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ABSTRACT. Most parameterized complexity classes are defined in termsof a parameterized version
of the Boolean satisfiability problem (the so-calledweighted satisfiability problem). For example,
Downey and Fellow’s W-hierarchy is of this form. But there are also classes such as the A-hierarchy,
that are more naturally characterised in terms ofmodel-checking problemsfor certain fragments of
first-order logic.

Downey, Fellows, and Regan (1998) were the first to establisha connection between the two
formalisms by giving a characterisation of the W-hierarchyin terms of first-order model-checking
problems. We improve their result and then prove a similar correspondence between weighted sat-
isfiability and model-checking problems for the A-hierarchy and the W∗-hierarchy. Thus we obtain
very uniform characterisations of many of the most important parameterized complexity classes in
both formalisms.

Our results can be used to give new, simple proofs of some of the core results of structural param-
eterized complexity theory.

1. INTRODUCTION

Parameterized complexity theory allows a refined complexity analysis of problems whose input
consists of several parts of different sizes. Such an analysis is particularly well-suited for a certain
type of logic based algorithmic problems such as model-checking problems in automated verifica-
tion or database query evaluation. In such problems one has to evaluate a formula of some logic in a
finite structure. Typical examples are the evaluation of formulas of linear time temporal logic (LTL)
in finite Kripke structures or formulas of first-order logic (FO; relational calculus in database ter-
minology) in finite relational structures. Throughout thispaper we adopt the termmodel-checking
problemsfrom verification when referring to problems of this generaltype. It has turned out that
usually the complexity of these problems is quite high; for example, for both LTL and FO, it is
PSPACE-complete [15, 17]. This high complexity of model-checking problems is usually caused
by large and complicated formulas. However, in the practical situations in which model-checking
problems occur one usually has to evaluate a small formula ina very large structure. In our examples
from verification and database theory this is obvious. So an exponential time complexity may still
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be acceptable as long as the exponential term in the running time only involves the size of the input
formula and not the much larger size of the input structure. Lichtenstein and Pnueli [14] argue along
these lines to support their LTL-model-checking algorithmwith a running time of2O(k) · n, where
k is the size of the input formula andn the size of the input structure. While this argument just
follows algorithmic common sense, parameterized complexity theory, or more precisely the theory
of parameterized intractability, comes into play if one wants to argue that no algorithm with a com-
parable running time exists for FO-model-checking. Indeed, no algorithm for FO-model-checking
with a running time better than the trivialnO(k) is known, but classical complexity theory does not
provide the tools to show that no better algorithm exists.

So far we have argued that parameterized complexity theory is useful for analysing certain
algorithmic problems from logic. But it turns out that the same logical problems are also very
useful to lay a foundation for parameterized complexity theory, and this is what the present paper is
about.

Before describing our results, let us briefly recall the basic notions of parameterized complexity
theory. Instances of a parameterized problem consist of twoparts, which we callinput andparam-
eter. The idea is that in the instances occurring in practice the parameter can be expected to be
small, whereas the input may be very large. For example, an instance of aparameterized model-
checking problemconsists of a structure and a formula, and we take the formulato be the parameter.
Let n denote the size of the input of a parameterized problem andk the size of the parameter. A
parameterized problem isfixed parameter-tractableif it can be solved in timef(k) · p(n) for an
arbitrary computable functionf and a polynomialp. FPT denotes the class of all fixed-parameter
tractable problems. Just as the Boolean satisfiability problem can be seen as the most basic in-
tractable problem in the classical theory of NP-completeness, a natural parameterization of the
satisfiability problem serves as a basis for the theory of parameterized intractability: Theweighted
satisfiability problemfor a class of Boolean formulas asks whether a given formula has a satisfying
assignment in which preciselyk variables are set toTRUE; herek is treated as the parameter. Unfor-
tunately, it turns out that the complexity of the weighted satisfiability problem is much less robust
than that of the unweighted problem. For example, the weighted satisfiability problem for formulas
in conjunctive normal form does not seem to have the same complexity as the weighted satisfiability
problem for arbitrary formulas. So instead of getting just one class of intractable problems, we get
a whole family of classes of intractable parameterized problems each having a complete weighted
satisfiability problem. The most basic of these classes formthe so-calledW-hierarchy.

Downey, Fellows, and Regan [7] gave an alternative characterisation of the W-hierarchy, which
resembles Fagin’s [9] and Stockmeyer’s [16] characterisation of the class NP and the polynomial
hierarchy. They proved that for each level W[t] of the W-hierarchy there is a familyΣt,u[τ ], for
u ≥ 1, of classes of first-order formulas of a certain vocabularyτ such that the model-checking
problem for eachΣt,u[τ ] is in W[t], and conversely each problem in W[t] can be reduced to the
model-checking problem forΣt,u[τ ] for someu ≥ 1. In [11] we improved this characterisation by
showing thatu can be taken to be1 andτ any vocabulary, which is not unary. In other words, we
showed that model-checking forΣt,1[τ ] is W[t]-complete for any vocabularyτ that is not binary.
This result is the starting point for our present investigation. We further improve the result by
showing that the vocabularyτ can be taken to be part of the input and does not have to be fixed
in advance. This gives us a very robust characterisation of the W-hierarchy in terms of first-order
model checking problems. To underline the significance of this characterisation, we show that
some of the most important structural results on the W-hierarchy, the previously known proofs of
which are very complicated (cf. Part II of Downey and Fellow’s monograph [6]), can be derived as
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easy corollaries of our results. Moreover, we derive a strengthening of the so-called monotone and
antimonotone collapse.

The correspondence between weighted satisfiability problems and model-checking problems
for first-order logic can be extended beyond the W-hierarchy. We establish such a correspondence
for the W∗-hierarchy (introduced in [8]) and the A-hierarchy (introduced in [11]). For each of
these hierarchies a characterisation either in terms of weighted satisfiability problems or in terms of
model-checking problems was known before; and for each of them we provide the counterpart.

The W∗-hierarchy is a small variation of the W-hierarchy. As the classes of the W-hierarchy,
the classes of the W∗-hierarchy are defined via the weighted satisfiability problem; we give a char-
acterisation in terms of model-checking problems of first-order logic. It is an open problem whether
the W-hierarchy and the W∗-hierarchy coincide. Downey, Fellows, and Taylor were ableto prove
that W[1] = W∗[1] [8] and W[2] = W∗[2] [5]. The latter result has a highly non-trivial proof; here
we are able to derive W[1] = W∗[1] and W[2] = W∗[2] as simple corollaries of our characterisation
of the W∗-hierarchy. This gives a very transparent proof of these results that also clearly shows why
it only works for the first two levels.

The A-hierarchy, which may be viewed as the parameterized analogue of the polynomial hier-
archy, is defined in terms of the parameterized halting problem for alternating Turing machines. In
[11], we gave a characterisation of the hierarchy in terms ofmodel-checking problems for fragments
of first-order logic; in this characterisation the levels ofthe A-hierarchy correspond to levels of quan-
tifier alternation in first-order formulas. Here we give a propositional characterisation in terms of
thealternating weighted satisfiability problem(which may be viewed as the parameterized version
of the satisfiability problem for quantified Boolean formulas). The overall picture that evolves is
that in parameterized complexity theory we have two different sources of increasing complexity:
the alternation of propositional connectives (leading to the W-hierarchy) and quantifier alternation
(leading to the A-hierarchy). Thus we actually obtain a 2-dimensional family of parameterized
classes which we call theA-matrix (see Figure 1 on page 30). Each class of this matrix has natural
characterisations in terms of an alternating weighted satisfiability problem and a model-checking
problem for a fragment of first-order logic. Let us remark that in classical complexity, only quanti-
fier alternation is relevant, because the classes are closedunder Boolean connectives. Thus there is
only the (1-dimensional) polynomial hierarchy.

In a last section, we use certain normal forms established here and a known characterisation
of the AW-hierarchy (introduced in [1]) by first-order model-checking to give a simple proof of the
collapse of the AW-hierarchy to its first-level [1]. Actually, we slightly strengthen the result of [1].
An application of this stronger result can be found in [12].

On a more technical level, our main contribution is a new and greatly simplified proof technique
for establishing the correspondence between weighted satisfiability problems and model-checking
problems. This technique enables us to obtain all our results in a fairly uniform way. A major
problem in structural parameterized complexity theory is the lacking robustness of most classes of
intractable parameterized problems, leading to the abundance of classes and hierarchies of classes.
Maybe the technically most difficult result of this paper is anormalisation lemma for the relevant
fragments of first-order logic which shows that the vocabulary can be treated as part of the input of
a model-checking problem.

Acknowledgements.We are grateful to Catherine McCartin, Rod Downey, and Mike Fellows for
various discussions with both authors on the characterisation of the A-hierarchy by alternating
weighted satisfiability problems. These discussions and our desire to understand the W∗-hierarchy
motivated us to start the research that led to this paper.
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2. PRELIMINARIES

In this section we recall some definitions and fix our notations.

2.1. Fixed-Parameter Tractability. A parameterized problemis a setQ ⊆ Σ∗×Π∗, whereΣ and
Π are finite alphabets. If(x, y) ∈ Σ∗ ×Π∗ is an instance of a parameterized problem, we refer tox
as theinput and toy as theparameter.

To illustrate our notation, let us give one example of a parameterized problem, theparameter-
ized clique problemp-CLIQUE:

p-CLIQUE

Input: A graphG.
Parameter: k ∈ N (say, in binary).

Problem: Decide ifG has a clique of sizek.

Definition 2.1. A parameterized problemQ ⊆ Σ∗ × Π∗ is fixed-parameter tractable, if there is
a computable functionf : N → N, a polynomialp, and an algorithm that, given a pair(x, y) ∈
Σ∗ × Π∗, decides if(x, y) ∈ Q in at mostf(|y|) · p(|x|) steps.

FPT denotes the complexity class consisting of all fixed-parameter tractable parameterized
problems.

Occasionally we use the termfpt-algorithm to refer to an algorithm that takes as input pairs
(x, y) ∈ Σ∗ × Π∗ and has a running time bounded byf(|y|) · p(|x|) for some computable function
f : N → N and polynomialp. Thus a parameterized problem is in FPT if it can be decided byan fpt-
algorithm. However, we use the term fpt-algorithm mostly when referring to algorithms computing
mappings.

Complementing the notion of fixed-parameter tractability,there is a theory of parameterized
intractability. It is based on the following notion of parameterized reduction:

Definition 2.2. An fpt-reductionfrom the parameterized problemQ ⊆ Σ∗×Π∗ to the parameterized
problemQ′ ⊆ (Σ′)∗ × (Π′)∗ is a mappingR : Σ∗ × Π∗ → (Σ′)∗ × (Π′)∗ such that:

(1) For all(x, y) ∈ Σ∗ × Π∗: (x, y) ∈ Q ⇐⇒ R(x, y) ∈ Q′.
(2) There is a computable functiong : N → N such that for all(x, y) ∈ Σ∗ × Π∗, say with

R(x, y) = (x′, y′), we have|y′| ≤ g(|y|).
(3) R can be computed by an fpt-algorithm.

We writeQ ≤fpt Q′ or simplyQ ≤ Q′, if there is an fpt-reduction fromQ toQ′ and set

[Q]fpt := {Q′ | Q′ ≤fpt Q}.

For a class C of parameterized problems, we let

[C]fpt :=
⋃

Q∈C

[Q]fpt.
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2.2. Relational Structures and First-order Logic. A (relational) vocabularyτ is a finite set of
relation symbols. Each relation symbol has anarity. Thearity of τ is the maximum of the arities of
the symbols inτ . A structureA of vocabularyτ , or τ -structure(or, simply structure), consists of a
setA called theuniverse, and an interpretationRA ⊆ Ar of eachr-ary relation symbolR ∈ τ . We
synonymously writēa ∈ RA or RAā to denote that the tuplēa ∈ Ar belongs to the relationRA.
For example, we view adirected graphas a structureG = (G,EG), whose vocabulary consists of
one binary relation symbolE. G is an (undirected)graph, if EG is irreflexive and symmetric. We
define thesizeof a τ -structureA to be the number

‖A‖ := |A| +
∑

R∈τ

arity(R) · (|RA| + 1).

‖A‖ is the size of a reasonable encoding ofA (see [10] for details). For example, the size of a graph
with n vertices andm edges isO(n+m).

The class of all first-order formulas is denoted by FO. They are built up from atomic formulas
using the usual boolean connectives and existential and universal quantification. Recall thatatomic
formulasare formulas of the formx = y orRx1 . . . xr, wherex, y, x1, . . . , xr are variables andR
is anr-ary relation symbol. Fort ≥ 1, let Σt denote the class of all FO-formulas of the form

∃x11 . . . ∃x1k1∀x21 . . . ∀x2k2 . . . Qxt1 . . . Qxtkt
ψ,

whereQ = ∀ if t is even andQ = ∃ otherwise, and whereψ is quantifier-free.Πt-formulas are
defined analogously starting with a block of universal quantifiers. Lett, u ≥ 1. A formulaϕ is Σt,u,
if it is Σt and all quantifier blocks after the leading existential block have length≤ u. For example,
a formula

∃x1 . . . ∃xk∀y∃z1∃z2ψ,

whereψ is quantifier-free, is inΣ3,2 (for everyk ≥ 1).
If A is a structure,a1, . . . , an are elements of the universeA of A, andϕ(x1, . . . , xn) is a

first-order formula whose free variables are amongx1, . . . , xn, then we writeA |= ϕ(a1, . . . , an)
to denote thatA satisfiesϕ if the variablesx1, . . . , xn are interpreted bya1, . . . , an, respectively.

If Φ is a class of first-order formulas, thenΦ[τ ] denotes the class of all formulas of vocabulary
τ in Φ andΦ[r], for r ∈ N, the class of all formulas inΦ whose vocabulary has arity≤ r.

If againΦ is a class of first-order formulas, thenp-MC(Φ) denotes the(parameterized) model-
checking problem for formulas inΦ , i.e., the parameterized problem

p-MC(Φ)
Input: A structureA.

