
Logical Methods in Computer Science

Vol. 1 (3:4) 2005, pp. 1–15

www.lmcs-online.org

Submitted Apr. 20, 2005

Published Dec. 21, 2005

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA

CHRISTOPHER HARDIN

Department of Mathematics, Smith College, Northampton, Massachusetts 01063, USA
e-mail address: chardin@math.smith.edu

Abstract. Given a universal Horn formula of Kleene algebra with hypotheses of the
form r = 0, it is already known that we can efficiently construct an equation which is
valid if and only if the original Horn formula is valid. This is an example of elimination
of hypotheses, which is useful because the equational theory of Kleene algebra is decidable
while the universal Horn theory is not. We show that hypotheses of the form r = 0 can
still be eliminated in the presence of other hypotheses. This lets us extend any technique
for eliminating hypotheses to include hypotheses of the form r = 0.

1. Introduction

Kleene algebra (KA) arises in many areas of computer science, such as automata theory,
the design and analysis of algorithms, dynamic logic, and program semantics. Many of these
applications are enhanced by using Kleene algebra with tests (KAT), which combines KA

with Boolean algebra.
We can use KAT to reason propositionally about programs (see [1, 13] for examples).

The equivalence of an optimized and unoptimized program, the equivalence of an annotated
and unannotated program, and partial correctness assertions can all be expressed as equa-
tions. The equational theory of KAT is well understood and has many useful properties; in
particular, it is decidable (in PSPACE) and the theory remains unchanged when we restrict
to relational interpretations [4, 14]. (Relational interpretations are of the greatest interest
because the intended semantics are generally relational.)

However, we frequently wish to reason about programs under certain assumptions about
the interaction of atomic programs and tests. For example, if p is the program “x := 0” and
b is the assertion “x = 0”, then we want to be able to make use of the facts pb = p (“after
running p, test b always succeeds”) and bp = b (“after test b succeeds, p is redundant”)
when reasoning about programs in which p and b appear; for instance, the equation p2 = p
is not valid in KAT, but the formula (pb = p ∧ bp = b) → p2 = p is. Thus, the universal
Horn theory is of interest. A universal Horn formula is an implication E → s = t, where
E is a finite set of equations. The word “universal” refers to the fact that the atomic
symbols of E, s, and t are implicitly universally quantified. The universal Horn theory of

1991 Mathematics Subject Classification: F.3.1.
Key words and phrases: Kleene algebra with tests, program verification, Horn formulas, proof theory.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-1 (3:4) 2005

c© C. HARDIN
CC© Creative Commons

http://creativecommons.org/about/licenses

2 C. HARDIN

a class of structures C, denoted HC, is the set of universal Horn formulas valid under all
interpretations over structures in C.

The increased generality of the universal Horn theory is accompanied by greater com-
plexity, and the theory does not remain the same when we restrict to important classes of
Kleene algebras such as ∗-continuous Kleene algebras with tests (KAT∗) and relational
Kleene algebras with tests (RKAT). HKAT is Σ0

1-complete (undecidable), HKAT∗ and
HRKAT are Π1

1-complete (highly undecidable), and we have proper inclusions HKAT (

HKAT∗ (HRKAT [12, 8].
Although these Horn theories are very complex in general, there are fragments of them

that are both practical and of lower complexity. Consider the following theorem, funda-
mentally due to Cohen [2] and extended to the form below by Kozen and Smith [14, 11].
(The statement uses some notions that will not be defined until later, but we only need a
vague understanding of it here.)

Theorem 1.1. Let r, s, t ∈ RExpP,B, and let u ∈ RExpP,B be the universal regular expres-
sion. Then the following are equivalent.

KAT |= r = 0 → s = t (1.1)

KAT∗ |= r = 0 → s = t (1.2)

RKAT |= r = 0 → s = t (1.3)

KAT |= s+ uru = t+ uru (1.4)

The primary consequence of this theorem is that the Horn theory of Kleene algebra, re-
stricted to formulas with hypotheses of the form r = 0, is decidable, and remains unchanged
if we restrict to ∗-continuous or relational algebras: to decide if r = 0 → s = t is valid, we
simply decide if s+ uru = t+ uru is valid. In this way, we say that we have eliminated the
hypothesis r = 0. It is also possible to eliminate other forms of hypotheses [2, 7].

The case r = 0 has particular significance, because partial correctness assertions can be
expressed in KAT with equations of the form r = 0 (and multiple equations r1 = 0∧· · ·∧rk =
0 can be combined into r1 + · · · + rk = 0). So Theorem 1.1 shows that the Horn theory
of KAT, restricted to hypotheses of the form r = 0, subsumes propositional Hoare logic, is
decidable, and is furthermore complete for relational interpretations [11].

Our main result, Theorem 3.2 (p. 9), improves Theorem 1.1 so that r = 0 can be
eliminated in the presence of other hypotheses. This allows any other technique for elim-
inating hypotheses to be extended to include r = 0. For example, if we have a technique
for eliminating f = g alone, we can eliminate f = g ∧ r = 0 by first eliminating r = 0
using Theorem 3.2, leaving hypothesis f = g, which can then be eliminated. In this way,
Theorem 3.2 is like a module for eliminating r = 0 that can be added on to any other
technique for eliminating hypotheses.

A related result, Corollary 3.10, shows that hypotheses of the form cp = c (where c is
Boolean and p is atomic) can be eliminated in the presence of other hypotheses, although the
remaining hypotheses are modified. Hypotheses of the form cp = c are useful for eliminating
redundant code (consider our example bp = b above; it expresses the fact that p is redundant
when b already holds). (The procedure for eliminating cp = c was introduced in [7], where
it was shown how to eliminate cp = c and r = 0 at the same time. Without the benefit of
Theorem 3.2, this required a construction that simultaneously dealt with both cp = c and
r = 0.)

