
Logical Methods in Computer Science

Vol. 2 (1:3) 2006, pp. 1–40

www.lmcs-online.org

Submitted Nov. 30, 2004

Published Mar. 06, 2006

THEORIES FOR TC0 AND OTHER SMALL COMPLEXITY CLASSES

PHUONG NGUYEN AND STEPHEN COOK

University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada
e-mail address: {ntp,sacook}@cs.toronto.edu

Abstract. We present a general method for introducing finitely axiomatizable “minimal”
two-sorted theories for various subclasses of P (problems solvable in polynomial time). The
two sorts are natural numbers and finite sets of natural numbers. The latter are essentially
the finite binary strings, which provide a natural domain for defining the functions and sets
in small complexity classes. We concentrate on the complexity class TC

0, whose problems
are defined by uniform polynomial-size families of bounded-depth Boolean circuits with
majority gates. We present an elegant theory VTC

0 in which the provably-total functions
are those associated with TC

0, and then prove that VTC
0 is “isomorphic” to a different-

looking single-sorted theory introduced by Johannsen and Pollet. The most technical part
of the isomorphism proof is defining binary number multiplication in terms a bit-counting
function, and showing how to formalize the proofs of its algebraic properties.

1. Introduction

Non-uniform AC0 is the class of languages accepted by polynomial-size families of
constant-depth Boolean circuits (where the gates have unbounded fan-in). Non-uniform
TC0 is defined similarly, where the circuits may contain majority gates (i.e., gates with
unbounded fan-in, which output 1 if and only if the number of 1 inputs is more than the
number of 0 inputs), and for non-uniform AC0(m)1 the additional gates are mod m gates,
i.e., gates with unbounded fan-in which output 1 if and only if the number of 1 inputs is
exactly 1 modulo m.

Each of these classes has a uniform version, where the families of circuits are uniform.
Here we consider FO-uniformity [Imm99], i.e., each circuit family can be described by some
first-order formula. We will focus on the uniform classes, and will simply use AC0, TC0

and AC0(m) without the adjective “uniform”.
Each of these classes can be defined more generally as a class of relations rather than

languages. A class C is then associated with a function class FC, which is essentially the
set of functions of at most polynomial growth whose bit graphs are in C. Then TC0 (resp.
FTC0) is the class of problems (resp. functions) AC0 reducible to the counting function,

1991 Mathematics Subject Classification: F.4.1.
Key words and phrases: Bounded Arithmetic, Complexity Classes, Circuit Complexity, Majority Gate.
1
AC

0(2) is also called ACC(2) in [Joh98]

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-2 (1:3) 2006

c© PHUONG NGUYEN AND STEPHEN COOK
CC© Creative Commons

http://creativecommons.org/about/licenses

2 PHUONG NGUYEN AND STEPHEN COOK

which outputs the number of 1 bits in the input string. The same holds for AC0(m) and
FAC0(m), with the modulo m function instead of the counting function.

It is known that

AC0 (AC0(p) (AC0(pq) ⊆ ACC ⊆ TC0 ⊆ NC1,

for any distinct prime numbers p, q, where ACC =
⋃∞

m=2 AC0(m). However it is an open
question whether any of last three inclusions is strict. It is also unknown, for example,
whether AC0(6) (NC1, although AC0(p) 6= AC0(q) for distinct prime numbers p, q.

In this paper we study second-order logical theories associated with these and other
complexity classes. We show that our theories VTC0 and V0(m) characterize TC0 and
AC0(m) in the same way that Buss’s theories S1

2,S
2
2, . . . characterize the polynomial time

hierarchy [Bus86]. Thus we show that FTC0 is precisely the class of Σ1
1-definable functions

of VTC0, and similarly FAC0(m) is the class of Σ1
1-definable functions of V0(m).

In Section 4 we show that our theory VTC0 is RSUV isomorphic to ∆b
1-CR, a “mini-

mal” first-order theory that also characterizes TC0 [JP00] but which is defined very differ-
ently from VTC0. Since VTC0 is finitely axiomatizable, it follows that ∆b

1-CR is also, and
this answers an open question in [JP00] by showing that there is a constant upper bound to
the nesting depth of the ∆b

1 bit-comprehension rule required to prove theorems in ∆b
1-CR.

Our RSUV isomorphism is more difficult than the original ones given in [Raz93, Tak93], as
we explain below in Section 1.2.

The theory VTC0 is obtained by adding to the “base” theory V0 [Zam96, Coo05] (a
theory that characterizes AC0) the axiom NUMONES which encodes the counting function
which is complete for TC0. This is indeed a generic method that can be used to develop
“minimal”, finitely axiomatizable theories characterizing other small classes, including the
sequence

NC1 ⊆ L ⊆ SL ⊆ NL ⊆ NC ⊆ P

In proving that our theories characterize the corresponding classes, we follow the approach
laid down in [Coo05] which uses “minimal”, universal theories over the languages of the

functions in the corresponding classes. The universal counterpart of VTC0 is called VTC
0
.

The main tasks remaining are to (i) show that the universal theories (such as VTC
0
) are

conservative extensions of the original theories (e.g., VTC0); and (ii) prove the Witnessing
Theorems for the universal theories. The general results in Theorem 3.15 and Theorem 3.20
(the General Witnessing Theorem) should be useful for these purposes in other contexts.

Our universal theories are “minimal” theories for the corresponding complexity classes
in the sense that the axioms consist of straightforward definitions for the functions and

predicates in the class. For example, VTC
0

satisfies this condition, and since it is a con-
servative extension of VTC0, the latter is also a minimal theory for TC0, and so is its

first-order counterpart ∆b
1-CR. However as explained below, the extensions R

0
and C0

2 of
∆b

1-CR also define precisely the TC0 functions, but they prove Σb
2 theorems which (un-

der a cryptographic assumption) are not provable in ∆b
1-CR and hence are apparently not

minimal theories for TC0.
This paper is based in part on its precursors [Ngu04] and [NC04].

1.1. Previous First-Order Theories for our Classes. In [CT95], Clote and Takeuti
introduce the notion of essentially sharply bounded (esb) formulas in a theory T . They
introduce the first-order theories TAC0(2), TAC0(6), and TTC0, and show that a function

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 3

is esb-definable in one of these theories iff it is in AC0(2), AC0(6), or TC0, respectively.
However, the notion of esb-definable seems unnecessarily complicated.

In [Joh96], Johannsen introduces the first-order theory R
0
, and shows that the class of

TC0 functions is exactly the class of functions Σb
1-definable in R

0
. In [JP98], Johannsen

and Pollett introduce a hierarchy {C0
k}k≥1 of first-order theories, where C0

k characterizes
the class of functions computable by families of constant-depth threshold circuits of size
bounded by τk(n), where τ1(n) = O(n), τk+1(n) = 2τk(log n). In particular, C0

2 captures
TC0. Later Johannsen and Pollett [JP00] introduce the “minimal” theory ∆b

1-CR for TC0

mentioned above. This theory is defined using a set of axioms (BASIC together with
Open-LIND), and the ∆b

1 bit-comprehension rule. It is easy to see that ∆b
1-CR is a

subset of both R
0
and C0

2, and it follows from a result of Cook and Thapen [CT04] that
∆b

1-CR is a proper subset of both unless the RSA encryption scheme can be cracked in
polynomial time.

The equational theories A2V and TV introduced by Johannsen [Joh98] characterize
AC0(2) and TC0, respectively. These theories appear to be RSUV isomorphic respectively
to our second-order theories V0(2) and VTC0. One direction is clear: the axioms of the
equational theories translate to theorems of the second-order theories. To show the reverse
direction would require working out detailed proofs in the equational theories.

We show in Section 4 that VTC0 is RSUV isomorphic to ∆b
1-CR. From this and the

previous paragraph it appears that TV and ∆b
1-CR are equivalent.

1.2. Second-Order Theories for TC0. In [JP98], the first-order theories C0
k+1 (k ≥ 1)

are shown to be RSUV isomorphic to the second-order theories D0
k. Thus, D0

1 can be seen as

a theory for TC0. By the results of Cook and Thapen [CT04] discussed above, D0
1 appears

to be stronger than our theory VTC0.

In [Jan95], Kraj́ıček introduces the theory (IΣ1,b
0)count and notes that it should corre-

spond to constant-depth FC, where FC is an extension of Frege proof systems. It turns

out that our theory VTC0 is essentially the same as (IΣ1,b
0)count , but we note that Kraj́ıček

does not treat his theory in detail.
As argued in [Coo05], it seems that the second-order logic used here is more appropriate

for reasoning about small complexity classes. The usual first-order theories of bounded
arithmetic (including most of those described above for TC0) include multiplication as a
primitive operation, and include axioms such as x ·y = y ·x. Our second-order theories have
no primitive operations on second-order objects (strings) other than length. One advantage
of this simplicity comes in the easy description of the propositional translations of these
theories [Coo05]. In order to show the RSUV isomorphism in Section 4 between VTC0 and
∆b

1-CR we must define binary multiplication in VTC0 and prove its properties, which is
not an easy task. But the alternative of simply assuming the commutative and distributive
laws as axioms is “cheating”, rather like throwing in axioms for the commutativity of
multiplication in a propositional proof system for TC0.

1.3. Organization. Section 2 presents the syntax and semantics of our second-order the-
ories, and defines the second-order versions of the complexity classes AC0, TC0, AC0(m),
and ACC. Characterizations of TC0 and AC0(m) are given in terms of threshold quanti-
fiers and modulo m quantifiers, respectively.

Section 3 defines a finitely axiomatized theory for each of the complexity classes men-
tioned in the introduction, and introduces a universal conservative extension of each of

4 PHUONG NGUYEN AND STEPHEN COOK

these theories which has function symbols for each function in the associated class. The
main theorems state that the ΣB

1 -definable functions in each theory are the functions in
the associated complexity class. The theory VTC0 for TC0 is treated in detail, and then
a general method is introduced for defining theories for other subclasses of P. A general
witnessing theorem is proved.

Section 4 proves that our finitely-axiomatized second-order theory VTC0 is isomorphic
to the first-order theory ∆b

1-CR of Johannsen and Pollett. It follows that there is a fixed
upper bound of the nesting depth of applications of the ∆b

1 bit-comprehension rule required
for proofs in ∆b

1-CR, which answers an open question in [JP00].
Section 5 summarizes our main contributions. Appendix A gives some details of the

RSUV isomorphism proof, and Appendix B shows how the proof of the Pigeonhole Principle
can be formalized in VTC0.

2. Second-Order Logic

2.1. Syntax and Semantics. We use the two-sorted syntax of Zambella [Zam96, Zam97]
(see also [Coo05, Coo]), which was inspired by Buss’s second-order theories defined in
[Bus86]. Our language has two sorts of variables: the number variables x, y, z, . . . whose
intended values are natural numbers; and string variables X,Y,Z, . . . , whose intended val-
ues are finite sets of natural numbers (which represent binary strings). Our two-sorted
vocabulary L2

A extends that of Peano Arithmetic:

L2
A = [0, 1,+, ·, | |;∈,≤,=1,=2].

Here | | is a function from strings to numbers, and the intended meaning of |X| is 1 plus
the largest element of X. The binary predicate ∈ denotes set membership. We will use
the abbreviation X(t) for t ∈ X. The equality predicates =1 and =2 are for numbers and
strings, respectively. We will write = for both =1 and =2; the exact meaning will be clear
from the context. The other symbols have their standard meanings.

Number terms are built from the constants 0,1, variables x, y, z, ..., and length terms
|X| using + and ·. We use s, t, ... for number terms. The only string terms are string
variables X,Y,Z, The atomic formulas are ⊤, ⊥, (for True, False), s = t, X = Y , s ≤ t,
t ∈ X for any number terms s, t and string variables X,Y . Formulas are built from atomic
formulas using ∧,∨,¬ and both number and string quantifiers ∃x,∃X,∀x,∀X. Bounded
number quantifiers are defined as usual, and the bounded string quantifier ∃X ≤ t ϕ stands
for ∃X(|X| ≤ t∧ϕ) and ∀X ≤ t ϕ stands for ∀X(|X| ≤ t ⊃ ϕ), where X does not occur in
the term t.

A structure for L2
A is defined in the same way as a structure for a single-sorted language,

except now there are two nonempty domains U1 and U2, one for numbers and one for strings.
Each symbol of L2

A is interpreted in 〈U1, U2〉 by a relation or function of appropriate type,
with =1 and =2 interpreted as true equality on U1 and U2, respectively. In the standard
structure N2, U1 is N and U2 is the set of finite subsets of N. Each symbol of L2

A gets its
intended interpretation.

In general we will consider a vocabulary L which extends L2
A. We require that the

bounding terms (for the bounded quantifiers) are restricted to mention the functions of
L2

A only. A formula is ΣB
0 (L) if it has no string quantifiers and all number quantifiers are

bounded. A formula is ΣB
1 (L) (ΠB

1 (L), Σ1
1(L), resp.) if it is a ΣB

0 (L) formula preceded
by a block of quantifiers of the form ∃X ≤ t (∀X ≤ t, ∃X, resp.). If the block contains a
single quantifier, the formula is also called single-ΣB

1 (L) (single-ΠB
1 (L), single-Σ1

1(L), resp.).

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 5

A formula is gΣB
1 (L) (resp. gΠB

1 (L)) if it is obtained from ΣB
0 (L) formulas using the

connectives ∧ and ∨, bounded number quantifiers and bounded existential (resp. universal)

string quantifiers (“g” for “general”). A formula is ∃gΣB
1 (L) if it is of the form ∃ ~Xϕ, where

ϕ is gΣB
1 (L). We will omit L if it is L2

A.

The ΣB
1 formulas correspond to (in first-order logic) strict Σb

1 formulas (i.e., Σb
1 formulas

where no bounded quantifier is inside the scope of any sharply bounded quantifier), while
gΣB

1 formulas correspond to Σb
1 formulas. Similar for ΠB

1 and gΠB
1 formulas.

2.2. Two-Sorted Complexity Classes. We study two-sorted versions of standard com-
plexity classes, where the two sorts are those in the standard model N2 for L2

A: the natural
numbers and finite subsets of the natural numbers. When a class is defined in terms of
machines or circuits, we assume that each number input is represented in unary notation
(i.e., n is represented as a string of n 1’s), and each finite subset X is represented by its
characteristic bit string.

There are two kinds of functions: number functions and string functions. A number

function f(~x, ~X) takes values in N, and a string function F (~x, ~X) take values in finite subsets

of N. A function f(~x, ~X) or F (~x, ~X) is polynomially bounded (or p-bounded) if there is a

polynomial p(~x, ~y) such that f(~x, ~X) < p(~x, | ~X |), or |F (~x, ~X)| < p(~x, | ~X |). The functions
classes we consider here contain only p-bounded functions.

The class (uniform) AC0 can be characterized as the set of relations R(~x, ~X) which
are accepted by alternating Turing machines in time O(log(n)) with constant alternations.
The following result is from [Imm99, Coo].

Theorem 2.1. A relation R(~x, ~X) is in AC0 iff it is represented by some ΣB
0 formula

ϕ(~x, ~X).

We define AC0 reducibility in the “Turing” style, as opposed to the many-one style.
The idea is (see for example [BIS90]) that F is AC0 reducible to L if F can be computed by
a (uniform) polynomial size constant depth family of circuits which have unbounded fan-in
gates computing functions from L, in addition to Boolean gates. We follow [Coo05] and
make this precise in Definition 2.3 below, based on Theorem 2.1.

The bit graph BF (z, ~x, ~X) of a string function F (~x, ~X) is defined by the condition

BF (z, ~x, ~X) ≡ F (~x, ~X)(z) (2.1)

Definition 2.2. A string function is ΣB
0 -definable from a collection L of two-sorted func-

tions and relations if it is p-bounded and its bit graph is represented by a ΣB
0 (L) formula.

Similarly, a number function is ΣB
0 -definable from L if it is p-bounded and its graph is

represented by a ΣB
0 (L) formula.