Parameter: A sentenceϕ in Φ
Problem: Decide ifA satisfiesϕ.

Often, the natural formulation of a parameterized problem in first-order logic immediately gives
an fpt-reduction to a model-checking problem, e.g.,

– p-CLIQUE ≤ p-MC(Σ1[2]), since the existence of a clique of sizek is expressed by the
Σ1-sentence

∃x1 . . . ∃xk
∧

1≤i<j≤k

Exixj.

– p-DOMINATING SET ≤ p-MC(Σ2,1[2]). Here,p-DOMINATING SET is the problem that
asks if a graphG (the input) has a dominating set of sizek (the parameter); so we want to
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know if G satisfies theΣ2,1-sentence

∃x1 . . . ∃xk∀y(
∧

1≤i<j≤k

¬xi = xj ∧
∨

1≤i≤k

(y = xi ∨ Eyxi)).

2.3. Propositional logic. Formulas of propositional logic are important ingredientsin the defini-
tions of various complexity classes of intractable parameterized problems. We recall a few notions
and fix our notations: Formulas of propositional logic are built up from propositional variables
X1,X2, . . . by taking conjunctions, disjunctions, and negations. The negation of a formulaα is
denoted by¬α. We distinguish betweensmall conjunctions, denoted by∧, which are just con-
junctions of two formulas, andbig conjunctions, denoted by

∧

, which are conjunctions of arbitrary
finite sets of formulas. Analogously, we distinguish between small disjunctions, denoted by∨, and
big disjunctions, denoted by

∨

. A formula issmall if it neither contains big conjunctions nor big
disjunctions. Byα = α(Z1, . . . , Zm) we indicate that the variables inα are amongZ1, . . . , Zm.

Let V be a set of propositional variables. We identify each assignment

S : V → {TRUE, FALSE}

with the set{Xi ∈ V | S(Xi) = TRUE} ∈ 2V . Theweightof an assignmentS ∈ 2V is |S|, the
number of variables set toTRUE. A propositional formulaα is k-satisfiable(wherek ∈ N), if there
is an assignment for the set of variables ofα of weightk satisfyingα.

For a setΓ of propositional formulas, theweighted satisfiability problemWSAT(Γ) for formulas
in Γ is the following parameterized problem:

WSAT(Γ)
Input: A propositional formulaα ∈ Γ.

Parameter: k ∈ N

Problem: Decide ifα is k-satisfiable.

The depthof a formula is the maximum number of nested (big and small) conjunctions and
disjunctions appearing in this formula. Theweftof a formula is the maximum number of nested big
conjunctions and big disjunctions appearing in it. Hence, the weft of a formula always is less than
or equal to its depth. Fort, d ∈ N with t ≤ d, we set

Ωt,d := {α | propositional formulaα has weft≤ t and depth≤ d}.

For t ≥ 0 andd ≥ 1 define the setsΓt,d and∆t,d by induction ont (here, by(λ1 ∧ . . . ∧ λr) we
mean the iterated small conjunction((. . . (λ1 ∧ λ2) . . .) ∧ λr)):

Γ0,d := {(λ1 ∧ . . . ∧ λr) | λ1, . . . , λr literals andr ≤ d},
∆0,d := {(λ1 ∨ . . . ∨ λr) | λ1, . . . , λr literals andr ≤ d},

Γt+1,d := {
∧

Π | Π ⊆ ∆t,d},
∆t+1,d := {

∨

Π | Π ⊆ Γt,d}.

If in the definition ofΓ0,d and∆0,d we require that all literals are positive (negative) we obtain
the sets denoted byΓ+

t,d and∆+
t,d (Γ−

t,d and∆−
t,d), respectively. Clearly,Γt,d ⊆ Ωt,t+d and∆t,d ⊆

Ωt,t+d.

3. NORMALISATION

We have introduced two logically defined families of parameterized problems, the first based on
model-checking problems for classes of first-order sentences and the second based on the weighted
satisfiability problem for classes of propositional formulas. The main results of this paper establish
a tight correspondence between the two approaches; in fact,we present formalisms that allow to
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translate from one family of parameterized problems into the other. To prove these results, it is
convenient to first simplify each of the two sides separately.

3.1. Propositional Normalisation. The following lemma has been used by Downey, Fellows, and
others as the first step in numerous fpt-reductions (cf. [6]).

Lemma 3.1(Propositional Normalisation). Let d ≥ t ≥ 0. Then there is a polynomial time algo-
rithm that computes for every formula inΩt,d an equivalent formula in∆t+1,2d .

Proof (sketch):We can restrict our attention to formulas inΩt,d with negation symbols only in front
of atomic formulas. We proceed by induction ont: If α ∈ Ω0,d, thenα contains at most2d variables
and we just compute an equivalent formula in disjunctive normal form. Fort ≥ 1, we use the
distributive law:

(
∨

i∈I

αi ∧
∨

j∈J

βj) is equivalent to
∨

(i,j)∈I×J

(αi ∧ βj).

Note that the algorithm in Lemma 3.1 is polynomial, because the depth of the formulas is bounded
by a fixed constantd. Obviously, no such normalisation is possible for formulasof arbitrary depth.
Even if the depth of the formula is treated as a parameter, thereduction is not fixed parameter
tractable: the formulaα′ ∈ ∆t+1,2d equivalent to a formulaα ∈ Ωt,d may have sizeΩ(|α|d).
However, as we shall see in Section 5.1, if we treat the depth as parameter we can at least prove a
weaker normalisation lemma (Lemma 5.2).

Corollary 3.2. For all d ≥ t ≥ 0,

WSAT(Ωt,d) ≤ WSAT(∆t+1,2d).

Remark 3.3. Instead of propositionalformulas, Downey and Fellows always work with Boolean
circuits (cf. [6]). However, since we are only dealing with circuits and formulas of bounded depth,
this does not really make a difference. We can always transform circuits into formulas in the most
straightforward way. More precisely, if we define depth and weft of a circuit in the natural way and
denote byCt,d the class of all circuits of weftt and depthd, then we get the following results:

(1) Let d ≥ t ≥ 0. Then there is a polynomial time algorithm that computes forevery circuit
in Ct,d an equivalent formula inΩt,d.

(2) Let t ≥ 0. Then there is an fpt-algorithm that computes for every circuit in Ct,k an equiva-
lent formula inΩt,k. Herek is treated as the parameter.

3.2. First-order normalisation. The normalisation results for first-order logic presented in this
subsection are concerned with the vocabulary of the formulas in parameterized model-checking
problems. Actually, we prove that it is irrelevant, whetherwe consider arbitrary formulas or we
restrict ourselves to a fixed vocabulary, as long as it contains at least one binary relation symbol.
This may not sound very surprising, but is not easy to prove and was left open in our earlier paper
[11].

The main results of this section are summarised in the following First-Order Normalisation
Lemma. To state the lemma we need two more definitions: For allt, u ≥ 1, we call aΣt,u-formula

∃x1 . . . ∃xk∀ȳ1 . . . Qtȳtϕ

strict if no atomic subformula ofϕ contains more than one of the variablesx1, . . . , xk. We denote
the class of all strictΣt,u-formulas by strict-Σt,u. A Σt-formula issimple, if its quantifier-free part
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is a conjunction of literals in caset is odd, and is a disjunction of literals in caset is even.1 We
denote the class of all simpleΣt-formulas by simple-Σt.

Lemma 3.4(First-Order Normalisation Lemma).
(1) For t ≥ 2, u ≥ 1, p-MC(Σt,u) ≤ p-MC(strict-Σt,1[2]).
(2) For all t ≥ 1, p-MC(Σt) ≤ p-MC(simple-Σt[2]).
(3) p-MC(FO)≤ p-MC(FO[2]) ([11]).

The First-Order Normalisation Lemma is the only result of this section used in the rest of the
paper. Hence the reader not interested in its proof may pass to Section 4 directly.

It will be useful to first recall the proof of (3) (from [11]) . We then point out the difficulties
in proving (2) by the same simple technique and resolve thesedifficulties by Lemmas 3.5–3.7. The
proof of (1) is also complicated and will be carried out in several steps in Lemmas 3.8–3.10.

Proof of Lemma 3.4(3):Let (A, ϕ) be an instance ofp-MC(FO). We construct a structureAb and a
sentenceϕb ∈ FO[2] such that(A |= ϕ ⇐⇒ Ab |= ϕb).

Let τ be the vocabulary ofA. We let Ab be thebipartite structureor incidence structure
associated withA: Let τb be the vocabulary of arity 2 that contains a unary relation symbol PR
for everyR ∈ τ and binary relation symbolsE1, . . . , Es, wheres is the arity ofτ . The universe
Ab of Ab consists ofA together with a new vertexbR,ā for all R ∈ τ and ā ∈ RA. The relation
EAb

i holds for all pairs(ai, bR,a1...ar), andPAb

R := {bR,ā | ā ∈ RA}. Let ϕb be the FO-sentence
equivalent to theτ ′-formula obtained fromϕ by replacing every atomic formulaRx1 . . . xr by (the
simpleΣ1-formula)

∃y(PRy ∧ E1x1y ∧ . . . ∧ Erxry). (3.1)

Then clearly(A |= ϕ ⇐⇒ Ab |= ϕb). To see that this construction yields an fpt-reduction, note
that‖Ab‖ = O(‖A‖).

Why does the same construction not also work to getp-MC(Σt) ≤ p-MC(Σt[2])? Because
if, say, aΣ1 formula contains a negated atom¬Rx1 . . . xr, then it will be replaced by a formula
equivalent to

∀y(¬PRy ∨ ¬E1x1y ∨ . . . ∨ ¬Erxry) (3.2)

and we obtain a formula that is no longer equivalent to aΣ1-formula. At first sight it seems that
we can easily resolve this problem by just extending the bipartite structureAb by additional points
b¬R,ā for all ā 6∈ RA and relation symbolsP¬R. Unfortunately, in general the size of the resulting
structure is not polynomially bounded in the size ofA, since the vocabulary is not fixed in advance.

We denote byΣ+
t the class of allΣt-formulas without negation symbols and byΣ−

t the class
of all Σt-formulas in which there is a negation symbol in front of every atom and there are no
other negation symbols. Using the transition(A, ϕ) 7→ (Ab, ϕb) we derive part (1) and (2) of the
following lemma:

Lemma 3.5. (1) If t ≥ 1 is odd, then

p-MC(Σ+
t ) ≤ p-MC(Σ+

t [2]) and p-MC(simple-Σ+
t ) ≤ p-MC(simple-Σ+

t [2]).

(2) If t ≥ 1 is even, then

p-MC(Σ−
t ) ≤ p-MC(Σ−

t [2]) and p-MC(simple-Σ−
t ) ≤ p-MC(simple-Σ−

t [2]).

(3) If t ≥ 1 andr ≥ 1, thenp-MC(simple-Σt[r]) ≤ p-MC(simple-Σt[2]).

1SimpleΣ1-formulas are also called conjunctive queries with negation.

8



Proof. If t is odd andϕ ∈ Σ+
t (is simple), then the last quantifier block inϕ is existential (and

the quantifier-free part is a conjunction of literals). Since ϕ only has positive literals, inϕb this
last existential block can absorb the quantifiers introduced by (3.1) (and only further conjunctions
are added to the quantifier-free part). Similarly, ift is even andϕ ∈ Σ−

t (is simple) , then the last
quantifier block inϕ is universal (and the quantifier-free part is a disjunction of literals) and inϕb
this block can absorb the quantifiers introduced by (3.2) (and only further disjunctions are added to
the quantifier-free part).

It remains to prove (3). Fixr ≥ 1. Given any structureA in a vocabularyτ of arity r, we
obtain the structureA′ by adding the complement of the relations ofA, more precisely: We set
τ ′ := τ ∪ {Rc | R ∈ τ} ∪ {6=} and we obtainA′ from A setting(Rc)A

′
:= Aarity(R) \ RA and

6=A′
:= {(a, b) | a, b ∈ A, a 6= b}. Thus,‖A′‖ = O(‖A‖r). The transition fromA to A′ allows to

replace in any formula positive by negative literals and vice versa, thus showing that

p-MC(Σ+
t [r]) ≡fpt p-MC(Σt[r]) ≡

fpt p-MC(Σ−
t [r])

and
p-MC(simple-Σ+

t [r]) ≡fpt p-MC(simple-Σt[r]) ≡
fpt p-MC(simple-Σ−

t [r]),

which yields part (3) by what we already have proven.

A reduction to the positive (resp. negative) fragment is accomplished by:

Lemma 3.6. (1) If t ≥ 1 is odd, thenp-MC(Σt) ≤ p-MC(Σ+
t ).

(2) If t ≥ 1 is even, thenp-MC(Σt) ≤ p-MC(Σ−
t ).

Proof. Let (A, ϕ) be an instance ofp-MC(Σt). We may assume that all negation symbols inϕ are
in front of atomic subformulas. We give an fpt-reduction mapping (A, ϕ) to a pair(A′, ϕ′) with
(A |= ϕ ⇐⇒ A′ |= ϕ′), whereϕ′ is aΣ+

t -formula if t is odd and aΣ−
t -formula if t is even.

Let τ be the vocabulary ofA. Theτ ′-structureA′ will be an expansion ofA. It has an ordering
<A′

of its universeA′ = A. If R ∈ τ is r-ary, inτ ′ we haver-ary relation symbolsRf andRl, and
a 2 · r-ary relation symbolRs. RA′

f andRA′

l are singletons consisting of the first and last tuple in

RA, respectively, in the lexicographic ordering ofr-tuples induced by<A′
(and are empty in case

RA is empty). The relationRA′

s contains(ā, b̄) iff (RAā, RAb̄, ā is less than̄b, and no tuple in
RA is between̄a and b̄ in the lexicographic ordering ofr-tuples). Letȳ <r z̄ denote a quantifier-
free formula of vocabularyτ ′ without the negation symbol expressing thatȳ is less than̄z in the
lexicographic ordering ofr-tuples.

