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Abstract. Succinctness is a natural measure for comparing the strength of different log-
ics. Intuitively, a logic L1 is more succinct than another logic L2 if all properties that can
be expressed in L2 can be expressed in L1 by formulas of (approximately) the same size,
but some properties can be expressed in L1 by (significantly) smaller formulas.

We study the succinctness of logics on linear orders. Our first theorem is concerned
with the finite variable fragments of first-order logic. We prove that:
(i) Up to a polynomial factor, the 2- and the 3-variable fragments of first-order logic on

linear orders have the same succinctness.
(ii) The 4-variable fragment is exponentially more succinct than the 3-variable fragment.

Our second main result compares the succinctness of first-order logic on linear orders
with that of monadic second-order logic. We prove that the fragment of monadic second-
order logic that has the same expressiveness as first-order logic on linear orders is non-
elementarily more succinct than first-order logic.

1. Introduction

It is one of the fundamental themes of logic in computer science to study and compare
the strength of various logics. Maybe the most natural measure of strength is the expressive
power of a logic. By now, researchers from finite model theory, but also from more applica-
tion driven areas such as database theory and automated verification, have developed a rich
toolkit that has led to a good understanding of the expressive power of the fundamental
logics (e.g. [3, 10, 12]). It should also be said that there are clear limits to the understanding
of expressive power, which are often linked to open problems in complexity theory.

In several interesting situations, however, one encounters different logics of the same
expressive power. As an example, let us consider node selecting query languages for XML-
documents. Here the natural deductive query language monadic datalog [7] and various
automata based query “languages” [13, 14, 6] have the same expressive power as monadic
second-order logic. XML-documents are usually modelled by labelled trees. Logics on trees
and strings also play an important role in automated verification. Of the logics studied in
the context of verification, the modal µ-calculus is another logic that has the same expressive
power as monadic second-order logic on ranked trees and strings, and linear time temporal
logic LTL has the same expressive power as first-order logic on strings [11].
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Succinctness is a natural measure for comparing the strength of logics that have the
same expressive power. Intuitively, a logic L1 is more succinct than another logic L2 if all
properties that can be expressed in L2 can be expressed in L1 by formulas of (approximately)
the same size, but some properties can be expressed in L1 by (significantly) smaller formulas.

For both expressiveness and succinctness there is a trade-off between the strength of a
logic and the complexity of evaluating formulas of the logic. The difference lies in the way
the complexity is measured. Expressiveness is related to data complexity, which only takes
into account the size of the structure in which the formula has to be evaluated, whereas
succinctness is related to the combined complexity, which takes into account both the size
of the formula and the structure [17].

Succinctness has received surprisingly little attention so far. A few scattered results are
[18, 2, 1, 4, 15]; for example, it is known that first-order logic on strings is non-elementarily
more succinct than LTL [11, 15]. In [8], we started a more systematic investigation. Specifi-
cally, we studied the succinctness of various logics on trees that all have the same expressive
power as monadic second-order logic. While we were able to gain a reasonable picture of
the succinctness of these logics, it also became clear that we are far from a thorough under-
standing of succinctness. In particular, very few techniques for proving lower bounds are
available.

Most of the lower bound proofs use automata theoretic arguments, often combined
with a clever encoding of large natural numbers that goes back to Stockmeyer [15]. In [8],
these techniques were also combined with complexity theoretic reductions to prove lower
bounds on succinctness under certain complexity theoretic assumptions. Wilke [18] used
refined automata theoretic arguments to prove that CTL+ is exponentially more succinct
than CTL. Adler and Immerman [1] were able to improve Wilke’s lower bound slightly,
but what is more important is that they introduced games for establishing lower bounds on
succinctness. These games vaguely resemble Ehrenfeucht-Fräıssé games, which are probably
the most important tools for establishing inexpressibility results.

In this paper, we study the succinctness of logics on linear orders (without any additional
structure). In particular, we consider finite variable fragments of first-order logic. It is
known and easy to see that even the 2-variable fragment has the same expressive power as
full first-order logic on linear orders (with respect to Boolean and unary queries). We prove
the following theorem:

Theorem 1.1. (i) Up to a polynomial factor, the 2 and the 3-variable fragments of first-
order logic on linear orders have the same succinctness.

(ii) The 4-variable fragment of first-order logic on linear orders is exponentially more
succinct than the 3-variable fragment. �

For the sake of completeness, let us also mention that full first-order logic is at most expo-
nentially more succinct than the 3-variable fragment. It remains an open problem if there
is also an exponential gap in succinctness between full first-order logic and the 4-variable
fragment.

Of course the main result here is the exponential gap in Theorem 1.1 (ii), but it should
be noted that (i) is also by no means obvious. The theorem may seem very technical and
not very impressive at first sight, but we believe that to gain a deeper understanding of the
issue of succinctness it is of fundamental importance to master basic problems such as those
we consider here first (similar, maybe, to basic inexpressibility results such as the inability
of first-order logic to express that a linear order has even length). The main technical
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result behind both parts of the theorem is that a 3-variable first-order formula stating that
a linear order has length m must have size at least 1

2

√
m. Our technique for proving this

result originated in the Adler-Immerman games, even though later it turned out that the
proofs are clearer if the reference to the game is dropped.

There is another reason the gap in succinctness between the 3- and 4-variable fragments
is interesting: It is a long standing open problem in finite model theory if, for k ≥ 3, the
k variable fragment of first-order logic is strictly less expressive than the (k+1)-variable
fragment on the class of all ordered finite structures. This question is still open for all
k ≥ 3. Our result (ii) at least shows that there are properties that require exponentially
larger 3-variable than 4-variable formulas.

Succinctness as a measure for comparing the strength of logics is not restricted to logics
of the same expressive power. Even if a logic L1 is more expressive than a logic L2, it is
interesting to know whether those properties that can be expressed in both L1 and L2

can be expressed more succinctly in one of the logics. Sometimes, this may even be more
important than the fact that some esoteric property is expressible in L1, but not L2. We
compare first-order logic with the more expressive monadic second-order logic and prove:

Theorem 1.2. The fragment of monadic second-order logic that has the same expressive-
ness as first-order logic on linear orders is non-elementarily more succinct than first-order
logic. �

The paper is organised as follows: After the Preliminaries, in Section 3 we prove the
main technical result behind Theorem 1.1. In Sections 4 and 5 we formally state and prove
the two parts of the theorem. Finally, Section 6 is devoted to Theorem 1.2.

The present paper is the full version of the conference contribution [9].

2. Preliminaries

We write N for the set of non-negative integers.
We assume that the reader is familiar with first-order logic FO (cf., e.g., the textbooks
[3, 10]). For a natural number k we write FOk to denote the k-variable fragment of
FO. The three variables available in FO3 will always be denoted x, y, and z. We write
FO3(<, succ,min,max) (resp., FO3(<)) to denote the class of all FO3-formulas of signature
{<, succ,min,max} (resp., of signature {<}), with binary relation symbols < and succ and
constant symbols min and max. In the present paper, such formulas will always be inter-
preted in finite structures where < is a linear ordering, succ the successor relation associated
with <, and min and max the minimum and maximum elements w.r.t. <.

For every N ∈ N let AN be the {<, succ,min,max}-structure with universe {0, . . , N}, <
the natural linear ordering, min

AN = 0, maxAN = N , and succ the relation with (a, b) ∈ succ

iff a+1 = b. We identify the class of linear orders with the set {AN : N ∈ N}.
For a structure A we write UA to denote A’s universe. When considering FO3, an

interpretation is a tuple (A, α), where A is one of the structures AN (for some N ∈ N)
and α : {x, y, z} → UA is a variable assignment in A. To simplify notation, we will extend
every assignment α to a mapping α : {x, y, z,min,max} → UA, letting α(min) = min

A and
α(max) = maxA. For a variable v ∈ {x, y, z} and an element a ∈ UA we write α[a

v
] to

denote the assignment that maps v to a and that coincides with α on all other variables. If
A is a set of interpretations and ϕ is an FO3(<, succ,min,max)-formula, we write A |= ϕ

to indicate that ϕ is satisfied by every interpretation in A.
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In a natural way, we view formulas as finite trees (precisely, as their syntax trees), where
leaves correspond to the atoms of the formulas, and inner vertices correspond to Boolean
connectives or quantifiers. We define the size ||ϕ|| of ϕ to be the number of vertices of ϕ’s
syntax tree.

