
Logical Methods in Computer Science

Vol. 13(1:11)2017, pp. 1–38

www.lmcs-online.org

Submitted Apr. 28, 2016

Published Mar. 17, 2017

TERMINATION OF CYCLE REWRITING BY TRANSFORMATION

AND MATRIX INTERPRETATION

DAVID SABEL a AND HANS ZANTEMA b

a Goethe-University Frankfurt, Department of Computer Science and Mathematics, Computer Sci-
ence Institute, 60629 Frankfurt am Main, Germany
e-mail address: sabel@ki.informatik.uni-frankfurt.de

b TU Eindhoven, Department of Computer Science, P.O. Box 513, 5600 MB Eindhoven, The Nether-
lands
Radboud University Nijmegen, Institute for Computing and Information Sciences, P.O. Box 9010,
6500 GL Nijmegen, The Netherlands
e-mail address: h.zantema@tue.nl

Abstract. We present techniques to prove termination of cycle rewriting, that is, string
rewriting on cycles, which are strings in which the start and end are connected. Our main
technique is to transform cycle rewriting into string rewriting and then apply state of the
art techniques to prove termination of the string rewrite system. We present three such
transformations, and prove for all of them that they are sound and complete. In this way
not only termination of string rewriting of the transformed system implies termination of
the original cycle rewrite system, a similar conclusion can be drawn for non-termination.

Apart from this transformational approach, we present a uniform framework of matrix
interpretations, covering most of the earlier approaches to automatically proving termina-
tion of cycle rewriting.

All our techniques serve both for proving termination and relative termination.
We present several experiments showing the power of our techniques.

1. Introduction

Cycles can be seen as strings of which the left end is connected to the right end, by which
the string has no left end or right end any more. In Fig. 1 a pictorial representation of two
such cycles is shown.

String rewriting can not only be applied on strings, but also on cycles. Applying string
rewriting on cycles, i.e. replacing a substring of a cycle by another substring, is briefly called
cycle rewriting. For instance, applying the string rewrite rule aaa→ ababa to the cycle in
Fig. 1 (a) results in the cycle shown Fig. 1 (b).

Rewriting behavior is strongly influenced by allowing cycles, for instance, in string
rewriting the single rule ab → ba is terminating, but in cycle rewriting it is not, since the
string ab represents the same cycle as ba.

In many areas cycle rewriting is more natural than string rewriting. For instance, the
problem of 5 dining philosophers can be expressed as a cycle FTF TF TF TF T where F

Key words and phrases: rewriting systems, string rewriting, termination, relative termination.
a The first author is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(1:11)2017

c© D. Sabel and H. Zantema
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. SABEL AND H. ZANTEMA

a
a

b
c

a
a

ba

b

c
a

b

(a) (b)

Figure 1: Illustration of Cycles and Cycle Rewriting

denotes a fork, and T denotes a thinking philosopher. Writing L for a philosopher who
has picked up her left fork, but not her right fork, and E for an eating philosopher, a
classical (deadlocking) modeling of the dining philosophers problem (for arbitrary many
philosophers) can be expressed by the cycle rewrite system consisting of the rules T F → L,
FL→ E, E → FTF . As a cycle rewrite system this is clearly not terminating.

Also from the viewpoint of graph transformation, cycle rewriting is very natural. For
instance, in [3] it was shown that if all rules of a graph transformation system are string
rewrite rules, termination of the transformation system coincides with termination of the
cycle rewrite system, and not with termination of the string rewrite system. Developing
techniques to prove cycle termination also helps to understand and develop new techniques
for proving termination of graph transformation systems (see e.g. [2]).

So both string rewriting and cycle rewriting provide natural semantics for string rewrite
systems, also called semi-Thue systems. Historically, string rewriting got a lot of attention
as being a particular case of term rewriting, while cycle rewriting hardly got any attention
until recently. In 2015 automated proving of cycle termination became a new category in
the Termination Competition [11, 21]. In 2015 two tools participated, and in 2016 three
tools participated in the category.

In [28] a first investigation of termination of cycle rewriting was made. Some techniques
were presented to prove cycle termination, implemented in a tool torpacyc. Further a
transformation φ was given such that for every string rewriting system (SRS) R, string
termination of R holds if and only if cycle termination of φ(R) holds. As a consequence,
cycle termination is undecidable.

However, for making use of the strong power of current tools for proving termination of
string rewriting in order to prove cycle termination, a transformation the other way around
is needed: transformations ψ such that for every SRS R, cycle termination of R holds if and
only if string termination of ψ(R) holds. The ‘if’ direction in this ‘if and only if’ is called
‘sound’, the ‘only if’ is called complete. This implies a way to prove cycle termination of
an SRS R: apply a tool for proving termination of string rewriting to ψ(R) for a sound
transformation ψ. Conversely, a way to prove cycle non-termination of R is to prove non-
termination of ψ(R) for a complete transformation ψ. The main topic of this paper is to
investigate such transformations, and to exploit them to prove termination of cycle rewriting,
or non-termination, or relative (non-)termination. Here relative termination deals with two
rewrite systems: relative termination means that every infinite reduction of the union of
them contains only finitely many steps of one of them. In detail we give fully worked-out
proofs of soundness and completeness for three approaches to transform cycle termination
into string termination (called split, rotate, and shift), and also for relative termination.

TERMINATION OF CYCLE REWRITING 3

Using transformations to exploit the power of tools for termination of term rewriting to
prove a modified property was used before in [13, 12]. However, there the typical observa-
tion was that the complete transformations were complicated, and for non-trivial examples,
termination of ψ(R) could not be proved by the tools, while for much simpler sound (but
incomplete) transformations ψ, termination of ψ(R) could often be proved by the tools. In
our current setting this is different: one of our introduced transformations, the transforma-
tion split, for which we prove that it is sound and complete, we show that for several systems
R for which all approaches from [28] fail, cycle termination of R can be concluded from an
automatic termination proof of split(R) generated by AProVE [10, 1] or TTT2 [17, 24].

It can be shown that if strings of size n exist admitting cycle reductions in which for
every rule the number of applications of that rule is more than linear in n, then all techniques
from [28] fail to prove cycle termination. Nevertheless, in quite simple examples this may
occur while cycle termination holds. As an example consider the following.

A number of people are in a circle, and each of them carries a number, represented in
binary notation with a bounded number of bits. Each of them may increase his/her number
by one, as long as it fits in the bounded number of bits. Apart from that, every person
may increase the number of bits of the number of its right neighbor by two. In order to
avoid trivial non-termination, the latter is only allowed if the leading bit of the number is
0, and the new leading bit is put to 1, and the other to 0, by which effectively one extra bit
is added. We will prove that this process will always terminate by giving an SRS in which
all of the above steps can be described by a number of cycle rewrite steps, and prove cycle
termination. In order to do so we write P for person, and 0 and 1 for the bits of the binary
number. For carry handling we introduce an extra symbol c of which the meaning is a 1
with a carry. Assume for every person its number is stored left from it. So if the number
ends in 0, by adding one this last bit 0 is replaced by 1, expressed by the rule 0P → 1P .
In case the number ends in 1, a carry should be created, since c represents a 1 with a carry
this is expressed by the rule 1P → cP . Next the carry should be processed. In case it is
preceded by 0, this 0 should be replaced by 1, while the c is replaced by 0; this is expressed
by the rule 0c→ 10. In case it is preceded by 1, a new carry should be created while again
the old carry is replaced by 0; this is expressed by the rule 1c→ c0. In this way adding one
to any number in binary notation can be expressed by a number of rewrite steps, as long
as no overflow occurs. Finally, we have to add a rule to extend the bit size of the number
of the right neighbor: the leading bit should be 0, while it is replaced by 100: adding two
extra bits of which the leading one is 1 and the other is 0. This is expressed by the rule
P 0 → P 100. Summarizing: we have to prove cycle termination of the SRS consisting of
the five rules

0P → 1P, 1P → cP, 0c→ 10, 1c→ c0, P 0 → P 100.

This is fundamentally impossible by the techniques presented in [28]: by one of the tech-
niques the last rule can be removed, but starting in 0nP a reduction can be made in which
all of the remaining four rules are applied an exponential number of times, by which the
techniques from [28] fail.

In this paper we give two ways to automatically prove that cycle termination holds for
the above example R: TTT2 succeeds in proving termination of split(R), and the other is a
variant of matrix interpretations for which we show that it proves cycle termination. The
latter is another main topic of this paper: we give a self-contained uniform presentation
of trace-decreasing matrix interpretations for cycle termination that covers the tropical
and arctic variant from [28] and the natural variant from [18], now also serving for relative

4 D. SABEL AND H. ZANTEMA

termination. In this way we cover all current known techniques for proving cycle termination
except for match bounds ([28]).

The paper is organized as follows. Section 2 recalls the basics of cycle rewriting and
introduces relative cycle termination. The main section Section 3 first adapts type intro-
duction [26] for string rewriting and relative termination (Theorem 3.3), and then the three
transformations split, rotate, and shift are presented and soundness and completeness of
all of them is proved (Theorems 3.13, 3.30, and 3.46). Also adapted transformations for
relative cycle transformation are presented and their soundness and completeness is shown
(Theorems 3.18, 3.32, and 3.48). In Section 4 trace-decreasing matrix interpretations are
presented, and we show how they can be used to prove cycle termination (Theorem 4.1) and
relative cycle termination (Theorem 4.2) for the three instances of natural, tropical and arc-
tic matrix interpretations. In Section 5 experiments on implementations of our techniques
are reported. We conclude in Section 6.

Compared to our paper [18], this paper contains full proofs, extends all the termination
techniques to relative termination, and presents a framework for matrix interpretations
which covers and extends the previous approaches presented in [28, 18].

2. Preliminaries

In this section we briefly recall the required notions for string and cycle rewriting.
A signature Σ is a finite alphabet of symbols. With Σ∗ we denote the set of strings over

Σ. With ε we denote the empty string and for u, v ∈ Σ∗, we write uv for the concatenation
of the strings u and v. With |u| we denote the length of string u ∈ Σ∗ and for a ∈ Σ and
n ∈ IN, an denotes n replications of symbol a, i.e. a0 = ε and ai = aai−1 for i > 0.

Given a binary relation →, we write →i for i steps, →≤i for at most i steps, →<i for
at most i− 1 steps, →∗ for the reflexive-transitive closure of →, and →+ for the transitive
closure of →. For binary relations →1 and →2, we write →1 . →2 for the composition of
→1 and →2, i.e. a→1 .→2 c iff there exists a b s.t. a→1 b and b→2 c.

2.1. String Rewriting. A string rewrite system (SRS) is a finite set R of rules ℓ → r
where ℓ, r ∈ Σ∗ and ℓ 6= ε. The rewrite relation →R ⊆ (Σ∗ × Σ∗) is defined as follows: if
w = uℓv ∈ Σ∗ and (ℓ→ r) ∈ R, then w →R urv. The prefix-rewrite relation →֒R is defined
as: if w = ℓu ∈ Σ∗ and (ℓ → r) ∈ R, then w →֒R ru. The suffix-rewrite relation

→֒
R is

defined as: if w = uℓ ∈ Σ∗ and (ℓ→ r) ∈ R, then w →֒
R ur.

A (finite or infinite) sequence of rewrite steps w1 →R w2 →R · · · is called a rewrite

sequence (sometimes also a reduction or a derivation). For an SRS R, the rewrite relation
→R is called non-terminating if there exists a string w ∈ Σ∗ and an infinite rewrite sequence
w →R w1 →R · · · . Otherwise, →R is terminating. If →R is terminating (non-terminating,
resp.) we also say R is string terminating (string non-terminating, resp.).

2.2. Cycle Rewriting. We recall the notion of cycle rewriting from [28]. A string can be
viewed as a cycle, i.e. the last symbol of the string is connected to the first symbol. To
represent cycles by strings, we define the equivalence relation ∼ as follows:

u ∼ v iff u = w1w2 and v = w2w1 for some strings w1, w2 ∈ Σ∗

With [u] we denote the equivalence class of string u w.r.t. ∼.

TERMINATION OF CYCLE REWRITING 5

The cycle rewrite relation ◦→R ⊆ (Σ/∼ × Σ/∼) of an SRS R is defined as

[u] ◦→R [v] iff ∃w ∈ Σ∗ : ℓw ∈ [u], (ℓ → r) ∈ R, and rw ∈ [v]

The cycle rewrite relation ◦→R is called non-terminating iff there exists a string w ∈
Σ∗ and an infinite sequence [w] ◦→R [w1] ◦→R [w2] ◦→R · · · . Otherwise, ◦→R is called
terminating. If ◦→R is terminating (non-terminating, resp.) we also say that R is cycle

terminating (cycle non-terminating, resp.).
We recall some known facts about cycle rewriting.

Proposition 2.1 (see [28]). Let Σ be a signature, R be an SRS, and u, v ∈ Σ∗.

(1) If u→R v then [u] ◦→R [v].
(2) If ◦→R is terminating, then →R is terminating.

(3) Termination of →R does not necessarily imply termination of ◦→R.

(4) Termination of ◦→R is undecidable.

(5) For every SRS R there exists a transformed SRS φ(R) s.t. the following three properties

are equivalent:

• →R is terminating.

• →φ(R) is terminating.

• ◦→φ(R) is terminating.

For an SRS R, the last property implies that termination of →R can be proved by proving
termination of the translated cycle rewrite relation ◦→φ(R). In [28] it was used to show
that termination of cycle rewriting is undecidable and for further results on derivational
complexity for cycle rewriting.

2.3. Relative Termination. We will also consider relative termination of cycle and string
rewrite systems. Hence, in this section we recall the definition of relative termination of
string rewrite systems (see e.g. [9]) and introduce relative cycle termination.

Definition 2.2. Let →1⊆→2 ⊆ (O ×O) be binary relations on a set O. We say →1 is
terminating relative to →2 iff every infinite sequence o1 →2 o2 →2 · · · contains only finitely
many →1-steps.

Let S ⊆ R be string rewrite systems over an alphabet Σ. If the string rewrite relation
→S is terminating relative to the string rewrite relation →R then we say S is string termi-

nating relative to R. If the cycle rewrite relation ◦→S is terminating relative to the cycle
rewrite relation ◦→R then we say S is cycle terminating relative to R.

For S ⊆ R, we sometimes call R \ S the weak rules and S the strict rules. We often
write rules in R \ S as ℓ→= r and rules in S as ℓ→ r.

Note that for all SRSs R and S the identities →R∪S = →R ∪ →S and ◦→R∪S =
◦→R ∪ ◦→S hold, which we will sometimes use.

Since every string rewrite step, is also a cycle rewrite step (on the equivalence class
w.r.t. ∼), any infinite string rewrite sequence giving evidence for string non-termination,
also gives evidence for cycle non-termination. Thus we have:

Corollary 2.3. If S is cycle terminating relative to R, then S is also string terminating

relative to R.

However, as for usual termination, relative cycle termination is different from relative
string termination:

6 D. SABEL AND H. ZANTEMA

Example 2.4. Let S = {ab → ca} and R = S ∪ {c →= b}. Then S is string terminating
relative to R (which is easy to prove), while S is not cycle terminating relative to R, since
the infinite (looping) cycle rewrite sequence [ab] ◦→S [ca] ◦→R [ab] . . . contains infinitely
many ◦→S steps.

The following proposition provides several characterizations for relative termination.
We formulate it in a general form (for all binary relations). Even though its proof is quite
standard, we include it for the sake of completeness.

Proposition 2.5. Let →1⊆→2 be binary relations on a set O. The following five proposi-

tions are equivalent:

(1) The relation →∗
2 .→1 .→

∗
2 is terminating.

(2) The relation →1 .→
∗
2 is terminating.

(3) The relation →∗
2 .→1 is terminating.

(4) →1 is terminating relative to →2.

Proof. We show the claim by a chain of implications:

(1) =⇒ (2): Clearly →1 .→
∗
2 ⊆ →∗

2 .→1 .→
∗
2, and thus non-termination of →1 . →∗

2

implies non-termination of →∗
2 .→1 .→

∗
2.