Now assume thatt is odd. Then inϕ we replace every negative occurrence¬Rx1 . . . xr of R
by

∃y1 . . . ∃yr∃z1 . . . ∃zr((Rf ȳ ∧ x̄ <r ȳ) ∨ (Rsȳz̄ ∧ ȳ <r x̄ ∧ x̄ <r z̄) ∨ (Rlz̄ ∧ z̄ <r x̄))

and every negative occurrence¬x = y by (x < y ∨ y < x). The resulting formula is easily seen to
be equivalent to aΣ+

t -formulaϕ′. If t is even, we replace every positive occurrenceRx1 . . . xr of
R in ϕ by

¬∃y1 . . . ∃yr∃z1 . . . ∃zr((Rf ȳ ∧ x̄ <r ȳ) ∨ (Rsȳz̄ ∧ ȳ <r x̄ ∧ x̄ <r z̄) ∨ (Rlz̄ ∧ z̄ <r x̄))

and every positive occurrencex = y by (¬x < y ∧¬y < x). We obtain a formula that is equivalent
to aΣ−

t -formulaϕ′.
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The last gap in a proof of Lemma 3.4(2), namely the transitionto the simple fragments, will be
closed by the following result:

Lemma 3.7. For t ≥ 1,
p-MC(Σt[2]) ≤ p-MC(simple-Σt[3]).

Proof. To simplify the notation we fix the parity oft, say,t is even. Let(A, ϕ) be an instance of
p-MC(Σt[2]). Thus, the vocabularyτ of A has arity≤ 2 and we can assume that the quantifier-free
part of the sentenceϕ is in conjunctive normal form,

ϕ = ∃ȳ1∀ȳ2∃ȳ3 . . . ∀ȳt
∧

i∈I

∨

j∈J

λij

with literals λij . First we replace the conjunction
∧

i∈I in ϕ by a universal quantifier. For this
purpose, we add to the vocabularyτ unary relation symbolsRi for i ∈ I and consider an expansion
B := (A, (RB

i )i∈I) of A, where(RB
i )i∈I is a partition ofA into nonempty disjoint sets. Then,

A |= ϕ ⇐⇒ B |= ∃ȳ1∀ȳ2∃ȳ3 . . . ∀ȳt∀y
∨

i∈I

∨

j∈J

(Riy ∧ λij).

Since the arity ofτ is ≤ 2, everyλij contains at most two variables, say,λij = λij(xij , yij). We
expandB to a structureC by adding, for alli ∈ I andj ∈ J , a relationT C

ij of arity 3 containing all
triples(a, b, c) such thatRB

i a andB |= λij(b, c). Then,

A |= ϕ ⇐⇒ C |= ∃ȳ1∀ȳ2∃ȳ3 . . . ∀ȳt∀y
∨

i∈I

∨

j∈J

Tijyxijyij.

The formula on the right hand side is simple, so this equivalence yields the desired reduction.

Proof of Lemma 3.4(2):By applying Lemma 3.6, Lemma 3.5, Lemma 3.7, and Lemma 3.5 oneby
one, we obtain the following chain of reductions, say, for event,

p-MC(Σt) ≤ p-MC(Σ−
t ) ≤ p-MC(Σt[2]) ≤ p-MC(simple-Σt[3]) ≤ p-MC(simple-Σt[2]).

When trying to prove Lemma 3.4(1) we are facing another difficulty: For example, consider
the caset = 3. If we apply the reduction used to prove Lemma 3.4(2) to a formula in Σ3,u, the
resulting formula, even though equivalent to a formula inΣ3[2], is not necessarily equivalent to a
formula inΣ3,u[2].

The crucial property we exploit in our proof of Lemma 3.4(1) is that in aΣt,u-formula the
number of variables not occurring in the first, existentially quantified, block of variables is bounded
by (t− 1) ·u. We proceed in three steps: We start withp-MC(Σt,u). In Lemma 3.8 we show how to
pass fromΣt,u to Σt,u′ [r] for someu′, r; in Lemma 3.9 we see that we can chooser = 2. Finally,
we getu′ = 1 by Lemma 3.10.

Lemma 3.8. For t ≥ 2 andu ≥ 1,

p-MC(Σt,u) ≤ p-MC(Σt,u+1[t · u]).

Proof. Let (A, ϕ) be an instance ofp-MC(Σt,u). Say,ϕ = ∃x1 . . . ∃xkψ, whereψ begins with a
universal quantifier. Setq := (t − 1) · u and letȳ = y1, . . . , yq contain the variables inϕ distinct
from x1, . . . , xk. We shall define a structureA′ and aΣt,u+1[t · u]-sentenceϕ′ with (A |= ϕ ⇐⇒
A′ |= ϕ′).
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Let Λ be the set of all atomic subformulas ofϕ. Here the notationλ(xi1 , . . . , xiℓ , ȳ) indicates
thatxi1 , . . . , xiℓ are the variables fromx1, . . . , xk in λ. The vocabularyτ ′ of A′ contains a unary
relation symbolO (the “old element relation”), binary relation symbolsE1, . . . , Ek (the “component
relations”) and for everyλ(xi1 , . . . , xiℓ , ȳ) ∈ Λ a unary relation symbolWλ and a(1 + q)-ary
relation symbolRλ. Thus the arity ofτ ′ is at most1+q ≤ t ·u. For everyλ ∈ Λ anda1, . . . , aℓ ∈ A
with

A |= ∃ȳλ(a1, . . . , aℓ, ȳ) (3.3)

we have inA′ a new elementw(λ, a1, . . . , aℓ), a “witness” for (3.3). We let

A′ := A ∪
{

w(λ, a1, . . . , aℓ)
∣

∣ λ(xi1 , . . . , xiℓ , ȳ) ∈ Λ, ā = (a1, . . . , aℓ) ∈ Aℓ, A |= ∃ȳλ(ā, ȳ)
}

,

OA′

:= A

EA′

i :=
{

(ai, w(λ, a1, . . . , aℓ))
∣

∣ w(λ, a1, . . . , aℓ) ∈ A′
}

(for 1 ≤ i ≤ k).

For everyλ ∈ Λ we let:

WA′

λ :=
{

w(λ, a1, . . . , aℓ)
∣

∣ ā ∈ Aℓ andA |= ∃ȳλ(ā, ȳ)
}

,

RA′

λ :=
{(

w(λ, a1, . . . , aℓ), b1, . . . , bq
) ∣

∣ ā ∈ Aℓ, b̄ ∈ Aq, andA |= λ(ā, b̄)
}

.

This completes the definition ofA′. Note that‖A′‖ ≤ O(‖A‖q · |ϕ|).
For everyλ(xi1 , . . . , xiℓ , ȳ) ∈ Λ let χλ(xi1 , . . . , xiℓ , zλ) be a formula expressing:

“Either zλ ∈Wλ is the witness forxi1 , . . . , xiℓ or zλ /∈ Wλ and there is no witness
in Wλ for xi1, . . . , xiℓ .”

That is, we let

χλ(xi1 , . . . , xiℓ , zλ) := (Wλzλ ∧
ℓ

∧

j=1

Ejxijzλ) ∨ (¬Wλzλ ∧ ∀y¬(Wλy ∧
ℓ

∧

j=1

Ejxijy)).

Then, forā ∈ Aℓ, b̄ ∈ Aq, andc ∈ A′, we have:

If A′ |= χλ(ā, c) then(A |= λ(ā, b̄) ⇐⇒ A′ |= Rλzλȳ(cb̄)).

Let χ :=
∧

λ∈Λ χλ. Let ψ′ be the formula obtained fromψ by replacing every atomic subformula
λ(xi1 , . . . , xiℓ , ȳ) byRλzλȳ and relativizing all quantifiers toO. Finally, we let

ϕ′ := ∃x1 . . . ∃xk∃(zλ)λ∈Λ(Ox1 ∧ . . . ∧Oxk ∧ ψ
′ ∧ χ).

Then
A |= ϕ ⇐⇒ A′ |= ϕ′.

Sinceχ is equivalent to a formula of the form∀zχ′ with quantifier-freeχ′, the quantifier∀z can be
added to the first block ofψ′ (recall thatt ≥ 2). Thus, the formulaϕ′ is equivalent to a formula in
Σt,u+1[t · u].
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Lemma 3.9. For t ≥ 2 andu, r ≥ 1,

p-MC(Σt,u[r]) ≤ p-MC(strict-Σt,u+1[2]).

Proof. Let (A, ϕ) be an instance ofp-MC(Σt,u[r]). We shall define a structureA′ of vocabularyτ ′

of arity 2 and a strict-Σt,u+1-sentenceϕ′ such that (A |= ϕ ⇐⇒ A′ |= ϕ′).
For notational simplicity, let us assume thatt ≥ 2 is even. Suppose that

ϕ = ∃x1 . . . ∃xk∀ȳ1∃ȳ2 . . . ∀ȳt−1ψ,

whereψ is quantifier-free and̄yi = (y(i−1)u+1, . . . , yiu). Let ȳ = (y1, . . . , y(t−1)u). Let Λ be the
set of all atomic subformulas ofϕ, τ the vocabulary ofA, andr0 := max{r, (t − 1) · u}.

The vocabularyτ ′ contains the unary relations symbolsT1, . . . , Tr0 , the binary relation symbols
E1, . . . , Er0 , and a binary relation symbolSλ for everyλ ∈ Λ.

The universe of the structureA′ is A′ := A ∪ A2 ∪ . . . ∪ Ar0 . The relation symbols are
interpreted as follows:

– For1 ≤ i ≤ r0, TA′

i = Ai.
– For1 ≤ i ≤ r0,

EA′

i := {(ai, (a1, . . . , as)) | i ≤ s ≤ r0, (a1, . . . , as) ∈ As}.

– For everyλ(xi1 , . . . , xis , ȳ) ∈ Λ we let

SA′

λ :=
{

(ā, b̄)
∣

∣ ā ∈ As, b̄ ∈ A(t−1)u, andA |= λ(ā, b̄)
}

.

Note that the size ofA′ isO(|A|r0(t−1)u) and thus polynomial in the size ofA.
To define the formulaϕ′, for everyλ(xi1 , . . . , xis , ȳ) ∈ Λ we introduce a new variablexλ and

let
χλ(x̄, xλ) := Tsxλ ∧E1xi1xλ ∧ . . . ∧ Esxisxλ.

Furthermore, we letχ =
∧

λ∈Λ χλ. We introduce another new variabley representing the whole
tuple ȳ and let

ξ(ȳ, y) := T(t−1)uy ∧

(t−1)u
∧

i=1

Eiyiy.

Finally, we let
η(v1, . . . , vu) := T1v1 ∧ . . . ∧ T1vu

and letϕ′′ be the formula

∃x1 . . . ∃xk∃(xλ)λ∈Λ

(

χ∧

∀ȳ1

(

η(ȳ1) → ∃ȳ2(η(ȳ2) ∧ . . . ∧ ∀ȳt−1(η(ȳt−1) → ∀y(ξ(ȳ, y) → ψ′)) . . .)
)

)

,

whereψ′ is the formula obtained fromψ by replacing eachλ ∈ Λ by the atomSλxλy. It is easy to
see that (A |= ϕ ⇐⇒ A′ |= ϕ′′) and thatϕ′′ is equivalent to a formula inΣt,u+1[2].

However, it is not obvious how to translateϕ′′ to a formula in strict-Σt,u+1[2]. The problematic
atoms are those of the formEixjxλ in the formulaχ. To resolve the problem, we introduce a new
variablez and let, forλ(xi1 , . . . , xis , ȳ) ∈ Λ,

χ′
λ(x̄, xλ) = Tsxλ ∧ ∀z(z = xλ → E1xi1z ∧ . . . ∧ Esxisz).

We letχ′ =
∧

λ∈Λ χ
′
λ andϕ′′′ the formula obtained fromϕ′′ by replacing the subformulaχ by χ′.

It is easy to transformϕ′′′ into a formula in strict-Σt,u+1[2].
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The following lemma, the last step of our proof, is a the “strict version” of a result of [11]. For
the reader’s convenience, we sketch the simple proof:

Lemma 3.10. For t ≥ 2 andu, r ≥ 1,

p-MC(strict-Σt,u[r]) ≤ p-MC(strict-Σt,1[r]).

Proof (sketch):For simplicity we lett = 3. Let (A, ϕ) be an instance ofp-MC(strict-Σ3,u[r]). Let
τ be the vocabulary ofA. The sentenceϕ has the form

∃x1 . . . ∃xk∀ȳ∃z̄ψ

with quantifier-freeψ and with|ȳ| = |z̄| = u. We shall construct an equivalent instance(A′, ϕ′) of
p-MC(strict-Σt,1[r]).

We setA′ := A ∪ Au. The new unary relation symbolT is interpreted inA′ by TA′
:= Au.

For every atomic subformulaλ of ϕ, sayλ = Rx2y3z6y4x2, we introduce a new relation symbol
Rλ and set

RA′

λ abc iff a ∈ A, b, c ∈ Au andRAab3c6b4a, whereb3, b4, andc6 are

the third and fourth component ofb and the sixth component ofc, respectively.

Finally, we setϕ′ := ∃x1 . . . ∃xk∀y∃z(
∧

1≤i≤k ¬Txi ∧ (Ty → (Tz ∧ ψ′))), whereψ′ is obtained
from ψ by replacing any atomic subformulaλ = Rx2y3z6y4x2 byRλx2yz.

Proof of Lemma 3.4(1):Combining Lemmas 3.8, 3.9, and 3.10, we obtain the followingchain of
reductions:

p-MC(Σt,u) ≤ p-MC(Σt,u+1[t · u]) ≤ p-MC(strict-Σt,u+2[2]) ≤ p-MC(strict-Σt,1[2]).

Remark 3.11. The First-Order Normalisation Lemma shows that for the model-checking problems
for the various classes of first-order formulas we are interested in, it suffices to consider binary vo-
cabularies. However, these vocabularies may still containarbitrarily many unary and binary relation
symbols. We can further strengthen the results to vocabularies with just one binary relation sym-
bol and also restrict the input structures in the model-checking problems to be (simple undirected)
graphs.

