
Logical Methods in Computer Science
Vol. 12(4:9)2016, pp. 1–27
www.lmcs-online.org

Submitted May 5, 2016
Published Dec. 28, 2016

ON LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC AND

SOME APPLICATIONS TO PROOF THEORY

ANUPAM DAS a AND LUTZ STRASSBURGER b

a LIP, Université de Lyon, CNRS, ENS de Lyon, Université Claude-Bernard Lyon 1, Milyon
e-mail address: anupam.das@ens-lyon.fr

b Inria Saclay, Palaiseau, France
e-mail address: lutz@lix.polytechnique.fr

Abstract. Linear rules have played an increasing role in structural proof theory in recent
years. It has been observed that the set of all sound linear inference rules in Boolean logic
is already coNP-complete, i.e. that every Boolean tautology can be written as a (left- and
right-)linear rewrite rule. In this paper we study properties of systems consisting only of
linear inferences. Our main result is that the length of any ‘nontrivial’ derivation in such a
system is bound by a polynomial. As a consequence there is no polynomial-time decidable
sound and complete system of linear inferences, unless coNP = NP. We draw tools and
concepts from term rewriting, Boolean function theory and graph theory in order to access
some required intermediate results. At the same time we make several connections between
these areas that, to our knowledge, have not yet been presented and constitute a rich
theoretical framework for reasoning about linear TRSs for Boolean logic.

1. Introduction

Consider the following conjunction rule from a Gentzen-style sequent calculus:

Γ, A B,∆
−−−−−−−−−−−−−−−
Γ, A ∧B,∆

(1.1)

where Γ and ∆ are finite sequences of formulae. In this rule all the formulae in the premisses
occur in the conclusion with the same multiplicity. In proof theory this is referred to as a
multiplicative rule. This phenomenon can also be described as a linear rule in term rewriting.
For instance, the proof rule above has logical behaviour induced by the following linear term
rewriting rule,

(C ∨A) ∧ (B ∨D) → C ∨ (A ∧B) ∨D (1.2)

where C and D here represent the disjunction of the formulae in Γ and ∆ respectively
from (1.1).

2012 ACM CCS: [Theory of computation]: Logic—Proof theory.
Key words and phrases: Linear rewriting, Boolean logic, Proof theory.
∗ This is an extended version of [DS15] which appeared in the proceedings of RTA 2015.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(4:9)2016
c© A. Das and L. Straßburger
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. DAS AND L. STRASSBURGER

This rule has been particularly important in structural proof theory, serving as the basis
of Girard’s multiplicative linear logic [Gir87]. A variant of (1.2), that will play some role in
this paper is the following,

s : A ∧ (B ∨ C) → (A ∧B) ∨ C (1.3)

which we call switch, following [Gug07, GS01, BT01], but which is also known as weak
distributivity [BCST96].

However the concept of linearity, or multiplicativity, itself is far more general. For
instance, the advent of deep inference has introduced the following linear rule, known as
medial [BT01]:

m : (A ∧B) ∨ (C ∧D) → (A ∨ C) ∧ (B ∨D) (1.4)

This rule cannot be derived from (1.2), (1.3) or related rules, even when working modulo
logical equivalence and logical constants. From the point of view of proof theory (1.4) is
particularly interesting since it allows for contraction,

c↓ : A ∨A → A (1.5)

to be reduced to atomic form. For example consider the following transformation which
reduces the logical complexity of a contraction step,

(A ∧B) ∨ (A ∧B)

→
c↓

A ∧B

(A ∧B) ∨ (A ∧B)

→
m

(A ∨A) ∧ (B ∨B)

→
c↓

A ∧ (B ∨B)

→
c↓

A ∧B

(1.6)

where redexes are underlined.
Until now the nature of linearity in Boolean logic has not been well understood, despite

proving to be a concept of continuing interest in proof theory, cf. [Gug11], and category
theory, cf. [Str07b, Lam07]. While switch and medial form the basis of usual deep inference
systems, it has been known for some time that other options are available: there are linear
rules that cannot be derived from just these two rules (even modulo logical equivalences and
constants), first explicitly shown in [Str12]. The minimal known example, from [Das13], is
the following:

(A ∨ (B ∧B′)) ∧ ((C ∧ C ′) ∨ (D ∧D′)) ∧ ((E ∧ E′) ∨ F)

→ (A ∧ (C ∨ E)) ∨ (C ′ ∧ E′) ∨ (B′ ∧D′) ∨ ((B ∨D) ∧ F)
(1.7)

This example can be generalised to an infinite set of rules, where each rule is independent
from all smaller rules. In fact, the situation is rather more intricate than this: the set
of linear inferences, denoted L henceforth, is itself coNP-complete [Str12]. This can be
proved by showing that every Boolean tautology can be written as a linear rule (which we
demonstrate in Proposition 6.1). This leads us to a natural question:

Question 1.1. Can we find a complete ‘basis’ of linear inference rules?

In other words, can proof theory itself be conducted in an entirely linear setting? Such
an approach would be in stark contrast with the traditional approach of structural proof
theory, which precisely emphasises the role of nonlinear behaviour via the structural rules,
e.g. contraction and weakening.

The main result of this work is a negative answer to the above question: there is no
polynomial-time decidable linear TRS that is complete for L, unless coNP = NP. Notice

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 3

that the polynomial-time decidable criterion is essentially the most general condition one
can impose without admitting a trivially positive answer to Question 1.1 (e.g. by allowing
the basis to be L itself). It is also a natural condition arising from proof theory, via the
Cook-Reckhow definition of an abstract proof system [CR74].

The high-level argument is as follows:

(A) Any constant-free linear derivation of a ‘nontrivial’ linear inference must have polynomial
length.

(B) If a linear system is complete for L then arbitrary linear inferences can be derived from
the ‘nontrivial’ fragment of L with constant-free derivations of polynomial length.

(C) Putting these together, a complete linear system must admit polynomial-size derivations
for any linear inference, inducing a NP algorithm for L, and so coNP = NP.

Point ((A)) above represents the major technical contribution of this work. The proof
requires us to work in three different settings: term rewriting, Boolean function theory and
graph theory. Many of our intermediate results require elegant and novel interplays between
these settings, taking advantage of their respective invariants; we try to make this evident in
our exposition via various examples and discussion. Point ((B)) essentially appeared before
in [Das13]. We point out that the important point here is the existence of small derivations,
rather than the ability to explicitly construct them efficiently.

Functions computed by linear terms of Boolean logic have been studied in Boolean
function theory and circuit complexity for decades, where they are called “read-once functions”
(e.g. in [CH11]).1 They are closely related to positional games (first mentioned in [Gur82])
and have been used in the amplification of approximation circuits, (first in [Val84], more
generally in [DZ97]) as well as other areas. However, despite this, it seems that there has
been little study on logical relationships between read-once functions, e.g. when one implies
another. Many of the basic results and correspondences in this work, e.g. Proposition 4.4
and Theorem 4.6, have not appeared before, as far as we know, and themselves constitute
interesting theoretical relationships.

This article is a full version of the extended abstract [DS15], which was presented at
the RTA 2015 conference. In addition to providing full proofs for the various results, this
version generally elaborates on many of the discussions in the previous version and gives
a proof-theoretic context to this line of work. To this end we have included some further
developments in Sections 7, 8 and 9 which are derived from our main result.

The structure of the paper is as follows. In Sections 2, 3 and 4 we present preliminaries
on each of our three settings and some basic results connecting various concepts between
them. In Section 5 and 6 we specialise to the setting of linear rewrite rules for Boolean
logic and present our main results, Theorem 5.9 and Corollary 6.9. In Sections 7 and 8
we present some applications to deep inference proof theory, showing a form of canonicity
for medial and some general consequences for the normalisation of deep inference proofs.
In Section 9 we discuss a direction for future work in a graph-theoretic setting, and in
Section 10 we present some concluding remarks, including relationships to models of linear
logic and axiomatisations of Boolean algebras.

1These have been studied in various forms and under different names. The first appearance we are aware
of is in [Che67], and also the seminal paper of [Gur77] characterising these functions. The book we reference
presents an excellent and comprehensive introduction to the area.

4 A. DAS AND L. STRASSBURGER

Acknowledgements. We would like to thank Paola Bruscoli, Kaustuv Chaudhuri, Alessio
Guglielmi, Willem Heijltjes and others in the deep inference community for many fruitful
discussions on these topics. We would also like to thank the anonymous referees of this work
and its previous versions for their useful comments.

2. Preliminaries on rewriting theory

We work in the setting of first-order term rewriting as defined in the Terese textbook,
Term Rewriting Systems [Ter03]. We will use the same notation for all symbols except the
connectives, for which we use more standard notation from proof theory. In particular we
will use ⊥ and > for the truth constants, reserving 0 and 1 for the inputs and outputs of
Boolean functions, introduced later.

We adopt one particular convention that differs from what is usual in the literature. A
term rewriting system (TRS) is usually defined as an arbitrary set of rewrite rules. Here we
insist that the set of instances of these rules, or reduction steps, is polynomial-time decidable.
The motivation is that we wish to be as general as possible without admitting trivial
results. If we allowed all sets then a complete system could be specified quite easily indeed.
Furthermore, that an inference rule is easily or feasibly checkable is a usual requirement in
proof theory, and in proof complexity this is formalised by the same condition on inference
rules, cf. [CR74].

Let us now consider Boolean logic in the term rewriting setting. Our language conists of
the connectives ⊥,>,∧,∨ and a set Var of propositional variables, typically denoted x, y, z
etc. The set Var is equipped with an involution (i.e. self-inverse function) · : Var → Var ,
such that x̄ 6= x for all x ∈ Var . We call x̄ the dual of x and, for each pair of dual variables,
we arbitrarily choose one to be positive and the other to be negative.

