
Logical Methods in Computer Science
Vol. 12(4:11)2016, pp. 1–25
www.lmcs-online.org

Submitted Nov. 22, 2015
Published Dec. 28, 2016

ON THE MINTS HIERARCHY IN FIRST-ORDER

INTUITIONISTIC LOGIC ∗

ALEKSY SCHUBERT a, PAWEŁ URZYCZYN b, AND KONRAD ZDANOWSKI c

a,b Institute of Informatics, University of Warsaw, ul. S. Banacha 2, 02–097 Warsaw, Poland
e-mail address: {alx, urzy}@mimuw.edu.pl

c Cardinal Stefan Wyszyński University in Warsaw, ul. Dewajtis 5, 01-815 Warsaw, Poland
e-mail address: k.zdanowski@uksw.edu.pl

Abstract. We stratify intuitionistic first-order logic over (∀,→) into fragments deter-
mined by the alternation of positive and negative occurrences of quantifiers (Mints hierar-
chy). We study the decidability and complexity of these fragments. We prove that even
the ∆2 level is undecidable and that Σ1 is Expspace-complete. We also prove that the
arity-bounded fragment of Σ1 is complete for co-Nexptime.

1. Introduction

The leading proof assistants such as Coq [6], Agda [3] or Isabelle [17] are founded on con-
structive logics. Still, the complexity behind proof search in constructive reasoning systems
is not well understood even for their basic and crucial fragments where the implication and
universal quantification are used. This situation is caused partly by the difficulty of the field
and partly by the lack of a systematic approach, especially in the case of quantifiers.

Quantifiers are present in logic at least from the time of Aristotle but a modern theory
of quantification was probably initiated by Ch.S. Peirce and G. Frege [1]. The systematic
approach to quantifiers through their grouping at the beginning of a logical formula was
originated by Peirce and worked out by A. Church [5], who first used the term “prenex
normal form”. Since then classifying formulas according to the quantifier prefix remains
a standard stratification tool in modern logic, just to mention Ehrenfeucht-Fraïssé games
[11, Chapter 6] or the arithmetical hierarchy of Kleene and Mostowski [9, Chapter 7].

Classes of prenex formulas in the full first-order language, beginning with ∃ (resp. ∀),
and with n alternating groups of quantifiers are denoted in this paper by the sans-serif
symbol Σn (resp. Πn). (The ordinary serifed symbols Σ and Π are reserved for classes
of the Mints hierarchy.) It is known that classes Σn and Πn form a strict hierarchy with

2012 ACM CCS: [Theory of computation]: Models of computation—Computability—Lambda cal-
culus; Computational complexity and cryptography—Complexity theory and logic; Logic—Proof the-
ory /Constructive mathematics.

Key words and phrases: Intuitionistic logic, Mints hierarchy, complexity, automata.
∗ Project supported through NCN grant DEC-2012/07/B/ST6/01532. This paper is a revised and expanded

version of [24].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(4:11)2016

c© A. Schubert, P. Urzyczyn, and K. Zdanowski
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

respect to their classical expressive power [20]. While the prenex normal form is useful for
classification of formulas, which was demonstrated in full strength by Börger, Grädel, and
Gurevich in their influential book [2], it is rarely used in practice. The structure of formulas
arising from actual reasoning (in particular proof formalization) often involves quantification
in arbitrary positions. For instance this happens when a quantified definition is expanded
in a formula.

In addition, the prenex normal form theorem applies to classical logic only. Things
become quite different for constructive logic (aka intuitionistic logic), because the prenex
fragment of intuitionistic logic is decidable [18]. This contrasts with the undecidability of
the general case (see e.g., [26]) and that makes this form of stratification unsuitable in the
constructive context.

Can we replace the prenex classification by something adequate for intuitionistic logic?
Yes, we can: as observed by Grigori Mints [14], the principal issue is the alternation of
positive and negative occurrences of quantifiers in a formula, understood as in [28]. Roughly
speaking, a quantifier occurrence is positive iff a classical reduction to a prenex form turns
it into a universal quantifier. Dually, negative occurrences of quantifiers are those which be-
come existential quantifiers after normalization. This yields the Mints hierarchy of formulas,
consisting of the following classes (note the serifed Σ and Π):

Π1 – All quantifier occurrences are positive.
Σ1 – All quantifiers occurrences are negative.
Π2 – Up to one alternation: no positive quantifier in scope of a negative one.
Σ2 – Up to one alternation: no negative quantifier in scope of a positive one.

And so on. Every formula can be classified as a Πn or a Σn formula without actually reducing
it to a prenex form. Therefore, Mints hierarchy makes perfect sense for intuitionistic logic.

In this paper we address the question of decidability and complexity of the intuitionistic
provability problem for classes Πn and Σn. This of course resembles the subject of [2],
and it is natural to compare our results with those in the book. As it may be expected,
the intuitionistic case is at least as hard as the classical case. (Remember though that
complexity results about classical logic are usually stated in terms of satisfiability.)

As for the existing knowledge, Mints proved that the fragment Π1 of the constructive
logic with all connectives and quantifiers is decidable [14]. An alternative proof of Mints’
result (for the calculus with ∀ and → only) was given by Dowek and Jiang [8]. A similar
decidability result was also obtained by Rummelhoff [21] for the positive fragment of second-
order propositional intuitionistic logic (system F). The co-2-Nexptime lower bound for
Π1 was proved by Schubert, Urzyczyn and Walukiewicz-Chrząszcz [23], but the problem
is conjectured to be non-elementary [22]. The undecidability of Σ2 with all connectives
and quantifiers can be derived from the undecidability of the classical satisfiability problem
for ∀∗∃∗ using a result of Kreisel [12, Thm. 7]. This would not work for Π2 because the
classical satisfiablity of the Ramsey class ∃∗∀∗ is decidable. Undecidability for Π2 (for the full
language with one binary predicate) is implied by a result of Orevkov [15]. The conference
version [24] of the present paper strenghtened Orevkov result by showing the undecidability
for the (∀,→)-fragment.

There are other forms of quantifier-oriented hierarchical stratifications of intuitionistic
formulas. For instance, the classical prenex hierarchy can be embedded in a fragment of
the intuitionistic logic: a negation of a prenex formula is classically provable if and only
if it is provable intuitionistically [12]. A similar, but more general class of formulas in so

ON THE MINTS HIERARCHY 3

called pseudoprenex form, where quantifiers may be separated by double negation ¬¬, was
studied in depth by Orevkov who gave a full characterization of decidable cases [16]. Also
a full characterization of decidable cases was given for prenex formulas with equality and
function symbols [7]. Other hierarchies of intuitionistic formulas were proposed e.g., by
Fleischmann [10] and Burr [4] (the latter for arithmetic). However, we are not aware of any
complexity-oriented results for those hierarchies.

In this paper we expand the systematic study of the decision problem in Mints hierarchy
initiated in [24]. Basically, we restrict attention to the fragment where only the implication
and the universal quantifier may occur. Our main results are as follows:

A. The hierarchy is strict with respect to the expressive power.
B. The decision problem for the class ∆2 = Σ2 ∩Π2 is undecidable.
C. The decision problem for the class Σ1 is Expspace-complete.
D. The decision problem for arity-bounded Σ1 formulas is co-Nexptime complete.
E. The decision problem for Σ1 restricted to any finite signature is in co-Nexptime.

These results are supplemented by the co-2-Nexptime lower bound for Π1 obtained in [23]
and a strong evidence towards the conjecture that Π1 is actually non-elementary [22]. Ob-
serve that, because of conservativity, part B applies directly to the full intuitionistic logic,
and the same holds for the lower bound in C. The upper bound in C also extends to the
general case at the cost of some additional complication.

The undecidabilities in B are shown for the monadic fragment of minimal logic (i.e., the
language with only unary predicate symbols). Our proof of A requires a binary predicate but
we conjecture that the monadic hierarchy is also strict. It is slightly different with C versus D,
where we have arrived at the open problem whether co-Nexptime equals Expspace.

The paper is organized as follows. Section 2 contains the basic definitions, and proves
strictness of the hierarchy. Section 3 introduces the undecidable tiling puzzles. Those are
encoded in Section 4 into ∆2 formulas. In Section 4.1 we use a syntactic translation to
obtain undecidability for the monadic fragment of ∆2. In Section 5 we show Expspace-
completeness for Σ1 using the decision problem for bus machines [27]. In the last Section 6
we study Σ1 formulas with predicates of bounded arity.

2. Preliminaries

We consider first-order intuitionistic logic without function symbols and without equality.
That is, the only individual terms are object variables, written in lower case, e.g., x, y, . . .
In this paper we restrict attention to formulas built only from implication and the univer-
sal quantifier. A formula is therefore either an atom P(x1, . . . , xn), where n ≥ 0, or an
implication ϕ→ ψ, or it has the form ∀xϕ.

We use common parentheses-avoiding conventions, in particular we take the implication
to be right-associative. That is, ϕ→ ψ → ϑ stands for ϕ→ (ψ → ϑ).

Our proof notation is an extended lambda-calculus of proof terms or simply proofs
or terms. Formulas are treated as types assigned to proof terms. In addition to object
variables, in proof terms there are also proof variables, written as upper-case letters, like X,
Y , Z. An environment is a set of declarations (X : ϕ), where X is a proof variable and ϕ
is a formula. The type-assignment rules in Figure 1 infer judgments of the form Γ ⊢M : ϕ,
where Γ is an environment, M is a proof term, and ϕ is a formula. In (∀I) we require
x 6∈ FV(Γ) and y in (∀E) is an arbitrary object variable.

4 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

Γ,X : ϕ ⊢ X : ϕ (Ax)

Γ,X : ϕ ⊢M : ψ
(→I)

Γ ⊢ λX :ϕ.M : ϕ→ ψ

Γ ⊢M : ϕ→ ψ Γ ⊢ N : ϕ
(→E)

Γ ⊢MN : ψ
Γ ⊢M : ϕ

(∀I)
Γ ⊢ λxM : ∀xϕ

Γ ⊢M : ∀xϕ
(∀E)

Γ ⊢My : ϕ[x := y]

Figure 1: Proof assignment rules

That is, we have two kinds of lambda-abstraction: the proof abstraction λX :ϕ.M and the
object abstraction λxM . There are also two forms of application: the proof application MN ,
where N is a proof term, and the object application My, where y is an object variable. We
use the conventions common in lambda-calculus e.g., unnecessary parentheses are omitted
and the application is left-associative: MNP means ((MN)P). Terms and formulas are
taken up to alpha-conversion.

The formalism is used liberally. Terms are always assumed to be well-typed, even if
type information is left out. For instance, we often say that “a term M has type ϕ” leaving
the environment implicit. Also we often identify environments with sets of formulas, as well
as we write Γ ⊢ ϕ when Γ ⊢ M : ϕ and M is not relevant at the moment. Sometimes for
convenience we drop ϕ from λX :ϕ.M when it can be deduced from the context.

