
Logical Methods in Computer Science

Vol. 1 (1:5) 2005, pp. 1–32

www.lmcs-online.org

Submitted Sep. 22, 2004

Published Apr. 29, 2005

LINEAR DATALOG AND BOUNDED PATH DUALITY OF

RELATIONAL STRUCTURES

VÍCTOR DALMAU

Departament de Tecnologia, Universitat Pompeu Fabra,, Estació de França, Passeig de la Circum-
val.lacio 8. Barcelona 08003, Spain, Fax: +34 93 542 24 49
e-mail address: victor.dalmau@tecn.upf.es

Abstract. In this paper we systematically investigate the connections between logics
with a finite number of variables, structures of bounded pathwidth, and linear Datalog
Programs. We prove that, in the context of Constraint Satisfaction Problems, all these
concepts correspond to different mathematical embodiments of a unique robust notion that
we call bounded path duality. We also study the computational complexity implications
of the notion of bounded path duality. We show that every constraint satisfaction problem
CSP(B) with bounded path duality is solvable in NL and that this notion explains in a
uniform way all families of CSPs known to be in NL. Finally, we use the results developed
in the paper to identify new problems in NL.

1. Introduction

The constraint satisfaction problem provides a framework in which it is possible to
express, in a natural way, many combinatorial problems encountered in artificial intelligence
and elsewhere. A constraint satisfaction problem is represented by a set of variables, a
domain of values for each variable, and a set of constraints between variables. The aim of a
constraint satisfaction problem is then to find an assignment of values to the variables that
satisfies the constraints.

Solving a general constraint satisfaction problem is known to be NP-complete [3, 29].
One of the main approaches pursued by researchers in artificial intelligence and compu-
tational complexity to tackle this problem has been the identification of tractable cases
obtained by imposing restrictions in the constraints (see [4, 6, 9, 10, 12, 13, 21, 22, 23, 30,
31, 37, 38]).

Recently [12] (see also [20]) it has been observed that the constraint satisfaction problem
can be recast as the following fundamental algebraic problem: given two finite relational
structures A and B, is there a homomorphism from A to B? In this framework, the problem
of identifying which restrictions in the constraints guarantee tractability is equivalent to

2000 ACM Subject Classification: F.1.3, F.4.1.
Key words and phrases: Path duality, Constraint Satisfaction Problem, Linear Datalog, NL.
Research conducted whilst the author was visiting the University of California, Santa Cruz, supported

by NSF grant CCR–9610257.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-1 (1:5) 2005

c© V. Dalmau
CC© Creative Commons

2 V. DALMAU

deciding for which structures B, the homomorphism problem when only A is part of the
input, denoted by CSP(B), is solvable in polynomial time. In this paper we study this
framework.

One of the simplest examples of constraint satisfaction problems of this form is obtained
when B is fixed to be a k-clique Kk for some k ≥ 2. In this case, an instance CSP(Kk)
is again a graph A and the question of existence of an homomorphism from A to B is
equivalent to deciding whether A is k-colorable.

Feder and Vardi [12] introduced one general condition for tractability of CSP(B) that
accounts for many of the tractable cases of CSP(B). More precisely, Feder and Vardi
observed that for many polynomial-time solvable Constraint Satisfaction Problems of the
form CSP(B) there is a Datalog Program that defines the complement of CSP(B).

In order to illustrate this consider now the particular case when B is K2, that is, B is a
graph with two nodes and an edge between them. As it has been observed before, CSP(K2)
is the set of all 2-colorable graphs. It is well-known that a graph is 2-colorable iff it does
not have odd cycles. The following Datalog Program asserts that the graph A = (V,E)
contains an odd cycle:

P (x, y) :– E(x, y)
P (x, y) :– P (x, z), E(z, u), E(u, y)

Q :– P (x, x)

This Datalog Programs has three rules. These rules are a recursive specification of two
predicates P , and Q, called IDBs. Predicate P (x, y) holds whether there exists a path in
A of odd length from x to y and predicate Q, which acts as goal predicate, holds if there
exists a cycle of odd length .

Since the seminal results of Feder and Vardi, the language Datalog has played a promi-
nent role in the study of the complexity of the CSP. In particular, several connections
between Datalog Programs and well-established notions developed in the area of constraint
satisfaction problems and graph homomorphism have been explored.

One of this notions is that of bounded treewidth duality initially introduced in the area
of H-coloring [17], which can be reformulated as the constraint satisfaction problem CSP(H)
where H is a graph. In a H-coloring problem we are given a graph G as an input and we
are asked where there exists an homomorphism from G to H. It has been observed [17]
that the vast majority of the tractable cases of CSP(H) have an obstruction set of bounded
treewidth. An obstruction set of CSP(H) is any set S of graphs not homomorphic to
H such that for every graph G not homomorphic to H there exist a graph in S that is
homomorphic to G. Every graph H having an obstruction set of bounded treewidth is said
to have bounded treewidth duality. Bounded treewidth duality turns out to be equivalent to
definability in Datalog, as shown in [12]. More precisely, a graph H, has bounded treewidth
duality if and only if the complement of CSP(H) is definable in Datalog. The relationship
between Constraint Satisfaction Problems, Datalog and structures of bounded treewidth
has been further investigated in [27], [25], and [8].

The goal of the present paper is to take a closer look inside the structure of Datalog
Programs. In particular, we are interested in linear Datalog Programs [1], which are Datalog
Programs in which every rule has at most one IDB in the body. Many constraint satisfaction
problems solvable with a Datalog Program are indeed solvable by a linear Datalog Program.
In fact, the Datalog Program defining NON-2-COLORABILITY presented above is a linear
Datalog Program. It is well known that problems solvable by a linear Datalog Program are

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 3

solvable in non-deterministic logarithmic space. This class has received a lot of interest in
complexity theory. In particular, it is known that NL ⊆ NC and, therefore, problems in NL
are highly parallelizable.

In this paper we embark on a systematic study of the relationship between linear Data-
log Programs, finite variable logics and structures of bounded pathwidth. We prove several
different but equivalent characterizations of definability in linear Datalog. Most of them
are in the realm of logic. In particular, we show that for every constraint satisfaction prob-
lem of the form CSP(B), ¬CSP(B) is definable in linear Datalog if and only if CSP(B) is
definable in the logic Mω, which is defined to be the subset of the infinitary logic Lω

∞,ω in
which only existential quantification, infinitary disjunction and a certain restricted infini-
tary conjunction is allowed. Definability in linear Datalog is also shown to be equivalent to
definability in restricted Krom SNP, which is defined to be the set of all existential second
order sentences with a universal first-order part in prenex CNF form, in which we require
every clause of the first-order part to contain only negated relation symbols and at most
one positive and one negative second order-variable. We also obtain a combinatorial refor-
mulation of definability in linear Datalog. More precisely, we show that for every structure
B, the complement of CSP(B) is definable in linear Datalog if and only if CSP(B) has an
obstruction set of bounded pathwidth. All of these different but equivalent reformulations
of the same notion seem to provide some evidence that the class of problems definable is
linear Datalog is an interesting and robust class.

Finally we use our results to investigate which constraints satisfaction problems are in
NL. Despite the large amount of tractable cases of constraint satisfaction problems identified
so far, very few subclasses of constraint satisfaction problems are known to be in NL. To
our knowledge, the only families of CSP problems known to be in NL are the class of
bijunctive satisfiability problems [34], including 2-SAT, which later on was generalized to
the class of implicational constraints [23] (see also [20]), the class of implicative Hitting-
Set Bounded (see [5]) originally defined (although with a different name) in [34], and the
class of posets with constants invariant under a near-unanimity operation [28]. First we
observe that all this families of problems are particular cases of bounded path duality
problems. Consequently, the results in our paper provide an uniform explanation of all
known constraint satisfaction problems known to be in NL. Finally, we identify some new
families of constraint satisfaction problems solvable in NL.

2. Basic Definitions

Most of the terminology introduced in this section is fairly standard. We basically
follow [15]. A vocabulary is a finite set of relation symbols or predicates. In the following
τ always denotes a vocabulary. Every relation symbol R in τ has an arity r = ρ(R) ≥ 0
associated to it. We also say that R is an r-ary relation symbol.

A τ -structure A consists of a set A, called the universe of A, and a relation RA ⊆ Ar

for every relation symbol R ∈ τ where r is the arity of R. Unless otherwise stated we
will assume that we are dealing with finite structures, i.e., structures with a finite universe.
Throughout the paper we use the same boldface and slanted capital letters to denote a
structure and its universe, respectively.

Let A and B be τ -structures. We say that B is a substructure of A, denoted by B ⊆ A,
if B ⊆ A and for every R ∈ τ , RB ⊆ RA. If A is a τ -structure and B ⊆ A, then A|B

denotes the substructure induced by A on B, i.e., the τ -structure B with universe B and
RB = RA ∩Br for every r-ary R ∈ τ .

4 V. DALMAU

Let A and B be τ -structures. We denote by A∪B the τ -structure with universe A∪B
and such that for all R ∈ τ , RA∪B = RA ∪RB.

A homomorphism from a τ -structure A to a τ -structure B is a mapping h : A→ B such
that for every r-ary R ∈ τ and every 〈a1, . . . , ar〉 ∈ RA, we have 〈h(a1), . . . , h(ar)〉 ∈ RB.

We denote this by A
h

−→ B. We say that A homomorphically maps to B, and denote this
by A −→ B iff there exists some homomorphism from A to B. We denote by hom(A,B)
the set of all homomorphisms from A to B.

We will assume by convention that for every set B there exists one mapping λ : ∅ → B.
Consequently, if A is a structure with an empty universe then {λ} = hom(A,B).

Let a1, . . . , am be elements in A and let b1, . . . , bm be elements in B. We shall write
A, a1, . . . , am −→ B, b1, . . . , bm to denote that there exists some homomorphism h from A
to B such that h(ai) = bi, 1 ≤ i ≤ m.

Let A be a τ structure and let τ ′ ⊆ τ . We denote by A[τ ′] the τ ′-structure such that

for every R ∈ τ ′, RA[τ ′] = RA. Similarly, if C is a collection of τ -structures we denote by
C[τ ′] the set {A[τ ′] : A ∈ C}. STR denotes the class of all structures and consequently,
STR[τ] denotes the class of all τ -structures.

Finally, CSP(B) is defined to be the set of all structures A such that A −→ B.

3. Infinitary Logic

The following definition is borrowed from [24]. Let τ be a vocabulary containing only
relational symbols and let {v1, . . . , vn, . . . } be a countable set of variables. The class L∞,ω

of infinitary formulas over τ is the smallest collection of formulas such that

• it contains all first-order formulas over τ .
• if ϕ is a formula of L∞,ω then so is ¬ϕ.
• if ϕ is a formula of L∞,ω and vi is a variable, then (∀vi)ϕ and (∃vi)ϕ are also formulas

of L∞,ω.
• if Ψ is a set (possibly infinite) of L∞,ω formulas, then

∨

Ψ and
∧

Ψ are also formulas
of L∞,ω.

The first subscript of L∞,ω indicates that conjunctions and disjunctions can be taken
over arbitrary infinite sets and the second that only finite quantifier blocks are allowed.

The concept of a free variable in a formula of L∞,ω is defined in the same way as for
first-order logic. We use the notation ϕ(u1, . . . , um, . . .) to denote that u1, . . . , um, . . . are
different and that ϕ is a formula of L∞,ω whose free variables are among the variables
u1, . . . , um, A sentence of L∞,ω is a formula ϕ of L∞,ω with no free variables. The
semantics of L∞,ω is a direct extension of the semantics of first-order logic, with

∨

Ψ
interpreted as a disjunction over all formulas in Ψ and

∧

Ψ interpreted as a conjunction.
If A is a structure over τ and a1, . . . , am, . . . is a sequence of (not necessarily different)
elements from the universe of A, then we write

A, a1, . . . , am, . . . , |= ϕ(u1, . . . , um, . . .)

to denote that the structure A satisfies the formula ϕ of L∞,ω when each variable ui is
interpreted by the element ai.

Let k be a non-negative integer. The infinitary logic with k variables, denoted by Lk
∞,ω

consists of all formulas of L∞,ω with at most k distinct variables. Let Lk be the collection of

all formulas of Lk
∞,ω, that are obtained from atomic formulas using infinitary disjunctions,

infinitary conjunctions, and existential quantification only.

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 5

Let j be a non-negative integer. We will denote by j-restricted infinitary conjunction
the infinitary conjunction

∧

Ψ when Ψ is a collection of L∞,ω formulas such that (a) every
formula with more than j free variables is quantifier-free and (b) at most one formula in Ψ
having quantifiers is not a sentence. If furthermore the set Ψ is finite then we will call it
j-restricted conjunction.

Let 0 ≤ j ≤ k be non-negative integers. Let M j,k (N j,k) be the collection of all formulas
of Lk

∞,ω, that are obtained from atomic formulas using infinitary disjunction, j-restricted
infinitary conjunction (j-restricted conjunction), and existential quantification only. Finally,
let Oj,k be the collection of all formulas of Lk

∞,ω, that are obtained from atomic formulas
using j-restricted conjunction, and existential quantification only. We also put

Mω =
⋃

0≤j≤k

M j,k, Nω =
⋃

0≤j≤k

N j,k, and Oω =
⋃

0≤j≤k

Oj,k

The following example illustrates the expressive power of these logics.

Example 1 (Paths, Bipartiteness). Assume that the vocabulary consists of a unique binary
relation E, and let ϕn(x, y), n ≥ 1 be the first order formula asserting that there exists a
path or length n from x to y. The naive way to write ϕn(x, y) requires n + 1 variables,
namely

∃x1∃x2 . . . ∃xn−1E(x, x1) ∧E(x1, x2) ∧ · · · ∧ E(xn−1, y)

It is well-known that ϕn is equivalent to a formula in L3
∞,ω (in fact in L3). To see this,

put ϕ1(x, y) ≡ E(x, y) and assume, by induction on n, that ϕn−1(x, y) is equivalent to a
formula in L3

∞,ω. Then

ϕn(x, y) = ∃z[E(x, z) ∧ ∃x((z = x) ∧ ϕn−1(x, y))]

A closer look at ϕn(x, y) reveals that every conjunction used in the definition of ϕn(x, y)
is j-restricted and hence we can conclude that ϕn(x, y) is in O2,3 (and hence in N2,3 and
M2,3).