The set Ter of formulae, or terms, is built freely from this signature in the usual way.
Terms are typically denoted by s, t, u etc., and term and variable symbols may occur with
superscripts and subscripts if required.

In this setting > and ⊥ are considered the constant symbols of our language. We say
that a term t is constant-free if > and ⊥ do not occur in t.

We do not include a symbol for negation in our language. This is due to the fact that
soundness of a rewrite step is only preserved under positive contexts. Instead we simply
consider terms in negation normal form (NNF), which can be generated for arbitrary terms
from positive and negative variables by the De Morgan laws:

> = ⊥ ⊥ = > ¯̄x = x s ∨ t = s̄ ∧ t̄ s ∧ t = s̄ ∨ t̄

We say that a term is negation-free if it does not contain any negative variables. We write
Var(t) to denote the set of variables occurring in t. We say that a term t is linear if, for
each x ∈ Var(t), there is exactly one occurrence of x in t. The size of a term t, denoted |t|,
is the total number of variable and function symbols occurring in t. A substitution is a
mapping σ : Var → Ter from the set of variables to the set of terms such that σ(x) 6= x
for only finitely many x. The notion of substitution is extended to all terms, i.e. a map
Ter → Ter , in the usual way. A (one-hole) context is a term with a single ‘hole’ @ occurring
in place of a subterm. Below are three examples:

C1[@] := y ∧ (z ∨ @) C2[@] := @ ∨ (w ∧ x) C3[@] := (w ∧ x) ∨ (y ∧ (z ∨ @)) (2.1)

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 5

We may write Ci[t] to denote the term obtained by replacing the occurrence of @ in Ci[@]
with t. We may also replace holes with other contexts to derive new contexts. For example,
notice that C3[@] in (2.1) is equivalent, modulo commutativity of ∨, to C2[C1[@]].

Definition 2.1 (Rewrite rules). A rewrite rule is an expression l → r, where l and r are
terms, such that l 6= r. We write ρ : l→ r to express that the rule l→ r is called ρ. In this
rule we call l the left hand side (LHS) of ρ, and r its right hand side (RHS). We say that ρ
is left-linear (resp. right-linear) if l (resp. r) is a linear term. We say that ρ is linear if it is
both left- and right-linear. We write s→

ρ
t to express that s→ t is a reduction step of ρ, i.e.

that s = C[σ(l)] and t = C[σ(r)] for some substitution σ and some context C[@].

For instance, the rules s from (1.3) and m and (1.4) are examples of linear rules. The
rule w↑ : x ∧ y → x (which we consider later in Section 8) is also linear, while the rule c↓
from (1.5) is not linear.

Definition 2.2 (Term rewriting systems). The one-step reduction relation of a set of rewrite
rules R is →

R
, where s→

R
t if s→

ρ
t for some ρ ∈ R. A term rewriting system (TRS) is a set

of rewrite rules whose one-step reduction relation is decidable in polynomial time. A linear
(term rewriting) system is a TRS whose rules are all linear.

Definition 2.3 (Derivations). A derivation under a binary relation →
R

on Ter is a finite

sequence π : t0 →
R

t1 →
R
· · · →

R
tl. The length of π is l. We also write

∗→
R

to denote the

reflexive transitive closure of →
R

.

For an equivalence relation ∼ on Ter and a TRS R, we define an R-derivation modulo
∼ as a sequence π : t0 ∼ t′0 →

R
t1 ∼ t′1 →

R
· · · →

R
tl ∼ t′l. In this case we say that the length of

π is l, i.e. we do not count the ∼ steps.

We write AC to denote the smallest equivalence relation closed under contexts generated
by the following equations for associativity and commutivity of ∧ and ∨:

(x ∧ y) ∧ z = x ∧ (y ∧ z) (x ∨ y) ∨ z = x ∨ (y ∨ z) x ∧ y = y ∧ x x ∨ y = y ∨ x

Note that AC contains only linear equations. The following equations for the constants are
also linear and similarly generate a context-closed equivalence relation called U :

x ∨⊥ = x = ⊥ ∨ x x ∧> = x = > ∧ x > ∨> = > ⊥ ∧⊥ = ⊥
We denote by ACU the combined system of AC and U . We will also need the system U ′

that extends U in the natural way by the following equations:

x ∨> = > = > ∨ x x ∧⊥ = ⊥ = ⊥ ∧ x
Notice that these are not linear in the sense of [Das13], but are considered linear in our
more general setting. We denote by ACU ′ the combined system of AC and U ′.

It turns out that this equivalence relation relates precisely those linear terms that
compute the same Boolean function, as we will see later.

6 A. DAS AND L. STRASSBURGER

3. Preliminaries on relation webs

In this section we restrict our attention to negation-free constant-free linear terms and study
their syntactic structure, in the form of relation webs [Gug07, Str07a].

We will consider graphs that are undirected, simple, and with labelled edges; we will
make use of standard graph-theoretic terminology. For a graph G we denote its vertex set
or set of nodes as V (G), and the set of its labelled edges as E(G). We say “ x y

?
in G”

to express that the edge {x, y} is labelled ? in the graph G. A set X ⊆ V (G) is a ?-clique if
every pair x, y ∈ X has a ?-labelled edge between them. A maximal ?-clique is a ?-clique
that is not contained in any larger ?-clique.

Analysing the term tree of a negation-free constant-free linear term t, notice that for
each pair of variables x, y occurring in t, there is a unique connective ? ∈ {∧,∨} at the root
of the smallest subtree containing the (unique) occurrences of x and y. Let us call this the
least common connective of x and y in t.

Definition 3.1 (Relation webs). The (relation) web W(t) of a constant-free negation-free
linear term t is the complete graph whose vertex set is Var(t), such that the edge between
two variables x and y is labelled by their least common connective in t. We write e∧(t) (resp.
e∨(t)) to be the number of ∧- (resp. ∨-)labelled edges in W(t).

As a convention we will write x y if the edge {x, y} is labelled by ∧, and we write
x y if it is labelled by ∨.

Example 3.2. The term t = ((v ∨ w) ∧ x) ∨ (y ∧ z) has the relation web:

v x

y z

w

We have that e∧(t) = 3 and e∨(t) = 7.

Proposition 3.3. Let t be a constant-free negation-free linear term with n variables, and
let e := 1

2n(n− 1). Then e∧(t), e∨(t) ≤ e, and e∧(t) + e∨(t) = e.

Proof. This follows from the fact that there are only e edges in a web, all of which must be
labelled ∧ or ∨.

Remark 3.4 (Labels). We point out that, instead of using labelled complete graphs, we
could have also used unlabelled arbitrary graphs, since we have only two connectives (∧
and ∨) and so one could be specified by the lack of an edge. This is indeed done in some
settings, e.g. the cooccurrence graphs of [CH11]. However, we use the current formulation
in order to maintain consistency with the previous literature, e.g. [Gug07] and [Str07a], and
since it helps write certain arguments, e.g. in Section 7, where we need to draw graphs with
incomplete information.

One of the reasons for considering relation webs is the following proposition, which
allows us to reason about equivalence classes modulo AC easily.

Proposition 3.5. Constant-free negation-free linear terms are equivalent modulo AC if and
only if they have the same web.

Proof. This follows immediately from the definition and that AC preserves least common
connectives.

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 7

An important property of webs is that they have no minimal paths of length > 2. More
precisely, we have the following:

Proposition 3.6. A complete {∧,∨}-labelled graph on X is the web of some negation-free
constant-free linear term on X if and only if it contains no induced subgraphs of the form:

w x

y z
(3.1)

A proof of this property can be found, for example, in [Möh89], [Ret93], [BdGR97], or
[Gug07]. It is called P4-freeness or Z-freeness or N-freeness, depending on the viewpoint.
This property can be useful when we reason with webs, for instance in Section 7.

4. Preliminaries on Boolean functions

In this section we introduce the usual Boolean function models for terms of Boolean logic.
At the end of the section we give some examples of the various notions introduced.

A Boolean function on a (finite) set of variables X ⊆ Var is a map f : {0, 1}X → {0, 1}.
We identify {0, 1}X with P(X), the powerset of X, i.e. we may specify an argument of
a Boolean function by the subset of its variables assigned to 1. A little more formally, a
function ν : X → {0, 1} is specified by the set Xν it indicates, i.e. x ∈ Xν just if ν(x) = 1.
For this reason we may quantify over the arguments of a Boolean function by writing Y ⊆ X
rather than ν ∈ {0, 1}X , i.e. we write f(Y) to denote the value of f if the input is 1 for the
variables in Y and 0 for the variables in X \ Y . Similarly, we write f(Y) for the value of f
when the variables in Y are 0 and the variables in X \ Y are 1.

For Boolean functions f, g : {0, 1}X → {0, 1} we write f ≤ g if, for every Y ⊆ X, we
have that f(Y) ≤ g(Y). Notice that the following can easily be shown to be equivalent:

(1) f ≤ g.
(2) f(Y) = 1 =⇒ g(Y) = 1.
(3) g(Y) = 0 =⇒ f(Y) = 0.

We also write f < g if f ≤ g but f(Y) 6= g(Y) for some Y ⊆ X.

Definition 4.1. A Boolean function f : {0, 1}X → {0, 1} is monotone iff Y ⊆ Y ′ ⊆ X
implies f(Y) ≤ f(Y ′).

Definition 4.2. Let f be a monotone Boolean function on a variable set X. A set Y ⊆ X is
a minterm (resp. maxterm) for f if it is a minimal set such that f(Y) = 1 (resp. f(Y) = 0).
The set of all minterms (resp. maxterms) of f is denoted MIN (f) (resp. MAX (f)).