(2) =⇒ (3): Assume →∗
2 . →1 is non-terminating. Then there exists an infinite sequence

s.t. oi,1 →∗
2 oi,2 →1 oi+1,1 for i = 1, 2, This implies oi,2 →1 oi+1,1 →∗

2 oi+1,2 for all
i = 1, 2, . . . and thus →1 .→

∗
2 is non-terminating.

(3) =⇒ (4):: We show ¬(4) =⇒ ¬(3) Thus, we assume that there exists a sequence
o1 →2 o2 →2 · · · s.t. for every n there exists a number mn ≥ n s.t. omn →1 omn+1.
Assume that each number mn is minimal w.r.t. n. Then the given sequence can be

written as o′j →
kj
2 o′j+kj →1 o

′
j+kj+1 = o′j+1 s.t. o

′
0 = o1 and kj ≥ 0 for j = 0, 1, Since

o′j →
∗
2 .→1 o

′
j+1, this shows that →

∗
2 .→1 is non-terminating.

(4) =⇒ (1):: If →∗
2 . →1 . →

∗
2 is non-terminating, then the infinite rewrite sequence con-

sisting of infinitely many →∗
2 .→1 .→

∗
2-steps contains infinitely many →1-steps.

For SRSs S ⊆ R , the previous proposition can be instantiated with →1 := →S and
→2 := →R to derive characterizations of relative string termination, and with →1 := ◦→S

and →2 := ◦→R to derive characterizations of relative cycle termination.

3. Transforming Cycle Termination into String Termination

The criteria given in Proposition 2.1 and the involved transformation φ, which transforms
string rewriting into cycle rewriting, provide a method to prove string termination by prov-
ing cycle termination. However, it does not provide a method to prove termination of
the cycle rewrite relation ◦→R by proving termination of the string rewrite relations →R

or →φ(R). Hence, in this section we develop transformations ψ s.t. termination of →ψ(R)

implies termination of ◦→R. We call such a transformation ψ sound. However, there are
“useless” sound transformations, for instance, transformations where ψ(R) is always non-
terminating. So at least one wants to find sound transformations which permit to prove
termination of non-trivial cycle rewrite relations. However, a better transformation should
fulfill the stronger property that →ψ(R) is terminating if and only if ◦→R is terminating. If
termination of ◦→R implies termination of →ψ(R), then we say ψ is complete. For instance,
for a complete transformation, non-termination proofs of →ψ(R) also imply non-termination
of ◦→R. Hence, our goal is to find sound and complete transformations ψ.

TERMINATION OF CYCLE REWRITING 7

Besides such transformations, we will consider transformations ψrel (S,R) = (S′, R′)
which are sound and complete for relative termination, i.e. transformations which transform
(S,R) with S ⊆ R , such that cycle termination of S relative to R holds, if and only if S′ is
string terminating relative to R′.

We will introduce and discuss three transformations split, rotate, and shift where the
most important one is the transformation split, since it has the following properties: The
transformation is sound and complete, and as our experimental results show, it behaves
well in practice when proving termination of cycle rewriting. The other two transformations
rotate and shift are also sound and complete, but rather complex and – as our experimental
results show – they do not behave as well as the transformation split in practice. We
include all three transformations in this paper to document some different approaches to
transform cycle rewriting into string rewriting. We also consider variations of the three
transformations for relative termination. We show that all three variations are sound and
complete transformations for relative termination.

Since our completeness proofs, use type introduction [26], we recall this technique in
Section 3.1 focused on typed string rewriting only, and prove a (novel) theorem that type
introduction is correct for relative string termination. In the remaining sections 3.2, 3.3,
and 3.4 we successively introduce and treat the three transformations.

3.1. Type Introduction. The technique of type introduction was presented in [26], for
termination of term rewriting. Here we are only interested in string rewriting (being the
special case of term rewriting having only unary symbols), but for our purpose need to
extend this result to relative termination.

An signature Σ is typed if there is a set T of types (also called sorts), and every a ∈ Σ
has a source type τ1 ∈ T and a target type τ2 ∈ T, notation a : τ1 → τ2, τ1 = source(a),
τ2 = target(a).

For a non-empty string w ∈ Σ+ its target target(w) is defined to be the target of its first
element; its source source(w) is defined to be the source of its last element. A non-empty
string w ∈ Σ+ is called well-typed if either it is in Σ, or it is of the shape au for a ∈ Σ and
u ∈ Σ+ is well-typed, and source(a) = target(u).

An SRS is called well-typed if for every rule ℓ→ r we either have

• r = ε and source(ℓ) = target(ℓ), or
• r 6= ε and source(ℓ) = source(r) and target(ℓ) = target(r).

The following lemma is straightforward.

Lemma 3.1. If R is a well-typed SRS over Σ and w →R w′ for w ∈ Σ+ being well-typed,

then w′ is well-typed too.

So in an infinite reduction with respect to a well-typed SRS, all strings are well-typed
if and only if the initial string is well-typed.

For a well-typed SRS R, we say that R is string terminating in the typed setting if there
does not exist an infinite →R-reduction consisting of well-typed strings.

For well-typed SRSs S ⊆ R we say that S is string terminating relative to R in the

typed setting if every infinite →R-reduction consisting of well-typed strings contains only
finitely many →S-steps.

The main theorem, to be exploited several times in this paper, states that this notion of
relative termination in the typed setting is equivalent to the notion of relative termination
in the general setting without typing requirements.

8 D. SABEL AND H. ZANTEMA

In order to prove this theorem we need a notion of decomposition of (possibly untyped)
strings and a lemma stating some key properties of this decomposition. We denote a string
consisting of n strings u1, . . . , un by [u1, . . . , un]. The decomposition Dec(u) of a string
u ∈ Σ+ is such a string of strings and is defined as follows:

• Dec(a) = [a],
• if u ∈ Σ+ and Dec(u) = [u1, . . . , un], then
– Dec(au) = [au1, . . . , un] if source(a) = target(u1), and
– Dec(au) = [a, u1, . . . , un] if source(a) 6= target(u1).

By construction for any u ∈ Σ+ with Dec(u) = [u1, . . . , un] we have the following properties:

• ui is well-typed for i = 1, . . . , n;
• u = u1 . . . un;
• if v is a well-typed substring of u, then it also a substring of ui for some i = 1, . . . , n;

As we consider well-typed SRSs only, with non-empty left hand sides, every rewrite step
applied on such u applies to one of the corresponding ui. In case of a collapsing rule, that
is, a rule with empty right hand side, it may be the case that a type clash is removed,
decreasing the length |Dec(u)| of Dec(u). For instance, for a : τ1 → τ1, b : τ2 → τ2, we
have baabab→R baaab for R = {b→ ε}, while Dec(baabab) = [b, aa, b, a, b] has length 5 and
Dec(baaab) = [b, aaa, b] has length 3. In all other cases the rewriting of u takes place in one
of the elements of Dec(u), while all other elements remain unchanged. These observations
are summarized in the following lemma.

Lemma 3.2. Let R be a well-typed SRS with non-empty left hand sides and u→R v. Then

• |Dec(u)| ≥ |Dec(v)|, and
• if |Dec(u)| = |Dec(v)|, then there exists i ∈ {1, . . . , n} such that ui →R vi, and uj = vj
for j 6= i, where Dec(u) = [u1, . . . , un] and Dec(v) = [v1, . . . , vn].

Now we are prepared for the main theorem. The way it is used is as follows: for proving
(relative) termination, try to find a typing such that the SRS is well-typed. Then according
to the theorem the infinite reduction for which a contradiction has to be derived, may be
assumed to be well-typed.

Theorem 3.3. Let S ⊆ R be well-typed SRSs with non-empty left hand sides. Then S is

string terminating relative to R if and only if S is string terminating relative to R in the

typed setting.

Proof. The ‘only if’-part is trivial. For the ‘if’-part assume we have an infinite R-reduction
u1 →R u2 →R u3 →R · · · , not well-typed; we have to prove it contains only finitely many
S-steps. According to the first claim of Lemma 3.2 there exist n,N such |Dec(ui)| =
|Dec(ui+1)| = n for all i ≥ N . Write Dec(ui) = [ui1, . . . , uin] for i ≥ N . According to the
second part of Lemma 3.2 for every j = 1, . . . , n we have either uij = ui+1,j or uij →R ui+1,j

for i ≥ N . If uij →R ui+1,j occurs infinitely often this yields a well-type infinite R-reduction,
containing only finitely many S-steps since S is terminating relative to R in the typed setting.
If uij →R ui+1,j occurs finitely often, it also contains only finitely many S-steps. As the
number of S-steps in the finite part u1 →∗

R uN is finite too, we conclude that the total
number of S-steps in the original reduction is finite.

By instantiating the previous theorem with S = R we obtain correctness of type intro-
duction for string termination:

TERMINATION OF CYCLE REWRITING 9

Corollary 3.4. Let R be a well-typed SRS. Then R is string terminating if and only if R
is string terminating in the typed setting.

3.2. The Transformation Split. The idea of the transformation split is to perform a
single cycle rewrite step [u] ◦→R [v] which uses rule (ℓ→ r) ∈ R, by either applying a string
rewrite step u→R v or by splitting the rule (ℓ → r) into two rules (ℓp → rp) and (ℓs → rs),
where ℓ = ℓpℓs and r = rprs. Then a cycle rewrite step can be simulated by a prefix and a
subsequent suffix rewrite step: first apply rule ℓs → rs to a prefix of u and then apply rule
ℓp → rp to a suffix of the obtained string.

Example 3.5. Let R = {abc → bbbb} and [bcdda] ◦→R [bbddbb]. The rule abc→ bbbb can
be split into the rules a→ bb and bc→ bb s.t. bcdda →֒{bc→bb} bbdda

→֒
{a→bb} bbddbb.

We describe the idea of the transformation split more formally. It uses the following
observation of cycle rewriting: if [u] ◦→R [v], then u ∼ ℓw, (ℓ→ r) ∈ R, and v ∼ rw. From
u ∼ ℓw follows that u = u1u2 and ℓw = u2u1 for some u1, u2. We consider the cases for u2:

(1) If ui = ε (for i = 1 or i = 2), then u = ℓw and u →֒R rw by a prefix string rewrite step.
(2) If ℓ is a prefix of u2, i.e. ℓu′2 = u2, then w = u′2u1, u = u1ℓu

′
2 →R u1ru

′
2, and

u1ru
′
2 ∼ rw.

(3) If u2 is a proper prefix of ℓ, then there exist ℓp, ℓs with ℓ = ℓpℓs s.t. u2 = ℓp and ℓs is a
non-empty prefix of u1, i.e. u1 = ℓsw and u = u1u2 = ℓswℓp →֒{ℓs→rs} rswℓp

→֒
{ℓp→rp}

rswrp ∼ rw if rprs = r.

The three cases show that a cycle rewrite step [u] ◦→{ℓ→r} [v] can either be performed by

applying a string rewrite step u →{ℓ→r} v
′ where v′ ∼ v (cases 1 and 2) or in case 3 by

splitting ℓ→ r into two rules ℓp → rp and ℓs → rs such that u →֒{ℓs→rs} u
′ replaces a prefix

of u by rs and u
′ →֒

{ℓp→rp} v
′ replaces a suffix of u′ by rp s.t. v′ ∼ v.

For splitting a rule (ℓ → r) into rules ℓp → rp and ℓs → rs, we may choose any
decomposition of r for rp and rs (s.t. r = rp rs). In the following, we will work with rp = r
and rs = ε.

The above cases for cycle rewriting show that a sound transformation of the cycle
rewrite relation ◦→R into a string rewrite relation is the SRS which consists of all rules of
R and all pairs of rules ℓs → ε and ℓp → r for all (ℓ → r) ∈ R and all ℓp, ℓs with |ℓp| > 0,
|ℓs| > 0, and ℓ = ℓpℓs. However, this transformation does not ensure that the rules evolved
by splitting are used as prefix and suffix rewrite steps only. Indeed, the transformation
in this form is useless for nearly all cases, since whenever the right-hand side r of a rule
(ℓ → r) ∈ R contains a symbol a ∈ Σ which is the first or the last symbol in ℓ, then the
transformed SRS is non-terminating. For instance, for R = {aa → aba} the cycle rewrite
relation ◦→R is terminating, while the rule a→ aba (which would be generated by splitting
the left-hand side of the rule) leads to non-termination of the string rewrite relation. Note
that this also holds if we choose any other decomposition of the right-hand side. Hence, in
our transformation we introduce additional symbols to ensure:

• ℓs → ε can only be applied to a prefix of the string.
• ℓp → r can only be applied to a suffix of the string.
• If ℓs → ε is applied to a prefix, then also ℓp → r must be applied, in a synchronized
manner (i.e. no other rule ℓ′B → ε or ℓ′A → r′ can be applied in between).

10 D. SABEL AND H. ZANTEMA

In detail, we will prepend the fresh symbol B to the beginning of the string, and append
the fresh symbol E to the end of the string. These symbols guarantee, that prefix rewrite
steps ℓu →֒(ℓ→r) ru can be expressed with usual string rewrite rules by replacing the left
hand side ℓ with Bℓ and analogous for suffix rewrite steps uℓ →֒

(ℓ→r) ur by replacing the
left hand side ℓ with ℓE.

Let (ℓi → ri) be the i
th rule of the SRS which is split into two rules ℓs → ε and ℓp → ri,

where ℓpℓs = ℓi. After applying the rule ℓs → ε to a prefix of the string, the symbol B will

be replaced by the two fresh symbols W (for “wait”) and Ri,j where i represents the i
th rule

and j means that ℓi has been split after j symbols (i.e. |ℓp| = j). The fresh symbol L is
used to signal that the suffix has been rewritten by rule ℓp → r. Finally, we use a copy of
the alphabet, to ensure completeness of the transformation: for an alphabet Σ, we denote
by Σ a fresh copy of Σ, i.e. Σ = {a | a ∈ Σ}. For a word w ∈ Σ∗ with w ∈ Σ

∗
, we denote

the word w where every symbol a is replaced by a. Analogously, for a word w ∈ Σ
∗
with

w ∈ Σ, we denote w where every symbol a is replaced by the symbol a.

Definition 3.6 (The transformation split). Let R = {ℓ1 → r1, . . . , ℓn → rn} be an SRS
over alphabet Σ. Let Σ be a fresh copy of Σ and let B,E,W,Ri,j , L be fresh symbols (fresh

for Σ ∪Σ). The SRS split(R) over alphabet Σ ∪ Σ ∪ {B,E, L,W} ∪
⋃n
i=1{Ri,j | 1 ≤ j < |ℓi|}

consists of the following string rewrite rules:

ℓi → ri for all (ℓi → ri) ∈ R (splitA)

aL → La for all a ∈ Σ (splitB)

WL → B (splitC)

Ri,ja→ aRi,j for all a ∈ Σ (splitD)

for all (ℓi → ri) ∈ R and all 1 ≤ j < |ℓi|
and ℓpℓs = ℓi with |ℓp| = j:

Bℓs → WRi,j (splitE)

Ri,j ℓpE → LriE (splitF)

We describe the intended use of the rules and the extra symbols. The symbols B and E

mark the start and the end of the string, i.e. for a cycle [u] the SRS split(R) rewrites BuE.
Let [u] ◦→R [w]. The rule (splitA) covers the case that also u→R w holds. Now assume

that for w′ ∼ w we have u →֒{ℓs→ε} v
→֒

{ℓp→r} w
′ (where (ℓpℓs → r) ∈ R). Rule (splitE)

performs the prefix rewrite step and replaces B by W to ensure that no other such a rule
can be applied. Additionally, the symbol Ri,j corresponding to the rule and its splitting is
added to ensure that only the right suffix rewrite step is applicable. Rule (splitD) moves
the symbol Ri,j to right and rule (splitF) performs the suffix rewrite step. Rules (splitB)
and (splitC) are used to finish the simulation of the cycle rewrite step by using the symbol
L to restore the original alphabet and to finally replace WL by B.

