encode a winning
strategy for I. Thus, S ⊆f q if and only if player I has no winning strategy.

We define
q := qn tiles | qV | qH | q!,

where the sub-expressions on the right hand side will be defined shortly. Intuitively, qn tiles

expresses that some row has a wrong length (which can only be due to player I), qV and
qH express that some vertical or horizontal constraint, respectively, is violated by I, and q!

expresses that I used the protest symbol wrongly. Each of these sub-expressions identifies
an error in the strategy tree. Hence, if every tree matches one of these expressions, every
tree contains an error and no tree can be a valid strategy tree.

Note that, although the expressions under consideration do not have the wild-card
available, the disjunction of all alphabet symbols defined by the grammar is a kind of wild-
card as the DTD assures that no other symbols occur in the tree. We denote the set of all
pairs (σ, i), where σ is a tile and i ∈ {1, 2} by Σ. Further, we denote by Σ$ the set Σ∪{$}.

Three types of errors can occur in a strategy tree: (1) the tree is of the wrong shape; (2)
player I places an inconsistent tile, or (3) player I uses the symbol ‘!’ although II placed
a correct tile.

A row does not contain exactly n tiles.:

qn tiles := .//Dn+1 |
n−1⋃

i=0

($ | S)/Di/($ | #).

Recall that we use D as a shortcut for d1 | · · · | dm.
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Vertical Constraints are violated.:

qV := qb̄ | qt̄ |
⋃

(d′,d)6∈V

.//(d′, 1)/Σn
$/(d, 1),

where

qb̄ :=

n⋃

i=1

⋃

(bi,d)6∈V

S/Σi−1/(d, 1)

checks the vertical constraints w.r.t. b̄, and

qt̄ :=
n⋃

i=1

⋃

(d,ti)6∈V

.//(d, 1)/Σn−i/#,

checks the vertical constraints w.r.t. t̄.
Horizontal Constraints are violated.:

qH :=
⋃

(d′,d)6∈H

.//(d′, 2)/(d, 1).

Wrong use of ‘!’.:

q! := (
⋃

(d1,d)∈V

(d2,d)∈H

.//(d1, 2)/Σ
n
$/(d2, 1)/(d, 2)/!) ∪ (

n⋃

i=2

⋃

(bi,d)∈V

(d′,d)∈H

S/Σi−2/(d′, 1)/(d, 2)/!)

This expression takes care of the case that player I uses the protest symbol ‘!’
although the last tile placed by player II was consistent with the vertical and
horizontal constraints. The second disjunct in this expression takes care of the first
row of the game (i.e., the second row in the tiling).

By similar techniques, making use of the techniques of Lemma 3 in [27], it can be shown
that XDContainment for XP(/, //, [ ], ∗) is hard for exptime.

The outermost union can be handled as in Lemma 3 of [27]. Of course, the DTD has
to be adapted accordingly.

5. Containment in the presence of variables

In this section, we study Boolean containment of XPath expressions which allow the
comparison of attribute values. More precisely, in this section we consider XPath expression
generated by the following grammar.

lpath ::= lstep | lpath ’/’ lpath | lpath ’|’ lpath
lstep ::= axis ’::’ nodetest (’[’expr’]’)∗

axis ::= self | child | descendant
expr ::= fexpr | vexpr | expr ’or’ expr
fexpr ::= lpath
vexpr ::= variable = attribute | variable 6= attribute

A variable x is denoted as $x, an attribute a as @a. In this section, fragments without
filter expressions still allow sub-expressions of the type vexpr. Furthermore, fragments
without filter but with disjunction allow disjunctions of sub-expressions of type vexpr (cf.
Theorem 5.3(c)).
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We consider two different semantics. The original XPath semantics and the existential
semantics, introduced in [14].

In the XPath semantics, variable bindings are defined in an outer context. In partic-
ular, the value of an expression is defined with respect to a variable assignment ρ : X → D
where X is the set of all variables. We denote the truth value of a filter expression e rela-
tive to a variable assignment ρ and a vertex v by Eρ

t (v, e) and the semantics of an XPath
expression p by [[p]]ρt .