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA 3

2. Preliminaries

For a more complete introduction to Kleene algebra and Kleene algebra with tests, see
[10].

2.1. Kleene Algebra.

Definition 2.1. An idempotent semiring is a structure (S,+, ·, 0, 1) satisfying

x+ x = x (idempotence)

x+ 0 = x

x+ y = y + x

x+ (y + z) = (x+ y) + z

0 · x = x · 0 = 0

1 · x = x · 1 = x

x · (y · z) = (x · y) · z

x · (y + z) = x · y + x · z

(y + z) · x = y · x+ z · x .

(In other words, (S,+, 0) is an upper semilattice with bottom element 0, (S, ·, 1) is a monoid,
0 is an annihilator for ·, and · distributes over + on the right and left.)

We often write xy for x · y. The upper semilattice structure induces a natural partial
order on any idempotent semiring: x ≤ y ⇔ x+ y = y.

Definition 2.2. A Kleene algebra is a structure (K,+, ·,∗ , 0, 1) such that (K,+, ·, 0, 1)
forms an idempotent semiring, and which satisfies

1 + xx∗ ≤ x∗ (2.1)

1 + x∗x ≤ x∗ (2.2)

p+ qx ≤ x→ q∗p ≤ x (2.3)

p+ xq ≤ x→ pq∗ ≤ x . (2.4)

(The order of precedence among the operators is ∗ > · > +, so that p+ qr∗ = p+(q · (r∗)).)
We let KA denote the category of all Kleene algebras and their homomorphisms. Equations
(2.1)–(2.4) are called the Kleene algebra ∗-axioms.

Given a set Σ of constant symbols, let RExpΣ be the set of Kleene algebra terms over Σ.
We call the elements of RExpΣ regular expressions, and the elements of Σ atomic program
symbols. An interpretation is a homomorphism I : RExpΣ → K, where K is a Kleene
algebra. I is determined uniquely by its values on Σ.

Equations (2.1) and (2.3) say that q∗p is the least solution of p + qx ≤ x, while (2.2)
and (2.4) say that pq∗ is the least solution to p+ xq ≤ x.

A straightforward and vital consequence of the KA axioms1 is that the operations +,
·, and ∗ are monotone: if x0 ≤ x1 and y0 ≤ y1, then x0 + y0 ≤ x1 + y1, x0y0 ≤ x1y1, and
x∗0 ≤ x∗1.

1 The names of the categories we consider serve as convenient abbreviations for the type of algebra they
contain. So, for example, “the KA axioms” means “the axioms of Kleene algebra”.

4 C. HARDIN

We use |= to denote ordinary Tarskian satisfaction. However, since we have constant
symbols from Σ not in the signatures of the underlying algebras, we will pair each algebra
with an interpretation when speaking about satisfaction. For example, given a Kleene
algebra K, interpretation I : RExpΣ → K, and formula ϕ whose atomic program symbols
are among Σ, we will write K, I |= ϕ to indicate that K satisfies ϕ when the symbols in
Σ are evaluated according to I. K |= ϕ means that K, I |= ϕ for every interpretation
I : RExpΣ → K. We also use |= in two other standard ways: for a class C of algebras,
C |= ϕ means that K |= ϕ for each K ∈ C; for a set Φ of formulas, Φ |= ϕ means that
K |= ϕ for each algebra K satisfying every formula in Φ.

We now introduce two particularly important types of Kleene algebras: language alge-
bras and relational algebras.

Definition 2.3. For an arbitrary monoid M , its powerset 2M forms a Kleene algebra as
follows.

0 = ∅

1 = {1M} (where 1M is the identity of M)

A+B = A ∪B

A · B = {xy | x ∈ A, y ∈ B}

A∗ =
⋃

k∈N

Ak

We let REG M denote the smallest subalgebra of 2M containing the singletons {x}, x ∈M .
(The elements of REG M are the regular subsets of M .) 2M and its subalgebras are known
as language algebras.

Of particular interest is the case M = Σ∗, the monoid of all strings over alphabet Σ
under concatenation. The empty string ε is the identity of this monoid. We define the
canonical interpretation R : RExpΣ → REG Σ∗ by letting R(p) = {p} (and extending R
homomorphically to the rest of RExpΣ). Note that we can interpret elements of Σ∗ as
elements of RExpΣ in the obvious fashion.

Definition 2.4. For an arbitrary set X, the set 2X×X of all binary relations on X forms a
Kleene algebra as follows.

0 = ∅

1 = ιX = {(x, x) | x ∈ X}

S + T = S ∪ T

S · T = S ◦ T (the composition of S with T)

S∗ =
⋃

k∈N

Sk (the reflexive transitive closure of S)

A Kleene algebra K is relational if it is a subalgebra of 2X×X for some X; X is called
the base of K. We let RKA denote the category of all relational Kleene algebras and their
homomorphisms.

The definitions of ∗ in 2M and 2X×X exemplify the most common intuition about
the meaning of ∗, which is that y∗ = supn∈N y

n, or informally, y∗ = 1 + y + y2 + · · · .
(More generally, if we require that multiplication distributes over this supremum, we have

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA 5

xy∗z = x1z+xyz+xy2z+ · · · = supn∈N xy
nz.) However, this property of ∗ does not follow

from the KA ∗-axioms, and must be postulated separately.

Definition 2.5. A Kleene algebra K is ∗-continuous if it satisfies

xy∗z = sup
k∈N

xykz

for all x, y, z ∈ K. We let KA∗ denote the category of all ∗-continuous Kleene algebras and
their homomorphisms.

Since relational composition distributes over arbitrary union, it is immediate from the
definition of ∗ in 2X×X that relational Kleene algebras are ∗-continuous, so RKA ⊆ KA∗.

