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Abstract. We prove that all valid Herbrand equalities can be inter-procedurally inferred
for programs where all assignments whose right-hand sides depend on at most one variable
are taken into account. The analysis is based on procedure summaries representing the
weakest pre-conditions for finitely many generic post-conditions with template variables.
In order to arrive at effective representations for all occurring weakest pre-conditions, we
show for almost all values possibly computed at run-time, that they can be uniquely
factorized into tree patterns and a ground term. Moreover, we introduce an approximate
notion of subsumption which is effectively decidable and ensures that finite conjunctions
of equalities may not grow infinitely. Based on these technical results, we realize an
effective fixpoint iteration to infer all inter-procedurally valid Herbrand equalities for these
programs. Finally we show that an invariant candidate with a constant number of variables,
can be verified in polynomial time.

How can we infer that an equality such as x
.
= y holds at some program point, if the operators

by which the program variables x and y are computed, do not satisfy obvious algebraic laws?
This is the case, e.g., when either very high-level operations such as sqrt, or very low-level
operations such as bit-shift are involved or, generally, for floating-point calculations. Still,
the equality x

.
= y can be inferred, if x and y are computed by means of syntactically

identical terms of operator applications. The equality then is called Herbrand equality. The
problem of inferring valid Herbrand equalities dates back to [1] where it was introduced
as the famous value numbering problem. Since quite a while, algorithms are known which,
in absence of procedures, infer all valid Herbrand equalities [12, 28]. These algorithms
can even be tuned to run in polynomial time, if only invariants of polynomial size are of
interest [7]. Surprisingly, little is known about Herbrand equalities if recursive procedure
calls are allowed. In [22] it has been observed that the intra-procedural techniques can be
extended to programs with local variables and functions — but without global variables.
The ideas there are strong enough to generally infer all Herbrand constants in programs
with procedures and both local and global variables, i.e., invariants of the form x

.
= t

where t is ground. Another tractable case of invariants is obtained if only assignments are
taken into account whose right-hand sides have at most one occurrence of a variable [23].
Thus, assignment x := f(y, a) is considered while assignments such as x := f(y,y) or
x := f(y, z) are approximated with x := ?, i.e., by an assignment of an unknown value
to x. The idea is to encode ground terms as numbers. Then Herbrand equalities can be
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represented as polynomial equalities with a fixed number of variables and of bounded degree.
Accordingly, techniques from linear algebra are sufficient to infer all valid Herbrand equalities
for such programs. As a special case, Petter’s class of programs from [23] subsumes those
programs where only unary operators are involved. Such programs have been considered
by [8]. Interestingly, the latter paper arrives at decidability by a completely different line
of argument, namely, by exploiting properties of the free monoid generated from the unary
operators. Another avenue to decidability is to restrict the control structure of programs to
be analyzed. In [5], the restricted class of Sloopy Programs is introduced where the format
of loop as well as recursion is drastically restricted. For this class an algorithm is not only
provided to decide arbitrary equalities between variables but also disequalities.

On the other hand, when only affine numerical expressions as well as affine program
invariants are of concern, the set of valid invariants at a program point form a vector space
which can be effectively represented. This observation is exploited in [19] to apply methods
from linear algebra to infer all valid affine program invariants. These methods later have
been adapted to the case where values of variables are not from a field, but where integers
will overflow at some power of 2, i.e., are taken from a modular ring. Note that in the latter
structure, some number different from 0 may be a zero divisor and thus does not have a
multiplicative inverse [20]. For some applications, an analysis of general equalities is not
necessary. In applications such as coalescing of registers [21] or detection of local variables
in low-level code [4], it suffices to infer equalities involving two variables only. In the affine
case, algorithms for inferring all two-variable equalities can be constructed which have better
complexities than the corresponding algorithms for general equalities [4].

The question whether or not all inter-procedurally valid Herbrand equalities can be
inferred, is still open. Here, we consider the case of Herbrand equalities containing two
variables only. These are equalities such as x

.
= f(g(y),y, a), i.e., right-hand sides of equal-

ities may contain only a single variable, but this multiple times. Accordingly, in programs
only assignments are taken into account whose right-hand sides contain (arbitrarily many)
occurrences of at most one variable. Our main result is that under this provision, all inter-
procedurally valid two-variable Herbrand equalities can be inferred.

Our novel analysis is based on calculating weakest pre-conditions for all occurring post-
conditions. Since there may be infinitely many potential post-conditions for a called pro-
cedure, we rely on generic post-conditions to obtain finite representations of procedure
summaries. In a generic post-condition second-order variables are used as place-holders for
yet unknown relationships between program variables. In the generic post-condition

A(x)
.
= B(y)

the second-order variables A and B take as values terms with (possibly multiple occurrences
of) holes (which we call templates). As pre-conditions we then get conjunctions of the
following form

∧

iA(si)
.
= B(ti)

where each term si, ti contains at most one variable which might occur multiple times. To
realize our algorithm for inferring all inter-procedurally valid two-variable equalities, we thus
require

• a method to finitely represent all occurring conjunctions of equalities,
• a method for proving that one conjunction subsumes another conjunction, i.e., a method

to detect when the greatest fixpoint computation has terminated;
• a guarantee that a fixpoint will be reached in finitely many steps.
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Note here that the equalities occurring during the weakest pre-condition computation of
a generic post-condition may contain occurrences of second-order variables. Thus, sub-
sumption between conjunctions of equalities is subtly related to second-order unification [6].
Second-order unification asks whether a conjunction of equalities possibly containing second-
order variables is satisfiable. Since long, it is known that generally, second-order unification
is undecidable. Undecidability of second-order unification even holds if only a single unary
second-order variable is involved [13]. In contrast, the problem of context unification, i.e.,
the variant of second-order unification where second-order variables range over terms with
single occurrences of holes only, has recently been proven to be decidable [11]. It is worth
mentioning that neither of the two cases directly applies to our application, since we consider
unary second-order variables (as context unification) but let variables range over terms with
one or multiple occurrences of holes (differently from context unification). To the best of
our knowledge, decidability of satisfiability is still open for our case.

Example 0.1. In our case, during the WP computation a conjunction of the following form
might occur:

A(a)
.
= B(f(a, a)) ∧A(b)

.
= B(f(b, b))

where a and b are atoms. The (unique) solution for the second-order variables A and B is
then given as

A = B(f(•, •))

where • denotes the hole. Since the hole occurs two times in the solution, the conjunction
is not satisfiable, if only context unification is considered.

In this paper, we will not solve the satisfiability problem for the given unification prob-
lem. Instead, we introduce two novel ideas to circumvent this problem and still infer all
inter-procedurally valid two-variable Herbrand equalities. First, we introduce a notion of
approximate subsumption. This means that our algorithm does not allow to prove im-
plications between all conjunctions of equalities — but at least sufficiently many so that
accumulation of infinite conjunctions is ruled out. Second, we note that subsumption is not
required for arbitrary valuations of program variables. Instead it suffices to consider values
which may possibly be constructed by the program at run-time. For programs where every
right-hand side of assignments contain occurrences of single variables only, we observe that
the ground terms possibly occurring at run-time, have a specific structure, which allows for
a unique factorization of these terms into irreducible templates — at least, if these ground
terms are sufficiently large. Our factorization result applied to these kind of values, enables
us to make use of the monoidal methods of [8]. This approach, which works for sufficiently
large terms, then is complemented with a dedicated treatment of finitely many exceptional
cases. By that, we ultimately succeed to construct an effective approximative subsumption
algorithm which allows us to restrict the number of equalities in occurring conjunctions and
to determine all valid two-variable Herbrand equalities.

In order to arrive at our key result, namely an algorithm to infer all valid inter-procedural
two-variable Herbrand equalities, we thus build on the following two novel technical construc-
tions:

• a method to uniquely factorize the kind of values possibly occurring at run-time (except
finitely many) of a given program;

• a notion of approximative subsumption which is decidable and still guarantees that every
occurring conjunction of equalities is effectively equivalent to a finite conjunction.
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Subsequently, we sketch how not only all two-variable equalities, but all inter-procedurally
valid Herbrand equalities can be inferred, if only all right-hand sides in assignments each
contain occurrences of at most one variable.

Finally we show that the complexity of inferring all valid two-variable Herbrand equali-
ties in initialization-restricted programs is polynomial and that for unrestricted programs, at
least verifying a given equality can be performed in polynomial time. This is remarkable in
so far as the terms encountered during the WP computation may be exponentially deep. In
order to obtain a polynomial time analysis, we therefore follow the ideas sketched in [8] and
provide compressed representations for the occurring terms which support all basic term
operations in polynomial time. Subsequently, we show that our notion of approximative
subsumption is decidable in polynomial time. Furthermore, for the multi-variable case, we
show that verifying an invariant candidate is polynomial as well (given that the number of
occurrences of variables in the post-condition is bounded).