Free (object) variables FV(ϕ) in a formula ϕ are as usual. We also define free variables
in proofs: FV(X) = ∅, FV(λX :ϕ.M) = FV(ϕ) ∪ FV(M), FV(MN) = FV(M) ∪ FV(N),
FV(λxM) = FV(M) − {x}, FV(My) = FV(M) ∪ {y}. The notation M [~x := ~y] stands for
the simultaneous substitution of a vector of variables ~y = y1 . . . yn for free occurrences of
(different) variables ~x = x1 . . . xn. To make this precise, we take:

• xi[~x := ~y] = yi, and z[~x := ~y] = z, when z is not in ~x;
• X[~x := ~y] = X;
• (λX :ϕ.M)[~x := ~y] = λX :ϕ[~x := ~y].M [~x := ~y], where ϕ[~x := ~y] is as usual;
• (MN)[~x := ~y] =M [~x := ~y]N [~x := ~y];
• (λxM)[~x := ~y] = λxM [~x := ~y], when x is not among ~x, ~y;
• (My)[~x := ~y] =M [~x := ~y]y[~x := ~y].

Lemma 2.1. If Γ ⊢ N : ϕ then Γ[~x := ~y] ⊢ N [~x := ~y] : ϕ[~x := ~y].

Proof. Easy induction.

A term is in normal form when it contains no redex, i.e., no subterm of the form
(λX :ϕ.M)N or of the form (λxM)y. We also define the notion of a proof term in long
normal form, abbreviated lnf .

• If N is an lnf of type ϕ then λxN is an lnf of type ∀xϕ.
• If N is an lnf of type ψ then λX :ϕ.N is an lnf of type ϕ→ ψ.
• IfN1, . . . , Nn are lnf or object variables, andXN1 . . . Nn is of an atom type, thenXN1 . . . Nn

is an lnf.

The following lemma is shown in [22].

Lemma 2.2. If ϕ is intuitionistically derivable from Γ then Γ ⊢ N : ϕ, for some lnf N .

ON THE MINTS HIERARCHY 5

The target of a formula is the relation symbol at the end of it. Formally, target(P(~x)) = P, for
atomic formulas, target(ϕ → ψ) = target(ψ), and target(∀xϕ) = target(ϕ). The following
observation is essential in long normal proof search.

Lemma 2.3. If Γ ⊢ N : P(~x), where P(~x) is an atomic formula and N is an lnf, then

N = X ~D, where (X : ψ) ∈ Γ with target(ψ) = P, and ~D is a sequence that may contain
proof terms and object variables.

Proof. An easy consequence of the definition of an lnf.

Miscellaneous: The set of all words over an alphabet A is written as A∗. By ε we denote
the empty word. The relation w ⊆ v holds when w is a prefix of v.

2.1. An example. To illustrate the computational flavour of intuitionistic proof search we
consider the formula α0 → α1 → α2 → α3 → β → C, where C is a nullary atom and:

α0 = ∀x(F(0, x)→ S(0, x)→T(0, x)→ loop(x))→C;
α1 = ∀x(F(0, x)→∀y(F(1, y)→∀z(S(z, x)→ S(z, y))→

∀z(T(z, x)→T(z, y))→ loop(y))→ loop(x));
α2 = ∀x(F(1, x)→ S(0, x)→∀y(F(0, y)→ S(1, y)→

∀z(T(z, x)→T(z, y))→ loop(y))→ loop(x));
α3 = ∀x(F(1, x)→ S(1, x)→T(0, x)→

∀y(F(0, y)→ S(0, y)→T(1, y) → loop(y))→ loop(x));
β = ∀x(F(1, x) → S(1, x) → T(1, x) → loop(x)).

In the above, 0 and 1 are fixed free variables, playing the role of “bits”. The predicates
F(irst), S(econd), and T(hird), are intended to always occur together to associate three bits
to a variable. For instance, assumptions F(1, x),S(0, x),T(1, x) associate the binary string
101 to the variable x. Our formula is constructed in such a way that every proof of it must
“generate” variables associated with all binary strings of length three.

To derive C from Γ = {α0, α1, α2, α3, β}, one must use an assumption with target C,
and α0 is the only such assumption. So we need to prove

Γ ⊢ ∀x(F(0, x)→ S(0, x)→T(0, x)→ loop(x)),
and this amounts to proving Γ ⊢ F(0, x1)→ S(0, x1)→T(0, x1)→ loop(x1), where x1 is
a fresh eigenvariable. That is, we now have the new proof goal loop(x1) to be derived
using additional assumptions F(0, x1),S(0, x1),T(0, x1). (We interpret it as “x1 is associ-
ated to the string 000”.) Given this knowledge about x1 we readily discover that α1 is the
only applicable assumption, as otherwise we would have to prove F(1, x1), which is clearly
hopeless. So we instantiate α1 with x1 in place of x and we now need to derive the universal
formula ∀y(F(1, y)→∀z(S(z, x1)→ S(z, y))→∀z(T(z, x1)→T(z, y))→ loop(y)). This intro-
duces a new eigenvariable x2. Our new goal is loop(x2), and our new assumptions are F(1, x2)
and ∀z(S(z, x1)→ S(z, x2)), ∀z(T(z, x1)→T(z, x2)). The latter two can be used (if needed)
to derive S(0, x2) and T(0, x2). (This implicitly assigns the string 100 to x2.) With this
knowledge at hand, we can now try to apply α2 towards proving loop(x2). We leave it to
the reader to check that our proof construction will lead us to introducing (at least) six
other eigenvariables x3, . . . , x8 and that the proof will be completed with an application
of β, when we reach the string 111, i.e., when the assumptions F(1, x8),S(1, x8),T(1, x8)
become available. Note that various instances of α1 occur in the proof four times, and α2 is
used twice.

6 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

If we use proof variables X0,X1,X2,X3, Y to denote assumptions α0, α1, α2, α3, β, re-
spectively, then the proof can be written as the following lambda-term. The possibly
confusing subterm Z4

30(Z
3
30(Z

2
30Z

1
3)) has type T (0, x4) and corresponds to a composition

of assumptions Zi+1
3 : ∀z(T(z, xi)→T(z, xi+1)), for i = 1, 2, 3, applied to the assumption

Z1
3 : T(0, x1).

λX0X1X2X3Y.X0(λx1λZ
1
1Z

1
2Z

1
3 .

X1x1Z
1
1 (λx2λZ

2
1Z

2
2Z

2
3 .

X2x2Z
2
1 (Z

2
20Z

1
2)(λx3λZ

3
1Z

3
2Z

3
3 .

X1x3Z
3
1 (λx4λZ

4
1Z

4
2Z

4
3 .

X3x4Z
4
1 (Z

4
21Z

3
2)(Z

4
30(Z

3
30(Z

2
30Z

1
3)))(λx5λZ

5
1Z

5
2Z

5
3 .

X1x5Z
5
1 (λx6λZ

6
1Z

6
2Z

6
3 .

X2x6Z
6
1 (Z

6
20Z

5
2)(λx7λZ

7
1Z

7
2Z

7
3 .

X1x7Z
7
1 (λx8λZ

8
1Z

8
2Z

8
3 .

Y x8Z
8
1 (Z

8
21Z

7
2)(Z

8
31(Z

7
31(Z

6
31Z

5
3)))))))))))

The above proof is the shortest normal proof of our formula. Other proofs may “generate”
additional variables associated to various strings. However, repeated strings are “redundant”,
i.e., they do not help to complete the proof.

2.2. The Mints hierarchy. We define classes of formulas Σn and Πn by induction, begin-
ning with Σ0 = Π0 being the set of quantifier-free formulas. The induction step can be
expressed by the following pseudo-grammar:

• Σn+1 ::= a | Πn | Πn+1 → Σn+1

• Πn+1 ::= a | Σn | Σn+1 → Πn+1 | ∀x Πn+1

where the metavariable a stands for an atom. In addition, we take:

• ∆n = Σn ∩Πn.

For example, the formula (∀xP(x)→Q) → Q is in Π1, the formula ∀x(∀yR(y)→P(x)) → Q
is in Σ2, and ∀xP(x) → (∀yR(y) → Q) → Q is in ∆2. By an easy induction one proves that
every Σn formula is classically equivalent to a prenex formula of type Σn (recall that the
sans-serif Σ and Π refer to the ordinary classical hierarchy of prenex forms), and similarly
for Πn versus Πn. The converse is not true in the following sense. Consider the formula
ϕ = ∀x(((P(x) → R(x)) → P(x)) → P(x)). As a classical tautology, ϕ is classically equiv-
alent to an arbitrary quantifier-free tautology, i.e., it is classically equivalent to a formula
in Σ0. But in the intuitionistic logic ϕ is not equivalent to any open (Σ0) formula.

To prove that the Mints hierarchy is strict, we use an analogous result about classical
logic. The following theorem follows from [20].

Theorem 2.4 (Rosen). For each n there is a Σn formula ϕn which is not classically equiva-
lent to any Πn formula and there is a Πn formula ψn such that ψn is not classically equivalent
to any Σn formula. Both formulas are in a language with one binary predicate.

Since conjunction and disjunction are classically definable from → and ⊥, it follows that
Theorem 2.4 holds for the language with → and ⊥ as the only propositional connectives. If
we replace all existential quantifiers in a Σn (resp. Πn) formula by their classical definitions
in terms of ∀, → and ⊥, we obtain a formula which is almost a Σn (resp. Πn) formula in
our sense. Since intuitionistic provability implies classical provability, the formula ϕn in
Theorem 2.4 must not be intuitionistically equivalent to any Πn formula. This immediately

ON THE MINTS HIERARCHY 7

implies a hierarchy theorem for intuitionistic logic with ∀, → and ⊥ and one binary predicate.
To get rid of ⊥, we use the following obvious lemma, where ⊢c refers to classical provability.

Lemma 2.5. Let Γ ⊢c ϕ, and let p be a nullary relation symbol. Then

Γ[p := ⊥] ⊢c ϕ[p := ⊥].

Proof. Routine induction.

Corollary 2.6. For each n there is a Σn formula ϕn which is not classically equivalent to
any Πn formula and there is a Πn formula ψn which is not classically equivalent to any
Σn formula. The formulas ϕn and ψn are in a language with one binary and one nullary
predicate.

Proof. Let ϕ′
n and ψ′

n be the formulas from Theorem 2.4, and let ϕ′′
n and ψ′′

n be obtained
respectively from ϕ′

n and ψ′
n, by replacing each ∃ by ¬∀¬ and then eliminating the connec-

tives ∨, ∧, and ¬ in a standard way. Finally, we replace all occurrences of ⊥ in ϕ′′
n and ψ′′

n

with a new nullary predicate symbol, say p, and we denote the results by ϕn and ψn. Let ϑ
be a Πn formula. If ϕn and ϑ are classically equivalent then by Lemma 2.5 so are the for-
mulas ϕ′′

n and ϑ[p := ⊥]. Hence ϕ′
n is classically equivalent to a Σn formula, contradicting

Theorem 2.4. A similar argument applies to ψn.

Now, as an easy consequence we can state the following.

Theorem 2.7. The Mints hierarchy is strict, that is, for each n there is a Σn formula ϕn

which is not intuitionistically equivalent to any Πn formula and there is a Πn formula ψn

which is not intuitionistically equivalent to any Σn formula. The formulas ϕn and ψn are in
a language with one binary and one nullary predicate.