Finally, let C be the set of all finite τ -structures that, interpreted as graphs, are bipartite.
It is well known that a graph is bipartite if and only if does not contain odd cycles. Therefore,
the set C is defined by the the formula

∃x
∧

n≥0

ϕ2n+1(x, x)

As we shall see later (Theorem 1) the expressive power of this logics is the same regard-
less on whether or not we allow the use of equalities (=) in the formulas. By convention we
shall assume that, unless otherwise explicitly stated, formulas do not contain equalities.

We finish this section by stating without proof a very simple fact about these logics
that will be used intensively in our proofs.

Proposition 1. Let A, B be τ -structures such that A −→ B. For every sentence ϕ in
Lω
∞,ω that does not contain universal quantification nor negation such that A |= ϕ we have

that B |= ϕ.

4. Quasi-Orderings and Pathwidth of Relational Structures

A quasi-ordering on a set S is a reflexive and transitive relation ≤ on S. Let 〈S,≤〉
be a quasi-ordered set. Let S′, S′′ be subsets of S. We say that S′ is a filter if it is closed
under ≤ upward; that is, if x ∈ S′ and x ≤ y, then y ∈ S′. The filter generated by S′′ is

6 V. DALMAU

the set F (S′′) = {y ∈ S : ∃x ∈ S′′ x ≤ y}. We say that S′ is an ideal if it is closed under ≤
downward; that is, if x ∈ S′ and y ≤ x, then y ∈ S′. The ideal generated by S′′ is the set
I(S′′) = {y ∈ S : ∃x ∈ S′′ y ≤ x}. Observe that every subset S′ of S and its complement
S\S′ satisfy the following relation: S′ is an ideal iff S\S′ is a filter.

Let I be an ideal of 〈S,≤〉. We say that a set O ⊆ S forms an obstruction set for I if

x ∈ I iff ∀y ∈ O(y 6≤ x)

That is, O is an obstruction set for I if I is the complement of F (O)
Let τ be a vocabulary. The set of τ -structures, STR[τ], is quasi-ordered by the ho-

momorphism relation. In consequence, a set C of τ -structures is an ideal of 〈STR[τ],−→〉
if

B ∈ C,A −→ B =⇒ A ∈ C

Observe that for any relational structure B, CSP(B) = I(B).
Let us define a notion of pathwidth relative to relational structures, which is the natural

generalization of the notion of pathwidth over graphs, introduced by Robertson and Sey-
mour [33]. We follow the lines of previous generalizations of similar notions as treewidth.
For reasons that will be made clear later it is desirable to parameterize the ordinary no-
tion of pathwidth to capture a finer structure. For this purpose we will consider not only
the maximum size of any set of the path-decomposition but also the maximum size of its
pairwise intersection.

Definition 1. Let A be a τ -structure. A path-decomposition of A is a collection S1, . . . , Sn,
Si ⊆ A such that:

(1) for every r-ary relation symbol R in τ and every 〈a1, . . . , ar〉 ∈ RA, there exists
1 ≤ i ≤ n such that {a1, . . . , ar} ⊆ Si.

(2) if a ∈ Si ∩ Sj, then a ∈ Sl for all i ≤ l ≤ j.

The width of the path-decomposition is defined to be the pair 〈max{|Si ∩ Si+1| : 1 ≤ i ≤
n− 1},max{|Si| : 1 ≤ i ≤ n}〉. We say that a structure A has pathwidth at most (j, k) if it
has a path decomposition of width (j, k).

The concept of pathwidth relative to relational structures introduced here is intended
to be a natural generalization of the notion of pathwidth defined over graphs [33]. However
there are some points in which our definition is not standard. First, in the ordinary notion
of pathwidth over graphs, as defined in [33], the width of a path-decomposition is defined as
max{|Si| : 1 ≤ i ≤ n} − 1. We are interested in a more fine-grained analysis that motivates
the consideration, not only of the cardinality of the sets but also the cardinality of the
intersection of two consecutive sets in the intersection. Furthermore, it is convenient for us
not to subtract 1, as it is customary, as then this subtraction would had to be carried over
all the paper.

In order to delineate even more the precise relationship between the notion of pathwidth
as it is usually defined over graphs and the notion of pathwidth of relational structures
introduced in this paper we remark the following equivalence.

Let A be a relational structure. The the following numbers are equal:

• the pathwidth of the Gaifman graph of A plus one.
• the minimum k such that A has pathwidth at most (k − 1, k)

We say that a set of structures C has pathwidth at most (j, k) if every structure A in
C has pathwidth at most (j, k).

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 7

5. Pebble-Relation Games

In this section we will introduce a game, called (j, k)-pebble-relation game, that captures
expressibility in M j,k.

Let S1 and S2 be two (not necessarily finite) sets. A relation T with domain S1 and
range S2 is a collection of functions with domain S1 and range S2. Remark: some confusion
can arise from the fact that generally (and in this paper) the name relation is used with
another meaning; for example, an r-ary relation over B is a subset of Br. Both concepts
are perfectly consistent, since an r-ary relation over B is, indeed, a relation in our sense
with domain {1, . . . , r} and range B.

Let f be a function with domain S1 and range S2, and let S′
1 be a subset of its domain

S1. We will denote by f|S′
1

the restriction of f to S1. Similarly, let T be a relation with

domain S1 and range S2, and let S′
1 be a subset of its domain S1. We will denote by T|S′

1

the relation with domain S′
1 and range S2 that contains f|S′

1
for every f ∈ T . For every

relation T we denote by dom(T) the domain of T . We have two relations with domain ∅:
the relation {λ} and the relation ∅.

Let 0 ≤ j ≤ k be non-negative integers and let A and B be (not necessarily finite) τ -
structures. The (j, k)-pebble-relation ((j, k)-PR) game on A and B is played between two
players, the Spoiler and the Duplicator. A configuration of the game consists of a relation
T with domain I = {a1, . . . , ak′} ⊆ A, k′ ≤ k and range B such that every function f in T
is a homomorphism from A|I to B.

Initially I = ∅ and T contains the (unique) homomorphism from A|∅ to B, that is, λ.
Each round of the game consists of a move from the Spoiler and a move from the Duplicator.
Intuitively, the Spoiler has control on the domain I of T , which can be regarded as placing
some pebbles on the elements of A that constitute I, whereas the Duplicator decides the
content of T after the domain I has been set by the Spoiler. There are two types of rounds:
shrinking rounds and blowing rounds.

Let T n be the configuration after the n-th round. The spoiler decides whether the
following round is a blowing or shrinking round.

• If the (n + 1)-th round is a shrinking round, the Spoiler sets In+1 (the domain of
T n+1) to be a subset of the domain In of T n. The Duplicator responds by projecting
every function in T n onto the subdomain defined by In+1, that is, T n+1 = T n

|In+1.

• A blowing round only can be performed if |In| ≤ j. In this case the Spoiler sets
In+1 to be a superset of In with |In+1| ≤ k. The duplicator responds by providing
a T n+1 with domain In+1 such that T n+1

|In ⊆ T n. That is, T n+1 should contain some

extensions of functions in T n over the domain In+1 (recall that any such extension
must be a homomorphism from A|In+1 to B).

The Spoiler wins the game if the response of the Duplicator sets T n+1 to ∅, i.e., the Du-
plicator could not extend successfully any of the functions. Otherwise, the game resumes.
The Duplicator wins the game if he has an strategy that allows him to continue playing
“forever”, i.e., if the Spoiler can never win a round of the game.

Now, we will present an algebraic characterization of the (j, k)-PR game.

Definition 2. Let 0 ≤ j ≤ k be non-negative integers and let A and B be (not necessarily
finite) τ -structures. We say that the Duplicator has a winning strategy for the (j, k)-pebble-
relation game on A and B if there is a nonempty family H of relations such that:

(a) every relation T has range B and domain I for some I ⊆ A with |I| ≤ k.

8 V. DALMAU

(b) for every relation T in H with domain I, ∅ 6= T and T ⊆ hom(A|I ,B)
(c) H is closed under restrictions: for every T in H with domain I and every I ′ ⊆ I, we

have that T|I′ ∈ H.
(d) H has the (j, k)-forth property: for every relation T in H with domain I with |I| ≤ j

and every superset I ′ of I with |I ′| ≤ k, there exists some relation T ′ in H with
domain I ′ such that T ′

|I ⊆ T .

Furthermore, if H satisfies the following condition we say that H is a strict winning strategy
for the (j, k)-pebble-relation game.

(d’) H has the strict (j, k)-forth property: for every relation T in H with domain I with
|I| ≤ j and every superset I ′ of I with |I ′| ≤ k, the relation with domain I ′ given
by {h ∈ hom(A|I′ ,B) : h|I ∈ T} belongs to H.

The intuition behind the definition of a winning strategy is that every relation in a
winning strategy corresponds to a winning configuration for the Duplicator in the game.

We need an auxiliary definition that is used a number of times in the proofs.

Definition 3. Let A be a τ -structure, let a1, . . . , ak be (not necessarily different) elements
of A, and let v1, . . . , vk be variables. We denote by Θ(A, a1, . . . , ak)(v1, . . . , vk) the formula
in Ok,k, with equality, with variables among v1, . . . , vk defined by

∧

R∈τ

∧

〈al1
,...,alρ(R)

〉∈RA

R(vl1 , . . . , vlρ(R)
) ∧

∧

1≤i<j≤k,ai=aj

(vi = vj)

Notice that if all the elements a1, . . . , ak are different then we do not need the equality.
The following properties of Θ(A, a1, . . . , ak)(v1, . . . , vk) will be very helpful.

Proposition 2. Let A be a τ -structure, let a1, . . . , ak be elements of A and let θ be the
formula Θ(A, a1, . . . , ak)(v1, . . . , vk). Then we have

• For every τ -structure B and every b1, . . . , bk ∈ B, we have that

B, b1, . . . , bk |= θ(v1, . . . , vk) iff A|{a1,...,ak}, a1, . . . , ak −→ B, b1, . . . , bk

• For every quantifier-free formula ϕ(v1, . . . , vk) in Lk which statisfies A, a1, . . . , ak |=
ϕ(v1, . . . , vk) we have that θ(v1, . . . , vk) implies ϕ(v1, . . . , vk), i.e., for every B and
every b1, . . . , bk ∈ B,

B, b1, . . . , bk |= (θ ⇒ ϕ)(v1, . . . , vk)

The proof of these two simple facts about Θ(A, a1, . . . , ak)(v1, . . . , vk) follows the lines
of the proof of a well-known result, due to Chandra and Merlin [2] which states that con-
junctive query evaluation, conjunctive query containment, and deciding the existence of a
homomorphism are essentially the same problem.

The following results show that pebble-relation games, expressiveness in the existential
positive fragment of finite-variable infinitary logic with restricted conjunction, and obstruc-
tion sets of bounded pathwidth are equivalent mathematical embodiments of the same
concept.

Theorem 1. Let 0 ≤ j ≤ k be non-negative integers and let A and B be (not necessarily
finite) τ -structures. The following statements are equivalent:

(1) The Duplicator has a winning strategy H for the (j, k)-PR game on A and B.
(2) For every sentence ϕ in M j,k such that A |= ϕ we have that B |= ϕ.

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 9

(3) For every sentence ϕ in N j,k such that A |= ϕ we have that B |= ϕ.
(4) For every sentence ϕ in Oj,k such that A |= ϕ we have that B |= ϕ.
(5) Every τ -structure P with pathwidth at most (j, k) that homomorphically maps to

A also homomorphically maps to B.

The equivalences hold even if we allow the use of equalities in the formulas.

Proof. (1)→(2) Let H be a winning strategy for the Duplicator. We shall show, by induc-
tion on the construction of M j,k formulas, that if ϕ(v1, . . . , vm) is a formula of M j,k with
equalities where the free variables of ϕ are among v1, . . . , vm, then the following property
(*) holds:

(*) For any elements a1, . . . , am in A such that A, a1, . . . , am |= ϕ(v1, . . . , vm), there
exists some T ∈ H with domain I ⊆ {a1, . . . , am} such that for every h : {a1, . . . , am} → B
such that h|I ∈ T we have

B, h(a1), . . . , h(am) |= ϕ(v1, . . . , vm).

First, it is easy to see that if ϕ(v1, . . . , vm) is a quantifier-free formula in M j,k such
that A, a1, . . . , am |= ϕ(v1, . . . , vm) and h : {a1, . . . , am} → B is any homomorphism from
A|{a1,...,am} to B then B, h(a1), . . . , h(am) |= ϕ(v1, . . . , vm).

To see it, let define θ as Θ(A, a1, . . . , am)(v1, . . . , vm). By Proposition 2 we have
B, h(a1), . . . , h(am) |= θ(v1, . . . , vm) ⇒ ϕ(v1, . . . , vm). Consequently, We can infer that
B, h(a1), . . . , h(am) |= ϕ(v1, . . . , vm) from the fact that B, h(a1), . . . , h(am) |= θ(v1, . . . , vm).

Thus, any relation T ∈ H with domain {a1, . . . , am} would satisfy condition (*). The
inductive step for infinitary disjunction

∨

is straightforward using the induction hypothesis.
Assume that the formula ϕ(v1, . . . , vm) is of the form

∧

Ψ where Ψ is a collection of for-
mulas in M j,k. We have to show that there exists some T ∈ H with domain I ⊆ {a1, . . . , am}
such that for every h : {a1, . . . , am} → B with h|I ∈ T we have B, h(a1), . . . , h(am) |=
ϕ(v1, . . . , vm). Assume that there exists some formula γ in Ψ which is quantified but not a
sentence (such formula if exists must be unique). Since γ has at most j variables we have that
γ = γ(vi1 , . . . , vij′

) where j′ ≤ j. Thus, A, ai1 , . . . , aij′
|= γ(vi1 , . . . , vi′j

), and by the induc-

tion hypothesis there exists some T ′ ∈ H with domain I ′ ⊆ {ai1 , . . . , aij′
} such that for all

h : {ai1 , . . . , aij′
} → B such that h|I′ ∈ T ′, we have B, h(ai1), . . . , h(aij′

) |= γ(vi1 , . . . , vij′
).