For every classΦ of formulas we consider the following restriction ofp-MC(Φ[2]):

p-MC(Φ[GRAPH])
Input: A graphG.

Parameter: A sentenceϕ in Φ
Problem: Decide ifG satisfiesϕ.

The following strengthening of Lemma 3.4(3) is already proved in [11]:

(3′) p-MC(FO) ≤ p-MC(FO[GRAPH]).

Furthermore, it is proved in [11] that for everyt ≥ 1,

p-MC(Σt[2]) ≤ p-MC(Σt[GRAPH]).

Together with Lemma 3.4(2) this yields

(2′) For all t ≥ 1, p-MC(Σt) ≤ p-MC(Σt[GRAPH]).

The corresponding strengthening of (1) is not so obvious, and we still do not know a direct proof.
Surprisingly, the result can be shown by taking a detour via propositional logic, as we will see in
the next section (cf. Corollary 4.15).
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4. BACK AND FORTH BETWEEN PROPOSITIONAL AND FIRST-ORDER LOGIC: THE BASIC

MACHINERY

In their most basic form, the results of this section go back to Downey, Fellows, and Regan
[7]. We have (slightly) improved these results in an earlierpaper [11], and here we give another
improvement. Moreover, we present a new proof, which we believe is significantly simpler than
those known for the weaker versions of the theorems. The proofs of all results presented in the later
sections of this paper are based on the ideas developed here.

As an application, we show some of the core results of Downey and Fellows structure the-
ory for the W-hierarchy; in particular, the “NormalisationTheorem” and its sharpened version for
monotone/anti-monotone formulas (cf. Chapter 12 of [6]) are easy corollaries of Theorem 4.13.

4.1. From propositional to first-order logic. In this subsection we show how to reduce weighted
satisfiability problems for propositional formulas to model-checking problems for fragments of first-
order logic. For this purpose we need a known algorithm computing minimal covers in hypergraphs.
We recall the fact.

LetH = (H,E) be ahypergraph, i.e.,H is a set, the set ofpointsof H, andE is a set of non-
empty subsets ofH, the set ofedgesof H. A subsetX ⊆ H coversan edgee ∈ E, if X ∩ e 6= ∅;
X coversH, if X covers all edges ofH. If X, but no proper subset ofX, coversH, thenX is a
minimal coverof H. Thearity of a hypergraph is the maximum cardinality of its edges.

Lemma 4.1. There is an algorithm that, given a hypergraphH of arity at mostd, computes in time
O(k · dk · ‖H‖) a list of all minimal covers ofH of size at mostk.

Proof. The algorithm is a straightforward generalisation of a standard algorithm (using the bounded
search tree technique, cf. [6]) showing that the parameterized vertex cover problem is in FPT.

Let H = (H,E) be as in the statement of the lemma. Lete1, . . . , em be an enumeration ofE.
The algorithm builds a labelledd-ary tree of depth≤ k. The labels of the nodes are pairs(X, i),
whereX ⊆ H with |X| ≤ k and0 ≤ i ≤ m. Label(X, i) gives the information thatX covers the
edgese1, . . . , ei, but notei+1 (if i+ 1 ≤ m).

The construction of the tree is by induction: The label of theroot is (∅, 0). Suppose that a
nodet is labelled by(X, i). If i = m or if the depth oft is k, thent has no child. Otherwise, let
ei+1 = {h1, . . . , hs}. Nodet has childrent1, . . . , ts. For 1 ≤ j ≤ s, the label oftj is (Xj , ij),
whereXj = X ∪ {hj} andij is the maximum index such thatXj coverse1, . . . , eij .

One easily verifies that any setY of at mostk points is a cover ofH if and only if there is a leaf
of the tree labelled by(X,m) with X ⊆ Y . Thus, to obtain the list of all minimal covers of size
≤ k, the algorithm checks for every leaf labelled by(X,m), whetherX is a minimal cover. For
this purpose, it simply tests for each of the at mostk subsets obtained by removing a single element
fromX if it is a cover.

In a first step (Lemma 4.2) we give the translation of formulasin Γ1,d to first-order logic. Recall
that a set{X1, . . . ,Xk} of propositional variables represents the assignment thatsetsX1, . . . ,Xk

to TRUE and all other variables toFALSE.

Lemma 4.2. For all d, k ≥ 1 and for all formulasα(X1, . . . ,Xm) ∈ Γ1,d there are

– a structureA = A∧

,α(X1,...,Xm),d,k with universeA := {1, . . . ,m},
– a quantifier-free formulaψ = ψ∧

,d,k(x1, . . . , xk) that only depends ond andk, but not on
α
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such that the mapping(α, d, k) 7→ (A, ψ) is computable in timekd+2·dk·p(|α|) for some polynomial
p and such that for pairwise distinctm1, . . . ,mk ∈ A

{Xm1
, . . . ,Xmk

} satisfiesα ⇐⇒ A |= ψ(m1, . . . ,mk).

Proof. Let d ≥ 1, α(X1, . . . ,Xm) ∈ Γ1,d, andk ∈ N be given, say,

α =
∧

i∈I

δi, where eachδi is the disjunction of≤ d literals.

We may assume that everyδi has the form

¬Xi1 ∨ . . . ∨ ¬Xir ∨Xj1 ∨ . . . ∨Xjs (4.1)

with 0 ≤ r, s and1 ≤ r + s ≤ d and with pairwise distinctXi1 , . . . ,Xjs .
We call t := (r, s) the typeof δi. The structureA has universeA := {1, . . . ,m}; for every

typet = (r, s), the structureA contains ther-ary relation

V A
t :=

{

(i1, . . . , ir)
∣

∣ there arej1, . . . , js such that clause (4.1) occurs inα
}

.

The structureA contains further relations that will be defined later.
The formulaψ will have the form

∧

t typeψt, whereψt = ψt(x1, . . . , xk) will express inA that
Xx1

, . . . ,Xxk
satisfies every clause of typet of α. If t = (r, 0) set

ψt :=
∧

1≤i1,...,ir≤k

¬Vtxi1 . . . xir .

Let t = (r, s) with s 6= 0. Fix (i1, . . . , ir) ∈ V A
t . Then, for1 ≤ m1, . . . ,mk ≤ m,

the assignmentXm1
, . . . ,Xmk

satisfies all clauses¬Xi1 ∨ . . . ∨ ¬Xir ∨ Xj1 ∨
. . . ∨Xjs in α

if and only if

Xm1
, . . . ,Xmk

satisfies¬Xi1 ∨ . . . ∨ ¬Xir or {m1, . . . ,mk} is a cover of the
hypergraphH (= Ht(i1, . . . , ir)) := (H,E) with

H := {1, . . . ,m} and

E := {{j1, . . . , js} | ¬Xi1 ∨ . . . ∨ ¬Xir ∨Xj1 ∨ . . . ∨Xjs occurs inα}.

Let C1, . . . , Cdk be an enumeration (with repetitions if necessary) of the minimal covers ofH of
size≤ k. View everyCi as a sequence of lengthk (with repetitions if necessary). Foru = 1, . . . , dk

andℓ = 1, . . . , k add toA the(r + 1)-ary relationsLA
t,u,ℓ, where

LA
t,u,ℓ := {(i1, . . . , ir, v) | v is theℓth element of theuth coverCu of Ht(i1, . . . , ir)}

(if Ht(i1, . . . , ir) has no cover of size≤ k, thenLA
r,u,ℓ contains no tuple of the form(i1, . . . , ir, v)).

Now the preceding equivalence shows that we can set

ψt :=
∧

1≤i1,...,ir≤k

(Vtxi1 . . . xir →
∨

1≤u≤dk

∧

1≤ℓ≤k

∨

1≤j≤k

Lt,u,ℓxi1 . . . xirxj).

It is easy to see thatA andψ can be computed fromα, d, andk in time kd+2 · dk · p(α) for some
polynomialp; the only nontrivial part is the computation of the list of minimal covers, which is
taken care of by Lemma 4.1.
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Corollary 4.3. For all d, k ≥ 1 and for all formulasα(X1, . . . ,Xm) ∈ ∆1,d there are

– a structureA = A∨

,α(X1,...,Xm),d,k with universeA := {1, . . . ,m},
– a quantifier-free formulaψ = ψ∨

,d,k(x1, . . . , xk) that only depends ond andk, but not on
α

such that the mapping(α, d, k) 7→ (A, ψ) is computable in timekd+2·dk·p(|α|) for some polynomial
p and for pairwise distinctm1, . . . ,mk ∈ A

{Xm1
, . . . ,Xmk

} satisfiesα ⇐⇒ A |= ψ(m1, . . . ,mk).

Proof. Exploiting the fact that¬α is equivalent to a formulaα′ in Γ1,d, we letA be the structure
constructed in Lemma 4.2 for the formulaα′ andψ∨

,d,k := ¬ψ∧

,d,k.

Corollary 4.4. WSAT(Γ1,d ∪ ∆1,d) ≤ p-MC(Σ1).

Proof. Given an instance(α, k) of WSAT(Γ1,d ∪∆1,d), compute(A, ψ) as in Lemma 4.2 or Corol-
lary 4.3. Let

ϕ = ∃x1 . . . ∃xk
(

∧

1≤i<j≤k

xi 6= xj ∧ ψ
)

.

Then
α is k-satisfiable⇐⇒ A |= ϕ,

which gives the desired reduction.

Lemma 4.2 and Corollary 4.3 show how to translate formulas inΓ1,d ∪ ∆1,d to quantifier-free
formulas. When translating propositional formulas of a weighted satisfiability problem into first-
order formulas of a model-checking problem, every additional big conjunction and big disjunction
leads to a universal and an existential quantifier, respectively. The following proposition is based on
this observation.

Proposition 4.5. For all d, t ≥ 1

WSAT(∆t+1,d) ≤ p-MC(Σt,1).

Proof. Fix d, t ≥ 1. Let (α, k) be an instance of WSAT(∆t+1,d). We shall construct a structureA
and aΣt,1-sentenceϕ such that

α is k-satisfiable⇐⇒ A |= ϕ. (4.2)

Let the variables ofα beX1, . . . ,Xm. We assume thatt is even, the case “t is odd” is handled
analogously. Thusα is of the form

∨

i1∈I1

∧

i2∈Ii1

. . .
∧

it∈Ii1...it−1

δ(i1,...,it),

where theδ̄i ∈ ∆1,d. A simple argument shows that we can pass to an equivalent formulaα′ with
|α′| ≤ |α|t of the form

∨

i1∈I1

∧

i2∈I2

. . .
∧

it∈It

δ(i1,...,it),

so we assume thatα itself already has this form. Let̄I := I1 × . . . × It.
The structureA consists of two parts: The first part is the treeT of heightt obtained from the

“parse tree” ofα by removing all nodes that correspond to small subformulas of α. The edge relation
of this tree, directed from the root to the leaves (which by definition have height 0), is represented
by the binary relationEA. Moreover, we add a unary relation symbol Root and let RootA be the
singleton containing the root ofT . Note that each leaf ofT corresponds to a subformulaδ̄i, for
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someī ∈ Ī, of α. We denote the leaf corresponding toδ̄i by ℓ̄i. Each node ofT of height s
corresponds to a subformula contained inΓs+1,d if s is odd or∆s+1,d if s is even.

The universe of the second part ofA is {1, . . . ,m} (the set of indices of the variables ofα). For
every ī ∈ Ī, let Aī = A∨

,δī(X1,...,Xm),d,k be the structure defined in Corollary 4.3. Essentially, the
second part ofA simply consists of allAīs. However, allAīs have the same universe{1, . . . ,m}.
To keep them apart, we “tag” the tuples belonging to a relation in Aī with the leaf ℓ̄i of T that
corresponds toδ̄i. More precisely, for eachr-ary relation symbolR in the vocabulary of theAīs,
the vocabulary ofA contains an(r + 1)-ary relation symbolR′. We let

(R′)A :=
{

(ℓ̄i, a1, . . . , ar)
∣

∣ ī ∈ Ī , (a1, . . . , ar) ∈ RAī
}

.

Finally, to be able to tell the two parts ofA apart, we add one unary relation symbolV and let
V A := {1, . . . ,m}. This completes the definition ofA.

We now define, by induction ons ≥ 0, formulasψs(y, x1, . . . , xk) such that for every node
b of T of heights, corresponding to a subformulaβ of α, and all pairwise distincta1, . . . , ak ∈
{1, . . . ,m} we have

{Xa1 , . . . ,Xak
} satisfiesβ ⇐⇒ A |= ψs(b, a1, . . . , ak). (4.3)

ψ0(y, x1, . . . , xk) is the formula obtained from the formulaψ∨

,d,k of Corollary 4.3 by replacing
each atomic subformulaRx1 . . . xr by R′yx1 . . . xr. Then fors = 0, (4.3) follows from our con-
struction ofA and Corollary 4.3.

For evens ≥ 0, we let

ψs+1(y, x1, . . . , xk) := ∀z
(

Eyz → ψs(z, x1, . . . , xk)
)

,

and (4.3) follows from the fact that all nodes of heights+ 1 correspond to conjunction of formulas
corresponding to nodes of heights. Similarly, for odds ≥ 0 we let

ψs+1(y, x1, . . . , xk) := ∃z
(

Eyz ∧ ψs(z, x1, . . . , xk)
)

.

Finally, we let

ϕ := ∃x1 . . . ∃xk∃y
(

k
∧

i=1

V xi ∧
k

∧

i,j=1
i6=j

xi 6= xj ∧ Rooty ∧ ψt(y, x1, . . . , xk)
)

.

It is easy to see thatϕ is equivalent to a formula inΣt,1.

We consider a more general weighted satisfiability problem,in which the depth of the formula
is not fixed but treated as a parameter. The preceding proof yields:

Corollary 4.6. P ≤ p-MC(Σt,1), whereP is the parameterized problem

Input: k ∈ N andα ∈ ∆t+1,k.
Parameter: k.

Problem: Decide ifα is k-satisfiable.