3. Machines and tilings

To give a concise account of our lower bound results, we disguise Turing Machines as tiling
problems, cf. [2, Chapter 3.1.1]. While the masquerade is quite obvious to unveil, it is still
useful: some formulas become simpler. In the following two subsections, we define two forms
of slightly unusual tiling puzzles. Deterministic puzzles of Section 3.1 are later used for the
undecidability of ∆2 in Section 4. The branching puzzle defined in Section 3.2 is used later
in Section 6 for the lower bound for monadic Σ1 (Section 6).

3.1. Deterministic tiling. Our (deterministic) tiling puzzle is defined as a quadruple

G = 〈 T ,R,E,ok 〉,

where T is a finite a set of tiles, R : T 4 → T is a tiling function, and E, ok are different
elements of T . Such G defines a unique tiling G∗ : N× N→ T , as follows:

• G∗(m,n) = E, when n = 0 or m = 0;
• G∗(m+1, n+1) = R(K,L,M,N), where
K = G∗(m,n+1), L = G∗(m,n), M = G∗(m+1, n), and N = G∗(m+2, n).

That is, the tile E is placed along the horizontal and vertical edges of the grid N × N and
every other tile is determined by its neighbourhood consisting of four tiles: one tile to the
left and three tiles below. This is illustrated by Fig. 2, where T = R(K,L,M,N).We say that
G is solvable when G∗(m,n) = ok, for some numbers m,n. The following is unavoidable:

8 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

L

K

M N

T

m m+1m+2

n+1

n

Figure 2: Result tile.

Lemma 3.1. It is undecidable to determine if a given tiling puzzle is solvable.

Proof. A routine reduction of the following problem:

Does a deterministic Turing Machine accept the empty input?

Row n in the tiling corresponds to the n-th step of a computation.

Locations in tilings: Let L(m,n) = {(k, l) | l ≤ n∧k ≤ m+n−l}. To place a tile at a location
(m,n), where m,n > 0, we must tile all locations in L(m,n), as illustrated in Figure 3, where
the gray square is the location (m,n). Define (m,n) � (k, l) when L(m,n) ⊆ L(k, l).

Lemma 3.2. The relation � is a well-founded partial order.

Figure 3: Dependency of locations.

3.2. Branching puzzle. We now generalize our definition of a tiling puzzle to account for
branching (aka universal) computation, a phenomenon dual to nondeterminism. This will be
needed in Section 6. A branching Turing Machine may divide its computation into multiple
branches, each proceeding independently. The whole computation can thus be seen as a tree.
We can imagine that every branch follows its own time line, so we deal with a tree-like, rather
than linear, flow of computation.

The machine accepts when all these branches reach accepting states. For simplicity
we assume that a branching machine divides the computation at every step (there are no
ordinary deterministic states) and always into two: there is always a “left” and a “right”
development. Therefore every computation branch can be identified by a sequence of binary
choices. This resembles very much the behaviour of a deterministic tree automaton: the
sequence of moves along any fixed branch is fully unique. In this respect, a branching
machine is just a deterministic machine operating in a branching environment.

A branching puzzle is defined again as a tuple of the form

G = 〈 T ,R,E,ok 〉,

with the only difference that now the tiling function is R : T 4 → T 2. The tiling defined
by G is a function G∗ : N×{0, 1}∗ → T , that is, the space to be tiled is N×{0, 1}∗. One can
imagine a tiling of N×{0, 1}∗ as a full binary tree labeled by rows of tiles (the label of a node

ON THE MINTS HIERARCHY 9

w ∈ {0, 1}∗ is the sequence of tiles G∗(n,w), for all n). This tree represents a universally
branching computation with all possible sequences of binary choices. The definition follows:

• G∗(n,w) = E, when n = 0 or w = ε.
• G∗(m+1, wi) = πi(R(Ki,L,M,N)), for i = 0, 1, where
Ki = G∗(m,wi), L = G∗(m,w), M = G∗(m+1, w), and N = G∗(m+2, w);

A tiling G∗ determines, for every infinite path π in the tree {0, 1}∗, a tiling G∗
π of N× N,

given by G∗
π(m,n) = G∗(m,w), where |w| = n and w ⊆ π. We call it a local tiling

associated with π.
Let s ∈ N. The puzzle G is s-solvable iff, for every w with |w| = s, there is a prefix w′

of w and a number m ≤ s such that G∗(m,w′) = ok. That is, an ok tile must be reached
at every branch of the tree of length s and it must be at most the s-th tile in the row.

For technical reasons we also need a relativized notion of s-solvability. We say that G
is s-solvable from v when, for every w such that v ⊆ w and |w| = s, there is a pair (m,w′)
with m ≤ s, w′ ⊆ w, and G∗(m,w′) = ok. (Then either w′ ⊆ v or v ⊆ w′ ⊆ w.) We have:

Lemma 3.3. A branching puzzle G is s-solvable iff it is s-solvable from ε. It is s-solvable
from a word v with |v| < s if and only if it is s-solvable from both v0 and v1.

Here is an analogue of Lemma 3.1:

Lemma 3.4. The following problem is complete for universal exponential time (that is,
co-Nexptime-complete): Given a branching time puzzle G and a number s (written in
binary) determine if G is s-solvable.

Proof. Fix a branching Turing Machine M working in time 2n
k

and an input word a1a2 . . . an.
Recall that all states of the machine are universal and the computation splits into two at

each step. The encoding of the machine is quite natural: the number s is 2n
k

(this takes nk

space in binary) and the set of tiles is TM = {E,ok}∪Σ∪ (Σ×Q), where Σ is the machine
alphabet and Q is the set of states. Suppose for example that the machine divides the
computation making these two moves when scanning a in state q:

– write b, move left, go to state p;
– write c, move right, go to state r.

Fix some ∗ ∈ Σ. We may now define R(x, x, y, (a, q))= 〈 (y, p), y 〉, R(b, (a, q), y, z) = 〈 y, ∗ 〉,
R((y, p), y, (a, q), z)= 〈 b, ∗ 〉, R(x, x, (a, q), z) = 〈 ∗, c 〉, R(c, (a, q), y, z) = 〈 ∗, (y, r) 〉, and
R(〈 y, r 〉, y, x, z) = 〈x, x 〉, and R(x, x, y, z) = 〈 y, y 〉, for every x, y, z ∈ Σ (assuming that
b 6= c). Note that ∗ can be arbitrary — this value is irrelevant. The definition of R must
also ensure the proper positioning of tiles representing the input (in row number 1), etc. By
induction with respect to (w,n) one proves that G∗(n,w) is the content of tape cell n at
time |w| − 1 in one of the parallel computation branches.

4. Undecidability for ∆2

We encode a tiling puzzle G = 〈 T ,R,E,ok 〉 as a ∆2 formula ΦG over the signature:

• nullary symbols: start , loop;
• unary relation symbol add ;
• unary relation symbols T, for each tile T ∈ T ; including E;
• unary relation symbols A, B, representing border positions;
• binary relation symbols H, V, representing horizontal and vertical neighbourhood.

10 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

The intuition is that object variables occurring in formulas may be interpreted as tile loca-
tions. Then A(x) can be read as “x belongs to the bottom row” and B(x) as “x belongs to
the leftmost column”.1 The intuitive meaning of H(x, y) is “x is to the left of y” and V(x, y)
is understood as “x is below y”.

Below we show that G is solvable if and only if ΦG has a proof. The reader has to
be aware that the argument to follow is proof-theoretical rather than semantical. We are
not concerned with the interpretation of our formulas in any model, but in their formal
structure and in the mechanism of proof search. Every step in the construction of the tiling
is encoded by an expansion of the proof environment: adding new tiles corresponds to adding
more assumptions.

Let Θ be a set of formulas in the above signature. According to the intuition above,
predicates H and V may determine the coordinates (m,n) of a variable x in the grid. In
general, this is not always consistent, i.e., a variable x may have one or more pairs of
coordinates in Θ. We define it more formally by induction with respect to (m,n).

• If A(x),B(x) ∈ Θ then x has coordinates (0, 0).
• If H(x, y) ∈ Θ and x has coordinates (m,n) then y has coordinates (m+ 1, n).
• If V(x, y) ∈ Θ and x has coordinates (m,n) then y has coordinates (m,n + 1).

A finite set of formulas (i.e., an environment) Θ is good when all formulas in Θ are of the
forms A(x), B(x), H(x, y), V(x, y), or T(x), where T ∈ T , and in addition:

• Each x ∈ FV(Θ) has exactly one pair of coordinates.
• For each x ∈ FV(Θ) with coordinates (m,n), and every T ∈ T ,

– T(x) ∈ Θ if and only if G∗(m,n) = T;
– B(x) ∈ Θ if and only if m = 0;
– A(x) ∈ Θ, if and only if n = 0.

The intuition is that a good environment consistently represents partial information about
the tiling G∗, with possible redundancy: several variables may have the same coordinates.

The formula ΦG to be constructed is of the form ζ1 → · · · → ζm → start , where some ζi
are in Π1 and others are in Σ1. Technically, it is convenient to define the environment
ΓG = {ζi | i = 1, ...,m} and consider the entailment problem ΓG ⊢ start . For every “rule” of
the form R(K,L,M,N) = T, the set ΓG contains the formula:

(0) ∀xyzuv [K(y)→L(z)→M(u)→N(v)→V(z, y)→H(z, u)→H(u, v)→
(T(x)→H(y, x)→V(u, x)→ loop)→ add(x)].

The intended meaning of the formula (0) is illustrated by Figure 4. Variables xyzuv represent
tile positions, and the assumptions K(y), . . . ,H(u, v) describe the situation in the tiling
before placing tile T at x. Formula (0) provides a proof tactic which can be used towards
a goal of the form add(x) as follows. Find some yzuv witnessing K(y), . . . ,H(u, v), and
prove loop under the additional assumptions T(x), H(y, x), V(u, x) which extend the proof
environment to account for the new tile.
The other formulas in ΓG are listed below. Observe that all quantifiers in formulas (0,2–4)
are positive, while ∀x in (1, 5) are negative, and that in the formula ΦG all signs are reversed.
Since there is no alternation of signs, we obtain that ΦG belongs to ∆2 .

(1) ∀x (E(x)→A(x)→B(x)→ loop)→ start ;
(2) ∀x∀y (E(y)→A(y)→ (H(y, x)→E(x)→A(x)→ loop)→ add(x));
(3) ∀x∀y (E(y)→B(y)→ (V(y, x)→E(x)→B(x)→ loop)→ add(x));

1We use “Asphalt” and “Barrier” as mnemonics.

ON THE MINTS HIERARCHY 11

L

K

M N

T

z u v

y x

Figure 4: Formula (0).

(4) ∀x (ok(x) → loop);
(5) ∀x add(x) → loop.