If such formula does not exists then set I ′ = ∅ and T ′ = {λ}.
By the (j, k)-forth property, there exists some relation T with domain {a1, . . . , am} such

that T|I′ ⊆ T ′. We shall see that T satisfies the desired condition. Let h : {a1, . . . , am} → B
such that h ∈ T , and let ψ(v1, . . . , vm) be any formula in Ψ. We have to study three cases:

• If ψ(v1, . . . , vm) is quantifier-free then since h ∈ hom(A|{a1,...,am},B), we have that
B, h(a1), . . . , h(am) |= ψ(v1, . . . , vm).

• If ψ(v1, . . . , vm) is a sentence then by induction hypothesis we have B |= ψ and thus,
in consequence, B, h(a1), . . . , h(am) |= ψ(v1, . . . , vm).

• Otherwise, we have ψ(v1, . . . , vm) = γ(vi1 , . . . , vij′
). Since T|I′ ⊆ T ′, we have

B, h(ai1), . . . , h(aij′
) |= γ(vi1 , . . . , vij′

).

With respect to the existential quantification we shall distinguish two cases, depending
on whether or not the variable quantified is contained in v1, . . . , vm.

First, assume that the formula ϕ(v1, . . . , vm) is of the form (∃v)ψ(v1, . . . , vm, v) (i.e., v 6∈
{v1, . . . , vm}). Thus, there exists some a ∈ A such that A, a1, . . . , am, a |= ψ(v1, . . . , vm, v).
Consequently, by the induction hypothesis, there exists some T ′ ∈ H with domain I ′ ⊆

10 V. DALMAU

{a1, . . . , am, a} such that for every h : {a1, . . . , am, a} → B such that h|I′ ∈ T ′ we have
B, h(a1), . . . , h(am), h(a) |= ψ(v1, . . . , vm, v). We consider two cases:

• If a ∈ {a1, . . . , am} then we set I = I ′ and T = T ′. Let h : {a1, . . . , am} → B such
that h|I ∈ T . In consequence, we have B, h(a1), . . . , h(am), h(a) |= ψ(v1, . . . , vm, v),
and, in consequence, B, h(a1), . . . , h(am) |= ψ(v1, . . . , vm).

• Otherwise, we set I = I ′\{a} and T = T ′
|I (notice that if a 6∈ I ′ then I = I ′

and T = T ′). Let h : {a1, . . . , am} → B be a mapping such that h|I ∈ T and
let h′ : {a1, . . . , am, a} be an extension of h|I such that h′|I′ ∈ T ′ (such extension

always exists since T = T ′
|I). Thus B, h′(a1), . . . , h

′(am), h′(a) |= ψ(v1, . . . , vm) and

consequently B, h(a1), . . . , h(am) |= ψ(v1, . . . , vm).

Secondly, assume that ϕ(v1, . . . , vm) is of the form (∃v)ψ(v1, . . . , vm). We can assume
without loss of generality that {v1, . . . , vm′ , v} = {v1, . . . , vm} for m′ = m− 1.

We have that A, a1, . . . , am′ |= ϕ(v1, . . . , vm′). Thus, we are in the previous case and,
in consequence, there exists some relation T with domain I ⊆ {a1, . . . , am′} such that for
every h′ : {a1, . . . , am′} → B with h′|I ∈ T we have B, h′(a1), . . . , h

′(am′) |= ϕ(v1, . . . , vm′).

Finally, it is easy to see that T satisfies property (*): Let h : {a1, . . . , am} → B such that
h|I ∈ T and let h′ = h|{a1,...,am′}. Since h|I = h′|I ∈ T we have that B, h′(a1), . . . , h

′(am′) |=

ϕ(v1, . . . , vm′) and hence B, h(a1), . . . , h(am) |= ϕ(v1, . . . , vm).
(2)→(3) and (3)→(4). Straightforward since Oj,k ⊆ N j,k ⊆M j,k.
(4)→(5) It will be convenient to assume that the path decomposition has a sort of

canonical form. We will say that a path-decomposition S1, . . . , Sn of a structure P is
canonical if: (a) Sn = ∅ and (b) for every 1 ≤ i ≤ n − 1 we have that Si ⊆ Si+1 or
Si ⊇ Si+1. It is easy to verify that if a structure P has pathwidth at most (j, k), 0 ≤ j ≤ k,
then it has a canonical path-decomposition of width (j, k).

Let P be a structure and let S1, . . . , Sn be a canonical path-decomposition of width
(j, k) of P where S1 = {p1, . . . , pm}, m ≤ k. We shall show, by induction on the size n of
the decomposition, that there exists a formula ϕ(v1, . . . , vm) in Oj,k with variables among
v1, . . . , vk and whose free variables are exactly v1, . . . , vm such that for every structure D
and every d1, . . . , dm ∈ D we have that

P, p1, . . . , pm −→ D, d1, . . . , dm,

if and only if
D, d1, . . . , dm |= ϕ(v1, . . . , vm).

The result then follows from the following line of reasoning: Let P be any structure of
pathwidth at most (j, k) and let, S1, . . . , Sm be the canonical path-decomposition that certi-
fies its pathwidth. Then ∅, S1, . . . , Sm is also a path-decomposition of P and, consequently,
there exists a sentence ϕ in Oj,k such that for every structure D, P −→ D iff D |= ϕ. Thus,
if P −→ A then A |= ϕ and by condition (4), B |= ϕ, and P −→ B.

The base case in the induction (n = 0) is easily proved by setting ϕ to the formula
identically true which can be obtained as the conjunction of an empty set of formulas.

For the induction step, let S1, . . . , Sn, Sn+1 be a path-decomposition of P of width (j, k).
Thus S2, . . . , Sn, Sn+1 is a path-decomposition of P|S2∪···∪Sn+1

. We should distinguish two
cases, depending on whether S1 ⊆ S2 or S2 ⊆ S1.

First assume that S1 ⊆ S2. Assume, without loss of generality that S1 = {p1, . . . , pm}
and S2 = {p1, . . . , pl} where 0 ≤ m ≤ l ≤ k and m ≤ j. Notice that since S1 ⊆ S2,
S2, . . . , Sn+1 is a path-decomposition of P. Thus, by the inductive hypothesis, there exists

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 11

some formula ϕ(v1, . . . , vl) in Oj,k, such that for every τ -structure D and every d1, . . . , dl ∈
D

P, p1, . . . , pl −→ D, d1, . . . , dl

if and only if
D, d1, . . . , dl |= ϕ(v1, . . . , vl)

Consider the formula ψ(v1, . . . , vm) in Oj,k with variables among v1, . . . , vk and whose
free variables are exactly v1, . . . , vm defined by:

ψ(v1, . . . , vm) = (∃vm+1, . . . , vl)ϕ(v1, . . . , vl)

We shall show that ψ satisfies the desired property. For every D and every d1, . . . , dm ∈ D
we have that

P, p1, . . . , pm −→ D, d1, . . . , dm,

if and only if
∃dm+1, . . . , dl ∈ D s.t. P, p1, . . . , pl −→ D, d1, . . . , dl,

By the by the induction hypothesis is equivalent to

∃dm+1, . . . , dl ∈ D s.t.D, d1, . . . , dl |= ϕ(v1, . . . , vl),

which is equivalent to

D, d1, . . . , dm |= (∃vm+1, . . . , vl)ϕ(v1, . . . , vl) = ψ(v1, . . . , vm)

Assume now that S2 ⊆ S1. Let S1 = {p1, . . . , pm} and S2 = {p1, . . . , pl}, where 0 ≤
l ≤ m ≤ k and l ≤ j. By the inductive hypothesis there exists some formula ϕ(v1, . . . , vl)
in Oj,k, with variables among v1, . . . , vk and whose free variables are exactly v1, . . . , vl such
that for every τ -structure D and every d1, . . . , dl ∈ D

P|S2∪···∪Sn+1
, p1, . . . , pl −→ D, d1, . . . , dl

if and only if
D, d1, . . . , dl |= ϕ(v1, . . . , vl).

Let θ(v1, . . . , vm) ∈ Oj,k defined by θ = Θ(P, p1, . . . , pm)(v1, . . . , vm). Notice that
since p1, . . . , pm are different, θ does not contain equality. Finally consider the formula
ψ(v1, . . . , vm) in Oj,k defined by:

ψ(v1, . . . , vm) = θ(v1, . . . , vm) ∧ ϕ(v1, . . . , vl)

We shall prove that ψ satisfies the desired property. Let D be a τ -structure and let
d1, . . . , dm be elements in D. Let h be any homomorphism from P to D such that h(pi) = di

for 1 ≤ i ≤ m.
Thus h|S1

is a homomorphism from P|S1
to D and, by Proposition 2, D, d1, . . . , dm |=

θ(v1, . . . , vm). Also, we have that h|S2∪···∪Sn+1
is a homomorphism from P|S2∪···∪Sn+1

to D
and by the induction hypothesis, D, d1, . . . , dl |= ϕ(v1, . . . , vl). Putting all together we have
that

D, d1, . . . , dm |= θ(v1, . . . , vm) ∧ ϕ(v1, . . . , vl) = ψ(v1, . . . , vm)

Conversely, suppose that D, d1, . . . , dm |= ψ(v1, . . . , vm). In consequence we have that
D, d1, . . . , dl |= ϕ(v1, . . . , vl) and, by induction hypothesis, there exists some homomorphism
h′ from P|S2∪···∪Sn+1

to D such that h′(pi) = di, 1 ≤ i ≤ l. Let h : P → D be the mapping
defined by

h(p) =

{

di if p = pi

h′(p) otherwise

12 V. DALMAU

We shall show that h defines a homomorphism from P to D. First notice that since
D, d1, . . . , dm |= θ(v1, . . . , vm), h|S1

defines a homomorphism from P|S1
to D. Finally,

notice that h|S2∪···∪Sn+1
= h′ defines a homomorphism from P|S2∪···∪Sn+1

to D. Then we
are at home: Let R be any relation symbol in τ of arity, say r, and let 〈a1, . . . , ar〉 any tuple
in RP. Since S1, . . . , Sn+1 is a path-decomposition of P we have that {a1, . . . , ar} ∈ Sj for
some j ∈ {1, . . . , n+1}. If j = 1 then we have that 〈h(a1), . . . , h(ar)〉 in RB, as h|S1

defines

a homomorphism from P|S1
to D. If, otherwise, j > 1, then 〈h(a1), . . . , h(ar)〉 is in RD, as

h|S2∪···∪Sn+1
defines a homomorphism from P|S2∪···∪Sn+1

(5)→(1) We shall produce a winning strategy H for the Duplicator. For every structure
P, for every path-decomposition S1, . . . , Sn of width (j, k) of P, and for every mapping
h : P → A such that:

(i) h is a homomorphism from P to A and
(ii) h|S1

is one-to-one and furthermore (h|S1
)−1 is a homomorphism from A|h(S1) to PS1 .

The set H contains the relation T with domain h(S1) defined by

T = {g|S1
◦ (h|S1

)−1 : P
g

−→ B}

First, notice that if P is the structure with universe P = ∅, and h and g are λ, then
we have that {λ} ∈ H, and hence, H is non-empty. We show now that H has the required
properties:

• Clearly, every relation T in H has domain I ⊆ A with |I| ≤ k and range B.
• We have to show that for every T with domain I and every f ∈ T , f is a homo-

morphism from A|I to B. First, assume that f = g|S1
◦ h−1

|h(S1)
where g, h and S1

are as defined above. Since h−1
|S1

is a homomorphism from A|h(S1) to P|S1
and g|S1

is a homomorphism from P|S1
to B, then its composition f must be a homomor-

phism from A|h(S1) to B. Furthermore, T is non empty, since P −→ A implies that
P −→ B.

• We have to show that H is closed under projection. Let T be any relation in H
obtained from P, S1, . . . , Sn and h as defined above. In consequence T has domain
h(S1). Let I ⊆ h(S1) and let S′

1 = h−1(I). It is not difficult to see that S′
1, S1, . . . , Sn

defines a path decomposition of P, that h|S′
1
is one-to-one, and that (h|S′

1
)−1 defines a

homomorphism from A|I to P|S′
1
. Thus the relation T ′ = {g|S′

1
◦ (h|S′

1
)−1 : P|S′

1

g
−→

B} with domain I belongs also to H. We shall show that T|I = T ′. For every

homomorphism f ′ from A|I to B, f ′ ∈ T ′ iff there exists some homomorphism g
from P to B such that f ′ = g|S′

1
◦h|S′

1
. In consequence, f ′ ∈ T ′ iff f = g|S1

◦hS1 ∈ T .

Finally, the result follows from the fact that f|S′
1

= f ′.

• We have to show that H has the (j, k)-forth property. Let T be any relation in H
with domain I obtained from P, S1, . . . , Sn and h as defined above and let I ′ be
any superset of I with |I ′| ≤ k. Let I ′\I = {a′1, . . . , a

′
l} and let p′1, . . . , p

′
l elements

not in P . Let P ′ = P ∪ {p′1, . . . , p
′
l}, let S′

1 = S1 ∪ {p′1, . . . , p
′
l} and let h′ : P ′ → A

be the extension of h that maps p′i to a′i (1 ≤ i ≤ l). That is

h′(p) =

{

a′i if p = p′i, 1 ≤ i ≤ l
h(p) otherwise

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 13

We define the structure P′ as the structure with universe P ′ such that for every R
in τ ,

RP
′

= RP ∪ {〈p1, . . . , pm〉 : 〈h′(p1), . . . , h
′(pm)〉 ∈ RA, {p1, . . . , pm} ⊆ S′

1}

Notice that by construction S′
1, S1, . . . , Sn is a path-decomposition of width (j, k)

of P′ and that h′ is a homomorphism from P′ to A such that h′|S′
1

is one-to-one

and that (h′|S′
1
)−1 is a homomorphism from A|I′ to P|S′

1
. Let T ′ be the relation

obtained from P′, S′
1, S1, . . . , Sn and h′. We shall see that T ′

|I ⊆ T : Let f be any

function in T ′. Thus, f = gS′
1
◦ (h′|S′

1
)−1 for some homomorphism g from P′ to

B. Thus, g|S1∪···∪Sn
defines a homomorphism from P to B and, in consequence,

f|I = g|S1
◦ (h|S1

)−1 belongs to T .

The following theorem provides us with several alternative ways to characterize M j,k

definability.