Observation 4.3. Monotone Boolean functions are uniquely determined by their minterms
or by their maxterms. In particular, for two functions f and g, we have MIN (f) 6= MIN (g)
iff MAX (f) 6= MAX (g) iff there is a Y such that f(Y) 6= g(Y).

We also have that, if f(X) = 1, then there is some S ∈ MIN (f) such that S ⊆ X;
dually, if f(X) = 0, then there is some T ∈ MAX (f) such that T ⊇ X.

Minterms and maxterms correspond to minimal DNF and CNF representations, respec-
tively, of a monotone Boolean function. We refer the reader to [CH11] for an introduction
to their theory. In this work we use them in a somewhat different way to Boolean function
theory, in that we devise definitions of logical concepts such as entailment and, in the next

8 A. DAS AND L. STRASSBURGER

section, what we call “triviality”. The reason for this is to take advantage of the purely
function-theoretic results stated in this section (e.g. Gurvich’s Theorem 4.10 below) to derive
our main results in Sections 5 and 6.

Proposition 4.4. For monotone Boolean functions f, g on the same variable set, the
following are equivalent:

(1) f ≤ g.
(2) ∀S ∈ MIN (f). ∃S′ ∈ MIN (g). S′ ⊆ S.
(3) ∀T ∈ MAX (g). ∃T ′ ∈ MAX (f). T ′ ⊆ T .

Proof. 1 =⇒ 2. Suppose f ≤ g and let S ∈ MIN (f). We have that f(S) = 1 so also
g(S) = 1, by 1, whence there must be an S′ ∈ MIN (g) such that S′ ⊆ S, by Observation 4.3.

2 =⇒ 1. If f(X) = 1 then there is some S ∈ MIN (f) such that S ⊆ X, by
Observation 4.3. By 2, there is some S′ ∈ MIN (g) such that S′ ⊆ S, and so S′ ⊆ X.
Therefore g(X) = 1, by monotonicity, and so f ≤ g.

1 =⇒ 3 and 3 =⇒ 1 are proved similarly.

A term t computes a Boolean function {0, 1}Var(t) → {0, 1}, in the usual way, and
negation-free terms compute monotone Boolean functions. Thus, we can speak of minterms
and maxterms of a negation-free term t, referring to the minterms and maxterms of the
function computed by t. For linear terms, this will allow us to give a graph-theoretic
formulation of minterms and maxterms using concepts from the previous section. We give
the following inductive construction of minterms and maxterms:

Proposition 4.5. Let t be a term. A set S ⊆ Var(t) is a minterm of t if and only if:

• t = > and S is empty, or
• t = x and S = {x}, or
• t = t1 ∨ t2 and S is a minterm of t1 or of t2, or
• t = t1 ∧ t2 and S = S1 ∪ S2 where each Si is a minterm of ti.

Dually, a set T ⊆ Var(t) is a maxterm of t if and only if:

• t = ⊥ and T is empty, or
• t = x and T = {x}, or
• t = t1 ∨ t2 and T = T1 ∪ T2 where each Ti is a maxterm of ti, or
• t = t1 ∧ t2 and T is a maxterm of t1 or of t2.

Proof. This follows straightforwardly from Definition 4.2 and structural induction on t.

Notice that, in particular, ⊥ has no minterms and > has no maxterms. We can now
present one of the important correspondences of this work, characterising minterms and
maxterms of linear terms as maximal cliques in their relation webs:

Theorem 4.6. A set of variables is a minterm (resp. maxterm) of a negation-free constant-
free linear term t if and only if it is a maximal ∧-clique (resp. maximal ∨-clique) in W(t).

Proof. This follows from structural induction on t and Proposition 4.5.

Definition 4.7 (Read-once functions). A Boolean function is called read-once if it is
computed by some linear term.

It is not exactly clear when the following result first appeared, although we refer to a
discussion in [CH11] where it is stated that results directly implying this were first mentioned

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 9

in [Kuz58]. The result also occurs in [Gur77], and is generalised to certain other bases in
[HNW94] and [HK90].

Theorem 4.8 (Folklore). Constant-free negation-free linear terms compute the same (read-
once) Boolean function if and only if they are equivalent modulo AC .

Proof. This follows immediately from Proposition 3.5, Theorem 4.6, and Observation 4.3.

The following consequence of Theorem 4.8 appears in [Das11], where a detailed proof
may be found.

Corollary 4.9. Negation-free linear terms compute the same (read-once) Boolean function
if and only if they are equivalent modulo ACU ′.

Proof idea. The result essentially follows from the observation that every negation-free term
is ACU ′-equivalent to ⊥, > or a unique constant-free linear term.

Let us conclude this section by stating the following classical result, characterising the
read-once functions over ∧ and ∨, due to Gurvich in [Gur77]. This has appeared in various
presentations and, in particular, the proof appearing in [CH11] uses ‘cooccurrence’ graphs
that correspond to our relation webs.

Theorem 4.10 (Gurvich). A monotone Boolean function f is read-once if and only if

∀S ∈ MIN (f). ∀T ∈ MAX (f). |S ∩ T | = 1 .

In this paper we will actually only need one direction of this theorem: that for monotone
read-once functions, minterms and maxterms have singleton intersection. Using the different
settings we have introduced, we arrive at a remarkably simple proof of this direction:

Proof of left-right direction of Theorem 4.10. A minterm and maxterm of f must intersect
since, otherwise, we could simultaneously force f to evaluate to 0 and 1. On the other hand,
by Theorem 4.6, a minterm is a ∧-maxclique of W(t) and a maxterm is a ∨-maxclique of
W(t), and cliques with different labels can intersect at most once.

This simple proof exemplifies the usefulness of considering both the graph theoretic
viewpoint and the Boolean function viewpoint. Such interplays will prove to be very useful
in the remainder of this work.

Example 4.11. Consider the function computed by the term t = ((v ∨ w) ∧ x) ∨ (y ∧ z) from
Example 3.2. Appealing to Proposition 4.5, t has minterms {v, x}, {w, x} and {y, z}, and
maxterms {v, w, y}, {v, w, z}, {x, y} and {x, z}.

Now consider the Boolean ‘threshold’ functions THX
k : {0, 1}X → {0, 1}, which return 1

on just those Y ⊆ X such that |Y | ≥ k. By defnition, this has minterms S ⊆ X such that
|S| = k and maxterms T ⊆ X such that |T | = n− k + 1. This means that for each minterm

there is a maxterm that contains it or vice versa, depending on whether k ≥ |X|2 . Therefore

by Gurvich’s result, Theorem 4.10, THX
k is read-once just when k = 1, where it is computed

by the disjunction of X, or when k = |X| − 1, where it is computed by the conjunction of X.
Now let X = {v, w, x, y, z}. Appealing to Proposition 4.4, we have that t ≤ THX

2 , since
all minterms of t have size 2 and so are also minterms of THX

2 . Dually, the maxterms of
THX

2 are just the quartets of X, each of which contains some maxterm of t: if it does not
contain v or w then it must contain both {x, y} and {x, z}, if it does not contain x then it
must contain both {v, w, y} and {v, w, z}, and if it does not contain y (or z) then it must
contain both {v, w, z} and {x, z} (respectively {v, w, y} and {x, y}).

10 A. DAS AND L. STRASSBURGER

5. Linear inferences, triviality and a polynomial bound on length

In the previous section we considered the semantics of linear terms via Boolean functions.
In this section we study sound rewriting steps between linear terms, with respect to this
semantics, and prove our main result, Theorem 5.9, about the length of such rewriting paths,
corresponding to point ((A)) in the Introduction, Section 1.

Definition 5.1 (Soundness). We say that a rewrite rule s→ t is sound if s and t compute
Boolean functions f and g, respectively, such that f ≤ g. We say that a TRS is sound if all
its rules are sound. A linear inference is a sound linear rewrite rule.

Notation 5.2. To switch conveniently between the settings of terms and Boolean functions,
we freely interchange notations, e.g. writing s ≤ t to denote that s→ t is sound, and saying
f → g is sound when f ≤ g.

We immediately have the following, which can also be found in [Das13].

Proposition 5.3. Any sound negation-free linear TRS, modulo ACU ′, is terminating in
exponential-time.2

Proof. The result follows by Boolean semantics and Corollary 4.9: each consequent term
must compute a distinct Boolean function that is strictly bigger, under ≤, and the graph of
≤ has length 2n, where n is the number of variables in the input term.

The purpose of this section is now to put a polynomial bound on the length of certain
linear derivations. For this, the fundamental concept we use is that of “triviality”, first
introduced in [Das13] as “semantic triviality”.

Definition 5.4 (Triviality). Let f and g be Boolean functions on a set of variables X, and
let x ∈ X. We say f → g is trivial at x if for all Y ⊆ X, we have f(Y ∪ {x}) ≤ g(Y \ {x}).
We say simply that f → g is trivial if it is trivial at one of its variables.

The idea behind triviality of a variable in an inference is that the validity of the inference
is “independent” of the behaviour of that variable.

Example 5.5. Recalling the Boolean threshold functions THX
k from Example 4.11, notice

that THX
k+1 → THX

k is trivial at any (but at most one) variable of X. More concretely, the
linear inference x ∧ y → x ∨ y is trivial at x or y, whereas the linear inference,

x ∧ (y1 ∨ · · · ∨ yn) → x ∨ (y1 ∧ · · · ∨ yn) (5.1)

is trivial at all yi simultaneously.