Parts of this paper have been published at the ESOP conference in 2015 [26]. For the
journal version, we have provided the following additions:

• an efficient implementation of the analysis by means of compressed representations of
invariants;

• an extended program model which supports not only global but also local variables;
• an explicit proof of approximative T -subsumption and T -compactness.

Our paper is organized as follows. Section 1 briefly introduces our programming model.
Section 2 presents our basic WP based approach of inferring all valid program invariants.
In Section 3, we provide general background on the cancellation and factorization properties
of terms and prove a first compactness result for equalities with template variables but no
occurrences of program variables. Additionally, in Section 4 we recapitulate equalities over
a free monoid. In Section 5 we then provide an algorithm for inferring all two-variable equal-
ities — at least, for programs which are initialization-restricted (see Section 5 for a precise
definition of this restriction). Technically, this restriction implies that all occurring terms
can be uniquely factorized into irreducible terms. In order to arrive at an algorithm for
programs which are not initialization-restricted, we complement this approach in Section 6
with a dedicated treatment of values where a unique factorization is not possible. Section 7
indicates how our methods can be extended to general Herbrand equalities. Finally, in
Section 8 we examine the complexity of our analysis. We introduce the compressed repre-
sentation of terms used by the implementation and indicate how the required operations can
be efficiently realized. There, we first consider two-variable Herbrand equalities only and
afterwards also generalize the method to multi-variable Herbrand equalities.
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1. Programs

For the purpose of this paper, we consider imperative programs which consist of a finite set
P of procedures such as:

0: global x,y;
1: main() { 6: p() {
2: x := a; 7: if (∗) {
3: y := a; 8: x := f(x,x);
4: p(); 9: p();
5: } 10: y := f(y,y);

11: }
12: }

Instead of operating on the syntax of programs, we prefer to represent each procedure by a
(non-deterministic) control flow graph. Figure 1 shows, e.g., the control flow graphs for the
given example program. Formally, the control flow graph for a procedure p consists of:

0

main

1

2

3

x := a

y := a

p()

4

p

5

6

7

x := f(x,x)

p()

y := f(y,y)

Figure 1: The corresponding CFGs for the example program.

• A finite set Np of program points where sp, rp ∈ Np represent the start and return point
of the procedure p;

• A finite set Ep of edges (u, s, v) where u, v ∈ Np are program points and s denotes a basic
statement.

For simplicity, we proceed in the style of Sharir/Pnueli in [27] and consider parameterless
procedures which operate on global variables only. In the following, X denotes the finite set
of program variables. As values, we consider uninterpreted operator expressions only. Thus,
values are constructed from atomic values by means of (uninterpreted) operator applications.
Let Ω denote a finite signature containing a non-empty set of atomic values Ω0 and sets
Ωk,k > 0, of constructors of rank k. Then TΩ denotes the set of all possible (ground) terms
over Ω, and TΩ(X) the set of all possible terms over Ω and (possibly) occurrences of program
variables from X. In general, we will omit brackets around the argument of unary symbols.
Thus, we may, e.g., write hx instead of h(x).

As basic statements, we only consider assignments and procedure calls. An assignment
x := ? non-deterministically assigns any value to the program variable x, whereas an assign-
ment x := t assigns the value constructed according to the right-hand side term t ∈ TΩ(X).
A procedure call is of the form p() for a procedure name p.
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In this paper, we only consider assignments whose right-hand sides contain occurrences
of at most one variable. The assignments occurring in the example program from Figure 1
have this property. Note that this program does not fall into Petter’s class, since the
right-hand sides of assignments contain more than one occurrence of a variable. In general
programs with arbitrary assignments, the assignments with right-hand sides not conforming
to the given restriction may, e.g., be abstracted by the non-deterministic assignment of any
value.

2. Computing Weakest Pre-conditions

Our goal is to prove for a given assertion whether it is valid at a given program point or,
better, to infer all invariants which are valid at that point. For that, we would like to
calculate weakest pre-conditions of assertions, or, more generally, to determine for every
program point the minimal assumptions to be met for the queried assertion to hold at the
given program point. Since the program model makes use of non-deterministic branching,
we may assume w.l.o.g. that every program point is reachable. In particular, this implies
that no procedure is definitely non-terminating, i.e., that for every procedure p, there is at
least one execution path from the start point of p reaching the end point of p.

Example 2.1. Consider the program from Figure 1. At program exit, the invariant x
.
= y

holds. In a proof of this fact by means of a WP computation, weakest pre-conditions must
be provided for procedure p and all assertions x

.
= tk, k ≥ 0, where t0 = y and for k > 0,

tk = f(tk−1, tk−1). This set of post-conditions is not only infinite, but also makes use of
an ever increasing number of variable occurrences. Thus, an immediate encoding, e.g., into
bounded degree polynomials as in [23] is not obvious.

In order to summarize the effect of a procedure for multiple but similar post-conditions, we
tabulate the weakest pre-conditions for generic post-conditions only. Generic post-conditions
are assertions which contain template variables which later may be instantiated differently
in different contexts for arriving post-conditions. This idea has been applied, e.g., for affine
equalities [19, 21, 4], for polynomial equalities [18, 23], or for Herbrand equalities with unary
operators [8]. The generic post-conditions which are of interest here, are of the forms

Ax
.
= C or Ax

.
= By

where x,y are program variables, the ground template variable C is meant to receive a
constant value, and the template variables A,B take templates as values, i.e., terms over the
ranked alphabet Ω and having at least one occurrence of the (fresh) place holder variable •.
Computing weakest pre-conditions operates on assertions where an assertion is a (possibly
infinite) conjunction of equalities. The equalities occurring during weakest pre-condition
calculations are of the forms:

As
.
= C or As

.
= Bt

where s, t are terms possibly containing a program variable, i.e., s, t ∈ TΩ(X).
Consider a mapping σ which assigns appropriate values to the program variables from

X as well as to the (non-ground or ground) template variables A,B,C. This means that
σ assigns ground terms to the variables in X ∪ {C} and templates to A,B. Such a map-
ping is called variable assignment. The variable assignment σ satisfies the equality s

.
= t

(σ |= (s
.
= t) for short) iff σ∗(s) = σ∗(t) where σ∗ is the natural tree homomorphism cor-

responding to σ, which is the identity on all operators in Ω. The homomorphism σ∗ maps,
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e.g., the application At of the template variable A to the term t into σ(A)[σ∗(t)/•], i.e.,
the substitution of the term σ∗(t) into the occurrences of the dedicated variable • in the
template σ(A). Substitution into the dedicated variable • is an associative binary operation
where the neutral element is the template consisting of • alone. In the following, we denote
this operation by juxtaposition.

Consider, e.g., an assignment σ with σ(A) = h(•, •), and σ(B) = •, and σ(x) = a. Then

σ∗(Ax) = h(•, •) a = h(a, a) = •h(a, a) = σ∗(Bh(x, a))

holds. Therefore, σ satisfies the equality Ax
.
= Bh(x, a). In the following, we will no longer

distinguish between σ and σ∗.
The variable assignment σ satisfies the conjunction φ of equalities (σ |= φ for short), iff

σ |= e for all equalities e ∈ φ.
In our application, it will be convenient not to consider arbitrary variable assignments,

but only those which map program variables to reasonable values as shown in the following.
For a subset T ⊆ TΩ of ground terms, we call a variable assignment σ a T -assignment, if σ
maps program variables x to values σ(x) ∈ T only.

The conjunction φ then is called T -satisfiable if there is some T -assignment σ with
σ |= φ. Otherwise, it is T -unsatisfiable. Conjunctions φ, φ′ are T -equivalent if for every
T -assignment σ, σ |= φ iff σ |= φ′. Obviously, an empty conjunction is satisfied by every
variable assignment and therefore equal to ⊤ (true), while all T -unsatisfiable conjunctions
are T -equivalent. As usual, these are denoted by ⊥ (false). Finally, a conjunction φ′ is
T -subsumed by a conjunction φ, if φ is T -equivalent to φ ∧ φ′.

If the set T by which we have relativized the notions of satisfiability, equivalence and
subsumption equals the full set TΩ, we may also drop the prefixing with T . In particular,
we have for any T that satisfiability, equivalence and subsumption imply T -satisfiability,
T -equivalence and T -subsumption, while the reverse implication may not necessarily hold.