Example 3.7. For R1 = {aa→ aba} the transformed string rewrite system split(R1) is:

aa → aba (splitA) aL → La (splitB) bL → Lb (splitB)
WL → B (splitC) Ba → WR1,1 (splitE) R1,1aE → LabaE (splitF)
R1,1a → aR1,1 (splitD) R1,1b → bR1,1 (splitD)

For instance, the cycle rewrite step [aba] ◦→R1
[baba] is simulated in the transformed system

by the following sequence of string rewrite steps (where the redex is highlighted by a gray
background):

BabaE
splitE
−−−→ WR1,1baE

splitD
−−−→ WbR1,1aE

splitF
−−−→ WbLabaE

splitB
−−−→ WLbabaE

splitC
−−−→ BbabaE.

TERMINATION OF CYCLE REWRITING 11

As a further example, for the system R2 = {abc → cbacba, aa → a}, the transformed
string rewrite system split(R2) is:

abc → cbacba (splitA) aa → a (splitA) WL → B (splitC)

aL → La (splitB) bL → Lb (splitB) cL → Lc (splitB)
Bbc → WR1,1 (splitE) Bc → WR1,2 (splitE) Ba → WR2,1 (splitE)
R1,1aE → LcbacbaE (splitF) R1,2abE → LcbacbaE (splitF) R2,1aE → LaE (splitF)
R1,1a → aR1,1 (splitD) R1,2a → aR1,2 (splitD) R2,1a → aR2,1 (splitD)

R1,1b → bR1,1 (splitD) R1,2b → bR1,2 (splitD) R2,1b → bR2,1 (splitD)
R1,1c → cR1,1 (splitD) R1,2c → cR1,2 (splitD) R2,1c → cR2,1 (splitD)

Termination of split(R1) and split(R2) can be proved by AProVE and TTT2.

Proposition 3.8 (Soundness of split). If →split(R) is terminating then ◦→R is terminating.

Proof. By construction of split(R), it holds that if [u] ◦→R [v], then Bu′E →+
split(R) Bv′E

with u ∼ u′ and v ∼ v′. Thus, for every infinite sequence [w1] ◦→R [w2] ◦→R · · · , there
exists an infinite sequence B w′

1 E →split(R) B w′
2 E →split(R) · · · with wi ∼ w′

i for all i.

3.2.1. Completeness of Split. We use type introduction for string rewriting (see Section 3.1)
and use the set of types T := {A,A,K,T } and type the symbols used by split(R) as follows:

L : A → A
B : A → T

W : A → T
E : K → A

a : A → A for all a ∈ Σ
a : A → A for all a ∈ Σ
Ri,j : A → A for all Ri,j

First one can verify that split(R) is a typed SRS, i.e. the left hand sides and right hand
sides are well-typed with the same type: (splitA) rewrites strings of type A → A, (splitB)
and (splitD) rewrite strings of type A → A, (splitC) and (splitE) rewrite strings of type
A → T , and (splitF) rewrites strings of type K → A. Thus split(R) is a typed SRS.

Lemma 3.9. If a typed string w of type τ1 → τ2 with τ1, τ2 ∈ T admits an infinite reduction

w.r.t. split(R), then there exists a typed string w′ of type K → T , which admits an infinite

reduction w.r.t. split(R).

Proof. Assume that w is of type τ1 → τ2 6= K → T . Note that τ1 6= T and τ2 6= K, since no
well-typed, non-empty strings of these types exist.

We prepend and append symbols to w, resulting in a string uwv s.t. uwv is well-typed
with type K → T . If τ2 = A then choose u = B, if τ2 = A then choose u = W, otherwise
choose u = ε. If τ1 = A, then choose v = E, if τ1 = A then choose v = LE.

Clearly, if w →split(R) w1 →split(R) · · · is an infinite reduction w.r.t. split(R), then also
uwv →split(R) uw1v →split(R) · · · is an infinite reduction w.r.t. split(R).

Inspecting the typing of the symbols shows:

Lemma 3.10. Any well-typed string of type K → T is of one of the following forms:

• BuE where u ∈ Σ∗,

• WwLuE where w ∈ Σ
∗
and u ∈ Σ∗, or

• WwRi,juE where w ∈ Σ
∗
and u ∈ Σ∗.

We define a mapping from well-typed strings of type K → T into untyped strings over
Σ as follows:

12 D. SABEL AND H. ZANTEMA

Definition 3.11. For a string w : K → T , the string Φ(w) ∈ Σ∗ is defined according to the
cases of Lemma 3.10:

Φ(BuE) := u
Φ(WwLuE) := wu
Φ(WwRi,juE) := ℓswu if (Bℓs → WRi,j) ∈ split(R).

Lemma 3.12. Let w be a well-typed string of type K → T and w →split(R) w
′. Then

[Φ(w)] ◦→∗
R [Φ(w′)].

Proof. We inspect the cases of Lemma 3.10 for w:

• If w = BuE where u ∈ Σ∗, then the step w →split(R) w
′ can use a rule of type (splitA) or

(splitE). If rule (splitA) is applied, then Φ(w) →R Φ(w′) and thus [Φ(w)] ◦→R [Φ(w′)]. If
rule (splitE) is applied, then w = Bℓ2u

′ →split(R) WRi,ju
′ = w′ and Φ(w) = ℓ2u

′ = Φ(w′)
and thus [Φ(w)] = [Φ(w′)].

• If w = WvLuE where v ∈ Σ
∗
and u ∈ Σ∗, then the step w →split(R) w

′ can use rules of
type (splitA), (splitB), or (splitC). If rule (splitA) is used, then Φ(w) →R Φ(w′) and
thus [Φ(w)] ◦→R [Φ(w′)]. If rule (splitB) or (splitC) is used, then Φ(w) = Φ(w′) and thus
[Φ(w)] = [Φ(w′)].

• If w = WvRi,juE where v ∈ Σ
∗
and u ∈ Σ∗, then the step w →split(R) w

′ can use a
rule of type (splitA), (splitF), or (splitD). If rule (splitA) is used, then Φ(w) →R Φ(w′)
and thus [Φ(w)] ◦→R [Φ(w′)]. If rule (splitD) is used, then Φ(w) = Φ(w′) and thus
[Φ(w)] = [Φ(w′)]. If rule (splitF) is used, then w = WvRi,j ℓpE and w′ = WvLriE and
Φ(w) = ℓsvℓp ∼ ℓpℓsv →R riv ∼ vri = Φ(w′) and thus [Φ(w)] ◦→R [Φ(w′)].

Theorem 3.13 (Soundness and completeness of split). The transformation split is sound

and complete, i.e. →split(R) is terminating if, and only if ◦→R is terminating.

Proof. Soundness is proved in Proposition 3.8. It remains to show completeness. W.l.o.g. we
assume that →R is terminating, since otherwise ◦→R is obviously non-terminating. Type
introduction (Corollary 3.4) and Lemma 3.9 show that it is sufficient to construct a non-
terminating cycle rewrite sequence for any well-typed string w of type K → T where w has
an infinite →split(R)-reduction. Let w be a well-typed string of type K → T s.t. w admits an
infinite reduction w →split(R) w1 →split(R) w2 →split(R) · · · . Lemma 3.12 shows that the cycle
rewrite sequence [Φ(w)] ◦→∗

R [Φ(w1)] ◦→
∗
R [Φ(w2)] ◦→

∗
R · · · exists. It remains to show that

the constructed sequence is infinite. One can observe that the infinite →split(R)-sequence
starting with w must have infinitely many applications of rule (splitF), since every sequence

of
(splitA)∨(splitB)∨(splitC)∨(splitD)∨(splitE)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→-steps is terminating (since we assumed that →R is

terminating). Since Φ(·) translates an (splitF)-step into exactly one ◦→R-step, the sequence
[Φ(w)] ◦→∗

R [Φ(w1)] ◦→
∗
R [Φ(w2)] ◦→

∗
R . . . consists of infinitely many ◦→R-steps.

Remark 3.14. Note that simulating a cycle rewrite step w ◦→R w
′ requires O(|w|) →split(R)-

steps. Thus the derivation height of split(R) (i.e. the length of a maximal string rewrite
sequence for BwE) is asymptotically the square of the derivation height of R (i.e. the length
of a maximal cycle rewrite sequence for w). Note also that the same arguments and prop-
erties apply to the two other transformations, shift and rotate, which will be presented
later.

TERMINATION OF CYCLE REWRITING 13

3.2.2. Relative Termination. We discuss how the transformation split can be adapted to
show relative termination of cycle rewriting. With splitA(·) (and splitF (·), resp.) we
denote the rules which are generated by the transformation split(·) according to rule (splitA)
(and (splitF), resp.). The idea of using the transformation split for relative termination,
is to transform S ⊆ R into split(R) where, only the rules corresponding to splitA(S) and
splitF (S) become strict rules, while all other rules are weak rules in the transformed system.

Definition 3.15. Let S ⊆ R be SRSs over alphabet Σ. The transformation splitrel is
defined as follows:

splitrel (S,R) := (splitA(S) ∪ splitF (S), split(R))

Example 3.16. Let S = {abc → bac} and R = S ∪ {bc →= cb}. Then splitrel (S,R) =
(S′, R′) with

R′ = {bc→= cb,Bc→= WR1,1,Bbc→= WR2,1,Bc →= WR2,2,R1,1bE →= LcbE,

R1,1b→= bR1,1,R2,1b→= bR2,1,R2,2b→= bR2,2,R1,1c→= cR1,1,R2,1c→= cR2,1,
R2,2c→= cR2,2,R1,1a→= aR1,1,R2,1a→= aR2,1,R2,2a→= aR2,2, bL →= Lb,
cL →= Lc, aL →= La,WL →= B} ∪ S′

S′ = {R2,1aE → LbacE,R2,2abE → LbacE, abc → bac}

The termination provers AProVE and TTT2 automatically show that S′ is string terminating
relative to R′. Since – as we show below – splitrel is sound for relative termination, we can
conclude that S is cycle terminating relative to R.

As another example, consider S = {aa → aba} and R = S ∪ {ab →= ba}, and let
splitrel (S,R) = (S′, R′). Both provers show that S′ is not terminating relative to R′. Since
the transformation is also complete for relative termination, we can conclude that S is not
cycle terminating relative to R, which can also be verified by the following counter-example:
the infinite cycle rewrite sequence [aa] ◦→S [aba] ◦→R [aab] ◦→S [abab] ◦→R [aabb] · · · has
infinitely many ◦→S-steps.

For S ⊆ R and splitrel (S,R) = (S′, R′), we will show that S is cycle terminating relative
to R if, and only if S′ is string terminating relative to R′.

First note that for every SRS R and every cycle rewrite step, v1 ◦→R v2 implies
Bv′1E →+

split(R) Bv′2E where vj ∼ v′j for j = 1, 2 and the →split(R)-sequence contains ex-

actly one application of rule splitA(R) or splitF (R) (see Proposition 3.8 and inspect the
construction of split).

Proposition 3.17. The transformation splitrel is sound for relative termination.

Proof. Let ΣA be an alphabet, S ⊆ R be SRSs over ΣA, and splitrel (S,R) = (S′, R′).
Assume that S is not cycle terminating relative to R. Then there exists an infinite reduction
[wi] ◦→

∗
R [ui] ◦→S [wi+1] for i = 1, 2, Then Bw′

iE →∗
split(R) Bu

′
iE →+

split(S) Bw
′
i+1E with

wi ∼ w′
i, wi+1 ∼ w′

i+1 and ui ∼ u′i. The sequence u
′
i →

+
split(S) wi+1 uses exactly once the rule

splitA(S) or the rule splitF (S). Thus we have Bw′
iE →∗

R′ Bu′iE →∗
R′ . →S′ . →∗

R′ Bw′
i+1E

for all i = 1, 2, Hence S′ is not string terminating relative to R′.

For proving completeness, we again use the typed variant of the string rewrite system.

14 D. SABEL AND H. ZANTEMA

Theorem 3.18. The transformation splitrel is sound and complete for relative termination.

Proof. Soundness was proved in Proposition 3.17. For completeness, consider S ⊆ R with
splitrel (S,R) = (S′, R′) and assume that a string w1 of type K → T has an infinite reduction
of the form wi →S′ ui →

∗
R′ wi+1 for all i = 1, 2, . . . (which is sufficient due to Theorem 3.3

and Proposition 2.5).
We first consider the first reductions of the form wi →S′ ui. If wi →S′ ui by rule

splitA(S), then clearly [Φ(wi)] ◦→S [Φ(ui)]. If wi →S′ ui by rule splitF (S), then due
to typing wi = WvRi,kℓpE and ui = WvLrjE. Applying Φ(·) to wi and ui shows that
Φ(wi) = ℓsvℓp ∼ ℓpℓsv = ℓjv and ΦS(ui) = vrj which implies [Φ(wi)] ◦→S [Φ(ui)].

Now, for the reduction sequences ui →
∗
R′ wi+1, Lemma 3.12 shows that [Φ(ui)] ◦→

∗
R

[Φ(wi+1)] holds. Thus, [Φ(wi)] ◦→S . ◦→∗
R [Φ(wi+1)] for all i = 1, 2, Hence, S is not

cycle terminating relative to R.

3.3. The Transformation Shift. We first present the general ideas of the transformation
shift before giving its definition. We write y for the relation which moves the first element
of a string to the end, i.e. auy ua for every a ∈ Σ and u ∈ Σ∗. Clearly, u ∼ v if and only
if uy

<|u| v.
For a string rewrite system R, we define len(R) as the size of the largest left-hand side

of the rules in R, i.e. len(R) = max(ℓ→r)∈R |ℓ|.
The approach of the transformation shift is to shift at most len(R) − 1 symbols from

the left end to the right end and then to apply a string rewrite step (i.e. this the relation

y
<len(R) .→R).

Example 3.19. As in Example 3.5, let R = {abc→ bbbb} and [bcdda] ◦→R [bbddbb].
The approach of transformation shift is to simulate the cycle rewrite step, by first

shifting symbols from the left end to the right end of the string until abc becomes a substring,
and then applying a string rewrite step, i.e. bcdda y

<len(R) . →R ddbbbb, since bcdda y

cddab y ddabc →R ddbbbb.

The following lemma obviously holds:

Lemma 3.20. Let R be an SRS over an alphabet Σ and u, v ∈ Σ∗: If [u] ◦→R [v] then there

exist u′, v′ ∈ Σ∗ s.t. uy
∗ u′ →R v

′
y

∗ v.
Moreover, we can restrict the number of y-steps before a rewrite step: For u, v, w ∈ Σ∗,

if uy
k v →R w for some k ≥ len(R), then uy

m v′ →R v
′′
y

∗ w for some v′, v′′ ∈ Σ∗ and

m < len(R).

Using the previous lemmas, we are able to prove the following proposition:

Proposition 3.21. Let R be an SRS. If ◦→R is non-terminating, then y
<len(R) . →R

admits an infinite reduction.

Proof. Let [w1] ◦→R [w2] ◦→R · · · be an infinite cycle rewrite sequence. By Lemma 3.20
we have w1 y

∗ w′
1 →R w′′

1 y
∗ w2 y

∗ w′
2 →R w′′

2 y
∗ · · · and by the second part of the

lemma, we can always move more than len(R) y-steps to the right, and thus we derive

an infinite sequence w1 y
<len(R) u1 →R u′1 y

<len(R) u2 →R u′2 · · · and thus w1 admits an
infinite reduction of the required form.

TERMINATION OF CYCLE REWRITING 15

For an SRSR, the SRS shift(R) encodes the relation y
<len(R) .→R where extra symbols

are used to separate the steps, and copies of the alphabet underlying R are used to ensure
completeness of the transformation.

For the remainder of the section, we fix an SRS R over alphabet ΣA = {a1, . . . , an}.
Let us write ΣB,ΣC for fresh copies of the alphabet ΣA. We use the following notation to
switch between the alphabets: for X,Y ∈ {A,B,C} and w ∈ ΣX we write LwM

Y
to denote

the copy of w in the alphabet Y where every symbol is translated from alphabet X to
alphabet Y .