As observed in [Das13], the inference (5.1) above can be used to create exponential-
length (constant-free) linear derivations. The idea is to construct a derivation from the

2Strictly speaking, we mean that any derivation can be ‘expressed’ as one of exponential length: if either
associativity or commutativity is in the TRS then we could pathologically create arbitrarily long derivations.

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 11

conjunction of a variable set X to its disjunction, by induction on |X|, as follows,

x ∧ (y1 ∧ · · · ∧ yn)

→
...
→ x ∧ (y1 ∨ · · · ∨ yn)

→ x ∨ (y1 ∧ · · · ∧ yn)

→
...
→ x ∨ (y1 ∨ · · · ∨ yn)

where redexes are underlined and the two intermediate derivations are obtained from the
inductive hypothesis. We will show in the remainder of this section that such exponential
length rewrite paths only occur when deriving a triviality.

Remark 5.6 (Hereditariness of triviality). Notice that the triviality property is somehow
hereditary: if a sound sequence f0 → f1 → . . .→ fl of Boolean functions is trivial at some
point fi → fi+1 for 0 ≤ i < l then f1 → fl is trivial. However the converse does not hold: if
the first and last function of a sound sequence constitutes a trivial pair it may be that there
is no local triviality in the sequence. For example the endpoints of the derivation,

(w ∧ x) ∨ (y ∧ z) → (w ∨ y) ∧ (x ∨ z) → w ∨ x ∨ (y ∧ z) (5.2)

form a pair that is trivial at w (or trivial at x), but no local step witnesses this. In these
cases we call the sequence globally trivial. This phenomenon is what we will need to address
later in Lemma 5.8, on which our main result crucially relies.

In a similar way to how we expressed soundness via minterms or maxterms in Proposi-
tion 4.4, we can also define triviality via minterms or maxterms.

Proposition 5.7. The following are equivalent:

(1) f → g is trivial at x.
(2) ∀S ∈ MIN (f). ∃S′ ∈ MIN (g). S′ ⊆ S \ {x}.
(3) ∀T ∈ MAX (g). ∃T ′ ∈ MAX (f). T ′ ⊆ T \ {x}.

Proof. We first show that 1 =⇒ 2. Assume f → g is trivial at x, and let S ∈ MIN (f). We
have f(S) = 1, and hence also f(S ∪ {x}) = 1. By way of contradiction assume there is no
S′ ∈ MIN (g) with S′ ⊆ S \ {x}. Therefore g(S \ {x}) = 0, by Observation 4.3, contradicting
triviality at x. Next, we show 2 =⇒ 1. For this, let Y be such that f(Y ∪ {x}) = 1.
Then there is a minterm S ∈ MIN (f) with S ⊆ Y ∪ {x}, by Observation 4.3. By 2, there
is a minterm S′ ∈ MIN (g) with S′ ⊆ S \ {x}. Hence S′ ⊆ Y \ {x} so g(Y \ {x}) = 1, by
monotonicity, and thus f → g is trivial at x. We prove 1 =⇒ 3 =⇒ 1 analogously.

Let us now fix a sequence f = f0 < f1 < · · · < fl = g of strictly increasing read-once
Boolean functions on a variable set X. Intuitively, we would like to build a decreasing chain
of minterms, whence we could extract an appropriate bound for l. The problem, however, is
that new minterms can appear too, for example in the case of medial (1.4), so this process
does not clearly terminate in reasonable time.

To address this issue, we will show that there must exist particular chains of minterms,
for each variable, which will strictly decrease sufficiently often. Unless f → g is trivial, for
each variable x ∈ X we must be able to associate a minterm Sx of f such that, for any

12 A. DAS AND L. STRASSBURGER

f0

x

<

⊆

⊇

f1

x

<

⊆

· · ·

⊇

· · ·

<

⊆

⊇

fl

x

Figure 1: The critical minterms and maxterms of a sound sequence, cf. Lemma 5.8.

S ⊆ Sx that is a minterm of some fi, it must be that S 3 x. This is visualized in Figure 1
together with the dual property for maxterms.

Lemma 5.8 (Subset and intersection lemma). Suppose f → g is not trivial. For every
variable x ∈ X, there is a minterm Sx of f and a maxterm T x of g such that:

(1) ∀Si ∈ MIN (fi).(Si ⊆ Sx =⇒ x ∈ Si).
(2) ∀Ti ∈ MAX (gi).(Ti ⊆ T x =⇒ x ∈ Ti).
(3) ∀Si ∈ MIN (fi).∀Ti ∈ MAX (gi).(Si ⊆ Sx, Ti ⊆ T x =⇒ Si ∩ Ti = {x}).

Proof. Suppose that, for some variable x no minterm of f has property 1. In other words,
for every minterm Sx of f containing x there is some minterm Si of some fi that is a
subset of Sx yet does not contain x. Since fi → fl is sound for every i we have that, by
Proposition 4.4, for every minterm Sx of f containing x there is some minterm Sl of fl = g
that is a subset of Sx not containing x. I.e. f → g is trivial, by Proposition 5.7, which
is a contradiction. Property 2 is proved analogously. Finally, Property 3 is proved by
appealing to read-onceness: any such Si and Ti must contain x by properties 1 and 2, yet
their intersection must be a singleton by Theorem 4.10 since all fi are read-once.

Notice that, since some such Si and Ti must exist for all i, by soundness, we can build
a chain of such minterms and maxterms preserving the intersection point. For a given
derivation, let us call a choice of such minterms and maxterms critical (see Figure 1).

We now state the main result of this section, also the main technical contribution of
this work, for which Lemma 5.8 will play a crucial role and from which we can obtain our
further results. While we state this result for terms, in order to access simultaneously the
notions of relation webs and Boolean semantics, this could equally be stated in the setting
of read-once Boolean functions due to Gurvich’s result, Theorem 4.10.

Theorem 5.9. Let s = t0 < t1 < · · · < tl = t be a (strictly increasing under ≤) sequence of
negation-free constant-free linear terms on variable set X of size n, such that l > 0 and such
that s→ t is not trivial. We have that l = O(n4).

The remainder of this section is devoted to the proof of Theorem 5.9. For this let us
fix π to denote the sequence s = t0 < t1 < · · · < tl = t. Recall that, since ti < ti+1, ti and

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 13

W(ti) : → W(ti+1) :

x x

y y

S S′

Figure 2: In the proof of Proposition 5.11, S′ cannot contain both x and y, so we can
assume without loss of generality that it does not contain x (although it need not
necessarily contain y either).

ti+1 have distinct minterms and maxterms, by Observation 4.3, and so must have distinct
relation webs by Theorem 4.6.

We now fix, for each x ∈ X and 0 ≤ i ≤ l, some choice of Sxi and T xi as critical minterms
and maxterms, respectively, of ti, under Lemma 5.8. I.e. we have that, for each x ∈ X:

(1) Sxi ∩ T xi = {x} for each i ≤ l.
(2) Sx0 ⊇ Sx1 ⊇ · · · ⊇ Sxl .
(3) T x0 ⊆ T x1 ⊆ · · · ⊆ T xl .

We denote the size of the critical minterms and maxterms of ti by |Sxi | and |T xi |, respectively.
Now we define:

ν(ti) :=
∑
x∈X
|Sxi | and µ(ti) :=

∑
x∈X
|T xi | (5.3)

Observation 5.10. Note that we always have |Sxi |, |T xi | ≤ n because a minterm or maxterm
is a subset of X, and therefore we have ν(ti), µ(ti) ≤ n2 for all ti in π.

The following two propositions now form the core of the argument. The first says that
whenever a ∧-edge changes to a ∨-edge, some minterm strictly decreases in size, and the
second one says that if a minterm strictly decreases in size then some critical maxterm must
strictly increase in size. Thus the proof of Theorem 5.9 that follows again relies crucially on
the interplay between the Boolean function setting and the graph-theoretic setting.

Proposition 5.11. Suppose, for some i < l, we have that x y in W(ti) and x y
in W(ti+1). Then there is a minterm S of ti, and a minterm S′ of ti+1 such that S′ (S.

Proof. Take any maximal ∧-clique in W(ti) containing x and y, of which there must be at
least one. This must have a ∧-subclique which is maximal in W(ti+1), by Proposition 4.4
and Theorem 4.6. This subclique cannot contain both x and y, so the inclusion must be
strict (see Figure 2).

Proposition 5.12. Suppose for j > i there is some minterm Si of ti and some minterm Sj
of tj such that Sj (Si. Then, for some variable x ∈ X, we have that T xi (T xj .

Proof. We let x be some variable in x ∈ Si \Sj , which must be nonempty by hypothesis. By
Theorem 4.10 we have that |T xi ∩ Si| = 1, so it must be that T xi ∩ Si = {x} by construction.
On the other hand we also have that |T xj ∩Sj | = 1, and so there is some (unique) y ∈ T xj ∩Sj .
Now, since Si) Sj we must have y ∈ Si. However we cannot have y ∈ T xi since that would

14 A. DAS AND L. STRASSBURGER

W(ti) : → W(tj) :

x x

Si Sj

T xj

y

T xi

y

Figure 3: If some minterm becomes smaller then some critical maxterm must become bigger.

imply that {x, y} ⊆ T xi ∩ Si, contradicting the above. Since we have that T xi ⊆ T xj we can

now conclude that T xi (T xj as required, because y ∈ T xj and y /∈ T xi (see Figure 3).

Notice that both of the two propositions above rely crucially on the notion of linearity.
Proposition 5.11 assumes the existence of relation webs for a term, a property peculiar to
linear terms, whereas Proposition 5.12 does not remain true for terms that do not compute
read-once Boolean functions: there is no requirement for minterms and maxterms of arbitrary
Boolean functions to intersect at most once, cf. Example 4.11.