In the following, we recall the ingredients of weakest pre-condition computation for
assignments as well as for procedure calls as provided, e.g. in [10] or [2]. The weakest
pre-conditions of φ w.r.t. assignments are given by:

Jx := tK⊺ φ = φ[t/x]

Jx := ?K⊺ φ = ∀x. φ

Thus, the weakest pre-condition for an assignment x := t is given by substitution of the term
t into all occurrences of the variable x in the post-conditions, while the weakest pre-condition
for a non-deterministic assignment x := ? of any value is given by universal quantification.
For Herbrand equalities, universal quantification can be computed as follows. Recall that
universal quantification commutes with conjunction. Therefore, it suffices to consider single
equalities e. If x does not occur in e, then ∀x. e is equivalent to e. If x occurs only on
one side of e, then ∀x. e = ⊥. Now assume that x occurs on both sides of e. If e is of the
form sx

.
= tx for templates s, t (no template variables), then either s = t and hence e as

well as ∀x. e is equivalent to ⊤, or s 6= t, in which case ∀x. e equals ⊥. If e is of the form
Asx

.
= Btx for templates s, t, then ∀x. e is equivalent to As

.
= Bt.

Every transformation f which is specified for generic post-conditions to conjunctions of
pre-conditions, can be uniquely extended to a transformation f̄ of arbitrary post-conditions
by

f̄(
∧

E) =
∧

e∈E f̄(e)
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where the transformation f̄ for an arbitrary equality e is defined as follows:

f̄(s
.
= t) =



















f(Ax
.
= By)[s′/A, t′/B] if s = s′x, t = t′y

f(Ax
.
= C)[s′/A, t/C] if s = s′x, t ground

f(Ax
.
= C)[s/C, t′/A] if t = t′x, s ground

s
.
= t otherwise

Subsequently, the extended function f̄ is denoted by f as well. The procedure summaries
are then characterized by the constraint system S:

JrpK
⊺ =⇒ Id for each procedure p

JuK⊺ =⇒ JspK
⊺ ◦ JvK⊺ for each (u, p(), v) ∈ E

JuK⊺ =⇒ JsK⊺ ◦ JvK⊺ for each (u, s, v) ∈ E,
s assignment

where ◦ means the composition of the weakest pre-condition transformers and Id is the iden-
tity transformer. Thus, accumulation of weakest pre-conditions for a generic post-condition
e at procedure exit rp with e and then propagates its pre-conditions backward to the start
point of p by applying the transformations corresponding to the traversed edges. Here, the
subsumption relation =⇒ as defined for conjunction of equalities, has silently been raised
to the function level. Thus, f =⇒ g if f(e) subsumes g(e) for all generic post-conditions e.

W.r.t. the ordering ⊑ given by =⇒ , the WP transformer of procedure p then is
obtained as the value for the variable corresponding to the start point sp in the greatest
solution to the constraint system S.

The WP transformers for all program points are characterized by the greatest solution
of the constraint system R:

[smain]
⊺ =⇒ Id

[sp]
⊺ =⇒ [u]⊺ for each (u, p(),_) ∈ E

[v]⊺ =⇒ [u]⊺ ◦ JspK
⊺ for each (u, p(), v) ∈ E

[v]⊺ =⇒ [u]⊺ ◦ JsK⊺ for each (u, s, v) ∈ E,
s assignment

The value for [v]⊺ for program point v is meant to transform every assertion at program
point v, into the corresponding weakest pre-condition at the start point of the program.
Note that the constraint system for characterizing these functions makes use of the weakest
pre-condition transformers of procedures as characterized by the constraint system S.

Assume that we are somehow given the greatest solution of the constraint system R

where [v]⊺ is the corresponding transformation for program point v. In order to determine
all one- or two-variable equalities which are valid when reaching the program point v, we
conceptually proceed as follows:

One-variable Equality.: For a program variable x, let ψ denote the universal closure of
[v]⊺(Ax

.
= C). If ψ = ⊥, then program variable x does not receive a constant value at

program point v. Otherwise ψ is equivalent to an equality As
.
= C where s is ground,

i.e., x
.
= s is an invariant at v.

Two-variable Equality.: For distinct program variables x and y, let ψ denote the universal
closure of [v]⊺(Ax

.
= By). If ψ = ⊥, then no equality between x and y holds. Otherwise,

ψ equals a conjunction
∧

iAsi
.
= Bti of equalities where for each i either si, ti ∈ TΩ
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are ground or si, ti ∈ TΩ(•) \ TΩ are templates. Then r1x
.
= r2y is an invariant at v

iff r1si = r2ti for all i, i.e., any assignment σ with σ(A) = r1, σ(B) = r2 satisfies the
conjunction.

Here, the universal closure of a conjunction φ is given by ∀x1 . . . ∀xn.φ, if the set of program
variables equals X = {x1, . . . ,xn}.

Example 2.2. Consider the main procedure of the program in Section 1, as defined by the
control flow graph in Figure 1. The WP transformer [3]⊺ for the endpoint 3 of the main
program is given by:

[3]⊺ = Jx := aK⊺ ◦ Jy := aK⊺ ◦ J4K⊺

where 4 is the entry point of the procedure p. Assume that

J4K⊺(Ax
.
= By) = (Ax

.
= By) ∧ (Af(x,x)

.
= Bf(y,y))

holds. For the program variables x,y, we therefore obtain:

[3]⊺(Ax
.
= By) = (Ax

.
= By)[a/y][a/x] ∧ (Af(x,x)

.
= Bf(y,y))[a/y][a/x]

= (Aa
.
= Ba) ∧ (Af(a, a)

.
= Bf(a, a))

This assertion does not contain occurrences of the program variables x,y. Therefore, it is
preserved by universal quantification over program variables. Since A = B = • is a solution,
x
.
= y holds whenever program point 3 is reached.

In order to turn these definitions into an effective analysis algorithm, several obstacles must
be overcome. So, it is not clear how general subsumption, as required in our characterization
of the WP transformers, can be decided in presence of template variables. We observe,
however, that instead of general subsumption, it suffices to rely on T -subsumption only
— for a well-chosen subset T ⊆ TΩ. Note that the smaller the set T is, the coarser is the
subsumption relation. In particular for T = ∅, all conjunctions are T -equivalent. Since every
assertion expresses a property of reaching program states, it suffices for our application to
choose T as a superset of all run-time values of program variables.

The following wish list collects properties which enable us to construct an effective
inter-procedural analysis of all two-variable Herbrand equalities:

T -Compactness.: Every occurring conjunction φ is T -subsumed by a conjunction of a
finite subset of equalities in φ.

Effectiveness of subsumption.: T -subsumption for finite conjunctions can be effectively
decided.

Solvability of ground equalities.: The set of solutions of finite systems of equalities with
template variables only, i.e., without occurrences of program variables can be explicitly
computed.

By the first assumption, a standard fixpoint iteration for the constraint systems S and R will
terminate after finitely many iterations (up to T -equivalence). By the second assumption,
termination can effectively be detected, while the third assumption guarantees that for every
program point and every program variable (pair of program variables) the set of all valid
invariants can be extracted out of the greatest solution of R. In total, we arrive at an effective
algorithm for inferring all valid two-variable equalities.

The assumption on decidability of T -subsumption can be further relaxed. Instead, we
provide an approximate notion of T -subsumption which is decidable. Our approximate T -
subsumption implies T -subsumption. Moreover, it is still strong enough to guarantee that
every occurring conjunction of equalities is approximately T -subsumed by a finite subset
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of the equalities. Notions for approximate T -subsumption will be introduced in Sections 5
and 6.

For programs which operate on global as well as local variables, an extension of our pro-
gram model and weakest pre-condition calculus is given in Appendix A. There we introduce
a program model which is general enough in order to model usual concepts of local variables
together with call-by-value parameter parsing and returning of results in dedicated global
variables. Furthermore, we extend the weakest pre-condition calculus in order to deal with
generic post-conditions which contain local program variables.

In the upcoming section, we recall basic properties of the set of terms, possibly con-
taining the variable •. These properties will allow us to deal with conjunctions of equalities
where template variables are applied to ground terms only, i.e., the case of ground equalities.