The following ubiquitous lemma is a useful generalization of ∗-continuity.

Lemma 2.6. Suppose K ∈ KA∗, I : RExpΣ → K is an interpretation, and t ∈ RExpΣ.
Then

I(t) = sup
σ∈R(t)

I(σ) .

Proof. By induction on structure of t. For details, see [9, Lemma 7.1, pp. 246–248].

2.2. Kleene Algebra with Tests. We can combine Kleene algebra with Boolean algebra
to get Kleene algebra with tests. The Boolean aspect is useful for capturing Boolean aspects
of programming semantics, particularly control flow and assertions.

Definition 2.7. A Kleene algebra with tests is a two-sorted structure (K,B,+, ·,∗ , , 0, 1),
where (K,+, ·,∗ , 0, 1) is a Kleene algebra, and (B,+, ·, , 0, 1) is a Boolean subalgebra. The
elements of B are called tests. We let KAT denote the category of all Kleene algebras with
tests and their homomorphisms; we let KAT∗ denote the subcategory of all ∗-continuous
Kleene algebras with tests.

We now have two types of atomic symbols: programs and tests. For a finite set P of
atomic program symbols and a finite set B of atomic test symbols, RExpP,B is the set of KAT

terms over P and B; negation can only be applied to Boolean terms, which are terms built
from 0,1,+,·, , and atomic test symbols. An interpretation I : RExpP,B → K must map each
atomic test to a test in K (and it follows by induction that it will map all Boolean terms
to tests).

2X×X forms a Kleene algebra with tests by keeping the previously defined Kleene alge-
bra structure, and letting B = {r ∈ 2X×X | r ≤ 1}, b = ιX − b. A Kleene algebra with tests
K is relational if it is a subalgebra of 2X×X for some X. We let RKAT denote the category
of all relational Kleene algebras with tests and their homomorphisms.

Every Kleene algebra induces a Kleene algebra with tests by letting B = {0, 1}, the
two-element Boolean algebra; conversely, every Kleene algebra with tests induces a Kleene
algebra by taking its reduct to the signature of Kleene algebra (i.e., taking its image under
the map (K,B,+, ·,∗ , , 0, 1) 7→ (K,+, ·,∗ , 0, 1)). With this in mind, it is easy to see that
for any formula ϕ in the language of Kleene algebra, KAT |= ϕ ⇔ KA |= ϕ, KAT∗ |= ϕ ⇔
KA∗ |= ϕ, and RKAT |= ϕ⇔ RKA |= ϕ.

There is an analog of REG Σ∗ for KAT called the guarded-string model, with its own
analog of the canonical interpretation R. Though the guarded-string model is in general
very important for studying KAT, we will not need it for our results here, and refer the
reader to [14] for further information on guarded strings.

The following elementary lemma about subalgebras will be needed in Lemma 3.3.

6 C. HARDIN

Lemma 2.8. Let K ∈ KA and let x ∈ K. Then {y ∈ K | y ≤ x} is a subalgebra of K iff
x = y∗ for some y ∈ K (or equivalently, x = x∗). The same also holds for KATs. (Note
that this is not claiming that all subalgebras of K have this form.)

The proof is straightforward and may safely be skipped.

Proof. Let K ′ = {y ∈ K | y ≤ x}.
Suppose K ′ is a subalgebra of K. Then x∗ ∈ K ′, so x∗ ≤ x, so x = x∗.
Suppose x = y∗ for some y ∈ K. Then x∗ = y∗∗ = y∗ = x. The necessary closure

conditions follow from monotonicity and the fact that 0 + 1 + xx+ (x+ x) + x∗ ≤ x∗. (For
example, for any y1, y2 ∈ K ′, we have y1y2 ≤ xx ≤ x∗.)

2.3. Universal Horn Formulas.

Definition 2.9. A universal Horn formula is a formula of the form

s1 = t1 ∧ · · · ∧ st = tk → s = t ,

where si, ti, s, t are terms. The set of universal Horn formulas valid over a class C of algebras
is the universal Horn theory of C, which we denote by HC.

We will often drop the word “universal”. Note that in KA and KAT, because any
inequality x ≤ y is actually an equation x+y = y, inequalities are allowed in Horn formulas.
We will allow finite sets of equations to appear in the hypotheses of a Horn formula, by
taking their conjunction; e.g., if E = {pq = qp, p ≤ 1}, then E → s = t means (pq =
qp ∧ p ≤ 1) → s = t.

Lemma 2.10. Let Γ be any class of ∗-continuous Kleene algebras with interpretations.
(That is, Γ consists of pairs (K, I) where K ∈ KA∗ and I : RExpΣ → K is an interpretation.)
Then for any Horn formula of the form E→ s ≤ t,

Γ |= E→ s ≤ t⇐⇒ (∀σ ∈ R(s)) Γ |= E→ σ ≤ t .

Proof. For any K ∈ KA∗ with interpretation I : RExpΣ → K, the equivalence

K, I |= E→ s ≤ t⇐⇒ (∀σ ∈ R(s)) K, I |= E→ σ ≤ t

is a straightforward consequence of Lemma 2.6. The lemma then follows by exchanging
the universal quantifiers (∀σ ∈ R(s)) and (∀(K, I) ∈ Γ). (This latter quantifier comes from
Γ |= E→ s ≤ t⇔ (∀(K, I) ∈ Γ) K, I |= E→ s ≤ t.)

2.4. A Proof System for HRKA. Later, in the proof of Lemma 3.5, we will use a proof-
theoretic argument based on the infinitary proof system for HRKA introduced in [6]. We
will only present the material that we will need in Section 3.1 for the proof of Lemma 3.5;
for a more thorough treatment, please see [6].