Lemma 5.13 (Increasing measure). The lexicographical product µ× e∧ is strictly increasing
at each step of π.

Proof. Notice that, by Lemma 5.8.2, we have that T x0 ⊆ T x1 ⊆ · · · ⊆ T xl , which means that
µ is non-decreasing. So let us consider the case that e∧ decreases at some step and show
that µ must strictly increase. If e∧(ti) > e∧(ti+1) then we must have that some edge is
labelled ∧ in W(ti) and labelled ∨ in W(ti+1). Hence, by Proposition 5.11 some minterm
has strictly decreased in size and so by Proposition 5.12 some critical maxterm must have
strictly increased in size.

From here we can finally prove our main result.

Proof of Theorem 5.9. By Observation 5.10 and Proposition 3.3 we have that µ = O(n2) =
e∧ and so, since s→ t is nontrivial, it must be that the length l of π is O(n4), as required.

Notice that, while the various settings exhibit a symmetry between ∧ and ∨, it is the
property of soundness that induces the necessary asymmetry required to achieve this result.

Remark 5.14. Let us take a moment to reflect on what might happen if the inference that
is derived were trivial. Consider the following:

w ∧ x ∧ (y ∨ z) → w ∧ ((x ∧ y) ∨ z) → w ∧ (x ∨ y ∨ z)

This derivation is trivial at x, in fact witnessed by the second inference.3 Notice that there
is no ‘critical’ minterm for y in this derivation: the only minterm containing y on the left
is {w, x, y}, but this contains a minterm {w, x} on the right. This is similarly true for z,
although here the situation is rather worse: while the minterm {w, x, z} on the left indeed

3Although notice we could equally consider a (globally) trivial derivation with no local triviality if, say, z
were replaced by a conjunction z1 ∧ z2, appealing to Remark 5.6 and using (5.2) to derive the second step.

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 15

contains {w, x} on the right, there is no intermediate minterm. This prevents us from
proving termination via a step-by-step analysis of the subsets of {w, x, z} that occur as
minterms in the derivation, which we are able to do in the presence of critical minterms and
maxterms.

6. No complete linear term rewriting system for propositional logic

Recall that a linear inference is a sound linear rewrite rule. We denote the set of all linear
inferences by L. We will now show that there is no sound linear term rewriting system
that is complete for L unless coNP = NP. The work in this section corresponds to point
((B)) in the Introduction, culminating in Theorem 6.8, and ultimately point ((C)) by way of
Corollary 6.9.

We start with the following observation made in [Str12]:

Proposition 6.1. L is coNP-complete.

This result is the reason, from the point of proof theory, why one might restrict attention
to only linear inferences at all: every Boolean tautology can be written as a linear inference.
As we can see from the proof that follows, the translation is not very complicated, and it
induces an at most quadratic blowup in size from an input tautology to a linear inference.

We include the proof here for completeness, and also since the statement here differs
slightly from that in [Str12].

Proof of Proposition 6.1. That L is in coNP is due to the fact that checking soundness of
a rewrite rule s → t can be reduced to checking validity of the formula s̄ ∨ t. To prove
coNP-hardness, we reduce validity of general tautologies to soundness of linear rewrite rules.
Let t′ be the term obtained from t (which is assumed to be in NNF) by doing the following
for each positive variable x: let n be the number of occurrences of x in t, and let m be the
number of occurrences of x̄ in t. If n = 0 replace every occurence of x̄ by ⊥, and if m = 0
replace every occurrence of x by ⊥. Otherwise, introduce 2mn fresh (positive) variables
x′i,j , x

′′
i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Now, for 1 ≤ i ≤ n, replace the ith occurrence of x

by x′i,1 ∨ . . . ∨ x′i,m and, for 1 ≤ j ≤ m, replace the jth occurrence of x̄ by x′′1,j ∨ . . . ∨ x′′n,j .
Now t′ is a linear term (without negation), and its size is quadratic in the size of t. Let

s′ be the conjunction of all pairs x′ ∨ x′′ of variables introduced in the construction of t′.
Clearly Var(s′) = Var(t′) and s′ is also a linear term of the same size as t′. Furthermore, t
is a tautology if and only if s′ → t′ is sound. To see this, let s′′ and t′′ be obtained from s′

and t′, respectively, by replacing each x′′ by x̄′. Then s′′ always evaluates to 1, and t′′ is a
tautology if and only if t is a tautology.

In the next step we extend the result of the previous section to all linear inferences, i.e.,
we have to deal with constants, negation, erasure, and trivialities. Some of the following
results appeared already in [Das13], so we present only brief arguments here.

Definition 6.2. We define the following rules:

s : x ∧ (y ∨ z)→ (x ∧ y) ∨ z m : (w ∧ x) ∨ (y ∧ z)→ (w ∨ y) ∧ (x ∨ z)

We call the former switch and the latter medial [BT01].

In what follows we implicitly assume that rewriting is conducted modulo ACU .

16 A. DAS AND L. STRASSBURGER

Lemma 6.3. If s and t are negation-free linear terms on a variable set X of size n and
s ≤ t, then there are linear terms s′, t′, u such that:

(1) There are derivations s
∗−→

s,m
s′ ∨ u and t′ ∨ u

∗−→
s,m

t of length O(n2).

(2) s′ → t′ is sound and nontrivial.

Proof. See [Das13]. Briefly, the idea is that u is obtained by repeatedly ‘moving aside’ trivial
variables, using s,m and ACU , until there are no trivialities remaining in s′ → t′. The bound
of O(n2) is not explicitly mentioned in [Das13], but it is clear from direct inspection of that
construction.

Remark 6.4. Notice that, while the derivations from Lemma 6.3.(1) above are small in
size, they are in general difficult to compute, due to the inherent complexity of detecting
triviality. This problem is in fact already coNP-complete, since validity of an arbitrary
linear inference s→ t can be reduced to detecting triviality at x in s ∧ x→ t ∨ x, where x is
fresh. This is not an issue in what follows since we are only concerned with the existence of
small derivations, and so the existence of an NP-algorithm, for various inferences.

A left- and right-linear rewrite rule may still erase or introduce variables, i.e. there may
be variables on one side that do not occur on the other.4 However, notice that any such
situation must constitute a triviality at such a variable, since the soundness of the step is
not dependent on the value of that variable.

Proposition 6.5. Suppose ρ : l → r is linear, and there is some variable x occurring in
only one of l and r. Then ρ is trivial at x.

If a (positive) variable x occurs negatively on both sides of a linear rule then x̄ can
be replaced soundly by x on both sides. Otherwise, if x occurs positively on one side and
negatively on the other, it must be that we have a triviality at x.

Proposition 6.6. For each linear rule ρ either there is a negation-free linear rule that is
equivalent to ρ (i.e. with the same reduction steps), or ρ is trivial.

Recall that ACU ′ preserves the Boolean function computed by a term, and that every
linear term is ACU ′-equivalent to ⊥, > or a unique constant-free linear term. Let us write
R · S for the composition of relations R and S, and =ACU ′ for equivalence under ACU ′.

Proposition 6.7. If R is a complete linear system then any constant-free nontrivial linear
inference has a constant-free derivation in =ACU ′ · →

R
· =ACU ′.

Proof. Let s→ t be a constant-free nontrivial linear inference. By completeness there is an
R-derivation of s→ t, in which we may simply reduce every line by ACU ′ to a constant-free
term or ⊥ or >. However, if some line were to reduce to ⊥ or > then either s or t would
contain a constant, by soundness and Corollary 4.9, so the resulting sequence is a derivation
of the appropriate format.

4Usually, term rewrite rules are required to not introduce new variables from left to right, but it does no
harm to make this generalisation here.

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 17

Now, combining our results from Section 5 with the normal forms obtained above, we
arrive at the main result of this work:

Theorem 6.8. If there is a sound and complete linear system for L, then there is one that
has a O(n4)-length derivation for each linear inference on n variables.

Proof. Assume we have a sound and complete linear system R for L, and let s → t be a
linear inference on n variables. By Lemma 6.3 we have linear terms s′, t′ such that |s′| ≤ |s|
and s′ → t′ is sound, linear, and nontrivial. By Propositions 6.5, 6.6 and reduction under
ACU ′ we can assume that s′, t′ have the same size and are free of negation and constants.5

By Proposition 6.7 there is thus a derivation of s′ → t′ in =ACU ′ · →
R
· =ACU ′ that is

constant-free and negation-free. We can assume that each term in this derivation computes
a distinct Boolean function, by Corollary 4.9, and so, by Theorem 5.9, the length of this
derivation is O(n4). Finally, by Lemma 6.3.(1), this means that we can construct a derivation
of s→ t with overall length O(n4) in R ∪ {s,m} ∪ACU ′.
Corollary 6.9. There is no sound linear system complete for L unless coNP = NP.

Proof. By Proposition 6.1, L is coNP-complete, and the existence of such a system would
lead to a NP decision procedure for L by Theorem 6.8: for any linear inference on n variables
we could simply guess a correct O(n4) length derivation in an appropriate system.

7. On the canonicity of switch and medial

In this section we investigate to what extent the two rules switch and medial from Defini-
tion 6.2, which play a crucial role in the proof theory of classical propositional logic, are
“canonical”. Let us restrict our attention to constant-free terms and rules for this section.

Recall that the switch and medial rules are as follows:

s : x ∧ (y ∨ z)→ (x ∧ y) ∨ z m : (w ∧ x) ∨ (y ∧ z)→ (w ∨ y) ∧ (x ∨ z)

First we observe that both rules are minimal in the following sense:

Definition 7.1. A sound linear rewrite rule ρ : l→ r is minimal if there is no linear term t
on the same variables as l and r such that l < t < r.