Definition 3.22 (The transformation shift). Let R be an SRS over alphabet ΣA and letN =
max(0, len(R)−1). The SRS shift(R) over the alphabet ΣA∪ΣB∪ΣC∪{B,E,W,V,M, L,R,D}
(where B,E,W,V,M, L,R,D are fresh for ΣA ∪ ΣB ∪ ΣC) consists of the following rules:

B → WMNV (shiftA)

M → ε (shiftB)

MVa→ VLaM
B

for all a ∈ ΣA (shiftC)

ba→ ab for all a ∈ ΣA, b ∈ ΣB (shiftD)

bE → LbM
A
E for all b ∈ ΣB (shiftE)

WV → RL (shiftF)

La→ LaM
C
L for all a ∈ ΣA (shiftG)

Lℓ→ Dr for all (ℓ→ r)∈R (shiftH)

cD → DLcM
A
for all c ∈ ΣC (shiftI)

RD → B (shiftJ)

The rules (shiftA) - (shiftE) encode the relation y
<len(R), i.e. for uv ∈ Σ∗

A with |u| < len(R),
the string BuvE is rewritten into WVvuE by these five rules. The sequence of symbols M
generated by rule (shiftA) denotes the potential of moving at most len(R)−1 symbols. The
rules (shiftB) and (shiftC) either remove one from the potential or start the moving of one
symbol. The rule (shiftD) performs the movement of a single symbol until it reaches the
end of the string and rule (shiftE) finishes the movement.

The remaining rewrite rules perform a single string rewrite step, i.e. for a rule (ℓ →
r) ∈ R the string WVw1ℓw2E is rewritten to Bw1rw2E by rules (shiftF) - (shiftJ).

Example 3.23. For R1 = {aa→ aba}, the transformed string rewrite system shift(R1) is:

B → WMV (shiftA) M → ε (shiftB) MVa → VLaM
B
(shiftC)

MVb → VLbM
B

(shiftC) LaM
B
a → aLaM

B
(shiftD) LaM

B
b → bLaM

B
(shiftD)

LbM
B
a → aLbM

B
(shiftD) LbM

B
b → bLbM

B
(shiftD) LaM

B
E → aE (shiftE)

LbM
B
E → bE (shiftE) WV → RL (shiftF) La → LaM

C
L (shiftG)

Lb → LbM
C
L (shiftG) Laa → Daba (shiftH) LaM

C
D → Da (shiftI)

LbM
C
D → Db (shiftI) RD → B (shiftJ)

The cycle rewrite step [aba] ◦→R1
[baba] is simulated in the transformed system as follows:

BabaE
shiftA
−−−→ WMVabaE

shiftC
−−−→ WVLaM

B
baE

shiftD
−−−→ WVbLaM

B
aE

shiftD
−−−→ WVbaLaM

B
E

shiftE
−−−→ WVbaaE

shiftF
−−−→ RLbaaE

shiftG
−−−→ RLbM

C
LaaE

shiftH
−−−→ RLbM

C
DabaE

shiftI
−−−→ RDbabaE

shiftJ
−−−→ BbabaE

Together with Proposition 3.21, the following lemma implies soundness of the transfor-
mation shift.

Lemma 3.24. If uy
<len(R) v →R w, then BuE →+

shift(R) BwE.

16 D. SABEL AND H. ZANTEMA

Proof. Let len(R) = m + 1, u = a1 . . . an and u y
k ak+1 . . . an a1 . . . ak = v, and let v =

a′1 . . . a
′
n and w = a′1 . . . a

′
ia

′′
1 . . . a

′′
ra

′
i+j . . . a

′
n, i.e. the applied rewrite rule is a′i+1 . . . a

′
i+j−1 →

a′′1 . . . a
′′
r . Then the following rewrite sequence using shift(R) can be constructed:

Ba1 . . . anE
(shiftA)
−−−−−→ WMmVa1 . . . anE

(shiftB)
−−−−−→

∗

WMkVa1 . . . anE
(shiftC)
−−−−−→ WMk−1VLa1M

B
a2 . . . anE

(shiftD)
−−−−−→

∗

WMk−1Va2 . . . anLa1M
B
E

(shiftE)
−−−−−→ WMk−1Va2 . . . ana1E

(
(shiftC)
−−−−−→ .

(shiftD)
−−−−−→

∗

.
(shiftE)
−−−−−→

)∗

WVak+1 . . . ana1 . . . akE

(shiftF)
−−−−→ RLak+1 . . . ana1 . . . akE = RLa′1 . . . a

′
nE

(shiftG)
−−−−−→

∗

RLa′1MC . . . La
′
iMCLa

′
i+1 . . . a

′
nE

(shiftH)
−−−−−→ RLa′1MC . . . La

′
iMCDa

′′
1 . . . a

′′
ra

′
i+j . . . a

′
nE

(shiftI)
−−−−→

∗

RDa′1 . . . a
′
ia

′′
1 . . . a

′′
ra

′
i+j . . . a

′
nE

(shiftJ)
−−−−→

∗

Ba′1 . . . a
′
ia

′′
1 . . . a

′′
ra

′
i+j . . . a

′
nE

We prove completeness by using type introduction. Let us write Σ̃A := ΣA ∪ ΣB ∪ ΣC ∪
{B,E,W,V,M, L,R,D}. Let T := {AB, C,K,M,T } be the set of types. We assign the

following types to the symbols of Σ̃A:

a : AB → AB for all a ∈ ΣA
b : AB → AB for all b ∈ ΣB
c : C → C for all c ∈ ΣC

E : K → AB
V : AB → M
M : M → M

W : M → T
B : AB → T
L : AB → C

D : AB → C
R : C → T

We verify that shift(R) is a typed SRS. Rules (shiftA), (shiftF), and (shiftJ) rewrite strings
of type AB → T , rule (shiftB) rewrites strings of type M → M, rule (shiftC) rewrites
strings of type AB → M, rule (shiftD) rewrites strings of type AB → AB, rule (shiftE)
rewrites strings of type K → AB, and rules (shiftG), (shiftH), and (shiftI) rewrite strings of
type AB → C.

Lemma 3.25. Let w ∈ Σ̃A
∗
be a well-typed string, s.t. w admits an infinite reduction

w.r.t. →shift(R). Then there exists a well-typed string w′ ∈ Σ̃A
∗
of type K → T which admits

an infinite reduction w.r.t. →shift(R).

Proof. Let w be a well-typed string of type τ1 → τ2 6= K → T where τ1, τ2 ∈ T s.t. w admits
an infinite reduction w.r.t. →shift(R). We prepend and append symbols to w constructing a
string w′ = uwv of type K → T as follows:

The string u is the empty string if τ2 = T and otherwise for any τ2 ∈ {K,AB,M, C}
there is a sequence of type τ2 → T , which is used for u:

R : C → T W : M → T B : AB → T BE : K → T

The string v is the empty string if τ1 = K and otherwise for any τ1 ∈ {AB,M, C,T } there
is a sequence of type K → τ1, which is used for v:

E : K → AB VE : K → M DE : K → C BE : K → T

Clearly, the infinite reduction for w can be used to construct an infinite reduction for uwv.

TERMINATION OF CYCLE REWRITING 17

By checking all possible cases, the following lemma can be verified:

Lemma 3.26. Any well-typed string of type K → T is of one of the following forms:

• WMiVwE where i ≥ 0 and w ∈ (ΣA ∪ ΣB)
∗,

• BwE where w ∈ (ΣA ∪ ΣB)
∗,

• RwcLwE where wc ∈ Σ∗
C and w ∈ (ΣA ∪ ΣB)

∗, or

• RwcDwE where wc ∈ Σ∗
C and w ∈ (ΣA ∪ ΣB)

∗.

For a string w ∈ (ΣA ∪ ΣB)
∗, let πA(w) be the string w where all symbols b ∈ ΣB are

removed and let πB(w) be the reversed string of w′ where w′ is w where all symbols a ∈ ΣA
are removed.

Definition 3.27. For a well-typed string w : K → T , the mapping ΦS(w) ∈ Σ∗
A is defined

according to the cases of Lemma 3.26 as follows:

ΦS(WMiVwE) := πA(w)πB(w) ΦS(BwE) := πA(w)πB(w)
ΦS(RwcLwE) := LwcM

A
πA(w)πB(w) ΦS(RwcDwE) := LwcM

A
πA(w)πB(w)

Lemma 3.28. Let u be a well-typed string of type K → T . If u→shift(R) v, then [ΦS(u)] ◦→
∗
R

[ΦS(v)].

Proof. We go through the cases of Lemma 3.26 and inspect all applicable rewrite rules:

• If u = WMiVwE, then there are the following cases: If rule (shiftB), (shiftD), (shiftE),
or (shiftF) is applied, then ΦS(u) = ΦS(v) and if rule (shiftC) is applied, then ΦS(u) =
aw1w2 (with w = aw′ and πA(w) = aw1 and πB(w) = w2) and ΦS(v) = w1w2a and thus
ΦS(u) ∼ ΦS(v).

• If u = BwE, then rules (shiftA), (shiftD), or (shiftE) may be applied and in all cases
ΦS(u) = ΦS(v) holds.

• For u = RwcLwE, there are two cases: If rule (shiftD), (shiftE), or (shiftG) is applied,
then ΦS(u) = ΦS(v). If rule (shiftH) is applied, then ΦS(u) →R ΦS(v).

• If u = RwcDwE, then rules (shiftD), (shiftE), (shiftI), and (shiftJ) may be applied and
in all cases ΦS(u) = ΦS(v) holds.

Proposition 3.29. Let u : K → T s.t. u admits an infinite →shift(R)-reduction. Then [u]
admits an infinite ◦→R-reduction.

Proof. Suppose that u : K → T admits an infinite→shift(R)-reduction. Applying Lemma 3.28
shows that it is possible to construct an infinite reduction of ◦→∗

R-steps starting with [u].
Since applications of rule (shiftH) are translated into ◦→R steps, it remains to show that
the given infinite reduction of u has infinitely many applications of rule (shiftH). Therefore
we show that the rewrite system consisting of all rules of shift(R) except for rule (shiftH)
is terminating. Let us denote this system by shift\{(shiftH)}(R), i.e. shift\{(shiftH)}(R) :=

(shift(R) \ {ℓ
(shiftH)
−−−−−→ r}). For proving termination of shift\{(shiftH)}(R) we first eliminate

rule (shiftA): Let σ0 be the polynomial interpretation defined by σ0(B) = σ0(D) = λx.x+1
and σ0(y) = λx.x for all other symbols y. It is easy to verify that σ0(ℓ) > σ0(r) for

ℓ
(shiftA)
−−−−−→ r and σ0(ℓ) ≥ σ0(r) for ℓ → r ∈ shift\{(shiftH)}(R). Thus it suffices to prove

termination of shift\{(shiftA),(shiftH)}(R) := (shift(R) \ {ℓ
(shiftH)
−−−−−→ r, ℓ

(shiftA)
−−−−−→ r}): We use the

18 D. SABEL AND H. ZANTEMA

following polynomial interpretation σ. Let N = max {1, len(R)} and

σ(a) = λx.4x+ 4 for all a ∈ ΣA σ(D) = λx.2Nx+ 2N+1 − 1 σ(M) = λx.2x+ 1
σ(b) = λx.8x+ 1 for all b ∈ ΣB σ(R) = λx.2x+ 1 σ(L) = λx.x
σ(c) = λx.4x for all c ∈ ΣC σ(E) = λx.7x+ 1 σ(W) = λx.2x+ 2
σ(B) = λx.2Nx+ 2N+1 − 1 σ(V) = λx.x

We verify that the inequation σ(ℓ) > σ(r) holds for all rules of shift\{(shiftA),(shiftH)}(R): For
rule (shiftB), we have λx.2x + 1 > λx.x, for rule (shiftC), we have λx.8x + 9 > λx.8x + 1,
for rule (shiftD), we have λx.32x+33 > λx.32x+8, for rule (shiftE), we have λx.56x+9 >
λx.28x + 8, for rule (shiftF), we have λx.2x + 2 > λx.2x + 1, for rule (shiftG), we have
λx.4x+4 > λx.4x, for rule (shiftI), we have λx.2N+2x+3 · 2N+1 +2N+1 − 4 > λx.2N+2x+
3 · 2N+1 − 1, and for rule (shiftJ), we have λx.2N+1x+ 2N+2 − 1 > λx.2Nx+ 2N+1 − 1.

Theorem 3.30. The transformation shift is sound and complete.

Proof. Soundness follows by Lemma 3.24 and Proposition 3.21. Completeness follows by
type introduction (Corollary 3.4), Proposition 3.29, and Lemma 3.25.

3.3.1. Relative Termination. We also provide a variation of the transformation shift to en-
code relative cycle termination by relative string termination.

Definition 3.31. Let S ⊆ R be SRSs over an alphabet Σ. The transformation shiftrel is
defined as:

shiftrel (S,R) := ({Lℓ → Dr | (ℓ→ r) ∈ S}, shift(R))

Theorem 3.32. The transformation shiftrel is sound and complete for relative termination.

Proof. Let ΣA be an alphabet, S ⊆ R be SRSs over ΣA, and shiftrel (S,R) = (S′, R′). For
proving soundness of shiftrel , assume that S is not cycle terminating relative to R. Using
the same arguments as in Proposition 3.21 there exists an infinite reduction such that
wi (y

<len(R) . →R)
∗. y<len(S) vi →S wi+1 for i = 1, 2, By Lemma 3.24 we have for all

i = 1, 2, . . .: BwiE →∗
shift(R) BviE →+

shift(S) Bwi+1E. Since →shift(S) ⊆ →∗
R′ .→S′ .→∗

R′ , this

shows that S′ is not string terminating relative to R′.
For proving completeness, we assume that S′ is not string terminating relative to R′.

We use typed string rewriting and apply Theorem 3.3 and Lemma 3.25. Thus there exists
a typed string w0 : K → T s.t. for all i = 0, 1, 2, . . . the reduction sequence wi →S′ w′

i →
∗
R′

wi+1 exists. Typing of wi, Lemma 3.26, and applicability of →S′ show that wi and w
′
i must

be of the forms wi = RuiLℓviE and w′
i = RuiDrviE where (ℓ → r) ∈ S, ui ∈ ΣC , and

vi ∈ (ΣA ∪ ΣB)
∗. Since ΦS(wi) = LuiM

A
ℓπA(vi)πB(vi) and ΦS(w

′
i) = LuiM

A
rπA(vi)πB(vi),

we have ΦS(wi) →S ΦS(w
′
i) and thus we also have [ΦS(wi)] ◦→S [ΦS(w

′
i)]. Since R′ =

shift(R), Lemma 3.28 shows that [ΦS(w
′
i)] ◦→

∗
R [ΦS(wi+1)]. Thus for all i = 1, 2, . . . we

have [ΦS(wi)] ◦→S . ◦→
∗
R [ΦS(wi+1)] which shows that S is not cycle terminating relative

to R.

TERMINATION OF CYCLE REWRITING 19

3.4. The Transformation rotate. We first present the idea of the transformation rotate.
The transformation is closely related to the definition of ◦→: The idea is to first rotate
the string and then to apply a prefix rewrite step (i.e. both steps can be expressed by the
relation ∼ . →֒R).

Example 3.33. As in Example 3.5, let R = {abc→ bbbb} and [bcdda] ◦→R [bbddbb].
The transformation rotate simulates the cycle rewrite step, by first rotating the string

(using ∼) until abc becomes a prefix, and then applies a prefix rewrite step. I.e., we have
bcdda ∼ . →֒R bbbbdd, since bcdda ∼ abcdd →֒R bbbbdd. It would be possible to use
shifts y to perform the rotation, i.e. bcdda y

∗ . →֒R bbbbdd, since bcdda y cddab y

ddabc y dabcd y abcdd →֒R bbbbdd. However, our transformation rotate will implement
∼ by moving symbols from right to left.

The following lemma obviously holds:

Lemma 3.34. Let R be an SRS over an alphabet Σ and u, v ∈ Σ∗: If [u] ◦→R [v] then there

exist u′, v′ ∈ Σ∗ s.t. u ∼ u′ →֒R v
′ ∼ v.

Proposition 3.35. Let R be an SRS. If ◦→R is non-terminating, then ∼ . →֒R admits an

infinite reduction.

Proof. Let [w1] ◦→R [w2] ◦→R · · · be an infinite cycle rewrite sequence. By Lemma 3.34
we have w1 ∼ u1 →֒R v1 ∼ w2 ∼ u2 →֒R v2 ∼ · · · , i.e. (by joining the ∼-steps) we get
v0 = w1 ∼ u1 →֒R v1 ∼ u2 →֒R v2 ∼ · · · and thus v0 admits an infinite reduction of the
required form.