2.4.1. Finite Automata and Trees. Our proof system for HRKA is based on trees of finite
automata, and we must define a number of notions related to trees and automata before
continuing.

Assume we have a fixed finite alphabet Σ. We let NFA denote the set of all nondeter-
ministic finite automata over Σ, allowing ε-moves (also called ε-edges).

We will also use NFA as shorthand for nondeterministic finite automaton. For any NFA
A, L(A) denotes the language of A, and |A| denotes the states of A. For states v,w ∈ |A|,
let Av,w denote the NFA which is identical to A except that it has v and w as its unique

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA 7

start and accept states, respectively. We fix distinct states a and b, and let NFAa,b be the
set of all A ∈ NFA which have unique start state a and unique accept state b.

We define F0 ∈ NFAa,b to have states {a, b} and no edges.
Given an NFA A and states v,w ∈ |A|, we will sometimes want to “insert” a string

τ ∈ Σ∗ into L(Av,w). For this purpose, we define A′ = insert2(A, v,w, τ) as follows.

1. If τ = p1 · · · pk, with pi ∈ Σ and k > 0, we obtain A′ from A by adding k − 1 new
states x1, . . . , xk−1 and adding edges

v
p1

→ x1
p2

→ · · ·
pk−1

→ xk−1
pk→ w .

2. If τ = ε, then we add an ε-edge from v to w and also from w to v. (Where it is
used, insert2(A, v,w, ε) corresponds to identifying v and w with each other. The edge
from w to v, called a reverse ε-edge, is needed to capture the symmetry of the identity
relation.)

We now move on to trees. N∗ is the set of all finite strings of naturals (including the
empty string). A set T ⊆ N∗ is a tree if it is closed under taking initial segments. A
function f : N → N can be treated as an infinite sequence of naturals, and for n ∈ N, we let
f ↾ n denote the initial segment of f of length n. Such an f is a path through a tree T if
(f ↾ n) ∈ T for all n ∈ N. (We find this a concise framework for countably-branching trees,
but it is not strictly necessary to define trees in this manner.)

2.4.2. Relational Proofs. The following definition of relational proof captures, with trees of
finite automata, the combinatorics of attempting to construct a relational counterexample
to a Horn formula. A path through such a tree yields a relational model in which the
formula fails, while well-foundedness establishes the impossibility of a counterexample (i.e.,
the relational validity of the formula).

Definition 2.11. Let E → σ ≤ t be a Horn formula in the language of KA with σ ∈ Σ∗

and t ∈ RExpΣ. We assume that all hypotheses in E are inequalities x ≤ y, by breaking any
equations x = y into x ≤ y ∧ y ≤ x as necessary. We fix distinct states a and b as above.
We fix a special symbol CON, which will signify contradiction.

A relational tree for E → σ ≤ t is a pair (T,A) where T ⊆ N∗ is a tree and A : T →
NFAa,b ∪ {CON} such that the following conditions hold. (Af will denote A(f).)

1. At the root, we have A〈〉 = insert2(F0, a, b, σ).
2. f ∈ T is a leaf node if and only if Af = CON or R(t) ∩ L(Af) 6= ∅.
3. If f is not a leaf node, then there exist v,w ∈ |Af | (possibly equal), an inequality
r ≤ r′ in E, and ρ ∈ L(Av,w

f) ∩R(r) such that

(a) if R(r′) = ∅ (typically because r′ = 0), then f has one child g, with Ag = CON;
(b) if R(r′) 6= ∅, then f has one child gτ for each τ ∈ R(r′), with Agτ

=
insert2(Af , v, w, τ).

(We say that the hypothesis r ≤ r′ is applied at f .)

A relational proof of E→ σ ≤ t is a well-founded relational tree for E→ σ ≤ t. We say
E→ σ ≤ t is relationally provable if such a proof exists.

Lemma 2.12. For any Horn formula of the form E→ σ ≤ t, the following are equivalent.

(i) RKA |= E→ σ ≤ t
(ii) E→ σ ≤ t is relationally provable.

Proof. See [5] or [6].

8 C. HARDIN

The notion of relational provability can be extended to arbitrary Horn formulas, but
we will not need it for the proof of Lemma 3.5.

2.5. The Relationship Between HRKA and HRKAT. The system presented in Sec-
tion 2.4 is a tool for studying HRKA, while in Lemma 3.5, we will wish to use it to draw
conclusions about HRKAT. This must be rectified, and there are multiple ways to proceed.
One would be to modify the notion of relational proof so that it applies to HRKAT; this
would present no particular difficulty, but would require a closer look at relational proofs
than we would like to get into here. Instead, we will show how to reduce questions about
HRKAT to HRKA, in a way that will allow us to use the existing definition of relational
proof when proving Lemma 3.5.

Lemma 2.13. For any Horn formula ϕ of KAT, there is a Horn formula Tr(ϕ) of KA such
that RKAT |= ϕ iff RKA |= Tr(ϕ).

The lemma is uninteresting without putting restrictions on the translation Tr. However,
instead of trying to capture the desired properties of Tr for inclusion in the lemma, we just
give the proof, and observe later that the translation works for a particular purpose when
the need arises.

Proof. (Outline: we first assume that negation is only applied to atomic tests, then replace
the negations of atomic tests with fresh program symbols, and finally add new hypotheses
to ensure that the new program symbols behave like the negated tests they replace.)

Fix a set P of atomic program symbols, and a set B of atomic tests. Given any s ∈
RExpP,B, we can assume without loss of generality that negation is only applied to atomic
tests, in light of DeMorgan’s Laws.