For later reference, let us state the following lemma, whichis an immediate consequence of the
preceding proof:

Lemma 4.7. Let t, d ≥ 1. Then for allk ≥ 1 and for all formulasα(X1, . . . ,Xm) ∈ ∆t+1,d there
are

– a structureA with a unary relationV A = {1, . . . ,m},
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– a formulaψ(x1, . . . , xk) of the form∃y∃y1∀y2∃y3 . . . Qtytψ
′, whereQt = ∃ if t is odd and

Qt = ∀ if t is even andψ′ is quantifier free, and the formulaψ only depends ont, d, k, but
not onα,

such that the mapping(α, k) 7→ (A, ψ) is fixed-parameter tractable and for pairwise distinct
m1, . . . ,mk ∈ V A,

{Xm1
, . . . ,Xmk

} satisfiesα ⇐⇒ A |= ψ(m1, . . . ,mk).

Together with Lemma 3.1, Proposition 4.5 immediately yields:

Corollary 4.8. For all d ≥ t ≥ 1 we have

WSAT(Ωt,d) ≤ p-MC(Σt,1).

4.2. From first-order to propositional logic. We turn to a reduction from model-checking prob-
lems for the fragmentsΣt,u to weighted satisfiability problems for propositional formulas. We shall
see that single quantifiers (or blocks of quantifiers of bounded length) translate into big disjunctions
and conjunctions; the leading unbounded block yields the propositional variables, and its length
yields the parameter.

We start by collecting some simple facts.
Let A be a set andk ≥ 1. For all a ∈ A and1 ≤ i ≤ k, letXi,a be a propositional variable

with Xi,a 6= Xj,b for (i, a) 6= (j, b). LetV be the set of all these propositional variables. Let us call
an assignmentS ∈ 2V functional if for eachi there is exactly onea such thatXi,a is TRUE. The
proof of the following lemma is straightforward.

Lemma 4.9. LetV = {Xi,a | 1 ≤ i ≤ k, a ∈ A}.

(1) For

χ− :=
∧

1≤i≤k
a,b∈A,a6=b

(¬Xi,a ∨ ¬Xi,b) and χ+ :=
k

∧

i=1

∨

b∈A

Xi,b

and for every assignmentS ⊆ V of weight|S| = k we have

S satisfiesχ− ⇐⇒ S is functional ⇐⇒ S satisfiesχ+.

Observe thatχ− ∈ Γ−
1,2 andχ+ ∈ Γ+

2,1. In addition, we may as well considerχ− as a

formula inΓ−
2,1.

(2) LetA be a structure with universeA, b̄ ∈ As, 1 ≤ i ≤ k, andψ(xi, ȳ) a formula in the
vocabulary ofA with ȳ = y1 . . . ys. For

ξ
∨

(A, ψ, b̄) :=
∨

a∈A
A|=ψ(a,b̄)

Xi,a and ξ
∧

(A, ψ, b̄) :=
∧

a∈A
A6|=ψ(a,b̄)

¬Xi,a

and for every functional assignmentS ⊆ V with, say,S(Xi,a0) = TRUE we have

S satisfiesξ
∨

(A, ψ, b̄) ⇐⇒ A |= ψ(a0, b̄) ⇐⇒ S satisfiesξ
∧

(A, ψ, b̄).

Proposition 4.10. Let t ≥ 2.

(1) If t is even thenp-MC(Σt,1) ≤ WSAT(Γ+
t,1).

(2) If t is odd thenp-MC(Σt,1) ≤ WSAT(Γ−
t,1).
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Proof. Let t ≥ 2 and(A, ϕ) an instance ofp-MC(Σt,1). By the First-Order Normalisation Lemma
we may assume thatϕ ∈ strict-Σt,1. We shall define a propositional formulaα of the desired
syntactical form such that

A |= ϕ ⇐⇒ α is k-satisfiable. (4.4)

Suppose that
ϕ = ∃x1 . . . ∃xk∀y1∃y2 . . . Qt−1yt−1ψ,

whereQt−1 = ∃ if t is odd andQt−1 = ∀ if t is even andψ is quantifier-free. We shall make further
assumptions onϕ when we branch depending ont later. Let ȳ := (y1, . . . , yt−1). Without loss
of generality we assume thatψ is in negation normal form. We letΛ denote the set of all literals
occurring inψ (deviating from our earlier proofs, whereΛ denoted a set of atoms). Recall that,
becauseϕ is in strict-Σt,1, at most one of the variablesx1, . . . , xk occurs in a literalλ ∈ Λ.

The formulaα will have propositional variablesXi,a for all a ∈ A and 1 ≤ i ≤ k. The
intended meaning ofXi,a is: “First-order variablexi takes valuea.” Let V be the set of all these
propositional variables.

Now assume thatt is even. Without loss of generality we may assume thatψ =
∧ℓ
i=1

∨mi

j=1 λij
is in conjunctive normal form, i.e.,

ϕ = ∃x1 . . . ∃xk∀y1∃y2 . . . ∀yt−1

ℓ
∧

i=1

mi
∨

j=1

λij,

We use the formulasχ+ andξ
∨

(. . .) of the preceding lemma and let

α := χ+ ∧
∧

b1∈A

∨

b2∈A

. . .
∧

bt−1∈A

ℓ
∧

i=1

mi
∨

j=1

ξ
∨

(A, λij , b1, . . . , bt−1).

Clearly,α satisfies (4.4) and can easily be transformed into an equivalentΓ+
t,1-formula.

For oddt ≥ 3 we proceed similarly, except that we assume thatψ is in disjunctive normal form
and that we replaceχ+ andξ

∨

(. . .) by χ− andξ
∧

(. . .), respectively.

Proposition 4.11.
p-MC(Σ1) ≤ WSAT(Γ−

1,2).

It is straightforward to derive this proposition from the well known result thatp-MC(Σ1[2])
is reducible to the parameterized clique problem (cf. e.g. [13]). However, to keep this paper self-
contained we give a direct proof.

Proof of Proposition 4.11:Let (A, ϕ) be an instance ofp-MC(Σ1). By the First-Order Normalisa-
tion Lemma we may assume that the vocabulary ofϕ is binary. We may further assume thatϕ is of
the form

∃x1 . . . ∃xk

ℓ
∨

p=1

mp
∧

q=1

λpq,

where eachλpq is a literal.
In a first step of the proof we shall define formulasα1, . . . , αℓ ∈ Γ−

1,2 such that for1 ≤ p ≤ ℓ,

A |= ∃x1 . . . ∃xk

mp
∧

q=1

λpq ⇐⇒ αp is k-satisfiable. (4.5)

Thus
A |= ϕ ⇐⇒ existsp, 1 ≤ p ≤ ℓ : αp is k-satisfiable. (4.6)
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Let us fixp. We letVp be the set of propositional variablesXp
i,a for 1 ≤ i ≤ k anda ∈ A. Letχ−

p

be the corresponding formulaχ− according to Lemma 4.9(1) forV = Vp.
Similarly asχ

∧

(. . .) in Lemma 4.9(2), we define, for1 ≤ q ≤ mp,

ξpq :=
∧

a1,a2∈A
A6|=λpq(a1,a2)

(¬Xp
i1,a1

∨ ¬Xp
i2,a2

),

where we assume that the free variables ofλpq are amongxi1 , xi2 . Recall that the vocabulary of
ϕ is binary, thus a literal never has more than two free variables. For every functional assignment
{Xp

1,a1
, . . . ,Xp

k,ak
} ∈ 2Vp we have

{Xp
1,a1

, . . . ,Xp
k,ak

} satisfiesξpq ⇐⇒ A |= λpq(ai1 , ai2).

Thus

αp := χ−
p ∧

mp
∧

q=1

ξpq

satisfies (4.5).

By (4.6), it remains to define a formulaα such that

α is k-satisfiable⇐⇒ existsp, 1 ≤ p ≤ ℓ : αp is k-satisfiable. (4.7)

Let V := V1 ∪ . . . ∪ Vℓ. We call an assignmentS ∈ 2V good if there is ap, 1 ≤ p ≤ ℓ such that
S ⊆ Vp. The formula

χ :=
∧

1≤i1,i2≤k
a1,a2∈A

1≤p1<p2≤ℓ

(¬Xp1
i1,a1

∨ ¬Xp2
i2,a2

)

says that an assignment is good. Note that ifS ⊆ Vp thenS satisfiesαp′ for all p′ 6= p, because
variables only occur negatively inαp′ . ThusS satisfies

∧ℓ
r=1 αr if and only if S satisfiesαp.

Therefore,

α := χ ∧
ℓ

∧

p=1

αp

satisfies (4.7). Altogether,(A, ϕ) 7→ (α, k) is an fpt-reduction.

4.3. The W-hierarchy. We apply the results of the preceding two sections to the W-hierarchy. By
definition thetth class of this hierarchy consists of all parameterized problems fpt-reducible to the
weighted satisfiability problem WSAT(Ωt,d) for somed:

Definition 4.12. For t ≥ 1, W[t] := [{WSAT(Ωt,d) | d ≥ t}]fpt.

Putting all together, we get:

Theorem 4.13.For t ≥ 1,

W[t] = [p-MC(Σt,1[2])]
fpt = [{p-MC(Σt,u) | u ≥ 1}]fpt.

Moreover,

– if t is even,W[t] = [WSAT(Γ+
t,1)]

fpt;

– if t ≥ 3 is odd,W[t] = [WSAT(Γ−
t,1)]

fpt;

– W[1] = [WSAT(Γ−
1,2)]

fpt.
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Proof. All statements are immediate consequences of preceding results, e.g.:

WSAT(Ωt,d) ≤ WSAT(∆t,2d) (by Lemma 3.1)

≤ p-MC(Σt,1[2]) (by Proposition 4.5 and Lemma 3.4)

≤ WSAT(Γt,2) (by Proposition 4.10 and Proposition 4.11).

Now, Proposition 4.5 yields:

Corollary 4.14. For all t, d ≥ 1,

WSAT(∆t+1,d) ∈ W[t].

If we identify W[0] with FPT, then the statement of the preceding corollary is true for t = 0,
too; in fact, there is even a polynomial time algorithm deciding for given(α, k) with α ∈ ∆1,d and
k ∈ N if α is k-satisfiable.

The following corollary fills the gap that was left open in Remark 3.11.

Corollary 4.15. For all t ≥ 2, u ≥ 1,

p-MC(Σt,u) ≤ p-MC(Σt,1[GRAPH]).

Proof. Let t ≥ 2, sayt = 3. By Theorem 4.13, it suffices to show

WSAT(Γ−
t,1) ≤ p-MC(Σt,1[GRAPH]).

Fix α ∈ Γ−
t,1 andk ∈ N. Let G be the graph obtained from the tree ofα by removing the leaves,

identifying the nodes corresponding to negative literals with the same variable and adding two cycles
of length 3 to its rootr. We can assume that inG all branches from the root to a leaf ofG have the
same length, namely 3. We say that pairwise distinctw1, w2, w3, w4 withEw1w2, Ew2w3, Ew3w4,
with w1 = r and withw4 = x “witness thatx is a leaf”. Then, as formulaϕ we can choose aΣ3,1-
formula equivalent to

∃x1 . . . ∃xk∃x∃u1∃u2∃v1∃v2∃w̄1 . . . ∃w̄k(“x, u1, u2 andx, v1, v2 are distinct cycles”

∧
∧

1≤i<j≤k

xi 6= xj ∧ “w̄1 witness thatx1 is a leaf”∧ . . .∧ “w̄k witness thatxk is a leaf”

∧∀y((Exy → ∃z(Eyz ∧ z 6= x ∧ ¬Ezx1 ∧ . . . ∧ ¬Ezxk))).

Clearly,(α, k) ∈ WSAT(Γ−
t,1) ⇐⇒ G |= ϕ.

Theorem 4.13 shows that for the weighted satisfiability problem for Γt,d the relevant class of
formulas are the monotone ones in caset is even, and the antimonotone ones in caset is odd. The
so-called monotone and antimonotone collapse theorem due to Downey and Fellows [3, 4] states
that for allt, d ≥ 1,

WSAT(Γ−
2·t,d) ∈ W[2 · t− 1] and WSAT(Γ+

2·t+1,d) ∈ W[2 · t].

We get the following stronger result:

Theorem 4.16.For all t, d ≥ 1,

WSAT(∆−
2·t+1,d) ∈ W[2 · t− 1] and WSAT(∆+

2·t+2,d) ∈ W[2 · t].
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Proof. Fix k ∈ N. First, consider a formulaα in Γ+
1,d with variablesX1, . . . ,Xm, say

α =
∧

i∈I

(Yi1 ∨ . . . ∨ Yiri).

Compute the minimal covers of size≤ k of the hypergraphH = (H,E), whereH := {1, . . . ,m}
and

E := {{i1, . . . , iri} | for somei ∈ I: Xi1 = Yi1 ,. . . ,Xiri
= Yiri}.

For every such coverC let γC be the conjunction of the variablesXj with j ∈ C. Then,γC is the
conjunction of at mostk variables. With respect to assignments ofα of weightk, the formulasα
and

∨

C coverγC are equivalent.
Now, letβ ∈ ∆+

2·t+2,d andk ∈ N. We replace every subformulaα ∈ Γ+
1,d by the corresponding

∨

C coverγC , thus obtaining a formulaβ∗ in ∆+
2·t+1,k. Then, the result follows from Corollary 4.6.

(In caseβ∗ but notβ hase < k variables, we check ifβ∗ is e-satisfiable.)
The proof for WSAT(∆−

2·t+1,d) is obtained by treating subformulas in∆−
1,d in the dual way.

5. BACK AND FORTH BETWEEN PROPOSITIONAL AND FIRST-ORDER LOGIC: THE EXTENSIONS

5.1. The W∗-hierarchy. In [8], Downey, Fellows, and Taylor introduced the W∗-hierarchy and
showed that the first two levels of the W∗-hierarchy coincide with first the two levels of the W-
hierarchy ([8], [5]). We first recall the definition of the W∗-hierarchy and then give complete model-
checking problems for the classes of this hierarchy. This characterization allows simple proofs of
W∗[1] = W[1] and W∗[2] = W[2].