Definition 2.3. We say that a string function F (resp. a number function f) is AC0

reducible to L if there is a sequence of string functions F1, . . . , Fn (n ≥ 0) such that

Fi is ΣB
0 -definable from L ∪ {F1, . . . , Fi−1}, for i = 1, . . . , n; (2.2)

and that F (resp. f) is ΣB
0 -definable from L∪{F1, . . . , Fn}. A relation R is AC0 reducible to

L if there is a sequence F1, . . . , Fn as above, and R is represented by a ΣB
0 (L∪{F1, . . . , Fn})

formula.

6 PHUONG NGUYEN AND STEPHEN COOK

The uniform classes TC0, AC0(m), and ACC can be defined in several equivalent ways
[BIS90]. Here we define them using AC0 reducibility, and later we characterize them using
generalized quantifiers.

Definition 2.4 (TC0, AC0(m), ACC). Let numones(z,X) be the number of elements of
X which are less than z. 2 Then TC0 is the class of relations AC0 reducible to numones.
Similarly, for each m ∈ N, m ≥ 2, let modm(z,X) = (numones(z,X) mod m). Then
AC0(m) is the class of relations AC0 reducible to modm. The class ACC is the union of
all AC0(m), for m ≥ 2.

In general, each two-sorted relation class C is associated with a function class FC. A
number function belongs to FC if it is p-bounded, and its graph is in C. A string function

F (~x, ~X) belongs to FC if it is p-bounded, and its bit graph (2.1) is in C.

Lemma 2.5. FTC0 is the class of functions AC0 reducible to numones. For m ∈ N,m ≥
2, FAC0(m) is the class of functions AC0 reducible to modm. FACC is the class of
functions AC0 reducible to modm, for some m.

Another characterization of TC0 is as follows. Consider augmenting the current two-
sorted logic with the counting quantifier, i.e.,

∃s z < tϕ(z, ~x, ~X)

is a formula which is true if and only if there are exactly s values of z such that ϕ(z, ~x, ~X)
is true. It has been shown [Ngu04, Theorem 2.9] that TC0 is exactly the class of relations

represented by ΣB,COUNT

0 formulas, i.e., bounded formulas which allow only number quan-
tifiers and the counting quantifier. The proof in [Ngu04] is based on the characterization
of TC0 [BIS90]: TC0 = FO(COUNT). It shows how to translate FO(COUNT) formulas

into ΣB,COUNT

0 formulas, and vice versa.

2.3. The Threshold Quantifier and Threshold Operation. Observe that the counting
quantifier as discussed above “counts” exactly the number of z’s that make ϕ(z) true. We
now define the threshold quantifier, which has syntax

∃≥s z < tϕ(z) (2.3)

where s, t are terms not containing z. (The variable z is bound by the quantifier.) The
semantics is given by the condition that (2.3) holds if and only if there are at least s values
of z less than t that make ϕ true. This is similar to the counting quantifier, but we find the
threshold quantifier more convenient, and will use it here.

Let ΣB,Th

0 be the class of formulas built in the same way as ΣB
0 , except now we allow

threshold quantifiers in addition to bounded number quantifiers. The following result and
its corollary provide interesting characterizations of TC0, but they are not used in the rest
of this paper.

Theorem 2.6. TC0 is the class of relations represented by ΣB,Th

0 formulas.

Proof. First, let ϕ(~x, ~X) be a ΣB,Th

0 formula. We will prove by induction on the structure
of ϕ that it represents a TC0 relation. The base case where ϕ is an atomic formula is
straightforward. For the induction step, consider the interesting case where

ϕ(~x, ~X) ≡ ∃≥s z < t ϕ′(z, ~x, ~X).

2Thus the number of elements of X is numones(|X|, X).

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 7

By the induction hypothesis, ϕ′(z, ~x, ~X) represents a TC0 relation. In other words, it

represents the same relation as some ΣB
0 ({numones , F1, . . . , Fn}) formula ψ(z, ~x, ~X), for

a sequence F1, . . . , Fn of string functions satisfying (2.2). Let Fn+1 be ΣB
0 -definable from

{numones , F1, . . . , Fn} as follows:

Fn+1(~x, ~X)(z) ⇔ z < t ∧ ψ(z, ~x, ~X).

Then ϕ represents the same relation as the formula

numones(t, Fn+1(~x, ~X)) ≥ s.

For the other direction, we will prove by induction on n ≥ 0 a stronger result:
If F1, . . . , Fn is any sequence of string functions satisfying (2.2) (with L = {numones}),

then for any ΣB,Th

0 ({numones , F1, . . . , Fn}) formula ψ(~x, ~X) there is a ΣB,Th

0 formula

ϕ(~x, ~X) that represents the same relation. (*)

a) For the base case, we prove by induction on the structure of a ΣB,Th

0 (numones)

formula ψ that there is a ΣB,Th

0 formula ϕ that represents the same relation as ψ. It suffices
to show that any atomic formula ψ(numones) (i.e., ψ contains numones) is equivalent to a

ΣB,Th

0 formula. Let
numones(t1,X1), . . . ,numones(tm,Xm)

be all occurrences of numones in ψ, enumerated in some order such that if numones(ti,Xi)
is a sub-term of tj then i < j. Let u1, ..., um be a list of new variables. Let t′j be the result

of replacing each maximal sub-term numones(ti,Xi) of tj by ui and let ψ′ be the result of
replacing each maximal sub-term numones(ti,Xi) in ψ by ui. Note that if ui occurs in t′j
then i < j. Now the ΣB,Th

0 formula ϕ is

∃u1 ≤ t′1 . . . ∃um ≤ t′m, ψ
′ ∧

m
∧

k=1

[∃≥uk z < t′k Xk(z) ∧ ¬∃≥(uk + 1) z < t′k Xk(z)].

b) For the induction step, suppose that Fn+1 is ΣB
0 -definable from {numones , F1, ..., Fn}

(for n ≥ 0). Let ψ be a ΣB,Th

0 ({numones , F1, . . . , Fn+1}) formula. We will show how to
eliminate Fn+1 from ψ by induction on the depth of nesting of Fn+1 in ψ.

For a term or formula ω, we define d(ω) to be the maximum depth of nesting of any
occurrence of Fn+1 in ω.

We will prove the following by induction on k ≥ 0:

If d(ψ) = k, then there is a ΣB,Th

0 formula ϕ that represents the same relation as ψ.
(**)

(i) The base case where k = 0 follows from the induction hypothesis of (*), since there
is no occurrence of Fn+1 in ψ.

(ii) Suppose that (**) holds for all ψ where d(ψ) ≤ k. It suffices to prove (**) when ψ
is an atomic formula, and d(ψ) = k + 1.

Let Fn+1(~r1, ~T1), . . . , Fn+1(~rℓ, ~Tℓ) be all string terms in ψ of the form Fn+1(~r, ~T), where

d(Fn+1(~r, ~T)) = k + 1. (Thus max ({d(r) | r ∈ ~ri} ∪ {d(T) | T ∈ ~Ti}) = k, for i = 1, . . . , ℓ.)
Let W1, ...,Wℓ be new string variables, and let ψ′ be the formula obtained from ψ by

replacing each Fn+1(~ri, ~Ti) with Wi, i = 1, ..., ℓ. Then ψ′ is atomic, since ψ is atomic.

Since d(ψ′) ≤ k, it follows by the induction hypothesis that there is a ΣB,Th

0 formula θ that
represents the same relation as ψ′. Then each Wi can occur in θ only in the form |Wi|, or
Wi(r), for some number term r (r might contain some |Wj|’s).

8 PHUONG NGUYEN AND STEPHEN COOK

Suppose that Fn+1 is defined by

Fn+1(~x, ~X)(z) ↔ z < tn+1(~x, ~X) ∧ ϕn+1(z, ~x, ~X)

where tn+1 is a term in the base language L2
A and ϕn+1 is a ΣB

0 ({numones , F1, ..., Fn})
formula. Now each occurrence of |Wi| in θ can be eliminated by the equivalence

|Fn+1(~ri, ~Ti)| = zi ↔ δi

where z1, ..., zℓ are new number variables and (setting t′i ≡ tn+1(~ri, ~Ti))

δi ≡ zi ≤ t′i ∧ [∀x < t′i, x ≥ zi ⊃ ¬ϕn+1(x,~ri, ~Ti)] ∧ [zi > 0 ⊃ ϕn+1(zi − 1, ~ri, ~Ti)]

(Note that d(ϕn+1(z,~ri, ~Ti)) ≤ k.) Let θ′ be obtained from θ by replacing each |Wi| by zi.
Let θ′′ be the formula

∃z1 ≤ t′1 . . . ∃zℓ ≤ t′ℓ(θ
′ ∧ δ1 ∧ ... ∧ δℓ)

Next, replace each occurrence of the form Wi(r) in θ′′ (such r does not contain any of the
Wj’s) with

r < t′i ∧ ϕn+1(r,~ri, ~Ti).

Let θ′′′ be the resulting formula. Then θ′′′ represents the same relation as ψ. Since d(θ′′′) ≤

k, we can apply the induction hypothesis to θ′′′ to obtained the desired ΣB,Th

0 formula ϕ
that represents the same relation as ψ. ✷

Define the threshold operation as follows. It takes a relation Q(z) (which may contain
other parameters) to the relation [ThzQ](k, y) defined by

[ThzQ](k, y) ⇔ there are at least k values of z < y that satisfy Q(z).

Then the threshold and Boolean operations together simulate the bounded number quan-
tification operations. For example, the relation [∃z ≤ tQ](z) is the same as the relation

[ThzQ](1, t).

The following is immediate from Theorem 2.6.

Corollary 2.7. TC0 is the closure of AC0 relations under the threshold and Boolean op-
erations.

2.4. The Modulo m Quantifier and Operation. For each m ∈ N,m ≥ 2, the modulo
m quantifier and modulo m operation can be defined similarly as the threshold quantifier
and threshold operation, with a little more complication (see [PW85]). In particular, the
modulom quantifier Modm only makes sense when the variable it quantifies over is bounded.
Thus,

Modmz < t ϕ(z)

is true if and only if the number of z < t satisfying ϕ(z) is exactly 1 modulo m. Similarly,

the modulo m operation takes a relation Q(z, ~x, ~X) into the relation [ModmzQ](y, ~x, ~X)

which consists of all tuples (y, ~x, ~X) such that

|{(z, ~x, ~X) : z < y and Q(z, ~x, ~X)}| = 1 mod m.

Let ΣB,Modm

0 formulas be bounded formulas in our two-sorted logic augmented with the
Modm quantifier, where only bounded number quantifiers are allowed. Then the analog of
Theorem 2.6 and Corollary 2.7 can be proved by slight modifications of the original proofs.

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 9

Theorem 2.8. For each m ∈ N,m ≥ 2, AC0(m) is the class of relations represented by

ΣB,Modm

0 formulas. It is also the closure of AC0 relations under Boolean, bounded number
quantification and modulo m operations.

3. The Theories

3.1. The Theory V0. We start by describing the theory V0 [Coo, Coo05] for the com-
plexity class AC0. All of the theories that we introduce here are extensions of V0.

The theory V0 has underlying language L2
A and is axiomatized by the set of axioms

2-BASIC and the ΣB
0 -COMP axiom scheme. First, 2-BASIC is the set of the axioms B1

– B12, L1, L2 and SE below.

B1. x+ 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x+ 1 = y + 1 ⊃ x = y B8. 0 ≤ x
B3. x+ 0 = x B9. x ≤ y ∧ y ≤ z ⊃ x ≤ z
B4. x+ (y + 1) = (x+ y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y < x(y + 1 = x)
L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)
SE. X = Y ↔ [|X| = |Y | ∧ ∀z < |X|(X(z) ↔ Y (z))]

The axiom scheme ΣB
0 -COMP is the set of all formula of the form

∃X ≤ a∀z < a, X(z) ↔ ϕ(z), (3.1)

where ϕ is a ΣB
0 formula not containing X.

Although V0 does not have an explicit induction scheme, axioms L1 and L2 tell us
that if X is nonempty then it has a largest element, and thus we can show that V0 proves
the X-MIN formula

0 < |X| ⊃ ∃x < |X|(X(x) ∧ ∀y < x ¬X(y))

and X-IND

[X(0) ∧ ∀y < z(X(y) ⊃ X(y + 1))] ⊃ X(z)

From this and ΣB
0 -COMP we conclude that V0 proves the scheme

ΣB
0 -IND: [ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x+ 1))] ⊃ ∀zϕ(z)

where ϕ(x) is any ΣB
0 formula (possibly containing parameters).

A pairing function can be defined in V0 by using 〈x, y〉 to abbreviate the term (x +
y)(x+y+1)+2y. Then V0 proves that the map (x, y) 7→ 〈x, y〉 is an one-one map from N×N

to N. We use this idea to define a binary array X using the definition X(x, y) ≡ X(〈x, y〉).
By iterating the pairing function we can define a multidimensional array X(~x). Then V0

proves the corresponding comprehension scheme

∃Z ≤ 〈~a〉∀~z < 〈~a〉, Z(~z) ↔ ϕ(~z)

for any ΣB
0 formula ϕ.

If we think of Z as a two-dimensional array, then we can represent row x in this array
by Z [x], where Z [x] = Row (x,Z) is the FAC0 string function with bit-defining axiom

Z [x](i) ↔ Row (x,Z)(i) ↔ i < |Z| ∧ Z(x, i) (3.2)

10 PHUONG NGUYEN AND STEPHEN COOK

Lemma 3.1. Let V0(Row) be the extension of V0 obtained by adding the function Row
with defining axiom (3.2). Then V0(Row) is conservative over V0, and every ΣB

0 (Row)
formula ϕ is provably equivalent in V0(Row) to a ΣB

0 formula ϕ′.

Proof. Conservativity follows from the fact that Row is ΣB
1 -definable in V0(see Lemma 3.5).

For the second part, we may assume by the axiom SE that ϕ does not contain =2. We
proceed by induction on the maximum nesting depth of Row in ϕ. It suffices to consider
the case in which ϕ is atomic. If ϕ has the form Row (t, T)(s), then ϕ is equivalent to T (t, s)
which by the induction hypothesis is equivalent to a ΣB

0 formula.
Now suppose that ϕ is atomic and does not have the form Row (t, T)(s). Let

Row (t1, T1), ...,Row (tk, Tk)

be the maximal depth string terms occurring in ϕ. Then each such term Row (ti, Ti) must
occur in the context |Row (ti, Ti)|, so

ϕ ≡ ϕ′(|Row (t1, T1)|, ..., |Row (tk, Tk)|)

where ϕ′(x1, ..., xk) has less Row -nesting depth than ϕ. Then V0(Row) proves

ϕ↔ ∃x1 ≤ |T1|...∃xk ≤ |Tk|, (
k

∧

i=1

row-length(xi, ti, Ti)) ∧ ϕ(x1, ..., xk)

where row-length(x, y, Z) is a ΣB
0 formula expressing the condition x = |Row (y, Z)|. We

can now apply the induction hypothesis to the RHS. ✷

3.2. The Theory VTC0. The theory VTC0 is V0 together with NUMONES , which is
essentially a ΣB

1 defining axiom for numones (Definition 2.4) . Let ϕNUMONES (X,Y) be the
ΣB

0 formula stating that Y is a counting array of X, i.e., for each z ≤ |X|, Y (z, y) holds if
and only if numones(z,X) = y:

ϕNUMONES (X,Y) ≡ [∀z ≤ |X|∃!y ≤ |X|Y (z, y)] ∧ Y (0, 0) ∧

∀z < |X|∀y ≤ |X|, Y (z, y) ⊃ [(X(z) ⊃ Y (z + 1, y + 1)) ∧ (¬X(z) ⊃ Y (z + 1, y))]. (3.3)

Definition 3.2. Let NUMONES denote ∀X∃Y ϕNUMONES (X,Y). The theory VTC0 is
V0 extended by the axiom NUMONES.

Note that V0 proves that NUMONES implies that same axiom with ∃Y replaced by
the bounded quantifier ∃Y ≤ 1 + 〈|X|, |X|〉. Hence VTC0 is equivalent to a theory with
bounded axioms.