Formally, we extend Definition 2.4 as follows. Given a tree t, a node v, an attribute a
and an assignment ρ, Eρ

t (v, $x = @a) is true if ρ(x) = λa
t (v). Likewise, Eρ

t (v, $x 6= @a) is
true if ρ(x) 6= λa

t (v). The semantics of [[p]]ρt is then defined accordingly and we write t |=ρ p
if there is a vertex v of t such that (ε, v) ∈ [[p]]ρt .

Deutsch and Tannen [14] consider a different semantics which does not assume an
external variable binding but rather allows a choice of values for the variables that makes
the expression match. More formally, t |= p under existential semantics, if there is a
variable assignment ρ and a vertex v of t such that t |=ρ p. We will write this as t |=∃ p.

We denote the allowance of variables under XPath semantics by xvars and under the
existential semantics by evars; the presence of inequalities with variables is denoted by 6=.
For instance, XP(/, //, xvars, 6=) denotes the XPath fragment with / and //, together with
variable equality and inequality under the XPath semantics.

We define Boolean containment of XP-expressions with attribute values correspond-
ingly. More precisely, under the XPath semantics, p ⊆ q holds, if for every tree t and every
variable assignment ρ, t |=ρ p implies t |=ρ q. Under the existential semantics, p ⊆ q if for
every tree t, if there is ρ such that t |=ρ p then there is also a variable assignment π such
that t |=π q.

In the first subsection, we show that adding variables under XPath semantics to the
basic XPath fragment with disjunction results in a XContainment problem with pspace
complexity.

In [14], it is shown that XContainment for XP(/, //, [ ], ∗, |, evars) is ΠP
2 -complete [14]

(Theorems 2.3 and 3.3). Further, they show that XContainment for XP(/, //, [ ], evars) is
conp-complete. We show in the second subsection that in the presence of inequalities these
hardness results hold for even smaller fragments.

Adding variables with XPath semantics to the basic fragment with disjunction but
without wild-card gives a ΠP

2 -complete XContainment problem. Surprisingly, adding wild-
card to this fragment ends up in an undecidable XContainment problem.

The results of this section are summarized in Table 3.
For a set X of variables an equality type e is an equivalence relation on X. Intuitively,

e describes which variables have the same value.

5.1. XPath semantics. We start with the pspace-upper bound.

Theorem 5.1. XContainment for XP(/, //, [ ], |, ∗, xvars, 6=) is in pspace.

Proof. We basically show that the problem can be reduced to the case without variables.
Let p and q be two expressions with variables {x1, . . . , xk} and let Σ′ be the set of element
and attribute names which appear in p or q (and which we assume to be disjoint). Let
Σ = Σ′ ⊎ {#}. Clearly, p ⊆ q holds in general if and only if it holds for trees with element
names from Σ. For each equality type e of the variables x1, . . . , xk, we construct two
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expressions pe and qe in XP(/, //, [ ], |, ∗). By construction it then follows that p ⊆ q if and
only if, for every equality type e, pe ⊆ qe. As we can cycle through all equality types e
and construct each pe and qe in pspace, and each single test will be doable in pspace, the
complexity of the overall algorithm is pspace.

Let us first consider the equality type e where all variables are pairwise different. With
every tree t and every variable assignment ρ of type e, we associate a tree tρ over the
alphabet Γ = Σ ∪ {x1, . . . , xk, none} as follows. We add, for each attribute a of a node v, a
new child of v labeled by a which itself has a child which is labeled by one of x1, . . . , xk or
with none depending on @a. More precisely, if @a equals some ρ(xi) then the grandchild
of v is labeled by xi otherwise by none.

Correspondingly, we construct pe by replacing in p each subexpression $xi = @a by
./a/xi and each $xi 6= @a by ./a/(x1 | · · · | xi−1 | xi+1 | · · · | xk | none). We construct qe

from q in the same way. It is easy to see that, for each t, and each variable assignment ρ of
type e, t |=ρ p if and only if tρ |= pe.

Thus, it remains to test whether, for all trees of the form tρ, tρ |= pe implies tρ |= qe.
This can be done along the lines of the proof of Theorem 3.5. In particular, it is sufficient
to consider only f(pe)-bounded trees.

