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Abstract. Almost periodic functions form a natural example of a non-separable normed
space. As such, it has been a challenge for constructive mathematicians to find a natural
treatment of them. Here we present a simple proof of Bohr’s fundamental theorem for
almost periodic functions which we then generalize to almost periodic functions on general
topological groups.

1. Introduction

Finding a natural constructive treatment of the theory of almost periodic functions
has long been a challenge for constructive mathematics, see [2], [5] and [7]. The present
approach is similar to the one by Bishop’s student Brom [2]. However, we replace his long
and explicit construction by a simple definition of a new metric on the group, due to von
Neumann [11](p.447), and applying Fourier and Peter-Weyl theory. Thus we obtain a very
similar, but much more conceptual construction.

By constructive mathematics we mean constructive in the sense of Bishop [1]. That is,
using intuitionistic logic and an appropriate set theory, or type theory. Like Bishop, we will
freely use the axiom of (countable) dependent choice.

To introduce the theory of almost periodic functions we first consider a periodic function
f : R→ C with period 2π, say. We may identify f with a function g on the unit circle, by
defining g(eix) := f(x), for all x ∈ R. Because the circle is a compact Abelian group, Fourier
theory may be used to approximate the periodic function f by finite sums of characters.

The sum1 λx.eix + ei2x is periodic, and this remains true when 2 is replaced by any

other rational number. However, the sum of the periodic functions λx.eix and λx.ei
√

2x

is not periodic. But this sum is almost periodic. A real function f is almost periodic if
for every ε > 0, there exists l > 0 such that every interval [t, t + l] contains at least one
number y for which |f(x)−f(x+y)| < ε whenever x is in R. Classically, the class of almost
periodic functions is closed under addition and multiplication, but constructively this is not
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1We use the notation λx.t for the function that returns t on input x. An alternative notation would by
x 7→ t.
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the case. When a 6= 0 the function λx.eiax is periodic. When a ↓ 0 the period tends to ∞.
Consequently, when we do not know whether a = 0 or a 6= 0, we are unable to show that
λx.eiax is almost periodic. In [5] it is shown that the function λx.eiax is almost periodic

if and only if a = 0 or a 6= 0. Observe that if a is close to 0, then both ei(1+a)x and e−ix

are almost periodic. However ei(1+a)xe−ix = eiax is almost periodic if and only if a = 0 or
a 6= 0. Consequently, one can not prove constructively that the almost periodic functions are
closed under multiplication. A similar argument shows that the almost periodic functions
are not constructively closed under addition. It is, however, straightforward to prove that
the almost periodic functions are closed under uniform limits.

2. Preliminaries

In this section we collect some results from constructive topological group theory, mostly
following [1] [3]. We used [6], [10] and [8] as general references for the classical theory. In
this section G will denote a topological group.

Definition 1. A topological group is a group that is also a topological space in such a way
that the group operations are continuous.

Any locally compact group allows a unique translation invariant measure, called Haar
measure [1]. For a simple construction of Haar measure on compact groups see [3]. This
construction follows von Neumann’s classical existence proof.

Let G be a compact group. Let L1 denote L1(G), the space of Haar-integrable functions
on G. Define the convolution from L1 × L1 to L1 by

f ∗ g = λx.

∫
f(y)g(y−1x)dy, (2.1)

for all f, g ∈ L1. This map is continuous, in fact ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. Define the involution

f̃ := λx.f(x−1). With this involution and convolution as multiplication L1 is a *-algebra,
called the group algebra. The group algebra contains much information about the group.
For instance a group is Abelian if and only if its group algebra is Abelian. The group
G is compact, so its Haar measure is finite, consequently L2(G) ⊂ L1(G), and thus, the
convolution product f ∗ g belongs to L2, for all f ∈ L1 and g ∈ L2. Moreover, ‖f ∗ g‖2 ≤
‖f‖1‖g‖2. Thus an element f of L1 can be considered as an operator λg.f ∗g on the Hilbert
space L2. These operators are compact, and thus normable, so L1 can thus be completed
to a C*-algebra. This allows us to use:

Theorem 1. [Gelfand] Let A be a unital commutative C*-algebra. The spectrum X of A
— that is, set of C*-algebra morphisms from A to C — can be equipped with a topology
such that X is compact and the Gelfand transform ·̂ : A → C(X), defined by â(x) := x(a),
is a C*-isomorphism.