Definition 2.1. [Succinctness]
Let L1 and L2 be logics, let F be a class of functions from N to N, and let C be a class
of structures. We say that L1 is F -succinct in L2 on C iff there is a function f ∈ F such
that for every L1-sentence ϕ1 there is an L2-sentence ϕ2 of size ||ϕ2|| 6 f(||ϕ1||) which is
equivalent to ϕ1 on all structures in C. �

Intuitively, a logic L1 being F -succinct in a logic L2 means that F gives an upper bound
on the size of L2-formulas needed to express all of L1. This definition may seem slightly
at odds with the common use of the term “succinctness” in statements such as “L1 is
exponentially more succinct than L2” meaning that there is some L1-formula that is not
equivalent to any L2-formula of sub-exponential size. In our terminology we would rephrase
this last statement as “L1 is not 2o(m)-succinct in L2” (here we interpret sub-exponential as

2o(m), but of course this is not the issue). The reason for defining F -succinctness the way
we did is that it makes the formal statements of our results much more convenient. We will
continue to use statements such as “L1 is exponentially more succinct than L2” in informal
discussions.

Example 2.2. FO3(<, succ,min,max) is O(m)-succinct in FO3(<) on the class of linear
orders, because succ(x, y) (respectively, x=min, respectively, x=max) can be expressed by
the formula

(x < y) ∧ ¬∃ z
(

(x < z) ∧ (z < y)
)

(respectively, ¬∃y (y < x), respectively, ¬∃y (x < y)). �

3. Lower bound for FO3

3.1. Lower Bound Theorem. Before stating our main lower bound theorem, we need
some more notation.

If S is a set we write P2(S) for the set of all 2-element subsets of S. For a finite
subset S of N we write MAX S (respectively, MIN S) to denote the maximum (respectively,
minimum) element in S. For integers m,n we define

diff(m,n) := m− n

to be the difference between m and n. We define <-type(m,n) ∈ {<,=, >} as follows:

if m < n then <-type(m,n) := “<” ,
if m = n then <-type(m,n) := “=” ,
if m > n then <-type(m,n) := “>”.

We next fix the notion of a separator. Basically, if A and B are sets of interpretations and
δ is a separator for 〈A,B〉, then δ contains information that allows to distinguish every
interpretation I ∈ A from every interpretation J ∈ B.

Definition 3.1. [separator]
Let A and B be sets of interpretations.
A potential separator is a mapping

δ : P2

(

{min,max, x, y, z}
)

−→ N .
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δ is called separator for 〈A,B〉, if the following is satisfied: For every I := (A, α) ∈ A and
J := (B, β) ∈ B there are u, u′ ∈ {min,max, x, y, z} with u 6= u′, such that δ

(

{u, u′}
)

> 1
and

1. <-type
(

α(u), α(u′)
)

6= <-type
(

β(u), β(u′)
)

or

2. δ
(

{u, u′}
)

> MIN
{

|diff
(

α(u), α(u′)
)

| , |diff
(

β(u), β(u′)
)

|
}

and

diff
(

α(u), α(u′)
)

6= diff
(

β(u), β(u′)
)

. �

Note that δ is a separator for 〈A,B〉 if, and only if, δ is a separator for 〈{I}, {J }〉, for all
I ∈ A and J ∈ B. For simplicity, we will often write 〈I,J 〉 instead of 〈{I}, {J }〉.
Let us now state an easy lemma on the existence of separators.

Lemma 3.2. If A and B are sets of interpretations for which there exists an FO3(<)-
formula ψ such that A |= ψ and B |=¬ψ, then there exists a separator δ for 〈A,B〉. �

Proof: We need the following notation: For a number d ∈ N and an interpretation (A, α)
choose

Ord(A, α) : {0, 1, 2, 3, 4} → {min, x, y, z,max}
such that α

(

Ord(A, α)(i)
)

6 α
(

Ord(A, α)(i+ 1)
)

, for all 0 6 i < 4. Furthermore, choose

Distd(A, α) : { (i, i + 1) : 0 6 i < 4} → {0, . . , 2d+1}
such that the following is true for all 0 6 i < 4:

Distd(A, α)(i, i + 1) = diff
(

α
(

Ord(A, α)(i+1)
)

, α
(

Ord(A, α)(i)
)

)

, or

Distd(A, α)(i, i + 1) = 2d+1 6 diff
(

α
(

Ord(A, α)(i+1)
)

, α
(

Ord(A, α)(i)
)

)

.

Finally, we define the d-type of (A, α) as

Typed(A, α) :=
(

Ord(A, α), Distd(A, α)
)

.

Using an Ehrenfeucht-Fräıssé game, it is an easy exercise to show the following (cf., e.g.,
[3]):

Lemma 3.3. Let d ∈ N and let (A, α) and (B, β) be interpretations. If Typed(A, α) =
Typed(B, β), then (A, α) and (B, β) cannot be distinguished by FO(<)-formulas of quantifier
depth 6 d. �

Let d be the quantifier depth of the formula ψ. We define δ to be the potential separator
with δ(p) := 2d+1, for all p ∈ P2({min,max, x, y, z}).
To show that δ is, in fact, a separator for 〈A,B〉, let (A, α) ∈ A and (B, β) ∈ B. Since
(A, α) |= ψ and (B, β) 6|= ψ, we obtain from Lemma 3.3 that Typed((A, α)) 6= Typed((B, β)),
i.e.,

1. Ord(A, α) 6= Ord(B, β), or
2. Distd(A, α) 6= Distd(B, β).

Therefore, there exist u, u′ ∈ {min,max, x, y, z} with u 6= u′, such that

1. <-type
(

α(u), α(u′)
)

6= <-type
(

β(u), β(u′)
)

, or

2. diff
(

α(u), α(u′)
)

6= diff
(

β(u), β(u′)
)

and

δ
(

{u, u′}
)

= 2d+1 > MIN
{

|diff
(

α(u), α(u′)
)

| , |diff
(

β(u), β(u′)
)

|
}

.

Consequently, δ is a separator for 〈A,B〉, and the proof of Lemma 3.2 is complete. �
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Definition 3.4. [weight of δ]
Let δ be a potential separator. We define

(a) the border-distance

b(δ) := MAX
{

δ({min, max}), δ({min, u}) + δ({u′,max}) : u, u′ ∈ {x, y, z}
}

(b) the centre-distance

c(δ) := MAX
{

δ(p) + δ(q) : p, q ∈ P2({x, y, z}), p 6= q
}

(c) the weight

w(δ) :=
√

c(δ)2 + b(δ). �

There is not much intuition we can give for this particular choice of weight function, except
for the fact that it seems to be exactly what is needed for the proof of our main lower
bound theorem (Theorem 3.6). At least it will later, in Remark 3.13, become clear why the√

-function is used for defining the weight function.

Definition 3.5. [minimal separator]
δ is called a minimal separator for 〈A,B〉 if δ is a separator for 〈A,B〉 and

w(δ) = MIN
{

w(δ′) : δ′ is a separator for 〈A,B〉
}

. �

Now we are ready to formally state our main lower bound theorem on the size of FO3(<)-
formulas:

Theorem 3.6. [main lower bound theorem]
If ψ is an FO3(<, succ,min,max)-formula, A and B are sets of interpretations such that
A |= ψ and B |= ¬ψ, and δ is a minimal separator for 〈A,B〉, then

||ψ|| > 1
2 · w(δ) . �

Before giving details on the proof of Theorem 3.6, let us first point out its following easy
consequence:

Corollary 3.7.

Let n > m > 0. The two linear orders Am and An (with universe {0, . . ,m} and {0, . . , n},
respectively) cannot be distinguished by an FO3(<, succ,min,max)-sentence of size < 1

2

√
m.
�

Proof: Let ψ be an FO3(<, succ,min,max)-sentence with Am |= ψ and An |= ¬ψ. Let α
be the assignment that maps each of the variables x, y, and z to the value 0. Consider the
mapping

δm : P2({min,max, x, y, z}) → N defined via

δm(p) :=

{

m , if p = {min,max}
0 , otherwise.

It is straightforward to check that w(δm) =
√
m and that δm is a minimal separator for

〈 (Am, α) , (An, α) 〉 .
From Theorem 3.6 we therefore obtain that

||ψ|| > 1
2 · w(δm) = 1

2 · √m.
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This completes the proof of Corollary 3.7. �

To prove Theorem 3.6 we need a series of intermediate results, as well as the notion of
an extended syntax tree of a formula, which is a syntax tree where each node carries an
additional label containing information about sets of interpretations satisfying, respectively,
not satisfying, the associated subformula. More precisely, every node v of the extended
syntax tree carries an interpretation label il(v) which consists of a pair 〈A,B〉 of sets of
interpretations such that every interpretation in A, but no interpretation in B, satisfies
the subformula represented by the subtree rooted at node v. Basically, such an extended
syntax tree corresponds to a game tree that is constructed by the two players of the Adler-
Immerman game (cf., [1]).

For proving Theorem 3.6 we consider an extended syntax tree T of the given formula
ψ. We define a weight function on the nodes of T by defining the weight w(v) of each node
v of T to be the weight of a minimal separator for il(v). Afterwards — and this is the main
technical difficulty — we show that the weight of each node v is bounded (from above) by
the weights of v’s children. This, in turn, enables us to prove a lower bound on the number
of nodes in T which depends on the weight of the root node.