For an SRS R, the SRS rotate(R) will encode the relation ∼ . →֒R where extra symbols
are used to separate the steps, and copies of the alphabet underlying R are used to ensure
completeness of the transformations. We first introduce the transformation rotate(R) and
then explain the ideas of the transformation in detail.

Again for the rest of the section, we fix an SRS R over alphabet ΣA = {a1, . . . , an},
write ΣB,ΣC ,ΣD,ΣE for fresh copies of the alphabet ΣA, and use LwM

Y
to switch between

the alphabets (see Section 3.3).

Definition 3.36 (The transformation rotate). Let R be an SRS over alphabet ΣA. The
SRS rotate(R) over the alphabet ΣA ∪ ΣB ∪ ΣC ∪ ΣD ∪ ΣE ∪ {B,E,W,R,G,O,C, L,S,F, f}
(where B, E, W, R, G, O, C, L, S, F, and f are fresh for ΣA ∪ ΣB ∪ ΣC ∪ΣD ∪ ΣE) is:

BE → WE (rotA)

Ba→ OCLaM
D
G for all a ∈ ΣA (rotB)

Ga→ LaM
D
G for all a ∈ ΣA (rotC)

Ga→ LLaM
C
S for all a ∈ ΣA (rotD)

GE → FE (rotE)

dLc → LcLdM
B

for all c ∈ ΣC , d ∈ ΣD (rotF)

CLc → LcM
E
CR for all c ∈ ΣC (rotG)

Rb→ LbM
D
R for all b ∈ ΣB (rotH)

RSa→ LLaM
C
S for all a ∈ ΣA (rotI)

RSE → FE (rotJ)

dF → FLdM
A

for all d ∈ ΣD (rotK)

CF → f (rotL)

ef → fLeM
A

for all e ∈ ΣE (rotM)

Of → W (rotN)

Wℓ→ Br for all (ℓ → r) ∈ R
(rotO)

We describe the intended use of the rewrite rules, where we ignore the copies of the alphabet
in our explanations. The goal is that for any string w ∈ Σ∗

A, the string BwE is rewritten

20 D. SABEL AND H. ZANTEMA

to BuE, where w ∼ . →֒R u. The prefix rewrite step is performed by the last rule (rotO).
All other rules perform the rotation ∼ s.t. BwE is rewritten into WvE where w ∼ v. This
is done by moving a suffix of the string in front of the string.

The first rewrite rule (rotA) covers the case that w is empty. Otherwise, if w = a1 . . . an,
then first choose a position to cut the string into w1w2 (the goal is then to form the string
w2w1). The symbol G is used for the non-deterministic selection of the position. Rule
(rotB) starts the rotate phase and the guessing, rule (rotC) shifts the G-marker and rule
(rotD) stops the guessing. Rule (rotE) covers the case that w2 = ε and no rotation will
be performed. After stopping the guessing, every symbol of w2 is moved in front of w1,
resulting in w2w1. A typical situation is ak+1 . . . ama1 . . . akam+1 . . . an and now the symbol
am+1 must be moved in between am and a1. To keep track of the position of a1, the symbol
C (inserted in front of a1) marks the original beginning, and to keep track of the position of
ak, the symbol S (inserted after ak) marks this position. The symbol L guards the movement
of am+1 (by rule (rotF)). When arriving at the right place (rule (rotG)), the symbol R is
used to walk along the string (rule (rotH)) to find the next symbol which has to be moved
(rule (rotI)). If all symbols are moved, rule (rotJ) is applied to start the clean-up phase.
There the symbols F and f are used to remove the markers and to replace the copied symbols
of the alphabet with the original ones (rules (rotK) – (rotN)).

In the following, we denote with rot(ΣA) the string rewrite system consisting of the
rules (rotA) – (rotN) from Definition 3.36 (excluding the rule (rotO)).

Example 3.37. For the system R = {aaa → ababa} and ΣA = {a, b}, the transformed
string rewrite system is rotate(R) = rot(ΣA) ∪ {Waaa → Bababa}. The cycle rewrite step
[abbaa] ◦→R1

[abababb] is simulated in the system rotate(R) by rewriting BabbaaE into
BabababbE as follows:

BabbaaE
rotB
−−→ OCLaM

D
GbbaaE

rotC
−−→ OCLaM

D
LbM

D
GbaaE

rotC
−−→ OCLaM

D
LbM

D
LbM

D
GaaE

rotD
−−→ OCLaM

D
LbM

D
LbM

D
LLaM

C
SaE

rotF
−−→ OCLaM

D
LbM

D
L LaM

C
LbM

B
SaE

rotF
−−→ OCLaM

D
L LaM

C
LbM

B
LbM

B
SaE

rotF
−−→ OCLLaM

C
LaM

B
LbM

B
LbM

B
SaE

rotG
−−→ OLaM

E
CRLaM

B
LbM

B
LbM

B
SaE

rotH
−−→ OLaM

E
CLaM

D
RLbM

B
LbM

B
SaE

rotH
−−→ OLaM

E
CLaM

D
LbM

D
RLbM

B
SaE

rotH
−−→ OLaM

E
CLaM

D
LbM

D
LbM

D
RSaE

rotI
−−→ OLaM

E
CLaM

D
LbM

D
LbM

D
LLaM

C
SE

rotF
−−→ OLaM

E
CLaM

D
LbM

D
LLaM

C
LbM

B
SE

rotF
−−→ OLaM

E
CLaM

D
LLaM

C
LbM

B
LbM

B
SE

rotF
−−→ OLaM

E
CLLaM

C
LaM

B
LbM

B
LbM

B
SE

rotG
−−→ OLaM

E
LaM

E
CRLaM

B
LbM

B
LbM

B
SE

rotH
−−→ OLaM

E
LaM

E
CLaM

D
RLbM

B
LbM

B
SE

rotH
−−→ OLaM

E
LaM

E
CLaM

D
LbM

D
RLbM

B
SE

rotH
−−→ OLaM

E
LaM

E
CLaM

D
LbM

D
LbM

D
RSE

rotJ
−−→ OLaM

E
LaM

E
CLaM

D
LbM

D
LbM

D
FE

rotK
−−→ OLaM

E
LaM

E
CLaM

D
LbM

D
FbE

rotK
−−→ OLaM

E
LaM

E
CLaM

D
FbbE

rotK
−−→ OLaM

E
LaM

E
CFabbE

rotL
−−→ OLaM

E
LaM

E
fabbE

rotL
−−→ OLaM

E
faabbE

rotL
−−→ OfaaabbE

rotN
−−→ WaaabbE

rotO
−−→ BabababbE

Proposition 3.38. If u ∼ v then BuE →∗
rot(ΣA) WvE.

Proof. If u = ε then v = ε and BE →rot(ΣA) WE. If u = a1 . . . an for some n ≥ 1 and
v = ak . . . ana1 . . . ak−1 then there are two cases: If k = 1 (i.e. u = v) then the following

TERMINATION OF CYCLE REWRITING 21

rewrite sequence for BuE exists:

Ba1 . . . anE →rot(ΣA) OCLa1M
D
Ga2 . . . anE →∗

rot(ΣA) OCLa1M
D
. . . LanM

D
GE

→rot(ΣA) OCLa1M
D
. . . LanM

D
FE →∗

rot(ΣA) Wa1 . . . anE

If 1 < k ≤ n, then the following rewrite sequence for BuE exists:

Ba1. . .anE →rot(ΣA) OCLa1M
D
Ga2. . .anE →∗

rot(ΣA)OCLa1M
D
. . .Lak−1M

D
Gak. . .anE

→rot(ΣA) OCLa1M
D
. . .Lak−1M

D
LLakM

C
Sak+1. . .anE →∗

rot(ΣA)OLakM
E
. . .LanM

E
CLa1M

D
. . .Lak−1M

D
RSE

→rot(ΣA) OLakM
E
. . .LanM

E
CLa1M

D
. . .Lak−1M

D
FE →∗

rot(ΣA)Wak. . .ana1. . .ak−1E

Theorem 3.39. The transformation rotate is sound.

Proof. Proposition 3.38 and the construction of rotate(R) show that whenever u ∼ v →֒R w
then also BuE →∗

rotate(R) BwE. Now Proposition 3.35 implies soundness.

3.4.1. Completeness of Rotate. We write Σ̂A for the extension of alphabet ΣA by the fresh
symbols B,E,W,R,G,O,C,L,S,F,f, and by four copies ΣB,ΣC ,ΣD,ΣE of the alphabet ΣA.

For proving completeness of the transformation rotate, we use type introduction. Let

T := {K,A,B, C,D, E ,T } and let the symbols in Σ̂A be typed as follows:

a : A → A for all a ∈ ΣA
b : B → B for all b ∈ ΣB
c : B → C for all c ∈ ΣC
d : D → D for all d ∈ ΣD
e : E → E for all e ∈ ΣE

E : K → A
S : A → B
L : C → D
R : B → D
C : D → E

G,F : A → D
B,W : A → T
O : E → T
f : A → E

One can verify that with definition R is indeed a typed SRS: rule (rotA) rewrites strings
of type K → T , rules (rotB), (rotN), and (rotO) rewrite strings of type A → T , rules
(rotC), (rotD), (rotI), and (rotK) rewrite strings of type A → D, rules (rotE) and (rotJ)
rewrite strings of type K → D, rules (rotF) and (rotH) rewrite strings of type B → D, rule
(rotG) rewrites strings of type B → E , and rules (rotL) and (rotM) rewrite strings of type
A → E . Thus, by Corollary 3.4 type introduction can be used, i.e. rotate(R) is terminating
if, and only if the typed system terminates (and analogously for relative termination, see
Theorem 3.3).

Lemma 3.40. Let w ∈ Σ̂A
∗
be a well-typed string, s.t. w admits an infinite reduction

w.r.t. →rotate(R). Then there exists a well-typed string w′ ∈ Σ̂A
∗
of type K → T which

admits an infinite reduction w.r.t. →rotate(R).

Proof. W.l.o.g. we can assume that w 6= ε (since ε is irreducible w.r.t. →rotate(R)). If w is
not of type K → T , then we can prepend and append symbols to w constructing a string
uwv of type K → T , since for any type τ ∈ {A,B, C,D, E ,K,T } there are the following
sequences of type τ → T where τ 6= T (used for u) and of type K → τ where τ 6= K (used
for v), where c ∈ ΣC :

B :A → T OCLc :B → T OCL : C → T OC :D → T O : E → T BE :K → T
E :K → A SE :K → B cSE :K → C LcSE :K → D fE :K → E

Clearly, the infinite reduction for w can be used to construct an infinite reduction for uwv.

22 D. SABEL AND H. ZANTEMA

By inspecting the typing the following characterization of terms of type T holds:

Lemma 3.41. Any well-typed string of type K → T is of one of the following forms:

(1) OwECwDLcwBSwAE where wE ∈ Σ∗
E, wD ∈ Σ∗

D, c ∈ ΣC , wB ∈ Σ∗
B, and wA ∈ Σ∗

A.

(2) OwECwDRwBSwAE where wE ∈ Σ∗
E, wD ∈ Σ∗

D, wB ∈ Σ∗
B, and wA ∈ Σ∗

A.

(3) OwECwDFwAE where wE ∈ Σ∗
E, wD ∈ Σ∗

D, and wA ∈ Σ∗
A.

(4) OwECwDGwAE where wE ∈ Σ∗
E, wD ∈ Σ∗

D, and wA ∈ Σ∗
A.

(5) OwE fwAE where wE ∈ Σ∗
E and wA ∈ Σ∗

A.

(6) BwAE where wA ∈ Σ∗
A.

(7) WwAE where wA ∈ Σ∗
A.

Informally, the parts of strings in the lemma above can be describes as follows: for a
string w = w1w2, wE is a prefix of w2 that has been rotated, while wA is a suffix of w2 that
has to be rotated, and wB, wD are parts of w1 and symbol c is the symbol that is currently
processed.

Definition 3.42. For well-typed strings w : K → T , the mapping ΦR(w) ∈ P(Σ∗
A) (where

P denotes the power set) is defined according to the cases of Lemma 3.41 as follows:

(1) ΦR(OwECwDLcwBSwAE) := {LwDM
A
LwBM

A
LwEM

A
LcM

A
wA}

(2) ΦR(OwECwDRwBSwAE) := {LwDM
A
LwBM

A
LwEM

A
wA}

(3) ΦR(OwECwDFwAE) := {LwDM
A
wALwEM

A
}

(4) ΦR(OwECwDGwAE) := {LwDM
A
w′
ALwEM

A
w′′
A | for all w′

Aw
′′
A = wA}

(5) ΦR(OwE fwAE) := {LwEM
A
wA}

(6) ΦR(BwAE) := {wA}
(7) ΦR(WwAE) := {wA}

Lemma 3.43. Let w,w′ : K → T with w →rot(ΣA) w
′. Then for any u′ ∈ ΦR(w

′) there

exists u ∈ ΦR(w) s.t. u ∼ u′.

Proof. We go through the cases for w according to Lemma 3.41:

(1) If w = OwECwDLcwBSwAE, then rules (rotF) and (rotG) may be applied. If rule
(rotF) is applied, then with wD = w′

Dd we have w′ = OwECw
′
DLcLdMBwBSwAE, and

since Φ(w) = Φ(w′), the claim holds. If rule (rotG) is applied then wD = ε, w′ =
OwEeCRwBSwAE and since Φ(w) = Φ(w′), the claim holds.

(2) If w = OwECwDRwBSwAE, then rules (rotH), (rotI), and (rotJ) may be applied. If
rule (rotH) is applied then with wB = bw′

B we have w′ = OwECwDLbM
D
Rw′

BSwAE, and

since Φ(w) = Φ(w′), the claim holds. If rule (rotI) is applied, then wB = ε and with
wA = aw′

A we have w′ = OwECwDLLaM
C
Sw′

AE, and since Φ(w) = Φ(w′), the claim

holds. If rule (rotJ) is applied, then wA = wB = ε and w′ = OwECwDFE and since
Φ(w) = Φ(w′), the claim holds.

(3) If w = OwECwDFwAE, then rules (rotK) and (rotL) may be applied. If rule (rotK)
is applied, then with wD = w′

Dd we have w′ = OwECw
′
DFLdM

A
wAE, and since Φ(w) =

Φ(w′), the claim holds. If rule (rotL) is applied, then wD = ε, w′ = OwE fwAE, and
since Φ(w) = {wALwEM

A
}, Φ(w′) = {LwEM

A
wA}, and wALwEM

A
∼ LwEM

A
wA, the claim

holds.
(4) If w = OwECwDGwAE, then rules (rotC), (rotD), and (rotE) may be applied. If rule

(rotC) is applied, then with wA = avA we have w′ = OwECwDLaM
D
GvAE, and since

Φ(w) ⊇ Φ(w′) 6= ∅, the claim holds. If rule (rotD) is applied, then with wA = avA we

TERMINATION OF CYCLE REWRITING 23

have w′ = OwECwDLLaM
C
SvAE, and since Φ(w) ⊇ Φ(w′) 6= ∅, the claim holds. If rule

(rotE) is applied, then wA = ε and w′ = OwECwDFE, and since Φ(w) = Φ(w′), the
claim holds.

(5) If w = OwE fwAE, then rules (rotM) and (rotN) may be applied: If rule (rotM) is
applied, then with wE = w′

Ee we have w
′ = Ow′

E fLeMAwAE, and since Φ(w) = Φ(w′), the

claim holds. If rule (rotN) is applied then wE = ε, w′ = WwAE, and since Φ(w) = Φ(w′),
the claim holds.

(6) If w = BwAE, then rules (rotA) or (rotB) may be applied: If rule (rotA) is applied
then Φ(w) = {ε} = Φ(w′) and thus the claim holds. If rule (rotB) is applied, then with
wA = aw′

A we have w′ = OCLaM
D
Gw′

A, and since Φ(w) = Φ(w′) the claim holds.

(7) If w = WwAE. then no rule is applicable.

Lemma 3.44. The SRS rot(ΣA) is terminating.