We will sometimes speak about the spectrum of a *-algebra when we mean the spectrum
of the C*-algebra as constructed above.

Let Z denote the center of the group algebra — that is the set of f such that f ∗g = g∗f
whenever g is in L1. A character is a C*-algebra morphism from Z to C. In case the
group is Abelian, Z = L1 and the characters are in one-one correspondence [1](p.425) with
continuous functions α : G → C such that |α(x)| = 1 and α(xy) = α(x)α(y), for all x, y ∈ G.
Remaining in the Abelian case, the characters, with the usual multiplication of functions,
form a group, denoted G∗. This group is called the dual group or character group. We equip
the character group with the metric induced by the sup-norm ‖ · ‖∞.
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Theorem 2. [1] (Thm. 8.3.17) The character group G∗ of a locally compact Abelian group
G is a locally compact Abelian group.

Following [1] we define ‘(locally) compact space’ to mean (locally) compact metric space.
In fact, considering the more general case of a locally compact group, Bishop and Bridges
introduce a new metric ρ∗ on G∗ such that (G∗, ρ∗) is locally compact. For compact groups
this metric is equivalent to the metric induced by the norm ‖ · ‖∞ on C(G), see [1] (Lemma
8.3.16).

As a paradigm consider the Abelian group G := ({eit : t ∈ R}, ·). The character group
of this group is the space of the functions {λz.zn : n ∈ Z} ⊂ C(G) with the metric and
multiplication inherited from the normed space C(G) of continuous functions on G. In this
case G is compact and G∗ is discrete. This is the general situation.

Theorem 3. Let G be a compact Abelian group. Then the character group G∗ is discrete.

Proof. Let 1 be the constant function with value 1. This function is a character. The set of
characters α with ‖α− 1‖∞ < 1 is an open set which contains only the character 1. Indeed,
if α(x) 6= 1 for some x ∈ G, then for some n, α(x)n ∈ {z : ℜz ≤ 0}. Since α(x)n = α(xn),
it follows that |α(xn) − 1| ≥ 1. Consequently, there is a neighborhood of the character 1
which contains only this character. By translation of this neighborhood one obtains for
each element in the group G∗ a neighborhood containing only that element.

Every inhabited discrete separable metric space is countable, since any dense subset
must coincide with the whole space. If G is a compact group, then G∗ is locally compact,
and hence separable, since moreover, G∗ is discrete, it is countable.

For a locally compact space X let C∞(X) denote the set of functions that are ‘zero at
infinity’. Bishop and Bridges [1] (p.431,p.442) proved the following Fourier theorem.

Theorem 4. Let G be a locally compact Abelian group. There is a norm-decreasing linear
map F from L1(G) to C∞(G∗) such that F(f∗g) = F(f)F(g) and F(f) = λα.

∫
f(x)α(x)dx

whenever f, g are in L1(G). The map F is called the Fourier transform. Haar measure µ∗

on G∗ can be normalized in such a way that F preserves the L2-norm on L1(G) ∩ L2(G)

and the map F∗ : L1(G
∗) → C∞(G) defined by F∗(φ) := λx.

∫
α(x)φ(α)dµ∗(α) has the

following property: F∗Ff = f , for all f ∈ L1(G) ∩ L2(G).

In [3] the following results were proved for a general, not necessarily Abelian, compact
group G. In this context Z denotes the center of the group algebra and Σ denotes a locally
compact subset of its spectrum as a C*-algebra. The points of Σ are called characters. We
recall that Σ is discrete.

We define the linear functional I(f) := f(e) on the group algebra and remark that
f ∗ g(e) = (f, g̃), the inner product with respect to the Haar integral.