For each b ∈ B, we introduce two new atomic program symbols b̃ and b̃, and we let

Σ = P
⋃
{b̃, b̃ | b ∈ B}. For any t ∈ RExpP,B, we let t̃ be the result of taking t, and replacing

all occurrences of b with b̃, and all positive occurrences of b with b̃ (for each b ∈ B). Note
that t̃ ∈ RExpΣ. For any formula ϕ, we let ϕ̃ be the result of replacing each term t in ϕ
with t̃.

Now take any Horn formula ϕ of the form θ→ψ (with all terms in RExpP,B). Let Tr(ϕ)
be the formula (

θ̃ ∧
∧

b∈B

(b̃+ b̃ = 1 ∧ b̃ · b̃ = 0)

)
→ ψ̃ .

(The extra hypotheses make b̃ and b̃ behave like Boolean complements of each other.)
We now show RKAT |= ϕ iff RKA |= Tr(ϕ).
For the right-to-left implication, suppose RKAT 6|= ϕ. Let K ∈ RKAT with interpreta-

tion I : RExpP,B →K such that K, I 6|= ϕ. Then K, I |= θ ∧ ¬ψ. Define the interpretation

Ĩ : RExpΣ → K by

Ĩ(p) =

I(p), if p ∈ P,

I(b), if p = b̃,

I(b), if p = b̃.

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA 9

A simple induction shows that for any t ∈ RExpP,B, Ĩ(t̃) = I(t). It follows that

K, Ĩ |= θ̃ ∧ ¬ψ̃, since K, I |= θ ∧ ¬ψ. Also,

K, Ĩ |=
∧

b∈B

(b̃+ b̃ = 1 ∧ b̃ · b̃ = 0) .

Thus K, Ĩ 6|= Tr(ϕ), so RKA 6|= Tr(ϕ) (recall that we can treat K as a member of RKA

by passing it through the forgetful functor which drops negation). Therefore, RKA |=
Tr(ϕ) → RKAT |= ϕ.

For the left-to-right implication, suppose that RKA 6|= Tr(ϕ). Let K ∈ RKA with
interpretation I : RExpΣ → K such that K, I 6|= Tr(ϕ). Let X be the base of K. Then
K ⊆ 2X×X , so 2X×X , I 6|= Tr(ϕ); that is,

2X×X , I |= θ̃ ∧
∧

b∈B

(b̃+ b̃ = 1 ∧ b̃ · b̃ = 0) ∧ ¬ψ̃ .

In particular, for any b ∈ B, I(b̃)
⋃
I(b̃) = I(1), and I(b̃) ◦ I(b̃) = ∅; it follows that

I(b̃)
⋂
I(b̃) = ∅ (since R

⋂
S = R ◦ S whenever R,S ⊆ I(1)), so I(b̃) = I(1) − I(b̃).

Define the interpretation I ′ : RExpP,B → 2X×X by

I ′(p) = I(p) ,

I ′(b) = I(b̃) .

We have

I ′(b) = I ′(1) − I ′(b)

= I(1) − I(b̃)

= I(b̃) .

It follows that, for any t ∈ RExpP,B, I ′(t) = I(t̃). So, 2X×X , I ′ |= θ ∧ ¬ψ, since 2X×X , I |=

θ̃ ∧ ¬ψ̃, giving us RKAT 6|= ϕ. Therefore, RKAT |= ϕ → RKA |= Tr(ϕ), completing the
proof.

3. Main Results

3.1. Eliminating r = 0.

Definition 3.1. For a fixed set P = {p1, . . . , pn} of atomic program symbols, the universal
regular expression u is defined by

u = (p1 + · · · + pn)∗ .

We trivially have KAT |= u = uu = u∗, and a straightforward induction shows that, for
any s ∈ RExpP,B, KAT |= s ≤ u.

Our goal is the following theorem.

Theorem 3.2. Let u be the universal regular expression, let E be any finite set of hypothe-
ses, and let r, s, t ∈ RExpP,B. Then the following equivalences hold.

KAT |= E ∧ r = 0 → s = t ⇐⇒ KAT |= E→ s+ uru = t+ uru (3.1)

KAT∗ |= E ∧ r = 0 → s = t ⇐⇒ KAT∗ |= E→ s+ uru = t+ uru (3.2)

RKAT |= E ∧ r = 0 → s = t ⇐⇒ RKAT |= E→ s+ uru = t+ uru (3.3)

10 C. HARDIN

Note that the special case E = ∅ is essentially Theorem 1.1 (when E = ∅, the right
hand sides of (3.1)–(3.3) are equivalent, since the equational theories of KAT, KAT∗, and
RKAT coincide; when E 6= ∅, the right hand sides of (3.1)–(3.3) are no longer necessarily
equivalent, which prevents Theorem 3.2 from having the same form as Theorem 1.1). Note
also that for any formula ϕ in the language of KA, we have KA |= ϕ iff KAT |= ϕ, KA∗ |= ϕ
iff KAT∗ |= ϕ, etc., so Theorem 3.2 also applies to KA, KA∗, and RKA. (Alternatively,
omitting the Boolean aspects of the proof that follows would yield a proof of the analogous
theorem for KA, KA∗, and RKA.)

We prove each equivalence as a separate lemma. Fix u, E, r, s, t, as above.

Lemma 3.3.

KAT |= E ∧ r = 0 → s = t ⇐⇒ KAT |= E→ s+ uru = t+ uru

Proof. The right-to-left implication is trivial: reasoning under E ∧ r = 0, we have s =
s+ 0 = s+ uru = t+ uru = t+ 0 = t. (Note that this argument also applies to KAT∗ and
RKAT.)

For the left-to-right implication, suppose KAT |= E∧r = 0→s = t. Take any K ∈ KAT

with interpretation I such that K, I |= E. Let ⊥ = I(uru), ⊤ = I(u), noting that ⊤∗ = ⊤,
⊥ = ⊤⊥ = ⊥⊤, and ⊥⊥ ≤ ⊥. Let K ′ = {x ∈ K | x ≤ ⊤}. This is a subalgebra of K by
Lemma 2.8, since ⊤ = ⊤∗. I is an interpretation into K ′.