3.2. Proof of Theorem 3.6. We start with the formal definition of extended syntax trees.

Definition 3.8. [extended syntax tree]
Let ψ be an FO3(<, succ,min,max)-formula, let A and B be sets of interpretations such
that A |= ψ and B |= ¬ψ. By induction on the construction of ψ we define an extended

syntax tree T 〈A,B〉
ψ as follows:

• If ψ is an atomic formula, then T 〈A,B〉
ψ consists of a single node v that has a syntax label

sl(v) := ψ and an interpretation label il(v) := 〈A,B〉.
• If ψ is of the form ¬ψ1, then T 〈A,B〉

ψ has a root node v with sl(v) := ¬ and il(v) := 〈A,B〉.
The unique child of v is the root of T 〈B,A〉

ψ1
. Note that B |= ψ1 and A |= ¬ψ1.

• If ψ is of the form ψ1 ∨ ψ2, then T 〈A,B〉
ψ has a root node v with sl(v) := ∨ and il(v) :=

〈A,B〉.
The first child of v is the root of T 〈A1,B〉

ψ1
. The second child of v is the root of T 〈A2,B〉

ψ2
,

where, for i ∈ {1, 2}, Ai = {(A, α) ∈ A : (A, α) |= ψi}.
Note that A = A1 ∪A2, Ai |= ψi, and B |= ¬ψi.

• If ψ is of the form ψ1 ∧ ψ2, then T 〈A,B〉
ψ has a root node v with sl(v) := ∧ and il(v) :=

〈A,B〉.
The first child of v is the root of T 〈A,B1〉

ψ1
. The second child of v is the root of T 〈A,B2〉

ψ2
,

where, for i ∈ {1, 2}, Bi = {(B, β) ∈ B : (B, β) 6|= ψi}.
Note that B = B1 ∪B2, A |= ψi, and Bi |= ¬ψi.

• If ψ is of the form ∃uψ1, for a variable u ∈ {x, y, z}, then T 〈A,B〉
ψ has a root node v

with sl(v) := ∃u and il(v) := 〈A,B〉. The unique child of v is the root of T 〈A1,B1〉
ψ1

, where

B1 := {(B, β[ b
u
]) : (B, β) ∈ B, b ∈ UB}, and A1 is chosen as follows: For every (A, α) ∈ A

fix an element a ∈ UA such that
(

A, α[ a
u
]
)

|= ψ1, and let A1 := {(A, α[ a
u
]) : (A, α) ∈ A}.

Note that A1 |= ψ1 and B1 |= ¬ψ1.
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• If ψ is of the form ∀uψ1, for a variable u ∈ {x, y, z}, then T 〈A,B〉
ψ has a root node v

with sl(v) := ∀u and il(v) := 〈A,B〉. The unique child of v is the root of T 〈A1,B1〉
ψ1

, where

A1 := {(A, α[ a
u
]) : (A, α) ∈ A, a ∈ UA}, and B1 is chosen as follows: For every (B, β) ∈ B

fix an element b ∈ UB such that
(

B, β[ b
u
]
)

|= ¬ψ1, and let B1 := {(B, α[ b
u
]) : (B, β) ∈ B}.

Note that A1 |= ψ1 and B1 |= ¬ψ1. �

The following is the main technical result necessary for our proof of Theorem 3.6.

Lemma 3.9. Let ψ be an FO3(<, succ,min,max)-formula, let A and B be sets of interpre-

tations such that A |= ψ and B |= ¬ψ, and let T be an extended syntax tree T 〈A,B〉
ψ .

For every node v of T the following is true, where δ is a minimal separator for il(v):

(a) If v is a leaf, then w(δ) 6 1.
(b) If v has 2 children v1 and v2, and δi is a minimal separator for il(vi), for i ∈ {1, 2}, then

w(δ) 6 w(δ1) + w(δ2) .
(c) If v has exactly one child v1, and δ1 is a minimal separator for il(v1), then w(δ) 6

w(δ1) + 2. �

The proof of Lemma 3.9 is given in Section 3.3 below.

For a binary tree T we write ||T || to denote the number of nodes of T . For the proof of
Theorem 3.6 we also need the following easy observation.

Lemma 3.10. Let T be a finite binary tree where each node v is equipped with a weight
w(v) > 0 such that the following is true:

(a) If v is a leaf, then w(v) 6 1.
(b) If v has 2 children v1 and v2, then w(v) 6 w(v1) + w(v2).
(c) If v has exactly one child v1, then w(v) 6 w(v1) + 2.

Then, ||T || > 1
2 · w(r) , where r is the root of T . �

Proof: By induction on the size of T .
If T consists of a single node v, then ||T || = 1 > 1

2 · 1; and 1 > w(v), since v is a leaf.
If T consists of a root node v whose first child v1 is the root of a tree T1 and whose second
child v2 is the root of a tree T2, then ||T || = 1 + ||T1|| + ||T2||. By induction we know for
i ∈ {1, 2} that ||Ti|| > 1

2w(vi). From the assumption we have that w(v) 6 w(v1) + w(v2).
Therefore,

||T || > 1 + 1
2w(v1) + 1

2w(v2) > 1
2w(v).

If T consists of a root node v whose unique child v1 is the root of a tree T1, then ||T || =
1 + ||T1||. By induction we know that ||T1|| > 1

2w(v1). From the assumption we have that

w(v) 6 w(v1) + 2, i.e., 1
2w(v) 6 1

2w(v1) + 1. Therefore, ||T || > 1 + 1
2w(v1) > 1

2w(v).
This completes the proof of Lemma 3.10. �

Using Lemma 3.9 and 3.10, we are ready for the

Proof of Theorem 3.6:

We are given an FO3(<, succ,min,max)-formula ψ and sets A and B of interpretations such

that A |= ψ and B |= ¬ψ. Let T be an extended syntax tree T 〈A,B〉
ψ .

We equip each node v of T with a weight w(v) := w(δv), where δv is a minimal separator
for il(v). From Lemma 3.9 we obtain that the preconditions of Lemma 3.10 are satisfied.
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Therefore, ||T || > 1
2 · w(r), where r is the root of T , i.e., w(r) = w(δ), for a minimal

separator δ for il(r) = 〈A,B〉.
From Definition 3.8 it should be obvious that ||ψ|| = ||T ||. Therefore, the proof of Theo-
rem 3.6 is complete. �

3.3. Proof of Lemma 3.9. We partition the proof of Lemma 3.9 into proofs for the parts
(a), (b), and (c), where part (c) turns out to be the most elaborate.

According to the assumptions of Lemma 3.9 we are given an FO3(<, succ,min,max)-
formula ψ and sets A and B of interpretations such that A |= ψ and B |= ¬ψ. Furthermore,

we are given an extended syntax tree T = T 〈A,B〉
ψ . Throughout the remainder of this sec-

tion, T will always denote this particular syntax tree.

Proof of part (a) of Lemma 3.9:

Let v be a leaf of T and let δ be a minimal separator for 〈Av , Bv〉 := il(v). Our aim is to
show that w(δ) 6 1.

By Definition 3.8 we know that sl(v) is an atomic formula of the form R(u, u′) for
R ∈ {<,=, succ} and u, u′ ∈ {min,max, x, y, z}. Furthermore, Av |= R(u, u′) and Bv |=
¬R(u, u′). I.e., for all (A, α) ∈ Av and (B, β) ∈ Bv,

<-type
(

α(u), α(u′)
)

6= <-type
(

β(u), β(u′)
)

or

|diff
(

α(u), α(u′)
)

| = 1 6= |diff
(

β(u), β(u′)
)

|.
In case that u 6= u′ we can define a separator δ̃ for 〈Av, Bv〉 via

δ̃(p) :=

{

1 , if p = {u, u′}
0 , otherwise.

Since δ is a minimal separator, we obtain that w(δ) 6 w(δ̃) = 1.
It remains to consider the case where u = u′. Here, Av |= R(u, u) and Bv |= ¬R(u, u).

Since R ∈ {<,=, succ} this implies that Av = ∅ or Bv = ∅. Therefore, according to Defini-

tion 3.1, the mapping δ̃ with δ̃(p) = 0, for all p ∈ P2({min,max, x, y, z}), is a separator for

〈Av, Bv〉. Hence, w(δ) 6 w(δ̃) = 0.
This completes the proof of part (a) of Lemma 3.9. �

The essential step in the proof of part (b) of Lemma 3.9 is the following easy lemma.

Lemma 3.11. Let v be a node of T that has two children v1 and v2. Let δ1 and δ2 be
separators for il(v1) and il(v2), respectively. Let δ̃ be the potential separator defined on
every p ∈ P2({min,max, x, y, z}) via

δ̃(p) := δ1(p) + δ2(p) .