The crucial difference between the W-hierarchy and the W∗-hierarchy is that instead of being
fixed, in the definition of the W∗-hierarchy the depth is treated as a parameter.

For a setΓ of propositional formulas we let

WSAT∗(Γ)
Input: k ∈ N andα ∈ Γ such that the depth ofα is at mostk.

Parameter: k.
Problem: Decide ifα is k-satisfiable.

For everyt ≥ 0 we letΩt denote the set of all propositional formulas of weft at mostt.

Definition 5.1. For t ≥ 1,
W∗[t] := [WSAT∗(Ωt)]

fpt.

Before we turn to the first-order characterisation of the W∗-hierarchy, we normalise the propo-
sitional formulas involved. Fork ≥ 1 we define two new familiesΓ∗

t,k and∆∗
t,k of propositional

formulas. We use∧ki=1αi as an abbreviation for the formula(· · · ((α1 ∧ α2) ∧ α3) · · · ∧ αk). Simi-
larly, we use∨ki=1αi.

– We letΓ∗
1,k = Γ1,k and∆∗

1,k = ∆1,k.
– Fort ≥ 2, we letΓ∗

t,k be the class of all formulas of the form
∧

i∈I

∨kj=1αij
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whereI is an arbitrary (finite) index set andαij ∈ Γ∗
t−1,k ∪∆∗

t−1,k for all i ∈ I, 1 ≤ j ≤ k.
Similarly, we let∆∗

t,k be the class of all formulas of the form
∨

i∈I

∧kj=1αij

whereI and theαij are as above.

Observe thatΓ∗
t,k ∪ ∆∗

t,k ⊆ Ωt,t·k.
The following lemma, which may be viewed as the starred analogon of Lemma 3.1, is es-

sentially due to Downey, Fellows, and Taylor [8]. Denote by PROP the class of all propositional
formulas.

Lemma 5.2. Let t ≥ 1. Then there is an fpt-algorithm that assigns to every instance (α, k) of
WSAT∗(Ωt) an instance(β, ℓ) of WSAT∗(PROP) with β ∈ ∆∗

t+1,ℓ.

Proof. By induction ont ≥ 1 we first prove that every formulaα in Ωt,k whose outermost connec-
tive is a big conjunction is equivalent to a formula inΓ∗

t,2k and simultaneously that every formula in
Ωt,k whose outermost connective is a big disjunction is equivalent to a formula in∆∗

t,2k .
Suppose thatt ≥ 1 andα ∈ Ωt,k is of the form

∧

i∈I βi. By the induction hypothesis, we
can assume that eachβi is a Boolean combination of at most2k formulas inΓ∗

t−1,2k ∪ ∆∗
t−1,2k

or, if t = 1, propositional variables. Transforming these Boolean combinations into conjunctive
normal form, which can be achieved by an fpt-reduction sincethe number (at most2k) of formulas
is bounded in terms of the parameter, and merging the outermost conjunctions we obtain a formula
of the desired form. Formulasα whose outermost connective is a big disjunction can be treated
analogously.

Now it easily follows that there is an fpt-algorithm that assigns to every instance(α, k) of
WSAT∗(Ωt) a formulaα′ ∈ ∆∗

t+1,2k such that (α is k-satisfiable ⇐⇒ α′ is k-satisfiable). Let

α′ =
∨

i∈I ∧
2k

j=1α
′
ij and letX1, . . . ,X2k+1−k be new propositional variables. We setα′

i 2k+1
:=

∧2k+1−k
m=1 Xm, for i ∈ I, and

β =
∨

i∈I

∧2k+1
j=1 α

′
ij .

Then,β ∈ ∆∗
t+1,2k+1

and (α′ is k-satisfiable ⇐⇒ β is 2k + 1-satisfiable). Therefore,(α, k) 7→

(β, 2k + 1) is the desired reduction.

We turn to the characterisation of W∗[t] in terms of a complete model-checking problem. To get
the corresponding fragment of first-order logic, we first point out a closure property of the classes
Σt not shared by theΣt,u. The closure ofΣt,u under this operation yields the desired fragment.

The formula
∃x̄(∀y1∀y2∃z1∃z2ψ ∧ ∃v1∃v2∀w1∀w2χ) (5.1)

with quantifier-freeψ(x̄, ȳ, z̄) andχ(x̄, v̄, w̄) is an existential quantification of a Boolean combina-
tion of Σ2-formulas; it is logically equivalent to theΣ3-formula

∃x̄∃v1∃v2 ∀y1∀y2 ∀w1∀w2 ∃z1∃z2(ψ ∧ χ);

more generally, every existential quantification of a Boolean combination ofΣ2-formulas is equiv-
alent to aΣ3-formula.

The classΣ3,2 does not have this closure property, the formula in (5.1) is an existential quan-
tification of a Boolean combination ofΣ2,2-formulas withall blocks of length≤ 2, but, in general,
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it is not logically equivalent to a formula inΣ3,2. The classΣ∗
3,2 and (the classesΣ∗

t,u) are defined
in such a way that they have this closure property.

For this purpose, first define the setΘt,u of first-order formulas by induction:

Θ0,u := the set of quantifier-free formulas
Θt+1,u := Boolean combinations of formulas of the form∃y1 . . . ∃yuψ with ψ ∈ Θt,u

Now letΣ∗
t,u be the set of formulas of the form

∃x1 . . . ∃xkψ

whereψ ∈ Θt−1,u.
As for the un-starred version, aΣ∗

t,u-formula is in strict-Σ∗
t,u if each atomic subformula contains

at most one variable of the first block of its prefix. We leave itto the reader to verify the following
lemma, which is the analogon forΣ∗

t,u of part (1) of the First-Order Normalisation Lemma.

Lemma 5.3. For t ≥ 2, u ≥ 1, p-MC(Σ∗
t,u) ≤ p-MC(strict-Σ∗

t,1[2]).

The following lemma is a stronger version of Lemma 4.2:

Lemma 5.4. For all k ≥ 1 and for all formulasα := ∧ki=1αi, whereα1, . . . , αk ∈ Γ1,k ∪ ∆1,k,
there are

– a structureA := A∧,α,k with universeA := {1, . . . ,m}, where the variables ofα are
amongX1, . . . ,Xm,

– a quantifier-free formulaψ := ψ∧,k depending only onk

such that the mapping(α, k) 7→ (A, ψ) is fixed-parameter tractable and for pairwise distinct
m1, . . . ,mk ∈ A,

{Xm1
, . . . ,Xmk

} satisfiesα ⇐⇒ A |= ψ(m1, . . . ,mk).

Proof. For 1 ≤ i ≤ k, if αi ∈ Γ1,k we letAi := A∧

,αi(X1,...,Xm),k,k andψi := ψ∧

,k,k be the
structure and sentence obtained from Lemma 4.2, and ifαi ∈ ∆1,k we letAi := A∨

,αi(X1,...,Xm),k,k

andψi := ψ∨

,k,k be the structure and sentence obtained from Corollary 4.3. We let τi be the
vocabulary obtained from the vocabulary ofAi andψi by replacing each relation symbolR by a
new symbolRi of the same arity. We letA′

i andψ′
i be theτi-structure and sentence obtained from

Ai andψi, respectively, by replacing each relation symbolR byRi.
Note that the universe ofA′

1, . . .A
′
k is {1, . . . ,m} =: A. Let τ :=

⋃k
i=1 τi, and letA′ be the

τ -structure with universeA andRA′

i := R
A′

i

i for all relation symbolsRi ∈ τi and1 ≤ i ≤ k.
Note that for1 ≤ i ≤ k and pairwise distinctm1, . . . ,mk ∈ A

A |= ψ′
i(m1, . . . ,mk) ⇐⇒ Ai |= ψi(m1, . . . ,mk).

Thus by Lemma 4.2 and Corollary 4.3, for pairwise distinctm1, . . . ,mk ∈ A we have

Xm1
, . . . ,Xmk

satisfiesα ⇐⇒ A |=
k

∧

i=1

ψ′
i(m1, . . . ,mk).

The only remaining problem is that the formula
∧k
i=1 ψ

′
i(x1, . . . , xk) depends onα. But actually

it only depends on which ofα1, . . . , αk are inΓ1,k and which in∆1,k. We introducek new unary
relation symbolsC1, . . . , Ck and letA be the expansion ofA′ with

CA
i :=

{

A if αi ∈ Γ1,k,

∅ if αi ∈ ∆1,k.
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We letψi∧ be the formula obtained from the formulaψ∧

,k,k of Lemma 4.2 by replacing each rela-

tion symbolR by the correspondingRi and defineψi∨ accordingly. Thusψi is eitherψi∧ or ψi∨ ,
depending on whetherαi ∈ Γ1,k or αi ∈ ∆1,k. Finally, we let

ψ(x1, . . . , xk) :=

k
∧

i=1

(

(

Cix1 → ψi∧(x1, . . . , xk)
)

∧
(

¬Cix1 → ψi∨(x1, . . . , xk)
)

)

.

Corollary 5.5. For all k ≥ 1 and for all formulasα := ∨ki=1αi, whereα1, . . . , αk ∈ Γ1,k ∪ ∆1,k,
there are

– a structureA with universeA := {1, . . . ,m}, where the variables ofα are among
X1, . . . ,Xm,

– a quantifier-free formulaψ∨,k depending only onk

such that the mapping(α, k) 7→ (A, ψ∨,k) is fixed-parameter tractable and for pairwise distinct
m1, . . . ,mk ∈ A

{Xm1
, . . . ,Xmk

} satisfiesα ⇐⇒ A |= ψ∨,k(m1, . . . ,mk).

The following two propositions will yield the characterisation of the W∗-hierarchy in terms of
model-checking problems.

Proposition 5.6. For t ≥ 1,
WSAT∗(Ωt) ≤ p-MC(Σ∗

t,2).

Proof. Recall the proof of Proposition 4.5; we proceed very similarly here and mainly point out
where the the proofs differ. Fixt ≥ 1. Let (α, k) be an instance of WSAT∗(Ωt). We shall construct
a structureA and aΣt,2-sentenceϕ such that

α is k-satisfiable⇐⇒ A |= ϕ. (5.2)

By Lemma 5.2, we may assume thatα ∈ ∆∗
t+1,k. Let the variables ofα beX1, . . . ,Xm. As in

the proof of Proposition 4.5, the structureA consists of two parts: a tree representing the parse tree
of the formulaα and, attached to the leaves of the tree, a structure on the variables representing the
innermost subformulas.

However, a formula in∆∗
t+1,k is not as regular as a formula in∆t+1,d, and therefore the def-

inition of the tree is more involved. In particular, some of the nodes and edges of the tree carry
additional information.

First, we letT be the tree obtained from the “parse tree” ofα by removing all nodes that
correspond to subformulas ofα in Γ1,k ∪ ∆1,k. Thus, the leaves correspond to subformulas of the
form ∨ki=1βi or ∧ki=1βi, whereβ1, . . . , βk ∈ Γ1,k ∪ ∆1,k. In addition to the relation symbolE for
the edge relation of this tree (directed from the root to the leaves), we have binary relation symbols
{E1, . . . , Ek} and unary relation symbolsK1, . . . ,Kk and Root whose interpretation inT is fixed
by the following clauses: Letu be a node ofT andβ the subformula ofα corresponding to the node
u.

– If u is the root of the tree, then RootT u;
– If β = ∨ki=1βi or β = ∧ki=1βi, whereβ1, . . . , βk ∈ Γ∗

s,k ∪ ∆∗
s,k for somes ≥ 2, then, for

1 ≤ j ≤ k, ET
j uuj whereuj is the child ofu corresponding toβj . Moreover,KT

j u if
βj ∈ Γ∗

s,k.
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Note that we encode the information on whether a subformulaβ ∈ Γ∗
s,k ∪∆∗

s,k is in Γ∗
s,k or in ∆∗

s,k

by putting the parent into the corresponding relationKj if β is in Γ∗
s,k. The reason that we choose

such a counter-intuitive encoding is that we need the information about the child at the parent in
order to pick the right quantifier to access the child. The definition of the formulasψs+1

∧ andψs+1
∨

below will clarify this.
The second part of the structureA we are heading for is defined as in the proof of Proposi-

tion 4.5, except that now the leaves of the tree are formulas of the form∨ki=1βi or ∧ki=1βi, where
β1, . . . , βk ∈ Γ1,k ∪ ∆1,k, and we have to use Lemma 5.4 and Corollary 5.5 instead of Lemma 4.2
and Corollary 4.3.

We define formulasψs∧(y, x1, . . . , xk) andψs∨(y, x1, . . . , xk) for 1 ≤ s ≤ t+ 1, and formulas
ψs∧(y, x1, . . . , xk) andψs∨(y, x1, . . . , xk) for 2 ≤ s ≤ t + 1 such that for every nodeu ∈ T

corresponding to a subformulaβ and for alla1, . . . , ak ∈ {1, . . . ,m} we have

(i) If β = ∧ki=1βi, whereβ1, . . . , βk ∈ Γs,k ∪ ∆s,k, then

{Xa1 , . . . ,Xak
} satisfiesβ ⇐⇒ A |= ψs∧(u, a1, . . . , ak).

(ii) If β = ∨ki=1βi, whereβ1, . . . , βk ∈ Γs,k ∪ ∆s,k, then

{Xa1 , . . . ,Xak
} satisfiesβ ⇐⇒ A |= ψs∨(u, a1, . . . , ak).

(iii) If β ∈ Γ∗
s,k, then

(

{Xa1 , . . . ,Xak
} satisfiesβ ⇐⇒ A |= ψs∧(u, a1, . . . , ak)

)

.

(iv) If β ∈ ∆∗
s,k, then

(

{Xa1 , . . . ,Xak
} satisfiesβ ⇐⇒ A |= ψs∨(u, a1, . . . , ak)

)

.