Define the map f : K ′ → K ′ by f(x) = x+⊥. Let L = f [K ′], the image of K ′ under f .
⊤ and ⊥ are respectively the greatest and least elements of L. Note that for any x ∈ K ′,
x⊤ ≤ ⊤, so x⊥ = x⊤⊥ ≤ ⊤⊥ = ⊥. We similarly have ⊥x ≤ ⊥.

Define

0L = ⊥ = f(0)

1L = 1 + ⊥ = f(1)

v ·L w = v · w + ⊥ = f(vw) .

Let L be the structure (L, f [B],+, ·L, ∗, ˜, 0L, 1L), in the signature of KAT, where B is

the set of tests of K ′, and the Boolean complement ˜ is defined by f̃(c) = f(c). We must
show that ˜ is well-defined. Suppose f(c) = f(d). Then

f(c) = c+ ⊥

≤ (c+ ⊥)(1 + ⊥)

= (c+ ⊥)(d+ d+ ⊥)

= (c+ ⊥)(c+ d+ ⊥) (since c+ ⊥ = f(c) = f(d) = d+ ⊥)

= cc+ cd+ c⊥ + ⊥c+ ⊥d+ ⊥⊥

≤ 0 + d+ ⊥

= f(d) .

Similarly, f(d) ≤ f(c), so f(c) = f(d). Therefore, ˜ is well-defined.
We claim that f : K ′ → L is a homomorpishm. (Note that this is different from

claiming that f : K ′ → K ′ is a homomorphism, which is not true unless ⊥ = 0.) For any

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA 11

x, y ∈ K, and c a test in K,

f(0) = 0L

f(1) = 1L

f(x+ y) = x+ y + ⊥ = x+ ⊥ + y + ⊥ = f(x) + f(y)

f(xy) = xy + ⊥

= xy + ⊥y + x⊥ + ⊥⊥ + ⊥ (since ⊥y + x⊥ + ⊥⊥ ≤ ⊥)

= (x+ ⊥)(y + ⊥) + ⊥

= f(x) ·L f(y)

f(c) = f̃(c) .

It remains to verify f(x∗) = (f(x))∗. We have

1 + (x+ ⊥)(x∗ + ⊥) = 1 + xx∗ + x⊥ + ⊥x∗ + ⊥⊥ ≤ x∗ + ⊥ ,

so the ∗-axioms give us (x + ⊥)∗ ≤ x∗ + ⊥. We have x∗ ≤ (x + ⊥)∗ and ⊥ ≤ (x + ⊥)∗

trivially, so x∗ + ⊥ ≤ (x + ⊥)∗. Therefore, f(x∗) = x∗ + ⊥ = (x + ⊥)∗ = (f(x))∗. So
f : K ′ → L is a homomorphism.

We now claim that L ∈ KAT. Since f : K ′ → L is a homomorphism and K ′ ∈ KAT, L
automatically satisfies the equational KAT axioms. We must now verify that L satisfies the
two remaining axioms, p+ q ·L x ≤ x→ q∗ ·L p ≤ x and p+ x ·L q ≤ x→ p ·L q∗ ≤ x.

Suppose that p + q ·L x ≤ x. We must show q∗ ·L p ≤ x. We have p + qx + ⊥ =
p+ q ·L x ≤ x. From p+ qx ≤ x we conclude q∗p ≤ x; combining this with ⊥ ≤ x, we have
q∗ ·L p = q∗p+ ⊥ ≤ x, as desired. Similarly, p+ x ·L q ≤ x→ p ·L q∗ ≤ x. So L ∈ KAT.

Define the interpretation J : RExpP,B → L by J(q) = f(I(q)). Since K ′, I |= E, it
immediately follows that L, J |= E. Also, J(r) ≤ J(uru) = f(I(uru)) = f(⊥) = ⊥ + ⊥ =
0L, so L, J |= r = 0. Therefore, the assumption KAT |= E ∧ r = 0 → s = t gives us
L, J |= s = t. Therefore,

I(s+ uru) = I(s) + I(uru) = I(s) + ⊥ = f(I(s)) = J(s) = J(t) = I(t+ uru) .

Thus, K, I |= s+ uru = t+ uru.

Lemma 3.4.

KAT∗ |= E ∧ r = 0 → s = t ⇐⇒ KAT∗ |= E→ s+ uru = t+ uru

Proof. The right-to-left implication is as in Lemma 3.3.
For the left-to-right implication, it suffices to verify that the construction in the proof

of Lemma 3.3 preserves ∗-continuity. Letting q(n) denote the nth power of q under ·L (with

q(0) = 1L), we have

sup
n
p ·L q(n) ·L r = sup

n
(pqnr + ⊥)

= pq∗r + ⊥

= p ·L q∗ ·L r .

(For the second equality above, one can observe that pqnr + ⊥ ≤ pq∗r + ⊥ for all n, and
that if x is any upper bound for pqnr + ⊥, then pq∗r = supn pq

nr ≤ x and ⊥ ≤ x, so
pq∗r + ⊥ ≤ x. So supn(pqnr + ⊥) = pq∗r + ⊥.)

12 C. HARDIN

Lemma 3.5.

RKAT |= E ∧ r = 0 → s = t ⇐⇒ RKAT |= E→ s+ uru = t+ uru

Proof. The right-to-left implication is as in Lemma 3.3.
For the left-to-right implication, using the above construction would require verifying

that L has a relational representation, which is not clear. Instead, we use a proof-theoretic
argument. Suppose RKAT |= E ∧ r = 0 → σ ≤ t, where σ ∈ R(s). r = 0 is equivalent to
r ≤ 0, and KAT |= t ≤ t+ uru, so RKAT |= E ∧ r ≤ 0 → σ ≤ t+ uru.