Theorem 2. Let 0 ≤ j ≤ k be non-negative integers and let C be a class of τ -structures.
The following statements are equivalent:

(1) The class C is M j,k-definable, i.e., there is a sentence ϕ of M j,k such that for every
τ -structure we have that A ∈ C iff A |= ϕ.

(2) If A and B are τ -structures such that A ∈ C and the Duplicator has a winning
strategy for the (j, k)-PR game on A and B, then B ∈ C.

Furthermore, if ¬C is a finitely generated ideal we also have that (1) and (2) are equivalent
to the following:

(3) The class C is N j,k-definable.
(4) The class ¬C has an obstruction set of pathwidth at most (j, k)

Proof. First, we will need the following definition.
Let S be a finite collection of τ -structures. We say that S is disjoint if for every different

A,B ∈ S, A∩B = ∅. If S is disjoint we define ⊕S as the τ -structure whose universe is the
union of the universes of all the structures in S, and such that for every relation symbol
R ∈ τ , R⊕S =

⋃

A∈S R
A. Observe that, as the universes of the structures in S are disjoint,

if S has pathwidth at most (j, k) for some j, k then ⊕S has also pathwidth at most (j, k).
If S = {A1, . . . ,Am} we also denote ⊕S by A1 ⊕ · · · ⊕ Am.
Let B be a τ -structure and let S be a set of τ -structures. It is easy to verify that

⊕S −→ B iff A −→ B for every A ∈ S.
Now we are in a position to prove Theorem 2
(1)→(2) Straightforward from Theorem 1. Assume that A |= ϕ. Since the Duplicator

has a winning strategy for the (j, k)-PR game then B |= ϕ and thus B belongs to C.
(2)→(1) Clearly C is a filter and let ¬C be I(S) for some set S of τ -structures. For

every B in S, let ΨB be the collection of sentences in N j,k falsified by B and let ϕB =
∨

ΨB,
which is a sentence of N j,k. Let Ψ be the set containing ϕB for every B in S, and let ϕ
be the sentence of M j,k defined by ϕ =

∧

Ψ. Notice that if S is finite then ϕ is in N j,k.
We shall see that ϕ defines C. Let A be any structure not in C. Thus, there exists some
B in S such that A homomorphically maps to B. Recall that if A is homomorphic to B,
by Proposition 1, B satisfies all sentences in Mω satisfied by A. In consequence, A 6|= ϕB

and thus A 6|= ϕ. Conversely, let A be any structure such that A 6|= ϕ, thus A 6|= ϕB for

14 V. DALMAU

some B in S. Thus, every formula ψ in N j,k satisfied by A is also satisfied by B, and, in
consequence, the Duplicator has a winning strategy for the (j, k)-pebble-relation game on
A and B. Since B 6∈ C we conclude that A 6∈ C.

(3)→(1) Trivial as N j,k ⊆M j,k.
(4)→(1) Straightforward from Theorem 1. Let A ∈ C and B 6∈ C be τ -structures.

Since A ∈ C there exists a structure P in the obstruction set (and therefore of pathwidth at
most (j, k)) that homomorphically maps to A. Since B 6∈ C, P does not homomorphically
map to B. In consequence, there does not exist a winning strategy for the Duplicator for
the (j, k)-pebble-relation game on A and B.

(2)→(4) Let B1, . . . ,Bm be the finite set of structures that generates ¬C. Consider
the set O given by the collection of all structures of the form P1 ⊕ · · · ⊕ Pm where Pi is a
τ -structure of pathwidth at most (j, k) that does not map to Bi, and Pi, 1 ≤ i ≤ m have
disjoint universes. Thus, every structure in O has pathwidth at most (j, k). We shall show
that O is an obstruction set of ¬C. First, observe that every structure P1 ⊕ · · · ⊕ Pm in O
belongs to C, as for each i ∈ {1, . . . ,m}, Pi 6−→ Bi. Consequently, if one of such structures
P1 ⊕ · · · ⊕ Pm is homomorphic to a given structure A, then A must be in C, as C is a
filter. Conversely, let A be any structure in C. Thus, for every 1 ≤ i ≤ m, the Duplicator
does not have a winning strategy for the (j, k)-pebble game on A and Bi. Thus, for every
1 ≤ i ≤ m there exists some τ -structure Pi of pathwidth at most (j, k) such that Pi −→ A
and Pi 6−→ Bi (we can assume without loss of generality that the universes of Pi, 1 ≤ i ≤ m
are disjoint). Thus P1 ⊕ · · · ⊕Pm belongs to O and furthermore it homomorphically maps
to A.

(2)→(3) The structure of this proof is similar to the previous case.
Let B1, . . . ,Bm be the finite set of structures that generates ¬C. Consider the set Ψ

given by the collection of all structures of the form ψ1 ∧ · · · ∧ ψm where ψi is a sentence
in Oj,k that is not satisfied by Bi. Then the formula ϕ defined to be

∨

Ψ is in N j,k. Let
us show that ϕ defines C. First observe that for every Bi, 1 ≤ i ≤ m generating ¬C, we
have that Bi 6|= ϕ. Consequently, as ¬C is an ideal, by Proposition 1, for any structure A
not in C, A 6|= ϕ. Conversely, let A be any structure in C. Thus, for every 1 ≤ i ≤ m, the
Duplicator does not have a winning strategy for the (j, k)-pebble game on A and Bi. Thus,
for every 1 ≤ i ≤ m there exists some sentence ψi in Oj,k that is true on A but not true on
Bi. Thus ψ1 ∧ · · · ∧ ψm is true on A and belongs to Ψ. Consequently, ϕ is true on A.

6. Datalog Programs

Let τ be a vocabulary consisting of relational symbols. The class SNP [26, 32] is the set
of all existential second-order sentences with a universal first-order part, i.e., sentences of
the form ∃S1, . . . , Sl∀v1, . . . , vmϕ(v1, . . . , vm) where ϕ is a quantifier-free first-order formula
over the vocabulary τ ∪ {S1, . . . , Sl} with variables among v1, . . . , vm. We will assume
that ϕ is in CNF. We consider some restrictions that can be enforced on the class SNP.
For monotone SNP [12], we require every occurrence of a relation symbol from τ to have
negative polarity, i.e., a negation applied to it. For j-adic SNP, we require every second-
order variable Si, 1 ≤ i ≤ l to have arity at most j. For k-ary, we require the number of
variables universally quantified m to be at most k. For Krom SNP we require every clause
of the quantifier-free first-order part ϕ to have at most two occurrences of a second-order
variable.

Every Krom SNP formula ϕ over the vocabulary τ defines a class of τ -structures,
namely, the set containing every τ -structure A such that A |= ϕ. Furthermore, the problem

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 15

of deciding, given a τ -structure A, whether A |= ϕ is solvable in NL [14]. Thus expressibility
in Krom SNP is a sufficient condition for membership in NL.

For restricted Krom SNP we additionally require every clause of the quantifier-free first-
order part ϕ to have at most one positive occurrence of a second-order variable and at most
one negative occurrence of a second-order variable.

Theorem 3. Let 0 ≤ j ≤ k be non-negative integers and let B be a τ -structure. There
exists a sentence ϕ in j-adic k-ary restricted Krom monotone SNP with equalities such that
for every τ -structure A, A |= ϕ iff the Duplicator has a winning strategy for the (j, k)-PR
game on A and B.

Proof. The proof of Theorem 3 requires some intermediate results. In a first step we define
a different notion of winning strategy, called “supercomplete winning strategy” and we show
that this new notion is equivalent to the notion of winning strategy introduced initially, that
is, we prove that for every τ -structures A and B, and for every 0 ≤ j ≤ k the Duplicator has
a winning strategy for the (j, k)-pebble game if and only if it has a supercomplete winning
strategy. In order to prove this we define several different but equivalent notions of winning
strategy that will act a links in a chain of inferences.

The new notions of winning strategy are the following:

Definition 4. Let 0 ≤ j ≤ k be non-negative integers and let A and B be τ -structures.
We say that the Duplicator has a complete winning strategy for the (j, k)-pebble-relation
game on A and B if there is a family H of relations such that:

(a) every relation T has range B and domain I for some I ⊆ A with |I| ≤ j.
(b) H contains {λ} and does not contain ∅.
(c) for every I ⊆ A with |I| ≤ k, every relation T in H with domain I ′ ⊆ I and every

I ′′ ⊆ I with |I ′′| ≤ j, the relation with domain I ′′ given by

{h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T}

belongs to H

Furthermore, if H satisfies the following condition we say that H is a supercomplete winning
strategy for the (j, k)-pebble game

(d) For every T in H and every T ⊆ T ′ we have that T ′ ∈ H

The following claim states that all the different characterizations of winning strategy
introduced so far are equivalent.

Claim 1. Let 0 ≤ j ≤ k be non-negative integers and let A and B be τ -structures. The
following statements are equivalent:

(1) The Duplicator has a winning strategy for the (j, k)-PR game on A and B.
(2) The Duplicator has a strict winning strategy for the (j, k)-PR game on A and B.
(3) The Duplicator has a complete winning strategy for the (j, k)-PR game on A and

B.
(4) The Duplicator has a supercomplete winning strategy for the (j, k)-PR game on A

and B.

Proof. (1)→(2) Let H be a winning strategy for the Duplicator for the (j, k)-PR game on
A and B. We define H∗ to be the set

{T ∗ : dom(T ∗) ⊆ A, |dom(T ∗)| ≤ k, T ∗ ⊆ hom(Adom(T),B),∃T ∈ H s.t. T ⊆ T ∗}

We will show that H∗ is a strict winning strategy:

16 V. DALMAU

• It is obvious that H∗ satisfies conditions (a) and (b).
• H∗ is closed under restrictions: Let T ∗ a relation in H∗ with domain I and let I ′ ⊆ I.

Thus, there exists some T in H with domain I such that T ⊆ T ∗. Since H is closed
under restrictions T|I′ ∈ H. Since T|I′ ⊆ T ∗

|I′ we have that T ∗
|I′ ∈ H∗.

• H∗ has the strict (j, k)-forth property: Let T ∗ be a relation in H∗ with domain I,
with |I| ≤ j and let I ′ be superset of I with |I ′| ≤ k. Thus, there exists some
relation T in H with domain I such that T ⊆ T ∗. Since H has the (j, k)-forth
property there exists some relation T ′ in H with domain I ′ such that T ′

|I ⊆ T . In

consequence T ′ ⊆ {h ∈ hom(A|I′ ,B) : h|I ∈ T ∗}. Thus, the latter is in H∗

(2)→(3) Let H be a strict winning strategy for the Duplicator and let H∗ be the
collection of relations in H with domain of size at most j. We shall show that H∗ is a
complete winning strategy. It is straightforward to show that H∗ satisfies conditions (a)
and (b) of the definition of a complete winning strategy. For condition (c), let I ⊆ A with
|I| ≤ k, let T ∗ be a relation in H∗ (and hence in H) with domain I ′ ⊆ I and let I ′′ ⊆ I with
|I ′′| ≤ j. By the strict (j, k)-forth property we have that the relation of arity I given by
{h ∈ hom(A|I ,B), h|I′ ∈ T ∗} belongs also to H and so its projection to I ′′ which is given
by {h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T ∗}. Since |I ′′| ≤ j, then it also belongs to H∗.

(3)→(4) Let H be a complete winning strategy and let H∗ be the set containing
every relation T ∗ such that there exists a relation T ∈ H with T ⊆ T ∗. Clearly H∗

satisfies conditions (a), (b), and (d) of a supercomplete winning strategy. For condition
(c), let I ⊆ A with |I| ≤ k, let T ∗ be a relation in H∗ with domain I ′ ⊆ I and let
I ′′ ⊆ I with |I ′′| ≤ j. There exists some T ∈ H such that T ⊆ T ∗ and, in consequence
{h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T} is a subset of {h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T ∗} and
hence the latter is in H∗.

(4)→(1) Let H be a supercomplete winning strategy and let H∗ be a set containing for
every I ⊆ A with |I| ≤ k, and for every T in H with domain I ′ ⊆ I, and for every I ′′ ⊆ I the
relation {h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T}. It is straightforward to show that H∗ satisfies
the conditions (a), (b), and (c) of a winning strategy. For condition (d), let T ′′ be any
relation in H∗ with domain I ′′ with |I ′′| ≤ j. Thus, T ′′ = {h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T}
for some T in H with domain I ′ and some I ′ ⊆ I with |I| ≤ k. Then, T ′′ is also in H. Now, let
I ′′′ be any superset of I ′′ with |I ′′′| ≤ k. Thus, T ′′′ = {h|I′′′ : h ∈ hom(A|I′′′ ,B), h|I′′ ∈ T ′′}
is also in H and T ′′′

|I′′ ⊆ T ′′.

In a second step we reformulate having a supercomplete winning strategy as the exis-
tence of a structure satisfying certain properties. Let r be a non-negative integer and let B
a set. Recall that an r-ary relation over B is a relation with domain {1, . . . , r} and range
B.

Let {Un : 1 ≤ n ≤ m} be the collection of all j-ary relations over B and let {RUn : 1 ≤
n ≤ m} be a collection of j-ary relation symbols, one for each relation Un : 1 ≤ n ≤ m.
We shall show that the Duplicator has a superstrict winning strategy for the (j, k)-pebble-
relation game on A and B iff there exists some structure A′ with domain A over the
vocabulary {RUn : 1 ≤ n ≤ m} such that:

(a) (R∅)
A

′

= ∅.

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 17

(b) For every (not necessarily different) a1, . . . , ak ∈ A, and for every 1 ≤ l1, . . . , lj ≤ k,

〈al1 , . . . , alj 〉 ∈ (RU)A
′

where

U = {〈h(al1), . . . , h(alj)〉 : h ∈ hom(A{a1,...,ak},B)}

(c) For every (not necessarily different) a1, . . . , ak elements in A, for every relation

symbol RUn , 1 ≤ n ≤ m, for every 〈ai1 , . . . , aij 〉 ∈ (RUn)A
′

and for every 1 ≤

l1, . . . , lj ≤ k, we have that 〈al1 , . . . , alj 〉 ∈ (RU)A
′

where

U = {〈h(al1), . . . , h(alj)〉 : h ∈ hom(A{a1,...,ak},B), 〈h(ai1), . . . , h(aij)〉 ∈ Un}

(d) For every 1 ≤ n, n′ ≤ k such that Un ⊆ Un′ we have (RUn)A
′

⊆ (RUn′)
A

′

We shall say that A′ is a relational winning strategy for the Duplicator for the (j, k)-
pebble-relation game on A and B.