Then, δ̃ is a separator for il(v). �

Proof: Let 〈A,B〉 := il(v). We need to show that δ̃ is a separator for 〈I,J 〉, for all I ∈ A

and J ∈ B. Let therefore I := (A, α) ∈ A and J := (B, β) ∈ B be fixed for the remainder
of this proof.

Since v has 2 children, we know from Definition 3.8 that sl(v) = ∨ or sl(v) = ∧. Let
us first consider the case where sl(v) = ∨.
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From Definition 3.8 we know that, for i ∈ {1, 2}, il(vi) = 〈Ai, B〉, where A1 ∪ A2 = A.
Therefore, there is an i ∈ {1, 2} such that I ∈ Ai. From the assumption we know that δi
is a separator for 〈Ai, B〉. Therefore, there are u, u′ ∈ {min,max, x, y, z} with u 6= u′, such
that δi

(

{u, u′}
)

> 1 and

1. <-type
(

α(u), α(u′)
)

6= <-type
(

β(u), β(u′)
)

or

2. δ
(

{u, u′}
)

> MIN
{

|diff
(

α(u), α(u′)
)

| , |diff
(

β(u), β(u′)
)

|
}

and

diff
(

α(u), α(u′)
)

6= diff
(

β(u), β(u′)
)

.

Since δ̃({u, u′}) = δ1({u, u′})+δ2({u, u′}), we know that δ̃({u, u′}) > δi({u, u′}). Therefore,

δ̃ is a separator for 〈I,J 〉. This completes the proof of Lemma 3.11 for the case that
sl(v) = ∨.

The case sl(v) = ∧ follows by symmetry. �

Using Lemma 3.11, the proof of part (b) of Lemma 3.9 is straightforward:

Proof of part (b) of Lemma 3.9:

Let v be a node of T that has two children v1 and v2. Let δ, δ1, and δ2, respectively,
be minimal separators for il(v), il(v1), and il(v2), respectively. Our aim is to show that
w(δ) 6 w(δ1) +w(δ2).

Let δ̃ be the separator for il(v) obtained from Lemma 3.11. Since δ is a minimal

separator for il(v), it suffices to show that w(δ̃) 6 w(δ1) + w(δ2).

Using Definition 3.4, it is straightforward to check that b(δ̃) 6 b(δ1) + b(δ2) and c(δ̃) 6

c(δ1) + c(δ2). From this we obtain that

w(δ̃)2 = c(δ̃)2 + b(δ̃)

6
(

c(δ1) + c(δ2)
)2

+ b(δ1) + b(δ2)

= c(δ1)
2 + b(δ1) + c(δ2)

2 + b(δ2) + 2c(δ1)c(δ2)

6 w(δ1)
2 + w(δ2)

2 + 2w(δ1)w(δ2)

=
(

w(δ1) + w(δ2)
)2
.

I.e., we have shown that w(δ̃) 6 w(δ1) + w(δ2).
This completes the proof of part (b) of Lemma 3.9. �

An essential step in the proof of part (c) of Lemma 3.9 is the following lemma.

Lemma 3.12. Let v be a node of T that has syntax-label sl(v) = Qu, for Q ∈ {∃,∀} and

u ∈ {x, y, z}. Let δ1 be a separator for il(v1), where v1 is the unique child of v in T . Let δ̃
be the potential separator defined via

• δ̃({u, u′}) := 0 , for all u′ ∈ {min,max, x, y, z} \ {u} ,

• δ̃({min,max}) := MAX
{

δ1({min,max}) , δ1({min, u}) + δ1({u,max}) + 1
}

,

and for all u′, u′′ such that {x, y, z} = {u, u′, u′′} and all m ∈ {min,max},
• δ̃({u′, u′′}) := MAX

{

δ1({u′, u′′}) , δ1({u′, u}) + δ1({u, u′′}) + 1
}

,

• δ̃({m,u′}) := MAX
{

δ1({m,u′}) , δ1({m,u}) + δ1({u, u′}) + 1
}

.

Then, δ̃ is a separator for il(v). �
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Proof: We only consider the case where Qu = ∃z. All other cases Q ∈ {∃,∀} and u ∈
{x, y, z} follow by symmetry.

Let 〈A,B〉 := il(v). We need to show that δ̃ is a separator for 〈I,J 〉, for all I ∈ A and
J ∈ B. Let therefore I := (A, α) ∈ A and J := (B, β) ∈ B be fixed for the remainder of

this proof. The aim is to show that δ̃ is a separator for 〈I,J 〉.
Since sl(v) = ∃z, we know from Definition 3.8 that il(v1) = 〈A1, B1〉, where B1 contains

the interpretations (B, β[ b
z
]), for all b ∈ UB, and A1 contains an interpretation (A, α[a

z
]), for

a particular a ∈ UA. We define αa := α[a
z
], Ia := (A, αa), and for every b ∈ UB, βb := β[ b

z
]

and Jb := (B, βb).
From the fact that δ1 is a separator for sl(v1), we in particular know, for every b ∈ UB,

that δ1 is a separator for 〈Ia,Jb〉. I.e., we know the following:

For every b ∈ UB there are ub, u
′
b ∈ {min,max, x, y, z} with ub 6= u′b, such that 〈Ia,Jb〉 is

separated by δ1({ub, u′b}), i.e., δ1({ub, u′b}) > 1 and

(1)b: <-type
(

αa(ub), αa(u
′
b)

)

6= <-type
(

βb(ub), βb(u
′
b)

)

, or

(2)b: δ1
(

{ub, u′b}
)

> MIN
{

|diff
(

αa(ub), αa(u
′
b)

)

| , |diff
(

βb(ub), βb(u
′
b)

)

|
}

and

diff
(

αa(ub), αa(u
′
b)

)

6= diff
(

βb(ub), βb(u
′
b)

)

.

In what follows we will prove a series of claims which ensure that δ̃ is a separator for 〈I,J 〉.
We start with

Claim 1. If there is a b ∈ UB such that 〈Ia,Jb〉 is separated by δ1({ub, u′b}) with z 6∈
{ub, u′b}, then δ̃ is a separator for 〈I,J 〉. �

Proof: As z 6∈ {ub, u′b}, we have, by definition of δ̃, that δ̃({ub, u′b}) > δ1({ub, u′b}). There-

fore, (1)b and (2)b imply that δ̃ is a separator for 〈Ia,Jb〉 as well as for 〈I,J 〉.
This completes the proof of Claim 1. �

Due to Claim 1 it henceforth suffices to assume that for no b ∈ UB, 〈Ia,Jb〉 is separated by
δ1({ub, u′b}) with z 6∈ {ub, u′b}. I.e., we assume that for every b ∈ UB, 〈Ia,Jb〉 is separated
by δ1({min, z}), δ1({z,max}), δ1({x, z}), or δ1({y, z}).
Claim 2. If a = α(u) for some u ∈ {min,max, x, y}, then δ̃ is a separator for 〈I,J 〉. �

Proof: Choose b := β(u). Therefore, αa(z) = a = α(u) = αa(u) and βb(z) = b = β(u) =
βb(u).

We know that 〈Ia,Jb〉 is separated by δ1({z, u′}), for some u′ ∈ {min,max, x, y}. Fur-
thermore, since αa(z) = αa(u) and βb(z) = βb(u), we have u′ 6= u.

By definition of δ̃ we know that δ̃({u, u′}) > δ1({z, u′}). Therefore, δ̃ is a separator for
〈Ia,Jb〉 as well as for 〈I,J 〉.
This completes the proof of Claim 2. �

Due to Claim 2 it henceforth suffices to assume that, a 6= α(u), for all u ∈ {min,max, x, y}.

Claim 3. If δ1({min, z}) > diff(a,min
A), then δ̃ is a separator for 〈I,J 〉. �

Proof: We distinguish between two cases. An illustration is given in Figure 1.

Case 1: diff(maxB,min
B) > diff(a,min

A).
In this case we can choose b ∈ UB with

diff(b,min
B) = diff(a,min

A)
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a
A :

δ ({         })1 min,z

B   in Case 1:

B   in Case 2:

Figure 1: Situation in Claim 3.

α(  )x a

β(  )x b
B  in Case 1:

β(  )x
B  in Case 2:

δ ({     })x,z1

A :

Figure 2: Situation in Claim 5 (for the special case that α(x) 6 a).

(simply via b := a). Obviously, 〈Ia,Jb〉 is not separated by δ1({min, z}). However, we know
that 〈Ia,Jb〉 is separated by δ1({z, u′}), for some u′ ∈ {x, y,max}.
Since

diff(a,min
A) + δ1({z, u′}) 6 δ1({min, z}) + δ1({z, u′}) 6 δ̃({min, u′}),

it is straightforward to see that 〈Ia,Jb〉, and also 〈I,J 〉, is separated by δ̃({min, u′}). I.e.,

δ̃ is a separator for 〈I,J 〉.
Case 2: diff(maxB,min

B) < diff(a,min
A).