Theorem 5. Let f be an element of Z such that f̂ ≥ 0. Let aσ := f̂(σ)/‖χσ‖
2
2 whenever

σ is an element of Σ. Then f̂(σ) = aσχ̂σ(σ), I(f) =
∑

aσ and f =
∑

aσχσ uniformly.

Let eσ := χσ/‖χσ‖2 and bσ(f) := (f, eσ). Then ‖eσ‖2 = 1 and bσ = f̂(σ)/‖χσ‖2.

Corollary 1. [Plancherel] For all f in Z, I(f ∗ f̃) =
∑

|bσ|
2 and eσ is an orthonormal basis

for the pre-Hilbert space Z.

The main theorem in the Peter-Weyl theory may be formulated as follows.

Theorem 6. For each f ∈ C(G),
∑

σ eσ ∗ f, where σ ∈ Σ, converges to f in L2.
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Usually, the Peter-Weyl theorem speaks about irreducible representations. Fortunately,
these representations are in one-one correspondences with the characters above.

3. Almost periodic functions on Abelian groups

In this section we will prove a constructive Bohr approximation theorem for the Abelian
groups.

As is well-known, it is in general not possible to compute the norms of constructive
analogues of non-separable normed spaces. Fortunately, there are, at least, two solutions
to this problem: using quasi-norms, or using generalized real numbers. We repeat the
definition from [1] (p.343).

Definition 2. Let X be a linear space over a scalar field F, where either F = R or F = C.
A seminorm ‖ · ‖ is a map from X to R such that for all a ∈ F and x, y ∈ X, ‖x‖ ≥ 0,
‖ax‖ = |a|‖x‖ and ‖x + y‖ ≤ ‖x‖ + ‖y‖. A quasinorm on X is a family {‖ · ‖i : i ∈ I} of
seminorms on X such that for each x ∈ X, the set {‖x‖i : i ∈ I} is bounded. Define the
apartness relation 6= on X by x 6= y if and only if there exists i ∈ I such that ‖x− y‖i > 0.
Likewise, define the equality x = y if and only if not x 6= y,for all x, y ∈ X. Then (X, {‖·‖i :
i ∈ I}) is called a quasinormed space.

A quasinormed space may also be viewed as a normed space where the norm is a
generalized real number in the sense of Richman [4]. That is, the norm is a Dedekind cut
in the real numbers, but this cut does not need to be located.

Although previous constructive developments considered only almost periodic functions
defined on the real numbers it is natural to consider almost periodic functions over general
groups. One of von Neumann’s main ideas is that the almost periodic functions allow us to
mimic most of the important constructions of compact groups. Most importantly, one can
define a ‘Haar measure’ on the set of almost periodic functions. See [3] for a constructive
proof of von Neumann’s classical ‘construction’ of Haar measure on compact groups.

Here, instead of mimicking these constructions, we take a slightly different path: we
define a new topology on G and use the theory of compact groups directly. Classically, this
would be slightly less general since we exclude non-continuous functions. Constructively,
one can not define (total) non-continuous functions. So, like Loomis, we restrict ourselves
to continuous functions.

Let F denote either R or C and let Cb(X,F ) denote the bounded continuous F -valued
functions on the set X. We will drop the field F when it is either clear from the context,
or irrelevant. The space Cb(X) is a quasi-normed space with quasi-norm {‖ · ‖x : x ∈ X},
where ‖f‖x is defined as |f(x)|.

A subset A of a quasi-normed space is called totally bounded if for each ε > 0, there is
a finitely enumerable set f1, . . . , fn ∈ A such that for each f ∈ A, there exists i such that
‖f − fi‖j < ε whenever j is in I. Note that unlike in the metric case, we can not require
all the elements f1, . . . , fn to be distinct.

Let G be an Abelian group. Define the operator Ts from Cb(G) to Cb(G) by Ts =
λf.λx.f(s + x) for all s in G.

Definition 3. A function f ∈ Cb(G) is almost periodic if the set Sf := {T (s)f : s ∈ G} is
a totally bounded subset of Cb(G).