3. Factorization of Terms

Let TΩ(•) denote the set of terms constructed from the symbols in Ω, possibly together
with the dedicated variable •. In [3], Engelfriet presents the following cancellation and
factorization properties for terms in TΩ(•):

Bottom Cancellation:

Assume that t1 6= t′1. Then s1t1 = s2t1 and s1t
′

1 = s2t
′

1 implies s1 = s2.
Top Cancellation:

Assume • occurs in s. Then st1 = st2 implies t1 = t2.
Factorization:

Assume ti 6= t′i for i = 1, 2. Then s1t1 = s2t2 and s1t
′

1 = s2t
′

2 implies that s1r1 = s2r2
for some r1, r2 each containing • where at least one of the ri equals •. In that case (by
top cancellation), we furthermore have that both r2t1 = r1t2 and r2t

′

1 = r1t
′

2.

Using these cancellation properties, we obtain a complete method for dealing with equalities
without occurrences of program variables.

For one-variable equalities alone, we have the following results concerning subsumption
and compactness:

Theorem 3.1.

(1) A single equality As
.
= C for some ground term s has exactly one solution where A = •.

(2) Consider the conjunction As1
.
= C ∧ As2

.
= C for terms s1 6= s2 containing the same

variable x. If the conjunction is satisfiable, then the value of x is uniquely determined.

Proof. We only prove the second assertion. The conjunction As1
.
= C∧As2

.
= C is equivalent

to the conjunction As1
.
= C∧s1

.
= s2. The most general unifier of s1, s2 maps x to a ground

subterm of s1, s2 if the conjunction is satisfiable.

As a consequence, we obtain:

Corollary 3.2. Consider finite conjunctions of equalities of the form As
.
= C.

(1) Subsumption for these is decidable.
(2) Every satisfiable conjunction is equivalent to a conjunction of at most n + 1 equalities

where n is the number of program variables.

Since the weakest pre-condition of a generic one-variable equality consists of equalities of
the form As

.
= C only, Corollary 3.2 suffices to infer all inter-procedurally valid one-variable

equalities. In the following, we therefore concentrate on the two-variable case where the
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weakest pre-condition consists of conjunctions of equalities of the form As
.
= Bt. First, we

observe:

Theorem 3.3.

(1) A single equality As
.
= Bt for ground terms s, t has only finitely many solutions A =

r1, B = r2, where at least one of the templates r1, r2 equals •.
(2) Consider the conjunction As1

.
= Bt1 ∧As2

.
= Bt2 for ground terms s1 6= s2 and t1 6= t2.

Then it has either no solution or there exists a unique solution A = r1, B = r2, where at
least one of the templates r1, r2 equals •. In the latter case the conjunction is equivalent
to Ar1

.
= Br2.

(3) Consider the finite conjunction
∧k

i=1(Asi
.
= Bti) for ground terms si, ti. Then the set

of all solutions can be effectively computed, where at least one of the templates for A or
B equals •.

Proof. For a proof of the first statement, w.l.o.g. assume that s is at least as large as t. Then
for size reasons, r1 = •. This means that s = r2t must hold. If t is not a subterm of s, there
is no solution at all. Otherwise, i.e., if s contains occurrences of t, then every solution r2 is
obtained from s by replacing a non-empty set of occurrences of t with •.

Now consider the second statement. If the pair of equalities is satisfiable then by fac-
torization, there are templates r1, r2 of which at least one equals • such that Ar1

.
= Br2

holds. Since at the same time r2si
.
= r1ti holds, the equality Ar1

.
= Br2 is equivalent to the

conjunction. Moreover, there is exactly one solution A = r′1, B = r′2 where at least one of
the templates r′i equals •, namely, r′1 = r2, r

′

2 = r1.
Finally, consider the third statement. If k = 1, the assertion follows from statement 1.

Therefore now let k > 1. First assume that for some i, j, si 6= sj and ti 6= tj. Then by
statement 2, the conjunction is unsatisfiable or there is exactly one pair r1, r2 of templates
one of which equals •, such that A = r1, B = r2 is a solution of the conjunction Asi

.
=

Bti∧Asj
.
= Btj. If in the latter case, r1sl

.
= r2tl for all l, we have obtained a single solution.

Otherwise, the conjunction is unsatisfiable. Now assume that no such i, j exists. Then either
the conjunction is unsatisfiable or all equalities are syntactically equal.

Example 3.4. Consider the two equalities:

Af(a, gb, gb)
.
= Bgb Af(a, gc, gb)

.
= Bgc

Then A = • and B = f(a, •, gb) is the only solution for A,B where at least one of the
templates equals •.

Applying the arguments which we used to prove Theorem 3.3, we obtain:

Corollary 3.5. Consider a conjunction
∧n

i=1Asi
.
= Bti with ground terms si, ti.

(1) If it is satisfiable, it is equivalent to the conjunction of at most two conjuncts.
(2) If it is unsatisfiable, there are at most three conjuncts whose conjunction is unsatisfiable.

By Theorem 3.3, the assumption solvability of ground equalities from Section 2 is met.
Thus, it remains to solve the constraint systems S and R, i.e., to construct an approximate
T -subsumption relation which is both effective and guarantees that every conjunction is
approximately T -subsumed by the conjunction of a finite subset of equalities. In order to
construct such a relation, we require stronger insights into the structure of templates and
their compositions. Let CΩ denote the subset of all terms in TΩ(•) which contain at least one
occurrence of •, i.e., CΩ = TΩ(•) \TΩ. The terms in CΩ have also been called templates. The
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set CΩ, equipped with substitution, is a free monoid with neutral element •. This monoid
consists of finite products of the irreducible elements in CΩ. As usual, we call an element t
irreducible if t cannot be non-trivially decomposed into a product, i.e., t = uv implies that
t = u with v = • or t = v with u = •. Note that there are infinitely many irreducible
elements in CΩ — whenever Ω contains constructors of rank exceeding 1.

While templates can be uniquely factored, this is no longer the case for ground terms,
i.e., terms without variable occurrences.

Example 3.6. Consider the ground term t = h(f(h(1), h(1))), together with the templates
s1 = h(f(•, h(1))), s2 = h(f(h(1), •)) and s3 = h(f(•, •)). All these three templates are
distinct. Still,

t = s1 h(•) 1 = s2 h(•) 1 = s3 h(•) 1

Thus, unique factorization of arbitrary ground terms cannot be hoped for. Still, we observe
that unique factorization can be obtained — at least up to any fixed finite set of ground
terms. Let G denote a finite set of ground terms which is closed by subterms.

Let MG denote the sub-monoid of all templates m ∈ CΩ whose ground subterms all are
contained in G. Then we have:

Theorem 3.7. Assume that S ⊆ TΩ which is closed by subterms. If G ⊆ S, then every
ground term t ∈ TΩ \ S, can be uniquely factored into t = mx such that

(1) m ∈MG and x 6∈ S;
(2) x is minimal with property (1), i.e., there exists no x′ ∈ TΩ \ S such that x = sx′ for

some s ∈MG \ {•}.

Proof. Since MG ⊆ CΩ, every term in MG is uniquely factorizable.
Let t = m1x1 = m2x2 with mi ∈ MG and xi ∈ TΩ \ S are minimal according to

property (2) for i = 1, 2. Then either m1 = m2m
′ or m2 = m1m

′ for some m′ ∈ MG holds.
Otherwise, we have a contradiction to the assumption that m1x1 = m2x2 holds. Consider
the case where m1 6= m2, i.e., m′ 6= •. If m1 = m2m

′, then we conclude that m′x1 = x2
holds. This means, that x2 is not minimal according to property (2) which is a contradiction
to our assumption. A similar argument holds for m2 = m1m

′. Now consider the case where
m1 = m2, then also x1 = x2 from which the assertion of the theorem follows.

Example 3.8. Consider the term

t = f(h(f(2, h(1))), h(f(2, h(1))))

and assume that the set G of forbidden ground subterms is given by G = {h(1), 1} and
S = G. Then t can be decomposed into:

f(•, •) h(•) f(•, h(1)) 2

If on the other hand, S = G = {2}, we obtain the decomposition:

f(•, •) h(•) f(2, •) h(•) 1

If finally, S and G are empty, the term x of Theorem 3.7 is the minimal subterm such that
the occurrences of x contains all ground leaves of t. This means that x = f(2, h(1)), and we
obtain the decomposition:

f(•, •) h(•) f(2, h(1))
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The unique decomposition of the ground term t claimed by Theorem 3.7, is constructed
as follows. Let X denote the set of minimal subterms x′ of t such that x′ 6∈ G. Then we
construct the least subterm x 6∈ S of t such that all occurrences of subterms x′ ∈ X in t are
contained in some occurrence of x. This subterm is uniquely determined. Then define m
as the term obtained from t by replacing all occurrences of x with •. This term m is also
uniquely determined with t = mx. Moreover by construction, all ground subterms of m are
contained in G.