Since

δ̃({min,max}) > δ1({min, z}) > diff(a,min
A) > diff(max

B,min
B),

we know that 〈I,J 〉 is separated by δ̃({min,max}). I.e., δ̃ is a separator for 〈I,J 〉.
This completes the proof of Claim 3. �

By symmetry we also obtain the following

Claim 4. If δ1({z,max}) > diff(maxA, a), then δ̃ is a separator for 〈I,J 〉. �

In a similar way, we can also show the following

Claim 5. If δ1({x, z}) > |diff(α(x), a)|, then δ̃ is a separator for 〈I,J 〉. �

Proof: We distinguish between three cases. An illustration is given in Figure 2.

Case 1: There is a b ∈ UB such that diff(β(x), b) = diff(α(x), a).
Obviously, 〈Ia,Jb〉 is not separated by δ1({x, z}). However, we know that 〈Ia,Jb〉 is sepa-
rated by δ1({z, u′}), for some u′ ∈ {min, y,max}.
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A :

α(  )yα(  )x

a in Case 1 a in Case 3 a in Case 2

β(  )x β(  )y
B :

Figure 3: Situation at the beginning of Claim 7.

Since

|diff(α(x), a)| + δ1({z, u′}) 6 δ1({x, z}) + δ1({z, u′}) 6 δ̃({x, u′}),
it is straightforward to see that 〈Ia,Jb〉, and also 〈I,J 〉, is separated by δ̃({x, u′}). I.e., δ̃
is a separator for 〈I,J 〉.
Case 2: α(x) 6 a and diff(maxB, β(x)) < diff(a, α(x)).
Since

δ̃({x,max}) > δ1({x, z}) > diff(a, α(x)) > diff(max
B, β(x)),

we know that 〈I,J 〉 is separated by δ̃({x,max}). I.e., δ̃ is a separator for 〈I,J 〉.
Case 3: a < α(x) and diff(β(x),min

B) < diff(α(x), a).
This case is analogous to Case 2.

Now the proof of Claim 5 is complete, because one of the three cases above must apply. �

By symmetry we also obtain the following

Claim 6. If δ1({y, z}) > |diff(α(y), a)|, then δ̃ is a separator for 〈I,J 〉. �

Finally, we show the following

Claim 7. If none of the assumptions of the Claims 1–6 is satisfied, then δ̃ is a separator
for 〈I,J 〉. �

Proof: We assume w.l.o.g. that min
A 6 α(x) 6 α(y) 6 maxA.

Since Claim 1 does not apply, we know that also min
B 6 β(x) 6 β(y) 6 maxB.

Since Claims 2–6 do not apply, we furthermore know that

1. |diff(α(u′), a)| > δ1({u′, z}), for all u′ ∈ {min,max, x, y}, and
2. min

A < a < α(x) or α(x) < a < α(y) or α(y) < a < maxA.

We distinguish between different cases, depending on the particular interval that a belongs
to. An illustration is given in Figure 3.

Case 1: min
A < a < α(x).

Case 1.1: diff(β(x),min
B) 6 δ1({min, z}).

By definition of δ̃ we have diff(β(x),min
B) 6 δ̃({min, x}). Since

diff(α(x),min
A) > diff(a,min

A) > δ1({min, z}) > diff(β(x),min
B),

we therefore know that 〈I,J 〉 is separated by δ̃({min, z}). I.e., δ̃ is a separator for 〈I,J 〉.
Case 1.2: diff(β(x),min

B) > δ1({min, z}).
In this case we can choose b 6 β(x) such that diff(b,min

B) = δ1({min, z})+1. An illustration
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a α(  )x

β(  )xb
B :

A :

1
min,zδ ({         })

Figure 4: Situation in Case 1.2 of Claim 7.

β(  )x β(  )y
B :

b

δ ({    })1 x,z

α(  )α(  )x
A :

ya

Figure 5: Situation in Case 3.2 of Claim 7.

is given in Figure 4. Then, 〈Ia,Jb〉 is not separated by δ1({min, z}). However, we know
that 〈Ia,Jb〉 is separated by δ1({z, u′}), for some u′ ∈ {x, y,max}. From the assumptions of
Claim 7 we know that diff(α(u′), a) > δ1({z, u′}). Hence we must have that diff(β(u′), b) 6

δ1({z, u′}). Therefore,

diff(β(u′),min
B) = diff(β(u′), b) + diff(b,min

B)

6 δ1({z, u′}) + δ1({min, z}) + 1

6 δ̃({min, u′}).
Since

diff(α(u′),min
A) = diff(α(u′), a) + diff(a,min

A) > diff(β(u′),min
B),

we hence obtain that δ̃ is a separator for 〈I,J 〉.
Case 2: α(y) < a < maxA.
This case is analogous to Case 1.

Case 3: α(x) < a < α(y).

Case 3.1: diff(β(y), β(x)) 6 δ1({x, z}).
By definition of δ̃ we have diff(β(y), β(x)) 6 δ̃({x, y}). Since

diff(α(y), α(x)) > diff(a, α(x)) > δ1({x, z}) > diff(β(y), β(x)),

we therefore know that 〈I,J 〉 is separated by δ̃({x, y}). I.e., δ̃ is a separator for 〈I,J 〉.
Case 3.2: diff(β(y), β(x)) > δ1({x, z}).
In this case we can choose b with β(x) < b 6 β(y) such that diff(b, β(x)) = δ1({x, z}) + 1.
An illustration is given in Figure 5. Then, 〈Ia,Jb〉 is not separated by δ1({x, z}). However,
we know that 〈Ia,Jb〉 is separated by δ1({z, u′}), for some u′ ∈ {min, y,max}. From the
assumptions of Claim 7 we know that |diff(a, α(u′))| > δ1({z, u′}). Hence we must have
that |diff(b, β(u′))| 6 δ1({z, u′}). We now distinguish between the cases where u′ can be
chosen from {y,max}, on the one hand, and where u′ must be chosen as min, on the other
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b b1β(  )x β(  )y
B :

δ ({         })1 min,z

δ ({     })z,y
1

α(  )α(  )x
A :

ya

δ ({    })1 x,z

Figure 6: Situation in Case 3.2.2 of Claim 7.

hand.

Case 3.2.1: u′ ∈ {y,max}.
In this case,

diff(β(u′), β(x)) = diff(β(u′), b) + diff(b, β(x))

6 δ1({z, u′}) + δ1({x, z}) + 1

6 δ̃({x, u′}).
Since

diff(α(u′), α(x)) = diff(α(u′), a) + diff(a, α(x)) > diff(β(u′), β(x)),

we hence obtain that δ̃ is a separator for 〈I,J 〉.
Case 3.2.2: u′ 6∈ {y,max}.
In this case, 〈Ia,Jb〉 is separated by δ1({min, z}), and we may assume that it is neither
separated by δ1({z, y}) nor by δ1({z,max}) nor by δ1({x, z}). In particular, we must have
that

diff(β(y), b) > δ1({z, y}) + 1.

Therefore, for every b′ with

b 6 b′ < β(y) − δ1({z, y}),
the following is true: 〈Ia,Jb′〉 is neither separated by δ1({x, z}) nor by δ1({z, y}), but,
consequently, by δ1({min, z}) or by δ1({z,max}). Let b1 be the largest such b′ for which
〈Ia,Jb′〉 is separated by δ1({min, z}). In particular,

diff(b1,min
B) 6 δ1({min, z}).

An illustration is given in Figure 6.

Case 3.2.2.1: diff(β(y), b1+1) 6 δ1({z, y}).
In this case we know that

diff(β(y),min
B) 6 δ1({z, y}) + 1 + δ1({min, z}) 6 δ̃({min, y}).

Furthermore,

diff(α(y),min
A) = diff(α(y), a) + diff(a,min

A)

> δ1({z, y}) + 1 + δ1({min, z}) + 1.
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Therefore,

diff(α(y),min
A) 6= diff(β(y),min

B),

and 〈I,J 〉 is separated by δ̃({min, y}). I.e., δ̃ is a separator for 〈I,J 〉.
Case 3.2.2.2: diff(β(y), b1+1) > δ1({z, y}).
In this case we know (by the maximal choice of b1) that 〈Ia,Jb1+1〉 must be separated by
δ1({z,max}). In particular, diff(maxB, b1+1) 6 δ1(z,max). Therefore,

diff(max
B,min

B) 6 δ1({z,max}) + 1 + δ1({min, z}) 6 δ̃({min,max}).
Furthermore,

diff(max
A,min

A) > diff(max
A, a) + diff(a,min

A)

> δ1({z,max}) + 1 + δ1({min, z}) + 1.

Therefore,

diff(max
A,min

A) 6= diff(max
B,min

B),

and 〈I,J 〉 is separated by δ̃({min,max}). I.e., δ̃ is a separator for 〈I,J 〉.
We now have shown that δ̃ is a separator for 〈I,J 〉, if Case 3 applies.
Together with the Cases 1 and 2 we therefore obtain that the proof of Claim 7 is complete.

