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Abstract. A modified realisability interpretation of infinitary logic is formalised and
proved sound in constructive type theory (CTT). The logic considered subsumes first
order logic. The interpretation makes it possible to extract programs with simplified types
and to incorporate and reason about them in CTT.

1. Modified realisability

Modified realisability interpretation is a well-known method for giving constructive in-
terpretation of some intuitionistic logical system into a simple type structure [Tro73]. The
method is used, for instance, in Minlog and Coq for extracting programs from proofs (cf.
[Sch04] and [Let04]). These programs are to a large extent free from the computation-
ally irrelevant parts that might be present in programs arising from direct interpretations
into constructive type theory. The realisability interpretation requires a separate proof of
correctness, which is usually left unformalised.

In this note we present a completely formalised modified realisability interpretation
carried out in the proof support system Agda [Coq00]. We shall here use what is called
modified realisability with truth which has the property that anything realised is also true
in the system (Theorem 1.2). One difference from usual interpretations as in Minlog is
that the logic interpreted goes beyond first order logic: it is a (constructively) infinitary
logic, which arises naturally from the type-theoretic notion of universe. Our extension to
infinitary logic seems to be a novel result.

Agda is based on Martin-Löf constructive type theory [ML98] with an infinite hierarchy
of universes #0 = Set, #1 = Type, #2 = Kind, #3, . . . . Each of these universes is closed
under the formation of generalised inductive data types. We define in Agda an inductive
type SP of propositions, so called simple propositions, by induction: for each small type
A (i.e. a member of Set) an atomic proposition atom(A) : SP is introduced; SP contains
⊥ and is closed under propositional connectives (∧, ∨, →) and for any small type A and
any propositional function P : A → SP the quantified propositions ∀(A,P ) and ∃(A,P )
belong to SP. There is an obvious homomorphic embedding Tp of SP into the small types
defined by Tp(⊥) = ∅, Tp(atom(A)) = A, Tp(P ∨ Q) = Tp(P ) + Tp(Q), Tp(P ∧ Q) =
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Tp(P ) × Tp(Q), Tp(P → Q) = Tp(P ) → Tp(Q), Tp(∀(A,P )) = (Πx : A)Tp(P (x)) and
Tp(∃(A,P )) = (Σx : A)Tp(P (x)). We shall sometimes write (∀x : A)P (x) for ∀(A,P ) etc.

The simple propositions may be realised by terms from a simplified type structure. All
atomic propositions will be realised by the unique element elt of the unit type Un. Define
another homomorphism Cr (for crude type) from SP to small types by letting

Cr(⊥) = Un

Cr(atom(A)) = Un

Cr(P ∧Q) = Cr(P )× Cr(Q)

Cr(P ∨Q) = Cr(P ) + Cr(Q)

Cr(P → Q) = Cr(P ) → Cr(Q)

Cr(∀(A,P )) = (Πx : A)Cr(P (x))

Cr(∃(A,P )) = (Σx : A)Cr(P (x)).

The only difference from Tp is thus in the translation of absurdity and atoms. We note that
a crude type may still be a dependent type, if the simple proposition is truly infinitary. For
example, this is the case with Cr(∃(A,P )), if A = N and P (0) = ⊤, P (S(n)) = Q(n)∧P (n).

Another variant of the crude type map Cr′ will be employed in Theorem 1.7 below,
which is defined as Cr, except that

Cr′(∃(A,P )) = Un+ (Σx : A)Cr′(P (x)).

The unit type appearing in the disjoint sum ensures that the type is never empty, which is
crucial for interpreting the full absurdity axiom.

The modified realisability MR(S, r) of a simple proposition S : SP by an element of
crude type r : Cr(S) is defined as a small proposition (or small type) by the following
recursion on S. (We use the identification of propositions and types for small types, so that
∧ and ∨ are used interchangeably with × and +, respectively.)

MR(⊥, r) = ⊥

MR(atom(P ), r) = P

MR(A ∧B, r) = MR(A, r.1) ∧MR(B, r.2)

MR(A ∨B, inl(s)) = MR(A, s)

MR(A ∨B, inr(t)) = MR(B, t)

MR(A → B, r) = (Tp(A) → Tp(B))

∧ (Πs : Cr(A))(MR(A, s) → MR(B, r(s)))

MR(∀(A,P ), r) = (Πx : A)MR(P (x), r(x))

MR(∃(A,P ), r) = MR(P (r.1), r.2).

Here r.1 and r.2 denote the first and second projections.