Example 3.9. Consider the program from Example 2.1. In this program, no non-ground
right-hand side contains ground subterms. Accordingly, the set G is empty. Since the only
ground right-hand side equals the atom a, the decomposition Theorem 3.7 allows to uniquely
decompose all run-time values of this program into right-hand sides of assignments.

Theorem 3.7 allows to extend the monoidal techniques of Gulwani et al. [8] for unary
operators to programs where all run-time values can be uniquely factorized into right-hand
sides. This extension is given in Section 5. The general case where unique factorization
of all run-time values can no longer be guaranteed, subsequently is presented in Section 6.
For completeness reasons, we also present simplified versions of the algorithms for monoidal
equalities from [8] in the next section.

4. Equalities over a Free Monoid

Consider a free monoid MΣ with set of generators Σ. As usual, the neutral element of MΣ

is denoted by ǫ. Let FΣ be the corresponding free group. FΣ can be considered as the free
monoid generated from Σ ∪ Σ− (where Σ− = {a− | a ∈ Σ} is the set of formal inverses of
elements in Σ with Σ ∩ Σ− = ∅) modulo exhaustive application of the cancellation rules
a · a− = a− · a = ǫ for all a ∈ Σ. In particular, the neutral element of FΣ is given by ǫ, and
the inverse g−1 of an element g = a1 · · · ak, ai ∈ Σ∪Σ−, is given by g−1 = a−1

k · · · a−1
1 where

x−1 = x− and (x−)
−1

= x for x ∈ Σ.
For every w ∈ MΣ∪Σ− , the balance |w| is the difference between the number of occur-

rences of positive and negative letters in w, respectively. Formally, the balance is inductively
defined by

|ǫ| = 0
|aw| = |w| + 1 if a ∈ Σ
|aw| = |w| − 1 if a ∈ Σ−

Thus, |aba−b−c| = 1 and |a−b| = 0. Note that the balance stays invariant under application
of the cancellation rules. Also, |uv| = |u| + |v| and |u−1| = −|u|. Accordingly, the balance
|·| : FΣ → Z is a group homomorphism. Furthermore, we call w non-negative if |w′| ≥ 0 for
all prefixes w′ of w. This property is also preserved by cancellation and concatenation but
not by inverses. Instead, we have:

Lemma 4.1. If both u, v ∈ MΣ∪Σ− are non-negative, and |u| ≥ |v| then also uv−1 is non-
negative.

Proof. Consider a prefix x of uv−1. If x is a prefix of u, |x| ≥ 0 since u is non-negative.
Otherwise, x = uv′−1 for some suffix v′ of v. Then |v′| ≤ |v|, since v is non-negative.
Therefore, |uv′−1| = |u| − |v′| ≥ |u| − |v| ≥ 0.
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We consider equalities of the form:

AuA−1 = Bu′B−1 (4.1)

where A,B are variables which take values in MΣ, and u, u′ ∈ MΣ∪Σ− are maximally can-
celed. If the equality is satisfiable, then necessarily |u| = |u′| holds. Assume from now on
that u, u′ are maximally canceled, and |u| = |u′|. Furthermore, we assume that u, u′ are
both non-negative. We then have:

Lemma 4.2. If |u| = |u′| = 0, then the equality (4.1) is either trivial, is equivalent to an
equality As = B or an equality A = Bs for some s ∈MΣ or is contradictory.

Proof. Assume u = ǫ. Then B = Bu′. Thus either u′ = ǫ and the equality is trivial, or
u′ 6= ǫ and the equality is contradictory.

Therefore, assume that u 6= ǫ 6= u′. Then u and u′ must be of the form u = xyz−1,
u′ = x′y′z′−1 for maximal x, x′, z, z′ ∈ MΣ, i.e., y, y′ each are either equal to ǫ or of the
form a−wb for some a, b ∈ Σ. Then all x, x′, z, z′ are different from ǫ. Then equality (4.1) is
equivalent to:

Ax = Bx′ ∧ y = y′ ∧Az = Bz′

By bottom cancellation, these three equalities either are equivalent to one fixed relation
between As = B or A = Bs for some s ∈MΣ, or to a contradiction.

Example 4.3. Consider the equality

Affg−1f−1A−1 .
= Bfg−1B−1

which is, according to Lemma 4.2, equivalent to

Aff
.
= Bf ∧ ǫ

.
= ǫ ∧Afg

.
= Bg

By bottom cancellation, we conclude that the conjunction is equivalent to a solved equality
Af

.
= B.

Now assume that there is another equality:

AvA−1 = Bv′B−1 (4.2)

with non-negative v, v′ where |v| = |v′|.

Theorem 4.4. The two equalities (4.1) and (4.2) are effectively equivalent either to one
solved equality, or to a single equality of the form (4.1) or are contradictory.

Proof. We perform an induction on the sum of balances |u| + |v|. W.l.o.g. assume that
|u| ≥ |v|. If |v| = 0, then the assertion follows from Lemma 4.2. Therefore, assume that
|v| > 0, and r ≥ 1 is the maximal number such that |vr| = r·|v| ≤ |u|. Then we construct the
elements uv−r and u′v′−r, which are both non-negative by Lemma 4.1. Let w,w′ be obtained
from uv−r and u′v′−r by exhaustively applying the cancellation rules. By construction, these
are non-negative as well. Then we consider the equality:

AwA−1 = Bw′B−1 (4.3)

which is implied by the two equalities (4.1) and (4.2).
If w = ǫ, then either w′ = ǫ holds and the equality (4.3) is trivial, or w′ 6= ǫ and

equality (4.3) is contradictory. In the first case, the equality (4.2) is implied by equality (4.1),
while in the second case the two given equalities (4.1) and (4.2) are contradictory. The same
argument applies when w′ = ǫ with the roles of A,B exchanged. Therefore now assume that
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w 6= ǫ 6= w′. Otherwise, the pair of equalities (4.1) and (4.2) is equivalent to the pair of
equalities (4.2) and (4.3), where the sum of balances |w|+ |v| ≤ |w|+ r · |v| = |u| < |u|+ |v|
has decreased. For these, the claim follows by inductive hypothesis.

In [8] a similar argument is presented. The argument there together with the resulting
algorithm has been significantly simplified by introducing the extra notion of non-negativity.

5. Initialization-restricted Programs

In the subsequent let R be the set of ground right-hand sides of assignments, and G be
the set of ground subterms of non-ground right-hand sides of assignments of our program.
Then generally, each value x possibly constructed at run-time by the program is of the form
x = x′r where x′ ∈MG and r ∈ R.

Lemma 5.1. Each program variable in X ranges over the set MGR.

This means that for pre-conditions φ possibly occurring in a WP calculation for a
program invariant, we are only interested in variable assignments σ which map each program
variable x to a possible run-time value for x, i.e., to a value from the set MGR. In the
subsequent let

T :=MGR and T ′ :=MGX

then during the WP computation template variables are applied to ground terms in T
and non-ground terms in T ′ only. Henceforth, we therefore no longer consider general
satisfiability, equivalence and subsumption, but only T -satisfiability, T -equivalence and T -
subsumption. This restriction is crucial for the generalization of the monoidal techniques
from [8]. In the following, we first consider the sub-class of programs p where set R of ground
right-hand sides of p satisfies the two properties:

(1) R ∩G = ∅.
(2) The elements in R are mutually incomparable ground terms, i.e., for r1, r2 ∈ R, r1 is a

subterm of r2 iff r1 = r2.

The program p then is called initialization-restricted (IR for short).

Example 5.2. Assume that the non-ground right-hand sides of assignments of a program
are f(x, h(1)) and f(2, h(y)). Then the set G is given by G = {1, h(1), 2}. A suitable set R
of ground right-hand sides might be, e.g., R = {0, a}.

Our condition here is not as restrictive as it might seem. Programs where each variable is
initialized by a non-deterministic assignment, are all IR. The same holds true for programs
where all non-ground right-hand sides of assignments do not contain ground terms, and
variables are initialized with atoms only. The latter property is met by our Example 2.1.
By suitably massaging variable initializations, it also comprises all programs using monadic
operators only (as in [8]).

We distinguish between two-variable equalities of the following formats:

[Fx,y] Asx
.
= Bty where s, t ∈MG

[F·,x] As
.
= Btx where s ∈ T and t ∈MG

[Fx,·] Atx
.
= Bs where s ∈ T and t ∈MG

For each format separately, we observe:

Theorem 5.3.
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T -subsumption.: For finite sets E,E′ of two-variable equalities of the same format it is
decidable whether

∧

E T -subsumes
∧

E′ or not.
T -compactness.: Every T -satisfiable conjunction of a set E of two-variable equalities of

the same format is T -subsumed by a conjunction of a subset of at most three equalities
in E.