Lemma 3.3. The theories V0 and VTC0 are finitely axiomatizable.

Proof. The finite axiomatizability of V0 is proved in [CK03]. The theory VTC0 is the
result of adding a single axiom to V0. ✷

The next definition refers to the notion of Σ1
1(L) formula, defined in Section 2.1.

Definition 3.4. Let T be an extension of V0 over a language L. A string function F (~x, ~X)
is Σ1

1(L)-definable in T if it satisfies

Y = F (~x, ~X) ↔ ϕ(~x, ~X, Y) (3.4)

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 11

for some Σ1
1(L) formula ϕ, and

T ⊢ ∀~x∀ ~X∃!Y φ(~x, ~X, Y) (3.5)

The Σ1
1(L)-definability for a number function f(~x, ~X) is defined similarly.

Lemma 3.5. If T is an extension of V0 which satisfies (3.5) and F is not in the language
of T and T ′ is the result of adding F to the language and adding (3.4) as an axiom, then
T ′ is a conservative extension of T .

Proof. According to (3.5), every model of T has an expansion to a model of T ′ which
satisfies (3.4). ✷

If T is a bounded theory, in the sense that the quantifiers in the axioms for T can be
bounded by terms of L2

A, then by Parikh’s Theorem [Par71, Coo] it follows that a function

is Σ1
1(L) definable in T iff it is ΣB

1 definable in T .
We can now state one of our main results, which explains the sense in which our theories

characterize the corresponding complexity classes. We already know [Coo05] that the Σ1
1-

definable (and hence the ΣB
1)-definable functions in V0 are precisely those in FAC0.

Theorem 3.6. The Σ1
1-definable (and the ΣB

1 -definable) functions in VTC0are precisely
those in FTC0.

The proof is the subject of Subsections 3.3 - 3.5.

3.3. Universal Theories. We will employ the techniques from [Coo05] to develop the
universal version of our theories. The idea is to introduce Skolem functions which are
provably total in the theories to eliminate the quantifiers. Note that the axioms B12 and
SE are not universal statements. As in [Coo05], B12 is replaced by B12′ and B12′′ below.
Consider the number function pd where pd(x) is the predecessor of x. Then B12′ and B12′′

are the defining axioms of pd :

B12′ pd(0) = 0 B12′′ x 6= 0 ⊃ pd(x) + 1 = x (3.6)

The left-to-right direction of SE can be expressed by an open formula simply by re-
placing ∀z < |X| by z < |X| ⊃:

SE′ : X = Y ⊃ [|X| = |Y | ∧ z < |X| ⊃ (X(z) ↔ Y (z))].

The right-to-left direction of SE has an implicit quantifier ∃z < |X|. We can get rid of this
by using the function fSE (which is fα,t in Definition 3.7 below, when α ≡ X(z) 6↔ Y (z),
and t = |X|):

fSE(X,Y) ≤ |X|, (3.7)

z < |X| ∧ (X(z) 6↔ Y (z)) ⊃ X(fSE(X,Y)) 6↔ Y (fSE(X,Y)), (3.8)

z < fSE(X,Y) ⊃ X(z) ↔ Y (z). (3.9)

Thus fSE(X,Y) is the smallest number < |X| which distinguishes X and Y , and |X| if no
such number exists. Let SE′′ be

SE′′ : (|X| = |Y | ∧ fSE(X,Y) = |X|) ⊃ X = Y.

12 PHUONG NGUYEN AND STEPHEN COOK

Definition 3.7 (L
FAC

0). L
FAC

0 is the smallest class that satisfies
a) L

FAC
0 includes L2

A ∪ {pd , fSE}.

b) For each open formula α(z, ~x, ~X) over L
FAC

0 and term t = t(~x, ~X) of L2
A there is a

string function Fα,t of L
FAC

0 with defining axiom

Fα,t(~x, ~X)(z) ↔ z < t ∧ α(z, ~x, ~X) (3.10)

c) For each open formula α(z, ~x, ~X) over L
FAC

0 and term t = t(~x, ~X) of L2
A there is a

number function fα,t with defining axioms

fα,t(~x, ~X) ≤ t(~x, ~X) (3.11)

fα,t(~x, ~X) < t(~x, ~X) ⊃ α(fα,t(~x, ~X), ~x, ~X)) (3.12)

z < fα,t(~x, ~X) ⊃ ¬α(z, ~x, ~X) (3.13)

Note that fα,t(~x, ~X) = min z < tα(z, ~x, ~X) and

∃z < tα(z, ~x, ~X) ↔ fα,t(~x, ~X) < t. (3.14)

We define the theory V
0

[Coo05] to be the universal theory over L
FAC

0 whose axioms
are the universal closures of the following list of open formulas: B1 - B11, B12′, B12′′,
L1, L2, SE′, SE′′, the defining axioms (3.7), (3.8), (3.9) for fSE, and the defining axiom
(3.10) for each function Fα,t and defining axioms (3.11), (3.12), (3.13) for each function fα,t.

Lemma 3.8. For every ΣB
0 formula ϕ there is an open formula α of L

FAC
0 such that V

0

proves (ϕ↔ α). For every open formula α of L
FAC

0 there is a ΣB
0 formula ϕ such that V

0

proves (ϕ↔ α).

Proof. The first sentence follows by structural induction on ΣB
0 formulas ϕ, using (3.14). To

prove the second sentence consider an enumeration of the new function symbols of L
FAC

0

in some order such that the defining axioms of each function in the list mention only earlier
functions in the list. Now show by induction on k that if α only involves functions occurring
in the first k positions on the list then α is equivalent to some ΣB

0 formula ϕ. ✷

Theorem 3.9. V
0

is a conservative extension of V0. The function symbols in L
FAC

0

represent precisely the functions in FAC0.

Proof. To show that V
0

extends V0 it suffices to show V
0

proves the ΣB
0 -COMP axioms

(3.1). From the first sentence of Lemma 3.8 and (3.10) we have that for every ΣB
0 formula

ϕ(z, ~x, ~X) there is a function F in L
FAC

0 such that

V
0
⊢ F (~x, ~X)(z) ↔ z < a ∧ ϕ(z, ~x, ~X)

from which (3.1) follows.
To see that the extension is conservative we can prove by induction that the functions in

L
FAC

0 are ΣB
1 -definable in V0. Here we enumerate L

FAC
0 so that each function is defined

from earlier functions in the enumeration, starting with pd , fSE and Row . The main step is
to show that the quantifier-free defining axiom for the (n+ 1)-st function can be translated
into a ΣB

1 (L2
A) defining axiom in V0. Finally it is clear from Definition 3.7 that the function

symbols in L
FAC

0 represent precisely the functions in FAC0. ✷

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 13

It is worth emphasizing that V
0

proves the ΣB
0 -IND and ΣB

0 -MIN schemes, since it

extends V0. This is true even though V
0

has purely universal axioms, and has no explicit
induction axiom or rule.

Below we prove the General Witnessing Theorem for universal theories (Theorem 3.20).
The Witnessing Theorems for our theories will follow from those of their corresponding
universal conservative extensions. It follows that the ∃gΣB

1 -definable functions in these
theories are in the appropriate complexity classes. For the other direction, it is clear that
the universal theories define all functions in the appropriate classes, and Theorem 3.15
below shows the same for the original theories.

3.4. The Theory VTC
0
. The function numones from Definition 2.4 has defining axioms

numones(0,X) = 0 (3.15)

X(z) ⊃ numones(z + 1,X) = numones(z,X) + 1 (3.16)

¬X(z) ⊃ numones(z + 1,X) = numones(z,X). (3.17)

Since

y = numones(x,X) ↔ ∃Y, ϕNUMONES (X,Y) ∧ Y (x, y) (3.18)

it is easy to see that numones is ΣB
1 -definable in VTC0.

The vocabulary L
FTC

0 includes numones and is intended to represent the functions in
FTC0.

Definition 3.10. L
FTC

0 is defined in the same way as L
FAC

0 (Definition 3.7) with (a),
(b) and (c) replaced by
(a′) L

FTC
0 includes L2

A ∪ {pd , fSE,numones},
(b ′), (c′) are the same as (b), (c), except that L

FAC
0 is replaced by L

FTC
0 .

The next lemma follows directly from the definitions.

Lemma 3.11. The functions in L
FTC

0 represent precisely FTC0. A relation is in TC0 if
and only if it is represented by some open L

FTC
0 formula.

Definition 3.12. VTC
0
is the universal theory over L

FTC
0 whose axioms are the universal

closures of the following list of open formulas: B1 - B11, B12′, B12′′, L1, L2, SE′, SE′′,
the defining axioms (3.7), (3.8), (3.9) for fSE, the defining axioms (3.15), (3.16), (3.17)
for numones, and the defining axioms (3.10) and (3.11), (3.12), (3.13) for the functions of
L

FTC
0 .

The first part of the analog of Lemma 3.8 is easily shown to hold in this context.

Lemma 3.13. For every ΣB
0 (numones) formula ϕ there is an open formula α of L

FTC
0

such that VTC
0

proves (ϕ↔ α).

From this we can show the following.

Lemma 3.14. VTC
0

extends VTC0.

Proof. Since VTC
0

extends V
0
, it suffices to show VTC

0
proves NUMONES . We show

this by pointing out that L
FTC

0 includes a string function FNUM such that VTC
0

proves

Y = FNUM (X) ⊃ ϕNUMONES(X,Y).

14 PHUONG NGUYEN AND STEPHEN COOK

We can define FNUM by the condition

FNUM (X)(z, y) ↔ z ≤ |X| ∧ y = numones(z,X).

We can turn this into a proper bit-graph definition (3.10) by using a ΣB
0 (numones) formula

and appealing to Lemma 3.13. ✷

Unfortunately the analog of the second sentence of Lemma 3.8 does not appear to
hold. In general an open formula of L

FTC
0 is not equivalent to a ΣB

0 (numones) formula
for the same reason that a TC0 circuit involving nested threshold gates cannot be made
polynomially equivalent to a circuit with unnested threshold gates. Hence we must work

harder to prove that VTC
0

is conservative over VTC0.

To prove conservativity, we note that VTC
0

can be obtained from VTC0(numones)
by successively adding ΣB

0 -definable functions and their definitions. This fact together with

Lemma 3.16 and the following theorem are used to show both that VTC
0

is conservative
over VTC0 and that all functions in FTC0 are Σ1

1-definable in VTC0(Corollary 3.18).

Theorem 3.15. Let T be an extension of V0 with a vocabulary L which includes the func-
tion Row, and suppose that T proves the defining equation (3.2) for Row. Suppose that T
satisfies
a) T proves the ΣB

0 (L)-COMP scheme, and
b) For each ΣB

0 (L) formula α there is a ΣB
1 formula β such that T ⊢ α↔ β.

Let L′ extend L by adding a function symbol that is ΣB
0 -definable from L (see Defini-

tion 2.2). Let T ′ be obtained from T by adding the function symbol and its defining axiom.
Then T ′ is conservative over T , and a) and b) hold with T replaced by T ′ and L replaced
by L′.

Proof. We will consider the case L′ = L ∪ {F}, where F is a string function ΣB
0 definable

from L, i.e., it has the defining axiom

F (~x, ~X)(u) ↔ u < t(~x, ~X) ∧ ϕ(u, ~x, ~X) (3.19)

for some L2
A term t and ΣB

0 (L) formula ϕ. The case in which L′ extends L by a number
function is handled similarly, except that number variables wi are used instead of the string
variables Wi in the argument below.

Since T proves the ΣB
0 (L)-COMP scheme, it follows that it ΣB

1 (L)-defines F . Therefore
T ′ is conservative over T .

a) We will show that T ′ proves a slightly modified version of the comprehension axiom

∃Z ≤ 〈~b〉∀~z < b, Z(~z) ↔ ψ(~z) (3.20)

for each ΣB
0 (L′) formula ψ, where ~z are all number free variables of ψ. It is straightforward

to obtain the usual comprehension axiom scheme from this. Also, since T extends V0, it
proves this version of ΣB

0 (L)-COMP. We will prove (3.20) by induction on the quantifier
depth of ψ.

For the base case, ψ is quantifier-free. Suppose that F (~s1, ~T1), . . . , F (~sk, ~Tk) are all

occurrences of F in ψ. Note that the terms ~si, ~Ti may contain ~z as well as F . Assume

further that ~s1, ~T1 do not contain F , and for 1 < i ≤ k, any occurrence of F in ~si, ~Ti must

be of the form F (~sj , ~Tj), for some j < i. We proceed to eliminate F from ψ by using its
defining axiom (3.19).

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 15

Let W1, ...,Wk be new string variables. Let ϕ1(~z, u) ≡ ϕ(u,~s1, ~T1), and for 2 ≤ i ≤ k,

ϕi(~z, u) is obtained from ϕ(u,~si, ~Ti) by replacing every maximal occurrence of any F (~sj, ~Tj),

for j < i, by W
[~z]
j . Let ti be obtained from t(~si, ~Ti) by the same procedure (for i ≤ k). Thus

F does not occur in any ϕi or ti. Since T proves ΣB
0 (L)-COMP, it proves the existence of

Wi such that

∀~z < b, W
[~z]
i (u) ↔ u < ti ∧ ϕi(~z, u) for 1 ≤ i ≤ k. (3.21)

Let ψ′(~z,W1, . . . ,Wk) be obtained from ψ(~z) by replacing each maximal occurrence of

F (~si, ~Ti) by W
[~z]
i , for 1 ≤ i ≤ k. Then, by ΣB

0 (L)-COMP and the fact that L contains
Row ,

T ⊢ ∃Z ≤ 〈~b〉∀~z < b, Z(~z) ↔ ψ′(~z,W1, . . . ,Wk).

Then such Z satisfies ∀~z < b, Z(~z) ↔ ψ(~z) when each Wi is defined by (3.21).
For the induction step, it suffices to consider the case ψ(~z) ≡ ∀x < tϕ′(~z, x). By the

induction hypothesis,

T ′ ⊢ ∃Z ′ ≤ 〈~b, t〉∀~z < b∀x < t, Z ′(~z, x) ↔ ϕ′(~z, x).

Now, by ΣB
0 -COMP,

V0 ⊢ ∃Z ≤ 〈~b〉∀~z < b, Z(~z) ↔ ∀x < tZ ′(~z, x).

b) Suppose that

α ≡ Q1z1 < r1 . . .Qnzn < rnψ(~z)

is a ΣB
0 (L′) formula, where ψ is quantifier-free. Let ψ′(~z,W1, . . . ,Wk) be obtained from

ψ(~z) as described above in the proof of a). Define

α′(W1, ...,Wk) ≡ Q1z1 < r1 . . .Qnzn < rnψ
′(~z,W1, ...,Wk).

For 1 ≤ i ≤ k let γi be the formula (3.21). Then, α is equivalent in T ′ to

∃W1 ≤ 〈~r, t1〉 . . . ∃Wk ≤ 〈~r, tk〉, (
∧

γi) ∧ α
′(W1, . . . ,Wk).

By property b) for T we may replace the part of the above formula following the string
quantifier prefix by a ΣB

1 formula, and thus we obtain the required ΣB
1 formula β in c) for

T ′. ✷

Let VTC0(Row ,numones) be VTC0 together with the functions Row and numones
and their defining axioms (3.2), (3.15), (3.16), (3.17). Since both Row and numones are
Σ1

1-definable in VTC0 it follows that VTC0(Row ,numones) is conservative over VTC0.

Lemma 3.16. Let T be the theory VTC0(Row ,numones). Then T satisfies hypotheses a)
and b) in Theorem 3.15.

Proof. First note that VTC0(Row) satisfies a) and b) by Lemma 3.1. We will prove the
present lemma by modifying the proof of Theorem 3.15 applied as if T ′ is
VTC0(Row ,numones) and T is VTC0(Row).