Proposition 7.2. Switch and medial are minimal.

Proof. By exhaustive search on all terms of size 3 (for switch) and 4 (for medial).

Observe that, seen as an action on relation webs, switch and medial preserve ∨-edges
and ∧-edges, respectively. Formally, let us consider the following two properties of a linear
inference ρ:

(*) If s→
ρ
t then, whenever x y in W(s), we have that x y in W(t).

(**) If s→
ρ
t then, whenever x y in W(s), we have that x y in W(t).

Our first canonicity result is that medial is the only sound linear inference that is
minimal and satisfies (**). In fact, we will show the stronger property that any sound linear
rule satisfying (**) is already derivable by medial. First, we will require a certain relation
between the webs of terms, which was defined in [Str07a].

5If s′ or t′ is not equivalent to a constant-free term under ACU ′, then it is equivalent to ⊥ or >, whence
we must have s′ = t′ by non-triviality.

18 A. DAS AND L. STRASSBURGER

Definition 7.3. Let s and t be linear terms on a set X of variables. We write s CI t if:

(1) Whenever x y in W(s) we have that x y in W(t).
(2) Whenever x y in W(s) and x y in W(t), there are w, z ∈ X such that,

w x

y z
in W(s) and

w x

y z
in W(t).

This relation allows us to relate structural properties of graphs to derivability by medial,
via the characterisation result below. The proof from [Str07a] relies on careful analysis of
subterms which is beyond the scope of this paper.

Proposition 7.4 (Medial criterion). s CI t if and only if s
∗→
m
t.

Using this result we can show that any sound linear rule satisfying (**) is already
derivable by medial:

Theorem 7.5. Let s and t be linear terms on a variable set X. The following are equivalent:

(1) s ≤ t and for all x, y ∈ X we have x y in W(s) implies x y in W(t).
(2) s CI t.
(3) s

∗→
m
t.

For the proof let us say, if t is a linear term with x, y, z ∈ Var(t), that y separates x
from z in W(t) if x y in W(t) and y z in W(t).

Proof of Theorem 7.5. We have that 2 =⇒ 3 by Proposition 7.4 and 3 =⇒ 1 by inspection
of medial, so it suffices to show 1 =⇒ 2. For this, assume 1 and suppose x y in W(s)
and x y in W(t), and let S be a minterm of s containing x. We must have S) {x}
since x y in W(t) and s → t is sound.6 Similarly there must be a maxterm T of t
containing y such that T) {y}. Now, by 1, it must be that S (resp. T) is also a minterm
(resp. maxterm) of t (resp. s),7 and so, by Theorem 4.10, there is some (unique) z ∈ S ∩ T
which, by definition, separates x from y in both W(s) and W(t). By a symmetric argument
we obtain a w separating y from x in both W(s) and W(t). By construction, w and z must
be distinct, so we have the following situation,

x z

w y
in W(s) and

x z

w y
in W(t).

whence 2 follows by P4-freeness.

Corollary 7.6 (Canonicity of medial). Medial is the only sound linear inference that is
minimal and has property (**).

Proof. By Theorem 7.5, any linear inference satisfying (**) can be derived by medial. The
result then follows by minimality of medial.

6By Proposition 4.4 and Theorem 4.6, there must a subset of S which is a maximal ∧-clique in W(t).
7Since by 1, ∧-edges (resp. ∨-edges) are preserved left-to-right (resp. right-to-left) and so ∧-cliques (resp.

∨-cliques) must be preserved (resp. reflected). Of course, these must be maximal by soundness.

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 19

Using these results, we are actually able to improve the length bound on nontrivial
linear derivations that we proved earlier:

Corollary 7.7. The bound in Theorem 5.9 can be improved to O(n3).

For the proof, let us first define #∧(t) (resp. #∨(t)) to be the number of ∧ (resp. ∨)
symbols occurring in t.

Proof of Corollary 7.7. Instead of using e∧ in Lemma 5.13, use #∨, which is linear in the
size of the term. If no ∧-edge changes to a ∨-edge in some step, it follows by Theorem 7.5
that the step is derivable using medial, and so #∨ must have strictly increased.

While we have just shown a fairly succinct form of canonicity for medial, it turns out
that we cannot obtain an analogous result for switch: switch is not the only sound linear
inference that is minimal and satisfies (*). To see this, simply recall the example of (1.7)
from the Introduction:

(u ∨ (v ∧ v′)) ∧ ((w ∧ w′) ∨ (x ∧ x′)) ∧ ((y ∧ y′) ∨ z)

→ (u ∧ (w ∨ y)) ∨ (w′ ∧ y′) ∨ (v′ ∧ x′) ∨ ((v ∨ x) ∧ z)

Notice, however, that this inference does not preserve the number #∧ of conjunction symbols
in a term. In fact, switch is the only nontrivial linear inference we know of that preserves #∧,
although there are known trivial examples that even increase #∧, for instance the “supermix”
rules from [Das13] that we considered earlier in Example 5.5, (5.1):

x ∧ (y1 ∨ · · · ∨ yn) → x ∨ (y1 ∧ · · · ∧ yn)

This leads us to the following conjecture:

Conjecture 7.8. If s→ t is sound, nontrivial, satisfies (*) and #∧(s) ≤ #∧(t), then s
∗→
s
t.

Notice that this conjecture would already imply our main result, Theorem 5.9, since
#∧× e∧ would be a strictly decreasing measure. This measure can also be used for the usual
proof of termination of {s,m} (constant-free and modulo AC) and also yields a cubic bound
on termination.8 We point out that, in this work, we have matched that bound for all linear
derivations that are not trivial.

The supermix rules are also examples of linear inferences that satisfy neither (*) nor
(**). However, again, we have not been able to identify any nontrivial examples of this, and
we further conjecture the following:

Conjecture 7.9. There is no nontrivial minimal sound linear inference that satisfies neither
(*) nor (**).

An interesting observation is that Conjecture 7.9 and Corollary 7.6 together entail that
medial is the only linear inference that allows contraction to be reduced to atomic form.
To see what this means, consider again (1.6) from the introduction. The steps marked
c↓ are instances of the contraction rule x ∨ x → x. If the contractum of such a step is
simply a variable, then we call that instance of contraction atomic, denoted by ac↓ as in
[BT01]. Dually, the atomic instances of ‘cocontraction’ x→ x ∧ x, when the redex is simply
a variable, are denoted by ac↑. We say that a linear inference ρ : l→ r reduces contraction

to atomic form if, for every term t, we have t ∨ t
∗−→

ρ,ac↓
t and t

∗−→
ρ,ac↑

t ∧ t, modulo ACU .

8In fact, using a different measure, it can also be shown that {s,m} terminates with a quadratic bound.

20 A. DAS AND L. STRASSBURGER

Conjecture 7.10. Medial is the only minimal linear inference that reduces contraction to
atomic form. More precisely, for every linear inference ρ : l→ r that reduces contraction to

atomic form we have l
∗→
m
r.

Proof using Conjecture 7.9. Assume t ∨ t
∗−→

ρ,ac↓
t and t

∗−→
ρ,ac↑

t ∧ t modulo ACU , for every term

t. Since t can contain ∨ and ∧, it must be the case that ρ replaces ∨-edges in W(l) by
∧-edges in W(r). By Conjecture 7.9 ρ does not replace ∧-edges in W(l) by ∨-edges in W(r).

By Theorem 7.5 we must have l
∗→
m
r.

8. On the normalisation of deep inference proofs

Another application of our results is to the normalisation of deep inference proofs. This is
typically done via rewriting on certain graphs extracted from derivations, known as atomic
flows [GG08, GGS10]. The main sources of complexity here are ‘contraction loops’, and
so a lot of effort has gone into the question of whether such features can be eliminated. A
consequence of our main result is that this is impossible for a large class of deep inference
systems.

We will now only consider rewriting systems on positive terms, and then make some
remarks about negative rules at the end of this section. We consider systems with the
standard structural rules of deep inference, extended by an arbitrary (polynomial-time
decidable) set of linear rules.

A formal definition of atomic flows can be found in [GG08], where they were first
presented, and an alternative presentation can be found in [GGS10]. We give an informal
definition below which is sufficient for our purposes.

Definition 8.1 (Structural rules and atomic flows). We define the system cw as follows:

w↓ : x→ x ∨ y w↑ : x ∧ y → x
c↑ : x→ x ∧ x c↓ : x ∨ x→ x

If S is the extension of cw by a set of linear rules and π is an S-derivation (written as a
vertical list), then the atomic flow of π, denoted fl(π), is the (downwards directed) graph
obtained by tracing the paths of each variable through the derivation, designating nodes at
cw steps as follows:

w↓ : w↑ :

c↑ : c↓ :

Example 8.2. Consider the system MSKS obtained by extending cw by the rules switch
and medial, from Definition 6.2, as well as rules ACU from Section 2 for associativity,
commutativity and constants. This is equivalent to the monotone fragment of the common
deep inference system SKS [BT01].

Here is an example of an MSKS rewrite derivation, with redexes underlined, and its
atomic flow. The colours are used to help the reader associate edges with variable occurrences

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 21

in the derivation.
x

−→
w↓

x ∨ x

−→
c↑

(x ∧ x) ∨ x

−→
c↑

(x ∧ x) ∨ (x ∧ x)

−→

c↓
x ∧ x

−→
w↓

(x ∨ y) ∧ x

−→

s/AC

x ∨ (y ∧ x)

−→

c↑
(x ∧ x) ∨ (y ∧ x)

−→
w↑

(x ∧ x) ∨ y

(8.1)

Definition 8.3 (Flow rewriting systems). A flow rewriting system (FRS) is a set of graph
rewriting rules on atomic flows. We say that a FRS R lifts to a TRS S if, for every S-

derivation π : s
∗→
S
t and reduction step fl(π) → φ there is a S-derivation π′ : s

∗→
S
t with

fl(π′) = φ.