�

Since at least one of the Claims 1–7 must apply, the proof of Lemma 3.12 finally is com-
plete. �

Proof of part (c) of Lemma 3.9:

Let v be a node of T that has exactly one child v1. Let δ be a minimal separator for
il(v), and let δ1 be a minimal separator for 〈A1, B1〉 := il(v1). Our aim is to show that
w(δ) 6 w(δ1) + 2.

From Definition 3.8 we know that either sl(v) = ¬ or sl(v) = Qu, for some Q ∈ {∃,∀}
and u ∈ {x, y, z}.
Case 1: sl(v) = ¬
In this case we know from Definition 3.8 that il(v) = 〈B1, A1〉. Therefore, δ1 also is a
(minimal) separator for il(v). In particular, w(δ) = w(δ1) 6 w(δ1) + 2.

Case 2: sl(v) = Qu

In this case let δ̃ be the separator for il(v) defined in Lemma 3.12. Since δ is a minimal

separator for il(v), it suffices to show that w(δ̃) 6 w(δ1) + 2.
Let u′, u′′ be chosen such that {x, y, z} = {u, u′, u′′}. Using Definition 3.4 and the

particular choice of δ̃, it is straightforward to see that

c(δ̃) = δ̃({u′, u′′}) 6 c(δ1) + 1 (3.1)

and that

δ̃({min,max}) 6 b(δ1) + 1 . (3.2)

Furthermore, for arbitrary ũ, ũ′ ∈ {x, y, z} we have

δ̃({min, ũ}) + δ̃({ũ′,max}) 6 b(δ1) + 2c(δ1) + 2 , (3.3)
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which can be seen as follows: If ũ = u or ũ′ = u, then δ̃({min, ũ}) = 0 or δ̃({ũ′,max}) =
0.
Consequently,

δ̃({min, ũ}) + δ̃({ũ′,max}) 6 MAX {b(δ1), b(δ1) + c(δ1) + 1}.
If ũ and ũ′ both are different from u, then

δ̃({min, ũ}) = MAX
{

δ1({min, ũ}), δ1({min, u}) + δ1({u, ũ}) + 1
}

and

δ̃({ũ′,max}) = MAX
{

δ1({ũ′,max}), δ1({u,max}) + δ1({u, ũ′}) + 1
}

.

Therefore, δ̃({min, ũ}) + δ̃({ũ′,max}) 6

MAX























δ1({min, ũ}) + δ1({ũ′,max}),
δ1({min, ũ}) + δ1({u,max}) + δ1({u, ũ′}) + 1,

δ1({min, u}) + δ1({u, ũ}) + 1 + δ1({ũ′,max}),
δ1({min, u}) + δ1({u, ũ}) + 1 + δ1({u,max}) + δ1({u, ũ′}) + 1























which, in turn, is less than or equal to

MAX
{

b(δ1), b(δ1) + c(δ1) + 1, b(δ1) + 2c(δ1) + 2
}

.

I.e., we have shown that (3.3) is valid.
From (3.2) and (3.3) we obtain

b(δ̃) 6 b(δ1) + 2c(δ1) + 2 . (3.4)

From (3.1) and (3.4) we conclude that

w(δ̃)2 = c(δ̃)2 + b(δ̃)

6
(

c(δ1) + 1
)2

+ b(δ1) + 2c(δ1) + 2

= c(δ1)
2 + b(δ1) + 4c(δ1) + 3

6 w(δ1)
2 + 4w(δ1) + 4

=
(

w(δ1) + 2
)2
.

Therefore, w(δ̃) 6 w(δ1) + 2.
This completes the proof of part (c) of Lemma 3.9. �

Remark 3.13. From the above proof it becomes clear, why Definition 3.4 fixes the weight
of a separator by using the

√
-function. Let us consider the, at first glance, more straight-

forward weight function ŵ(δ) := MAX {c(δ), b(δ)}. In the proof of part (c) of Lemma 3.9
we then obtain from the items (3.1) and (3.4) that ŵ(δ) 6 2c(δ1) + b(δ1) + 2 6 3ŵ(δ1) + 2.
Therefore, a modified version of Lemma 3.10, where item (c) is replaced by the condition
“If v has exactly one child v1, then w(v) 6 3w(v1) + 2”, leads to a (much weaker)
bound of the form ||T || > c · lg(w(v)). This, in turn, leads to a weaker version of Theo-
rem 3.6, stating that ||ψ|| > c · lg

(

ŵ(δ)
)

. However, this bound can already be proven by

a conventional Ehrenfeucht-Fräıssé game and does not only apply for FO3(<)-formulas but
for FO(<)-formulas in general and therefore is of no use for comparing the succinctness of
FO3 and FO. �
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4. FO2 vs. FO3

As a first application, Theorem 3.6 allows us to translate every FO3-sentence ψ into an
FO2-sentence χ that is equivalent to ψ on linear orders and that has size polynomial in the
size of ψ. To show this, we use the following easy lemmas.

Lemma 4.1. Let ϕ be an FO(<, succ,min,max)-sentence, and let d be the quantifier depth
of ϕ. For all N > 2d+1, AN |= ϕ if, and only if, A2d+1 |= ϕ. �

A proof can be found, e.g., in the textbook [3].

Lemma 4.2. For all ℓ ∈ N there are FO2(<)-sentences χℓ and χ>ℓ of size O(ℓ) such that,
for all N ∈ N, AN |= χℓ (respectively, χ>ℓ) iff N = ℓ (respectively, N > ℓ). �

Proof: We choose

χ′
>0(x) := (x = x),

and, for all ℓ > 0,

χ′
>ℓ+1(x) := ∃ y (y < x) ∧ χ>ℓ(y).

Obviously, for all N ∈ N and all a ∈ {0, . . , N}, we have AN |= χ′
>ℓ(a) iff a > ℓ. Therefore,

for every ℓ ∈ N, we can choose χ>ℓ := ∃xχ′
>ℓ(x) and χℓ := χ>ℓ ∧ ¬χ>ℓ+1. �

Theorem 4.3.

On linear orders, FO3(<, succ,min,max)-sentences are O(m4)-succinct in FO2(<)-senten-
ces. �

Proof: Let ψ be an FO3(<, succ,min,max)-sentence. Our aim is to find an FO2(<)-sentence
χ of size O(||ψ||4) such that, for all N ∈ N, AN |= χ iff AN |= ψ.

If ψ is satisfied by all linear orders or by no linear order, χ can be chosen in a straight-
forward way. In all other cases we know from Lemma 4.1 that there exists a D ∈ N such
that either

(1.) AD |= ψ and, for all N > D, AN 6|= ψ, or
(2.) AD 6|= ψ and, for all N > D, AN |= ψ.

In particular, ψ is an FO3-sentence that distinguishes between the linear orders AD and
AD+1. From Corollary 3.7 we therefore know that ||ψ|| > 1

2

√
D.

We next construct an FO2-sentence χ equivalent to ψ: Let χℓ and χ>ℓ be the FO2(<)-
sentences from Lemma 4.2. Let χ′ be the disjunction of the sentences χℓ for all those ℓ 6 D

with Aℓ |= ψ. Finally, if AD+1 |= ψ, then choose χ := χ′∨χ>D+1; otherwise choose χ := χ′.
Obviously, χ is an FO2(<)-sentence equivalent to ψ, and

||χ|| = O
(

D+1
∑

ℓ=0

ℓ
)

= O
(

D2
)

= O(||ψ||4).

This completes the proof of Theorem 4.3. �

5. FO3 vs. FO

Using Theorem 3.6, we will show in this section that there is an exponential succinctness
gap between FO and FO3 on linear orders.
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Lemma 5.1. For every FO(<, succ,min,max)-sentence ϕ there is an FO2(<)-sentence ψ
of size ||ψ|| 6 2O(||ϕ||) which is equivalent to ϕ on the class of linear orders. �

Proof: Let ϕ be an FO(<, succ,min,max)-sentence, and let d be the quantifier depth of ϕ.
In particular, ||ϕ|| > d. From Lemma 4.1 we know that, for all N > 2d+1, AN |= ϕ if, and
only if, A2d+1 |= ϕ.

We use, for every ℓ ∈ N, the sentences χℓ and χ>ℓ of Lemma 4.2. Let ψ′ be the
disjunction of the sentences χℓ for all ℓ < 2d+1 such that Aℓ |= ϕ.
Finally, if A2d+1 |= ϕ, then choose ψ := ψ′ ∨ χ>2d+1; otherwise choose ψ := ψ′. Obviously,

ψ is an FO2(<)-sentence equivalent to ϕ, and

||ψ|| = O
(

2d+1

∑

ℓ=0

ℓ
)

= O
(

22(d+1)
)

= 2O(||ϕ||).