The basic machinery here is as follows: to prove loop using (5) one needs to derive add(x),
for a fresh x. This can be done using one of the proof tactics (0,2,3). Each of these tactics
verifies some conditions, adds more assumptions, and brings back the proof goal loop. The
iteration is started by an attempt to prove start using (1). An assumption of the form ok(x)
can be used to stop the iteration by applying (4). Before we state the next lemma, let us
observe that good environments only consist of atoms, and targets of non-atomic formulas
in ΓG are start , loop, and add . Suppose that Θ is good and that α is a unary or binary atom
other than add . It follows from Lemma 2.3 that ΓG ,Θ ⊢ α is only possible when α actually
belongs to Θ.

Lemma 4.1. If ΓG,Θ ⊢ P : loop, for some good Θ, and some long normal proof P , then G
is solvable.

Proof. We proceed by induction with respect to the length of P . Since loop is an atom, the
long normal proof P must begin with a proof variable Y declared in ΓG,Θ so that its type
ends with loop (cf. Lemma 2.3). If Y is of type (4) then P = Y x′D, where x′ is an object
variable and ΓG ,Θ ⊢ D : ok(x′). Then ok(x′) must actually be in Θ. Hence G∗(m,n) = ok,
for some m,n.

Otherwise Y is of type (5) and P = Y (λx′ F) with ΓG ,Θ ⊢ F : add(x′) and x′ not free in
the environment ΓG ,Θ. Again, the term F must begin with a variable Z declared in ΓG,Θ.
If Z is of type (0) then F = Zx′y′z′u′v′DKDLDMDNDVD

1
HD

2
H(λZ1Z2Z3.D), where:

• Terms DK, DL, DM, DN, DV, D1
H
, D2

H
are respectively of types K(y′), L(z′), M(u′), N(v′),

V(z′, y′), H(z′, u′), H(u′, v′) in the environment ΓG,Θ;
• ΓG ,Θ, Z1 : T(x

′), Z2 : H(y
′, x′), Z3 : V(u

′, x′) ⊢ D : loop;
• T = R(K,L,M,N).

But if a long normal form has type K(y′) in ΓG ,Θ then it must be a proof variable. The
same holds for all the proofs mentioned in the first item above: these atoms must simply
belong to Θ. Since Θ is good, we have G∗(m+ 1, n + 1) = T.

Let Θ′ = Θ,T(x′),H(y′, x′),V(u′, x′). The environment Θ is good, so the variables y′, z′,
and u′ have only one pair of coordinates each. In addition, the presence of assumptions
V(z′, y′) and H(z′, u′) forces that the coordinates of y′, z′, u′ are of the form (m,n + 1),
(m,n), and (m,n+1), respectively. Since H(y′, x′),V(u′, x′) ∈ Θ′, the added variable x′ has
coordinates (m+ 1, n+ 1) in Θ′, and this is the only such pair. It follows that Θ′ is a good
environment, and we can apply induction to D because it is a proof of loop shorter than P .

Now suppose that ΓG,Θ ⊢ F : add(x′), where the long normal proof F begins with
a variable Z of type (2). Then F = Zx′y′DEDA(λZ1Z2Z3.D), where DE and DA are,
respectively, of type E(y′) and A(y′), and

12 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

ΓG ,Θ, Z1 : H(y
′, x′), Z2 : E(x

′), Z3 : A(x′) ⊢ D : loop.

As in the previous case, the atoms E(x′) and A(x′) must occur in Θ. To apply induction it
suffices to prove that the environment

Θ′ = Θ, Z1 : H(y
′, x′), Z2 : E(x

′), Z3 : A(x′)

is good. Since Θ is good, the variable y′ has exactly one pair of coordinates (m, 0). The
new variable x′ has the coordinates (m + 1, 0) and this is its only pair of coordinates. We
conclude that Θ′ is good.

A long normal proof of add(x′) may also begin with a variable of type (3). Then the
argument is similar as in case (2).

From Lemma 4.1 we immediately obtain:

Lemma 4.2. If ΓG ⊢ start then G is solvable.

Proof. A long normal proof of start must be of the form D = Z(λxλXY V.D′), for some
variable Z of type (1) and some D′ with

ΓG ,X : E(x), Y : A(x), V : B(x) ⊢ D′ : loop.

The set Θ = {E(x),A(x),B(x)} is good and we apply Lemma 4.1.

Our next aim is to show the converse to Lemma 4.2. For the rest of this section we
assume that G is solvable with G∗(m0, n0) = ok. For a good set Θ define

SΘ = {(m,n) | some x ∈ FV(Θ) has coordinates (m,n)}.

We say that a set Θ of formulas is very good when Θ is good and:

• The set SΘ is a subset of L(m0, n0);
• For every (m,n) ∈ SΘ, exactly one x ∈ FV(Θ) has coordinates (m,n);
• If x ∈ FV(Θ) has coordinates (m+ 1, n) then some H(y, x) is in Θ;
• If x ∈ FV(Θ) has coordinates (m,n + 1) then some V(y, x) is in Θ.

A very good set represents the tile assignment without redundancy, and every non-zero
location is “justified” by its neighbours occurring below and to the left of it.

Lemma 4.3. If Θ 6= ∅ is very good then ΓG ,Θ ⊢ loop.

Proof. The proof is by induction with respect to the cardinality of the set L(m0, n0)− SΘ.
In the base case we have (m0, n0) ∈ SΘ, whence ok(x) ∈ Θ, for some x. We use the
assumption (4) to derive loop.

For the induction step, let (m′, n′) ∈ L(m0, n0) − SΘ be minimal with respect to �
(cf. Lemma 3.2). Assume first that m′ = m + 1 and n′ = 0. By the minimality of (m′, n′),
there is a unique variable y ∈ FV(Θ) with coordinates (m, 0) and with E(y),A(y) ∈ Θ. Take
a fresh variable x. Then Θ′ = Θ ∪ {H(y, x),E(x),A(x)} is very good, whence Θ′ ⊢ loop.
That is, we have ΓG,Θ ⊢ H(y, x)→E(x)→A(x)→ loop. Using the assumption (2) we derive
ΓG ,Θ ⊢ add(x). Since x 6∈ FV(Θ), we can generalize over x and obtain ΓG,Θ ⊢ ∀x add(x).
Now we use the assumption (5) to obtain ΓG ,Θ ⊢ loop.

The case m′ = 0 and n′ = n+1 is similar but we use assumption (3). Assume therefore
that m′ = m + 1 and n′ = n + 1, for some m,n. By the minimality of (m′, n′), there are
variables y, z, u, v ∈ FV(Θ) with coordinates (m,n+1), (m,n), (m+1, n), (m+2, n). These
variables are unique because Θ is very good. Also we have K(y),L(z),M(u),N(v) ∈ Θ, for
some unique choice of K,L,M,N. In addition, since Θ is very good, we must also have in Θ
the assumptions V(z, y),H(z, u),H(u, v). Let Θ′ = Θ ∪ {T(x),H(y, x),V(u, x)}, where x is
a fresh variable, and T = R(K,L,M,N). Then G∗(m′, n′) = T. The environment Θ′ is very

ON THE MINTS HIERARCHY 13

good, because x is the unique variable with coordinates (m + 1, n + 1). By the induction
hypothesis, ΓG,Θ

′ ⊢ loop, whence ΓG ,Θ ⊢ T(x)→H(y, x)→V(u, x)→ loop. Using the as-
sumption (0) we can now derive ΓG ,Θ ⊢ add(x). But we actually have ΓG ,Θ ⊢ ∀x add(x),
because x is not free in ΓG ,Θ. Hence ΓG,Θ ⊢ loop by an application of (5).

Lemma 4.4. If G is solvable then ΓG ⊢ start.

Proof. The set Θ = {E(x),A(x),B(x)} is very good, so ΓG ,E(x),A(x),B(x) ⊢ loop holds by
Lemma 4.3. Hence ΓG ⊢ E(x) → A(x) → B(x) → loop. Using (1) one derives ΓG ⊢ start .

Theorem 4.5. Provability in ∆2 is undecidable.

Proof. By Lemma 3.1, solvability of tiling puzzles is undecidable. Lemmas 4.2 and 4.4 give
an effective reduction from the tiling puzzle problem to provability.

A finite signature. Observe that our proof of Theorem 4.5 uses as many predicate sym-
bols as there are tiles, i.e., it applies to an infinite signature. We now briefly explain how
it can be adjusted to work for a finite language. First, redefine the tiling puzzle so that
G = 〈 T ,R,E, n,T1, . . . ,Tn,ok 〉, where n ∈ N and T1, . . . ,Tn ∈ T (possibly with repeti-
tions). This is to account for a non-empty input word. Require that the tiling satisfies
G∗(i, 0) = Ti, for all i = 1, . . . , n. Using a universal Turing Machine (which has a fixed
number of states and uses a fixed alphabet) prove that for some M ∈ N the problem of
solvability is undecidable for the modified puzzles with at most M tiles. This reduces the
number of necessary predicates to a finite level. The remaining construction is essentially
the same, but one has to adjust formula (1) as follows:

• ∀x0 . . . xn (E(x0)→B(x0)→A(x0)→· · ·→A(xn)→T1(x1)→· · ·→Tn(xn)→
H(x0, x1)→· · ·→H(xn−1, xn)→ loop)→ start .

4.1. Monadic ∆2. Our proof of Theorem 4.5 used binary relation symbols. We now show
how to eliminate them by a syntactic translation. This is possible, because we only used
formulas of a very simple shape. We say that a formula ϕ is easy when it is an atom, or
when target(ϕ) is unary or nullary and one of the following holds:

• ϕ = ∀xψ, where ψ is easy;
• ϕ = ψ → ϑ, where ψ and ϑ are easy.

Observe that the set ΓG in Section 4 consists of easy formulas.
Let 1 and 2 be fresh unary relation symbols (i.e., not occurring in the source language).

With every binary relation symbol P we associate another fresh nullary symbol p. We define
P(x, y) = 1(x) → 2(y) → p, for binary P, and P(x) = P(x), P = P, when P is unary or
nullary. Then, by induction, define ∀xϕ = ∀xϕ, and ϕ→ ψ = ϕ→ ψ.

Lemma 4.6. The translation ψ 7→ ψ has the following properties:

• FV(ψ) = FV(ψ);

• ψ[y/x] = ψ[y/x];
• If ϕ = ψ then ϕ = ψ;
• If ψ is easy then so is ψ.

Proof. Routine induction.

14 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

Lemma 4.7. Let Σ consist of binary atoms and let targets of all formulas in Γ be nullary
or unary. Then Γ,Σ ⊢ P(x, y) implies P(x, y) ∈ Σ.

Proof. We have Γ,Σ,1(x),2(y) ⊢ p. No formula in Γ may end with p, thus a long normal

proof of p must begin with an element of Σ: a variable of type Q(u, v) = 1(u) → 2(v) → q.
Then q = p, i.e., P = Q, and we have Γ,Σ,1(x),2(y) ⊢ 1(u) and Γ,Σ,1(x),2(y) ⊢ 2(v).
There is no other way to prove 1(u) but to use the assumption 1(x). Hence, x = u, and
similarly we also obtain y = v. Thus, P(x, y) = Q(u, v) ∈ Σ.

Lemma 4.8. If Γ ⊢ ϕ, where ϕ and all formulas in Γ are easy, then Γ ⊢ ϕ.