Proof. Let σ be the following polynomial interpretation:

σ(W) = λx.x σ(R) = λx.2x σ(F) = λx.2x+ 2 σ(f) = λx.2x+ 2
σ(E) = λx.x+ 1 σ(L) = λx.2x+ 1 σ(S) = λx.3x σ(O) = λx.x+ 9
σ(C) = λx.2x σ(G) = λx.6x+ 1 σ(B) = λx.12x+ 18
σ(h) = λx.4x+ 1 for all h ∈ (ΣA ∪ ΣB ∪ ΣC ∪ΣD ∪ ΣE)

We verify that for every rule (ℓ → r) ∈ rot(ΣA) the inequation σ(ℓ) > σ(r) holds: For
rule (rotA), we have λx.12x + 30 > λx.x + 1, for rule (rotB), we have λx.48x + 30 >
λx.48x + 19, for rule (rotC), we have λx.24x + 7 > λx.24x + 5, for rule (rotD), we have
λx.24x+7 > λx.24x+3, for rule (rotE), we have λx.6x+7 > λx.2x+4, for rule (rotF), we
have λx.32x+13 > λx.32x+11, for rule (rotG), we have λx.16x+6 > λx.16x+1, for rule
(rotH), we have λx.8x+2 > λx.8x+1, for rule (rotI), we have λx.24x+6 > λx.24x+3, for
rule (rotJ), we have λx.6x+6 > λx.2x+4, for rule (rotK), we have λx.8x+9 > λx.8x+4, for
rule (rotL), we have λx.4x+4 > λx.2x+2, for rule (rotM), we have λx.8x+9 > λx.8x+4,
and for rule (rotN), we have λx.2x+ 11 > λx.x.

Proposition 3.45. If w : K → T admits an infinite →rotate(R)-reduction, then there exists

u ∈ ΦR(w) s.t. [u] admits an infinite ◦→R-reduction.

Proof. Let w →rotate(R) w1 →rotate(R) w2 →rotate(R) . . . be an infinite →rotate(R)-reduction.
This sequence must have infinitely many steps using rules (rotO), since the rewrite system
rot(ΣA) is terminating (Lemma 3.44), i.e.

w = v0 →
∗
rot(ΣA) v1 →(rotO) v

′
1 →

∗
rot(ΣA) v2 →(rotO) v

′
2 →

∗
rot(ΣA) . . .

We consider all sub-sequences vi →(rotO) v
′
i →

∗
rot(ΣA) vi+1 for i = 1, 2, Typing of all

strings, Lemma 3.43 and the definition of the rules (rotO) imply that the steps vi →(rotO) v
′
i

must be of the form WℓwAE → BrwAE where (ℓ → r) ∈ R. Since ΦR(vi) = {ℓwA} and
ΦR(v

′
i) = {rwA}, there exist (unique) strings ui ∈ ΦR(vi) and u

′
i ∈ ΦR(v

′
i) (namely ui = ℓwA

and u′i = rwA) s.t. ui →R u
′
i. Lemma 3.43 shows that for any sub-sequence v′i →

∗
rot(ΣA) vi+1

and any ui+1 ∈ ΦR(vi+1) there exists u
′′
i ∈ ΦR(v

′
i) with u

′′
i ∼ ui+1. Since ΦR(v

′
i) = {rwA} =

{u′i}, the equality u′′i = u′i must hold. Thus, we have ui →R u
′
i ∼ ui+1 where ΦR(vi) = {ui}

and ΦR(vi+1) = {ui+1}. Since this holds for all i = 1, 2, . . ., and since ΦR(vj) is a singleton
for all vj , we can construct the infinite sequence u1 →R . ∼ u2 →R . ∼ u3 →R . ∼ · · · . This
implies [u1] ◦→R [u2] ◦→R [u3] . . . and thus ◦→R is non-terminating.

24 D. SABEL AND H. ZANTEMA

Theorem 3.46. The transformation rotate is sound and complete.

Proof. Soundness is shown in Theorem 3.39, completeness follows by type introduction
(Corollary 3.4), Lemma 3.40, and Proposition 3.45.

3.4.2. Relative Termination. We provide a variant of the transformation rotate for relative
termination:

Definition 3.47. Let S ⊆ R be SRSs over an alphabet ΣA. The transformation rotaterel
is defined as:

rotaterel (S,R) := ({Wℓ → Br | (ℓ → r) ∈ S}, rotate(R))

We show soundness and completeness:

Theorem 3.48. The transformation rotaterel is sound and complete for relative termina-

tion.

Proof. Let S ⊆ R and rotaterel (S,R) = (S′, R′). Soundness of the transformation rotate

implies (see proof of Theorem 3.46) that

[u] ◦→R [v] implies BuE →∗
R′ BwE (3.1)

Since rotate(S) ⊆ R′, this also shows:

[u] ◦→S [v] implies BuE →∗
R′ .→S′ BwE. (3.2)

For proving soundness of rotaterel , let us assume that S is not cycle terminating relative to R.
Then there exists an infinite derivation [w1] ◦→

∗
R . ◦→S [w2] ◦→

∗
R . ◦→S · · · . Applying the

implications (3.1) and (3.2) shows that BwiE →∗
R′ .→∗

R′ .→S′ Bwi+1E for i = 1, 2, This
shows that BwiE →∗

R′ . →S′ Bwi+1E for i = 1, 2, . . . and thus S′ is not string terminating
relative to R′.

For proving completeness of rotaterel , we again use the types introduced in Section 3.4.1.
Let us assume that S′ is not string terminating relative to R′. By Theorem 3.3 and
Lemma 3.40 there exists a well-typed string w0 : K → T s.t. for all i = 0, 1, 2 . . . the
derivation wi →S′ .→∗

R′ wi+1 exists. Each such derivation can be written as

wi →
∗
rot(ΣA) w0,0,i →rotO(S) w0,1,i

→∗
rot(ΣA) w1,0,i →rotO(R) w1,1,i

. . .
→∗

rot(ΣA) wmi,0,i →rotO(R) wmi,1,i = wi+1

where mi ≥ 0. Starting with w0,0,i and appending the sequence wmi,1,i →
∗
rot(ΣA) w0,0,i+1

this can be formulated as follows: There exists a derivation

w0,0,i →rotO(S) w0,1,i

→∗
rot(ΣA) w1,0,i →rotO(R) w1,1,i

. . .
→∗

rot(ΣA) wmi,0,i →rotO(R) wmi,1,i →
∗
rot(ΣA) w0,0,i+1

for all i = 0, 1, . . . where mi ≥ 0. Typing of the strings and the cases in Lemma 3.41
show that ΦR(wk,l,i) is a singleton {uk,l,i} for all i and k = 0, . . . ,mi, l = 0, 1. Due to

TERMINATION OF CYCLE REWRITING 25

applicability of rule (rotO), we also have u0,0,i →S u0,1,i and uk,0,i →R uk,1,i for k =
1, . . . ,mi. Lemma 3.43 implies that uk,0,i ∼ uk−1,1,i for k = 1, . . . ,mi + 1. Thus, we have

u0,0,i →S u0,1,i ∼ u1,0,i →R u1,1,i ∼ .→R . . . ∼ .→R umi,1,i ∼ u0,0,i+1

which shows [u0,0,i] ◦→S [u1,0,i] ◦→
∗
R [u0,0,i+1]. Since this holds for all i = 0, 1, . . ., we have

shown that S is not cycle terminating relative to R.

4. Trace Decreasing Matrix Interpretations

In this section we present a variant of matrix interpretations suitable for proving cycle ter-
mination. The basics of matrix interpretations for string and term rewriting were presented
in [14, 15, 7, 16]. The special case of tropical and arctic matrix interpretations for cycle
rewriting was presented in [28], in the setting of type graphs. Natural matrix interpretations
for cycle rewriting were presented in [18], inspired by an approach proposed by Johannes
Waldmann. Here we present a self-contained uniform framework covering all these cases
as we show by subsequently instantiating the framework for three semi-rings. At the end
of the section we discuss and illustrate the approach by examples and also discuss some
limitations.

4.1. A Uniform Framework for Matrix Interpretations. Fix a commutative semi-

ring, that is, a set X, a zero element 0 ∈ X, a unit element 1 ∈ X, and two operations +,×
that are commutative and associative, and satisfying

x+ 0 = x, x× 1 = x, x× 0 = 0, x× (y + z) = (x× y) + (x× z)

for all x, y, z ∈ X. Further we assume a well-founded order > on X.
Next we fix a dimension d > 0 and choose M to be a set of d × d matrices over X.

Multiplication of matrices is defined as usual, now using + and × from the semi-ring as
basic operations on elements:

(AB)ij =

d∑

k=1

Aik ×Bkj

for all i, j = 1, . . . , d, where
∑

extends the operation +. Note that in the following we only
require matrix multiplication and no addition. Thus we assume that M is closed under
multiplication and contains the identity matrix.

For a d × d matrix A over X, its trace tr(A) is defined to be
∑d

i=1Aii: the sum of its
diagonal.

On M we assume relations >, ≥ satisfying

A > B =⇒ (AC > BC ∧ CA > CB) (4.1)

A ≥ B =⇒ (AC ≥ BC ∧ CA ≥ CB) (4.2)

A > B =⇒ tr(A) > tr(B) (4.3)

A ≥ B =⇒ tr(A) ≥ tr(B) (4.4)

for all A,B,C ∈ M . Note the overloading of > and ≥: when applied on matrices it refers
to the relations >, ≥ we assume on M , when applied to elements of X it refers to the
well-founded order on X, where x ≥ y ⇐⇒ x > y ∨ x = y.

26 D. SABEL AND H. ZANTEMA

Note that on the one hand these requirements imply that > is irreflexive by A > B =⇒
tr(A) > tr(B), and on the other hand the requirements imply that M does not consist of all
d × d matrices over X: for A > B and C being the matrix 0 having 0 on all positions, we
have AC = 0 = BC, violating A > B =⇒ AC > BC.

A matrix interpretation 〈·〉 for a signature Σ is defined to be a mapping from Σ to M .
It is extended to 〈·〉 : Σ∗ → M by defining inductively 〈ε〉 = I and 〈ua〉 = 〈u〉 × 〈a〉 for all
u ∈ Σ∗, a ∈ Σ, where I is the identity matrix.

Theorem 4.1. Let S ⊆ R be SRSs over Σ and let 〈·〉 : Σ →M satisfy the above properties

and

• 〈ℓ〉 > 〈r〉 for all (ℓ→ r) ∈ S, and
• 〈ℓ〉 ≥ 〈r〉 for all (ℓ→ r) ∈ R \ S

Then ◦→S is terminating relative to ◦→R.

Proof. If u ∼ v then u = u1u2 and v = u2u1 for some u1, u2. Write A = 〈u1〉 and B = 〈u2〉.
Then

tr(〈u〉) = tr(AB) =
d∑

i=1

d∑

k=1

Ai,k ×Bk,i = tr(BA) = tr(〈v〉).

If u →R\S v then there is a rule (ℓ → r) ∈ R \ S and x, y ∈ Σ∗ such that u = xℓy and
v = xry, so

〈u〉 = 〈x〉〈ℓ〉〈y〉 ≥ 〈x〉〈r〉〈y〉 = 〈v〉

using A ≥ B =⇒ (AC ≥ BC ∧CA ≥ CB), hence tr(〈u〉) ≥ tr(〈v〉).
If u→S v then there is a rule (ℓ→ r) ∈ S and x, y ∈ Σ∗ such that u = xℓy and v = xry,

so
〈u〉 = 〈x〉〈ℓ〉〈y〉 > 〈x〉〈r〉〈y〉 = 〈v〉

using A > B =⇒ (AC > BC ∧CA > CB), hence tr(〈u〉) > tr(〈v〉).
Assume ◦→S is not terminating relative to ◦→R, then there are ui, vi ∈ Σ∗ for i ∈ IN

such that
u1 →R v1 ∼ u2 →R v2 ∼ u3 →R v3 ∼ · · · ,

containing infinitely many steps ui →S vi. By the above observations we have tr(vi) =
tr(ui+1) for all i, tr(〈ui〉) > tr(〈vi〉) for infinitely many i, and tr(〈ui〉) ≥ tr(〈vi〉) for all other
i, yielding an infinite strictly decreasing sequence in X, contradicting well-foundedness of
the order > on X.

A typical way to apply Theorem 4.1 to prove cycle termination of any SRS R is as
follows: choose an instance of a semi-ring and interpretations 〈a〉 ∈M for every a ∈ Σ, and
for all rules ℓ → r we either have 〈ℓ〉 > 〈r〉 or 〈ℓ〉 ≥ 〈r〉. If 〈ℓ〉 > 〈r〉 holds for all rules we
are done, otherwise the remaining proof obligation is to prove cycle termination of the rules
for which 〈ℓ〉 ≥ 〈r〉.

Although the proof of Theorem 4.1 is not very hard, it is quite subtle: while in the
final argument tr(〈·〉) is applied on the strings, it is essential to require 〈ℓ〉 > 〈r〉 and not
the weaker requirement tr(〈ℓ)〉 > tr(〈r〉). Surprisingly, the proof does not need further
requirements on the relation > and ≥ like transitivity or > ⊆ ≥.

In order to prove relative termination, we give the following extension of Theorem 4.1.

Theorem 4.2. Let S′ ⊆ S, R′ ⊆ R, S′ ⊆ R′, and S ⊆ R be SRSs over Σ and let 〈·〉 : Σ →M
satisfy the above properties and

TERMINATION OF CYCLE REWRITING 27

• ◦→S′ is terminating relative to ◦→R′ , and

• 〈ℓ〉 ≥ 〈r〉 for all (ℓ→ r) ∈ ((R′ \ S) ∪ S′)
• 〈ℓ〉 > 〈r〉 for all (ℓ→ r) ∈ (R \ ((R′ \ S) ∪ S′))

Then ◦→S is terminating relative to ◦→R.

Proof. Assume [u1] ◦→R [u2] ◦→R [u3] ◦→R · · · ; we have to prove that it contains finitely
many ◦→S-steps. As in the proof of Theorem 4.1 we have tr(〈ui〉) > tr(〈ui+1〉) for applica-
tions of rules (ℓ → r) ∈ (R \ ((R′ \ S) ∪ S′)) and tr(〈ui〉) ≥ tr(〈ui+1〉) for applications of
remaining rules. Since > is well-founded on X, there are only finitely many steps of the for-
mer type, so after a finite initial part the infinite reduction only consists of ((R′\S)∪S′)-steps.
But then applying that ◦→S′ is terminating relative to ◦→R′ , these remaining ((R′ \S)∪S′)-
steps only contain finitely many S′-steps. All other steps are (R′ \S)-steps and thus do not
contain S-steps. Hence in total there are only finitely many ◦→S-steps.

Indeed Theorem 4.1 is an instance of Theorem 4.2 if S′ = ∅ and R′ = R \ S. A typical
way to apply Theorem 4.2 to prove cycle termination of any SRS S relative to R is very
similar to the typical way to apply Theorem 4.1: remove the rules for which ’>’ is obtained,
both from S and R.

In order to apply Theorem 4.1 or Theorem 4.2 we need an instance of a semi-ring X, a
set M of matrices over X and relations >, ≥ on M such that all assumed properties holds.
We give three such instances: the tropical, arctic and natural matrix interpretations, all
depending on dimension d. For all these three instances the search for applying Theorem
4.1 has been implemented in our tool torpacyc by transforming the requirements to SMT
format and calling the external SMT solver Yices [5, 25]. The same has been done in our
tool tdmi, also covering Theorem 4.2.

A nice point is that we do not need to try separately for which rules we require 〈ℓ〉 ≥ 〈r〉
and for which rules 〈ℓ〉 > 〈r〉, but we just specify in the SMT formula that the latter occurs
at least once and the former for all other rules.

4.2. Natural Matrix Interpretations. In natural matrix interpretations we have X = IN,
and 0, 1,+,×, > have their usual meaning. We define M to consist of all d× d matrices A
satisfying A11 > 0. On M we define the relations > and ≥ by

A > B ⇐⇒ A11 > B11 ∧ ∀i, j : Aij ≥ Bij, A ≥ B ⇐⇒ ∀i, j : Aij ≥ Bij .