Claim 2. Let 0 ≤ j ≤ k be non-negative integers and let A and B be τ -structures. The
following statements are equivalent:

• The Duplicator has a supercomplete winning strategy for the (j, k)-pebble relation
game on A and B.

• The Duplicator has a relational winning strategy for the (j, k)-pebble relation game
on A and B.

Proof. First, we need the following definition, let a1, . . . , al be a collection of (not neces-
sarily different) elements of A and let T be a relation with domain {a1, . . . , al}. We define
U(T, a1, . . . , al) be the l-ary relation over B given by

{〈h(a1), . . . , h(al)〉 : h ∈ T}

Let H be a supercomplete winning strategy for the Duplicator for the (j, k)-pebble on
A and B and let A′ be the {RUn : 1 ≤ n ≤ m}-structure such that for every 1 ≤ n ≤ m,

(RUn)A
′

= { 〈a1, . . . , aj〉 : a1, . . . , aj ∈ A,
∃T ∈ H, {a1, . . . , aj} = dom(T), U(T, a1, . . . , aj) ⊆ Un}

We shall show that A′ satisfies the desired conditions:

(a) By definition every relation T in H is non-empty. Thus (R∅)
A

′

= ∅.
(b) Let a1, . . . , ak be (not necessarily different) elements in A and let 1 ≤ l1, . . . , lj ≤ k.

We shall show that 〈al1 , . . . , alj 〉 ∈ (RU)A
′

where

U = {〈h(al1), . . . , h(alj)〉 : h ∈ hom(A{a1,...,ak},B)}

Since H is an supercomplete winning strategy, then the relation

T = {h|{al1
,...,alj

} : h ∈ hom(A|{a1,...,ak},B), h|∅ ∈ {λ}}

which is equivalent to

{h|{al1
,...,alj

} : h ∈ hom(A|{a1,...,ak},B)}

belongs to H. In consequence we have 〈al1 , . . . , alj 〉 ∈ (RU(T,al1
,...,alj

))
A

′

. Finally,

we have U(T, al1 , . . . , alj) = U .

18 V. DALMAU

(c) Let a1, . . . , ak be (not necessarily different) elements in A, let RUn be a relation

symbol, let 〈ai1 , . . . , aij 〉 ∈ (RUn)A
′

and let 1 ≤ l1, . . . , lj ≤ k. We shall show that

〈al1 , . . . , alj 〉 ∈ (RU)A
′

where

U = {〈h(al1), . . . , h(alj)〉 : h ∈ hom(A{a1,...,ak},B), 〈h(ai1), . . . , h(aij)〉 ∈ Un}

First, there exists some T ∈ H that has domain {ai1 , . . . , aij} and such that the
inclusion U(T, ai1 , . . . , aij) ⊆ Un holds. Since H is a supercomplete winning strategy
we have that

T ′ = {h|{al1
,...,alj

} : h ∈ hom(A|{a1,...,ak},B), h|{ai1
,...,aij

} ∈ T}

⊆ {h|{al1
,...,alj

} : h ∈ hom(A|{a1,...,ak},B), 〈h(ai1), . . . , h(aij)〉 ∈ Un}

belongs also to H.
Thus, 〈al1 , . . . , alj 〉 belongs to (RU(T ′,al1

,...,alj
))

A
′

and it is not difficult to see that

U(T ′, al1 , . . . , alj) ⊆ U .
(d) Straightforward from the definition.

For the converse, let A′ be a {RUn : 1 ≤ n ≤ m}-structure satisfying (a), (b), (c), and
(d). Let H be the collection of relations

{{λ}} ∪ {T : ∃a1, . . . , aj ∈ A,dom(T) = {a1, . . . , aj}, 〈a1, . . . , aj〉 ∈ (RU(T,a1,...,aj))
A

′

}

We shall show that H is an supercomplete winning strategy for the Duplicator for the
(j, k)-pebble-relation game on A and B. It is immediate to show that H satisfies conditions
(a), (b) and (d) of the definition of a superstrict winning strategy. For condition (c), let
I ⊆ A with |I| ≤ k, let T be a relation in H with domain I ′ ⊆ I and let I ′′ ⊆ I with
|I ′′| ≤ j. We have to show that T ′ = {h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T} belongs to H. We
will do a case analysis.

First assume that I ′′ = ∅. In this case, since property (b) of the definition of super-
complete winning strategy is satisfied we have that T ′ = {λ} which belongs to H. Now
assume that I ′′ 6= ∅, say I = {a1, . . . , ak} (here a1, . . . , ak are not necessarily different) and
I ′′ = {al1 , . . . , alj}

• First consider the case I ′ = ∅. Thus T = {λ} and T ′ = {h|I′′ : h ∈ hom(A|I ,B)}.

From condition (b) we have that 〈al1 , . . . , alj 〉 ∈ (RU)A
′

where

U = {〈h(al1), . . . , h(alj)〉 : h ∈ hom(A{a1,...,ak},B)} = U(T ′, al1 , . . . , alj),

and thus T ′ ∈ H.
• The case I ′ 6= ∅ is proven similarly. In this case we have that there exist some
ai1 , . . . , aij ∈ I such that I ′ = {ai1 , . . . , aij} and 〈ai1 , . . . , aij 〉 ∈ (RU(T,ai1

,...,aij
))

A
′

.

Thus, T ′ = {h|I′′ : h ∈ hom(A|I ,B), h|I′ ∈ T} is identical to

{h|{al1
,...,alj

} : h ∈ hom(A|{a1,...,ak},B), 〈h(ai1), . . . , h(aij)〉 ∈ (RU(T,ai1
,...,aij

))
A

′

}

From condition (c) of relational winning strategy we have that 〈ai1 , . . . , aij 〉 ∈

(RU)A
′

where

U = {〈h(al1), . . . , h(alj)〉 : h ∈ hom(A|{a1,...,ak},B),

〈h(ai1), . . . , h(aij)〉 ∈ (RU(T,ai1
,...,aij

)))
A

′

}

which is equal to U(T ′, al1 , . . . , alj); henceforth, T ′ ∈ H.

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 19

After the equivalence of supercomplete winning strategies and relational winning strate-
gies has been established, we shall construct a sentence ϕ over the vocabulary τ ∪{=} that
tests whether such a structure A′ (certifying the existence of a relational winning strategy)
exists. This is our third (and final) component of the proof of Theorem 3.

Claim 3. For every B there exists a sentence ϕ over the vocabulary τ ∪ {=} such that
for every τ -structure A, A |= ϕ iff the Duplicator has a relational winning strategy for the
(j, k)-PR game on A and B.

Proof. The sentence ϕ has a second-order predicate RUi
of arity j for every j-ary relation

Ui, 1 ≤ i ≤ m over B. Thus

ϕ = ∃RU1, . . . , RUm∀v1, . . . , vkψ(v1, . . . , vk),

where ψ(v1, . . . , vk) is a first-order formula over the vocabulary τ ∪ {=, RU1 , . . . , RUm} that
is quantifier-free and has variables among v1, . . . , vk. Let us describe ψ. The formula ψ
will be a first-order formula in conjunctive normal form. First we need some auxiliary
definitions, let τ ′ be τ ∪ {=, RU1 , . . . , RUm} and let B′ be the τ ′-structure with universe B

such that for every R ∈ τ , RB
′

= RB, (=)B
′

= {(b, b) : b ∈ B}, and such that for every

1 ≤ i ≤ m, (RUi
)B

′

= Ui.
A disjunctive formula γ(v1, . . . , vk) is any first-order quantifier-free formula obtained as

the disjunction of some (possibly negated) predicates in τ ′ applied to variables in v1, . . . , vk.
γ is monotone if every occurrence of a predicate in τ ′ is negated.

Let γ(v1, . . . , vk) be any disjunctive monotone formula over the vocabulary τ ′ with
variables among v1, . . . , vk and let 1 ≤ i1, . . . , ij ≤ k, be a collection of indices. We define
U(γ, i1, . . . , ij) as the j-ary relation over B defined by

{〈bi1 , . . . , bij 〉 : B′, b1, . . . , bk 6|= γ(v1, . . . , vk)}

We are now in a position to describe ψ(v1, . . . , vk). The formula ψ is of the form
∧

Ψ with
Ψ = Ψ1 ∪ Ψ2 ∪ Ψ3 where:

• Ψ1 contains the formula ¬R∅(vl1 , . . . , vlj) for every 1 ≤ l1, . . . , lj ≤ k.
• Ψ2 contains for every disjunctive monotone formula γ over the vocabulary τ ′ with

at most one occurrence of a second-order predicate and every collection of indices
i ≤ ii, . . . , ij ≤ k, the formula (clause) γ(v1, . . . , vk) ∨ RU(γ,i1,...,ij)(vi1 , . . . , vij). No-
tice that such clause is monotone and restricted Krom, although it might contain
equalities

• Ψ3 contains for every 1 ≤ n, n′ ≤ m such that Un ⊆ U ′
n, and for every 1 ≤ l1, . . . , lj ≤

k the formula ¬RUn(vl1 , . . . , vlj) ∨RUn′ (vl1 , . . . , vlj).

Informally, each one of the subsets Ψ1,Ψ2,Ψ3 of Ψ encodes a condition of the definition
of relational winning strategy. Indeed, it is not difficult to see that

∧

Ψ1 is equivalent
to condition (a) of relational winning strategy and that

∧

Ψ3 formulates condition (d) of
relational winning strategy. It is also possible to see, although this case is certainly more
complicated, that

∧

Ψ2 encodes exactly conditions (b) and (c) of relational winning strategy.
The intuition here is that the collection of all formulas γ(v1, . . . , vk)∨RU(γ,i1,...,ij)(vi1 , . . . , vij)

in Ψ where γ does not contain a second-order predicate encodes (b) whereas the set of all
such formulas with γ containing one occurrence of a second-order predicate encodes (c).

In the following we shall make all this more precise.

20 V. DALMAU

Let A′ be a τ ′-structure. We shall show that A′ |= ∀v1, . . . , vkψ(v1, . . . , vk) iff A′′ =
A′[{RUn : 1 ≤ n ≤ m}] is a relational winning strategy for the Duplicator for the (j, k)-PR
game on A = A′[τ] and B. It is easy to observe that this implies our claim.

First, assume that A′ |= ∀v1, . . . , vkψ(v1, . . . , vk). Thus, for every a1, . . . , ak in A,
A′, a1, . . . , ak |= ψ(v1, . . . , vk) =

∧

Ψ. Since for every 1 ≤ l1, . . . , lj ≤ k, ¬R∅(vl1 , . . . , vlj)

is in Ψ we have that 〈al1 , . . . , alj 〉 6∈ (R∅)
A

′′

. Thus (R∅)
A

′′

= ∅ and, in consequence, A′′

satisfies condition (a) on the definition of relational winning strategy.
We shall show that A′′ satisfies (b). Let a1, . . . , ak be (not necessarily different) elements

of A. Let θ(v1, . . . , vk) = Θ(A, a1, . . . , ak)(v1, . . . , vk).
Thus, we have A′, a1, . . . , ak |= ¬θ(v1, . . . , vk) ∨ RU(¬θ,l1,...,lj)(vl1 , . . . , vlj). Since by

Proposition 2, A′, a1, . . . , ak 6|= ¬θ(v1, . . . , vk) we have that 〈al1 , . . . , alj 〉 ∈ (RU(¬θ,l1,...,lj))
A

′′

.
Finally we have:

U(¬θ, l1, . . . , lj) = {〈bl1 , . . . , blj 〉 : B′, b1, . . . , bk 6|= ¬θ(v1, . . . , vk)}
= {〈bl1 , . . . , blj 〉 : A|{a1,...,ak}, a1, . . . , ak −→ B′, b1, . . . , bk}
= {〈h(al1), . . . , h(alj)〉 : h ∈ hom(A|{a1,...,ak},B)}

We shall show that A′′ satisfies condition (c). Let a1, . . . , ak be (not necessarily dif-
ferent) elements of A, and let θ be defined as above. Let RUn be a relation symbol, let

〈ai1 , . . . , aij 〉 ∈ (RUn)A
′′

and let 1 ≤ l1, . . . , lj ≤ k. Let γ(v1, . . . , vk) be the disjunctive
monotone formula defined by γ(v1, . . . , vk) = ¬θ(v1, . . . , vk) ∨ ¬RUn(vi1 , . . . , vij). There-

fore the formula γ(v1, . . . , vk) ∨ (Rγ,l1,...,lj)(vl1 , . . . , vlj) is in Ψ. Thus, A′′, a1, . . . , ak |=

(RU(γ,l1,...,lj))(vl1 , . . . , vlj) and in consequence 〈al1 . . . , alj 〉 ∈ (RU(γ,l1,...,lj))
A

′′

. Finally we
have:

U(γ, l1, . . . , lj) = { 〈bl1 . . . , blj 〉 : B′, b1, . . . , bk 6|= γ(v1, . . . , vk)}
= { 〈bl1 . . . , blj 〉 : B′, b1, . . . , bk 6|= ¬θ(v1, . . . , vk),

〈bi1 , . . . , bij 〉 ∈ (RUn)B
′

= Un}
= { 〈h(al1), . . . , h(alj)〉 : h ∈ hom(A|{a1,...,ak},B),

〈h(ai1), . . . , h(aij)〉 ∈ Un}

We shall show that A′′ satisfies condition (d). Let 1 ≤ n, n′ ≤ m such that Un ⊆ Un′ , and let

〈al1 , . . . , alj 〉 ∈ (RUn)A
′′

. Since ¬RUn(vl1 , . . . , vlj) ∨RUn′ (vl1 , . . . , vlj) is in Ψ3 we have that

A′, a1, . . . , ak |= ¬RUn(vl1 , . . . , vlj) ∨ RUn′ (vl1 , . . . , vlj) and, in consequence, 〈al1 , . . . , alj 〉 ∈

(RUn′)
A

′′

.