Proof. A quasi-long eliminator is a term of the form XE1 . . . Em, where X is a proof variable
and every Ei is either an lnf or an object variable. Observe that if Γ ⊢ M : τ , where M is
a quasi-long eliminator, then either τ = ϕ, for some ϕ, or τ = 2(y) → p, or τ = p, for some

p and y. In the last two cases, we have M = M ′N1 or M = M ′N1N2, with M ′ : P(x, y),
and N1 : 1(x), and N2 : 2(y), for some x and y.

Let now Γ ⊢M : ϕ, where M is an lnf or a quasi-long eliminator. We prove that Γ ⊢ ϕ,
by induction with respect to M . The case of a variable is obvious.

Let M = λZ.N . Without loss of generality we can assume that ϕ = ψ → ϑ, because
the case of ϕ = P(x, y) follows from Lemma 4.7. Then Γ, Z :ψ ⊢ N : ϑ. By the induction
hypothesis for N we have Γ, ψ ⊢ ϑ, whence Γ ⊢ ϕ.

If M = λy.N (where we can assume y is fresh) then ϕ = ∀y τ , which means that
ϕ = ∀y ψ with ψ = τ . We have Γ ⊢ N : ψ, so Γ ⊢ ψ and thus Γ ⊢ ϕ by generalization.

If Γ ⊢ X ~EN : ϕ then the type of X ~E must be of the form ψ → ϕ, because ϕ is neither
of the form 2(y) → p nor p. By the induction hypothesis, both ψ → ϕ and ψ are provable,
and so must be ϕ.

If Γ ⊢ X ~Ey : ϕ, where y is an object variable, then Γ ⊢ X ~E : ∀x τ , for some τ with

ϕ = τ [y/x]. Since X ~E is a quasi-long eliminator, we must have ∀x τ = ∀xψ = ∀xψ, and

ϕ = ψ[y/x] = ψ[y/x]. Hence ϕ = ψ[y/x]. We apply induction to X ~E.

The converse to Lemma 4.8 is obvious. Since all formulas used in our coding are easy,
we can restate Lemmas 4.2 and 4.4 using ΓG instead of ΓG . We conclude with:

Theorem 4.9. It is undecidable whether a ∆2 formula with unary predicates is provable.

Generalization: The translation ϕ 7→ ϕ can be easily generalized to predicates of any fixed
arity n ≥ 2, by introducing n auxilary symbols 1,2, . . . ,n and setting

P(x1, x2, . . . , xn) = 1(x1) → 2(x2) → · · · → n(xn) → p.

It is convenient to assume without loss of generality that all many-argument predicates are
of the same arity n. Then the proof of the following is virtually the same as in the binary
case.

Proposition 4.10. Let ϕ and all formulas in Γ be easy. Then Γ ⊢ ϕ iff Γ ⊢ ϕ.

ON THE MINTS HIERARCHY 15

5. Expspace-completeness for Σ1

The lower bound is obtained by encoding the halting problem for bus machines [27] into the
entailment problem for Σ1. A bus machine is an alternating computing device operating on
a finite word (bus) of a fixed length. At every step the whole content of the bus is updated
according to one of the instructions of the machine. In addition new instructions may be
created each time and those can be used in later steps. A precise definition is as follows.

A simple switch over a finite alphabet A is a pair of elements of A, written a ⊲ b.
A labeled switch is a quadruple, written a ⊲ b(c ⊲ d), where the simple switch c ⊲ d is the
label. Finally, a branching switch is a triple, written a⊲ b× c.

A bus machine is a tuple M = 〈A,m,w0, w1,I 〉, where A is a finite alphabet, m > 0 is
the bus length of M (the length of the words processed), w0 and w1 are words of length m
over A, called the initial and final word , respectively, and I is a set of global instructions.

Every global instruction is an m-tuple I = 〈 I1, . . . , Im 〉 of sets of switches. Switches
in Ii are meant to act on the i-th symbol of the bus. It is required that all switches in
a given instruction I are of the same kind: either all are simple, or all are labeled, or all
are branching. Therefore we classify instructions as simple, labeled, and branching. A local
instruction is a special case of a simple instruction with singleton sets at all coordinates.

A configuration of M is a pair 〈w,J 〉, where w is a word over A of length m, and J is
a set of local instructions. The initial configuration is 〈w0,∅ 〉, and any configuration of the
form 〈w1,J 〉 is called final .

Suppose that I = 〈 I1, . . . , Im 〉, and let w = a1 . . . am and w′ = b1 . . . bm, w′′ = c1 . . . cm.
Transitions of M according to I are defined as follows:

• If I is a simple instruction, and for every i ≤ m the switch ai ⊲ bi belongs to Ii, then
〈w,J 〉 ⇒I

M 〈w′,J 〉;
• If I is a labeled instruction and ai ⊲ bi(ci ⊲ di) belongs to Ii, for every i ≤ m, then
〈w,J 〉 ⇒I

M 〈w′,J ′ 〉, where J ′ = J ∪ {〈 {c1 ⊲ d1}, . . . , {cm ⊲ dm} 〉};
• If I is a branching instruction, and the switch ai ⊲ bi × ci is in Ii, for every i ≤ m, then
〈w,J 〉 ⇒I

M (〈w′,J 〉, 〈w′′,J 〉). (Now the relation ⇒I
M has three arguments.)

The notion of an accepting configuration of a bus machine is defined recursively. We say
that a configuration 〈w,J 〉 is eventually accepting if it is either a final configuration, or

• There is a non-branching instruction I ∈ I ∪ J , with 〈w,J 〉 ⇒I
M 〈w′,J ′ 〉, where

〈w′,J ′ 〉 is eventually accepting, or
• There is a branching instruction I ∈ I ∪ J such that 〈w,J 〉 ⇒I

M (〈w′,J 〉, 〈w′′,J 〉),
where both 〈w′,J 〉 and 〈w′′,J 〉 are eventually accepting.

The machine M accepts iff the initial configuration is eventually accepting. As usual with
alternating machines, an accepting computation of a bus machine should be imagined as
a tree with final configurations at all leaves and branching transitions at branching nodes.

Example 5.1. This example, inspired by [13], is from [19]. Let A = {a, b, c, d}, and let

I+ = {a⊲ b(c⊲ d)}, I− = {b⊲ a(d⊲ c)},
I = {a⊲ a(c⊲ c), b⊲ b(d⊲ d)}, I∗ = {b⊲ c}

Consider M = 〈A, 4, aaaa, dddd,I 〉, where I consists of the following tuples:

〈 I, I, I, I+ 〉, 〈 I, I, I+, I− 〉, 〈 I, I+, I−, I− 〉, 〈 I+, I−, I−, I− 〉, 〈 I∗, I∗, I∗, I∗ 〉.

The machine M behaves in a deterministic way, for example the only instruction applica-
ble in the initial configuration 〈 aaaa,∅ 〉 is 〈 I, I, I, I+ 〉. Executing it yields 〈 aaab, {I0} 〉,

16 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

where I0 is the local instruction 〈 {c⊲c}, {c⊲c}, {c⊲c}, {c⊲d} 〉. The latter can be used later
to change a configuration of the form 〈 cccc,J 〉 into 〈 cccd,J 〉. But now the machine must
execute 〈 I, I, I+, I− 〉 and enter 〈 aaba, {I0, I1} 〉, where I1 = 〈 {c⊲c}, {c⊲c}, {c⊲d}, {d⊲c} 〉.

In the first phase of computation only global instructions are executed and all words
over {a, b} appear on the bus in the lexicographic order. Every application of a global
instruction creates a new unique local instruction. After arriving at bbbb, the machine
rewrites the bus to cccc using 〈 I∗, I∗, I∗, I∗ 〉 and then executes one by one all the local
instructions, eventually reaching the final dddd. The total number of steps is 2 · 24 − 1; also
the number of local instructions is exponential and so is the (implicit) space needed to store
them.

Theorem 5.2 ([27]). The halting problem for bus machines (“Does a given machine accept?”)
is Expspace-complete.

Given a bus machine M = 〈A,m,w0, w1,I 〉, we construct (in Logspace) a set of universal
formulas ΓM and an open formula αM such that ΓM ⊢ αM if and only if M halts. The
free variables in ΓM and αM are identified with the symbols in A and the number, as well
as arity, of relation symbols in our formulas also depend on M. The main relation symbol
Bus is m-ary and it is intended to represent the content of the bus. The obvious convention
is to write Bus(w) for Bus(a1, . . . , am), when w = a1 . . . am and ~a for a1a2 . . . am.

The formula αM is Bus(w0), and Bus(w1) is a member of ΓM. The idea is that a proof
of Bus(w0) succeeds when every branch of a computation can terminate by calling the axiom
Bus(w1).

We associate binary (resp. ternary, quaternary) predicate symbols I with sets I of simple
(resp. branching, labeled) switches occurring in the instructions of M. Then for every simple
switch a⊲b in I, the atomic formula I(a, b) is placed in ΓM, and similarly for branching and
labeled switches. For example, the set I in Example 5.1 yields two assumptions I(a, a, c, c)
and I(b, b, d, d).

In ΓM there are also formulas ψI for all global instructions I in I . In case of a simple
instruction I = 〈 I1, . . . , Im 〉, the formula takes the form:

(1) ψI = ∀~x~y (I1(x1, y1) → · · · → Im(xm, ym) → Bus(~y) → Bus(~x)).

If I = 〈 I1, . . . , Im 〉 is a labeled instruction, then:

(2) ψI = ∀~x~y~z~u (I1(x1, y1, z1, u1)→ · · · → Im(xm, ym, zm, um)
→ ((Bus(~u) → Bus(~z)) → Bus(~y)) → Bus(~x)).

Finally, for a branching instruction I = 〈 I1, . . . , Im 〉, we take:

(3) ψI = ∀~x~y~z (I1(x1, y1, z1)→ · · · →Im(xm, ym, zm) → Bus(~z) → Bus(~y) → Bus(~x)).

A local instruction J may be identified with a rewrite rule of the form w ⇒ v. Such a rule will
be represented as a formula ϕJ of the form Bus(v) → Bus(w). We define ΓJ = {ϕJ | J ∈ J }.

To see the motivation, suppose we want to derive ΓM ⊢ Bus(bbbb), where M is as in
Example 5.1. We use the formula ψ〈 I∗,I∗,I∗,I∗ 〉:

∀~x~y(I∗(x1, y1) → I∗(x2, y2) → I∗(x3, y3) → I∗(x4, y4) → Bus(~y) → Bus(~x)),

instantiated by substituting b for xi and c for yi. Since the assumption I∗(b, c) is in ΓM,
the task of proving Bus(bbbb) is reduced to proving Bus(cccc).

Lemma 5.3. A configuration 〈w,J 〉 is eventually accepting iff the judgment

ΓM,ΓJ ⊢ Bus(w)

ON THE MINTS HIERARCHY 17

is derivable.