We letψ1
∧(y, x1, . . . , xk) be the formula obtained from the formulaψ∧,k(x1, . . . , xk) of Lemma 5.4

by replacing each atomic subformulaRx1 . . . xr by R′yx1 . . . xr (compare this to the proof of
Proposition 4.5). Similarly, we defineψ1

∨,k(y, x1, . . . , xk) using the formulaψ∨(x1, . . . , xk) of
Corollary 5.5.

Fors ≥ 1, we let

ψs+1
∧ (y, x1, . . . , xk) := ∀z

(

Eyz → ψs∨(z, x1, . . . , xk)
)

,

ψs+1
∨ (y, x1, . . . , xk) := ∃z

(

Eyz ∧ ψs∧(z, x1, . . . , xk)
)

,

ψs+1
∧ (y, x1, . . . , xk) :=

k
∧

i=1

(

(

Kiy → ∀z
(

Eiyz → ψs+1
∧ (z, x1, . . . , xk)

))

∧
(

¬Kiy → ∃z
(

Eiyz ∧ ψ
s+1
∨ (z, x1, . . . , xk)

))

)

,

ψs+1
∨ (y, x1, . . . , xk) :=

k
∨

i=1

(

(

Kiy ∧ ∀z
(

Eiyz → ψs+1
∧ (z, x1, . . . , xk)

))

∨
(

¬Kiy ∧ ∃z
(

Eiyz ∧ ψ
s+1
∨ (z, x1, . . . , xk)

))

)

.

It is easy to see now that these formulas satisfy (i)–(iv). Furthermore,ψ1
∧ andψ1

∨ are quantifier-free
and, by a simultaneous induction ons ≥ 1,

– ψs+1
∧ can be transformed into a formula of the form∀yχ, whereχ ∈ Θs−1,2;

– ψs+1
∨ can be transformed into a formula of the form∃zχ, whereχ ∈ Θs−1,2;

– ψs+1
∧ andψs+1

∨ can easily be transformed into a formula inΘs,2.

We let
ϕ := ∃x1 . . . ∃xk∃y(

∧

1≤i<j≤k

xi 6= xj ∧ Rooty ∧ ψt+1
∨ (y, x1, . . . , xk)).

It is easy to see thatϕ is equivalent to a formula inΣ∗
t,2.
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Proposition 5.7. For all t, u ≥ 1, p-MC(Σ∗
t,u) ≤ WSAT∗(Ωt).

Proof. The proof essentially duplicates the arguments of the proofof Proposition 4.10. The addi-
tional disjunctions and conjunctions between blocks of quantifiers in aΣ∗

t,u-formulaϕ yield addi-
tional connectives in the propositional formula we look for.

By Lemma 5.3 and the preceding propositions we get:

Theorem 5.8. For t, u ≥ 1,

W∗[t] = [p-MC(Σ∗
t,u)]

fpt = [p-MC(Σ∗
t,1[2])]

fpt.

Corollary 5.9. W∗[1] = W[1].

Proof. SinceΣ∗
1,u = Σ1,u = Σ1, this is immediate by Theorem 4.13 and Theorem 5.8.

Corollary 5.10. W∗[2] = W[2].

Proof. Again by Theorem 4.13 and Theorem 5.8, it suffices to show that

p-MC(Σ∗
2,u) ≤ p-MC(Σ2,u).

So letA be a structure andϕ aΣ∗
2,u-sentence. We can assume thatϕ has the form

∃x1 . . . ∃xℓ
∨

i∈I

∧

j∈Ji

ψij,

whereI and theJi are finite sets and theψij are formulas inΣ1 ∪ Π1 with quantifier block of
length≤ u. First we replace the disjunction

∨

i∈I in ϕ by an existential quantifier. For this purpose,
we add to the vocabularyτ of A unary relation symbolsRi for i ∈ I and consider an expansion
(A, (RAi )i∈I) of A, where(RAi )i∈I is a partition ofA into nonempty disjoint sets. Then

A |= ϕ ⇐⇒ (A, (RAi )i∈I) |= ∃x1 . . . ∃xℓ∃y
∧

j∈Ji

(¬Riy ∨ ψij).

Altogether, we can assume thatϕ has the form

∃x1 . . . ∃xℓ

m
∧

j=1

ψj ,

where for some quantifier-freeχj

ψj = ∃ȳjχj for j = 1, . . . , s

and
ψj = ∀z̄χj for j = s+ 1, . . . ,m.

Here,ȳ1, . . . , ȳs, z̄ are sequences of length≤ u and we can assume that any two of them have no
variable in common. But thenϕ is equivalent to theΣ2,u-formula:

∃x1 . . . ∃xℓ∃ȳ1 . . . ∃ȳs∀z̄
m
∧

j=1

χj.
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Unfortunately, the argument of the preceding proof cannot be extended to an inductive proof of
W∗[t] = W[t] for all t ≥ 2. To see this, observe that for an instance(A, ϕ) of p-MC(Σ∗

3,u), in the
same way we would obtain an equivalent formula

ϕ′ := ∃x1 . . . ∃xℓ∃ȳ1 . . . ∃ȳs∀z̄
m
∧

j=1

χj ,

where now theχj are Boolean combinations ofΣ∗
2,u ∪ Π∗

2,u-formulas with all quantifier blocks of
length at mostu. But now the existential quantifiers in theχj cannot be transferred to the leading
existential block inϕ′, they are blocked by the universal quantifiers.

5.2. The A-hierarchy. Originally, the A-hierarchy was defined by means of halting problems: A[ℓ]
(whereℓ ∈ N) has as complete problem the halting problem for alternating Turing machines with
ℓ − 1 alternations (and existential starting state), parameterized by the number of steps. In [11], it
was shown that A[ℓ] = [{p-MC(Σℓ[r]) | r ≥ 1}]fpt. In view of part 2 of the Normalisation Lemma
this yields

A[ℓ] = [p-MC(Σℓ)]
fpt,

which, in this paper, we take as definition of the A-hierarchy. SinceΣ1,u = Σ1 andΣℓ,u ⊆ Σℓ, we
have

W[1] = A[1] and forℓ ≥ 2: W[ℓ] ⊆ A[ℓ].

In this section we derive a characterisation of the A-hierarchy in terms of weighted satisfiability
problems for classes of propositional formulas.

We saw in the preceding sections that a single universal quantifier (or equivalently, a block of
bounded length of universal quantifiers) in a first-order formula translates into a

∧

in the corre-
sponding propositional formula, and similarly, an existential quantifier translates into a

∨

. As the
proof of Proposition 4.10 shows the leading (unbounded) block ∃x1 . . . ∃xk yields, on the side of
propositional logic, the weight or parameterk and the propositional variablesXi,a (with 1 ≤ i ≤ k
and witha ranging over the universe of the given structure). Since in A[ℓ] we haveℓ alternating
(unbounded) blocks, we have to consider alternating weighted satisfiability problems for classes
of propositional formulas. Such problems were already introduced by Abrahamson, Downey, and
Fellows in [1] when they considered quantified boolean (propositional) logic.

Let Γ be a set of propositional formulas (as defined in Section 2) and ℓ ≥ 1. Theℓ-alternating
weighted satisfiability problemAWSATℓ(Γ) for formulas inΓ is the following problem:

AWSATℓ(Γ)
Input: α ∈ Γ and a partitionI1 ∪̇ . . . ∪̇ Iℓ of the propositional

variables ofα.
Parameter: k1, . . . , kℓ ∈ N.

Problem: Decide if there is a sizek1 subsetS1 of I1 such that for
every sizek2 subsetS2 of I2 there exists . . . such that the
truth value assignmentS1 ∪ . . . ∪ Sℓ satisfiesα.

Thus, AWSAT1(Γ) = WSAT(Γ). Generalising the definition

W[t] := [{WSAT(Ωt,d) | d ≥ t}]fpt

of the classes of the W-hierarchy on the alternating level, we define the parameterized complexity
class A[ℓ, t]fpt by

A[ℓ, t] := [{AWSATℓ(Ωt,d) | d ≥ t}]fpt.
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Thus, W[t] = A[1, t] and as the main result of this section will show, A[ℓ] = A[ℓ, 1], which yields
the desired characterisation of the A-hierarchy in terms ofpropositional logic. Thus, the family of
classes A[ℓ, t], which we may call theA-matrix, contains the classes of the W-hierarchy and the
classes of the A-hierarchy.

We turn to a model-checking characterisation of this family: The propositional formulas in the
defining problem of A[ℓ, t] containℓ “weighted alternations” and at mostt (nested) big conjunctions
or big disjunctions. As we remarked above, theℓ weighted alternations translate intoℓ alternating
blocks of quantifiers and thet (nested) big conjunctions or big disjunctions intot further quantifiers;
the first of them can be merged with the last alternating block, so we expect that

A[ℓ, t] = [p-MC(Σℓ,t−1)]fpt,

where forℓ ≥ 1 andm ≥ 0 we denote byΣℓ,m the class of first-order formulas of the form

∃x̄1∀x̄2 . . . Qℓx̄ℓQℓ+1xℓ+1 . . . Qℓ+mxℓ+mψ

whereψ is quantifier-free, allQi ∈ {∃,∀}, andQi 6= Qi+1. Note thatx̄... denotes a finite sequence
of variables, thus the formula starts withℓ unbounded blocks of quantifiers. Hence,

– Σℓ,0 = Σℓ.
– Fort ≥ 1, Σ1,t−1 = Σt,1.

It should be clear how the classΠℓ,m of formulas is defined.
We call aΣℓ,m-formulastrict if each atomic subformula contains at most one variable fromthe

first ℓ, the unbounded blocks of quantifiers. Again, part 1 of the First-Order Normalisation Lemma
generalizes (with essentially the same proof) toΣℓ,m. We state the result and leave its verification
to the reader:

Lemma 5.11. For ℓ,m ≥ 1, p-MC(Σℓ,m) ≤ p-MC(strict-Σℓ,m[2]).

Now, we are able to prove the main result of this section.

Theorem 5.12.For all ℓ, t ≥ 1

A[ℓ, t] = [p-MC(Σℓ,t−1)]fpt = [p-MC(Σℓ,t−1[2])]fpt

Moreover, we have

– if ℓ is odd, then

A[ℓ, t] = [AWSATℓ(Γt,2)]
fpt and fort ≥ 2, A[ℓ, t] = [AWSATℓ(Γt,1)]

fpt;

– if ℓ is even, then

A[ℓ, t] = [AWSATℓ(∆t,2)]
fpt and fort ≥ 2, A[ℓ, t] = [AWSATℓ(∆t,1)]

fpt.

Before proving this theorem, we state two consequences; thefirst one is the characterisation of
the A-hierarchy by means of propositional logic:

Corollary 5.13. A[ℓ] = A[ℓ, 1], i.e.,A[ℓ] = [{AWSATℓ(Ω1,d) | d ≥ 1}].

Corollary 5.14. For ℓ ≥ 1 andt ≥ 2, A[ℓ, t] ⊆ A[ℓ+ 1, t− 1].

Proof. SinceΣℓ,t−1 ⊆ Σℓ+1,t−2, the claim follows from Theorem 5.12.
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W[1] = A[1] = A[1, 1] W[2] = A[1, 2] W[3] = A[1, 3] · · ·

A[2] = A[2, 1] A[2, 2] A[2, 3] · · ·

A[3] = A[3, 1] A[3, 2] A[3, 3] · · ·

A[4] = A[4, 1]
...

...

...
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6

6

6

6

6
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Figure 1: The A-matrix of parameterized complexity classes. Arrows indicate containment.

Figure 1 shows the matrix and the containment relations known to hold between the classes.
Since W[t] = A[1, t] andΣ1,t−1 = Σt,1, Theorem 5.12 (partly) generalises Theorem 4.13 and,

in fact, its proof extends the argument given there.

Proof of Theorem 5.12:We first prove that AWSATℓ(Ωt,d) ≤ p-MC(Σℓ,t−1). Let

((α, I1, . . . , Iℓ), (k1, . . . , kℓ))

be an instance of AWSATℓ(Ωt,d). By Lemma 3.1, we may actually assume thatα ∈ ∆t+1,d. Let
k := k1 + . . .+ kℓ and{X1, . . . ,Xm} the set of variables ofα.

Let us first assume thatℓ is odd. We construct a structureA and a formulaψ according to
Lemma 4.7. We expandA by unary relationV1, . . . , Vℓ such thatV A

i := {j | Xj ∈ Ii}. For
simplicity, we denote the resulting structure byA again. We let

ϕ := ∃x1 . . . ∃xk1

(

k1
∧

i=1

V1xi ∧
k1
∧

i,j=1
i6=j

xi 6= xj ∧

∀xk1+1 . . . ∀xk1+k2

(

(

k1+k2
∧

i=k1+1

V2xi ∧
k1+k2
∧

i,j=k1+1
i6=j

xi 6= xj
)

→

. . .

∃xk1+...+kℓ−1+1
. . . ∃xk

(

k
∧

i=k1+...+kℓ−1+1

Vℓxi ∧
k

∧

i,j=k1+...+kℓ−1+1
i6=j

xi 6= xj ∧

ψ
)

· · ·
))

.
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It is straightforward to verify thatA |= ϕ if and only if, ((α, I1, . . . , Iℓ), (k1, . . . , kℓ)) is a ‘yes’-
instance of AWSATℓ(Ωt,d) and thatϕ is equivalent to aΣℓ,t−1-formula.

If ℓ is even, we assume thatα ∈ Γt+1,d and observe that Lemma 4.7 has a corresponding
version for such formulas.

By Lemma 5.11, it remains to get a reduction fromp-MC(Σℓ,t−1[2]) to AWSATℓ(Ωt,d) for
somed (and to prove the additional claims of the theorem).