This completes the description of the algorithm for equality type e. If, for some other
equality type, two variables get the same value then we can replace one of them by the other
in p and in q. Hence, we get possibly fewer variables which are again pairwise different.

We show that the pspace upper bound is tight in the general case and exhibit some
lower bounds for restrictions of the formalism.

Theorem 5.2. (a) XContainment for XP(/, [ ], xvars, 6=) is conp-hard.
(b) XContainment for XP(/, //, xvars, 6=) is conp-hard.
(c) XContainment for XP(/, //, |, ∗, xvars, 6=) is pspace-hard.

Proof. The proofs of (a) and (b) are by reduction from the set of unsatisfiable 3SAT-
formulas. To this end let ϕ = ϕ1∧· · ·∧ϕk be a 3CNF formula where each ϕi is a disjunction
li1 ∨ li2 ∨ li3 of 3 literals. Let x1, . . . , xm be the variables occurring in ϕ. In both cases,
intuitively we construct from ϕ an expression p that, describes all (tree representations of)
possible truth assignments to the literals of ϕ. The expression q selects a truth assignment
if it leaves at least one clause unsatisfied. Thus, ϕ is unsatisfiable iff p ⊆ q.

More precisely, both reductions map ϕ to expressions with variables y and y1, . . . , ym.
The value ρ(y) represents true, the other variables represent a truth assignment to x1, . . . , xm

in the obvious way: xi is true iff ρ(yi) = ρ(y).
In the trees we are interested in, the root a-attribute carries the data value correspond-

ing to true and each literal lij is represented by one node vij with an attribute a and
label b. Expression p tests that the attribute values of these nodes are consistent with the
truth assignment induced by the yl: this is checked by variable expressions v(lij) which are
$yl = @a if lij = xl and $yl 6= @a if lij = ¬xl.

(a) In case of XP(/, [ ], xvars, 6=), the trees selected by p have one path of length 3, for each
clause. To this end, let, for each i, pi be the sub-expression

pi = b[v(li1)]/b[v(li2)]/b[v(li3)],

and let p be
p = b[$y = @a][p1] · · · [pk].
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Thus, t |=ρ p guarantees that t has, for each clause ϕi, a path in which the j-th node
(j = 1, 2, 3) has an attribute value consistent with the truth value of lij, as induced by
ρ.

Thus, formula ϕ is unsatisfiable, if every tree which “passed” p has a path of length
3 in which all induced truth values are false. To this end, we define

q = b[$y = @a]/b[$y 6= @a]/b[$y 6= @a]/b[$y 6= @a].

(b) Recall that in XP(/, //, vars, 6=) sub-expressions of the forms [$y = @a] and [$y 6= @a]
are allowed. As XP(/, //, vars, 6=) can not refer to branches of a tree, in this case, the
vertices vij have to be organized in a linear fashion. Basically, in the construction of
(a), we replace the general [ ] subexpressions in p by using // in q. To this end, the
trees matched by p need to have a path of length 4k with label pattern (cbbb)∗. The
i-th subpath labeled cbbb corresponds to ϕi.

Thus,

pi = c/b[v(li1)]/b[v(li2)]/b[v(li3)]

p = b[$y = @a]/p1/ · · · /pk

q = b[$y = @a]//c/b[$y 6= @a]/b[$y 6= @a]/b[$y 6= @a]

By a similar reasoning as in (a) it follows that ϕ is satisfiable if and only if p 6⊆ q.
(c) We use basically the same construction as in Theorem 3.3. Let D = {σ1, . . . , σk} be the

alphabet used in that construction and assume without loss of generality that k = 2l,
for some l. We use attributes a1, . . . , al and one variable x to encode the symbols of D.
More precisely, a1, . . . , al and x represent σb, if, the i-th digit of b is 1 exactly if x = ai.
The remaining symbols $ and # are still represented by labels. In the expressions p and
q the element tests are replaced by the wild-card symbol together with the respective
attribute comparisons.