Proof. In order to prove the theorem we show that every T -satisfiable conjunction of equali-
ties of the same format is effectively T -subsumed by a conjunction of at most three equalities.
Furthermore, the proof indicates that, given three equalities, it can be effectively decided
whether or not a fourth equality is T -subsumed or not. We consider one case of the assertion
of the theorem after the other.

Same variable on both sides. Consider the two distinct equalities

As1x
.
= Bt1x As2x

.
= Bt2x

where si, ti ∈MG, and assume that the conjunction of them is T -satisfiable. We claim that
then s1x 6= s2x and t1x 6= t2x. For that, we convince ourselves first that s1 6= s2 and
t1 6= t2 must hold. Then for a contradiction, assume that s1x

.
= s2x. Since s1 6= s2, their

unifier must map x to a ground term of s1 and s2. These ground terms are all contained
in G, whereas we only consider values for x in MGR, which is disjoint from G. A similar
argument also shows that t1x 6= t2x holds. Thus by factorization, Ar1

.
= Br2 must hold for

some r1, r2 ∈MG of which at least one equals •. Due to unique factorization, we then may
cancel x on both sides, resulting in the equalities As1

.
= Bt1 and As2

.
= Bt2. These can be

simplified to one equality Ar1
.
= Br2 for some r1, r2 ∈ MG where ri = • for at least one i.

Hence, the second equality is T -subsumed by the first one.
One-sided single variable. Consider the three distinct equalities

As1
.
= Bt1x As2

.
= Bt2x As3

.
= Bt3x

where si ∈ MGR and ti ∈ MG, and assume that the conjunction of them is T -satisfiable.
Again, we argue that all si must be distinct as well as all tix. Then again by factorization,
Ar1

.
= Br2 for some templates r1, r2 of which at least one equals •. By unique factorization,

s1 = s′1r for some s′1 ∈ MG and r ∈ R. Therefore, again by unique factorization, the value
for x also must terminate in the term r, i.e., is of the form x = x′r for some x′ ∈ MG.
Accordingly, also s2, s3 can be factored as si = s′ir for suitable s′i ∈ MG. Canceling out the
ground terms r, we obtain the monoid equalities:

As′1
.
= Bt1x

′ As′2
.
= Bt2x

′ As′3
.
= Bt3x

′

Assume w.l.o.g., that the balance of s1 is less or equal to the balances of s2 and s3. Then
the conjunction of the three equalities is T -equivalent to:

As′1
.
= Bt1x

′ As′2s
′

1
−1
A−1 .

= Bt2t
−1
1 B−1 As′3s

′

1
−1
A−1 .

= Bt3t
−1
1 B−1

where s′2s
′

1
−1, t2t

−1
1 , s′3s

′

1
−1, t3t

−1
1 all are non-negative. According to Theorem 4.4, the two

last equalities are either T -equivalent to each other, which means that the initial conjunction
is T -equivalent to the conjunction of the two equalities

As1
.
= Bt1x As2

.
= Bt2x

and the assertion follows. Otherwise, they are T -equivalent to an equality Ar1
.
= Br2 for

templates r1, r2 of which at least one equals •. A fourth equality is then either T -subsumed
or falsifies the conjunction of equalities. A similar argument applies to equalities of the form
Atix

.
= Bsi.
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Different variables on both sides. Consider the three distinct equalities

As1x
.
= Bt1y As2x

.
= Bt2y As3x

.
= Bt3y

for distinct program variables x,y where si, ti ∈ MG, and assume that the conjunction of
them is T -satisfiable. As before, we argue that six 6= sjx, tiy 6= tjy for all i 6= j must hold.
Then by factorization, A is a prefix of B or vice versa. But then, due to unique factorization,
also As1 is a prefix of Bt1 or vice versa. This means that there are u,v ∈MG of which one
equals • such that As1u

.
= Bt1v, which (by top cancellation) implies that vx = uy holds.

From that, we conclude that Asiu
.
= Btiv for all i. Assume again w.l.o.g. that the balance

of s1 is less or equal to the balances of s2 and s3. We then proceed as in the last case to
obtain the T -equivalent three equalities:

As1u
.
= Bt1v As2s

−1
1 A−1 .

= Bt2t
−1
1 B−1 As3s

−1
1 A−1 .

= Bt3t
−1
1 B−1

where s2s
−1
1 , t2t

−1
1 , s3s

−1
1 , t3t

−1
1 all are non-negative. According to Theorem 4.4, the latter

two equalities again are T -equivalent to an equality Ar1
.
= Br2 for templates r1, r2 of which

at least one equals •, or are T -equivalent to each other, and the assertion of the theorem
follows. This completes the proof.

It relies on the unique factorization property together with the monoidal techniques from
Section 4. Since T -subsumption is decidable, at least for equalities of the same format, we
define an approximate T -subsumption relation

∧

E =⇒♯
∧

E′ for conjunctions of equalities
as follows. Let EF and E′

F denote the subsets of equalities of the same format F in E and

E′, respectively. Then
∧

E =⇒♯
∧

E′ holds iff
∧

EF T -subsumes
∧

E′

F for all formats F .
Hence, by Theorem 5.3, we obtain:

Corollary 5.4. Assume that n is the number of program variables.

Approximate T -subsumption.: For finite sets E,E′ of two-variable equalities, it is de-
cidable whether

∧

E approximately T -subsumes
∧

E′ or not.
Approximate T -compactness.: Every T -satisfiable conjunction of a set E of two-variable

equalities is approximately T -subsumed by a conjunction of a subset of at most O(n2)
equalities in E.

Overall, we therefore conclude for IR programs:

Theorem 5.5. Assume that p is an IR program. Then for every program point u, the set of
all two-variable equalities can be determined that are valid when reaching program point u.

Proof. By Corollary 5.4, the greatest solutions of the constraint systems S and R can be
effectively computed. Let [u]⊺, u program point, denote the greatest solution of the system
R. Then the set of valid equalities sx

.
= ty between program variables x, y is given by the set

of solutions to a system of ground equalities which are obtained by universal quantification
over all program variables of the conjunction of equalities [u]⊺(Ax

.
= By). By Theorem 3.3,

a representation of the set of solutions for the template variables A,B in this conjunction
can be explicitly computed. Likewise, the set of valid equalities x

.
= t for program variable

x and ground term t can be extracted from the universal quantification over all program
variables of the conjunction of equalities [u]⊺(Ax

.
= C). The resulting conjunction may

either equal ⊥ (no constant value for x) or contain only the variable C. Consequently, the
possible constant value for x and program point u can also be effectively computed. This
completes the proof.
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Table 1: Round-Robin iteration for the procedure p from Figure 1
1 2 3

7 Ax
.
= By

6 Ax
.
= Bf(•, •)y

5 ⊤ Ax
.
= Bf(•, •)y Af(•, •)x

.
= Bf(•, •)f(•, •)y

4 Ax
.
= By Af(•, •)x

.
= Bf(•, •)y Af(•, •)f(•, •)x

.
= Bf(•, •)f(•, •)y

Example 5.6. According to our constructions in Section 2 and Theorem 3.3, the set of
all inter-procedurally valid assertions can be obtained from the greatest solutions to the
constraint systems S and R. Consider, e.g., the constraint system R for the recursive pro-
cedure p from Section 1, as defined by the control flow graph of Figure 1. If Round-Robin
iteration is applied to calculate the transformers JuK⊺ for the program points u = 4, 5, 6, 7,
we obtain for the generic post-condition Ax

.
= By the result depicted by Table 1 where in

the ith column, we have only displayed pre-conditions which have additionally been attained
in the ith iteration for the program points 7, 6, 5 and 4, respectively. For convenience, we
have displayed the terms in equalities according to their unique factorizations. For program
point 4, the two equalities after the second iteration, imply:

Af(•, •)A−1 .
= Bf(•, •)B−1

The second equality for program point 4 together with this identity imply that

Af(•, •)A−1Af(•, •)x
.
= Bf(•, •)B−1Bf(•, •)y

from which the third equality for program point 4 as provided by the third iteration follows.
Thus, Round-Robin fixpoint iteration reaches the greatest fixpoint after the third iteration.