For M with these relations the required properties (4.1), (4.2), (4.3), and (4.4) are all easily
checked. Hence this yields a way to prove (relative) cycle termination by Theorem 4.1. As
an example we consider the single rule aa→ aba and choose

〈a〉 =

(
1 1
1 0

)
, 〈b〉 =

(
1 0
0 0

)
,

yielding

〈aa〉 =

(
1 1
1 0

)(
1 1
1 0

)
=

(
2 1
1 1

)
>

(
1 1
1 1

)
=

(
1 1
1 0

)(
1 0
0 0

)(
1 1
1 0

)
= 〈aba〉,

proving cycle termination by Theorem 4.1.
The original versions of matrix interpretations in [14, 7] are not suitable for proving

cycle termination since they succeed in proving termination of ab → ba for which cycle
termination does not hold. Even more, the same holds for the original killer example for

28 D. SABEL AND H. ZANTEMA

the method of matrix interpretations was aa → bc, bb → ac, cc → ab, for which cycle
termination does not hold due to [ccaa] ◦→ [abaa] ◦→ [abbc] ◦→ [aacc].

Main differences are our conditions (4.3) and (4.4) on the trace of the matrices and that
in our setting the interpretation of symbols is multiplication by a matrix, while in [14, 7] it
combines such a matrix multiplication by adding a vector.

4.3. Tropical Matrix Interpretations. In tropical matrix interpretations we choose the
semi-ring X = IN ∪ {∞}, with min being the semi-ring addition and the normal addition
being the semi-ring multiplication, both extended to X by defining

min(∞, x) = min(x,∞) = x and ∞+ x = x+∞ = ∞

for all x ∈ IN ∪ {∞}. Now ∞ acts as the semi-ring zero and 0 acts as the semi-ring unit; it
is easily checked that all semi-ring requirements hold. This semi-ring is called the tropical

semi-ring after its study by the Brazilian mathematician Imre Simon [19]. Over this semi-
ring multiplication of matrices becomes

(AB)i,j = min({Ai,k +Bk,j | k = 1, . . . , d}),

so being quite different from the usual matrix operations. On this semi-ring we define the
well-founded order > to be the extension on > on IN defined by

x > y ⇐⇒ (x, y ∈ IN ∧ x > y) ∨ (x = ∞∧ y ∈ IN).

So in this semi-ring the zero element is not the smallest but the largest element.
We define M to consist of all d × d matrices A satisfying A11 6= ∞. On M we define

the relation > by

A > B ⇐⇒ ∀i, j : (Aij > Bij ∨Aij = Bij = ∞),

and the relation ≥ by

A ≥ B ⇐⇒ ∀i, j : (Aij > Bij ∨Aij = Bij).

For M with these relations the required properties (4.1), (4.2), (4.3), and (4.4) are all easily
checked; note that for every A ∈ M we have tr(A) = miniAii 6= ∞ since A11 6= ∞. For
these requirements it is essential that we defined A > B by Aij > Bij on all positions
and not only at 1,1, since from a > b we cannot conclude min(a, c) > min(b, c), but from
a > b ∧ c > d we can conclude min(a, c) > min(b, d).

As an example we again consider the single rule aa→ aba and choose

〈a〉 =

(
1 ∞
0 1

)
, 〈b〉 =

(
0 0
1 1

)
,

by using the tropical matrix multiplication yielding

〈aa〉 =

(
1 ∞
0 1

)(
1∞
0 1

)
=

(
2∞
1 2

)
>

(
1 2
0 1

)
=

(
1 ∞
0 1

)(
0 0
1 1

)(
1 ∞
0 1

)
= 〈aba〉,

proving cycle termination by Theorem 4.1.

TERMINATION OF CYCLE REWRITING 29

4.4. Arctic Matrix Interpretations. In arctic matrix interpretations we choose the semi-
ring X = IN∪{−∞}, with max being the semi-ring addition and the normal addition being
the semi-ring multiplication, both extended to X by defining

max(−∞, x) = max(x,−∞) = x and −∞+ x = x+−∞ = −∞

for all x ∈ IN ∪ {−∞}. Now −∞ acts as the semi-ring zero and 0 acts as the semi-ring
unit; it is easily checked that all semi-ring requirements hold. This semi-ring is called the
arctic semi-ring as it is a kind of opposite to the tropical semi-ring. Over this semi-ring
multiplication of matrices becomes

(AB)i,j = max({Ai,k +Bk,j | k = 1, . . . , d}),

On this semi-ring we define the well-founded order > to be the extension on > on IN:

x > y ⇐⇒ (x, y ∈ IN ∧ x > y) ∨ (x ∈ IN ∧ y = −∞).

So in this semi-ring the zero element is the smallest element, just like in the natural semi-
ring.

We define M to consist of all d× d matrices A satisfying A11 6= −∞. On M we define
the relation > by

A > B ⇐⇒ ∀i, j : (Aij > Bij ∨Aij = Bij = −∞),

and the relation ≥ by

A ≥ B ⇐⇒ ∀i, j : (Aij > Bij ∨Aij = Bij).

ForM with these relations all required properties hold, again providing a method for proving
(relative) cycle termination by Theorem 4.1. Cycle termination of our example aa → aba
can also be proved by arctic matrix interpretation, now by choosing

〈a〉 =

(
0 1
0 1

)
, 〈b〉 =

(
0 −∞

−∞ −∞

)
.

4.5. Examples and Bounds on Reduction Lengths. As an example of combining var-
ious versions of matrix interpretations we consider the system from the introduction:

0P → 1P, 1P → cP, 0c→ 10, 1c→ c0, P 0 → P 100

for which the following proof is found fully automatically by torpacyc.
First the following tropical matrix interpretation is found:

〈P 〉 =

(
0 ∞
0 ∞

)
, 〈0〉 =

(
2 2
0 0

)
, 〈1〉 =

(
2 1
∞ 0

)
, 〈c〉 =

(
1 0
∞ 0

)
.

In this interpretation for the first four rules we have 〈ℓ〉 ≥ 〈r〉 and for the last rule we have
〈ℓ〉 > 〈r〉. So by Theorem 4.1 the last rule may be removed, and torpacyc continues with
the remaining four rules.

Next the following natural matrix interpretation is found:

〈P 〉 =

(
1 0
2 0

)
, 〈0〉 =

(
1 2
0 2

)
, 〈1〉 =

(
1 1
0 2

)
, 〈c〉 =

(
1 0
0 2

)
.

For these interpretations we obtain 〈0P 〉 > 〈1P 〉, 〈1P 〉 > 〈cP 〉, 〈0c〉 ≥ 〈10〉 and 〈1c〉 ≥ 〈c0〉,
hence by Theorem 4.1 it suffices to prove cycle termination of 0c → 10, 1c→ c0, for which
torpacyc finds a simple counting argument. These simple counting arguments can be

30 D. SABEL AND H. ZANTEMA

seen as the instance of tropical matrix interpretations of dimension d = 1, not using ∞:
interpret every a ∈ Σ by a natural number, and then 〈u〉 is the sum of the interpretations
of all symbols in u.

The method for proving cycle termination induced by Theorem 4.1 has similar limita-
tions as the method of matrix interpretations in [15] for string termination: Since the entries
of a product of n matrices are bounded by an exponential function in n, the method cannot
prove cycle termination of systems which allow reduction sequences where every rewrite
rule is applied more often than exponentially often.

Example 4.3. The rewrite system R1 := {ab→ bca, cb → bbc} allows for string derivations
of a length which is a tower of exponentials (see [15]), i.e. the string akbk has such a
long derivation, since the derivation abn →∗

R1
b2

n−1cna exists and this can be iterated

for every a in ak. Moreover, the number of applications of the first and of the second
rule of R1 is a tower of exponentials. This shows that the matrix interpretations in [15]
are unable to prove string termination of R1. The system φ(R1) := {RE → LE, aL →
La′, bL → Lb′, cL → Lc′, Ra′ → aR,Rb′ → bR,Rc′ → cR, abL → bcaR, cbL → bbcR}
uses the transformation φ from [28] and transforms the string rewrite system R1 into a
cycle rewrite system s.t. R1 is string terminating iff φ(R1) is cycle terminating. One can
verify that [abnLE] ◦→∗

φ(R1)
[b2

n−1cnaLE] which can also be iterated s.t. [akbkLE] has a

cycle rewriting sequence whose length is a tower of k exponentials. Inspecting all nine rules
of φ(R1), the number of applications of any of the rules in this rewrite sequence is also a
tower of k exponentials and thus it is impossible to prove cycle termination of φ(R1) using
Theorem 4.1. Consequently, our tool torpacyc does not find a termination proof for φ(R1).

Remark 4.4. As expected our tool torpacyc does not find a termination proof for φ(R1)
from Example 4.3. On the other hand, with our transformational approach cycle termina-
tion can be proved: AProVE proves string termination of split(φ(R1)).

A further question is whether matrix interpretations are limited to cycle rewrite systems
with exponential derivation lengths only. The following example shows that this is not true:

Example 4.5. The SRS R2 := {ab → baa, cb → bbc} (see [15]) has derivations of doubly

exponential length (since ackb →∗
R2

b2
k
a2

2
k

ck and any rewrite step adds one symbol), but
its string termination can be proved by relative termination and matrix interpretations by
first removing the rule cb → bbc and then removing the other rule. This is possible, since
the second rule is applied only exponentially often. For cycle rewriting the encoding φ from
[28] is φ(R2) = {RE → LE, aL → La′, bL → Lb′, cL → Lc′, Ra′ → aR,Rb′ → bR,Rc′ →
cR, abL → baaR, cbL → bbcR} and φ(R2) is cycle terminating iff R2 is string terminating.
The system φ(R2) also has doubly exponential cycle derivations, e.g. [ackbLE] ◦→∗

φ(R2)

[b2
k
a2

2
k

ckLE]. However, torpacyc proves cycle termination of φ(R2) by first removing the
last rule using the matrix interpretation

〈R〉 =

(
1 2
1 0

)
, 〈E〉 =

(
2 0
0 0

)
, 〈L〉 =

(
1 2
1 0

)
, 〈a〉 =

(
1 0
0 1

)
, 〈a′〉 =

(
1 0
0 1

)
,

〈b〉 =

(
1 2
0 1

)
, 〈b′〉 =

(
1 0
1 1

)
, 〈c〉 =

(
3 0
0 1

)
, 〈c′〉 =

(
1 0
1 3

)
.

Thereafter the remaining rules (which now only have derivations of exponential length) are
eliminated by matrix interpretations and counting arguments.

TERMINATION OF CYCLE REWRITING 31

Note that the methods in [28] are not able to prove cycle termination of φ(R2), since
they can only remove rules which are applied polynomially often in any derivation.

Also the transformational approach successfully proves cycle termination of φ(R2): TTT2
proves string termination of split(φ(R2)). Interestingly, we did not find a termination proof
of split(φ(R2)) using AProVE.

5. Tools and Experimental Results

In this section we first explain which tools and which benchmark sets were used to evaluate
the techniques presented in this paper. Thereafter we summarize and analyze the obtained
results.

5.1. Tools for Proving Cycle Termination. We implemented several tools for proving
cycle termination and cycle non-termination, which will be explained in this section.

The command line tool cycsrs is mainly a wrapper which allows to call different other
tools and termination provers. It also allows to call the different tools in succession on
a given termination problem and to distribute the time limit among the tools. The tool
participated in the category on cycle rewriting in the Termination Competition 2015 [21]
and in the Termination and Complexity Competition 2016 [22].

For the transformational approaches, cycsrs is able to perform the transformations split,
rotate, or shift for a given input problem and then it calls the termination provers AProVE
or TTT2 to prove string termination of the transformed problem. Analogously, cycsrs can
apply transformations splitrel , rotaterel , and shiftrel , to enable the proof of relative cycle
termination by showing relative string termination.

For the search for matrix interpretations described in Section 4, we implemented two
tools: The prover torpacyc searches for matrix interpretations by using the SMT-solver
yices targeting the logic of unquantified linear integer arithmetic with uninterpreted sort
and function symbols.

The tool tdmi uses a similar approach, applying yices to find matrix interpretations,
but targets the logic of quantifier-free formulas over the theory of fixed-size bit vectors
(similarly as proposed in [4]). Moreover, tdmi is able to prove relative termination. Another
difference is that torpacyc checks for match bound proofs, see [28]. Match bound proofs
can be seen as proofs by tropical matrix interpretation, but with dimensions of often more
than 100, being far beyond the dimension that is feasible for direct search for tropical matrix
interpretations, typically being 3.

For proving non-termination, one technique is to prove string non-termination of the
cycle rewrite problem by using a termination prover like AProVE or TTT2 (which is correct
due to Proposition 2.1). Another technique is to apply one of the transformations and
then proving string non-termination of the transformed problem (which is correct since the
transformations are complete). Additionally, we implemented a tool cycnt which performs
a brute-force search for cycle non-termination.

The automatic transformation and the prover can also be used online via a web interface
available via http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/ where
also the tools and experimental data can be found.

http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/

32 D. SABEL AND H. ZANTEMA

5.2. Benchmark Sets and Test Environment. A problem for doing experiments is that
no real appropriate test set for cycle rewriting is available. We played around with several
examples like the ones in this paper, but we also wanted to test larger scale experiments.
For proving cycle termination, we use the SRS Standard-branch of the Termination Prob-
lem Data Base [23] (TPDB), which is a benchmark set for proving termination of string
rewrite systems, but it was also used as problem set in the cycle rewriting category of the
Termination Competition 2015 and slightly extended by some new problems in 2016. This
set contains 1315 termination problems.

For relative cycle termination, we use the SRS Relative-branch of the Termination
Problem Data Base, which is a benchmark set containing 205 relative string termination
problems.

In [18] we also tested some of the techniques on 50000 randomly generated string rewrite
systems. We excluded them in the new tests, since most of the problems where either triv-
ially cycle terminating or could easily be proved to be cycle non-terminating. A further
difference to the benchmarks presented in [18] is the test environment: the current bench-
marks where all performed on StarExec [20] – a cross community logic solving service –
which made it possible to rapidly run the tests and thus also to perform tests with higher
time-outs.

5.3. Experimental Results on Cycle Termination. Table 1 summarizes the obtained
results for running several techniques to prove cycle termination on the SRS Standard-
branch of the TPDB. The first column lists the different techniques, thereafter there are
two main columns: the first one lists the results where a time limit of 60 secs. was used,
and the second main column lists the result for a time limit of 300 secs. There are three
kinds of results: YES means that cycle termination has been proved, NO means that cycle
non-termination has been proved (and thus cycle termination was disproved), and MAYBE
means that no result was obtained.

The rows of Table 1 consist of five main parts.

• The first part consists of the results for the transformational approach, where each of
the three transformations split, rotate, and shift was applied to the input problem and
thereafter either AProVE or TTT2 was applied to the transformed system. We also list
the numbers for combining the results of the two solvers (in the rows named “any”),
which sometimes shows that the termination techniques perform differently on the same
problems.

• The second part contains the summarized results of applying the two tools torpacyc and
tdmi to the problems. Both tools try to prove cycle termination by searching for matrix
interpretations. Note that both tools are unable to show cycle non-termination. Again
the row named with “any” combines the results of both techniques.

• The third part shows the result of applying the brute-force search for cycle non-termination,
using our tool cycnt, and the results of applying AProVE and TTT2 to prove string non-
termination of the input problem (which implies cycle termination). We also list the
numbers for combining the three techniques to prove cycle non-termination (listed in the
row named “any”).

• The fourth part consists of the results for a combination of the termination techniques.
Here we use AProVE or TTT2, respectively, as back-end prover to show string termina-
tion and non-termination. In detail, the command line tool cycsrs is used to first run

TERMINATION OF CYCLE REWRITING 33

SRS Standard
Time limit 60 secs. Time limit 300 secs.