Remark 1.1. The above constructions work in many different type-theoretic settings.
What is needed is a type universe U closed under Π, Σ, + and containing basic types
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Un and ∅. Moreover the inductive construction SPU is should be made relative to U instead
of Set. Then

TpU : SPU → U CrU : SPU → U

are defined by recursion on SPU similarly to the above, and so is

MRU : (Πs : SPU )(CrU (s) → U).

The following correctness, or conservativity, result states that each simple proposition,
which is realised, is also true in the standard interpretation.

Theorem 1.2. For any S : SP and r : Cr(S), if MR(S, r) then Tp(S).

Proof. The proof goes by induction on S. For S = ⊥ or S = atom(A) the result is immediate.
For S = A → B we took care to define realisability so that this is direct as well. Here are
two examples of the inductive step.

SupposeMR(A∨B, r). If r = inl(s), then MR(A, s) is true. By the inductive hypothesis,
we get Tp(A) and hence also Tp(A ∨B). The argument for r = inr(t) is similar.

Assume MR(∀(A,P ), r). Let a ∈ A. Then MR(P (a), r(a)), and so by the inductive
hypothesis Tp(P (a)). Since a was arbitrary we have actually Tp(∀(A,P )).

As a corollary there is an extraction theorem for ∀∃-formulae:

Corollary 1.3. For small types A and B and a simple proposition P (x, y) where x : A and
y : B, let

S = (∀x : A)(∃y : B)P (x, y).

If MR(S, r) for some r, then there is some f : A → B such that Tp(P (x, f(x))) for all x : A.

Thereby the program f extracted also satisfies its specification Tp(P (x, f(x))) within
type theory. For P (x, y) = atom(R(x, y)) this is equivalent to R(x, f(x)).

Remark 1.4. Note the difference in the ∀-case from usual interpretations, which go from
theories to theories [Tro73]. It is not required that Tp(Π(A,P )) is added to the condition,
since this follows from the correctness theorem in the present internalised version.

We present an intuitionistic infinitary propositional logic IPC−

∞
in type theory in which

quantifiers are understood as infinitary versions of conjunction and disjunction. The system
has a restriction on the absurdity axiom to atomic formulae.

A ⊢ A
A ⊢ B B ⊢ C

A ⊢ C

A ⊢ atom(P ), for any inhabited P

A ∧B ⊢ A A ∧B ⊢ B
C ⊢ A C ⊢ B
C ⊢ A ∧B

⊥ ⊢ atom(P )

A ⊢ A ∨B B ⊢ A ∨B
A ⊢ C B ⊢ C
A ∨B ⊢ C

A ∧B ⊢ C
A ⊢ B → C

A ⊢ B → C
A ∧B ⊢ C

A ⊢ P (t) (t : S)

A ⊢ ∀(S, P )

A ⊢ ∀(S, P ) t : S

A ⊢ P (t)

P (t) ⊢ A (t : S)

∃(S, P ) ⊢ A

∃(S, P ) ⊢ A t : S

P (t) ⊢ A
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Remark 1.5. Note in particular that the existential quantifier is of the weak kind, as in
first order logic. For S = ∅ each ∃(S,P ) works as absurdity constant. However, if we wish to
avoid empty sets as types of realisers, the restricted absurdity axiom ⊥ ⊢ atom(P) should be
used. The full absurdity rule can be derived from the restricted one, for those propositions
which do not include quantification over empty sets. By this procedure we can in principle
extract simply typed programs as in Minlog.

We say that a sequent A ⊢ B is MR-realised, if there is some r such that MR(A → B, r)
is true. A rule is realised if whenever all the sequents above the rule bar are realised, then
so is the sequent below the bar.

Theorem 1.6. The axioms and rules of the system IPC−

∞
are MR-realised.

To strengthen the weak absurdity axiom to the full axiom

⊥ ⊢ A

where A : SP may be arbitrary, we use the crude type map Cr′ instead and introduce MR′.
This is defined recursively as MR apart from the case for the existential quantifier:

MR′(∃(S,P ), inl(s)) = ⊥

MR′(∃(S,P ), inr(t)) = MR′(P (t.1), t.2).

Theorem 1.2 and Corollary 1.3 now go through with MR′ and Cr′ in place of MR and
Cr.

The proof of soundness of the logical rules and axioms is similar as for Theorem 1.6,
with the exception for the verification of the absurdity rule, and the left existential rule.
This requires a special device. Namely a function which to each P : SP assigns an element,
called element(P ), of Cr′(P ) is necessary. This function is defined straightforwardly by
recursion on P . Some key clauses are

element(∃(A,P )) = inl(elt)

element(∀(A,P )) = λx.element(P (x))

element(A ∨B) = inl(element(A)).