5.2. Existential semantics. Now we turn to XContainment in the context of existential
semantics for variables. In some cases the complexity does not change as to compared with
the XPath semantics, but in others it raises considerably, even leading to undecidability for
XP(/,//, [ ],∗,|,evars,6=).

Theorem 5.3. (a) XContainment for XP(/, [ ], evars) is conp-hard.
(b) XContainment for XP(/, [ ], evars, 6=) is ΠP

2 -hard.
(c) XContainment for XP(/, |, evars) is ΠP

2 -hard.

Proof. The proofs for (a) and (b) are similar. Both are reductions from containment for
Boolean Conjunctive Queries (BCQs). In (b) inequalities are allowed, in (a) not. As con-
tainment of BCQs and BCQs with inequality is hard for conp [6] and ΠP

2 [34], respectively,
(a) and (b) then follow.

We first describe how we represent a relational database D by a tree tD. The root is
labeled with S and for every relation R in D and every tuple (d1, . . . , dn) in R it has a child
labeled R with n attributes @1, . . . ,@n, where, for each i, @i has the value di.

A BCQ is a conjunction of relational atoms R(x1, . . . , xk), and, in case of (b), inequal-
ities x 6= y. Note that atoms of the form x = y can be eliminated as each variable must
occur in a relational atom. An atom R(x1, . . . , xk) can be represented by the subexpression
pi = R[$x1 = @1] · · · [$xk = @k].
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We can not represent an inequality x 6= y by an expression [$x 6= $y], as variables can
only be compared with attributes. Nevertheless, as x must occur as the i-th entry in a
relational atom, we add [y 6= @i] to the expression for L.

We illustrate the construction with an example. For instance, if Q is E(x, y), E(y, z), x 6=
z then pQ is

S[E[$x = @1][$y = @2][$z 6= @1][E[$y = @1][$z = @2]].

Clearly, for a database D, D |= Q if and only if tD |=∃ pQ. On the other hand, from each
t (even if it is not of the intended form) we can define, in a straightforward manner, using
all correctly encoded tuples, a database D(t) such that D(t) |= Q if and only if t |=∃ pQ.

Thus, for BCQs Q1 and Q2 it holds Q1 ⊆ Q2 if and only if pQ1 ⊆ pQ2, as required.

The proof of (c) is by a reduction from ∀∃-3SAT [31]. Note that the fragment XP(/, |, evars)
allows the use of disjunction of variable-attribute comparisons.

Let ϕ = ∀x1 · · · xm∃y1 · · · ymθ, where θ = θ1 ∧ · · · ∧ θn is in 3-CNF with variables from
{x1, . . . , xm, y1, . . . , ym}. Intuitively, the ∀∃-structure of a formula will be mimicked by a
for all trees there is a variable assignment statement. Hence, the values for x1, . . . , xm will
be encoded in the trees, the values for y1, . . . , ym will be given by the variable assignment.

Each tree satisfying p will have two root attributes @T and @F which represent the
truth values true and false, respectively. Note that, as there are no inequalities available,
there will be no guarantee that the values of T and F are different. We only make use of
the node label b. With every path of length m which starts immediately below the root we
associate a (partial) truth assignment as follows: if the c-attribute of the i-th node equals
the value of the attribute T , we set ρ(xi) = T , if it is F then ρ(xi) = F .

The expression p is designed to guarantee the existence of such a path. To this end,
p is b[$z1 = @T ][$z0 = @F ]/p1/ · · · /pm, where, for each i, pi = b[$z1 = @c or $z0 = @c].
Intuitively, the variables z0 and z1 are used to transport the values true and false in the
tree.

So far, each tree t with t |=∃ p induces at least one truth assignment for x1, . . . , xm.
Expression q checks that

• z1 and z0 take the values @T and @F at the root, respectively,
• each (XPath) variable xi has a truth value corresponding to the value of the i-th

node of some path of the tree,
• each (XPath) variable yi is either @T or @F, and
• the induced truth assignment makes θ true.

To this end, q = b[e1] · · · [en][$z1 = @T ][$z0 = @F ][$y1 = @T or $y1 = @F ] · · · [$ym =
@T or $ym = @F ]/b[$x1 = @c]/ · · · /b[$xm = @c], where each ei is a variable expression
corresponding to θi. As an example, if θ1 is x2 ∨ y3 ∨ ¬x1 then e1 is [$x2 = @T or $y3 =
@T or $x1 = @F ].