For the converse, assume that A′′ is a relational winning strategy. We shall show that
for all a1, . . . , ak (not necessarily different) elements in A and for every χ(v1, . . . , vk) in Ψ,
A′, a1, . . . , ak |= χ(v1, . . . , vk). First, if χ ∈ Ψ1 then χ = ¬R∅(vl1 , . . . , vlj) for some 1 ≤

l1, . . . , lj ≤ k. In this case A′, a1, . . . , ak |= χ(v1, . . . , vk) since 〈al1 , . . . , alj 〉 6∈ (R∅)
A

′′

= ∅.
Secondly, if χ ∈ Ψ2 then we have χ(v1, . . . , vk) = γ(v1, . . . , vk) ∨ RU(γ,l1,...,lj)(vl1 , . . . , vlj)

where γ(v1, . . . , vk) is a disjunctive monotone formula with at most one occurrence of a
predicate in {RUn : 1 ≤ n ≤ m}. Assume first that γ(v1, . . . , vk) is a formula over τ ∪ {=}
(that is, it does not contain a second-order predicate). Thus, if A, a1, . . . , ak 6|= γ(v1, . . . , vk)
implies the following. Let θ(v1, . . . , vk) = Θ(A, a1, . . . , ak)(v1, . . . , vk). Then, by Proposi-
tion 2, θ(v1, . . . , vk) implies ¬γ(v1, . . . , vm).

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 21

Thus

U(γ, l1, . . . , lj) = {〈bl1 , . . . , blj 〉 : B′, b1, . . . , bk 6|= γ(v1, . . . , vk)}
⊇ {〈bl1 , . . . , blj 〉 : B′, b1, . . . , bk |= θ(v1, . . . , vk)}
= {〈bl1 , . . . , blj 〉 : A{a1,...,ak}, a1, . . . , ak −→ B, b1, . . . , bk}
= {〈h(al1), . . . , h(alj) : h ∈ hom(A|{a1,...,ak},B)}

Let U be {〈h(al1), . . . , h(alj) : h ∈ hom(A|{a1,...,ak},B)}. Since A′′ is a relational

winning strategy, then 〈al1 . . . , alj 〉 ∈ (RU)A
′′

. Furthermore, since U ⊆ U(γ, l1, . . . , lj) we

have that 〈al1 , . . . , alj 〉 ∈ (RU(γ,l1,...,lj))
A

′′

.

The proof when γ contains a predicate in {RUn : 1 ≤ n ≤ m} is analogous. Finally it is
straightforward to verify the case χ ∈ Ψ3 using condition (d) of relational winning strategy.

Finally, the proof of Theorem 3 is a consequence of Claims 1, 2, and 3.

Restricted Krom SNP formulas can be regarded alternatively as a particular type of
Datalog programs called, linear Datalog Programs.

Let τ be a vocabulary. A Datalog Program over τ is a finite set of rules of the form

t0 :– t1, . . . , tm

where each ti is an atomic formula R(v1, . . . , vm). The relational predicates that occur in
the heads of the rules are the intensional database predicates (IDBs) and do not belong to
τ , while all others are the extensional database predicates (EDBs) and must belong to τ .
One of the IDBs is designated as the goal of the program. Note that IDBs may occur in the
bodies of rules, and, thus, a Datalog program is a recursive specification of the IDBs with
semantics obtained via least fixed-points of monotone operators (see [36]).

A Datalog Program is called linear if every rule contains at most one occurrence of a
IDB in its body. Let 0 ≤ j ≤ k be non-negative integers, (j, k)-Datalog is said to be the
collection of all Datalog programs in which every rule has at most k variables and at most
j variables in the head.

Let us introduce with a bit more detail the semantics of Datalog Programs.
Let Q be a Datalog Program over τ , let τIDB be the set of its intensional predicates,

and let τ ′ = τ ∪ τIDB. The Datalog Program Q defines an operator Φ : STR[τ ′] → STR[τ ′]
in the class of τ ′-structures in the following way: For every τ ′-structure A, Φ(A) is defined
to be the smallest τ ′-structure with the same universe A of A such that:

• for every R ∈ τ ′, RA ⊆ RΦ(A),
• for every rule t0 :- t1, . . . , tm in Q, with variables u1, . . . , un, and for every interpre-

tation h : {u1, . . . , un} → A such that

A, h(u1), . . . , h(un) |= t1 ∧ · · · ∧ tm,

we have that 〈h(v1), . . . , h(vr)〉 ∈ PΦ(A) where t0 = P (v1, . . . , vr)

Since Φ is a monotone operator we can define its minimum fix point Φ∗ : STR[τ ′] →
STR[τ ′] as:

Φ∗(A) =
⋃

n≥0

Φn(A), for every A

where Φ0(A) = A and Φn+1(A) = Φ(Φn(A)), n ≥ 0. Alternatively, Φ∗(A) can be defined
as the smallest τ ′-structure with universe A such that A ⊆ Φ∗(A) and Φ(Φ∗(A)) = Φ∗(A).

22 V. DALMAU

A distinguished IDB predicate P is designed to be the goal of the program. A Datalog
program is a query that given a τ -structure A, returns PΦ∗(A′), where A′ is the τ ′-structure
with the same universe of A and such that for all R ∈ τ , RA

′

= RA and for all R ∈ τIDB,
RA

′

= ∅. We say that a structure A is accepted by the Datalog Program Q iff PΦ∗(A′) 6= ∅.
Let C be a set of τ -structures and let Q be a Datalog Program. We say that C is defined

by Q if for every τ -structure A, A is in C iff A is accepted by Q. It is well-known and easy
to see that if C is accepted by a Datalog Program then C must be a filter.

The following result relates linear Datalog programs with infinitary logics.

Theorem 4. Let 0 ≤ j ≤ k be non-negative integers, and let C be a set of τ -structures
for some vocabulary τ . If C is definable by a linear (j, k)-Datalog Program then it is also
definable in M j,k.

Proof. Let Q be a linear (j, k)-Datalog Program. We will show that: (*) for every τ -
structure A, for every intensional predicate R ∈ τIDB, for every n ≥ 0 and for every
〈a1, . . . , ar〉 ∈ RΦn(A′), there exists some structure B, some b1, . . . , br ∈ B, some path-
decomposition S1, . . . , Ss of width (j, k) of B with {b1, . . . , br} ⊆ S1, such that 〈b1, . . . , br〉 ∈

RΦn(B′), and B, b1, . . . , br −→ A, a1, . . . , ar. We will prove statement (*) by induction on n.
The statement is vacuously true for n = 0. We will show that (*) holds for n+ 1 whenever
it holds for n. Let R ∈ τIDB be a intensional predicate and let 〈a1, . . . , ar〉 be any tuple in

RΦn+1(A′). If 〈a1, . . . , ar〉 is in RΦn(A′) then we are done. Otherwise there exists some rule
R(y1, . . . , yr) :- t1, . . . , tm in Q, over the variables u1, . . . , uk′ , k′ ≤ k and some mapping
h : {u1, . . . , uk′} → A such that Φn(A′), h(u1), . . . , h(uk′) |= t1 ∧ · · · ∧ tm, and ai = h(yi),
for every 1 ≤ i ≤ r. Let us consider two cases: if the body of the rule does not contain any
intensional predicate, then A, h(u1), . . . , h(uk′) |= t1 ∧ · · · ∧ tm. Then, A|{h(u1),...,h(uk′)}

and

h(a1), . . . , h(ak′) satisfy statement (*). Otherwise, let us assume that the body contains
one occurrence of an intensional predicate, say t1 = R1(x1, . . . , xl). In this case, since

〈h(x1), . . . , h(xl)〉 ∈ R
Φn(A′)
1 ,

we can assume, by induction hypothesis, that there exists some B and some b1, . . . , bl in
B, such that 〈b1, . . . , br〉 ∈ RΦ∗(B′) and B, b1, . . . , bl −→ A, h(x1), . . . , h(xl). Furthermore
there exists a path-decomposition S1, . . . , Ss of B such that {b1, . . . , bl} ⊆ S1. We can
assume, by renaming elements of B if necessary, that bi = h(xi) for every 1 ≤ i ≤ l and
that every other element of the universe of B does not belong to A. Consider the structure
C given as B∪A|{h(u1),...,h(uk′)}

. By construction, Φn(C′), h(u1) . . . , h(uk′) |= t1 ∧ · · · ∧ tm

and consequently, 〈h(x1), . . . , h(xl)〉 ∈ RΦn+1(C′).
Furthermore {h(u1), . . . , h(uk′)}, S1, . . . , Ss is a path-decomposition of C of width (j, k).
In order to finish the proof, let O be the set containing all τ -structures of pathwidth

(j, k) in C. We shall see that O is an obstruction set of ¬C. First, as O only contains
structures in C and C is a filter, we can infer that for every structure A, such that B −→ A
for some B in O, A is in C. Conversely, let A be any structure in C. By the definition of
acceptance by a Datalog Program, we can conclude that PΦ∗(A′) 6= ∅. By (*) we have that

there exists some τ -structure B with pathwidth at most (j, k) such that PΦ∗(B′) 6= ∅ (and
hence B ∈ O), and B −→ A.

Lemma 1. Let 0 ≤ j ≤ k be non-negative integers and let C be a collection of τ -structures.
The two following sentences are equivalent:

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 23

(1) C is definable in linear (j, k)-Datalog.
(2) ¬C is definable in j-adic k-ary restricted Krom monotone SNP.

Furthermore, if ¬C is an ideal we also have that (1) and (2) are equivalent to:

(3) ¬C is definable in j-adic k-ary restricted Krom SNP with equalities.

Proof. To show the equivalence between (1) and (2) is straightforward but laborious. Here
we will only sketch briefly the proof. To proof (1)→(2) we show that for any any linear
(j, k)-Datalog program Q, there exists a sentence ϕ in j-adic k-ary restricted Krom mono-
tone SNP, such that for every structure A, A |= ϕ iff and only if Q does not accept A .
The sentence ϕ is of the form ∃R1, . . . , Rl∀v1, . . . , vkψ(v1, . . . , vk) where:

• R1, . . . , Rl are the IDBs of the Datalog Program Q
• v1, . . . , vk are the variables occurring in the rules of the Datalog Program. Note:

We can assume that the variables in the Datalog Program have been renamed so
that every rule has its variables among v1, . . . , vk

• ψ(v1, . . . , vk) is a CNF formula that is defined as

ψ(v1, . . . , vk) = ¬P ∧
∧

t0 :- t1,...,tm∈Q

t0 ∨ ¬t1 ∨ · · · ∨ ¬tm

where P is the goal predicate of Q.

It is immediate, although again laborious, to show that ϕ is a sentence in j-ary k-ary
restricted Krom monotone SNP that is satisfied precisely by those structure that are not
accepted by Q.

For the converse ((2)→(1)), let ϕ = ∃R1, . . . , Rl∀v1, . . . , vkψ(v1, . . . , vk) be an arbitrary
sentence in j-adic k-ary restricted Krom monotone SNP. We shall construct a linear (j, k)-
Datalog Program Q in the following way:

• The IDBs of Q are precisely the second order predicates of ϕ, R1, . . . , Rl plus a new
0-ary IDB, P , which will act as the goal predicate.

• The rules of Q are constructed from ψ in the following way. The formula ψ is a
CNF and henceforth is the conjunction of several subformulas, where each one of
this subformulas is the disjunction of atomic or negated atomic formulas. In fact,
since we are dealing with a restricted Krom monotone SNP formula each one of this
subformulas has to be of a very restricted form. More precisely, every one of the
subformulas that constitute ψ has to be either the disjunction of negated atomic
formulas ¬t1 ∨ · · · ∨ ¬tm, or it can contain one unnegated atomic formula, that is,
it has to be of the form to ∨ ¬t1 ∨ · · · ∨ ¬tm where the underlying predicate of t0 is
an IDB.

Datalog Program Q contains a rule per each subformula in ψ. If the subformula
is of the form ¬t1∨· · ·∨¬tm then the rule added to Q is P :- t1, . . . , tm. Otherwise,
if the subformula is of the form t0 ∨ ¬t1 ∨ · · · ∨ ¬tm then the rule is of the form
t0 :- t1, . . . , tm.

Again it is an easy exercise to show that the Datalog Program Q defined is indeed a linear
(j, k)-Datalog Program that accepts precisely those structures that falsify ϕ.

To see that if C is a filter then (3) implies (1) we make use of a result by Feder and
Vardi [11] which states that for every Datalog(6=,¬) Program P , that is, every Datalog
Program in which we allow inequality and the negation of EDBs, that defines a filter C,
there exists a Datalog Program P ′, that defines the same set of structures C. Furthermore,

24 V. DALMAU

a closer inspection to the proof in [11] reveals that if P is in linear (j, k)-Datalog(6=,¬), then
P ′ is in linear (j, k)-Datalog..

The proof that (3) implies (1) mimics that of (2) implies (1). As before let ϕ =
∃R1, . . . , Rl∀v1, . . . , vkψ(v1, . . . , vk) be an arbitrary sentence in j-adic k-ary restricted Krom
SNP with equalities. We shall construct a linear (j, k)-Datalog Program Q in a similar
fashion:

• The IDBs of Q are precisely the second order predicates of ϕ, R1, . . . , Rl plus a new
0-ary IDB, P , which will act as the goal predicate.

• The rules of Q are constructed from ψ in the following way. The formula ψ is a CNF
and henceforth is the conjunction of several subformulas of the form t1 ∨ · · · ∨ tm
, where each ti, 1 ≤ i ≤ m is an atomic or a negated atomic formula. Since the
formula ψ is not supposed to be monotone and might contain equalities we only
can assume that each one of the disjunctions t1 ∨ · · · ∨ tm of ψ has at most one
positive occurrence of a second-order variable and at most one negative occurrence
of a second order-variable. As before, we add to Q a rule per each disjunction
t1 ∨ · · · ∨ tm in ψ. If t1 ∨ · · · ∨ tm does not contain any positive occurrence of an
IDB, then the rule added to Q is P :– ¬t1, . . . ,¬tm. Otherwise, if t1 ∨ · · · ∨ tm
contains one positive occurrence of an IDB, say t1, then the rule added to Q is
t1 :– ¬t2, . . . ,¬tm.