Example 8.4. Consider the following FRS, which is a subset of rules occurring in [GG08,
GGS10] and which is called norm in [Das14].

w↓-c↓ : → c↑-w↑ : → w↓-w↑ : →

w↓-c↑ : → c↓-w↑ : →

c↓-c↑ : → (8.2)

We have essentially the following result from [GG08]:

Proposition 8.5. norm lifts to any extension of MSKS by linear rules.

The proof of this is beyond the scope of this work, but crucially relies on the presence
of switch, medial and ACU to make the w and c rules atomic, cf. 1.6, and thereby allow
these steps to permute more freely in a derivation.

For example, here is a norm-derivation that normalises the flow from (8.1),

⋄

⋄ ⋄

3
→

⋄

⋄

⋄

3
→

⋄ ⋄

2
→ (8.3)

where redexes are marked by �.

norm is strongly normalising, as implied by results in [GG08]. In the works [Das12] and
[Das15] the main source of complexity of (weak) normalisation under norm is the presence
of contraction loops. In their absence the time complexity of normalisation is polynomially
bounded.

22 A. DAS AND L. STRASSBURGER

Definition 8.6 (Contraction loops, from [Das12]). Given a flow φ, a contraction loop is a
pair of nodes (ν1, ν2) such that there are two distinct paths from ν1 to ν2 in φ.

It turns out that our previous results imply that no deep inference system that extends
MSKS by linear rules can admit a flow-rewriting normalisation procedure that eliminates
contraction loops:

Theorem 8.7. Let R be a FRS such that, for any flow φ, there is some flow ψ free of

contraction loops such that φ
∗→
R
ψ. Then R lifts to no sound system extending MSKS by

linear rules unless coNP = NP.

Before giving the proof, let us first make the following observation:

Proposition 8.8. If a flow φ is free of contraction loops and φ
∗−→

norm
ψ, then ψ is also free

of contraction loops.

Proof sketch. By induction on the length of a norm-derivation under a careful analysis of
the reduction steps in norm.

We can now give a proof of the theorem above.

Proof of Theorem 8.7. Let us assume that R lifts to such a system S and show that coNP =
NP. Let s→ t be an arbitrary linear inference and let s′, t′, u be linear terms obtained by

Lemma 6.3. By completeness of S let π : s′
∗→
S
t′ and let π′ : s′

∗→
S
t′ be obtained by first

reducing fl(π) under R to a flow free of contraction-loops and then to a normal form under
norm, and finally lifting the resulting derivations to S by assumption and Proposition 8.5.
Notice that fl(π′) is free of contraction loops by assumption and Proposition 8.8.

First we show that fl(π′) must be free of c↓ and c↑ nodes. Consider a topmost c↓ node
and the maximal paths leading to its upper edges. Since fl(π′) is free of contraction loops
we can assume these two paths are disjoint. If one of the paths begins with a w↓ node then
there must be either a w↓-c↓ or w↓-c↑ redex in fl(π′), contradicting normality under norm.
Therefore both paths must begin with variables from s′, contradicting linearity of s′. The
argument for c↑ is similar, by consideration of a bottommost such node.

Now we show that fl(π′) is free of w↓ and w↑ nodes. Suppose there is a w↑ node and
consider the maximal path leading to its edge. This cannot be connected to any other node
since this would yield a redex. Therefore this path must begin from some variable x of s′.
Consequently the occurrence of x in t′ must originate from a w↓ node.9 However this would
imply that s′ → t′ is trivial at x, contradicting the fact that s′ → t′ is nontrivial.

Therefore fl(π′) is just a flow of simple edges, and so π′ is linear. Since it also derives
a nontrivial linear inference, it must have polynomial length by Theorem 5.9. Finally, by
Lemma 6.3, this means that there is a polynomial-size S-derivation of s → t. Since the
choice of this linear inference was arbitrary, we thus have an NP algorithm for L.

In particular we can conclude that a particularly natural FRS for eliminating contraction
loops cannot be correct for a large class of deep inference systems, partially answering
questions occurring in previous works and correspondences:

9Recall that we already have that there are no c↓ or c↑ nodes, so this follows immediately.

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 23

Corollary 8.9. The following flow-rewriting rule,

c↑-c↓ :
→

lifts to no sound system extending MSKS by linear rules unless coNP = NP.

The proof follows immediately from Theorem 8.7 and the following observations:

Proposition 8.10. We have the following:

(1) The equivalence relation assoc generated from the following equations,

→ →

lifts to any extension of MSKS by linear rules.
(2) Any flow can be reduced in c↑-c↓+ c↓-c↑+ assoc to one free of contraction loops.

Proof sketch. 1 is routine, so we prove 2. For a c↑ node in a flow, let its weight be its
distance from the top of the flow. We argue that c↓-c↑+ c↑-c↓ is terminating modulo assoc,
by noticing that the multiset of weights of c↑ nodes in a flow decreases10 by any application
of c↓-c↑ or c↑-c↓ and is preserved by assoc. Finally, we observe that there cannot be any
contraction loop in a normal form of c↓-c↑+ c↑-c↓ modulo assoc since it would contain either
a c↓-c↑ or c↑-c↓ redex, modulo assoc.

Remark 8.11. Here we only considered systems that extend the monotone fragment of
the deep inference system SKS by arbitrary linear rules. To some extent the results above
generalise to extensions by other rules, but there are certain interesting cases that could be
points of further study.

First, of course, there could be rules that allow an interplay between positive and
negative variables, most notably the identity and cut rules from SKS:

> → x ∨ x̄ x ∧ x̄ → ⊥
Their normalisation behaviour is very different from that of the structural rules contraction
and weakening, and so call for an independent analysis altogether. 11

Another interesting case is when SKS is extended by nonlinear rules. In a particularly
extreme case one can envisage rules that are ‘multiplicative’ but not linear. For instance,
consider the following monotone formula, denoted t(w, x, y, z):

(w ∧ x) ∨ ((w ∨ x) ∧ (y ∨ z)) ∨ (y ∧ z)

This computes the threshold function THX
2 from Example 4.11, for X = {w, x, y, z}. Since

this is a symmetric function, we can construct the following sound rule:12

t(w, x, y, z) → t(w, y, x, z)

10Formally it suffices to associate a flow φ with the sum
∑

22w(ν), where ν ranges over c↑ nodes in φ and
w(ν) is the weight of ν, and consider the usual order on natural numbers.

11We are aware that work studying linear systems extended by such rules is currently being pursued by
Guglielmi, McCusker and Santamaria. This line of research is also related to [Lam07] and [Str07b].

12In fact it would be sound for any permutation of variables, but this is the prototypical interesting case.

24 A. DAS AND L. STRASSBURGER

It can be considered ‘multiplicative’, in the sense that each variable occurs with the same
multiplicity, 2, on each side, but it cannot be an instance of a linear rule, since we rely on
the logical dependencies between variable occurrences for soundness.

9. Towards proof theory on arbitrary graphs

In this section we consider arbitrary complete undirected graphs with edges labelled by
∧ and ∨, i.e. graphs that are not necessarily P4-free, and we consider their ∧-maxcliques
and ∨-maxcliques. Such graphs no longer correspond to terms, in fact they do not even
correspond to Boolean functions since Theorem 4.6 breaks down by the example of (3.1):

w x

y z

The problem here is that there is a ∧-maxclique {w, z} and a ∨-maxclique {x, y} which
are disjoint, so under the association of ∧- and ∨-maxcliques to minterms and maxterms
respectively via Theorem 4.6, one would be able to force this graph to evaluate to 0 and 1
simultaneously by the assignment {w 7→ 1, x 7→ 0, y 7→ 0, z 7→ 1}.

On the other hand, the alternative definitions of entailment from Proposition 4.4 still
remain meaningful in such a setting. Inspired by this, let us consider the following relations
on graphs:

• G→
∧
G′ if, for any ∧-maxclique C of G, there is a ∧-maxclique C ′ of G′ with C ′ ⊆ C.

• G→
∨
G′ if, for any ∨-maxclique C of G′, there is a ∨-maxclique C ′ of G with C ′ ⊆ C.

They have the following important properties, whose proofs are routine:

Proposition 9.1. →
∧

and →
∨

are reflexive and transitive.

The point here is that, even though maximal cliques no longer correspond to minterms
and maxterms, the notion of entailment induced by maximal cliques remains stable: if one
starts with a P4-free graph and applies one of the relations →

∧
or →
∨

iteratively, and finishes

with a P4-free subgraph, then the underlying implication is sound, even if many of the
intermediate graphs are not P4-free, and so do not correspond to Boolean functions at all.

For instance, consider the following reduction:

v

w

xy

z →

v

w

xy

z

This can easily be seen to be an instance of →
∧

, since only a new ∧-maxclique, {v, z}, is

added. On the other hand, its inverse is an instance of →
∨

. Consequently the relations →
∧

and →
∨

really are distinct, unlike their restrictions to P4-free graphs.

Remark 9.2. Notice that there are alternative ways to define entailment for Boolean terms
via their webs, but other intuitive choices do not satisfy Proposition 9.1 when generalised to
arbitrary graphs in the natural way, and so do not induce any meaningful logic. For example,
for linear terms s and t, we can show that s ≤ t if and only if every ∧-maxclique of W(s)

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 25

intersects every ∨-maxclique of W(t).13 However, when generalised to arbitrary graphs, this
relation is not even reflexive because of, again, the case of a P4 configuration (3.1).