Now it is easy to see that ϕ holds iff p ⊆ q with respect to the existential semantics.
Note in particular that trees for which @T = @F at the root fulfill q whenever they fulfill
p.

Theorem 5.4. XContainment for XP(/, //, [ ], |, evars, 6=) under existential semantics is
in ΠP

2 .

Proof. We show that for XP(/, //, [ ], |, evars, 6=)-expressions the following holds.

(a) p 6⊆ q if and only if there is a tree t of size polynomial in |p| + |q| such that t |=∃ p but
t 6|=∃ q, and
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(b) t |=∃ p can be tested in np.

Hence, the algorithm Guess a tree t of polynomial size and check that t |= p but t 6|= q is a
Σ2-algorithm for the complement of XContainment.

To prove (a), let p and q be expressions and let p1| · · · |pm and q1| · · · |qn be the DNF
of p and q, respectively. As the disjuncts do not contains disjunction themselves they can
again be represented as tree patterns with additional constraints reflecting the equalities
and inequalities between variables and attributes.

Clearly, p 6⊆ q if and only if for some i, pi 6⊆ q. Hence, as i can be guessed, in proving
(a) we can restrict to the case where p does not contain |.

We call a tree t (p, q)-canonical if the following conditions hold.

• The tree structure of t is obtained from the tree pattern τ(p) by replacing each //-
edge by a path of length two with two child edges and a new intermediate #-labeled
node where # is a label neither occurring in p nor q. Note that the number of
vertices of t is at most twice the number of vertices of τ(p).

• The attribute values in t are from the set {0, . . . ,mk}, where m is the number of
vertices in t and k is the number of attributes occurring in p or q.

Let S(p, q) denote the set of all (p, q)-canonical trees. Note that, as the data values are
bounded by (|p| + |q|)m each of these trees can be encoded by a string of polynomial size.

We show next that, whenever p 6⊆ q for an expression p from XP(/, //, [ ], evars, 6=) and
an expression q from XP(/, //, [ ], |, evars, 6=), there is a tree t ∈ S(p, q) that matches p but
not q.

Therefore let p 6⊆ q be witnessed by a tree t′ not necessarily from S(p, q). Hence, t′ |=∃ p
but t′ 6|=∃ q. Let e be a homomorphism from τ(p) to t′. Let a1, . . . , al, l ≤ k, be the pairwise
different attribute values of the vertices in e(τ(p)).

We construct t as follows. Its structure is obtained from τ(p) as above by replacing
//-edges with new nodes labeled #. We call a vertex v of t that is already in τ(p) an original

vertex and write p(v) for its corresponding vertex in τ(p). An original vertex v of t inherits
its attribute values from e(p(v)) as follows. If attribute b of e(p(v)) has value ai then v gets
the attribute value i. The attributes of the other nodes get the value 0.

Let u and u′ be (not necessarily distinct) original vertices in t and let b, b′ be two
attributes. Then the b-attribute of u is different from the b′-attribute of u′ if and only if
the b-attribute of e(p(u)) is different from the b′-attribute of e(p(u′)).

Clearly, t ∈ S(p, q) and t |= p via the obvious homomorphism. It remains to show that
t 6|= q. Assume otherwise. Hence, for some j, t |= qj. Let e′ be a homomorphism from τ(qj)
to t. As q does not contain the symbol # and there are no wild-cards, the image of τ(qj)
under e′ only contains original vertices of t. As these vertices have the same relationships
within each other as their corresponding vertices in t′ we can conclude that t′ also matches
qj. This concludes the proof of (a).

To show (b), we remark that whether t |=∃ p for an expression p in XP(/, //, [ ], |, evars, 6=)
can be tested as follows. First, a disjunct pi of the disjunctive normal form of p is guessed.
Next, a homomorphism from τ(pi) to t and a value assignment for the variables of pi are
guessed (with values ≤ |pi|) and it is checked whether all conditions hold.