6. Unrestricted Programs

Our analysis of IR programs relied on the fact that all run-time values of program variables
can be uniquely factorized. This was possible since in IR programs the “bottom end” of
values can be uniquely identified by means of the ground right-hand sides from R. In
general, though, ground right-hand sides could very well also occur as subterms of other
right-hand sides in the program. In this case, we can no longer assume that R serves as
such a handy set of end marker terms. At first sight, therefore, the monoidal method seems
no longer applicable. A second look, however, reveals that the monoidal method essentially
fails only, where program variables take small values. Again, let R and G denote the set
of all ground right-hand sides and the set of all ground subterms of non-ground right-hand
sides of assignments in the program, respectively. We call a term in MGR small if it is a
ground subterm of a right-hand side of an assignment. Let us denote the (finite) set of all
small terms by S. Thus in particular, R ⊆ S. The terms in MGR which are not small, are
called large, i.e., we then have:

T :=MGR = S ⊎ L

Example 6.1. Consider the program fragment consisting of the statements:

x1 := a; x2 := f(x1, a); x3 := g(x2, f(a, a))
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Then a is a ground right-hand side, and f(a, a) is a ground subterm of a non-ground right-
hand side, i.e., a ∈ R and f(a, a) ∈ G. Since the term f(a, a) is also contained in MGR, it
is small.

Let R̄ be the set of minimal elements in MGR which are large, i.e., not contained in S.
Then by Theorem 3.7, every large term t can be uniquely factored such that t = t′r where
t′ ∈MG and r ∈ R̄. We then have for small and large terms:

S :=MGR ∩ (R∗ ∪G) and L :=MGR̄

where R∗ is the subterm closure of R. For small terms, i.e., for terms in S, on the other
hand, we cannot hope for unique factorizations. Since there are finitely many small terms
only, we take care of small terms by two means:

• We restrict the formats [Fx,·] and [F·,x] from the last section to the case where the occurring
ground terms are large and introduce dedicated sub-formats [Fx,s] and [Fs,x] for each small
term s in the equalities.

• For T -subsumption, we single out the case of subsumption w.r.t. assignments of large
terms only and treat subsumption w.r.t. assignments assigning small terms separately.

The set of non-ground terms is again given as T ′ := MGX. Thus, we now consider the
following formats of two-variable equalities:

[Fx,y] Asx
.
= Bty where s, t ∈MG

[F·,x] As
.
= Btx where s ∈ L and t ∈MG

[Fs,x] As
.
= Btx where s ∈ S and t ∈MG

[Fx,·] Atx
.
= Bs where s ∈ L and t ∈MG

[Fx,s] Atx
.
= Bs where s ∈ S and t ∈MG

In the following, let us call a substitution σ of program variables small, if for every program
variable x, σ(x) either equals x or is a small ground term. The notions of satisfiability, equiv-
alence and subsumption restricted to the set T can be inferred by means of the corresponding
notions restricted to the set L of large terms only. We have:

• A conjunction φ of equalities is T -satisfiable iff there is a small substitution σ such that
σ(φ) is L-satisfiable.

• A conjunction φ T -subsumes an equality e, iff for every small substitution σ, σ(φ) L-
subsumes σ(e).

According to this observation, it seems plausible to consider the analogue of Theorem 5.3
for L-subsumption and L-compactness only. We obtain:

Theorem 6.2.

L-subsumption.: For finite sets E,E′ of two-variable equalities of the same format it is
decidable whether

∧

E L-subsumes
∧

E′ or not.
L-compactness.: Every L-satisfiable conjunction of a set E of two-variable equalities of

the same format is L-subsumed by a conjunction of a subset of at most three equalities
in E.

Proof. For equalities of the formats [Fx,y], [Fx,·], [F·,x] the proofs are analogous to the cor-
responding proofs for Theorem 5.3 where the set T is replaced with the set L = MGR̄, i.e.,
instead of the set R we rely on the set R̄ of unique end marker terms.

Now consider equalities of the format [Fs,x] for a small term s ∈ S. W.l.o.g. let As
.
=

Btx and As
.
= Bt′x be two equalities of this format. If t 6= t′, then their conjunction is
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either contradictory, or tx, t′x have a ground unifier which maps x to a value from G — in
contradiction to the assumption that x takes values from L only.

Therefore, each conjunction of a set E of equalities of the format [Fs,x] either is L-
equivalent to ⊥ or to a single equality in E, and the assertion of the theorem follows. The
same argument also applies for the format [Fx,s].

Given that L-subsumption is decidable, at least for equalities of the same format, and that
also L-compactness holds, we define an approximate T -subsumption relation

∧

E =⇒♯
∧

E′ as follows. Let EF and E′

F denote the subsets of equalities of format F , in E and

E′, respectively. Then
∧

E =⇒♯
∧

E′ holds iff for all small substitutions σ,
∧

σ(EF )
L-subsumes

∧

σ(E′

F ) for all formats F . As a consequence of Theorem 6.2, we obtain:

Theorem 6.3. Assume that n is the number of program variables and m is the cardinality
of the set S of small terms.

Approximate T -subsumption.: For finite sets E,E′ of two-variable equalities, it is de-
cidable whether

∧

E approximately T -subsumes
∧

E′ or not.
Approximate T -compactness.: Every T -satisfiable conjunction of a set E of two-variable

equalities is approximately T -subsumed by a conjunction of a subset of at most O(n2 ·m2)
equalities in E.

Proof. In the following we consider equalities of formats which contain either one or two
program variables.

One program variable.: Let E′ denote a subset of equalities of E of the same format
which contains only the program variable x. Then for every c ∈ S we construct a subset
E′

c ⊆ E′ such that
∧

E′
c[c/x] T -subsumes

∧

E′[c/x]. Furthermore, we construct a subset
E′

L ⊆ E′ which L-subsumes E′. Then the conjunction of
⋃

c∈S E
′
c ∪ E

′

L T -subsumes the
conjunction of E′.

For each set E′

c we require at most two equalities (according to Corollary 3.5) while
for the set E′

L we require at most three equalities (according to Theorem 6.2). Thus,
overall, at most 2m+ 3 equalities are required.

Two program variables.: Let E′ denote a subset of equalities of E of format [Fx,y] which
contains only the distinct program variables x,y. We proceed as follows.
(1) For every c ∈ S, we construct a set E′

c,y ⊆ E′ such that
∧

E′
c,y[c/x] T -subsumes

∧

E′[c/x].
(2) For every c ∈ S, we construct a set E′

x,c ⊆ E′ such that
∧

E′

x,c[c/y] T -subsumes
∧

E′[c/y].
(3) Finally, we construct a set E′

L ⊆ E′ such that
∧

E′

L L-subsumes
∧

E′.
Then the conjunction of

⋃

c∈S E
′
x,c ∪ E

′
c,y ∪ E′

L T -subsumes the conjunction of E′.
For each set E′

x,c resp. E′

c,y we require at most 2m+3 equalities. While for the set E′

L

we require at most three equalities (according to Theorem 6.2). Thus, overall, at most
4m2 + 6m+ 3 equalities are required for E′.

For each program variable x we distinguish between 2m+ 3 different formats ([Fx,s], [Fs,x],
s ∈ S, and [Fx,x],[Fx,·], and [F·,x]) of equalities. While for two distinct program variables
we only have one format [Fx,y] of equalities. Hence we conclude that every conjunction E
is T -subsumed by a conjunction of a subset of E which contains at most

n · (2m+ 3) · (2m+ 3) + n · (n − 1) · (4m2 + 6m+ 3) ∈ O(n2 ·m2)

equalities. This completes the proof.
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Table 2: Round-Robin iteration of Example 6.5
1 2 3

7 Ax
.
= By

6 Ax
.
= Bf(y, a,y)

5 ⊤ Ax
.
= Bf(y, a,y) Af(x, a,x)

.
= Bf(f(y, a,y), a, f(y, a,y))

4 Ax
.
= By Af(x, a,x)

.
= Bf(y, a,y) Af(f(x, a,x), a, f(x, a,x))

.
= Bf(f(y, a,y), a, f(y, a,y))

Due to Theorem 6.3, representations of the greatest solutions of the constraint systems
S and R can be effectively computed. By that, we arrive at our main result:

Theorem 6.4. Assume that all right-hand sides of assignments of a program contain at
most one variable. Then all valid inter-procedurally two-variable Herbrand equalities can be
inferred.

The proof is analogous to the proof of Theorem 5.5 — only that Theorem 6.3 is used instead
of Corollary 5.4.