Proceeding as in the proof of a), we want to show that T ′ proves (3.20) where ψ(~z) is
a ΣB

0 (Row ,numones) formula. Arguing as before, it suffices to consider the base case of
the induction, where ψ is quantifier-free, and numones plays the role of F in the previous
argument. Thus numones(s1, T1), ...,numones(sk, Tk) are all occurrences of numones in ψ,
ordered as before. We proceed to eliminate the occurrences of numones from ψ using (3.18).

16 PHUONG NGUYEN AND STEPHEN COOK

Let w1, ..., wk be new number variables. Let s′1 ≡ s1, and for 2 ≤ i ≤ k let s′i be
obtained from si by replacing every maximal occurrence of numones(sj , Tj), for j < i, by
wj . Let T ′

i be obtained from Ti in the same way. (Thus numones does not occur in any
of the si’s and Ti’s.) Let Y1, ..., Yk be new string variables. By Claim 3.17 (below), for
1 ≤ i ≤ k, VTC0(Row) proves the existence of Yi such that

∀~z < b∀w1 ≤ s′1...∀wk ≤ s′k ϕNUMONES (T ′
i , Y

[~z, ~w]
i). (3.22)

If Y1, ..., Yk each satisfies (3.22), and w1, ..., wk each satisfies Y
[~z, ~w]
i (s′i, wi) then by (3.18)

each wi must have its intended value numones(si, Ti). Thus VTC0(Row ,numones) proves

∀~z < b∀~w ≤ ~s′, (
k

∧

i=1

(ϕNUMONES (T ′
i , Y

[~z, ~w]
i) ∧ Y

[~z, ~w]
i (s′i, wi)) ⊃

k
∧

i=1

wi = numones(si, Ti)

Let ψ′(~z,w1, ..., wk) be obtained from ψ(~z) by replacing each maximal occurrence of
numones(si, Ti) by wi, for 1 ≤ i ≤ k. Then by ΣB

0 (Row)-COMP we have V0(Row) proves

∃Z ≤ 〈~b〉∀~z < b, Z(~z) ↔ ∃w1 ≤ s′1...∃wk ≤ s′k, (
∧

Y
[~z, ~w]
i (s′i, wi)) ∧ ψ

′(~z,w1, . . . , wk).

Then such Z satisfies ∀~z < b, Z(~z) ↔ ψ(~z) when each Yi satisfies (3.22).
To prove b), suppose that

α ≡ Q1z1 < r1 . . .Qnzn < rnψ(~z)

is a ΣB
0 (Row ,numones) formula, where ψ is quantifier-free. Then, using the notation of the

proof of a) above, VTC0(Row ,numones) proves

α↔ ∃~Y ≤ ~t,

(∀~z < b∀~w ≤ ~s′
∧

ϕNUMONES (T ′
i , Y

[~z. ~w]
i)) ∧ ~Q~z < ~r∃~w ≤ ~s′, ψ′(~z, ~w) ∧

∧

Y
[~z, ~w]
i (s′i, wi)

for suitable terms ~t bounding ~Y . The RHS is a ΣB
1 (Row) formula which, by Lemma 3.1 is

equivalent to a ΣB
1 formula. ✷

To complete the proof of Lemma 3.16, we show that for 1 ≤ i ≤ k, VTC0 proves
the existence of Yi which satisfies (3.22). It suffices to show that VTC0(Row) proves the
existence of multiple “counting arrays” for polynomially many strings.

Claim 3.17. The theory VTC0(Row) proves the existence of Y such that

∀u < b ϕNUMONES (X [u], Y [u])

Proof. We construct (using ΣB
0 (Row)-COMP) multiple counting arrays Y [0], . . . , Y [b−1]

from the counting array Y ′ for a “big” string X ′, which is obtained from the strings
X [0], . . . ,X [b−1] simply by concatenating them. More precisely, let X ′ be defined by

X ′(u|X| + x) ↔ X [u](x), for x < |X|, u < b.

Thus X ′(u|X|), . . . ,X ′((u+ 1)|X| − 1) is a copy of X [u]. Therefore

numones(z,X [u]) = numones(u|X| + z,X ′) − numones(u|X|,X ′).

Let Y ′ be the counting array for X ′, i.e., Y ′(z, y) ⇔ numones(z,X ′) = y. Then

Y [u](z, y) ⇔ y = numones(u|X| + z,X ′) − numones(u|X|,X ′). Hence

Y [u](z, y) ↔ ∃y1, y2 ≤ |X ′|, Y ′(u|X|, y1) ∧ Y
′(u|X| + z, y2) ∧ y + y1 = y2

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 17

✷

Corollary 3.18. VTC
0

is a conservative extension of VTC0. Every function in L
FTC

0

is Σ1
1-definable in VTC0.

Proof. VTC0(Row,numones) is conservative over VTC0 because Row and numones are

ΣB
1 -definable in VTC0. According to Lemma 3.16 and Theorem 3.15, VTC

0
is the union

of a sequence of conservative extension of VTC0(Row,numones) satisfying a) and b). Thus

(by compactness) VTC
0

is conservative over VTC0. Each of these extensions is obtained by
adding a ΣB

0 (L)-definable function. The graph of each such function has a ΣB
0 (L) definition,

which by b) is provably equivalent to a ΣB
1 formula (in the language of VTC0). Hence this

function is ΣB
1 -definable in VTC

0
and hence in VTC0. ✷

The above corollary proves one direction of Theorem 3.6 for the case of VTC0. For
the other direction we need witnessing theorems, which are the subject of Subsection 3.5.

Recall that each string function F ∈ FTC0 has a defining axiom according to our
construction of L

FTC
0 (see Definition 3.10 and Lemma 3.11). In fact, there is a finite

sequence of FTC0 functions F1, . . . , Fn that are involved in defining F . Let L(F) denote
this sequence of functions (including F), and let L(F)-AX be the set of their defining
axioms. The following corollary is proved similarly to Corollary 3.18.

Corollary 3.19. For each F ∈ FTC0, VTC
0

is a conservative extension of the theory
VTC0 ∪ L(F)-AX.

3.5. Witnessing Theorems. In this subsection we will prove the remaining direction of
Theorem 3.6, namely that the Σ1

1-definable functions in each of our various theories are in
the appropriate complexity class.

We will use the proof system LK2 [Coo] which extends LK (see e.g. [Bus98a]) by the
introduction rules for string variable quantifiers. It is convenient to distinguish between
bound variables (which are denoted by x, y, z, . . . for number variables, and X,Y,Z, . . . for
the string variables) and free variables (which are denoted by a, b, c, . . . for number variables,
and α, β, γ, . . . for the string variables). Recall the definition of L

FAC
0 in Definition 3.7.

Theorem 3.20 (General Witnessing Theorem). Suppose that L extends L
FAC

0 and that it
satisfies conditions b, c in Definition 3.7 with L

FAC
0 replaced by L. Suppose that T is an

open theory extending V
0

and that T contains the defining axiom (3.10) for each function
Fα,t of L, and the defining axioms (3.11), (3.12) and (3.13) for each function fα,t of L.

Then for each theorem ∃~Zϕ(~a, ~α, ~Z) of T , where ϕ is a gΣB
1 formula, there are functions

~F of L such that

T ⊢ ∀~x∀ ~X ϕ(~x, ~X, ~F (~x, ~X)).

Proof. Note that when ϕ is an open formula, the Theorem is an application of Herbrand
Theorem. To prove the current Theorem for the general case we will follow the proof
theoretic approach and examine the LK2-T proofs (i.e., proofs in LK2 with non-logical
axioms from T). In particular, we will explicitly witness the string existential quantifiers in

every line of an anchored [Bus98a, Coo] (also known as a free-cut free) proof of ∃~Zϕ(~a, ~α, ~Z)
by functions from L. This is explained below. First, the following Claim will simplify our
arguments.

18 PHUONG NGUYEN AND STEPHEN COOK

Claim: For each ΣB
0 (L) formula φ(~x, ~X), there is an open formula ψ(~x, ~X) of L such

that

T ⊢ ψ(~x, ~X) ↔ φ(~x, ~X).

Note that on page 11 we have used fSE to eliminate an implicit quantifier ∃z < |X| in
the axiom SE. The proof of this Claim is similar and is omitted.

Now for simplicity, assume that we are to witness a single variable Z in ∃Zϕ(~x, ~X,Z),
where ϕ is a gΣB

1 formula in prenex form. Consider the most interesting case when ϕ is of
the form:

ϕ(~a, ~α,Z) ≡ ∀yn < b ∃Yn < b . . . ∀y1 < b ∃Y1 < b θ(~a, ~α, ~y, ~Y , Z) (3.23)

By the above Claim we can assume that θ is an open formula of L.
An anchored LK2-T proof π is a proof in the system LK2 with additional non-logical ax-

ioms the instances of axioms of T , and the cut formulas of π are restricted to these instances
only. By a standard argument, there exists an anchored LK2-T proof π of ∃Z ϕ(~a, ~α,Z).
Since T is an open theory, the cut formulas in π are quantifier-free. Thus quantified formu-
las in π can appear only in the succedents, and must be of one of the two forms below (we
will not mention the bound b on variables)

∃Ym ∀ym−1 . . . ∀y1 ∃Y1 θ(~a, ~α, cn, . . . , cm, ym−1, . . . , y1, Tn, . . . , Tm+1, Ym, . . . , Y1, T)
(3.24)

∀ym ∃Ym . . . ∀y1 ∃Y1 θ(~a, ~α, cn, . . . , cm+1, ym, . . . , y1, Tn, . . . , Tm+1, Ym, . . . , Y1, T)
(3.25)

(ci’s are free number variables, and T , Tj ’s are string terms which do not involve bound
variables yi’s and Yj ’s). Therefore the only quantifier introduction rules can be used in π
are the number ∀-right rule and the string ∃-right rule. Also, the ∧, ∨ and ¬ introduction
rules can only be applied to quantifier-free formulas.

We will prove by induction on the length of π that for each sequent S of π, there are
functions Fi’s of L (called the witnessing functions of S) so that the sequent S ′, which is
constructed from S and Fi’s as described shortly, is a theorem of T . Essentially Fi’s are
the witnessing functions that compute the existentially quantified string variables of S, and
S ′ is constructed from S by explicitly mentioning these witnessing functions. Suppose that
S = Λ −→ Γ (note that Λ contains only open formulas), then S ′ = Λ −→ Γ′, where Γ′

consists of the following (quantifier-free) formulas. (We drop mention of ~a, ~α in θ as well as
in Fi’s. Note that the functions Fi’s may contain free variables that are present in S. We

write ~c[i,k] for ci, . . . , ck, and similarly for ~b[i,k] and ~T[i,k].)

• All open formulas in Γ
• For each formula of the form (3.24) in Γ, the formula

θ(~c[n,m],~b[m−1,1], ~T[n,m+1], Fm(~c[n,m]), . . . , F1(~c[n,m],~b[m−1,1]), T) (3.26)

• For each formula of the form (3.25) in Γ, the formula

θ(~c[n,m+1],~b[m,1], ~T[n,m+1], Fm(~c[n,m+1], bm), . . . , F1(~c[n,m+1],~b[m,1]), T) (3.27)

(In (3.26) and (3.27), the free variables bi’s do not appear anywhere else in S ′.)
The base case holds trivially, since the axioms of T are open formulas. For the induction

step, we consider the inference rules that might be used in π.

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 19

Case I (String ∃-right): Suppose that S is the bottom sequent of the inference

S1

S
=

Λ −→ Γ, ψ(Tm+1)

Λ −→ Γ,∃Ym+1ψ(Ym+1)

where ψ is as (3.25). By the induction hypothesis, S ′
1 is a theorem of T . We obtain S ′ from

S ′
1 by taking Fm+1 to be the function defined by Tm+1.

Case II (Number ∀-right): Note that this rule can be applied to only formulas of the
form (3.24). Also in this case, the free variable cm must not appear anywhere else in S.
In the witnessing functions that occur in (3.26), cm is replaced by bm. No new function is
required.

Case III (Cut): Note that the cut formula is an open formula. Suppose that S is
derived from S1 and S2 using the cut rule:

S1 S2

S
=

Λ −→ Γ, ψ Λ, ψ −→ Γ

Λ −→ Γ
where ψ is an open formula of L. The witnessing functions of S is defined from the witnessing
functions of S1 and S2 as follows:

Fi(z) ↔ (¬ψ ∧ F 1
i (z)) ∨ (ψ ∧ F 2

i (z))

Case IV (Weakening rule): If S is obtained from S1 by the weakening rule, then S ′

can be obtained from S ′
1 by the same rule. When the additional formula in S is a gΣB

1

formula (of the form (3.24) or (3.25)), the witnessing functions can be the constant string
function 0.

Case V (Contraction rule): Suppose that S is derived from S1 using the contraction
rule. Consider the interesting case where the formula removed from S1 is a gΣB

1 formula.

S1

S
=

Λ −→ Γ, ψ(~a, ~α,~c), ψ(~a, ~α,~c)

Λ −→ Γ, ψ(~a, ~α,~c)

(ψ(~a, ~α,~c) is of the form (3.24) or (3.25)). Note that the two occurrences of ψ in S1 may
have different collections of witnessing functions in S ′

1. However, if ∀~zψ(~a, ~α, ~z) is to be
true, then at least one of the two collections is correct. The witnessing functions in S ′ are
defined using this information.

Formally, consider the case of (3.24), and assume that corresponding to the two occur-
rences of ψ(~a, ~α,~c) in S1, we have the following formulas in S ′

1 (see (3.26)):

θ1(~c,~b) ≡ θ(~c,~b, ~T , F 1
m(~c), . . . , F 1

1 (~c,~b))

θ2(~c,~b) ≡ θ(~c,~b, ~T , F 2
m(~c), . . . , F 2

1 (~c,~b))

In general, the witnessing functions of S ′ are

Fi(~c,~b)(x) ↔ (∀~z ∀~y θ1(~z, ~y) ∧ F 1
i (~c,~b)(x)) ∨ (¬∀~z ∀~y θ1(~z, ~y) ∧ F 2

i (~c,~b)(x))

Case VI (Other rules): When ϕ is in prenex form (3.23), the introduction rules for
∧,∨,¬ can be applied to only quantifier-free formulas. No new function is required. In
general, handling these rules is more complicated, but is straightforward. Similarly, if S is
obtained from S1 by the exchange rule, then S ′ can be derived from S ′

1 by the same rule. ✷

20 PHUONG NGUYEN AND STEPHEN COOK

Corollary 3.21 (Witnessing Theorems for VTC0). For each theorem ∃~Zϕ(~x, ~X, ~Z) of VTC0

where ϕ is gΣB
1 , there are string functions ~F ∈ FTC0, such that

VTC0 ∪ L(~F)-AX ⊢ ϕ(~x, ~X, ~F (~x, ~X)).

Proof. Suppose that VTC0 ⊢ ∃~Zϕ(~x, ~X, ~Z), so VTC
0
⊢ ∃~Zϕ(~x, ~X, ~Z). By Theorem 3.20,

there are string functions ~F ∈ L
FTC

0 such that VTC
0
⊢ ϕ(~x, ~X, ~F (~x, ~X)). The conclusion

follows from Corollary 3.19. ✷

Note that similar witnessing theorems hold for the universal theory VTC
0
.

Corollary 3.22 (The remaining direction of Theorem 3.6). The Σ1
1-definable function in

VTC0 are in FTC0.

3.6. Theories for Other Subclasses of P. In this subsection, we will apply Theorem 3.15
and Theorem 3.20 to develop finitely axiomatizable theories for other uniform subclasses of
P in the same style as VTC0. Let F be a polynomial time string function and let C be
the class of two-sorted relations which are AC0-reducible to F . Note that the associated
function class FC is usually defined using the graphs (for number functions) and bit graphs
(for string functions) (page 6). But it can be equivalently defined as the class of functions
which are AC0-reducible to F . In the case of TC0, F is essentially the string function
computing the “counting array”, whose graph is given by NUMONES .