We note in passing that for variables with existential semantics even query evaluation
is hard.

Proposition 5.5. (a) Evaluation of Boolean XP(|, evars)-expressions is np-hard.
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(b) Evaluation of Boolean XP(/, [ ], evars)-expressions is np-hard.

Proof. (a) The proof is by reduction from 3SAT. Let ϕ =
∧n

i=1 ϕi be a 3CNF formula with
variables from {x1, . . . , xm}. Let t be the tree consisting of a single vertex with attributes
@T = 1 and @F = 0. Let p be the expression [$x1 = @T or $x1 = @F ] · · · [$xm =
@T or $xm = @F ]pϕ, where pϕ = pϕ1 · · · pϕn and each pϕi

represents clause ϕi. E.g., if
ϕi = (x3 ∨ ¬x5 ∨ x1) then pϕi

is [$x3 = @T or $x5 = @F or $x1 = @T ]. Clearly, ϕ is
satisfiable iff t |=∃ p.

(b) This follows easily from the correspondence between XP and BCQ as explained in the
proof of Theorem 5.3 and the fact that BCQ-evaluation is hard for np.

The following theorem shows that in the setting of variables with existential semantics
the wild-card has a strong impact.

Theorem 5.6. XContainment for XP(/,//,∗,|,evars,6=) is undecidable.

Proof. We use a reduction from Post’s Correspondence Problem (PCP) which is well-known
to be undecidable [19]. An instance of PCP is a sequence of pairs (x1, y1), . . . , (xn, yn),
where xi, yi ∈ {a, b}∗ for i = 1, . . . , n. This instance has a solution if there exist m ∈ N and
α1, . . . , αm ∈ {1, . . . , n} such that xα1 · · · xαm = yα1 · · · yαm. We construct a DTD d, and
two XPath expressions p1 and p2 such that p1 ⊆d p2 iff the PCP instance has a solution.
At the end of the proof, we will explain how we can get rid of the DTD.

We consider unary XML-trees, that is, strings. They are roughly of the form u$v, where
$ is a delimiter and u, v are strings representing a candidate solution (xα1 , . . . , xαm ; yβ1, . . . , yβm

)
for the PCP instance in a suitable way. To check whether such a candidate is indeed a so-
lution, we roughly have to check whether

(1) for each i, αi = βi, that is, corresponding pairs are taken; and
(2) both strings are the same, that is, corresponding positions in xα1 · · · xαm and yα1 · · · yαm

carry the same symbol.

To check (1) and (2), we make use of a double indexing system based on the values of the
attributes block and position of the nodes in u and v. We explain the intuition behind our
reduction by means of a small concrete example.

The DTD will define strings of the form S u#v&. For instance, the candidate solution
x1x2; y1y2 where x1 = ab, x2 = b, y1 = a, and y2 = bb will be represented as a concatenation
of X- and Y -blocks as follows:

S X 1(x) a(x, 1, 1) b(x, 1, 2) X 2(x) b(x, 2, 1) #
block 1 2
position 1 2 3

Y 1(y) a(y, 1, 1) Y 2(y) b(y, 2, 1) b(y, 2, 2) &
block 1 2
position 1 2 3

Here, the block and position rows indicate the values of the respective attributes. The
symbols X and Y indicate the beginning of an x- and y-block, respectively. The symbol
1(x) means that x1 is picked; and, a(x, 1, 1) b(x, 1, 2) encode that x1 is the string ab. More
precisely, σ(x, i, j) encodes that the j-th position in the string xi is σ. We need this involved
encoding as we will define a DTD that can only produce valid sequences of blocks. The
attributes “block” and “position” make up the double index system as will become clear
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further on. We refer to blocks corresponding to encodings of an xi and yi as X-blocks and
Y -blocks, respectively. If a block corresponds to xi or yi we say that its number is i.