For the moment, suppose that the formulas are in the language of KA, so that we can
speak about relational proofs without worrying about tests. Let (T,A) be a relational proof
of E ∧ r ≤ 0 → σ ≤ t+ uru.

We claim that the hypothesis r ≤ 0 is never even applied in the proof! Suppose r ≤ 0
is applied at node f ∈ T (so f has one child g with Ag = CON). For r ≤ 0 to be applied
at f , there must be states v,w ∈ |Af | and ρ ∈ R(r) with ρ ∈ L(Av,w

f). A property that is
preserved in the automata of relational trees is that every state is accessible from the start
state a, and the accept state b is accessible from every state. So there exist π ∈ L(Aa,v

f)

and π′ ∈ L(Aw,b
f). Thus, we have πρπ′ ∈ L(Af); we also have πρπ′ ∈ R(uru) ⊆ R(t+ uru).

Therefore, R(t+uru)∩L(Af) 6= ∅, so f is in fact a leaf node, contradicting the assumption
that we are applying r ≤ 0 at f . (In other words, at any point in a relational tree for
E ∧ r ≤ 0 → σ ≤ t + uru where we could apply r ≤ 0, we would already have to be at a
leaf.)

So, because r ≤ 0 is never applied, (T,A) is also a relational proof of E→ σ ≤ t+ uru.
Therefore, RKA |= E→σ ≤ t+uru for all σ ∈ R(s). By Lemma 2.10, RKA |= E→s ≤ t+uru,
so RKA |= E→ s + uru ≤ t+ uru. RKA |= E→ t+ uru ≤ s + uru is similar, and we now
have RKA |= E→ s+ uru = t+ uru.

In case the formulas are not in the language of KA, we can use the translation from
Section 2.5 as follows. We use the above argument to get

RKA |= Tr(E ∧ r = 0 → s = t) ⇒ RKA |= Tr(E→ s+ uru = t+ uru) .

(The extra hypotheses introduced by the translation may be treated the same as the hy-
potheses in E. A subtle point here is that the translation introduces new program symbols,
without adding them to the universal regular expression; however, the hypotheses added by
the tranlation force the interpretations of these extra symbols to be below 1, so they could
be added to the universal regular expression without affecting the validity of any formulas
involved.) We then have

RKAT |= E ∧ r = 0 → s = t⇒ RKA |= Tr(E ∧ r = 0 → s = t)

⇒ RKA |= Tr(E→ s+ uru = t+ uru)

⇒ RKAT |= E→ s+ uru = t+ uru .

Proof of Theorem 3.2. Immediate from Lemmas 3.3–3.5.

3.2. Idempotent Syntactic Homomorphisms. We can also eliminate hypotheses of the
form cp = c (c Boolean, p atomic) in the presence of other hypotheses, but not as cleanly
as we eliminated r = 0: in this case, the remaining hypotheses will be modified.

The basic idea behind the technique was introduced in [7], which showed how to simul-
taneously eliminate hypotheses of the form cp = c and r = 0. Ernie Cohen later observed
that the portion of the proof specific to cp = c was unnecessarily complicated [3]. What

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA 13

we present here is a simplified argument, that is also more general because it works in the
presence of other hypotheses. Furthermore, in light of Theorem 3.2, we no longer need to
worry about integrating the elimination of r = 0 into the argument, since that can be done
separately.

Definition 3.6. H : RExpP,B → RExpP,B is a syntactic homomorphism if for any interpre-
tation I : RExpP,B → K (where K ∈ KAT), I ◦H : RExpP,B → K is also an interpretation.

For any syntactic homomorphism H : RExpP,B → RExpP,B, let EH be the set of hy-
potheses

{p = H(p) | p ∈ P} ∪ {b = H(b) | b ∈ B} .

Definition 3.6 is equivalent to saying that H is a homomorphism up to KAT-provable
equality. A consequence is that H is uniquely determined (up to KAT-provable equality) by
its action on P and B; the set of equations EH then, in a certain sense, captures the action
of H.

(For readers familiar with guarded strings, Definition 3.6 is equivalent to saying that
G ◦H is an interpretation, where G is the guarded-string interpretation. More abstractly,
the definition is equivalent to saying that H is a lift of an endomorphism on the guarded-
string model—that is, there is an endomorphism h on the guarded-string model such that
G ◦H = h ◦G.)

Lemma 3.7. If H : RExpP,B → RExpP,B is a syntactic homomorphism, then for any r ∈
RExpP,B,

KAT |= EH → r = H(r) .

Proof. Straightforward induction on the structure of r.

Definition 3.8. H : RExpP,B → RExpP,B is idempotent if for all r ∈ RExpP,B,

KAT |= H(r) = H(H(r)) .

Theorem 3.9. Suppose H : RExpP,B → RExpP,B is an idempotent syntactic homomor-
phism, and that E is a set of hypotheses. Let H(E) denote the set of hypotheses

{H(r) = H(r′) | r = r′ is in E} .

Then for any s, t ∈ RExpP,B and K ∈ KAT,

K |= E ∧ EH → s = t ⇐⇒ K |= H(E) →H(s) = H(t) .

Proof. For the right-to-left implication, suppose K |= H(E) → H(s) = H(t) and that we
have an intepretation I : RExpP,B → K with K, I |= E ∧ EH . Then by Lemma 3.7,
K, I |= H(E) ∧ s = H(s) ∧ t = H(t). It follows by assumption that K, I |= H(s) = H(t).
We now have K, I |= s = H(s) = H(t) = t. Therefore, K |= E ∧ EH → s = t.