We add to V0 a ΣB
1 axiom AXIOM F which formalizes the polytime algorithm that

computes F . (Thus AXIOM F is a generalization of NUMONES .) We will show that the
resulting theory T characterizes C. The proof is almost identical to the proof in the case of
VTC0: we show that the universal theory T (obtained from L2

A(Row , F) in the same way

that VTC
0

is obtained from L2
A(Row ,numones)) characterizes the same class. The main

task is to prove the analogue of Lemma 3.16, i.e., T (Row , F) satisfies hypotheses a) and b)
in Theorem 3.15. Our choice of the axiom AXIOM F will make this step readily obtainable.
3

The universal defining axiom for F is obtained from a modified version of Cobham’s
recursion theoretic characterization of the polytime functions. Here we use the fact that
each polytime function can be obtained from AC0 functions by composition and at most
one application of the bounded recursion operation. In each complexity class of interest
it turns out that a suitable function F complete for the class can be defined by such a
recursion of the form

F (0,X) = (Init(X))<t(0,|X|)

F (x+ 1,X) = (Next(x,X,F (x,X)))<t(x+1,|X|)

where Init(X) and Next(x,X, Y) are AC0 functions, t(x, y) is a polynomial, and X<y is
the initial segment of X of length y.

We will first define the universal theory T in the same manner that we have defined

VTC
0
. Here we will not introduce the new functions Init ,Next and X<y but will use their

3Note the fact that Σ1

1 theorems of T can be witnessed by functions of FC follows easily from Herbrand’s
Theorem. The General Witnessing Theorem offers more than we need here. It is necessary in Section 4
where we show that VTC

0 is RSUV isomorphic to ∆b

1-CR.

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 21

ΣB
0 definitions instead. In other words, F can be defined as follows:

F (0,X)(z) ↔ z < t(0, |X|) ∧ ϕInit (z,X) (3.28)

F (x+ 1,X)(z) ↔ z < t(x+ 1, |X|) ∧ ϕNext(z, x,X,F (x,X)) (3.29)

where ϕInit and ϕNext are the ΣB
0 bit definitions of Init and Next respectively. (Note that

in V
0
, ϕInit and ϕNext are equivalent to open formulas of L

FAC
0.)

The language LFC of functions in FC is defined in the same way as L
FTC

0 (Defini-

tion 3.10), except for numones is replaced by F . The theory T is defined similarly to

VTC
0

(Definition 3.12), with the defining axioms (3.28) and (3.29) of F replacing the
defining axioms of numones . The following Corollary follows from Theorem 3.20.

Corollary 3.23. For each theorem ∃~Zϕ(~a, ~α, ~Z) of T , where ϕ is a gΣB
1 formula, there

are functions ~F of LFC such that

T ⊢ ∀~x∀ ~X ϕ(~x, ~X, ~F (~x, ~X)).

On the other hand, T proves the ΣB
0 (LFC)-COMP scheme, and thus can ΣB

1 (LFC)-
define all functions of LFC.

Now we will define T . Our choice for the ΣB
1 defining axiom of F comes from the above

definition of F given in (3.28), (3.29). In order to prove Claim 3.26 (see the discussion below)
we will not compute F for a single value of X, but rather multiple (i.e., polynomially many)
values of X. Let ϕF (a, b,X, Y) be the formula stating that Y encodes simultaneously the

b recursive computations of F (a,X [0]), . . . , F (a,X [b−1]) using the definition of F . More
precisely, let ϕF (a, b,X, Y) be

∀y < b, [∀z < aY [y,0](z) ↔ ϕInit (z,X
[y]) ∧

∀x < a∀z < a, Y [y,x+1](z) ↔ z < t(x+ 1, |X [y]|) ∧ ϕNext (z, x,X
[y], Y [y,x])]

(3.30)

Definition 3.24. Let AXIOM F be ∀a∀b∀X∃Y ≤ 〈b, t(a, |X|)〉ϕF (a, b,X, Y). The theory
T is V0 extended by the axiom AXIOM F .

Since V0 is finitely axiomatizable, so is T .

Lemma 3.25. T is a conservative extension of T and satisfies the hypotheses a), b) of
Theorem 3.15.

Proof. The proof is the same as the first part of the proof of Corollary 3.18. First, let
T (Row , F) be T together with the functions Row and F and their defining axioms (3.2),
(3.28), (3.29). Note that T (Row , F) is conservative over T , because both Row and F are
ΣB

1 -definable in T . (The ΣB
1 -definability of F follows by AXIOM F .) Assume that

Claim 3.26. T (Row , F) satisfies hypotheses a) and b) in Theorem 3.15.

Then T is obtained from T (Row , F) by a series of conservative extensions satisfying
hypotheses a) and b) of Theorem 3.15.

It remains to prove the Claim. We proceed as in the proof of Theorem 3.15. In fact,
it suffices to show that T (Row , F) proves the existence of W such that for all ~z < b, W [~z]

is the intended value of F (s, T) where s, T are terms of L2
A(Row) which may contain ~z.

(Compare to (3.21).) Using AXIOM F , such W can be constructed using ΣB
0 -COMP. ✷

22 PHUONG NGUYEN AND STEPHEN COOK

Corollary 3.27. The Σ1
1-definable (and the ΣB

1 -definable) functions in T are precisely
those in LFC.

Proof. Each function of LFC has a ΣB
0 (LFC) definition, which is equivalent in T to a ΣB

1

formula, by Lemma 3.25. It is therefore ΣB
1 definable in T .

On the other hand, Σ1
1 theorems of T (and hence of T) are witnessed by FC functions,

as shown in Corollary 3.23. ✷

Note that the axiom NUMONES is a special case of AXIOM F . It is “nicer” than
AXIOM F in the sense that it encodes only a single computation of numones . In fact,
Claim 3.17 shows that VTC0(Row) proves AXIOM numones . We need this in order to show
that VTC0 satisfies the hypotheses a) and b) of Theorem 3.15 (Lemma 3.16). However,
the proof of this Claim is rather ad hoc.

In general, our choice of AXIOM F guarantees that T (Row , F) satisfies the hypotheses
a) and b) of Theorem 3.15 (as shown in Claim 3.26). Thus to go further and obtain “nicer”
axiom than AXIOM F (in the style of NUMONES), it remains to prove the analogue of
Claim 3.17. These proofs may differ for different chosen functions F . Some examples are
given below.

3.6.1. Theories for AC0(m) and ACC. Theories for the complexity classes AC0(m) and
ACC are defined in the same way that VTC0 is defined for the class TC0. For m ≥ 2,
ϕMODm

(X,Y) is the formula stating that Y is the “counting modulo m” array for X:

ϕMODm
(X,Y) ≡[∀z ≤ |X|∃!y < mY (z, y)] ∧ Y (0, 0) ∧ ∀z < |X|∀y < m,

Y (z, y) ⊃ [(X(z) ⊃ Y (z + 1, y + 1 mod m)) ∧ (¬X(z) ⊃ Y (z + 1, y))].
(3.31)

Here, we identify the natural number m with the corresponding numeral m. We take ϕ(y
mod m) as an abbreviation for

∃r < m,∃q ≤ y, y = qm+ r ∧ ϕ(r). (3.32)

Thus if ϕ(y) is ΣB
0 , then ϕ(y mod m) is also ΣB

0 .

Definition 3.28. For each m ≥ 2, let MODm ≡ ∀X∃Y ϕMODm
(X,Y). Then

V0(m) = V0 ∪ {MODm}

VACC = V0 ∪ {MODm | m ≥ 2}.

Note that the string Y in MODm can be bounded by 〈|X|,m〉.
The following Theorem can be proved in the same way as Theorem 3.6:

Theorem 3.29. The Σ1
1-definable (and the ΣB

1 -definable) functions in V0(m), and VACC

are precisely those in FAC0(m), and FACC, respectively.

Corollary 3.30. If VACC is finitely axiomatizable, then ACC = AC0(m), for some m.

Proof. If VACC is finitely axiomatizable, then by compactness, it is equal to

V0 ∪ {MOD i | 2 ≤ i ≤ m′},

for some m′. Let m = lcm{2, . . . ,m′}, then

V0(m) ⊢ {MOD i | 2 ≤ i ≤ m′}.

Therefore VACC = V0(m), and the conclusion follows from the theorem. ✷

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 23

Corollary 3.31. If VACC ⊢ NUMONES, then TC0 = AC0(m), for some m.

3.6.2. Theories for NCk and NC. A language is in nonuniform NC1 if it is computable by
a polynomial-size log-depth family of Boolean circuits. Here we use uniform NC1, which
means Alogtime, the class of languages computable by alternating Turing machines in
log time. Buss [Bus87] shows that the Boolean formula value problem is complete for
Alogtime. In general, for each k ∈ N uniform NCk can be considered as the class of
relations which are AC0-reducible to the circuit value problem, where the depth of the
circuit is bounded by (log n)k. The function class FNCk consists of functions AC0-reducible
to the above problem, or equivalently the functions computable by uniform polynomial-size
(log n)k-depth constant-fanins families of Boolean circuits. Also,

NC =
⋃

k≥1

NCk, FNC =
⋃

k≥1

FNCk

The two-sorted theory VNC1 introduced in [Coo05, CM05] is originated from Arai’s
single-sorted theory AID [Ara00]. It is the theory V0 extended by the axiom scheme
ΣB

0 -TreeRec, which essentially exhibits the evaluations of log-depth Boolean circuits given
their specification and inputs.

Informally, consider a log-depth Boolean circuit (i.e., a formula) whose gates can be
numbered such that the input gates are numbered a, . . . , 2a − 1, output gate numbered 1
and other internal gates are numbered 2, . . . , a − 1. Furthermore, inputs to gate i (where
i < a) are from gates numbered 2i and 2i + 1. Let the gate i be given by a ΣB

0 formula
φ(i)[p, q] which might have other parameters, i.e., the intended meaning of φ(i)[p, q] is the
output of the gate numbered i when its two inputs are p, q. The ΣB

0 -TreeRec for φ explicitly
evaluates all the gates of such circuit when it is given inputs Z(0), . . . Z(a): for i < a, Z(i)
is the value output by gate numbered i. Formally, it is defined as follows:

∃Z ≤ 2a∀i < a[Z(i+ a) ↔ ψ(i) ∧ 0 < i ⊃ (Z(i) ↔ φ(i)[Z(2i), Z(2i + 1)]]

It has been shown [Coo05, CM05] that the Σ1
1-definable functions in VNC1 are precisely

the functions in FNC1, the function class associated with NC1.
It is easy to show that VNC1 can be axiomatized by V0 and the following single

instance of the ΣB
0 -TreeRec axioms. This instance is obtained by replacing φ(i)[Z(2i), Z(2i+

1)] by the formula Select(W (i), Z(2i), Z(2i + 1)), where Select(p, q, r) stands for

(p ∧ (q ∧ r)) ∨ (¬p ∧ (q ∨ r)) (3.33)

Loosely speaking, we think of W as specifying the circuit: If W (i) holds then the i-th gate
is a ∧-gate, otherwise it is a ∨-gate.

We will now define the theories characterizing NCk (note that for k = 1 we obtain
the same theory as VNC1, but we will not prove this fact here). For each k, the complete
problem for NCk is given by a circuit of depth O((log n)k) and its inputs. (The function
log n is definable in I∆0, e.g., see [Pet93].) Consider a circuit of depth (log a)k, where each
layer contains at most (a + 1) gates. The layers are indexed according to their depths: 0
(input gates), . . . , (log a)k (output gates), with the outputs of gates on layer d connect to
the inputs of gates on layer d+ 1. On each layer, the gates are numbered 0, . . . , a (i.e., any
gate is indexed by its layer and its position on the layer).

Such circuit can be described by listing the gates together with their layers index and
their inputs gates positions (on the layer below it). Thus we have a string variable Y which

specifies the wires of the circuit: for d < logk a and x, y, z ≤ a, Y [d](x, y, z) holds if and

24 PHUONG NGUYEN AND STEPHEN COOK

only if inputs to gate z on layer d+ 1 are from gates x, y on layer d. We also have a string
variable W that specifies the type of each gate, i.e., if W [d](z) holds then the z-th gate
on layer d is an ∧-gate, otherwise it is an ∨-gate. The formula ϕ

NC
k(a,X, Y,W,Z) below

states that Z evaluates all the gates of the circuit specified by Y and W when it is given
inputs X(0), . . . ,X(a). In particular, the output of gate z on layer d is Z [d](z). The formula
ϕ

NC
k(a,X, Y,W,Z) is defined to be

∀d < logk a∀z ≤ a∃!x, y ≤ aY [d](x, y, z) ⊃

(∀z ≤ aZ [0](z) ↔ X(z)) ∧ ∀d < logk a∀x, y, z ≤ a,

Y [d](x, y, z) ⊃ (Z [d+1](z) ↔ Select(W [d+1](z), Z [d](x), Z [d](y)))

where Select is defined in (3.33).

Definition 3.32. Let A
NC

k denote ∃Zϕ
NC

k(a,X, Y,W,Z). The theory VNCk is V0 ex-
tended by the axiom A

NC
k . The theory VNC is

⋃

k≥1

VNCk

Again, note that in A
NC

k , Z can be bounded, therefore VNCk is equivalent to a theory
with bounded axioms. Proving the first sentence in Theorem 3.33 below is somewhat easier
than Claim 3.17.

Theorem 3.33. For each k ≥ 1,

VNCk ⊢ ∀X∀Y ∀W∃Z∀w < bϕ
NC

k(a,X [w], Y [w],W [w], Z [w]).

A function is in FNCk iff it is Σ1
1-definable in VNCk. A function is in FNC iff it is

Σ1
1-definable in VNC.

3.6.3. Theories for NL, SL, L and P. NL is the class of problems solvable in a nonde-
terministic Turing machine in space O(log n). We consider NL as the class of two-sorted
relations AC0-reducible to the Graph Accessibility Problem GAP (also known as Path, or
Reachability problem). This is the problem of deciding whether there is a path from s to t
in a given (directed) graph G, where s, t are the 2 designated vertices of G.

We can obtain a theory that characterizes NL by formalizing the following polytime
algorithm that solves GAP. For each distance k = 0, 1, . . . , n− 1 (where n is the number of
vertices in the graph), simply list all vertices that can be reached from s by paths of length
at most k. This enables us to check if t is reachable from s by paths of length at most n,
i.e., if there is a path from s to t in G.

Using GAP, the theory VNL is developed in the same style of VTC0. The ΣB
1 axiom

that formalizes the algorithm solving this problem is called LC (for Logspace Computation).
In the following definition, E codes a directed graph, and Z is intended to code the above
polytime algorithm. Here we identify the source s with 0. Let ϕLC be the following formula

ϕLC (a,E,Z) ≡ Z(0, 0) ∧ ∀i < a¬Z(0, i) ∧

∀k, i < a, Z(k + 1, i) ↔ [Z(k, i) ∨ ∃j < a, E(j, i) ∧ Z(k, j)].
(3.34)

Note that in (3.34), Z(k, i) holds iff there is a path from 0 to i of length at most k.

Definition 3.34 (VNL). Let LC denote ∀a∀E∃Z ≤ (1 + 〈a, a〉)ϕLC (a,E,Z), Then VNL

is the theory V0 extended by the axiom LC .

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 25

It can be shown directly that the class of ΣB
1 -definable functions in VNL is precisely

FNL, the class of functions whose bit graphs are in NL. Here we can show this using
Corollary 3.27. It amounts to showing that VNL proves the axiom AXIOM FGAP

(where
FGAP (a,E) is essentially the function whose graph is ϕLC (e,E,Z)), i.e.,

VNL ⊢ ∀a∀b∀E∃Z ≤ 〈b, a, a〉∀y < bϕFGAP
(a,E[y], Z [y]).

This is analogous to Claim 3.17. The proof idea is similar; details are omitted.
In the same spirit, a series of theories for L (class of problems solvable by a Turing

machine in space O(log n)), SL (class of problems solvable by a symmetric nondeterministic
Turing machine in space O(log n)), and P can be obtained using similar complete problems.
For L the complete problem is GAP restricted to directed graphs whose vertices have out
degree at most 1; for SL the complete problem is GAP restricted to undirected graphs; and
for P the complete problem is the circuit value problem.