ALMOST PERIODIC FUNCTIONS, CONSTRUCTIVELY 5

In case G = R, this definition is equivalent to Bohr’s original definition, which we
stated on p.1. Loomis’ proof [6] (41F, p.171) of this fact is constructive. We note that
every almost periodic function is uniformly continuous.

Let f be an almost periodic function on G. The function va := λg.g(a) is a uniformly
continuous function from Cb(G) to G. Because Sf is totally bounded, we may define a
pseudometric on G by

df (a, b) := sup
g∈Sf

|va(g) − vb(g)| = sup
x∈G

|f(a + x) − f(b + x)|.

This metric is invariant under the action of the group (G,+), that is, df (a + c, b + c) =
df (a, b), for all a, b, c ∈ G. Since ‖Tyf −Tzf‖∞ = supx |f(x+y)−f(x+z)| = df (y, z), there
is an isometric embedding from Sf into (G, df ). Consequently, (G, df ) is totally bounded
and we let Gf denote the completion of (G, df ), which is a compact group.

Recall from theorem 3 that the character group of a metric compact Abelian group is
discrete. We obtain the following Plancherel theorem for almost periodic functions.

Theorem 7. Let f be an almost periodic function. Let Σ = G∗
f be the character group

of the compact group Gf . Then f is a continuous function on Gf and f =
∑

f̂(σ)χ(σ) in
l2(Σ).

The function f is uniformly continuous. So for every ε > 0, there is a δ > 0, such that
when |a−b| < δ, then |f(a+x)−f(b+x)| < ε for all x ∈ G. Hence df (a, b) ≤ ε. Consequently,
any continuous function on Gf is a continuous function on G, and thus characters of Gf

are characters of G. This shows that the space Σ in the previous theorem is the canonical
choice.

The following theorem is called the Bohr approximation theorem. As we remarked
before, in constructive mathematics a sum, and therefore a linear combination, of characters
need not be almost periodic.

Theorem 8. Let f be an almost periodic function on G. Then f can be approximated
uniformly by an almost periodic linear combination of characters.

Proof. Let IG be a subset of N which is in bijective correspondence with Σ. Then Σ =
{χn : n ∈ IG} and we define In := {i ≤ n : i ∈ IG}. Let Pn be the projection in L2

on span{χi : i ∈ In}. Then Pnf → f uniformly as n → ∞, by theorem 4.3 [3]. Since
Pn = λf.

∑
i∈In

χi ∗ f, it follows from equation (3.4) in [3] that Pn commutes with Ts

whenever s is in G. Consequently, SPnf = {TsPnf : s ∈ G} = PnSf . This set is totally
bounded, because Sf is totally bounded and Pn is uniformly continuous. It follows that
Pnf is almost periodic.

The measure µ we used in Theorem 7, Haar measure on Gf , may seem a little ad hoc.
In fact µ(f) is equal to the value of the unique constant function in closure of the convex
hull of Sf . See the construction of Haar measure in [11] and its constructive variant [3].

In the case G = R, the number µ(f) is also equal to M(f) = limN→∞
1

2N

∫ N

−N
f which is

usually used in this theorem. See [6] (p.171) for a constructive proof of this fact. Classically,
M is an integral on the space of almost periodic functions. Constructively, the sum of two
almost periodic functions need not be almost periodic, so M can not be an integral on the
set of all almost periodic functions.
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4. Almost periodic functions on general topological groups

In this section we extend the results from the previous section to arbitrary topological
groups. Therefore, we let G denote a topological group and e denote its unit.

Definition 4. Let f be a bounded continuous function on G. Define the operators Ts :=
λgλx.g(sx) and T s := λgλx.g(xs), for all s ∈ G. A function f is left almost periodic if the
set Sf = {Tsf : s ∈ G} is totally bounded in Cb(G), it is right almost periodic if the set

Sf = {T sf : s ∈ G} is totally bounded in Cb(G). Finally, f is called almost periodic if it is
both left and right almost periodic.

In the following it is often the case that the proof that Sf is totally bounded is symmetric
to the proof that Sf is totally bounded. In such cases we will only prove the latter statement.