For the left-to-right implication, suppose K |= E ∧ EH → s = t, and that we have an
intepretation I : RExpP,B → K with K, I |= H(E). Define I ′ : RExpP,B → K by I ′ = I ◦H.
I ′ is an interpretation by Definition 3.6. For any p ∈ P, idempotence of H gives us I ′(p) =
I(H(p)) = I(H(H(p))) = I ′(H(p)); similarly, I ′(b) = I ′(H(b)) for b ∈ B, so K, I ′ |= EH .
For any equation r = r′ in E, K, I |= H(E) gives us I ′(r) = I(H(r)) = I(H(r′)) = I ′(r′),
so K, I ′ |= E. Therefore, by the assumption K |= E ∧ EH → s = t, we have K, I ′ |= s = t,
and hence I(H(s)) = I ′(s) = I ′(t) = I(H(t)). Therefore K, I |= H(s) = H(t), as desired.

14 C. HARDIN

Corollary 3.10. Suppose F is a set of hypotheses cipi = ci, 1 ≤ i ≤ k, where pi ∈ P

are distinct, and each ci is a Boolean term. Define H : RExpP,B → RExpP,B by H(r) =
r[pi/cipi + ci], the result of substituting cipi + ci for pi in r (for each i). Then for any set
E of hypotheses, s, t ∈ RExpP,B, and K ∈ KAT, we have

K |= E ∧ F → s = t ⇐⇒ K |= H(E) → H(s) = H(t) .

Proof. It is easy to verify that H is an idempotent syntactic homomorphism.
Next, observe that KAT |= cipi = ci ↔ pi = cipi + ci. Every equation in EH is either

of the form pi = cipi + ci, or is a tautology such as b = b, so F is equivalent to EH . The
corollary now follows immediately from Theorem 3.9.

The restriction that the pi be distinct in Corollary 3.10 is not a significant imposition,
since we can combine cipi = ci and cjpj = cj , for pi = pj, into (ci+cj)pi = ci+cj. (Supposing
cp = c and dp = d, we have (c+ d)p = cp+ dp = c+ d. Supposing (c+ d)p = c+ d, we have
c ≤ c+ d, so c(c+ d) = c, giving us cp = c(c+ d)p = c(c+ d) = c; dp = d follows similarly.)

4. Conclusion and Further Questions

Statements about the semantics of a program can often be expressed as Horn formulas
in Kleene algebra with tests, and that is our primary motivation for studying the Horn
theory of Kleene algebra with tests here. Hypotheses of the form r = 0 are of particular
interest, because they can capture partial correctness assertions, which are vital to studying
the semantics of imperative programs.

While the validity of Horn formulas in Kleene algebra is not in general decidable, the
validity of equations is. We have shown how to eliminate hypotheses of the form r = 0,
even in the presence of other hypotheses; this allows us to extend any other technique for
eliminating hypotheses to include hypotheses of the form r = 0. We have also shown how
to eliminate hypotheses of the form cp = c in the presence of other hypotheses (though
not as cleanly: the remaining hypotheses might be modified). This allows us to decide the
validity of Horn formulas that have hypotheses of these forms.

The following are a few questions for further work. What other forms of hypotheses
can be eliminated? Can they be eliminated in the presence of other hypotheses? Are there
useful decision procedures for the validity of certain classes of Horn formulas that are not
based on eliminating hypotheses?

5. Acknowledgments

This work was supported in part by NSF grant CCR-0105586 and by ONR Grant
N00014-01-1-0968. The views and conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of these organizations or the US Government.

References

[1] Adam Barth and Dexter Kozen. Equational verification of cache blocking in LU decomposition us-
ing Kleene algebra with tests. Technical Report 2002-1865, Computer Science Department, Cornell
University, June 2002.

[2] Ernie Cohen. Hypotheses in Kleene algebra. Unpublished, 1994.
[3] Ernie Cohen, 2003. Private communication.
[4] Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with tests. Technical

Report 96-1598, Computer Science Department, Cornell University, July 1996.

MODULARIZING THE ELIMINATION OF r = 0 IN KLEENE ALGEBRA 15

[5] Chris Hardin. The Horn Theory of Relational Kleene Algebra. PhD thesis, Cornell University, 2005.
[6] Chris Hardin. Proof theory for Kleene algebra. In Proc. of the 20th Symp. on Logic in Computer Science

(LICS 2005), pages 290–299, Los Alamitos, CA, June 2005. IEEE.
[7] Chris Hardin and Dexter Kozen. On the elimination of hypotheses in Kleene algebra with tests. Technical

Report 2002-1879, Computer Science Department, Cornell University, October 2002.
[8] Chris Hardin and Dexter Kozen. On the complexity of the Horn theory of REL. Technical Report

2003-1896, Computer Science Department, Cornell University, May 2003.
[9] Dexter Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New York, 1991.

[10] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems, pages
427–443, 1997.

[11] Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computational Logic, 1(1):60–76,
July 2000.

[12] Dexter Kozen. On the complexity of reasoning in Kleene algebra. Information and Computation,
179:152–162, 2002.

[13] Dexter Kozen and Maria-Cristina Patron. Certification of compiler optimizations using Kleene algebra
with tests. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira,
Y. Sagiv, and P. J. Stuckey, editors, Proc. 1st Int. Conf. Computational Logic (CL2000), volume 1861
of Lecture Notes in Artificial Intelligence, pages 568–582, London, July 2000. Springer-Verlag.

[14] Dexter Kozen and Frederick Smith. Kleene algebra with tests: completeness and decidability. In D. van
Dalen and M. Bezem, editors, Proc. 10th Int. Workshop on Computer Science Logic (CSL’96), volume
1258 of Springer-Verlag Lecture Notes in Computer Science, pages 244–259, Utrecht, The Netherlands,
September 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