Remark It is not a surprise that the theories obtained this way are “minimal”, and thus
coincide with a number of existing “minimal” theories that characterize the corresponding
classes. In fact, it can be shown that in case of L, the theory obtained is actually Zambella’s
theory ΣB

0 -Rec [Zam97], and in case of P, the theory obtained is the same as TV0 [Coo05]
(and thus the same as V1-HORN [CK03]). Thus, these results explicitly exhibit the finite
axiomatizability of ΣB

0 -Rec and TV0. In the case of NL, it has been shown [Kol04] that
VNL is the same as V1-KROM (see also [CK04]). In the next section we will show that
VTC0 is RSUV isomorphic to Johannsen and Pollett’s “minimal” theory ∆b

1-CR.

4. RSUV Isomorphism Between VTC0
And ∆b

1-CR

4.1. The Theory ∆b
1-CR. The theory ∆b

1-CR [JP00] is a single-sorted theory whose Σb
1

definable functions are precisely the (single-sorted) TC0 functions. It is claimed to be a
“minimal” theory for TC0. We will show that it is RSUV isomorphic to our theory VTC0.
First, we recall the definition of ∆b

1-CR.
The underlying vocabulary of ∆b

1-CR is

L∆b

1
-CR

= [0, S,+, ·, ⌊1
2x⌋, |x|, x#y,−

· ,MSP ;≤]

(here S is the successor function, and MSP stands for most significant bits, MSP(x, i) =
⌊x/2i⌋). The theory ∆b

1-CR is axiomatized by the defining axioms for symbols of L∆b

1
-CR

,

the axiom scheme Open-LIND , and the ∆b
1 bit-comprehension rule (below).

The defining axioms of the symbols of L∆b

1
-CR

are straightforward. The axiom scheme

Open-LIND can be seen as a scheme of induction on “small” numbers (i.e., |z|) for
quantifier-free formulas. Formally, Open-LIND is the set of

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(Sx)] ⊃ ∀zϕ(|z|), (4.1)

where ϕ is an open formula. The ∆b
1 bit-comprehension rule is defined as follows. First,

given a formula ϕ(i) (which might have other free variables), the comprehension axiom for
ϕ(i), denoted by COMPϕ(i)(a), is the formula

∃x < 2|a|∀i < |a| [BIT (i, x) ↔ ϕ(i)].

Here BIT (i, x) holds if and only if the ith bit in the binary representation of x is 1 (the
bits of x are counted from 0 for the lowest order bit). It is defined by

BIT (i, x) ≡ mod2 (MSP(x, i)), where mod2 (x) = x−· 2 · ⌊1
2x⌋.

26 PHUONG NGUYEN AND STEPHEN COOK

Then, the ∆b
1 bit-comprehension rule is the following inference rule:

ϕ(i) ↔ ψ(i)

COMPϕ(i)(t)

where ϕ is a Σb
1 formula, ψ is a Πb

1 formula, and t is a term.
Note that formally, ∆b

1-CR is defined inductively using the above rule. More precisely,
∆b

1-CR is the smallest theory that contains the axioms described above, and is closed under
the ∆b

1 bit-comprehension rule, i.e., if ϕ(i) ↔ ψ(i) is in ∆b
1-CR for some Σb

1 formula ϕ and
Πb

1 formula ψ, then COMPϕ(i)(t) is also in ∆b
1-CR, for any term t. Let ∆b

1-CRi be the

sub-theory of ∆b
1-CR where proving each theorem of ∆b

1-CRi requires at most i nested
applications of the ∆b

1 bit-comprehension rule. Then

∆b
1-CR =

⋃

i≥0

∆b
1-CRi.

An open question [JP00] is whether ∆b
1-CR = ∆b

1-CRi for some constant i. Since VTC0

is finitely axiomatizable, the RSUV isomorphism between ∆b
1-CR and VTC0 proved below

shows that ∆b
1-CR is also finitely axiomatizable. It follows that ∆b

1-CR = ∆b
1-CRi for

some constant i.
Note that there is no side formula in the ∆b

1 bit comprehension rule, and thus it is
apparently weaker than the ∆b

1 bit-comprehension axiom scheme:

∀i(ϕ(i) ↔ ψ(i)) ⊃ COMPϕ(i)(t) (4.2)

where ϕ is a Σb
1 formula and ψ is a Πb

1 formula. In fact, [CT04] shows that ∆b
1-CR does not

prove the above comprehension axiom scheme unless RSA can be cracked using probabilistic
polynomial time algorithms.

Remark: We can obtain a single-sorted theory which is equivalent to ∆b
1-CR as fol-

lows. Let T be the theory over the vocabulary L∆b

1
-CR

∪ {BIT} which is axiomatized

by the defining axioms for symbols in L∆b

1
-CR

∪ {BIT} together with Σb
0-COMP, i.e.,

COMPϕ(i)(a) for Σb
0 formulas ϕ(i). Then the arguments given in Subections 4.2, 4.3 below

also show that T is RSUV isomorphic to VTC0. It follows that T is a conservative exten-
sion of ∆b

1-CR. (A direct proof of this can be obtained by (i) noticing that BIT is definable
in ∆b

1-CR, and that ∆b
1-CR proves Σb

0-COMP using the ∆b
1 bit-comprehension rule; and

(ii) showing that the ∆b
1 bit-comprehension rule is provable in T using the same arguments

as in Subsection 4.4 below, and that Open-LIND is provable in T using Σb
0-COMP and

the axioms for |x| and BIT .)

4.2. RSUV Isomorphism. We will prove that ∆b
1-CR is RSUV isomorphic [Jan90a,

Raz93, Tak93] to our theory VTC0. A major part of this proof is in defining multipli-
cation for second sort objects and proving the commutative and distributive laws. Here we
identify each bounded subset X with the number

X(0)20 + . . . X(n− 1)2n−1,

where n = |X|. Then the multiplication functionX ·Y is defined as the product of these “big
numbers” corresponding to X and Y . Note that it is quite straightforward to formalize the
conventional (polynomial time) algorithm for multiplication in theories that characterize
P, such as V1 [Coo]. However this is less straightforward in the case of VTC0. Indeed,

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 27

the conventional algorithm might not be in TC0. Note that the multiplication function
is already complete for TC0. Here we define this function in VTC0 using the fact that
computing Y from X in (3.3) (or equivalently the function numones) is also complete for
TC0. In particular, we define multiplication in VTC0 by formalizing a reduction from
numones . We use the same method as in [BPR00], where it is shown that the properties of
multiplication have small TC0-Frege proofs.

Note that reasoning in VTC
0

is more uniform than in TC0-Frege. For example, in

VTC
0

the “input bits” are already ordered (i.e., the bits in the string X(n − 1) . . . X(0)
are numbered), while this is not the case in TC0-Frege. Consequently, the definition of
the sum of n strings in TC0-Frege does not depend on the order of the strings (i.e., it is
symmetric in terms of the arguments). In VTC0 proving this independence is a nontrivial

task. It is true, although nontrivial, that each ΣB
0 (L

FTC
0) theorem of VTC

0
translates into

a family of propositional tautologies having polynomial-size TC0-Frege proofs. It follows
that the proof system bounded depth TC0-Frege can define string multiplication and prove
its properties using polynomial size proofs. These bounded depth TC0-Frege proofs can
be seen as the uniform versions of the TC0-Frege proofs in [BPR00].

4.2.1. Outline of the RSUV Isomorphism. We establish the RSUV isomorphism between
∆b

1-CR and VTC0 by (a) constructing from each model M of ∆b
1-CR a model N of VTC0

whose second sort universe is the universe M of M, and whose first sort universe is the
subset log(M) = {|u| | u ∈M}; and (b) constructing from each model N of VTC0 a model
M of ∆b

1-CR whose universe is the second sort universe of N . These constructions have
the property that if we follow (a) to get a model N of VTC0 from the model M of ∆b

1-CR,
and then follow (b) to get a model M′ of ∆b

1-CR from N , then M′ and M are isomorphic.
Similarly, if we start with a model N of VTC0 and follow (b) to get a model M of ∆b

1-CR,
then follow (a) to get N ′ from M, then N and N ′ are isomorphic.

Corresponding to (a) there is a syntactic translation sending a sentence ϕ in the lan-

guage of VTC0 to an equivalent sentence ϕ♭ in the language of ∆b
1-CR and corresponding

to (b) there is a syntactic translation sending a sentence ψ of ∆b
1-CR to an equivalent

sentence ψ♯ in the language of VTC
0
. (The ♭ and ♯ notation is from [Raz93].) Recall from

Corollary 3.18 that VTC
0

is a conservative extension of VTC0. These translations can be
pictured as follows:

∆b
1-CR ≃ VTC0

M ⇀ N
ϕ♭ ↼ ϕ
M′ ↼ N ′

ψ ⇀ ψ♯

The construction in (a) is straightforward. Let M be a model of ∆b
1-CR with universe M ,

we construct a model N of VTC0 as follows. To get the second sort universe of N , we
simply identify each number a ∈M with the subset X (bounded by |a|) of those i such that
the ith bit in the binary representation of a is 1. The symbols of VTC0 are interpreted
accordingly, i.e, 0, 1,+, ·,=1 and ≤ are interpreted as in M (restricted to log(M)), and

|X| = |a|, and i ∈ X ⇔ BIT (i, a) = 1 if X = {i | BIT (i, a) = 1},

X =2 Y if they are mapped from the same number a ∈M .

28 PHUONG NGUYEN AND STEPHEN COOK

It remains to show that the axioms of VTC0 hold in N . We use the fact that each ΣB
0

formula ϕ of VTC0 translates to the formula ϕ♭ which is provably equivalent in ∆b
1-CR

to a Σb
0 formula. Since M is a model of ∆b

1-CR, it is easy to check that the axioms in
2-BASIC are satisfied in N . The axiom scheme ΣB

0 -COMP are satisfied in N since M
satisfies the ∆b

1 bit-comprehension rule. Now we show that NUMONES holds in N . Let
a ∈ M , and an−1 . . . a0 be the binary representation of a. We need to get the “counting
array” for the set

X = {i | BIT (i, a) = 1}.

Let a′ ∈ M whose binary representation is an−10 . . . 0an−20 . . . 0a0, where every block of
0’s has length (1 + |n|). Let b ∈ M with the binary representation 10 . . . 010 . . . 01 (n 1’s,
and each block of 0’s has length 1 + |n|). Note that a′ and b exist in M by the ∆b

1 bit-
comprehension rule. It is straightforward that the counting array for X can be extracted
from the product a′ · b.

The construction in (b) is done by reversing the above construction. Suppose that N

is a model of VTC0. We can view N as a model of VTC
0
, where the symbols of L

FTC
0

are interpreted according to their defining axioms given in Definition 3.10. We construct a
model M for ∆b

1-CR by interpreting each second sort object X of N as the number

X(0)20 + . . .+X(n − 1)2n−1, (4.3)

(i.e., the number whose binary representation is X(n − 1) . . . X(0)) where n = |X|. All
symbols of L∆b

1
-CR

except for · are interpreted in a straightforward manner. For example,

if a is the number in M with the value from (4.3), for some second sort object X ∈ N ,
then |a| = |X| (more precisely, there is a second sort object Z ∈ N such that in N ,
|X| = Z(0)20 + . . .+Z(m− 1)2m−1, where m = |Z|, and |a| is the number associated with
Z). The axioms of ∆b

1-CR describing these symbols hold in M because their translations

(except those involving ·) are easy theorems of VTC
0
. (We will present a proof of the

associativity of string addition in Appendix A.) It remains to (i) interpret ·, and prove its
properties in M, and (ii) show that other axioms of ∆b

1-CR are satisfied in M. For (ii),

the axiom scheme Open-LIND holds in M, since Open-IND holds in VTC
0
. Therefore

we will present only the proof that the ∆b
1 bit-comprehension rule is satisfied in M.

4.3. Interpreting Multiplication for the Second Sort Objects in VTC
0
. Now we

need to define the “string multiplication” function X ·2Y (we will simply write X ·Y), which
is the binary representation of the product of the two numbers corresponding to X and Y
by the mapping (4.3). It is known that the complexity of computing X ·Y is AC0 complete
for TC0 [CSV84]. Thus our task is to formalize in VTC0 a TC0 algorithm computing this
product. This can be reduced to computing the sum of n strings. The “school algorithm”
is to write down the strings and sum up the bits in the same columns, starting from the
lowest order bits, with carries from the previous columns. However, it might not be possible

to formalize this algorithm in VTC
0
, and we will formalize the algorithm from [BPR00],

where it is shown that multiplication can be defined in TC0-Frege.

4.3.1. Adding n Strings. Suppose that we are to add n strings, each of length ≤ m (written
as a table of n rows and m columns). The methods from [BPR00] is to divide the m columns
into 2k blocks, each consisting of ℓ columns. (Thus each block has n substrings of length
ℓ.) The numbers k and ℓ are chosen so that the sums of the substrings in the 2k blocks can

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 29

be computed concurrently. It remains to use these sub-sums to obtain the desired sum; a
further requirement for k and ℓ is that this last step can be carried out efficiently.

More precisely let ℓ = 1 + ⌈log n⌉ and k = ⌈m/2ℓ⌉. Notice that the sum of the n
substrings in each block is a string of length bounded by 2ℓ, or equivalently a number (i.e.,
first sort object of N) which is ≤ 22ℓ ≤ 4n2. Let b0, . . . , b2k−1 be the sub-sums. The sum
of the original n strings is computed from 2k such “short” strings by first “concatenating”
b0, b2, . . . , b2k−2 and “concatenating” b1, b3, . . . , b2k−1 (i.e., concatenating the binary string
representations of b0, b2, . . . , b2k−2, and concatenating the binary string representations of
b1, b3, . . . , b2k−1), then adding the 2 resulting strings together.

Formally, suppose that the n strings are represented as n rows Z [0], . . . , Z [n−1] in an
array Z (using the pairing function). Our goal is to compute their sum Sum(n,m,Z) as a
string function of n,m,Z.4 Note that if for each i, 0 ≤ i < m, ci is the total number of bits
in the ith column of Z, then

Sum(n,m,Z) =
m−1
∑

i=0

2ici.

We will “store” ci’s in a string W , and then define Sum(n,m,Z) as a function
Sum ′(m,n,W).5 Here W is a TC0 string function of n,m and Z: it has m rows, and
the row W [i] of W has length exactly ci. It can be defined as follows. First, let Z̄ be the
transpose of Z: for 0 ≤ i < m,

|Z̄ [i]| ≤ n ∧ ∀j < n Z̄ [i](j) ↔ Z(j, i).

Then the total number of bits in the ith column of Z is exactly numones(n, Z̄ [i]), the total
number of bits in the ith row of Z̄. Now W = AddCols(n,m,Z) where AddCols(n,m,Z) is
defined by

|AddCols(n,m,Z)| ≤ 〈m,n〉 ∧ ∀i < m, j < n AddCols(n,m,Z)(i, j) ↔ j < numones(n, Z̄ [i]).
(4.4)

We need to compute

Sum ′(m,n,W) =

m−1
∑

i=0

2i|W [i]|, (4.5)

where n is a bound for |W [0]|, . . . , |W [m−1]|: |W [i]| ≤ n for 0 ≤ i < m.
Notice that the number functions 2x where x < |a| for some number a ∈ N , and log x,

are in FTC0 (in fact, they are in FAC0[Bus98b, Coo]). Let ℓ and k be as in the above
discussion, i.e.,

ℓ = 1 + ⌈log n⌉, k = ⌈m/2ℓ⌉.

Write ci for |W [i]|, for 0 ≤ i < m. Divide cm−1, . . . , c0 into 2k blocks of length ℓ each:

c2kℓ−1, . . . , c(2k−1)ℓ; . . . ; c2ℓ−1, . . . , cℓ; cℓ−1, . . . , c0.

4Here n, m indicate the “size” of Z, i.e., it has n rows, each of length ≤ m.
5Note the difference in ordering of n and m as arguments in Sum and Sum ′.