Proof. From left to right the proof is by induction with respect to the definition of an even-
tually accepting configuration. Let 〈w,J 〉 be eventually accepting. If it is final, the proof is
trivial, because Bus(w1) ∈ ΓM. Otherwise, assume for example that 〈w,J 〉 ⇒I

M 〈w′,J ′ 〉,
where I = 〈 I1, . . . , Im 〉 is a labeled instruction, and 〈w′,J ′ 〉 is eventually accepting. Then
J ′ = J ∪ {J}, where J is a new local instruction. By the induction hypothesis we have
ΓM,ΓJ , ϕJ ⊢ Bus(w′). It follows that ΓM,ΓJ ⊢ ϕJ → Bus(w′). For j = 1, . . . ,m, let
aj ⊲ bj(cj ⊲ dj) be the switches used in this step. Then w = a1 . . . am, w′ = b1 . . . bm,

and ϕJ = Bus(d1 . . . dm) → Bus(c1 . . . cm). Hence ΓM,ΓJ ⊢ (Bus(~d) → Bus(~c)) → Bus(~b).
We have all the Ij(aj , bj , cj , dj) in ΓM, so we prove Bus(~a) using the appropriate axiom (2)

instantiated with ~x := ~a, ~y := ~b, ~z := ~c, ~u := ~d. Other cases are similar.
The proof in the direction from right to left is by induction with respect to the length

of long normal proofs. Assume that ΓM,ΓJ ⊢ Bus(w). If w is not final then a long normal
proof must begin with a variable of type (1), (2), or (3). Suppose for example that (3) is

the case. For some instantiation ~x := ~a = w, ~y := ~b, ~z := ~c, there are proofs of Ii(ai, bi, ci)

and of Bus(~b) and Bus(~c). A proof of Ii(ai, bi, ci) is only possible when Ii(ai, bi, ci) actually
occurs in ΓM. This is because there are no other assumptions with target Ii. In particular

this proves that variables bi, ci do correspond to actual bus symbols. Since Bus(~b) and

Bus(~c) are provable, it follows from the induction hypothesis that 〈~b,J 〉 and 〈~c,J 〉 are
eventually accepting. Therefore also 〈w,J 〉 is eventually accepting.

5.1. An upper bound for Σ1. A judgment of the form Γ ⊢ ϕ, where ϕ is a Σ1 formula
and all assumptions in Γ are Π1 formulas, is called a Σ1 judgment . Observe that normal
proofs of Σ1 judgments are of the forms:

a) Γ ⊢ λX :α.M : α→ β;
b) Γ ⊢ XM1 . . .Mr : β,

where M is a normal proof term and each Mi, for i = 1, . . . , r, is a normal proof term
or an object variable. Proofs of shape (b) are called eliminators. We say that N ′ is an
instance of N when N ′ = N [~x := ~y], for some object variables ~x, ~y. The following is an easy
consequence of Lemma 2.1.

Lemma 5.4. Fix an object variable x0, and let W = FV(Γ) ∪ FV(ϕ) ∪ {x0}. If Γ ⊢ N : ϕ
then Γ ⊢ N ′ : ϕ, for some instance N ′ of N such that FV(N ′) ⊆ W.

Proof. Let ~x be the list of all variables in FV(N)−W, and let ~y be any variables in W. (The
latter is nonempty because of x0.) Then Γ[~x := ~y] ⊢ N [~x := ~y] : ϕ[~x := ~y], by Lemma 2.1.
But variables ~x are neither free in Γ nor in ϕ, whence Γ[~x := ~y] = Γ and ϕ[~x := ~y] = ϕ.

Note that if FV(Γ) ∪ FV(ϕ) 6= ∅ then Lemma 5.4 yields FV(N ′) ⊆ FV(Γ) ∪ FV(ϕ).

Lemma 5.5. Let Γ ⊢ N : ϕ, where Γ consists of Π1 formulas and N is normal. Assume in
addition that either N is an eliminator or ϕ is a Σ1 formula. Then the term N contains no
occurrences of object abstraction. In addition, if N is an eliminator then ϕ is in Π1.

Proof. Induction with respect to N . If N = X then the type of X is in Π1, because X is
declared in Γ.

If N = λX:ψ.P then ψ is in Π1 and Γ,X:ψ ⊢ P : ϑ, for some ϑ ∈ Σ1. We use the

induction hypothesis for P . Case N = λxN ′ is impossible. If N = X ~NM , where M is

18 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

a proof term, then we have Γ ⊢ X ~N : ψ → ϕ and Γ ⊢ M : ψ, for some ψ. Since X ~N is
an eliminator, the formula ψ → ϕ is in Π1 and so must be ϕ, while ψ is in Σ1. We apply

induction to X ~N and M .
Finally, if N = X ~Ny, where y is an object variable, then we apply induction to X ~N .

Lemma 5.6. If Γ ⊢M : ϕ then FV(ϕ) ⊆ FV(Γ) ∪ FV(M).

Proof. Easy induction with respect to M .

Let W be a set of variables. If FV(Γ)∪FV(ϕ)∪FV(M) ⊆ W then we say that Γ ⊢M : ϕ
is a W-judgment. A judgment is W-derivable when it is derivable using the rules in Figure 1
restricted to W-judgments.

Lemma 5.7. Let Γ ⊢M : ϕ be a provable W-judgment. If M contains no object abstraction
then Γ ⊢M : ϕ is W-derivable.

Proof. Easy induction with respect to M . In case of application one uses Lemma 5.6.

Lemma 5.8. The decision problem for Σ1 formulas is solvable in Expspace.

Proof. To find a proof of a given Σ1 formula ϕ one uses an obvious generalization of the Ben-
Yelles algorithm [26] for simple types. It follows from Lemma 5.5 that a normal inhabitant N
of a Σ1 formula ϕ must not contain any object abstraction. In addition, by Lemma 5.4, one
can assume that free variables of N are all in the set W = FV(ϕ) ∪ {x0}. (The variable x0
is added to make sure that the set is not empty.) By Lemma 5.7, the judgment ⊢ N : ϕ
is W-derivable. Therefore the algorithm needs only to consider judgments Γ′ ⊢ M : ψ
where all object variables are in W. The number of different formulas in Γ′ is thus at most
exponential in the size n of ϕ. (With at most n variables, every subformula of ϕ has at
most nn instances.) Using the same argument as for simple types we therefore obtain an
alternating exponential time algorithm.

Theorem 5.9. The decision problem for Σ1 is Expspace-complete.

Proof. Lemma 5.3 reduces the halting problem for bus machines to provability in Σ1. The
upper bound is provided by Lemma 5.8.

6. Arity-bounded Σ1

The undecidability of ∆2 holds even if we require that all predicates in formulas are unary.
Technically, it is the case because the formulas used in the proof are easy, and we can
apply the translation defined in Section 4.1. But the proof of the Expspace-hardness of Σ1

(Lemma 5.3) uses non-easy formulas of unbounded arity.
It turns out that the Σ1 decision problem is actually “easier” if we set any fixed bound on

the arity of formulas. For every such bound, in particular in the monadic case, the problem
turns out only co-Nexptime-complete.

ON THE MINTS HIERARCHY 19

6.1. The lower bound. To obtain the co-Nexptime lower bound we encode a given branch-
ing puzzle G and a constant s as an entailment problem ΓG ⊢ start . This is partly similar to
the construction in Section 4, in particular all formulas in ΓG are easy. In addition, all these
formulas are either quantifier-free or universal. From now on we assume that s is fixed. The
idea of the encoding can easily be explained if we assume for a while that the language of
arithmetic is in our disposal. Then ΓG could be composed of the following assumptions:

Tiling step G(K,L,M,N) = 〈T,U 〉:

(0l) ∀mt(K(m, t+1)→L(m, t)→M(m+ 1, t)→N(m+2, t)
→Lt(t+1)→ (T(m+1, t+1)→ loop)→ loop).

(0r) ∀mt(K(m, t+1)→L(m, t)→M(m+ 1, t)→N(m+2, t)
→Rt(t+1)→ (U(m+1, t+1)→ loop)→ loop).

First row:

(1) (E(0, 0) → loop) → start ;
(2) ∀m(E(m, 0)→ (E(m+1, 0)→ loop)→ loop).

First column:

(3) ∀t(E(0, t)→ (Lt(t+1)→E(0, t+1)→ loop)
→ (Rt(t+1)→E(0, t+1)→ loop)→ loop).

Conclusion:

(4) ∀m, t ≤ s(ok(m, t)→ loop).

Pairs (m, t) should be interpreted as tile locations. The space to tile is N × {0, 1}∗, not
N×N, so (m, t) does not identify a unique location in the tiling, but only in the local tiling
associated to a certain path from {0, 1}∗. An assumption K(m, t) only states that tile K is
to be placed at node (m, t) in the present local tiling. This always refers to some particular
location (m,w), where |w| = t. The predicate Lt(t) (resp. Rt(t)) indicate that node w is the
left (resp. right) child of its parent w′, i.e., that w = w′0 (resp. w = w′1).

As in Section 4, we think of the formulas in ΓG as of proof tactics. For example, formula
(0l) is used towards the proof goal loop, provided K(m, t+1), . . . ,Lt(t+1) can be verified.
Applying this tactic will not change the proof goal but will add T(m+1, t+1) as a new
assumption.

We need to implement the above idea using unary relations and no arithmetic. In
Section 4 we used different variables to represent coordinates of the grid. With a fixed
supply of variables (cf. Lemma 5.4) we cannot do that. However, as long as we only need
to encode bounded values of coordinates, this can be overcome by using many-argument
predicates. Those can later be eliminated using Proposition 4.10 to a linear number of
unary predicates.

The basic idea is this. Recall first that the highest number which occurs in pairs
within L(s, s) is 2s. Assume we have two free object variables x0, x1, and let us fix a num-
ber n > log 2s. Using x0 as 0 and x1 as 1 one can write a number m ≤ 2s as a sequence
m1, . . . ,mn, where each mi is x0 or x1. A 2n-ary predicate K(m1, . . . ,mn, t1, . . . , tn) can
thus be read as K(m, t), where “variables” m and t take values from 0 to 2n − 1. This suffices
to represent coordinates of all points in the set L(s, s).

The formulas of ΓG could now be rewritten using 2n-ary relation symbols T ∈ T and
n-ary symbols Lt and Rt instead of the binary and unary symbols. In T(m, t), the “variables”
m and t are now understood as sequences built from x0 and x1. For instance, E(0, 0) means
E(x0, . . . , x0, x0, . . . , x0). The meaning of a quantifier ∀m is ∀m1m2 . . . mn.

20 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

The remaining difficulty is the use of the bound “≤ s” and the successor and predecessor
operations +1 and −1. The last two can be handled by observing that a number t′ < 2n

is a successor of a number t when, for some k, the last k bits in the representations of t′

and t are, respectively, 011 . . . 1 and 100 . . . 0. There are n such patterns (one for each k)
for binary strings of length n. Now, for instance, instead of the single formula

∀m(E(m, 0) → (E(m+ 1, 0) → loop) → loop),
we can use n formulas, each following one of those patterns:

∀~z(E(~z, x0, ~x1, ~x0) → (E(~z, x1, ~x0, ~x0) → loop) → loop).

Above, ~z is a sequence of n− k bound variables, and ~x1 is a sequence of k − 1 occurrences
of x1. The symbol ~x0 is loosely used for appropriately long sequences of x0.