Lemma 1. Every almost periodic function f is normable.

Proof. If f is almost periodic, then so is |f |. Now, f = λs.(Tsf)(e) and hence ‖f‖ =
sups∈G |f(s)| = supg∈S|f |

g(e) exists.

Every continuous function f on a compact group H is almost periodic. Indeed, Sf is
totally bounded, since it is the uniformly continuous image of the compact set H.

Let f be almost periodic on G. Define the pseudo-metric

df (a, b) := sup
g∈Sf

|g(a) − g(b)|

on G. As before, the space (G, df ) is totally bounded, and its completion Gf is a compact
group. The function f is continuous on Gf , and by the Peter-Weyl theorem 6 f =

∑
χ f ∗χ

in L2(Gf ); here the sum ranges over the character space Σ. For each character χ, Ts(f ∗χ) =
(Tsf)∗χ, so that f∗χ is almost periodic. The function f∗χ is even minimal almost invariant.

Definition 5. A function f ∈ C(G) is called left almost invariant if the set A of translations
of f, span{Tsf : s ∈ G} is a finite-dimensional subspace of C(G). It is called almost invariant
if it is both left and right almost invariant.

It is called minimal almost invariant, if, moreover, every nonzero subspace of A which
is closed under the translations equals A.

To see that f ∗χ is almost invariant we recall from [3] that λf.χ∗f is both a projection
and a compact operator, so its range is finite dimensional. To see that it is minimal we
need some preparations.

We consider C(Gf ) as a *-algebra with the convolution operator ∗ as multiplication

and the map˜defined by f̃ := λx.f(x−1) as involution. Then p is called a projection if
p = p ∗ p = p̃.

Lemma 2. [8] (p.216) A closed subspace in L1 is a left(right) ideal in L1 if and only if it
is invariant under left(right) translation. The same holds for subspaces of L2.

Lemma 3. Every nonzero closed ideal I contains a nonzero central element.

Proof. Remark that I∗ := {f̃ : f ∈ I} is a right-ideal, so that I∗I ⊂ I∗ ∩ I. If f ∈ I

and f 6= 0, then f̃ ∗ f 6= 0, because f̃ ∗ f(e) = ‖f‖2
2 6= 0. Hence I∗ ∩ I is a closed *-

subalgebra which contains a nonzero (self-adjoint) element g. Since I is both a left and
a right ideal it is closed under left and right translations, so the projection on the center
PZf := λx.

∫
f(zxz−1)dz is also contained in this ideal.
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Since the only central elements in the ideal I generated by a character χ are multiples
of this character, we see that any nonzero closed subideal must actually be equal to I. It
follows that f ∗ χ is minimal almost invariant.

This proves the following theorem.

Theorem 9. Let f be an almost periodic function on a topological group G. Then f =∑
f ∗ χ in L2(Gf ) where the sum ranges over Σ. Moreover, each term f ∗ χ is minimal

almost invariant.

The following theorem is proved in a similar way as Theorem 8. It is a Bohr approxi-
mation theorem for general topological groups.

Theorem 10. Let G be a topological group. Every almost periodic function on G can
be uniformly approximated by a linear combination of minimal almost invariant functions
which is almost periodic.

5. Conclusions

We have given a constructive proof of the Bohr approximation theorem for general
topological groups, thus simplifying and generalizing previous constructive approaches.

Finally, Loomis [6] proves that every left almost periodic function is also right almost
periodic. His proof is non-constructive. To be precise consider his Lemma 41B. Let n be
the number of elements of the family ai and let n denote the finite set with n elements.
Then one needs to isolate all the functions j : n → n which correspond to a given b ∈ G. In
this way we obtain a subset of a finite approximation to the space of translated functions.
Classically, this approximation is totally bounded, but constructively one needs a finitely
enumerable set. It is unclear to me whether this can be proved constructively.

Parts of this research can already be found in my PhD-thesis [9]. I would like to thank
Wim Veldman for his advice during this period. Finally, I would like to thank the referees
for suggestions that helped to improve the presentation of the paper.
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