30 PHUONG NGUYEN AND STEPHEN COOK

For 0 ≤ i < 2k, we will define bi to be the sum of the ith block, bi =
∑ℓ−1

j=0 2jciℓ+j. Formally,

this is a number function of W, i and ℓ, i.e., bi = sum(W, iℓ, ℓ) where

sum(W,a, ℓ) =

ℓ−1
∑

j=0

2jca+j

(the sum of the block of length ℓ, starting from a). Here, sum can be defined using numones :
sum(W,a, ℓ) is the number of bits in the “long” string Y ,

sum(W,a, ℓ) = numones(|Y |, Y),

where Y consists of 1 substring of ca 1’s; 21 substrings, each of ca+1 1’s; . . . ; 2ℓ−1 substrings,
each of ca+ℓ−1 1’s. Obviously, we can define such Y as an AC0 function of W :

|Y | ≤ 2ℓn ∧ ∀j < ℓ∀u < 2j∀v < n [Y ((2j − 1)n+ un+ v) ↔ v < ca+j],

(note that n is a bound for ca, . . . , ca+ℓ−1). Also, VTC
0

proves the following properties of
sum:

sum(W,a, 0) = ca, sum(W,a, ℓ + 1) = sum(W,a, ℓ) + 2ℓca+ℓ, sum(W,a, ℓ) < n2ℓ.

In particular, we have bi < 22ℓ, for i < 2k.
Let

L =

k−1
∑

i=0

22iℓb2i, H =

k−1
∑

i=0

2(2i+1)ℓb2i+1.

Since bi < 22ℓ for i < 2k, L and H can be computed simply by concatenating the binary
representations of b0, b2, . . . , b2k−2 and b1, b3, . . . , b2k−1, respectively. (More precisely, we
may have to pad each bi with leading 0’s to make them of length exactly 2ℓ, and then
concatenate these strings of equal length.)

Now

Sum ′(m,n,W) =

2k−1
∑

i=0

2iℓbi = L+H.

As a result, Sum(n,m,Z) = Sum ′(m,n,W) is a function of L
FTC

0 . Thus we can define
X · Y as follows.

Given X and Y , let X ⊗ Y be the “table” that we use in the “school algorithm” to
multiply X and Y , X ⊗ Y = Z where

|Z| ≤ (|X| + |Y |)|Y | ∧ ∀x < |X|∀y < |Y |, Z(y, x+ y) ↔ [X(x) ∧ Y (y)]. (4.6)

(Z has |Y | rows, each is of length ≤ |X| + |Y |.) Then X · Y = Sum(|Y |, |X| + |Y |, Z). It
follows that X ·Y is a function of L

FTC
0 . It remains to prove the properties of this function,

i.e., it is commutative, and distributive over X + Y .

4.3.2. Proving Properties Of X · Y . First we need to show that ·2 is commutative.

Lemma 4.1. VTC
0
⊢ X · Y = Y ·X.

Proof. Recall that we define Sum(n,m,Z) = Sum ′(m,n,W), where W = AddCols(n,m,Z)
which is defined in (4.4). Thus it suffices to show that

AddCols(|Y |,m,X ⊗ Y) = AddCols(|X|,m, Y ⊗X), (4.7)

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 31

where m = |X| + |Y |.

Let Z1 = X ⊗ Y and Z2 = Y ⊗X. Notice that for i < m the column Z̄
[i]
1 of Z1 and

column Z̄
[i]
2 of Z2 are just permutation of each other. In particular, |Z̄

[i]
1 |, |Z̄

[i]
2 | ≤ i+ 1, and

Z̄
[i]
1 (y) ↔ y ≤ i ∧ Y (y) ∧X(i− y), Z̄

[i]
2 (x) ↔ x ≤ i ∧X(x) ∧ Y (i− x),

and hence Z̄
[i]
1 (y) ↔ Z̄

[i]
2 (i− y), for y ≤ i. To prove (4.7), we will show that for i < m, Z̄

[i]
1

and Z̄
[i]
2 have the same number of elements, i.e.,

numones(i, Z̄
[i]
1) = numones(i, Z̄

[i]
2).

It suffices to prove more generally that if there is an one-one mapping between Z̄1[i] and
Z̄2[i], then they have the same number of elements. This is proved in the next lemma. ✷

In the following lemma, suppose that there is an one-one mapping (specified by M)
between the initial segments {i | i ∈ X ∧ i < ℓ} and {j | j ∈ Y ∧ j < ℓ} of X and Y
respectively. Then these initial segments have the same number of elements.

Lemma 4.2. Let ℓ,X, Y,M be such that

∀i < ℓ∃!j < ℓM(i, j) ∧ ∀j < ℓ∃!i < ℓM(i, j), and ∀i < ℓ, X(i) ↔ ∃j < ℓ(M(i, j) ∧ Y (j)).
(4.8)

Then, VTC0 ⊢ numones(ℓ,X) = numones(ℓ, Y).

Proof. First, from (4.8) it is easy to see that

∀j < ℓ, Y (j) ↔ ∃i < ℓ(X(i) ∧M(i, j)).

Let Z be the string such that Z [k] is the image of the initial segment {i | i ∈ X ∧ i < k} of
X, i.e.,

∀k < ℓ∀j < ℓ [Z [k](j) ↔ ∃i < k(M(i, j) ∧X(i))].

Then, Z [ℓ] = Y . We can prove by induction on k that numones(k,X) = numones(ℓ, Z [k]).
Consequently, numones(ℓ,X) = numones(ℓ, Y). ✷

Now we will show that ·2 is distributive over +2.

Lemma 4.3. VTC
0
⊢ X · (Y + Z) = X · Y +X · Z.

Proof. It suffices to prove

X<i · (Y + Z) = X<i · Y +X<i · Z (4.9)

by induction on i, where X<i is the i low-order bits of X; that is

X<i = {j < i | X(j)}.

The base case follows from the fact that 0 ·Y = 0, which can be proved from the definition
of X · Y .

For the induction step there are two cases: X<i+1 = X<i and Xi+1 = X<i + {i}. Since
the first case is trivial, we consider the second case. To simplify notation, we will write X
for X<i and write X ′ for X + {i} = X<i+1.

Thus our task is to prove in VTC0

X ′ · (Y + Z) = X ′ · Y +X ′ · Z (4.10)

32 PHUONG NGUYEN AND STEPHEN COOK

from the induction hypothesis

|X| ≤ i ∧ X · (Y + Z) = X · Y +X · Z.

We need the following fact, which we prove below:

VTC
0
⊢ |X| ≤ i ⊃ (X + {i}) · Y = X · Y + {i} · Y. (4.11)

From the definition of X · Y we have

X · {i} = {x+ i | x ∈ X} (4.12)

From the commutativity of ·2 (Lemma 4.1), the associativity of +2 (Lemma A.2), and (4.12)
we can derive that

{i} · (Y + Z) = (Y + Z) · {i} = Y · {i} + Z · {i} = {i} · Y + {i} · Z. (4.13)

Now we prove (4.10) as follows, using associativity and commutativity of +2.

X ′ · (Y + Z) = X · (Y + Z) + {i} · (Y + Z) [by (4.11)]

= X · Y +X · Z + {i} · (Y + Z) [by Ind Hyp]

= X · Y +X · Z + {i} · Y + {i} · Z [by (4.13)]

= X ′ · Y +X ′ · Z [by (4.11)].

It remains to prove (4.11). Using the commutativity of ·2, rewrite the equality in (4.11)
as

Y · (X + {i}) = Y ·X + Y · {i}.

To prove this, it suffices to prove that

Sum(i, i+ |Y |, Y ⊗ (X + {i})) = Sum(|X|, |X| + |Y |, Y ⊗X) + Y · {i}.

Notice that since |X| ≤ i, the “table” Z1 = Y ⊗ (X + {i}) is exactly Y ⊗X appended with
an additional row

Z
[i]
1 = {y + i | y ∈ Y } = Y · {i}.

Therefore (4.11) follows from the next lemma. ✷

Lemma 4.4. Suppose that |Z [i]| ≤ m, for 0 ≤ i ≤ n. Then VTC
0
⊢ Sum(n + 1,m,Z) =

Sum(n,m,Z) + Z [n].

Proof. We have defined Sum using Sum ′. (Recall the definition of Sum ′ in (4.5).) We need
to show that

Sum ′(m,n + 1,W) = Sum ′(m,n,W1) + Z [n]

where

W1 = AddCols(n,m,Z), W = AddCols(n+ 1,m,Z),

It is straightforward that for i < m,

|W [i]| =

{

|W
[i]
1 | + 1 if i ∈ Z [n]

|W
[i]
1 | if i 6∈ Z [n].

(4.14)

We will prove by induction on m′ ≤ m that

Sum ′(m′, n+ 1,W) = Sum ′(m′, n,W1) + (Z [n])<m′

, (4.15)

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 33

where X<z is the initial segment {x | x ∈ X ∧ x < z} of X.
For the base case, (4.15) obviously holds when m′ = 0.
For the induction step, suppose that (4.15) holds for some m′ < m. Note that by the

definition of Sum ′ (4.5), intuitively,

Sum ′(m′ + 1, n + 1,W) = Sum ′(m′, n+ 1,W) + 2m′

|W [m′]|.

Formally, let ToString(c, ℓ) be the set

ToString(c, ℓ) = {i+ ℓ | BIT (i, c)}.

Then we can show from the definition of Sum ′ that

Sum ′(m′ + 1, n + 1,W) = Sum ′(m′, n+ 1,W) + ToString(cm′ ,m′),

(where cm′ stands for |W [m′]|). Similarly,

Sum ′(m′ + 1, n,W1) = Sum ′(m′, n,W1) + ToString(c1m′ ,m′),

where c1m′ stands for |W
[m′]
1 |.

By the induction hypothesis, it remains to show that

ToString(cm′ ,m′) + (Z [n])<m′

= ToString(c1m′ ,m′) + (Z [n])<m′+1.

This follows from (4.14) and the definition of ToString . ✷

4.4. Interpreting the ∆b
1 Comprehension Rule in VTC0. Recall the definition of the

∆b
1 bit-comprehension rule (in single-sorted logic) in section 4.1. Note that this rule specifies

an inductive definition of ∆b
1-CR. In order to show that M is a model of ∆b

1-CR, where M
is the structure constructed from a model N of VTC0 as discussed in (b) of section 4.2.1,

we will show that VTC0 (and VTC
0
) satisfies the g∆B

1 comprehension rule, the two-sorted
version of the ∆b

1 bit-comprehension rule. This rule for two-sorted theories is obtained from
the ∆b

1 bit-comprehension rule using the syntactic translation ψ ⇀ ψ♯ described in section
4.2.1.

Recall the definition of gΣB
1 and gΠB

1 formulas given in section 2.1. Note that under
the translation ψ ⇀ ψ♯, Σb

1 and Πb
1 formulas translate to formulas equivalent to those in

gΣB
1 and gΠB

1 , respectively.
The g∆B

1 comprehension rule is defined as follows.

Definition 4.5. A (two-sorted) theory T over L is said to admit the g∆B
1 (L) comprehen-

sion rule if whenever

T ⊢ ∀z < b, ϕ(z) ↔ ψ(z), then T ⊢ ∃X ≤ b∀z < b, X(z) ↔ ϕ(z)

where ϕ is a gΣB
1 (L) formula, and ψ is a gΠB

1 (L) formula (ϕ and ψ may have other free
variables).

We omit L from g∆B
1 (L) when it is clear from context.

This rule is apparently weaker than the g∆B
1 comprehension axiom. In particular,

VTC0 may not prove the axiom.
Our task for this section to prove the following theorem.

Theorem 4.6. VTC0 and VTC
0

admit the g∆B
1 comprehension rule.

Note that it suffices to prove the theorem for VTC
0
, since this theory is conservative

over VTC0. We will use the gΣB
1 replacement rule, defined as follows.

34 PHUONG NGUYEN AND STEPHEN COOK

Definition 4.7. A (two-sorted) theory T over L is said to admit the gΣB
1 (L) replacement

rule if whenever

T ⊢ ∀z < b∃Z < bϕ(z, Z), then T ⊢ ∃W < 〈b, b〉∀z < b ϕ(z,W [z]),

for any gΣB
1 (L) formula ϕ which may contain other free variables.

Note that if T admits the gΣB
1 replacement rule, then each gΣB

1 theorem of T is
provably equivalent in T to a ΣB

1 formula.

Lemma 4.8. If the theory T (extending V0(Row)) proves ΣB
0 (L)-COMP and admits the

gΣB
1 (L) replacement rule, then it also admits the g∆B

1 (L) comprehension rule.

Proof. Suppose that

T ⊢ ∀z < b, ϕ(z) ↔ ψ(z),

where ϕ is a gΣB
1 (L) formula, and ψ is a gΠB

1 (L) formula which may have other free
variables. Then

T ⊢ ∀z < b, ϕ(z) ∨ ¬ψ(z).

Therefore

T ⊢ ∀z < b∃Z ≤ 1, [Z(0) ∧ ϕ(z)] ∨ [¬Z(0) ∧ ¬ψ(z)].

Now θ(z, Z) ≡ [Z(0) ∧ ϕ(z)] ∨ [¬Z(0) ∧ ¬ψ(z)] is equivalent to a gΣB
1 formula. Since T

admits the gΣB
1 (L) replacement rule,

T ⊢ ∃W < 〈b, b〉∀z < b θ(z,W [z]).

Let X be defined by ΣB
0 (L)-COMP:

|X| ≤ b ∧ ∀z < b, X(z) ↔W [z](0).

Then obviously ∀z < b, X(z) ↔ ϕ(z). ✷

Now Theorem 4.6 follows from the following lemma.

Lemma 4.9. VTC
0

admits the gΣB
1 (L

FTC
0) replacement rule.

Proof. Suppose that

VTC
0
⊢ ∀z < b∃Z < bϕ(z, Z),

for some gΣB
1 (L

FTC
0) formula ϕ(z, Z). By the gΣB

1 Witnessing Theorem (Theorem 3.20)
there is a function F (z) of L

FTC
0 such that

VTC
0
⊢ ∀z < bϕ(z, F (z)).

Let G be defined as follows:

|G| ≤ 〈b, b〉 ∧ ∀z < bG[z] = F (z).

Then we have

∀z < bϕ(z,G[z]).

Also, G is a function of L
FTC

0 . Therefore VTC
0
⊢ ∃W ≤ 〈b, b〉∀z < bϕ(z,W [z]). ✷

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 35

5. Conclusion

We show (Theorem 2.6) that the TC0 relations are precisely those represented by

ΣB,Th

0 formulas. We also present the finitely axiomatizable, second-order theory VTC0

which characterizes TC0 in the same way that Buss’s theory S1
2 characterizes polynomial

time. Our characterization of TC0 by the theory VTC0 is based on the fact that counting
the number of 1 bits in a string is complete for TC0 rather than the “hidden power” of
the multiplication function (which is also complete for TC0) usually present a priori in
first-order theories.

We show that a number of combinatorial problems are provable in VTC0. In particu-
lar, we show that VTC0 is RSUV isomorphic to Johannsen and Pollett’s “minimal” theory
∆b

1-CR. The main part of proving this RSUV isomorphism is in defining (string) multi-
plication and proving its properties. The RSUV isomorphism between VTC0 and ∆b

1-CR

shows that ∆b
1-CR = ∆b

1-CRi for some constant i, answering a question in [JP00].
In addition, we show that a form of the Pigeonhole Principle is provable in VTC0.

In [Bus03] Buss shows that the STCONN tautologies (and thus the HEX tautologies) have
polynomial size constant depth TC0-Frege proofs. It can be seen that his arguments can be
formalized in our theory VTC0. The proofs of these principles in VTC0 are more uniform
that the TC0-Frege proofs.