�

Lemma 5.2. For all m ∈ N there are FO4(<)-sentences ϕm and sets Am and Bm of
interpretations, such that Am |= ϕm, Bm |= ¬ϕm, ||ϕm|| = O(m), and every FO3(<

, succ,min,max)-sentence ψm equivalent to ϕm has size ||ψm|| > 2
1

2
m−1. �

Proof: For every N ∈ N let αN : {min, x, y, z,max} → {0, . . , N} be the assignment with
αN (x) = αN (min) = 0 and αN (y) = αN (z) = α(max) = N .

For every m ∈ N we choose Am := {(A2m , α2m)} and Bm := {(A2m+1, α2m+1)}.
Step 1: Choice of ϕm.
Inductively we define FO4(<)-formulas ϕ′

m(x, y) expressing that |diff(x, y)| = 2m via

ϕ′
m(x, y) := ∃ z ∀u (u = x ∨ u = y) → ϕ′

m−1(z, u)

(and ϕ′
0(x, y) chosen appropriately).

It is straightforward to see that ||ϕ′
m|| = O(m) and that ϕ′

m(x, y) expresses that |diff(x, y)| =
2m.
Therefore,

ϕm := ∃x ∃ y ϕ′
m(x, y) ∧ ¬∃ z (z<x ∨ y<z)

is an FO4(<)-sentence with the desired properties.

Step 2: Size of equivalent FO3-sentences.
For every m ∈ N let ψm be an FO3(<, succ,min,max)-sentence with Am |= ψm and Bm |=
¬ψm. From Corollary 3.7 we conclude that

||ψm|| > 1
2

√
2m = 2

1

2
m−1.

This completes the proof of Lemma 5.2. �

From Lemma 5.1 and 5.2 we directly obtain

Theorem 5.3.

On the class of linear orders, FO(<)-sentences are 2O(m)-succinct in FO3(<)-sentences, but

already FO4(<)-sentences are not 2o(m)-succinct in FO3(<)-sentences. �

Note that the relation succ and the constants min and max are easily definable in FO3(<)
and could therefore be added in Theorem 5.3.
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6. FO vs. MSO

In this section we compare the succinctness of FO and the FO-expressible fragment of
monadic second-order logic (for short: MSO). This section’s main result is a non-elementary
succintness gap between FO and the FO-expressible fragment of MSO on the class of linear
orders (Theorem 6.5).

The main idea for proving this succinctness gap is to encode natural numbers by strings
in such a way that there are extremely short MSO-formulas for “decoding” these strings
back into numbers. The method goes back to Stockmeyer and Meyer [16, 15]; the particular
encoding used in the present paper has been introduced in [5]. To formally state and prove
this section’s main result, we need some further notation:

We write MonΣ1
1 for the class of all MSO-formulas that consist of a prefix of existential

set quantifiers, followed by a first-order formula. By ∃X FO we denote the fragment of
MonΣ1

1 with only a single existential set quantifier.
Let Tower : N → N be the function which maps every h ∈ N to the tower of 2s of height

h. I.e., Tower(0) = 1 and, for every h ∈ N, Tower(h+1) = 2Tower(h).
We use the following notations of [5]:

For h > 1 let Σh :=
{

0, 1, <1>, </1>, . . , <h>, </h>
}

. The “tags” <i> and </i> represent
single letters of the alphabet and are just chosen to improve readability. For every n > 1 let
L(n) be the length of the binary representation of the number n−1, i.e., L(0) = 0, L(1) = 1,
and L(n) = ⌊log(n−1)⌋ + 1, for all n > 2. By bit(i, n) we denote the i-th bit of the binary
representation of n, i.e., bit(i, n) is 1 if

⌊

n
2i

⌋

is odd, and bit(i, n) is 0 otherwise.
We encode every number n ∈ N by a string µh(n) over the alphabet Σh, where µh(n) is
inductively defined as follows:

µ1(0) := <1> </1> , and

µ1(n) := <1> bit(0, n−1) bit(1, n−1) · · · bit(L(n)−1, n−1) </1> ,

for n > 1. For h > 2 we let

µh(0) := <h> </h> , and

µh(n) := <h>

µh−1(0) bit(0, n−1)

µh−1(1) bit(1, n−1)

...

µh−1(L(n)−1) bit(L(n)−1, n−1)

</h> ,

for n > 1. Here, empty spaces and line breaks are just used to improve readability.
For h ∈ N let H := Tower(h). Let Σ•

h := Σh+1 ∪ {•}, and let

vh := <h+1> µh(0) • µh(1) • · · · µh(H−1) • </h+1> .

We consider the string-language (vh)
+, containing all strings that are the concatenation of

one or more copies of vh. Let wh be the (unique) string in (vh)
+ that consists of exactly 2H

copies of vh.
We write τh for the signature that consists of the symbol < and a unary relation symbol

Pσ, for every σ ∈ Σ•
h. Non-empty strings over Σ•

h are represented by τh-structures in the
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usual way (cf., e.g., [3]). We will shortly write w |= ϕ to indicate that the τh-structure
associated with a Σ•

h-string w satisfies a given τh-sentence ϕ.
The following lemma is our key tool for proving that there is a non-elementary suc-

cinctness gap between FO and the FO-expressible fragment of MSO.

Lemma 6.1. For every h ∈ N there is an ∃X FO(τh)-sentence Φh of size O(h2), such that
the following is true for all strings w over the alphabet Σ•

h: w |= Φh iff w = wh. �

For proving Lemma 6.1 we need the following:

Lemma 6.2 ([5, Lemma 8]). For all h ∈ N there are FO(τh)-formulas equalh(x, y) of size1

O(h) such that the following is true for all strings w over alphabet Σh, for all positions a, b
in w, and for all numbers m,n ∈ {0, . . ,Tower(h)}: If a is the first position of a substring
u of w that is isomorphic to µh(m) and if b is the first position of a substring v of w that
is isomorphic to µh(n), then w |= equalh(a, b) if, and only if, m = n. �

Using the above lemma, it is an easy exercise to show

Lemma 6.3. For every h ∈ N there is an FO(τh)-formula inch(x, y) of size O(h) such that
the following is true for all strings w over alphabet Σh, for all positions a, b in w, and for
all numbers m,n ∈ {0, . . ,Tower(h)}: If a is the first position of a substring u of w that is
isomorphic to µh(m) and if b is the first position of a substring v of w that is isomorphic to
µh(n), then w |= inch(a, b) if, and only if, m+1 = n. �

We also need

Lemma 6.4. For every h ∈ N, the language (vh)
+ is definable by an FO(τh)-sentence

ϕ(vh)+ of size O(h2). I.e., for all strings w over the alphabet Σ•
h we have w |= ϕ(vh)+ if, and

only if, w ∈ (vh)
+. �

Proof: The proof proceeds in 2 steps:

Step 1: Given j > 1, we say that a string w over Σ•
h satisfies the condition C(j) if, and

only if, for every position x (respectively, y) in w that carries the letter <j> (respectively,
</j>) the following is true: There is a position y to the right of x that carries the letter
</j> (respectively, a position x to the left of y that carries the letter <j>), such that the
substring u of w that starts at position x and ends at position y is of the form µj(n) for
some n ∈ {0, . . ,Tower(j)−1}.

We will construct, for all j ∈ {1, . . , h}, FO(τh)-sentences okj of size O(j) such that the
following is true for all j 6 h and all strings w over Σ•

h that satisfy the conditions C(j′) for
all j′ < j:

w |= okj ⇐⇒ w satisfies the condition C(j).

Simultaneously we will construct, for all j ∈ {1, . . , h}, FO(τh)-sentences maxj(x) of size
O(j) such that the following is true for all j 6 h, all strings w that satisfy the conditions
C(1), . . , C(j), and all positions x in w:

w |= maxj(x) ⇐⇒ x is the starting position of
a substring of w of the form
µj(Tower(j)−1).

1In [5], an additional factor lg h occurs because there a logarithmic cost measure is used for the formula
size, whereas here we use a uniform measure.
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For the base case j = 1 note that Tower(1)−1 = 1 and, by the definition of µ1(n), µ1(0) =
<1> </1> and µ1(1) = <1> 0 </1>. It is straightforward to write down a formula ok1 that
expresses the condition C(1). Furthermore, max1(x) states that the substring of length 3
starting at position x is of the form <1> 0 </1>.

For j > 1 assume that the formula maxj−1 has already been constructed. For the con-
struction of the formula okj we assume that the underlying string w satisfies the conditions
C(1), . . , C(j−1).