In a similar fashion we can handle the inequality occurring in (4). If s is written in
binary as b1 . . . bn then a number m can be less or equal than s in as many different ways as
there are numbers i < n with bi+1 = 1. This happens when m has the form b1 . . . bi0~z, for
some ~z consisting of n− i+ 1 bits. So if bi+1 = bj+1 = 1 then we use the formula:

∀~z~y (ok(b1 . . . bi0~z, b1 . . . bj0~y) → loop).

This way we replace each of the assumptions (0l), (0r), (1–4), by at most 2n2 formulas using
2n-ary predicates. The set ΓG consists of all such formulas. To simplify the construction in
the rest of this section we use the abbreviated notation with variables ranging over natural
numbers.

Some definitions: A finite nonempty set S ⊆ L(s, s) is called a base when it is downward
closed with respect to the relation �. Then S2 := {t | ∃m. (m, t) ∈ S} is a finite initial
segment of N. A set of formulas Θ is time-coherent for S iff

• for each t ∈ S2, if t > 0 then either Lt(t) or Rt(t) is in Θ, but not both.

For a time-coherent set Θ, we define aΘt = 0 when Lt(t) ∈ Θ, and aΘt = 1 otherwise. Denote
the word aΘ1 . . . a

Θ
t by wΘ

t , and let wΘ
0 = ε. If t = maxS2 then we write wΘ for wΘ

t . We say
that Θ is very good for S when it is time-coherent and the following holds:

• Formulas in Θ are only of the forms Lt(t), Rt(t), or T(m, t), where T ∈ T .
• T(m, t) ∈ Θ if and only if (m, t) ∈ S and G∗(m,wΘ

t) = T.
• If Lt(t) ∈ Θ or Rt(t) ∈ Θ then t ∈ S2.

Lemma 6.1. Let Θ be very good for base S. Assume that ΓG ,Θ ⊢ loop. Then G is s-solvable
from wΘ.

Proof. Let ΓG ,Θ ⊢ N : loop, where N is a long normal form. We proceed by induction with
respect to N , in a similar style as we did in the proof of Lemma 4.1.

If N begins with a variable of type (2) then ΓG ,Θ ⊢ E(m, 0) (whence the atom E(m, 0) is
actually in Θ) and ΓG ,Θ, E(m+1, 0) ⊢ loop, for some m. We apply the induction hypothesis
to the set Θ ∪ {E(m+ 1, 0)}, very good for S ∪ {(m+ 1, 0)}.

In case N begins with a variable of type (4) we must have ok(m, t) ∈ Θ. In addition,
m, t ≤ s, so the conclusion is immediate. The cases (0l) and (0r) are routine as well:
for X = T,U, we consider the environment Θ,X(m + 1, t + 1), which is very good for
S∪{(m+1, t+1)}. Observe that the location (m+1, t+1) may already belong to S, and in
this case also the formula X(m+1, t+1) is already in Θ, because our tiling is deterministic.

A crucial case is when N begins with an axiom of type (3). Then ΓG ,Θ ⊢ E(0, t), and:

• ΓG ,Θ,Lt(t+1),E(0, t+1) ⊢ loop;

ON THE MINTS HIERARCHY 21

• ΓG ,Θ,Rt(t+1),E(0, t+1) ⊢ loop.

If t = |wΘ| then the location (0, t+1) is “new”, that is neither Lt(t+1) nor Rt(t+1) occurs
in Θ. Then both Θ,Lt(t+1),E(0, t+1) and Θ,Rt(t+1),E(0, t+1) are very good environments
for S ∪ {(0, t+1)}. By the induction hypothesis, G is s-solvable from wΘ0 and wΘ1, so it is
s-solvable from wΘ by Lemma 3.3.

If t < |wΘ| then either Lt(t+1) or Rt(t+1) is already in Θ, and so is E(0, t+1). Therefore
one of the two environments is identical to ΓG ,Θ, and we can apply the induction hypothesis
(there is a shorter proof).

Lemma 6.2. If ΓG ⊢ start then G is s-solvable.

Proof. A proof of start is only possible when the judgment ΓG ,E(0, 0) ⊢ loop is provable.
Apply Lemma 6.1.

Now we address the question of the converse of Lemma 6.2. Put (m,w) ⊆ (n, v) when either
w ⊆ v or w = v and m ≤ n. If G∗(m,w) = ok, and (m,w) is minimal with respect to ⊆,
then we say that (m,w) is a winning location.

Lemma 6.3. Let Θ be very good for base S. If G is s-solvable from wΘ then ΓG ,Θ ⊢ loop.

Proof. The obvious case is when G∗(m,wΘ
r) = ok, for some (m, r) ∈ S, and m, r ≤ s.

Otherwise, for every w with |w| = s,wΘ ⊆ w, there is a winning location (m,w′) such that
m ≤ s and w′ ⊆ w. (Some of these winning locations may be equal, in particular if w′ ⊆ wΘ

then all of them are equal.) For every such (m,w′), the distance from S to (m,w′) is the
cardinality of the difference L(m, |w′|)− S.

The proof of the lemma is by induction with respect to the sum of distances from S to
all winning locations (m,w′) such that w′ ⊆ wΘ or wΘ ⊆ w′. (This is equivalent to saying
that there is w of length s such that w′, wΘ ⊆ w.)

The base case has already been treated, so assume that we have a winning location
(m,w′). If w′ ⊆ wΘ then it is the only winning location of interest. If (m, |w′|) 6∈ S then
the difference L(m, |w′|)−S has a minimal element (m1, t1). As in the proof of Lemma 4.3,
we apply the induction hypothesis to the set S ∪ {(m1, t1)} and apply an assumption (0l)
or (0r). This we can do because either Lt(t1) or Rt(t1) must belong to Θ.

The remaining case is when there are at least two winning locations, all of them of
the form (m,wΘ

v) with v 6= ε. In addition, at least one such v begins with 0 and at
least one with 1. Take t = |wΘ| and let S′ = S ∪ {(0, t + 1)}; then the environments
Θ0 = Θ ∪ {Lt(t+1),E(0, t+1)} and Θ1 = Θ ∪ {Rt(t+1),E(0, t+1)} are very good for S′, so
ΓG ,Θ0 ⊢ loop and ΓG,Θ1 ⊢ loop by the induction hypothesis. (In each case, we have fewer
winning positions and thus fewer components in our sum.) We now use asumption (3).

Lemma 6.4. If G is s-solvable then ΓG ⊢ start.

Proof. Apply Lemma 6.3 to the base S = ∅.

Theorem 6.5. The decision problem for monadic Σ1 is co-Nexptime-hard.

Proof. Hardness for arbitrary predicates follows from Lemmas 3.4 and 6.4. Translation to
the monadic case is possible by Proposition 4.10 because all formulas we use are easy.

In fact our hardness result applies to a “shallow” fragment of monadic Σ1. This fragment
consists of formulas of the form τ1 → · · · → τn → a, where τi are universal formulas, i.e., we
have τi = ∀~xi τ

′
i with quantifier-free τ ′i .

22 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

6.2. Arity-bounded refutation soup. For the matching upper bound we show that prov-
ability of arity-bounded Σ1 formulas is solvable in co-Nexptime. More precisely, let us fix
a number r and consider only formulas involving predicates of arity at most r. We will demon-
strate a nondeterministic exponential time algorithm for non-provability, i.e., refutability of
such formulas.

Lemma 6.6.

(1) Every Σ1 formula has the form τ1 → τ2 → · · · → τn → a, where τi ∈ Π1, and a is an
atom.

(2) Every Π1 formula has the form ∀~y1(σ1 → ∀~y2(σ2 → · · · → ∀~yk(σk → a) . . .)), where
σi ∈ Σ1, and a is an atom.

Proof. The pseudo-grammar of Section 2.2 simplifies as follows. The metavariable a now
stands for an atom of arity r or less.

• Σ1 ::= a | Π1 → Σ1;
• Π1 ::= a | Σ1 → Π1 | ∀xΠ1 .

As it suffices to deal with long normal proofs, we are mostly interested in judgments of
the form Γ ⊢ N : a, where Γ consists of Π1 formulas, and a is an atom. The long nor-
mal proof N must begin with a proof variable X; assume that a declaration of the form
X : ∀~y1(σ1 → ∀~y2(σ2 → · · · → ∀~yk(σk → b) . . .)) is in Γ. Types σi are in Σ1 and therefore
σj = τj1 → τj2 → · · · → τjrj → aj , for j = 1, . . . , k. To maintain some basic hygiene
we assume that all variables in ~y1~y2 . . . ~yk are different and not free in Γ. Then we have
N = X~x1(λY11 . . . Y1r1 . N1) . . . ~xk(λYk1 . . . Ykrk . Nk), for some variables ~x1~x2 . . . ~xk (assumed
different from ~yi). Write S for the substitution [~y1 := ~x1, ~y2 := ~x2, . . . , ~yk := ~xk]. Then we
must have a = b[S], and Γ, Yj1 : τj1[S], Yj2 : τj2[S], . . . , Yjrj : τjn [S] ⊢ Nj : aj[S], for all j.

We know from Lemma 5.4 that if Γ ⊢ ϕ is inhabited, then there exists a long normal
inhabitant N with FV(N) ⊆ FV(Γ)∪FV(ϕ). Therefore, the above analysis can be strenght-
ened by the requirement that all the variables ~x1~x2 . . . ~xk are in FV(Γ) ∪ FV(a). The next
lemma is a contraposition of the above taking this additional requirement into account.

Lemma 6.7. Let Γ consist of Π1 formulas and let a be an atom. Then Γ 0 a if and only if

for every X ∈ Dom(Γ) of type ∀~y1(σ1 → ∀~y2(σ2 → · · · → ∀~yk(σk → b) . . .)),
every S with Dom(S) = ~y1, . . . , ~yn, Rg(S) ⊆ FV(Γ) ∪ FV(a), and a = b[S],
there is j ∈ {1, . . . , k} with σj = τj1 → τj2 → · · · → τjrj → aj
such that Γ, τj1[S], τj2[S], . . . , τjrj [S] 0 aj[S].

Morally, Lemma 6.7 states that in a certain proof-construction game one of the players
has a winning strategy: either the Prover, trying to construct a long normal proof (always
a finite one) or the Reviewer, attempting to build a (possibly infinite) refutation, cf. [25].
Indeed, let Γ ⊢ a be a Σ1 judgment as above and assume the notation from Lemma 6.7.
Every pair (X,S) such that a declaration X : ∀~y1(σ1 → ∀~y2(σ2 → · · · → ∀~yk(σk → b) . . .))
is in Γ, and S is a variable substitution satisfying a = b[S], is called a question induced
by Γ ⊢ a. For any j ∈ {1, . . . , k}, a j-th answer to the question (X,S) is any judgment
Γ′, τj1[S], τj2[S], . . . , τjrj [S] ⊢ aj[S], where Γ ⊆ Γ′. (Note that we do not require Γ = Γ′.
This extra flexibility is used in the proof of Lemma 6.9.)

Lemma 6.7 may now be read as: Γ 0 a if and only if Reviewer can answer every question
(and in addition Γ′ = Γ always holds). This constitutes a refutation seen as a Reviewer’s
winning strategy. A compact way to represent such a refutation is simply a set of judgments.