In further work we would like to study the logics induced by the relations→
∧

and→
∨

, and

even systems where one may alternate between them any time a graph is, say, P4-free. Such
systems would be sound for Boolean logic when the source and target are P4-free, under
the association of a term to its web. They would also leave the world of Boolean functions
altogether, as we previously mentioned, which bears semblance to algebraic proof systems
for propositional logic such as Cutting Planes and Nullstellensatz (studied in, for example,
[BPR97] and [BIK+97]).

Furthermore, notice that our crucial Lemma 5.8 cannot immediately be generalised
to the setting of arbitrary graphs due to the fact that ∧-maxcliques no longer necessarily
intersect ∨-maxcliques. It would be particularly interesting to examine the extent to which
‘linear reasoning’ can be recovered in this setting, sidestepping the shortcomings of P4-free
graphs (i.e. terms) we have studied in this work.

10. Final remarks

To some extent, this work can be seen as a justification for the approach of ‘structural’
proof theory: for any deductive system that can be embedded into a rewriting framework on
Boolean terms, as we have considered here, completeness requires the inclusion of structural
rules that introduce, destroy and duplicate formulae, unless coNP = NP. It is not difficult
to see that this covers a large class of proof systems, including essentially all the well-known
systems based on formulae or related structures, e.g. Gentzen sequent calculi, Hilbert-Frege
systems, Resolution, deep inference systems etc. On the other hand, as we mentioned in
Section 9, proof systems based on other objects such as algebraic equations or graphs are
not covered by our result. While the observation that structural behaviour is somewhat
necessary for proof theory is perhaps not surprising, it is of natural theoretical interest.

There are clear thematic relationships between this line of work and linear logic. In
some ways, we can see this work as contributing to the study of the ‘multiplicative’ fragment
of Boolean logic. One particular connection we would like to point out is with Blass’ model
of linear logic in [Bla92], the first game semantics model of linear logic. The multiplicative
fragment of this model in fact validates precisely the sound linear inferences of Boolean
logic14, which he calls ‘binary tautologies’. Following from the paragraph above, it would
seem that one drawback of this model is that it can admit no sound and complete proof
system, unless coNP = NP, by virtue of our results.

Finally, this work contributes to the study of term rewriting systems for Boolean
Algebras. While complete axiomatisations have been known since the early 20th century by
Whitehead, Huntington, Tarski and others, these are typically sets of equations, rather than
‘directed’ rewrite rules which are more related to proof theory. It has been known for some
time, for example, that there is no convergent TRS for Boolean Algebras [Soc91]; our result,
in the same vein, shows there is no linear TRS for the linear fragment of Boolean Algebras.

13If s evaluates to 1, then one of its minterms must entirely be assigned to 1, and if this intersects every
maxterm of t, then no maxterm of t is entirely assigned to 0, so t must also evaluate to 1. Conversely, if
some minterm of s and some maxterm of t do not intersect, then we can simultaneously force s to evaluate
to 1 and t to evaluate to 0.

14Under the assiociation of � with ∧ and O with ∨.

26 A. DAS AND L. STRASSBURGER

References

[BCST96] Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural deduction and coherence
for weakly distributive categories. Journal of Pure and Applied Algebra, 113:229–296, 1996.

[BdGR97] Denis Bechet, Philippe de Groote, and Christian Retoré. A complete axiomatisation of the inclusion
of series-parallel partial orders. In H. Common, editor, Rewriting Techniques and Applications,
RTA 1997, volume 1232 of LNCS, pages 230–240. Springer, 1997.

[BIK+97] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıcek, Pavel Pudlák, Alexander A. Razborov, and
Jiŕı Sgall. Proof complexity in algebraic systems and bounded depth frege systems with modular
counting. Computational Complexity, 6(3):256–298, 1997.

[Bla92] Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56(1-3):183–
220, 1992.

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with
small coefficients. Journal of Symbolic Logic, 62(3):708–728, 1997.

[BT01] Kai Brünnler and Alwen F. Tiu. A local system for classical logic. In R. Nieuwenhuis and
A. Voronkov, editors, LPAR 2001, volume 2250 of LNCS, pages 347–361. Springer, 2001.

[CH11] Yves Crama and Peter L Hammer. Boolean functions: Theory, algorithms, and applications.
Cambridge University Press, 2011.

[Che67] Michael Chein. Algorithmes d’écriture de fonctions booléennes croissantes en sommes et produits.
Revue Française d’Informatique et de Recherche Opérationnelle, 1:97–105, 1967.

[CR74] Stephen Cook and Robert Reckhow. On the lengths of proofs in the propositional calculus
(preliminary version). In Proceedings of the 6th annual ACM Symposium on Theory of Computing,
pages 135–148. ACM Press, 1974.

[Das11] Anupam Das. On the proof complexity of cut-free bounded deep inference. In K. Brünnler and
G. Metcalfe, editors, Tableaux 2011, volume 6793 of LNAI, pages 134–148, 2011.

[Das12] Anupam Das. Complexity of deep inference via atomic flows. In S. Barry Cooper, Anuj Dawar,
and Benedikt Löwe, editors, Computability in Europe, volume 7318 of Lecture Notes in Computer
Science, pages 139–150. Springer-Verlag, 2012.

[Das13] Anupam Das. Rewriting with linear inferences in propositional logic. In Femke van Raamsdonk,
editor, RTA’13, volume 21 of LIPIcs, pages 158–173, 2013.

[Das14] Anupam Das. On the pigeonhole and related principles in deep inference and monotone systems. In
Thomas Henzinger and Dale Miller, editors, Joint Meeting of the 23rd EACSL Annual Conference
on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 36:1–10. ACM, 2014.

[Das15] Anupam Das. On the relative proof complexity of deep inference via atomic flows. Logical Methods
in Computer Science, 11(1):4:1–27, 2015.

[DS15] Anupam Das and Lutz Straßburger. No complete linear term rewriting system for propositional
logic. In Maribel Fernández, editor, 26th International Conference on Rewriting Techniques and
Applications (RTA 2015), volume 36 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 127–142, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[DZ97] Moshe Dubiner and Uri Zwick. Amplification by read-once formulas. SIAM Journal on Computing,
26(1):15–38, 1997.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic flows.
Logical Methods in Computer Science, 4(1):9:1–36, 2008.

[GGS10] Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths in atomic flows for
classical logic. In Jean-Pierre Jouannaud, editor, 25th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 284–293. IEEE, 2010.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[GS01] A. Guglielmi and L. Straßburger. Non-commutativity and MELL in the calculus of structures. In

L. Fribourg, editor, CSL 2001, volume 2142 of LNCS, pages 54–68, 2001.
[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computational

Logic, 8(1):1–64, 2007.
[Gug11] Alessio Guglielmi. Question on a class of tautologies. Proof Theory mailing list, 2011. http:

//article.gmane.org/gmane.science.mathematics.prooftheory/809.
[Gur77] V. A. Gurvich. Repetition-free boolean functions. Uspekhi Matematicheskikh Nauk, 32(1):183–184,

1977.

http://article.gmane.org/gmane.science.mathematics.prooftheory/809
http://article.gmane.org/gmane.science.mathematics.prooftheory/809

LINEAR REWRITING SYSTEMS FOR BOOLEAN LOGIC 27

[Gur82] V. A. Gurvich. On the normal form of positional games. In Soviet Mathematics Doklady, volume 25,
pages 572–574, 1982.

[HK90] Lisa Hellerstein and Marek Karpinski. Computational complexity of learning read-once formulas
over different bases. Technical report, University of Bonn, 1990.

[HNW94] Rafi Heiman, Ilan Newman, and Avi Wigderson. On read-once threshold formulae and their
randomized decision tree complexity. In Theoretical Computer Science, pages 78–87, 1994.

[Kuz58] Aleksandr Vasilevich Kuznetsov. Non-repeating contact schemes and non-repeating superpositions
of functions of algebra of logic. Trudy Matematicheskogo Instituta im. VA Steklova, 51:186–225,
1958.

[Lam07] François Lamarche. Exploring the gap between linear and classical logic. Theory and Applications
of Categories, 18(18):473–535, 2007.

[Möh89] Rolf H. Möhring. Computationally tractable classes of ordered sets. In I. Rival, editor, Algorithms
and Order, pages 105–194. Kluwer Academic Publishing, 1989.

[Ret93] Christian Retoré. Réseaux et Séquents Ordonnés. PhD thesis, Université Paris VII, 1993.
[Soc91] Rolf Socher-Ambrosius. Boolean algebra admits no convergent term rewriting system. In Rewriting

Techniques and Applications, 4th International Conference, RTA-91, Como, Italy, April 10-12,
1991, Proceedings, pages 264–274, 1991.

[Str07a] Lutz Straßburger. A characterisation of medial as rewriting rule. In Franz Baader, editor, RTA
2007, volume 4533 of LNCS, pages 344–358. Springer-Verlag, 2007.

[Str07b] Lutz Straßburger. On the axiomatisation of Boolean categories with and without medial. Theory
and Applications of Categories, 18(18):536–601, 2007.

[Str12] Lutz Straßburger. Extension without cut. Annals of Pure and Applied Logic, 163(12):1995–2007,
2012.

[Ter03] Terese. Term rewriting systems. Cambridge University Press, 2003.
[Val84] L. G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5(3):363

– 366, 1984.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries on rewriting theory
	3. Preliminaries on relation webs
	4. Preliminaries on Boolean functions
	5. Linear inferences, triviality and a polynomial bound on length
	6. No complete linear term rewriting system for propositional logic
	7. On the canonicity of switch and medial
	8. On the normalisation of deep inference proofs
	9. Towards proof theory on arbitrary graphs
	10. Final remarks
	References