Let, for each i ≤ n, xi be σi
1 · · · σ

i
ki

and yi be δi
1 · · · δ

i
ℓi
. Then the DTD d consists of the

productions
S → X
X → 1(x)| . . . |n(x)
# → Y
Y → 1(y)| . . . |n(y)
& → ε

and further sets P (xi) and P (yi) of productions, for each i ≤ n. Here, P (xi) consists of the
productions i(x) → σi

1(x, i, 1), and for j := 1, . . . , ki − 1, σi
j(x, i, j) → σi

j+1(x, i, j + 1), and

σi
ki

(x, i, ki) → X | #. Analogously, P (yi) is the set of productions i(y) → δi
1(y, i, 1), and for

j := 1, . . . , ℓi − 1, δi
j(y, i, j) → δi

j+1(y, i, j + 1), and δi
ℓi
(y, i, ℓi) → Y | &. The start symbol

is S. Every X and Y has an attribute block ; every a and b has an attribute position.
Formally, a tree Su#v& is syntactically correct if u and v contain the same number

of blocks and it fulfills the following condition. For z ∈ {u, v}, let block(z) be the list
consisting of the block attribute-values of the nodes in z and let position(z) be the list
consisting of the position attribute-values of the nodes in z. Then it should be the case that
block(u) = block(v) and position(u) = position(v). A syntactically correct string Su$v&
represents a solution of the PCP instance, iff the block numbers of corresponding blocks
are the same and the values (a or b) of corresponding positions are the same.

Let p be the XP-expression S and let d be as above. We next construct q′ in such a way
that it selects the root of an XML-tree if and only if it is not syntactically correct or does
not represent a solution. As p defines all inputs, p ⊆d q′ if and only if the PCP instance
has no solution.

In the following, if z is the string abab then we use z as a shorthand for a/b/a/b. Further,
we denote the string generated by the grammar from xi and yi by x̃i and ỹi, respectively.
That is, for x1 = ab, x̃1 = a(x, 1, 1)b(x, 1, 2).

(1) The block index is wrong.
(a) the block value of the first X in u differs from the block value of the first Y in

v:
S/X[$d = @block]//#/Y [$d 6= @block].

(b) the block value of the last X in u differs from the block value of the last Y in
v: for each i, j ∈ {1, . . . , n} we have

S//X[$d = @block]/i(x)/x̃i/#//Y [$d 6= @block]/j(y)/ỹi&

(c) two X-block values are the same:

S//X[$d = @block]//X[$d = @block]//#

(d) two Y -block values are the same;

S//#//Y [$d = @block]//Y [$d = @block]

(e) two successive X-block values are not successive in v: for all i, j ∈ {1, . . . , n}
we have
S//X[$d = @block]/i(x)/x̃i/X[$e = @block]//

#//Y [$d = @block]/j(y)/ỹj/Y [$e 6= @block].
(2) The position index is wrong. This is done in an analogous fashion.
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(a) the first position in u differs from the first position in v:

S/X/ ∗ / ∗ [$d = @position]//Y/ ∗ / ∗ [$d 6= @position].

(b) the last position in u differs from the last in v:

S// ∗ [$d = @position]/#// ∗ [$d 6= @position]/&

(c) two X-position values are the same:

S// ∗ [$d = @position]// ∗ [$d = @position]//#

(d) two Y -position values are the same;

S//#// ∗ [$d = @position]// ∗ [$d = @position]

(e) two successive X-position values are not successive in v: we have to deal with
several cases as the successive positions can occur in the same block or in
successive blocks.

(i) the X-positions occur in the same block, the Y -positions occur in the
same block: for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . , |xi|−1}, ℓ ∈ {1, . . . , |yj |−
1}:

S//X/i(x)/ ∗k−1 / ∗ [$d = @position]/ ∗ [$e = @position]

//Y/j(y)// ∗ℓ−1 / ∗ [$d = @position]/ ∗ [$e 6= @position]

(ii) the X-positions occur in successive blocks, the Y -positions occur in the
same block: for all i, j ∈ {1, . . . , n}, ℓ ∈ {1, . . . , |yj| − 1}:

S//X/i(x)/ ∗|xi|−1 / ∗ [$d = @position]/X/ ∗ / ∗ [$e = @position]

//Y/j(y)// ∗ℓ−1 / ∗ [$d = @position]/ ∗ [$e 6= @position]

(iii) the X-positions occur in the same block, the Y -positions occur in succes-
sive blocks: for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . , |xi| − 1}:

S//X/i(x)/ ∗k−1 / ∗ [$d = @position]/ ∗ [$e = @position]

//Y/j(y)// ∗|yj |−1 / ∗ [$d = @position]/Y/ ∗ / ∗ [$e 6= @position]

(iv) the X-positions occur in successive blocks, the Y -positions occur in suc-
cessive blocks: for all i, j ∈ {1, . . . , n}:

S//X/i(x)/ ∗|xi|−1 / ∗ [$d = @position]/X/ ∗ / ∗ [$e = @position]

//Y/j(y)// ∗|yj |−1 / ∗ [$d = @position]/Y/ ∗ / ∗ [$e 6= @position]

(3) w does not represent a solution:
(a) The block number for some block in u is different from the corresponding block

in v: for all i, j ∈ {1, . . . , n} with i 6= j:

S//X[$d = @block]/i(x)//Y [$d = @block]/j(y)



28 F. NEVEN AND T. SCHWENTICK

(b) The symbol (a or b) in u is different from the corresponding symbol in v.
Thereto, we have the following expressions: for all i, j ∈ {1, . . . , n}, k ∈
{1, . . . , |xi|}, ℓ ∈ {1, . . . , |yj |}

S//a(x, i, k)[$d = @position]//#//b(y, j, ℓ)[$d = @position]

and

S//b(x, i, k)[$d = @position]//#//a(y, j, ℓ)[$d = @position]

Clearly, w is not syntactically correct or does not represent a solution if and only if one of
the above conditions holds.

To get rid of the DTD, we add disjuncts to q′ that capture violations of the DTD.
However, to this end we need to express that children of a node cannot have a certain label.
As we can not express this kind of negation directly, we encode labels of nodes by equality
types of attribute values. So, let L := {ℓ1, . . . , ℓm} be the set of all the labels we need.
Every node now has m attributes a1, . . . , am. If for a node, j ≥ 1 is the largest number
such that the value of a1 equals the value of aj then the node is considered as labeled with
ℓj. One can match a node labeled with ℓj by checking the corresponding equality type: for
instance, by an expression of the form

∗[$x1 = @a1][$x2 6= @a1] · · · [$xj−1 6= @a1][$xj = @a1].

Clearly, when using this approach we can express that a certain node is not labeled by a
certain label. For every rule a → b1 | · · · | bk in the DTD we add the disjunct //a/c to
q′ where c ∈ L \ {b1, . . . , bk}. When we write //a/c, we of course mean XPath expressions
taking labels into account as specified in the manner above. Let q be obtained from q′ by
adding all the disjuncts from the DTD and replacing all references to labeling by references
to encoding with attributes. Note that now we allow arbitrary trees as well.

It remains to argue that p 6⊆ q iff the PCP instance has a solution. When there is a
solution to the PCP then clearly the encoding of this string will match p but not q. Suppose
that there is a tree that matches p but not q. This means that no error occurs on any path
in the tree. Therefore, every path is an encoding of a solution to the PCP instance.

6. Discussion

The article studied the complexity of the containment problem for a large class of XPath
expressions. In particular, we considered disjunction, DTDs and variables. Unfortunately,
the complexity of almost all decidable fragments lies between conp and exptime. On the
other hand, the size of XPath expressions is rather small. As pointed out, Deutsch and
Tannen, and Moerkotte already obtained undecidability results for XPath containment.
We added modest negation (6=) and variables with the existential semantics. In [30] a
corresponding result is shown in the presence of node-set equality. However, the reduction
employs XPath expressions with absolute filter expressions which fall outside the scope of the
present paper. It would be interesting to have a precise classification of which combination
of features makes the problem undecidable.

Although the complexity has been settled for a lot of fragments of XPath with child
and descendant axes, the picture is by no means complete. A particular case that remains
open is the case of XP(DTD, /, //, ∗).
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Corresponding results in the presence of other axes remain to be investigated. Besides
the general upper bound of Marx [24] for navigational XPath with all axes, few precise
results are known. Work on satisfiability of XPath with the sibling axis has been done by
Fan and Geerts [15].
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