A refutation soup is a non-empty set Z of Σ1 judgments such that

ON THE MINTS HIERARCHY 23

• If Γ ⊢ a is in Z then for every question induced by Γ ⊢ a there is an answer in Z.

We say that Z refutes Γ0 ⊢ a0 whenever the judgment Γ0 ⊢ a0 belongs to Z. Then we also
say that Γ0 ⊢ a0 is refutable. Observe that a judgment of the form Γ,X : a ⊢ a cannot
occur in a soup. Indeed, there is no answer to the question 〈X,∅ 〉.

Lemma 6.8. A judgment Γ0 ⊢ a0 is refutable if and only if Γ0 0 a0.

Proof. (⇒) Let Z be a refutation soup such that some judgments in Z are provable. Among
such judgments there is one which has a shortest long normal proof. Let Γ0 ⊢ a0 be this judg-
ment. Assume that N = X~x1(λY11 . . . Y

1
1r1
. N1) . . . ~xk(λYk1 . . . Ykrk . Nk) is the proof. Note

that k 6= 0, as otherwise the question (X,∅) has no answer. Consider the question (X,S),
where S = [~y1 := ~x1, ~y2 := ~x2, . . . , ~yk := ~xk]. In the refutation Z there is an answer of the
form Γ′, τj1[S], τj2[S], . . . , τjrj [S] ⊢ aj[S]. Clearly, Z refutes this judgment as well. But
on the other hand, Γ′, τj1[S], τj2[S], . . . , τjrj [S] ⊢ Nj : aj[S], i.e., the refuted judgment has
a proof, shorter than N . This contradicts our assumption about N .

(⇐) A soup may be defined as a sum of an ascending sequence of sets Zn. The set Z0

consists only of the initial judgment Γ0 ⊢ a0. Then, for any n, we select a judgment in Zn and
a question induced by this judgment which does not have an answer in Zn. By Lemma 6.7
there is always a non-provable answer. We obtain Zn+1 by adding this answer to Zn. This
process must end because only a finite number of judgments may occur in the construction.

We now show that every refutable judgment has a small soup.

Lemma 6.9. If Γ0 0 a0 then there is a refutation soup of size exponential in the length n
of the judgment Γ0 ⊢ a0.

Proof. Let F be the set of all formulas of the form τ [S], where τ is a subformula of a formula
in Γ0, and S is a substitution such that Rg(S) ⊆ FV(Γ0) ∪ FV(a0). A judgment Γ ⊢ a is
reasonable when Γ ∪ {a} ⊆ F .

As in the proof of Lemma 6.8 we construct a soup by induction, but now we introduce
some structure: rather than just a set of judgments we define a tree labeled by judgments.
The rule is that children of every node are answers to questions induced by that node. We
begin from the root labeled Γ0 ⊢ a0. At every step we select a leaf node Γ ⊢ a (a judgment
not processed before) and for every question (X,S) induced by that node we choose an
unprovable answer to that question, say Γ′ ⊢ a′, which is reasonable and maximal in the
following sense: whenever Γ′ Γ′′ ⊆ F then Γ′′ ⊢ aj[S] has a proof. Then we add Γ′ ⊢ a′

as a new child of Γ ⊢ a, unless Γ′ ⊢ a′ already occurs on the path from the root to Γ ⊢ a.
It should be clear that the set of all labels in our tree is a soup.

If a non-root judgment Γ ⊢ a is an ancestor of Γ′ ⊢ b in our tree then Γ ⊆ Γ′. Therefore
a 6= b, as otherwise Γ ⊢ a would not be selected as maximal, or the same judgment would
occur twice on a path. It follows that every path of the tree is of length at most nr+1,
where r is the maximum arity of predicates in F . Indeed, every judgment in a non-root
position along the path addresses a different target, and there is at most n · nr of those (up
to n predicates times up to nr ways in which n variables can occur at r positions). Since
the maximal branching is n ·nn ·nn (an upper bound for the number of questions), the total

number of nodes does not exceed (n · nn · nn)n
r+1

≤ 2n
r+4

.

Proposition 6.10. For every r, non-provability of Σ1 formulas using at most r-ary predi-
cates is solvable in Nexptime.

24 A. SCHUBERT, P. URZYCZYN, AND K. ZDANOWSKI

Proof. A nondeterministic algorithm can generate a refutation soup and verify its correctness
in exponential time.

In particular we have:

Corollary 6.11. The decision problem for Σ1 formulas of any fixed finite signature is in
the class co-Nexptime.

Together with Theorem 6.5 we obtain the final result.

Theorem 6.12. For every r ∈ N, the decision problem for Σ1 formulas using at most r-ary
predicates is co-Nexptime-complete.

7. Conclusion and future work

We proved that derivability of universally-implicational formulas for the class ∆2 of Mints
hierarchy (and therefore for all larger classes) is undecidable even for unary predicate sym-
bols. In case of Σ1 the problem is in general Expspace-complete, but it turns out only co-
Nexptime-complete if we restrict the arity of predicates (this applies e.g., to the monadic
fragment). In particular the exponential upper bound holds for every finite signature.

These results combined with an earlier analysis [23] give the picture of complexity of
provability in Mints hierarchy in which the level of a formula ϕ is determined by the level
of a prenex formula classically equivalent to ϕ. Observe that all the hardness results were
obtained for formulas with a fixed depth of quantifiers.

The fragment of intuitionistic logic discussed in this paper only involves the two basic
connectives, ∀ and →. By conservativity, all our lower bounds extend to the full first-
order language with ∃, ∨, ∧, and ⊥. It is not necessarily so with the upper bounds. The
exponential space algorithm for Σ1 extends to the general case, but the refutation soup
argument does not (because targets in judgments can be disjunctions). We conjecture that
the Σ1 fragment of the full first-order logic will turn out Expspace-complete even in the
monadic case. On the other hand, we believe that the number of predicates matters: perhaps
Corollary 6.11 can be improved down to Pspace?

Another issue demanding future work is the exact complexity of the class Π1 [22, 23].

References

[1] Daniel Bonevac. A history of quantification. In Logic: A History of its Central Concepts, volume 11 of
Handbook of the History of Logic. North Holland, 2012.

[2] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives in Math-
ematical Logic. Springer, 1997.

[3] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – a functional language with dependent
types. In Theorem Proving in Higher Order Logics, volume 5674 of LNCS, pages 73–78. Springer, 2009.

[4] Wolfgang Burr. The intuitionistic arithmetical hierarchy. In Logic Colloquium ’99, volume 17 of Lecture

Notes in Logic, pages 51–59. ASL, 1999.
[5] Alonzo Church. Introduction to Mathematical Logic. Princeton, 1944.
[6] Coq Development Team. The Coq Proof Assistant Reference Manual V8.4, March 2012.

http://coq.inria.fr/distrib/V8.4/refman/ .
[7] Anatoli Degtyarev, Yuri Gurevich, Paliath Narendran, Margus Veanes, and Andrei Voronkov. Decidabil-

ity and complexity of simultaneous rigid E-unification with one variable and related results. Theoretical

Computer Science, 243(1-2):167–184, 2000.

http://coq.inria.fr/distrib/V8.4/refman/

ON THE MINTS HIERARCHY 25

[8] Gilles Dowek and Ying Jiang. Eigenvariables, bracketing and the decidability of positive minimal pred-
icate logic. Theoret. Comput. Sci., 360(1–3):193–208, 2006.

[9] M. Fitting. Fundamentals of Generalized Recursion Theory. Elsevier, 1981.
[10] Jonathan Fleischmann. Syntactic preservation theorems for intuitionistic predicate logic. Notre Dame

Journal of Formal Logic, 51(2):225–245, 2010.
[11] Neil Immerman. Descriptive Complexity. Springer, 1999.
[12] G. Kreisel. Elementary completeness properties of intuitionistic logic with a note on negations of prenex

formulae. J. Symbolic Logic, 23(3):pp. 317–330, 1958.
[13] Dariusz Kuśmierek. The inhabitation problem for rank two intersection types. In TLCA, volume 4583

of LNCS, pages 240–254. Springer, 2007.
[14] G.E. Mints. Solvability of the problem of deducibility in LJ for a class of formulas not containing

negative occurrences of quantifiers. Steklov Inst., 98:135–145, 1968.
[15] V.P. Orevkov. The undecidability in the constructive predicate calculus of the class of formulas of the

form ¬¬∀∃. Doklady AN SSSR, 163(3):581–583, 1965.
[16] V.P. Orevkov. Solvable classes of pseudoprenex formulas. Zapiski nauchnyh Seminarov LOMI, 60:109–

170, 1976.
[17] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,

5(3):363–397, 1989.
[18] H. Rasiowa and R. Sikorski. On existential theorems in non-classical functional calculi. Fundamenta

Mathematicae, 41:21–28, 1954.
[19] Jakob Rehof and Paweł Urzyczyn. The complexity of inhabitation with explicit intersection. In Logic

and Program Semantics, volume 7230 of LNCS, pages 256–270. Springer, 2012.
[20] Eric Rosen. On the first-order prefix hierarchy. Notre Dame Journal of Formal Logic, 46(2):147–164,

2005.
[21] Ivar Rummelhoff. Polymorphic Π1 Types and a Simple Approach to Propositions, Types and Sets. PhD

thesis, University of Oslo, 2007.
[22] Aleksy Schubert, Paweł Urzyczyn, and Daria Walukiewicz-Chrząszcz. Restricted positive quantification

is not elementary. In Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau, editors, Proc. TYPES 2014,
volume 39 of LIPIcs, pages 251–273. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015.

[23] Aleksy Schubert, Paweł Urzyczyn, and Daria Walukiewicz-Chrząszcz. How hard is positive quantifica-
tion? To appear in ACM ToPLaS, 2016.

[24] Aleksy Schubert, Paweł Urzyczyn, and Konrad Zdanowski. On the Mints hierarchy in first-order intu-
itionistic logic. In A. Pitts, editor, Foundations of Software Science and Computation Structures 2015,
volume 9034 of Lecture Notes in Computer Science, pages 451–465. Springer, 2015.

[25] Tomasz Skura. Refutation systems in propositional logic. In Dov M. Gabbay and Franz Guenthner,
editors, Handbook of Philosophical Logic, volume 16, pages 115–157. Springer, second edition, 2011.

[26] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149. Elsevier,
2006.

[27] P. Urzyczyn. Inhabitation of low-rank intersection types. In P.-L. Curien, editor, TLCA, volume 5608
of LNCS, pages 356–370. Springer, 2009.

[28] Hao Wang. Toward mechanical mathematics. IBM J. Res. Dev., 4(1):2–22, January 1960.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. An example
	2.2. The Mints hierarchy

	3. Machines and tilings
	3.1. Deterministic tiling
	3.2. Branching puzzle

	4. Undecidability for 2
	A finite signature
	4.1. Monadic 2
	Generalization:

	5. Expspace-completeness for 1
	5.1. An upper bound for 1

	6. Arity-bounded 1
	6.1. The lower bound
	Some definitions:
	6.2. Arity-bounded refutation soup

	7. Conclusion and future work
	References