First, we treat the caset = 1 and for notational simplicity, assumeℓ = 3. Let ϕ be aΣ3,0[2]-
formula. By Lemma 3.4(2), we may assume thatϕ is a simpleΣ3-sentence,

ϕ := ∃x1 . . . ∃xh∀y1 . . . ∀yk∃z1 . . . ∃zm(λ1 ∧ . . . ∧ λs)

with literalsλi andA a structure in the corresponding vocabulary.
We first construct a propositional formulaα′ ∈ Ω1,d for somed. For the partition of its propo-

sitional variables into the three sets

I1 := {Xi,a | i = 1, . . . , h, a ∈ A}, I2 := {Yi,a | i = 1, . . . , k, a ∈ A},

and
I3 := {Zi,a | i = 1, . . . ,m, a ∈ A},

and for the natural numbersh, k,m, we will see that

A |= ϕ ⇐⇒ ((α′, I1, I2, I3), (h, k,m)) ∈ p-AWSATℓ(Ω1,d). (5.3)

Clearly, the intended meaning ofXi,a is “xi gets the valuea” and similarly for the other vari-
ables.

The formulaα′ has the form(
∧

. . . ∨
∨

...). The “big” conjunction takes care of existentially
quantified variables: it contains as conjuncts(¬Xi,a ∨ ¬Xi,b) for i = 1, . . . , h, a, b ∈ A, a 6= b
and (¬Zi,a ∨ ¬Zi,b) for i = 1, . . . ,m, a, b ∈ A, a 6= b. The “big” disjunction takes care of
universally quantified variables; in fact, itonly contains as disjuncts(Yi,a ∧ Yi,b) for i = 1, . . . , k,
a, b ∈ A, a 6= b. So far, it should be clear that any satisfying assignment ofα′ of “weight h, k,m”
sets

– for everyi exactly one variableXi,a to TRUE and similarly for theZi,a
or

– it setsYi,a, Yi,b to TRUE for somei and somea, b ∈ A, a 6= b.
Finally, we take care of the quantifier-free part ofϕ by adding to the big conjunction for everyλi,
sayλi(x3, y2) (recall that the arity of the vocabulary is≤ 2), and every(a, b) ∈ Awith A 6|= λi(a, b)
as conjunct the formula(¬X3,a ∨ ¬Y2,b). We leave the verification of (5.3) to the reader.

Now, we show how to get rid of the big disjunction inα′, thus proving the additional claim

p-MC(Σ3,0[2]) ≤ AWSAT3(Γ1,2).

Besides the propositional variables ofα′, the formulaα we aim at has additional propositional
variables, namely the variables

C, Y1, . . . , Yk, Z1, . . . , Zm.

The partition of the variables ofα consists of three sets, namely ofI1 andI2 as above, i.e.,

I1 := {Xi,a | i = 1, . . . , h, a ∈ A}, I2 := {Yi,a | i = 1, . . . , k, a ∈ A},

and ofJ3 that contains the variables ofI3 and the new variables, i.e.,

J3 := {Zi,a | i = 1, . . . ,m, a ∈ A} ∪ {C, Y1, . . . , Yk, Z1, . . . , Zm}.
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The “parameters” areh, k,m+ 1. In fact we will have

((α′, I1, I2, I3), (h, k,m)) ∈ AWSAT3(Ω1,d)
⇐⇒ ((α, I1, I2, J3), (h, k,m + 1)) ∈ AWSAT3(Γ1,2).

(5.4)

To understand the construction ofα better, we briefly explain the meaning or role of the new propo-
sitional variables:C essentially signalizes that the big conjunction inα′ is satisfied,Yi that no
variableYi,a with a ∈ A has been chosen; finally, in case the big disjunction inα′ is satisfied, then
Z1, . . . , Zm, but noZi,a, will be set toTRUE.

Let α be obtained fromα′ by

– eliminating the big disjunction;
– adding to the big conjunction the formulas (the indices always range over all possible val-

ues)
(1) ¬C ∨ ¬Yi,
(2) ¬C ∨ ¬Zi
(3) ¬Zi ∨ ¬Zj,a
(4) ¬Yi ∨ ¬Zj,a
(5) ¬Yi ∨ ¬Yi,a
(6) ¬Yi ∨ ¬Yj for i 6= j.

Then,α is in Γ1,2. We verify (5.4). Assume first that(α′, V1, V2, V3, h, k,m) ∈ AWSAT3(PROP).
To verify the right hand side of (5.4), we chooseS1 ⊆ I1 as it is done when verifying the left side.
Now letS2 be any sizek subset ofI2; if S2 does not satisfy

∨

...(Yi,a∧Yi,b), then we selectS′
3 ⊆ I3

as when verifying forS1, S2 the left hand side. Then, we can setS3 := S′
3 ∪ {C} and verify that

S1 ∪ S2 ∪ S3 satisfiesα. If S2 satisfies
∨

...(Yi,a ∧ Yi,b), then there is somei0 such thatYi0,a /∈ S2

for all a ∈ A. We setS3 := {Yi0 , Z1, . . . , Zm} and again verify thatS := S1 ∪ S2 ∪ S3 satisfiesα.
Clearly,S satisfies all clauses (1)–(6). And, it also satisfies all old conjuncts, since they are not of
the form(¬Yi,a ∨ ¬Yi,b).

Conversely, assume that the right hand side of (5.4) holds. Forα′ we chooseS1 as it is done for
αwhen verifying the right hand side. LetS2 be any sizek subset ofI2; if S2 satisfies

∨

...(Yi,a∧Yi,b)
we are done. Otherwise, we choose forS1, S2 a sizem+ 1 subsetS3 of J3 such thatS1 ∪ S2 ∪ S3

satisfiesα. By the formulas (5),S3 does not contain anyYi. By the clauses (2) ,S3 at most contains
m variables from{C,Z1, . . . , Zm}. Therefore, for somej there is at least onea ∈ A such that
Zj,a ∈ S3. But then, by the clauses (3), the setS3 contains noZi. Thus,S3 containsC and for
every j exactly oneZj,a (recall that the big conjunction inα′ and hence, the one inα, contains
the conjuncts(¬Zi,a ∨ ¬Zi,b) for i = 1, . . . ,m anda, b ∈ A with a 6= b). Therefore, setting
S′

3 := S3 ∩ I3, we haveS1 ∪ S2 ∪ S
′
3 satisfiesα′.

Now, let us assume thatt ≥ 2 and, say,ℓ is odd. We aim at a reduction to AWSATℓ(Γt,1). The
formulaϕ has the form

∃x̄1∀x̄2 . . . ∃x̄ℓ∀xℓ+1 . . . Qℓ+(t−1)xℓ+(t−1)ψ,

i.e., the first “short” quantifier block (consisting of a single quantifier) is universal. Moreover, we
can assume thatϕ is strict, that is, that every atomic subformula contains atmost one variable of
the unrestricted block. The unrestricted blocks are treated in the propositional formula as above and
the short blocks and the quantifier-free part as in the proof of Proposition 4.10. In particular, to the
big conjunction of the propositional formulaα′ = (

∧

. . . ∨
∨

...) constructed fort = 1, we add
conjuncts corresponding to the quantifier∀xℓ+1. Below this big conjunction there is a layer of big
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disjunctions. (In caset ≥ 3 this layer can also be used to eliminate the big disjunction of

α′ = (
∧

. . . ∨
∨

i=1,...,k;a,b∈A,a6=b

(Yi,a ∧ Yi,b)),

which is treated as a∆2,1-formula.) We argue as above to get rid of the big disjunctionof α′.
Altogether, we obtain a reduction to AWSATℓ(Γt,1). Similarly, one argues in caseℓ is even:

Then the first “short” quantifier block is existential, and therefore one obtains a reduction to
AWSATℓ(∆t,1).

Arguing as in the derivation of Corollary 4.8, one obtains

Remark 5.15. For t ≥ 2 andd ≥ 1,

– if ℓ is odd, then AWSATℓ(∆t,d) ∈ A[ℓ, t− 1];
– if ℓ is even, then, AWSATℓ(Γt,d) ∈ A[ℓ, t− 1].

Remark 5.16. As for the W-hierarchy one can obtain improvements restricting the propositional
formulas to monotone or antimonotone ones. We leave the details to the reader.

Remark 5.17. For the A-hierarchy there are two more or less natural ways todefine a starred
version A∗[1],A∗[2], . . .. From the point of view of first-order logic, we introduce theclasses of
formulasΣ∗

t by induction

Σ∗
0 := the set of quantifier-free formulas

Σ∗
t+1 := formulas of the form∃y1 . . . ∃yuψ, whereψ is a

Boolean combination of formulas inΣ∗
t ,

and set
A∗[t] := [p-MC(Σ∗

t )]
fpt.

But since every formula inΣ∗
t is logically equivalent to a formula inΣt, we immediately get A∗[t] =

A[t].
From the point of view of propositional logic we imitate the definition of W∗ in the alternating

context: For a setΓ of propositional formulas let

AWSAT∗
ℓ (Γ)
Input: α ∈ Γ, k ∈ N such that the depth ofα is at mostk, and a

partitionI1 ∪̇ . . . ∪̇ Iℓ of the propositional variables ofα.
Parameter: k1, . . . , kℓ ∈ N with k = k1 + . . . + kℓ.

Problem: Decide if there is a sizek1 subsetS1 of I1 such that for
every sizek2 subsetS2 of I2 there exists . . . such that the
assignmentS1 ∪ . . . ∪ Sℓ satisfiesα.

And set
A∗[t] := [{AWSAT∗

t (Ω1,d) | d ≥ 1}]fpt.

Clearly, AWSATt(Ω1,d) ≤ AWSAT∗
t (Ω1,d). On the other hand, essentially the proof of Proposition

5.12 shows that AWSAT∗
t (Ω

∗
1,d) ≤ p-MC(Σ∗

t ), so that again we obtain A∗[t] = A[t].
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5.3. The AW-hierarchy. Downey and Fellows [6] introduced the AW-hierarchy and showed its
collapse. Again this result can easily be derived (and slightly be improved) with the techniques
developed in this paper.

To define this hierarchy, for a setΓ of propositional formulas, we introduce thealternating
weighted satisfiability problemAWSAT(Γ) (in contrast to AWSATℓ(Γ) defined in the preceding
section we have no restriction on the number of alternations):

AWSAT(Γ)
Input: α ∈ Γ, ℓ ≥ 1, and a partitionI1 ∪̇ . . . ∪̇ Iℓ of the proposi-

tional variables ofα.
Parameter: k1, . . . , kℓ ∈ N.

Problem: Decide if there is a sizek1 subsetS1 of I1 such that for
every sizek2 subsetS2 of I2 there exists . . . such that the
truth assignmentS1 ∪ . . . ∪ Sℓ satisfiesα.

Hence, given the input(α, ℓ, I1 ∪̇ . . . ∪̇ Iℓ) and the parameter(k1, . . . , kℓ) we have the equivalence

((α, ℓ, I1, . . . , Iℓ), (k1, . . . , kℓ)) ∈ AWSAT(Γ)
⇐⇒ ((α, I1, . . . , Iℓ), (k1, . . . , kℓ)) ∈ AWSATℓ(Γ)

(5.5)

(note that on the left side of the equivalence the numberℓ is part of the input and is not fixed in
advance).

Definition 5.18. For t ≥ 1, AW[t] := [{AWSAT(Γt,d) | d ≥ 1}]fpt.

In a very informal way the core of the proof of the following theorem can be described in the
following form:

AW[t] = [{“
⋃

ℓ≥1

AWSATℓ(Γt,d)” | d ≥ 1}]fpt by (5.5)

= [p-MC(
⋃

ℓ≥1

Σℓ,t−1)]fpt by Theorem 5.12.

Since
⋃

ℓ≥1 Σℓ,t−1 =
⋃

ℓ≥1 Σℓ,0 = FO, we get AW[1] = AW[t] = [p-MC(FO)]fpt, which essentially
is the statement of the following theorem.

Theorem 5.19.For t ≥ 1,

AW[1] = AW[t] = [AWSAT(Γ1,2)]
fpt = [p-MC(FO)]fpt = [p-MC(FO[2])]fpt.

Proof. Clearly, AW[1] ⊆ AW[t]. Consider an instance of AWSAT(Γt,d) consisting of the input

(α, ℓ, I1, . . . , Iℓ)

and the parameter(k1, . . . , kℓ). In the proof of Theorem 5.12 we saw how to proceed in order to
obtain a structureA and a formulaϕ ∈ Σℓ,t−1 such that

((α, ℓ, I1, . . . , Iℓ), (k1, . . . , kℓ)) ∈ AWSAT(Γt,d) ⇐⇒ A |= ϕ.

Clearly, this procedure is uniform inℓ and an fpt-reduction from AWSAT(Γt,d) to p-MC(FO). By
part (3) of the First-Order Normalisation Lemma, we know that p-MC(FO) ≤ p-MC(FO[2]). Fi-
nally, let A be a structure andϕ ∈ FO[2]a formula, sayϕ ∈ Σℓ = Σℓ,0. We may assume that
ℓ is odd. Then the proof of Theorem 5.12 shows how to obtain a formulaα ∈ Γ1,2, a partition
I1 ∪̇ . . . ∪̇ Iℓ of its variables, andk1, . . . , kℓ such that

A |= ϕ ⇐⇒ ((α, I1, . . . , Iℓ), (k1, . . . , kℓ)) ∈ AWSATℓ(Γ1,2),
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i.e., such that

A |= ϕ ⇐⇒ ((α, ℓ, I1, . . . , Iℓ), (k1, . . . , kℓ)) ∈ AWSAT(Γ1,2).

Hence, we have an fpt-reduction fromp-MC(FO[2]) to AWSAT(Γ1,2).

6. CONCLUSIONS

We hope to have demonstrated that the correspondence between propositional and first-order
logic, or more precisely, weighted satisfiability and model-checking problems, is very fruitful. We
see this correspondence at the core of structural parameterized complexity theory. Once it is estab-
lished, many other results follow quite easily.

Several problems remain open, the most important being the question of whether the W-
hierarchy and the W∗-hierarchy coincide. Even though our results clarify what is known, we have
failed to make any definite progress on this problem.

Another nagging open question is whether the First-Order Normalisation Lemma can be ex-
tended to vocabularies with function symbols. A positive answer would greatly simplify the ma-
chine characterisation of the classes of the W-hierarchy given in [2].
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