In [Hes01], it is shown that division is in uniform TC0. Thus the (string) division
function might be ΣB

1 -definable in VTC0. An interesting problem is to formalize the
algorithm of [Hes01] in VTC0.6

We are also able to generalize the method used in developing VTC0 to obtain a scheme
of theories characterizing a number of other subclasses of P. Our work follows the program
outlined in [Coo, Coo05], which proposes defining and studying second-order theories and
propositional proof systems associated with various complexity subclasses of P. We have
not treated the connection with propositional proof systems here, but this is the subject of
ongoing investigation. By translating proofs in our theories to the quantified propositional
proof system G [Jan90b, Mor05], our theories should correspond to fragments of G which lie
between bounded depth Frege and G∗

1. In this line, the fragment for NC1 which is different
from Frege is called G0 in [CM05, Mor05]. A proof system associated with L can be found
in [Per05]. Investigation into proof systems corresponding to other classes is ongoing.

The other direction in the tight connection between first-order theories and the propo-
sitional proof systems is the Reflection Principle: Each theory proves the soundness of the
corresponding proof system. For example, PV proves the soundness of extended Resolution,
and in fact extended Resolution is the strongest proof system whose soundness is provable
in PV [Coo75]. In general, the ΣB

0 consequences of the theory corresponding to a com-
plexity class can be axiomatized by formalizing the soundness of the corresponding proof
system. Because the bounded depth Frege systems form a proper hierarchy [Kra94], this
seems to imply that the ΣB

0 consequences of V0 are not finitely axiomatizable. Similar (but
conditional) results for VTC0 should also hold.

Another interesting issue is to compare various theories that characterize the same
class. For example, it is possible that VNC (U1

1, where U1
1 [Coo05] is a theory that also

characterizes NC.

6This problem was suggested by Albert Atserias.

36 PHUONG NGUYEN AND STEPHEN COOK

Acknowledgment

We would like to thank the referees for very helpful comments. We also thank Christ
Pollett for clarifying the proofs in [JP98], and Alan Skelley for helpful comments.

References

[Ara00] Toshiyasu Arai. Bounded arithmetic AID for Frege system. Annals of Pure and Applied Logic,
103:155–199, 2000.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On Uniformity within NC1.
Journal of Computer and System Sciences, 41:274–306, 1990.

[BPR00] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On Interpolation and Automatization for Frege
Systems. SIAM Journal on Computing, 29(6):1939–1967, 2000.

[Bus86] Samuel Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.
[Bus87] Samuel Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the 19th

Annual ACM Symposium on Theory of Computing, pages 123–131, 1987.
[Bus98a] Samuel Buss. An Introduction to Proof Theory. In S. Buss, editor, Handbook of Proof Theory,

pages 1–78. Elsevier, 1998.
[Bus98b] Samuel Buss. First–Order Proof Theory of Arithmetic. In S. Buss, editor, Handbook of Proof

Theory, pages 79–147. Elsevier, 1998.
[Bus03] Samuel Buss. Polynomial-size Frege and Resolution Proofs of st-Connectivity and Hex Tautologies.

http://math.ucsd.edu/~sbuss/ResearchWeb/, 2003.
[CK03] Stephen Cook and Antonina Kolokolova. A Second-order System for Polytime Reasoning Based

on Grädel’s Theorem. Annals of Pure and Applied Logic, pages 193–231, 2003.
[CK04] Stephen Cook and Antonina Kolokolova. A Second-order Theory for NL. In Logic in Computer

Science (LICS), 2004.
[CM05] Stephen Cook and Tsuyoshi Morioka. Quantified Propositional Calculus and a Second-Order The-

ory for NC1. Archive for Mathematical Logic , pages 1–37, 2005. (to appear).
[Coo] Stephen Cook. Proof Complexity and Bounded Arithmetic. Course Notes for CSC 2429S.

http://www.cs.toronto.edu/~sacook/.
[Coo75] Stephen Cook. Feasibly Constructive Proofs and the Propositional Calculus. In Proceedings of the

7th Annual ACM Symposium on the Theory of Computing, 1975.
[Coo05] Stephen Cook. Theories for Complexity Classes and Their Propositional Translations. In Jan

Kraj́ıček, editor, Complexity of computations and proofs, pages 175–227. Quaderni di Matematica,
2005.

[CSV84] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant Depth Reducibility. SIAM
Journal on Computing, 13(2):423–439, 1984.

[CT95] Peter Clote and Gaisi Takeuti. First Order Bounded Arithmetic and Small Boolean Circuit Com-
plexity Classes. In P. Clote and J. B. Remmel, editors, Feasible Mathematics II. Birkhäuser, 1995.

[CT04] Stephen Cook and Neil Thapen. The Strength of Replacement in Weak Arithmetic. In Proc. 19th
IEEE Symposium on Logic in Computer Science, 2004. (To appear in ACM Transactions on Com-
putational Logic).

[Hes01] William Hesse. Division is in Uniform TC
0. In Eighth International Colloquium on Automata,

Languages and Programming (ICALP 2001), 2001.
[Imm99] Neil Immerman. Descriptive Complexity. Springer, 1999.
[Jan90a] Jan Kraj́ıček. Exponentiation and second-order bounded arithmetic. Annals of Pure and Applied

Logic, 48:261–276, 1990.
[Jan90b] Jan Kraj́ıček and Pavel Pudlák. Quantified Propositional Calculi and Fragments of Bounded Arith-

metic. Zeitschrift f. Mathematickal Logik u. Grundlagen d. Mathematik, 36:29–46, 1990.
[Jan95] Jan Kraj́ıček. On Frege and Extended Frege Proof Systems. In P. Clote and J. B. Remmel, editors,

Feasible Mathematics II. Birkhäuser, 1995.
[Joh96] Jan Johannsen. A Bounded Arithmetic Theory for Constant Depth Threshold Circuits. In Petr

Hájek, editor, GÖDEL ‘96. Springer Lecture Notes in Logic 6, 1996.
[Joh98] Jan Johannsen. Equational calculi and constant-depth propositional proofs. In Paul Beame and

Samuel Buss, editors, Proof Complexity and Feasible Arithmetics, volume 39. AMS DIMACS Series,
1998.

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 37

[JP98] Jan Johannsen and Chris Pollett. On Proofs about Threshold Circuits and Counting Hierarchies.
In Proc. 13th IEEE Symposium on Logic in Computer Science, pages 444–452, 1998.

[JP00] Jan Johannsen and Chris Pollett. On the ∆b

1-Bit-Comprehension Rule. In Sam Buss, Petr Hájek
and Pavel Pudlák, editor, Logic Colloquium 98, 2000.

[Kol04] Antonina Kolokolova. Systems of Bounded Arithmetic from Descriptive Complexity. PhD thesis,
University of Toronto, 2004.

[Kra94] J. Kraj́ıček. Lower bounds to the size of constant-depth propositional proofs. J. Symbolic Logic,
59:73–86, 1994.

[Mor05] Tsuyoshi Morioka. Logical Approaches to the Complexity of Search Problems: Proof Complexity,
Quantified Propositional Calculus, and Bounded Arithmetic. PhD thesis, University of Toronto,
2005.

[NC04] Phuong Nguyen and Stephen Cook. V TC0: A Second-Order Theory for TC0. In Proc. 19th IEEE
Symposium on Logic in Computer Science, 2004.

[Ngu04] Phuong Nguyen. V TC0: A Second-Order Theory for TC0. Master’s thesis, University of Toronto,
2004. http://www.cs.toronto.edu/~ntp/.

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36(3):494–508,
1971.

[Per05] Steven Perron. GL
⋆: A Propositional Proof System For Logspace. Master’s thesis, University of

Toronto, 2005.
[Pet93] Petr Hájek and Pave Pudlák. Metamathematics of First-Order Arithmetic. Springer–Verlag, 1993.
[PW85] J. Paris and A. Wilkie. Counting Problems in Bounded Arithmetic. In A. Dold and B. Eckmann,

editors, Methods in Mathematical Logic, pages 317–340. Springer–Verlag, 1985.
[Raz93] Alexander A. Razborov. An Equivalence between Second Order Bounded Domain Bounded Arith-

metic and First Order Bounded Arithmetic. In Peter Clote and Jan Kraj́ıček, editors, Arithmetic,
Proof Theory and Computational Complexity, pages 247–277. Oxford, 1993.

[Tak93] Gaisi Takeuti. RSUV Isomorphism. In Peter Clote and Jan Kraj́ıček, editors, Arithmetic, Proof
Theory and Computational Complexity, pages 364–386. Oxford, 1993.

[Zam96] Domenico Zambella. Notes on Polynomially Bounded Arithmetic. Journal of Symbolic Logic,
61(3):942–966, 1996.

[Zam97] Domenico Zambella. End Extensions of Models of Linearly Bounded Arithmetic. Annals of Pure
and Applied Logic, 88:263–277, 1997.

Appendix A. Interpreting Addition for the Second Sort Objects in V
0

We define the “string addition” function X +2 Y (we will simply write X + Y , the
meaning will be clear from the context), which is the binary representation of the sum of
the two numbers corresponding to X and Y by the mapping (4.3).

We will show that the string function X + Y can be defined in any model of V0. Here
addition is defined using the conventional algorithm, i.e., adding digits of the same order
in X and Y together with carries from the previous result. More precisely, let ϕ+(i,X, Y)
represent the carry at the bit position i when adding X and Y . Then the ith bit of the sum
X + Y is

(X + Y)(i) ⇔ X(i) ⊕ Y (i) ⊕ ϕ+(i,X, Y)

(Here ⊕ stands for exclusive or, i.e., p⊕ q ↔ (p ∧ ¬q) ∨ (¬p ∧ q).)

Definition A.1. Let ϕ+(i,X, Y) be the ΣB
0 formula

∃j < i, X(j) ∧ Y (j) ∧ ∀ℓ < i[j < ℓ ⊃ X(ℓ) ⊕ Y (ℓ)]. (A.1)

Then X + Y is defined as follows:

|X + Y | ≤ |X| + |Y | ∧ ∀i < |X| + |Y |, (X + Y)(i) ↔ [X(i) ⊕ Y (i) ⊕ ϕ+(i,X, Y)].

Since the above definition is symmetric forX and Y , it follows that V0 ⊢ X+Y = Y+X.
It remains to show the associativity for this function.

38 PHUONG NGUYEN AND STEPHEN COOK

Lemma A.2. V
0
⊢ X + (Y + Z) = (X + Y) + Z.

Proof. It suffices to show that for i < |X| + |Y | + |Z|,

(X + (Y + Z))(i) ↔ ((X + Y) + Z)(i).

This is equivalent to

X(i) ⊕ (Y + Z)(i) ⊕ ϕ+(i,X, Y + Z) ↔ (X + Y)(i) ⊕ Z(i) ⊕ ϕ+(i,X + Y,Z).

From (A.1), the above is simplified to

ϕ+(i, Y, Z) ⊕ ϕ+(i,X, Y + Z) ↔ ϕ+(i,X, Y) ⊕ ϕ+(i,X + Y,Z).

Let ai, bi, ci and di denote ϕ+(i, Y, Z), ϕ+(i,X, Y +Z), ϕ+(i,X, Y) and ϕ+(i,X+Y,Z)
respectively. We need to show that

ai ⊕ bi ↔ ci ⊕ di,

for i < |X| + |Y | + |Z|. We will prove a stronger result, i.e., (ai, bi) is a permutation of
(ci, di). In particular, we will show by induction on i that

(ai ∧ bi ↔ ci ∧ di) ∧ (ai ∨ bi ↔ ci ∨ di). (A.2)

The base case is trivial, since

V0 ⊢ ¬a0 ∧ ¬b0 ∧ ¬c0 ∧ ¬d0.

The induction step follows from the inductive evaluation of ai bi, ci and di:

ai+1 = [Y (i) ∧ Z(i)] ∨ [(Y (i) ⊕ Z(i)) ∧ ai],

bi+1 = [X(i) ∧ (Y (i) ⊕ Z(i) ⊕ ai)] ∨ [(X(i) ⊕ Y (i) ⊕ Z(i) ⊕ ai) ∧ bi],

ci+1 = [X(i) ∧ Y (i)] ∨ [(X(i) ⊕ Y (i)) ∧ ci],

di+1 = [Z(i) ∧ (X(i) ⊕ Y (i) ⊕ ci)] ∨ [(X(i) ⊕ Y (i) ⊕ Z(i) ⊕ ci) ∧ di].

It remains to verify (A.2) for i + 1. This can be done by using the induction hypothesis
and the above properties, together with checking all possible values of X(i), Y (i) and Z(i).
Details are omitted. ✷

Appendix B. Proving the Pigeonhole Principle in VTC0

We give an example of reasoning in VTC0 by formalizing and proving the Pigeonhole
Principle (PHP) in VTC0. This principle states that for any mapping from a set of a
numbers to a set of (a− 1) numbers, there must be 2 numbers in the domain that have the
same image. We will formalize and prove this principle in VTC0. In the following definition,
the mapping is represented by the set X of pairs of pre-images and images (X(y, z) holds
if y is the image of z).

Theorem B.1.

VTC0 ⊢ ∀z ≤ a ∃y < a X(y, z) ⊃ ∃y < a ∃z1 ≤ a ∃z2 < z1, X(y, z1) ∧X(y, z2).

Proving PHP involves formalizing a number of concepts, such as set union, total number
of bits in an array, etc. We will define these functions below, and it is straightforward that
they are members of L

FTC
0.

Union: Union(b,X, Y)(z) ↔ z < b ∧ (X(z) ∨ Y (z)).
We interpret Z as an array of a rows, and each row has length bounded by b.

Finite union: FiniteUnion(a, b, Z)(z) ↔ z < b ∧ ∃y < aZ [y](z).

THEORIES FOR TC
0 AND OTHER SMALL COMPLEXITY CLASSES 39

Total number of bits in an array: totNumones(a, b, Z) = numones(ab, F0(a, b, Z)),
where F0(a, b, Z) is the function of Z which concatenates all the rows of the array Z:

F0(a, b, Z)(ax + y) ↔ Z [x](y), for x < a, y < b

Lemma B.2. The following are theorems of VTC
0
:

a) numones(b,Union(b,X, Y)) ≤ numones(b,X) + numones(b, Y).

b) totNumones(a+ 1, b, Z) = totNumones(a, b, Z) + numones(b, Z [a]).
c) numones(b,FiniteUnion(a, b, Z)) ≤ totNumones(a, b, Z).

d) ∀x < a numones(b, Z [x]) ≤ k ⊃ totNumones(a, b, Z) ≤ ak.

Proof. Part a) is proved by induction on b. Part b) is proved by noting that F0(a+ 1, b, Z)

is the concatenation of F0(a, b, Z) and Z [a].
For c), the proof is by induction on a. The base case is straightforward. For the

induction step, note that

FiniteUnion(a+ 1, b, Z) = Union(b,FiniteUnion(a, b, Z), Z [a])

We have

numones(b,FiniteUnion(a+ 1, b, Z))

= numones(b,Union(b,FiniteUnion(a, b, Z), Z [a]))

≤ numones(b,FiniteUnion(a, b, Z)) + numones(b, Z [a]) (by a.)

≤ totNumones(a, b, Z) + numones(b, Z [a]) (by the I.H.)
= totNumones(a+ 1, b, Z) (by b.)

Finally, part d) is proved by induction on a, using part b). ✷

Proof of Theorem B.1. We have to show that there exists a row of X that contains at least
2 bits. We will prove by contradiction, by showing that if every row of X has at most 1 bit,
then the total number of bits in the array X is at most a. On the other hand, the union
of the rows of X has (a + 1) bits. This contradicts part c) of Lemma B.2. Details are as
follows.

Suppose that ∀y < a numones(a + 1,X [y]) ≤ 1. Then part d) of Lemma B.2 implies
totNumones(a, a+ 1, Z) ≤ a. By part c) of Lemma B.2, numones(a+ 1,FiniteUnion(a, a+
1, Z)) ≤ a. However, it is obvious that ∀z ≤ a FiniteUnion(a, a + 1, Z)(z). By a sim-
ple induction argument, this implies numones(a + 1,FiniteUnion(a, a + 1, Z)) = a + 1, a
contradiction. ✷

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