Observe that the body of a rule in Q might contain equalities and negated atomic formulas
¬R(x1, . . . , xr) where R is an EDB. Consequently, Q is a Datalog(6=,¬) Program. It is
easy to see that Q is, indeed, a linear (j, k)-Datalog(6=,¬) Program and that Q accepts
accepts precisely those structures that falsify ϕ. Since C is a filter, by the result in [11]
mentioned above there exists a linear (j, k)-Datalog Program (that is, without inequalities
and negations) that defines C.

The implication ((2)→(3)) is trivial.

If we are dealing with set of structures ¬C of the form I(B) for some τ -structure B,
then we can combine Theorem 2, Lemma 1, Theorem 3, and Theorem 4, obtaining the main
result of this paper.

Theorem 5. Let 0 ≤ j ≤ k be non-negative integer, let B be a τ -structure, and let
¬C = CSP(B) = I(B). The following sentences are equivalent:

(1) The class C is M j,k-definable.
(2) The class C is N j,k-definable.
(3) The class C is definable in linear (j, k)-Datalog.
(4) If A and B are finite structures such that A ∈ C and Duplicator has a winning

strategy for the (j, k)-PR game on A and B, then B ∈ C.
(5) The class ¬C has an obstruction set with pathwidth at most (j, k).
(6) The class ¬C is definable in j-adic k-ary restricted Krom SNP with equalities.
(7) The class ¬C is definable in j-adic k-ary restricted Krom monotone SNP.

Let B be a τ structure. If ¬C = I(B) satisfies any of the conditions of Theorem 5 we
say that B has (j, k)-path duality. Finally, we say that B has bounded path duality if B has
(j, k)-path duality for some 0 ≤ j < k.

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 25

7. Applications in Computational Complexity

In this section we bring computational complexity into the picture. We shall start by
proving that for every finite structure B with bounded path duality, CSP(B) is in NL.

This result is an immediate consequence of the following theorem, proven in [14].

Theorem 6 ([14]). Let ϕ be a Krom CNF formula over a vocabulary τ . The problem of
deciding, given a τ -structure A, whether A |= ϕ, is solvable in NL.

Indeed, if B has bounded path duality, then CSP(B) is definable in Krom SNP. Hence
we have,

Proposition 3. Let B be a τ -structure with bounded path duality. Then CSP(B) is in
NL.

In what follows, we shall revisit all families of constraint satisfaction problems, that
up to the best of our knowledge, are known to be in NL. Our goal here is to show that
the notion of bounded path duality provides a unifying framework that encompasses and
explains this results. In the last part of this section, we shall see how the notion of bounded
path duality can be used to place new problems in NL.

7.1. Implicational constraints. The class of implicational constraints was introduced
independently by Kirousis [23] and by Cooper et al. [4] (in this second reference they were
named 0/1/all constraints). A binary relation R ⊆ A2 over a finite domain A is called
implicational if it has one of the following three forms: (1) B × C for some B,C ⊆ A, (2)
{(a, f(a)) : a ∈ B} for some B ⊆ A and some one-to-one mapping f : B → A, or (3)
({b} × C) ∪ (B × {c}) for some B,C ⊆ A, b ∈ B, and c ∈ C. A structure B is said to be
implicational if so are all its relations. It is easy to observe that 2-SAT can be encoded as
a constraint satisfaction problem CSP(B2-SAT), with B2-SAT implicational:

The signature τ of B2-SAT contains three binary relation symbols P0, P1 and P2. The

universe of B is {0, 1} and the values of PB2-SAT
0 , PB2-SAT

1 , and PB2-SAT
2 are respectively

{0, 1}2/{(0, 0)}, {0, 1}2/{(0, 1)}, and {0, 1}2/{(1, 1)}. Observe that each one of these rela-
tions is implicational.

It is well known and quite easy to see that 2-SAT and CSP(B2-SAT) are logspace re-
ducible to each other. Indeed, let ϕ be any arbitrary 2-CNF formula. We shall show that it
is possible to construct in logarithmic space a τ -structure A such that A is homomorphic
to B2-SAT if and only if ϕ has a solution. The universe A of A is given by the variables of
ϕ. Furthermore, PA

0 contains for each clause (x ∨ y) with only positive literals, the tuple
(x, y). Observe that every homomorphism from A to B should set values to x and y that

belong to PB2-SAT
0 = {0, 1}2/{0, 0}. Hence the values set to x and y must satisfy clause

(x ∨ y).
A similar processing is applied to the other types of clauses. More precisely, for each

clause with exactly one positive literal (x∨ ¬y) (let us assume that the literals are ordered
so that the positive literal comes first) we add the tuple (x, y) to PA

1 and for each clause
(¬x∨¬y) with only negative literals we add the tuple (x, y) to PA

2 . It is very easy to verify
that satisfying assignments of ϕ correspond to homomorphisms from A to B2-SAT and that
this reduction can be performed in logarithmic space. The reduction from CSP(B2-SAT) to
2-SAT is also very simple and we omit it.

Let B be any implicational structure and let A be any instance of CSP(B). We
first recall a well-known result about constraint satisfaction problems CSP(B) with B

26 V. DALMAU

implicational which can be found in [23]. If A is an instance of CSP(B) we define the
conflict graph G associated to A and B as the digraph G = (V,E), with set of nodes
V = {(a, b) : a ∈ A, b ∈ B} ∪ {�} and set of edges E constructed in the following way:

(a) For every predicate R in the vocabulary τ of A, for every b, b′ ∈ B such that
RB∩ ({b}×B) = {(b, b′)}, and for every tuple (a, a′) ∈ RA we add to E an arc from
(a, b) to (a′, b′).

(b) For every predicate R in the vocabulary τ of A, for every b, b′ ∈ B such that
RB ∩ (B × {b′}) = {(b, b′)}, and for every tuple (a, a′) ∈ RA we add to E an arc
from (a′, b′) to (a, b)).

(c) For every predicate R in the vocabulary τ of A, for every b ∈ B such that RB ∩
({b}×B) = ∅, and for every tuple (a, a′) ∈ RA we add to E an arc from (a, b) to �.

(d) For every predicate R in the vocabulary τ of A, for every b′ ∈ B such that RB ∩
(B × {b′}) = ∅, and for every tuple (a, a′) ∈ RA we add to E an arc from (a′, b′) to
�.

Lemma 2. A is homomorphic to B iff for every a ∈ A there exists some b ∈ B such that
there is not a path from (a, b) to any some node in {(a, b′) : b′ ∈ B
{b}} ∪ {�}.

Let us see that this implies that each implicational B has (2, 3)-path duality.

Lemma 3. Every implicational structure B has (2, 3)-path duality.

Proof. Let A be any structure not homomorphic to B and let G be the conflict graph
associated to A and B. Let {b1, . . . , bm} be the universe B of B. We shall construct a
structure P with pathwidth at most (2, 3) that is homomorphic to A but is not homomorphic
to B.

By Lemma 2 there exists some a∗ ∈ A such that for all bi, 1 ≤ i ≤ m, there is a path in
G from (a∗, bi) to either (a∗, bj) for some j 6= i or �. Let us denote by (a∗, bi) = vi

1, v
i
2, . . . , v

i
li

the elements of such path. Observe that vi
li

is either (a∗, bj) for some j 6= i or �.

The universe P of P contains for each 1 ≤ i ≤ m, and for each node vi
k, 1 ≤ k ≤ li

in the path corresponding to bi an element wi
k. If the same node of A appears in several

paths then we make different copies of it. Finally we merge nodes wi
k, corresponding to

vi
k = (a∗, bl) for some 1 ≤ l ≤ m into a unique node that we shall call w. Observe for all for

all 1 ≤ i ≤ m, wi
1 is w.

Now we shall construct the relations of P and, at the same time, a homomorphism h
from P to A.

Let i be any integer with 1 ≤ i ≤ m and let vi
j, v

i
j+1 be any two consecutive elements

in the path corresponding to bi. Then, (vi
j , v

i
j+1) is an arc of G that must have been added

according to (a), (b), (c) or (d). If (vi
j , v

i
j+1) has been added according to (a) then there

exists some predicate R in τ , some b, b′ ∈ B such that RB ∩ ({b}×B) = {(b, b′)}, and some
tuple (a, a′) ∈ RA. Then we add to RP the tuple (wi

j+1, w
i
j+1). The mapping h maps vi

j to

a and vi
j+1 to a′. Similarly, if (vi

j , v
i
j+1) has been added according to (b) then there exists

some predicate R in τ , some b, b′ ∈ B such that RB ∩ (B×{b′}) = {(b, b′)}, and some tuple
(a, a′) ∈ RA. In this case we add (wi

j+1, w
i
j) to RP and set h(vi

j) = a′ and h(vi
j+1) = a. The

cases (c) and (d) are dealt with in a similar fashion.
By construction, h defines a homomorphism from P to A. We shall now prove that P

is not homomorphic to B. Towards a contradiction let us assume that there exists such a

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 27

homomorphism f and let bi be the image of w according to f . Let us consider the nodes
in P, w = wi

1, w
i
2, . . . , w

i
li

associated to the path vi
1, v

i
2, . . . , v

i
l1

. The first arc (vi
1, v

i
2) of the

path has been added due to one of the conditions (a − d). If it was added due to (a) then
there exists some predicate R in τ , some b, b′ ∈ B such that RB ∩ ({b} × B) = {(b, b′)}.
Furthermore (wi

1, w
i
2) belongs to RP. Consequently, if f is a homomorphism it must map

wi
2 to b′. We can do a similar reasoning for the other conditions (b−c) and for the remaining

nodes of the path until we reach the last element of the path vi
li
. Here we should consider

two cases. If the arc (vi
li−1, v

i
li
) has been added due to conditions (a) or (b), then can

conclude that wi
li

is w and f(w) = bj for some j 6= i, obtaining a contradiction. Otherwise,

If the arc (vi
li−1, v

i
li
) has been added due to conditions (c) or (d), then we can conclude that

f is not a homomorphism, getting again a contradiction.
It only remains to show that P has pathwidth at most (2, 3). The key observation here

is that each one of paths vi
1, . . . v

i
li

gives rise to a collection of nodes wi
1, . . . , w

i
li

of P such

that the restriction P|{wi
1,...,wi

li
} of P to {wi

1, . . . , w
i
li
} has the following path-decomposition:

{wi
1, w

i
2}, . . . , {w

i
li−1, w

i
li
}. Consequently, since w is the only common node to each such

restriction we can easily conclude that P has the path-decomposition:

{w,w1
1 , w

1
2}, {w,w

1
2 , w

1
3}, . . . , {w,w

1
l1−1, w

1
l1
}, {w,w2

1 , w
2
2}, . . . , {w,w

m
lm−1, w

m
lm
}

Using a very similar line of reasoning is it possible to push this results a bit further.
In particular it is possible to show [7] that every structure B that contains only relations
invariant under an operation in the pseudovariety generated by all dual discriminator oper-
ations has also bounded path duality. A complete presentation of this result would require
a lengthy introduction of the algebraic approach to CSP. Since this would lead us out of
the scope of this paper we omit it and instead we refer to [7].

Another related family of constraint satisfaction problems solvable in NL is the class
of all CSP(B) where B is a poset with constants invariant under a near-unanimity opera-
tion [28]. Again for space limitations we shall not present this result. In [28] it is shown
that for every such poset B, ¬CSP(B) is definable in pos FO+TC, that is, the fragment of
FO+TC in which negation and universal quantification is not allowed. It is known (folklore)
that pos FO+TC and linear Datalog have the same expressive power. Consequently, we
can infer that B has bounded path duality.

7.2. Implicative Hitting-Set Bounded. The class of Implicative Hitting-Set Bounded
was introduced in [5]. Let k be any integer greater than 1. A Boolean relation R is in
k-IHS-B+ if it can be expressed as a CNF where each clause is of the form ¬v, ¬v ∨ w
or w1 ∨ · · · ∨ wk (here we do not require that all wi’s are different). Similarly, R is in
k-IHS-B− if it can be expressed as a CNF where each clause is of the form w, ¬v ∨ w or
¬v1 ∨ · · · ∨ ¬vk. A relational structure B is implicative Hitting-Set Bounded there exists
some k ≥ 2 such that all its relations are in k-IHS-B+ or k-IHS-B−. It is well known [5]
that for every Implicative Hitting-Set Bounded structure B, CSP(B) is solvable in NL. We
shall prove that it has bounded path width duality.

Lemma 4. Let B be a relational structure containing only relations in k-IHS-B+ for some
k ≥ 2. Then B has (k, k− 1 + ρ(B))-path duality. Similarly, if B contains only relations in
k-IHB-B- then B has (k, k − 1 + ρ(B))-path duality.

28 V. DALMAU

Proof. We shall consider only the case in which all relations of B are in k-IHS-B+. The
case k-IHS-B− is completely symmetric. We need to introduce a bit of notation. Recall
that given a relation T and a subset I of {1, . . . , ρ(T)}, T|I denotes the restriction of T to
I. We generalize slightly this definition by allowing sequences of integers instead of merely
sets. More formally, let i1, . . . , ik be (not necessarily different) integers in {1, . . . , ρ(T)}. By
T|i1,...,ik

we denote the k-ary relation

{(ai1 , . . . , aik) : (a1, . . . , aρ(T)) ∈ T}

Let us start by introducing a property of unsatisfiable formulas which will be of most
help in providing intuition on the proof.
Lemma 5. [5] Let Φ be a CNF formula containing only clauses of the form ¬v, ¬v ∨w or
w1 ∨ · · · ∨wk. If Φ is unsatisfiable then there exists a clause of the form w1 ∨ · · · ∨wk such
that for each i ∈ {1, . . . , k} there exists a sequence of variables wi = vi

1, . . . , v
i
li

such that

¬vi
li
, an (¬vi

j ∨ v
i
j+1) for all j ∈ {1, . . . , li − 1} are in Φ

In order to prove the theorem we need a generalization of this result. Let A be an
instance of CSP(B) and let h be a partial mapping from the universe A to B. In what
follows we shall denote a partial mapping as (a1 → b1, . . . , am → bm) where {a1, . . . , am} is
the domain of the partial mapping and for each 1 ≤ i ≤ m, ai is map to bi. We say that
a partial mapping is forbidden if there exists a predicate R in the vocabulary τ of B and
some integers i1, . . . , im such that (a1, . . . , am) ∈ RA

|i1,...,im
and (b1, . . . , bm) 6∈ RB

|i1,...,im
.