YES NO MAYBE YES NO MAYBE

Transformational Approach

split

AProVE 26 316 973 41 324 950
TTT2 27 164 1124 46 180 1089
any 35 316 964 53 324 938

rotate

AProVE 10 48 1257 10 53 1252
TTT2 3 0 1312 9 0 1306
any 10 48 1257 11 53 1251

shift

AProVE 10 79 1226 10 89 1216
TTT2 8 0 1307 8 1 1306
any 10 79 1226 10 89 1216

Trace-Decreasing Matrix Interpretations

torpacyc 44 0 1271 49 0 1266
tdmi 31 0 1284 46 0 1269
any 48 0 1267 63 0 1252

Non-Termination Check

cycnt 0 580 735 0 588 727
AProVE (SRS) 0 99 1216 0 109 1206
TTT2 (SRS) 0 33 1282 0 62 1253
any 0 583 732 0 591 724

Combination of Techniques

back-end: AProVE 51 511 753 62 540 713
back-end: TTT2 50 511 754 68 539 708

any 60 583 682 83 591 651

Table 1: Experimental results for proving cycle (non)-termination on the 1315 problems of
the SRS Standard branch of the TPDB

torpacyc (with 25% of the time limit), then tdmi (14 %), then the back-end prover (9 %)
and cycnt (10 %) to prove cycle non-termination, and finally to apply the transformation
split together with a subsequent call of the back-end prover to show (non-)termination of
the transformed system (42 %).

• The last row of the table combines all results of the previous rows (where the YES- and
NO-results are summed up per problem).

An overall observation is that our techniques were able to obtain a result for about the half
of the problems, while the other half of the problems seem to be too hard to be proved
by the techniques. This is not really surprising since the test set contains already ‘hard’
instances for proving string termination: In the Termination Competition 2015 the winning
prover AProVE solved 832 out of the 1325 string termination problems (with a time limit
of 300 secs.).

Considering cycle termination, we were now able to solve 643 problems with a time limit
of 60 secs. (by combining all of our techniques), while in [18] only 399 problems were solved
in the same time limit and on the same problem set (but on a different environment, not on

34 D. SABEL AND H. ZANTEMA

SRS Relative
Time limit 60 secs. Time limit 300 secs.
YES NO MAYBE YES NO MAYBE

Transformational Approach

split

AProVE 8 7 190 14 7 184
TTT2 1 8 196 0 8 197
any 8 8 189 14 8 183

rotate

AProVE 1 0 204 1 0 204
TTT2 0 0 205 0 0 205
any 1 0 204 1 0 204

shift

AProVE 1 0 204 2 0 203
TTT2 0 0 205 0 1 204
any 1 0 204 2 1 202

Trace-Decreasing Matrix Interpretations

tdmi 11 0 194 21 0 184

Non-Termination Check

cycnt 0 13 192 0 13 192
AProVE (SRS) 0 1 204 0 1 204
TTT2 (SRS) 0 1 204 0 1 204
any 0 13 192 0 13 192

Combination of Techniques

back-end: AProVE 10 13 182 17 13 175
back-end: TTT2 8 13 184 16 13 176

any 12 13 180 21 13 171

Table 2: Experimental results for proving relative cycle (non)-termination on the 205 prob-
lems of the SRS Relative branch of the TPDB

StarExec). This increase in the number of solved problems mainly comes from adding the
tool cycnt to search for cycle non-termination. The results for checking non-termination
also show that in the benchmark set many problems seem to cycle non-terminating, while
they are string terminating. We expected this, since a substantial part of the problems may
contain a renaming of the rule ab→ ba.

A further observation is that increasing the time limit allows to solve more problems,
where the increase on proving cycle non-termination is rather small, while for cycle termi-
nation the increase is noticeable.

Comparing the three transformations, the transformation split leads to much better re-
sults than the other two transformations, which holds for termination and for non-termination
proofs.

For proving cycle termination, problem specific methods (i.e. torpacyc and tdmi) seem
to perform a little bit better than the transformational method using split.

Comparing the back-end prover, there is surprisingly no clear winner: AProVE seems
to perform better for short time limits and for proving non-termination, while TTT2 seems
to perform better for longer time limits.

TERMINATION OF CYCLE REWRITING 35

5.4. Relative Cycle Termination. Table 2 summarizes the results on applying different
techniques to the 205 problems in the SRS Relative-branch of the TPDB. Again, the tests
were run with a time limit of 60 secs. and with a time limit of 300 secs. Since torpacyc is
not able to prove relative termination, there are no tests using torpacyc.

One observation of the results is that again the transformation split rel leads to better
results than the other transformations. A further observation is that the problem specific
methods (the matrix interpretations to prove relative cycle termination and cycnt to dis-
prove cycle termination) perform slightly better than the transformational approach.

Finally, the number of solved problems is quite small compared to the number of prob-
lems. One reason may be that the benchmark set contains only few small rewrite systems,
and many large problems. Large problems are disadvantageous for the transformational
approach, since the transformations (especially the transformation split) increases the size
of the problem.

5.5. Proving Cycle Termination by Relative String Termination. To prove cycle
termination of a string rewrite system S, we can use all the techniques for proving relative
cycle termination by using all rules of S as strict rules (and thus there are no weak rules).
This usually does not lead to an improvement by applying automated termination tools,
since the problem of showing S being terminating relative to S is equal to showing that S
is terminating. However, for the transformational approaches the setting is different. Let
ψ be one of the sound and complete transformations and ψrel its variant for relative cycle
termination. Since for an SRS S, the transformation ψrel (S, S) results in (S′, R′) where
this inclusion is strict, i.e. S′ ⊂ R′, it makes sense to analyse whether transforming S into
(S′, R′) and subsequently proving that S′ is string terminating relative to R′ enables further
(non-)termination proofs compared to trying to prove string termination of ψ(S).

For each problem in SRS Standard-branch of the TPDB we applied each combination
of a transformation and the two termination provers AProVE and TTT2. Table 3 summa-
rizes the results of this analysis, where we used a time limit of 300 secs. The numbers of
proved, disproved, and open problems are listed: first for the usual approach to prove string
termination of ψ(S), secondly for proving relative string termination of ψrel (S, S), and as a
third row the combined results are shown (in the rows labeled with “any”).

The results show that indeed also the technique using relative string termination as
target of the transformation works for several problems. However, they lead to new cycle
(non-)termination proofs in very rare cases.

6. Conclusions

We presented techniques to prove termination and relative termination for cycle rewriting.
The main approach is to apply a sound and complete transformation from cycle into string
rewriting. We presented and analyzed three such transformations, both for termination and
relative termination. Apart from that we provided a framework covering several variants of
matrix interpretations serving for proving (relative) cycle termination. Our implementations
and the corresponding experimental results show that both techniques are useful in the sense
that they apply for several examples for which the earlier techniques failed.

Together with the sound and complete transformation φ in the reverse direction from
[28], the existence of a sound and complete transformation like split implies that the prob-
lems of cycle termination and string termination of SRSs are equivalent in a strong sense.

36 D. SABEL AND H. ZANTEMA

SRS Standard AProVE TTT2
Time limit 300 secs. YES NO MAYBE YES NO MAYBE

split 41 324 950 46 180 1089
splitrel 26 179 1110 8 213 1094
any 41 324 950 46 216 1053
rotate 10 53 1252 9 0 1306
rotaterel 10 1 1304 2 1 1312
any 10 53 1252 9 1 1305
shift 10 89 1216 8 1 1306
shiftrel 10 6 1299 4 13 1298
any 10 89 1216 8 13 1294

Table 3: Results for proving cycle termination of the 1315 problems in the SRS Standard
branch of the TPDB by transformation into string termination problems and rel-
ative string termination problems

For instance, it implies that they are in the same level of the arithmetic hierarchy, which is
Π0

2-complete along the lines of [6]. Alternatively, Π0
2-completeness of cycle termination can

be concluded from the sound and complete transformation φ combined with the observation
that cycle termination is in Π0

2.
For future research, there is a need for more sophisticated techniques to prove cycle

non-termination, since we conjecture that e.g. several open problems in the benchmark
sets are cycle non-terminating, but our tools are not able to find a corresponding proof. A
promising non-termination technique may follow the ideas of [8], some first steps in this
direction have been worked out in [27].

For a fair comparison of tools for (non-)termination of cycle rewriting, a set of bench-
marks is needed with more focus on cycle rewriting, rather than the current set in which
nearly all systems are copied from benchmarks for string rewriting.

Acknowledgments

We thank Johannes Waldmann for fruitful remarks, in particular for his suggestions leading
to Section 4 on trace decreasing matrix interpretations. We also thank the anonymous
reviewers of RTA 2015 for their valuable comments on the topic, and the anonymous re-
viewers of this journal version for their very careful reading and valuable suggestions and
comments.

References

[1] Homepage of AProVE, 2016. http://aprove.informatik.rwth-aachen.de.
[2] Harrie Jan Sander Bruggink, Barbara König, Dennis Nolte, and Hans Zantema. Proving termination of

graph transformation systems using weighted type graphs over semirings. In Francesco Parisi-Presicce
and Bernhard Westfechtel, editors, Graph Transformation - 8th International Conference, ICGT 2015,
Held as Part of STAF 2015, L’Aquila, Italy, July 21-23, 2015. Proceedings, volume 9151 of Lecture
Notes in Computer Science, pages 52–68. Springer, 2015.

http://aprove.informatik.rwth-aachen.de

TERMINATION OF CYCLE REWRITING 37

[3] Harrie Jan Sander Bruggink, Barbara König, and Hans Zantema. Termination analysis for graph trans-
formation systems. In Josep Diaz, Ivan Lanese, and Davide Sangiorgi, editors, Proc. 8th IFIP Inter-
national Conference on Theoretical Computer Science, volume 8705 of Lecture Notes in Comput. Sci.,
pages 179–194. Springer, 2014.

[4] Michael Codish, Yoav Fekete, Carsten Fuhs, Jürgen Giesl, and Johannes Waldmann. Exotic semi-ring
constraints. In Pascal Fontaine and Amit Goel, editors, 10th International Workshop on Satisfiability
Modulo Theories (SMT 2012), volume 20 of EPiC Series, pages 88–97. EasyChair, 2012.

[5] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer-Aided Verification
(CAV’2014), volume 8559 of Lecture Notes in Comput. Sci., pages 737–744. Springer, 2014.

[6] Jörg Endrullis, Herman Geuvers, Jakob Grue Simonsen, and Hans Zantema. Levels of undecidability in
rewriting. Inf. Comput., 209(2):227–245, 2011.

[7] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for proving termination
of term rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.

[8] Jörg Endrullis and Hans Zantema. Proving non-termination by finite automata. In Maribel Fernández,
editor, 26th International Conference on Rewriting Techniques and Applications (RTA 2015), volume 36
of LIPIcs, pages 160–176. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[9] Alfons Geser. Relative Termination. Dissertation, Universität Passau, Germany, 1990.
[10] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Carsten Otto, Martin

Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and René Thiemann. Proving
termination of programs automatically with AProVE. In Stéphane Demri, Deepak Kapur, and Christoph
Weidenbach, editors, Proc. 7th International Joint Conference on Automated Reasoning (IJCAR’14),
volume 8562 of Lecture Notes in Comput. Sci., pages 184–191. Springer, 2014.

[11] Jürgen Giesl, Frédéric Mesnard, Albert Rubio, René Thiemann, and Johannes Waldmann. Termination
competition (termCOMP 2015). In Amy P. Felty and Aart Middeldorp, editors, 25th International
Conference on Automated Deduction (CADE 2015), volume 9195 of Lecture Notes in Comput. Sci.,
pages 105–108. Springer, 2015.

[12] Jürgen Giesl and Aart Middeldorp. Transformation techniques for context-sensitive rewrite systems. J.
Funct. Program., 14(4):379–427, 2004.

[13] Jürgen Giesl and Hans Zantema. Liveness in rewriting. In Robert Nieuwenhuis, editor, Proc. 14th
Conference on Rewriting Techniques and Applications (RTA), volume 2706 of Lecture Notes in Comput.
Sci., pages 321–336. Springer, 2003.

[14] Dieter Hofbauer and Johannes Waldmann. Termination of {aa->bc, bb->ac, cc->ab}. Inf. Process.
Lett., 98(4):156–158, 2006.

[15] Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix interpretations.
In Frank Pfenning, editor, Proc. 17th Conference on Rewriting Techniques and Applications (RTA),
volume 4098 of Lecture Notes in Comput. Sci., pages 328–342. Springer, 2006.

[16] Adam Koprowski and Johannes Waldmann. Arctic termination ...below zero. In Andrei Voronkov, editor,
Proc. 19th Conference on Rewriting Techniques and Applications (RTA), volume 5117 of Lecture Notes
in Comput. Sci., pages 202–216. Springer, 2008.

[17] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean termination tool 2. In
Ralf Treinen, editor, Proc. 20th Conference on Rewriting Techniques and Applications (RTA), volume
5595 of Lecture Notes in Comput. Sci., pages 295–304. Springer, 2009.

[18] David Sabel and Hans Zantema. Transforming Cycle Rewriting into String Rewriting. In Maribel
Fernández, editor, 26th International Conference on Rewriting Techniques and Applications (RTA 2015),
volume 36 of Leibniz International Proceedings in Informatics (LIPIcs), pages 285–300, Dagstuhl, Ger-
many, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[19] Imre Simon. Recognizable sets with multiplicities in the tropical semiring. In Mathematical Foundations
of Computer Science, volume 324 of LNCS, pages 107–120. Springer, 1988.

[20] Starexec, 2016. http://www.starexec.org.
[21] Termination Competition 2015, 2015. http://termination-portal.org/wiki/Termination_

Competition_2015.
[22] Termination and Complexity Competition 2016, 2016. http://termination-portal.org/wiki/

Termination_and_Complexity_Competition_2016.
[23] The termination problem data base, 2015. http://termination-portal.org/wiki/TPDB.
[24] Homepage of TTT2, 2016. http://cl-informatik.uibk.ac.at/software/ttt2/.

http://www.starexec.org
http://termination-portal.org/wiki/Termination_Competition_2015
http://termination-portal.org/wiki/Termination_Competition_2015
http://termination-portal.org/wiki/Termination_and_Complexity_Competition_2016
http://termination-portal.org/wiki/Termination_and_Complexity_Competition_2016
http://termination-portal.org/wiki/TPDB
http://cl-informatik.uibk.ac.at/software/ttt2/

38 D. SABEL AND H. ZANTEMA

[25] Homepage of Yices, 2016. http://yices.csl.sri.com/.
[26] Hans Zantema. Termination of term rewriting: Interpretation and type elimination. J. Symb. Comput.,

17(1):23–50, 1994.
[27] Hans Zantema and Alexander Fedotov. Non-termination of string and cycle rewriting by automata.

In Aart Middeldorp and René Thiemann, editors, Proceedings of the 15th International Workshop on
Termination, pages 13:1–13:5, 2016. http://cl-informatik.uibk.ac.at/workspace/events/wst2016.
pdf.

[28] Hans Zantema, Barbara König, and Harrie Jan Sander Bruggink. Termination of cycle rewriting. In
Gilles Dowek, editor, Proc. Joint 25th Conference on Rewriting Techniques and Applications and 12th
Conference on Typed Lambda Calculi and Applications (RTATLCA), volume 8560 of Lecture Notes in
Comput. Sci., pages 476–490. Springer, 2014.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://yices.csl.sri.com/
http://cl-informatik.uibk.ac.at/workspace/events/wst2016.pdf
http://cl-informatik.uibk.ac.at/workspace/events/wst2016.pdf

	1. Introduction
	2. Preliminaries
	2.1. String Rewriting
	2.2. Cycle Rewriting
	2.3. Relative Termination

	3. Transforming Cycle Termination into String Termination
	3.1. Type Introduction
	3.2. The Transformation Split
	3.3. The Transformation Shift
	3.4. The Transformation rotate

	4. Trace Decreasing Matrix Interpretations
	4.1. A Uniform Framework for Matrix Interpretations
	4.2. Natural Matrix Interpretations
	4.3. Tropical Matrix Interpretations
	4.4. Arctic Matrix Interpretations
	4.5. Examples and Bounds on Reduction Lengths

	5. Tools and Experimental Results
	5.1. Tools for Proving Cycle Termination
	5.2. Benchmark Sets and Test Environment
	5.3. Experimental Results on Cycle Termination
	5.4. Relative Cycle Termination
	5.5. Proving Cycle Termination by Relative String Termination

	6. Conclusions
	Acknowledgments
	References