The formula okj states that whenever x (respectively, y) is a position in w that carries
the letter <j> (respectively, </j>) the following is true: There is a position y to the right
of x that carries the letter </j> (respectively, a position x to the left of y that carries the
letter <j>), such that the substring u of w that starts at position x and ends at position y

is of the form µj(n) for some n ∈ {0, . . ,Tower(j)−1}, i.e.,

1. the letters <j> and </j> only occur at the first and the last position of u,
2. whenever a position x′ carries the letter </j-1>, position x′+1 carries the letter 0 or 1,

and position x′+2 carries the letter <j-1> or the letter </j>,
3. either u = <j> </j>, or the prefix of length 3 of u is of the form <j> <j-1> </j-1>,
4. whenever x′ and y′ are positions in u carrying the letter <j-1> such that x′ < y′ and

no position between x′ and y′ carries the letter <j-1>, the formula incj−1(x
′, y′) from

Lemma 6.3 is satisfied,
5. if the rightmost position x′′ in u that carries the letter <j-1> satisfies the formula

maxj−1(x
′′), then there must be at least one position x′′′ in u that carries the letter 0

such that x′′′−1 carries the letter </j-1>.

Note that items 1.–4. ensure that u is indeed of the form µj(n), for some n ∈ N. Item 5
guarantees that n ∈ {0, . . ,Tower(j)−1} because of the following: recall from the definition
of the string µj(n) that µj(n) involves the (reverse) binary representation of the number
n−1. In particular, for n := Tower(j)−1, we need the (reverse) binary representation of
the number Tower(j)−2, which is of the form 011 · · · 11 and of length Tower(j−1), i.e., its
highest bit has the number Tower(j−1)−1.

It is straightforward to see that the items 1.–5. and therefore also the formula okj can
be formalised by an FO(τh)-formula of size O(j), and that this formula exactly expresses
condition C(j).

Furthermore, the formula maxj(x) assumes that x is the starting position of a substring
u of w of the form µj(n), for some n ∈ N; and maxj(x) states that

1. the (reverse) binary representation of n, i.e., the {0, 1}-string built from the letters in u
that occur directly to the right of letters </j-1>, is of the form 011 · · · 11, and

2. the highest bit of n has the number Tower(j−1)−1, i.e., the rightmost position y in u

that carries the letter <j-1> satisfies the formula maxj−1(y).

Obviously, maxj(x) can be formalised in FO(τh) by a formula of size O(j). Finally, this
completes Step 1.

Step 2: A string w over Σ•
h belongs to the language (vh)

+ if, and only if, all the following
conditions are satisfied:

1. w satisfies ok1 ∧ · · · ∧ okh,
2. the first position in w carries the letter <h+1>, the last position in w carries the letter

</h+1>, the letter <h+1> occurs at a position x > 1 iff position x−1 carries the letter
</h+1>, and the letter • occurs at a position x iff position x−1 carries the letter </h>

and position x+1 carries the letter <h> or </h+1>,
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3. whenever x (respectively, y) is a position in w that carries the letter <h+1> (respectively,
</h+1>) the following is true: There is a position y to the right of x that carries the
letter </h+1> (respectively, a position x to the left of y that carries the letter <h+1>),
such that the substring u of w that starts at position x and ends at position y is of the
form vh, i.e.,
⋆ the letters <h+1> and </h+1> only occur at the first and the last position of u,
⋆ the prefix of length 3 of u is of the form <h+1><h></h>, and the suffix of length 3 of
u is of the form </h> • </h+1>,

⋆ whenever x′ and y′ are positions in u carrying the letter <h> such that x′ < y′ and
no position between x′ and y′ carries the letter <h>, the formula inch(x

′, y′) from
Lemma 6.3 is satisfied,

⋆ the rightmost position x′′ in u that carries the letter <h> satisfies the formula maxh(x
′′).

Using the formulas constructed in Step 1 and the preceding lemmas, it is straightforward
to see that this can be formalised by an FO(τh)-formula ϕ(vh)+ of size O(h2). This finally
completes the proof of Lemma 6.4. �

Finally, we are ready for the

Proof of Lemma 6.1:

To determine whether an input string w is indeed the string wh, one can proceed as follows:
First, we make sure that the underlying string w belongs to (vh)

+ via the FO(τh)-formula
ϕ(vh)+ of Lemma 6.4. Afterwards we, in particular, know that in each <h+1> · · · </h+1>-
block is of the form vh and therefore contains exactly H positions that carry the letter
•. Now, to each •-position in w we assign a letter from {0, 1} in such a way that the
{0, 1}-string built from these assignments is an H-numbering, i.e., of one of the following
forms:

1. BINH(0)BINH(1)BINH(2) · · ·BINH(n), for some n < 2H ,

2. BINH(0)BINH(1) · · ·BINH(2H−1)
(

BINH(0)m
)

, for some m > 0.

Here, BINH(n) denotes the reverse binary representation of length H of the number n < 2H .
For example, BIN4(2) = 0100 and BIN4(5) = 1010. Of course, w is the string wh, i.e.,
consists of exactly 2H copies of vh, if and only if the H-numbering’s assignments in the
rightmost copy of vh form the string BINH(2H − 1), i.e., if and only if every •-position in
this copy of vh was assigned the letter 1.
One way of assigning letters from {0, 1} to the •-positions in w is by choosing a set X of
•-positions with the intended meaning that a •-position x is assigned the letter 1 if x ∈ X

and the letter 0 if x 6∈ X.
Using the FO(τh)-formulas equalh of Lemma 6.2 and ϕ(vh)+ of Lemma 6.4, it is straight-

forward to construct the desired ∃X FO(τh)-formula Φh of size O(h).
This completes the proof of Lemma 6.1. �

As a consequence of Lemma 6.1 and Lemma 4.1 one obtains a non-elementary succinctness
gap between FO and MSO on the class of linear orders:

Theorem 6.5.

The FO(<)-expressible fragment of MonΣ1
1 is not Tower

(

o(
√
m)

)

-succinct in FO(<) on the
class of linear orders. �
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Proof: Recall that, for every N ∈ N, AN denotes the linear order with universe {0, . . , N}.
For every h ∈ N let ℓ(h) := |wh| − 1, where |wh| denotes the length of the string wh.

We say that a sentence χ defines the linear order Aℓ(h) if, and only if, Aℓ(h) is the unique
structure in {AN : N ∈ N} that satisfies χ. For every h ∈ N we show the following:

(a) Every FO(<, succ,min,max)-sentence ψh that defines Aℓ(h) has size ||ψh|| > Tower(h).

(a) There is a MonΣ1
1(<)-sentence Ψh of size ||Ψh|| = O(h2) that defines Aℓ(h).

Ad (a):
Since wh consists of 2Tower(h) copies of vh, we know that ℓ(h) > 2Tower(h). Therefore, every
FO(<)-sentence ψh that defines Aℓ(h) has quantifier depth, and therefore size, at least
Tower(h) (cf., Lemma 4.1).

Ad (b):
Let ∃X ϕh be the ∃X FO(τh)-sentence obtained from Lemma 6.1. It is straightforward to
formulate an FO(τh)-sentence ξh of size O(h2) which expresses that every element in the
underlying structure’s universe belongs to exactly one of the sets Pσ, for σ ∈ Σ•

h.
The MonΣ1

1(<)-sentence

Ψh :=
(

∃Pσ
)

σ∈Σ•
h

∃X ( ξh ∧ ϕh )

expresses that the nodes of the underlying linear order can be labelled with letters in Σ•
h in

such a way that one obtains the string wh. Such a labeling is possible if, and only if, the
linear order has length |wh|. I.e., Ψh defines Aℓ(h). Furthermore, ||Ψh|| = O(h2), because

||ξh|| = O(h2) and ||ϕh|| = O(h2).
This completes the proof of Theorem 6.5 �

Let us remark that by modifying the proof of the above result, one can also show that the
FO(<)-expressible fragment of monadic least fixed point logic, MLFP, is non-elementarily
more succinct than FO(<) on the class of linear orders.

7. Conclusion

Our main technical result is a lower bound on the size of a 3-variable formula defining
a linear order of a given size. We introduced a new technique based on Adler-Immerman
games that might be also useful in other situations. A lot of questions remain open, let us
just mention a few here:

• Is first-order logic on linear orders poly(m)-succinct in its 4-variable fragment, or is there
an exponential gap?

• As a next step, it would be interesting to study the succinctness of the finite-variable
fragments on strings, that is, linear orders with additional unary relation symbols. It
is known that on finite strings, the 3-variable fragment of first-order logic has the same
expressive power as full first-order logic. Our results show that there is an at least
exponential succinctness gap between the 3-variable and the 4-variable fragment. We do
not know, however, if this gap is only singly exponential or larger, and we also do not
know what happens beyond 4 variables.

• Another interesting task is to study the succinctness of various extensions of (finite vari-
able fragments of) first-order logic by transitive closure operators.
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• It also remains to be investigated if our results can possibly help to settle the long standing
open problem of whether the 3-variable and 4-variable fragments of first-order logic have
the same expressive power on the class of all ordered finite structures.

Finally, let us express our hope that techniques for proving lower bounds on succinctness
will further improve in the future so that simple results such as ours will have simple proofs!
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