Lemma 6. Let A be any unsatisfiable instance of CSP(B) where B contains only relations
in k-IHS-B+. Then there exists some elements ai

j , 1 ≤ i ≤ k, 1 ≤ j ≤ li of A such that

(a1
1 → 0, . . . , ak

1 → 0), (ai
li
→ 1), 1 ≤ i ≤ k, and (ai

j → 1, ai
j+1 → 0), 1 ≤ i ≤ k, 1 ≤ j ≤ li−1

are forbidden partial mappings

Proof. The proof of this lemma is rather straightforward. We only present here an sketch
of the proof. In a first step, taking into account that every relation in B is in k-IHS-
B+, it is possible to construct from A and B, an unsatisfiable CNF formula in which the
variables are elements of A and every clause is of the form ¬v, ¬v ∨ w, or w1 ∨ · · · ∨ wk.
Observe that we can associate to each clause l1 ∨ · · · ∨ lr in Φ a forbidden partial mapping
(v1 → b1, . . . , vr → br) where vi is the variable underlying literal li and bi is 0 if li is positive
and 1 otherwise. Finally the result follows by applying Lemma 5 to formula Φ.

We are now in a position to construct a τ -structure P of (k, k − 1 + ρ(B)) that is
homomorphic to A but not homomorphic to B. The universe P of P contains for each
1 ≤ i ≤ k and for each element ai

j , 1 ≤ j ≤ li in the sequence guaranteed by the previous

lemma, an element cij . If the same element appears more than once then we make different
copies. The universe of P contains also more elements that will be added as needed.

We now construct the relations of P. At the same time we shall define a homomorphism
h from P to A. The intuition of the construction is very similar to the proof of Lemma 3.

Let (a1
1 → 0, . . . , ak

1 → 0) be the first of the forbidden partial mappings guaranteed to
exist by Lemma 6. Consequently there exists some predicate symbol R in τ , some tuple
(v1, . . . , vρ(R)) ∈ RA and some j1, . . . , jk ∈ {1, . . . , ρ(R)} such that vj1 = a1

1, . . . , vjk
=

ak
1 . Then we include in RP a tuple (w1, . . . , wρ(R)) containing ci1 in its jith position, i ∈

{1, . . . , wk} and new variables not occurring in P elsewhere. We set h(wl) to be vl. We
associate to the forbidden partial mapping (a1

1 → 0, . . . , ak
1 → 0) a set S(a1

1→0,...,ak
1→0)

that contains all variables {w1, . . . , wρ(R)} (we shall use this set later to define the path

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 29

decomposition of P). We proceed in a similar fashion for each forbidden partial mapping
guaranteed by Lemma 6.

By construction h defines a homomorphism from P to A. Furthermore P has has
pathwidth at most (k, k − 1 + ρ(B)) as it is certified by the following path-decomposition:

S(a1
1→0,...,ak

1→0), S(a1
1→1,a1

2→0) ∪ {c21, . . . , c
k
1}, . . . , S(a1

l1−1→1,a1
l1
→0) ∪ {c21, . . . , c

k
1},

S
(a1

li
→1)

∪ {c21, . . . , c
k
1}, S

(a2
1→1,a2

2→0) ∪ {c31, . . . , c
k
1}, . . . , S(ak

lk−1→1,ak
lk
→0), S(ak

lk
→1)

Finally, we shall now see that P is not homomorphic to B. Towards a contradiction, let
f be such homomorphism. By the construction of P we can conclude that (c11 → 0, . . . , ck1 →
0) is a forbidden mapping of P and B. Consequently, for some i, f(ci1) = 1. Consider
now the sequence ci1, c

i
2, . . . , c

i
li
. By the construction of P for each j ∈ {1, . . . , li − 1},

(cij → 1, cij+1 → 0) is a forbidden mapping. Consequently we can infer by induction that for

every j ∈ {1, . . . , li}, f(cij) = 1. We get then a contradiction with the fact that (cili → 1) is
a forbidden mapping.

7.3. New problems in NL. In this section we shall use the notion of bounded path as
a tool to identify some other constraint satisfaction problems in NL. We have mentioned
already in Section 7.1 that every structure invariant under an operation in the pseudovariety
generated by all dual discriminator operations has bounded path duality. More examples
of constraint satisfaction problems CSP(B), such that B has bounded path duality can
be found in the literature about H-coloring which can be reformulated as the subcase of
the general constraint satisfaction problem CSP(H) when H is a (di)graph. As mentioned
in the introduction, the notion of bounded tree duality which is intimately related to the
notion of path duality (and in fact, inspired it) has been deeply investigated in the field of
H-coloring. Let us recall that a (di)graph H has has bounded tree duality if CSP(B) has an
obstruction set containing only graphs of treewidth at most k for some fixed k. Most of the
tractable cases of the H-coloring posses bounded tree duality. Indeed, a closer inspection of
those results shows that most times, the obstruction set corresponding to a given (di)graph
H contains only structures with bounded pathwidth. Consequently, as a direct consequence
of Proposition 3, we can lower the complexity of this problems from P to NL with virtually
no effort.

Let us revisit now some of these examples. For undirected graphs, the only case solvable
in polynomial time corresponds to bipartite graphs [16]. It is fairly easy to see that the
set of all odd cycles is an obstruction set of CSP(H) for any bipartite graph H. As cycles
have pathwidth at most (2, 3) we can conclude that every bipartite graph H has (2, 3)-path
duality. We have thus strengthened the dichotomy result of [16]: for every undirected graph
H, CSP(H) is in NL or NP-complete.

For directed graphs, it is a direct consequence of the results in [18, 19] (see also [17])
that every oriented path, directed cycle, and even more generally, every unbalanced oriented
cycle has bounded path duality.

Let us present these results. An oriented path is a digraph H with nodes p0, . . . , pn such
that for each i ∈ {0, . . . , n− 1} either (pi, pi+1) or (pi+1, pi) is an edge of H and it does not
contain any other edge. It was shown in [18] that for every oriented path H, CSP(H) has
an obstruction set containing only oriented paths. It is easy to observe that the Gaifman

30 V. DALMAU

graph of an oriented path is a path and hence has pathwidth at most (1, 2). Consequently,
oriented paths have (1, 2)-path duality.

An oriented cycle is a digraph H with nodes p0, . . . , pn such that for each i ∈ {0, . . . , n},
either (pi, pi+1) or (pi+1, pi) is an edge of H (the sum is modulo n + 1). If additionally all
edges are in the same direction then H is called a directed path. More generally, if the
number of forward edges is different than the number of backward edges then H is called
unbalanced.

In [19], it is shown that for each unbalanced oriented cycle H, CSP(H) has an obstruc-
tion set containing only oriented cycles. As oriented cycles have pathwidth at most (2, 3)
we can conclude that H has (2, 3)-path duality.

We conclude this section by examining the problem of deciding whether a given struc-
ture B has bounded path duality. In general, this problem is not known to be decidable.
However, in a particular case it is possible to show decidability, by mimicking some results
originally proven in [12].

Theorem 7. For every 1 ≤ k, the problem of deciding whether a τ -structure B has (1, k)-
path duality is decidable.

Proof. By Theorem 3, there exists a sentence ϕ in 1-adic (also called monadic) monotone
SNP such that for every τ -structure A, A |= ϕ iff the Duplicator has a winning strategy for
the (1, k)-PR game on A and B. It is widely known (see [12]) that there exists a sentence
ψ in monadic monotone SNP such that for every τ -structure A, A |= ψ iff A ∈ CSP(B).
Thus deciding (1, k)-path duality is equivalent to decide whether (ϕ =⇒ ψ) is a tautology
for finite structures. The latter is decidable since so is containment for monadic monotone
SNP [12].

8. Open Problems

It is unknown whether bounded path duality captures the class of CSPs solvable in
NL, i.e, whether there exists a structure that does not have bounded path duality such
that CSP(B) is solvable in NL. In this direction, it is not difficult to show, using some
results in [14], that for every structure B, if CSP(B) is in NL, then it can be expressed
in restricted Krom monadic SNP with equality, s(x, y) (true when y is the immediate
successor of x in some total ordering), 0 and max (first and last elements of the total
ordering respectively). Here we understand that the homomorphism condition only applies
to non-built-in predicates.

Another interesting problem is to extend the class of structures B known to have
bounded path duality via closure conditions. With that respect, it would be interesting to
decide whether majority operations, or even more generally, near-unanimity operations [35]
(see also [21]) guarantee bounded path duality. This result is true, in particular, for struc-
tures with domain of size at most 2.

9. Acknowledgments

I am grateful to Phokion Kolaitis for stimulating discussions and for sharing with me
his expertise on logic and games.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

LINEAR DATALOG AND BOUNDED PATH DUALITY OF RELATIONAL STRUCTURES 31

[2] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational databases.
In 9th Symp. on Theory of Computing (STOC’77), pages 77–90, 1977.

[3] S.A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd Annual ACM Symposium on Theory
of Computing, (STOC’71), pages 151–158, 1971.

[4] M.C. Cooper, D.A. Cohen, and P.G. Jeavons. Characterizing Tractable Constraints. Artificial Intelli-
gence, 65:347–361, 1994.

[5] N. Creignou, S. Khanna, and M. Sudan. Complexity Classification of Boolean Constraint Satisfaction
Problems, volume 7 of Monographs on Discrete Mathematics and Applications. SIAM, 2001.

[6] V. Dalmau. A New Tractable Class of Constraint Satisfaction Problems. In 6th International Symposium
on Artificial Intelligence and Mathematics, 2000.

[7] V. Dalmau. Constraint satisfaction problems in non-deterministic logarithmic space. In 29th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP’02), pages 414–425, 2002.

[8] V. Dalmau, P.G. Kolaitis, and M. Vardi. Constraint Satisfaction Problems, Bounded Treewidth, and
Finite-Variable Logics. In 8th International Conference on Principles and Practice of Constraint Pro-
gramming (CP’02), pages 310–326.

[9] V. Dalmau and J. Pearson. Set Functions and Width 1. In 5th International Conference on Principles
and Practice of Constraint Programming, (CP’99), volume 1713 of Lecture Notes in Computer Science,
pages 159–173, Berlin/New York, 1999. Springer-Verlag.

[10] R. Dechter and J. Pearl. Network-based Heuristics for Constraint Satisfaction Problems. Artificial In-
telligence, 34(1):1–38, 1988.

[11] T. Feder and M. Vardi. Homomorphism closed vs. existential positive. In 18th IEEE Symposium on
Logic in Computer Science (LICS’03), pages 311–320, 2003.

[12] T. Feder and M.Y. Vardi. The Computational Structure of Monotone Monadic SNP and Contraint
Satisfaction: A Study through Datalog and Group Theory. SIAM J. Computing, 28(1):57–104, 1998.

[13] E.C. Freuder. A Sufficient Condition for Backtrack-bounded Search. Journal of the ACM, 32:755–761,
1985.

[14] E. Grädel. Capturing Complexity Classes by Fragments of Second-Order Logic. Theoretical Computer
Science, 101(1):35–57, 1992.

[15] M. Grohe. The Complexity of Homomorphism and Constraint Satisfaction Problems seen from the Other
Side. In Proceedings of the 44th IEEE Symposium on Foundations of Comupter Science, (FOCS’03),
pages 552–561, 2003.

[16] P. Hell and J. Nes̆etr̆il. On the Complexity of H-coloring. J. Comb. Theory, Series B, 48:92–110, 1990.
[17] P. Hell, J. Nes̆etr̆il, and X. Zhu. Duality and polynomial testing of graph homomorphisms. Trans. Amer.

Math. Soc., 348:1281–1297, 1996.
[18] P. Hell and X. Zhu. Homomorphisms to oriented paths. Discrete Mathematics, 132:107–114, 1994.
[19] P. Hell and X. Zhu. The Existence of Homomorphisms to Oriented Cycles. SIAM J. Discrete Math., 8,

1995.
[20] P. Jeavons. On the Algebraic Structure of Combinatorial Problems. Theoretical Computer Science,

200:185–204, 1998.
[21] P. Jeavons, D. Cohen, and M.C. Cooper. Constraints, Consistency and Closure. Artificial Intelligence,

101:251–265, 1998.
[22] P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal of the ACM,

44(4):527–548, July 1997.
[23] L. Kirousis. Fast Parallel Constraint Satisfaction. Artificial Intelligence, 64:147–160, 1993.
[24] P. G. Kolaitis and M. Vardi. On the Expressive Power of Datalog: Tools and a Case Study. Journal of

Computer and System Sciences, 51(1):110–134, 1995.
[25] P.G. Kolaitis and M. Vardi. A Game-Theoretic Approach to Constraint Satisfaction. In 17th National

Conference on Artificial Intelligence (AAAI’00), pages 175–181.
[26] P.G. Kolaitis and M. Vardi. The Decision Problem for the Probabilities of Higher-Order Properties. In

19th Annual ACM Symposium on Theory of Computing, pages 425–435, 1987.
[27] P.G. Kolaitis and M. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. Journal of

Computer and System Sciences, 61(2):302–332, 2000.
[28] A. K. Krokhin and B. Larose. Solving order constraints in logarithmic space. In 20th Annual Symposium

on Theoretical Aspects of Computer Science (STACS’03), pages 379–390, 2003.
[29] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.

32 V. DALMAU

[30] U. Montanari. Networks of Constraints: Fundamental Properties and Applications to Picture Process-
ing. Information Sciences, 7:95–132, 1974.

[31] U. Montanari and F. Rossi. Constraint Relaxation may be Perfect. Artificial Intelligence, 48:143–170,
1991.

[32] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Complexity Classes. Jour-
nal of Computer and System Sciences, 43:425–440, 1991.

[33] N. Robertson and P. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory Series B, 35:39–61,
1983.

[34] T.J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing, (STOC’78), pages 216–226, 1978.

[35] A. Szendrei. Idempotent algebras with restrictions in subalgebras. Acta Sci. Math., 51:251–268, 1987.
[36] J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume II. Computer Science Press,

1989.
[37] P. van Beek and R. Dechter. On the Minimality and Decomposability of Row-convex Constraint Net-

works. Journal of the ACM, 42:543–561, 1995.
[38] P. van Hentenryck, Y. Deville, and C-M. Teng. A Generic Arc-consistency Algorithm and its Special-

izations. Artificial Intelligence, 1992.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