Observe that no such element need to exist when employing the first definition of Cr, e.g.
in the case Cr(∃(∅, P )) = (Σx : ∅)Cr(P (x)).

Theorem 1.7. The axioms and rules of the full system IPC∞ (IPC−

∞
and the full absurdity

axiom) are MR′-realised.

We mention some useful mathematical axioms that are realisable:

Lemma 1.8. For each propositional function P : N → SP the induction scheme

P (0) ∧ (∀x : N)[P (x) → P (S(x))] → (∀x : N)P (x)

is both MR-realised and MR′-realised.
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Lemma 1.9. For any binary propositional function P : A × B → SP the type-theoretic
choice principle

(∀x : A)(∃y : B)P (x, y) → (∃g : A → B)(∀x : A)P (x, g(x))

is MR-realisable. In case B is inhabited, the principle is MR′-realisable as well.

Proof. The non-trivial part is to prove the second statement. Suppose b0 : B and r : Cr′(S)
and p : MR′(S, r), where S = (∀x : A)(∃y : B)P (x, y). Define an auxiliary operation
f(x,w) : (Σy : B)Cr′(P (x, y)) where x : A and w : Cr′((∃y : B)P (x, y)), by cases

f(x, inl(u)) = 〈b0, element(P (x, b0))〉

f(x, inr(y)) = y.

The realiser k for the implication is now given by

k(r) = 〈λx.f(x, r(x)).1, λx.f(x, r(x)).2〉

To prove it is a realiser, use ⊥-elimination for the case r(x) = inl(u).

The following result is often useful to verify realisability.

Lemma 1.10. If the Tp-translation of the proposition

(∀x1 : A1) · · · (∀xn : An)[Q(x1, . . . , xn) → P (x1, . . . , xn)]

is true and P is atomic or ⊥, then the proposition is MR-realised as well as MR′-realised.

Proof. The realising function is trivial for such a proposition: (λx1) · · · (λxn)(λr)elt. The-
orem 1.2, a special property of modified realisability with truth, is necessary here.

Many stronger “transfer principles” are possible to establish. See [BBS02] for further
results and references.

2. An Example

We test the formalisation and extraction procedure on a simple example, which is due to
Berger and Schwichtenberg. The extracted function computes Fibonacci numbers efficiently
by “memoization.”

A binary predicate G on natural numbers is given. From the axioms

(Ax1) G(0, 0)
(Ax2) G(1, 1)
(Ax3) (∀m,k, ℓ)[G(m,k) ∧G(S(m), ℓ) → G(S(S(m)), k + ℓ)].

one derives by induction and intuitionistic logic the proposition

(P) (∀x)(∃k, ℓ)G(x, k) ∧G(S(x), ℓ).

Thus there is some realiser f so that

MR(Ax1&Ax2&Ax3 ⊢ P, f).

The extracted program p (which is fib prog in the Appendix) for computing the Fibonacci
sequence is then given by

p(x) = f(nc, x).1

where nc (nocontent in the Appendix) is the trivial realiser for Ax1&Ax2&Ax3. After a
normalisation process one gets the program:
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p x =

(case x of {

(zero) -> t;

(succ x’) -> h x’ g (rec

(\(z::Nat) -> C)

x’

t

(\(x’’::Nat) -> \(y::C) -> h x’’ g y));}).1

where

C = Sigma Nat (\(k::Nat) -> Sigma Nat (\(l::Nat) -> Unit))

h v p q = <q.2.1;

<case q.2.1 of {(zero) -> q.1;

(succ u) -> succ (q.1 + u);

}

;<q.2.2.2; e>>>

t = <zero; <succ zero; <e;e>>>

g = \(x,y,z::Nat) -> \(h,j::Unit) -> e

e = elt@_

Remark 2.1. Note that all truly dependent types have disappeared. The type C is really
the type N× (N× Un).

The normalised program has been computed using the partial normalisation procedure
of Agda on selected subexpressions, and was thus not completely automatic. We also intro-
duced the abbreviations C, h, t, g, e by hand. Some syntactical sugar for lambda expressions
and pairs is added.

3. The formalisation

The formalisation have been carried out in Agda/IAgda (version 2003-08-09) with the
aid of the graphical user interface Alfa. The relevant files are available at the URL

www.math.uu.se/~palmgren/modif
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