Example 6.5. Consider a variant of the program from Section 1 where the non-ground
assignments are given by:

x := f(x, a,x) and y := f(y, a,y)

The set of small terms then is given by S = {a}, while the set of smallest large terms is
given by R̄ = {f(a, a, a)}.

Now consider the constraint system R for the recursive procedure p as defined by the
control flow graph of Figure 1 with the modified assignments. Let us concentrate on the start
point 4 of p. Round-Robin iteration for the transformer J4K⊺ for the generic post-condition
Ax

.
= By, successively will produce the equalities depicted by Table 2, where in the ith

column, we again only have displayed pre-conditions which have additionally been attained
in the ith iteration for the program points 7, 6, 5 and 4, respectively. For program point 4,
we can argue as in Example 5.6 in order to verify that the first two equalities L-subsume
the third one. Therefore, it remains to consider the given iteration for any small assignment
to the program variables x,y.

If x = y = a, then A = B must hold and the third equality is implied. If x = a, but y

is bound to large terms, then the first equality is of the format [Fa,y] while the subsequent
equalities are of the format [F·,y]. Accordingly, the first equality must be kept separately.
For the second and third equalities the techniques from Theorem 6.2 again allow to derive
the monoidal equality:

Af(•, a, •)A−1 .
= Bf(•, a, •)B−1

implying that the equality provided in the fourth iteration will be subsumed. A similar
argument applies to the case where y = a while x is bound to large values only. Thus,
Round-Robin fixpoint iteration reaches the greatest fixpoint after the fourth iteration.

7. Multi-variable Equalities

In this section, we extend our methods to arbitrary equalities such as

x
.
= f(gy, z)



22 S. SCHULZE FRIELINGHAUS, M. PETTER, AND H. SEIDL

where, w.l.o.g., the left-hand side is a plain program variable while the right-hand side is a
term possibly containing occurrences of more than one variable. Still, we consider programs
where each right-hand side of an assignment contains occurrences of at most one variable
only. Here, we indicate how for any program point v and any given candidate Herbrand
equality x

.
= t, we verify whether or not the equality is valid whenever v is reached. There

are only constantly many candidate equalities of this form, namely, all equalities which hold
for a variable assignment σv computed by a single run of the program reaching v. Since
such a single run can be effectively computed before-hand, we conclude:

Theorem 7.1. Assume that all right-hand sides of assignments of a program contain at
most one variable. Then all inter-procedurally valid Herbrand equalities can be inferred.

Now consider the single Herbrand equality x
.
= t, where t contains occurrences of the

program variables y1, . . . ,yk. Then we construct new generic post-conditions as follows.
First, we consider all substitutions σ which map each variable yi in t either to a fresh
template variable Ci or an expression Aiy

′

i for a fresh template variable Ai and any program
variable y′

i. Then the new generic post-conditions are of the form x′ .= t′ where x′ is any
program variable, and t′ is a subterm of tσ. Note that this set may be large but is still finite.
In a practical implementation, we may, however, tabulate for each procedure the weakest
pre-conditions only for those post-conditions which are really required. Since we envision
that for realistic programs, only few of these equalities for each procedure will be necessary
to prove the queried assertion e at target point u, the potential exponential blow-up will
still be not an obstacle.

Example 7.2. Assume the equality we are interested in is x
.
= f(gy, z), then, e.g.,

x
.
= f(gA1y, A2z) y

.
= f(gA1x, A2z)

are new generic post-conditions to be considered, as well as

z
.
= f(gC,Ay) y

.
= f(gAz, C)

Starting from a new generic post-condition x
.
= p, repeatedly computing weakest pre-

conditions w.r.t. assignments may result in conjunctions of equalities which can be simplified
to one of the following forms:

• s
.
= Ci or s

.
= Aiti where s and ti contain occurrences of at most one program variable

each;
• y

.
= p′, i.e., the left-hand side is a plain program variable, and the right-hand side p′ is

obtained from a subterm of p by substituting each occurrence of a program variable yi

with some term ti containing occurrences of at most one program variable each.

Example 7.3. Consider, e.g., the generic post-condition x
.
= f(gA1y, A2z). Then

Jx := f(x, hx)K⊺(x
.
= f(gA1y, A2z)) = f(x, hx)

.
= f(gA1y, A2z)

= (x
.
= gA1y) ∧ (hx

.
= A2z)

which means that we equivalently obtain two two-variable equalities. Likewise, for an as-
signment to one of the program variables on the right, we have:

Jy := f(b,y)K⊺(x
.
= f(gA1y, A2z)) = x

.
= f(gA1f(b,y), A2z)

which is an equality of the form described in the second item.
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The equalities from the first item contain at most one program variable on each side. They
can be dealt with in the same way as we did for plain two-variable equalities. They are
even somewhat simpler, in that only one template variable occurs (instead of two). The
equalities of the second item, on the other hand, we may group into equalities which agree
in the variable on the left as well as in the constructor applications outside the template
variables Ai. Of each such group it suffices to keep exactly one equality. Any conjunction
with another equality from the same group will allow us to simplify the second equality to
a conjunction of equalities with at most one program variable on each side.

Example 7.4. Assume that we are given the conjunction of the two equalities:

x
.
= f(gA1y, A2z) x

.
= f(gA3hy, A4gz)

This conjunction is equivalent to the first equality together with:

f(gA1y, A2z)
.
= f(gA3hy, A4gz)

The latter equality, now, is equivalent to the conjunction of:

A1y
.
= A3hy A2z

.
= A4gz

which is a finite conjunction of two-variable equalities.

Thus, in the course of WP computation for any of the new generic post-conditions, we
obtain conjunctions which (up to finitely many exceptions) consists of two-variable equalities
only, to which we can apply our methods from Section 6. In summary, we thus find that it
can be effectively verified whether or not a general Herbrand equality is inter-procedurally
valid at a given program point v.

8. Analysis of Computational Complexity

In the following we indicate how our algorithms for inferring inter-procedurally valid Her-
brand equalities can be realized in polynomial time. Crucial for the complexity is the size of
representations of occurring terms. Note that already the factorization of a term results in
a succinct representation by sharing isomorphic subtrees. Still, the depth of occurring terms
may grow exponentially in a program with procedures.

Example 8.1. Consider the following program fragment consisting of procedures pn and
two global variables x and y:

pi { pi−1(); pi−1(); }

p0 { x := f(x,x); y := f(y,y); }

The weakest pre-condition of a generic post-condition Ax
.
= By for a procedure pn is then

given by a single equality Af(•, •)2
n

x
.
= Bf(•, •)2

n

y with exponentially deep terms on both
sides of the equality.
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Hence, in order to arrive at polynomial algorithms, polynomially sized representations
must be provided for all occurring terms which additionally support the required operations
on terms in polynomial time. For trees, tree straight-line programs (TSLP, for short) have
been proposed which efficiently represent trees by context-free tree grammars (see [25, 15]
for recent overviews). Polynomial algorithms for equality of the represented trees, however,
are only known in case that the tree grammars in question are linear — meaning that each
parameter of a rule occurs in the corresponding right-hand side at most once. Our fac-
torizations of trees, however, may easily introduce non-linear terms. Therefore, we apply
compression only to elements from the free monoid MG. We use ordinary straight-line pro-
grams (SLP for short) — but with the understanding that individual letters are irreducible
trees. For plain symbols (corresponding to unary constructors only), algorithms based on
such a representation have been sketched in [8]. Thus in our application, an SLP P of size
k consists of a sequence of definitions

Xi → αi i = 1, . . . , k

where either k = 1 and αi = •, or each right-hand side αi is either of the form XjXl for
unknowns Xj,Xl with i < j, l or a single irreducible term t ∈MG. Given a suitable ordering
on the unknowns together with an initial unknown, we may consider P also as a set of
definitions of unknowns. Beyond the size, we are also interested in the depth, i.e., the length
h of the longest chain of unknowns Y1, . . . , Yh in P such that Y1 → α1Y2α

′

1, . . . , Yh−1 →
αh−1Yhα

′

h−1 occur among the definitions in P for suitable αi, α
′

i. An SLP can also be
considered as a context-free grammar (in Chomsky Normal Form) generating a single term
in MG. Formally, the term JP K represented by P is defined by JP K = JX1KP where

JXiKP = JXjKP JXlKP (Xi → XjXl) ∈ P

JXiKP = t (Xi → t) ∈ P and t ∈MG

We remark that in linear time in the size of P , we can determine the length of the represented
element in MG, which is defined by:

‖Xi‖P = ‖Xj‖P + ‖Xl‖P (Xi → XjXl) ∈ P

‖Xi‖P = 0 (Xi → •) ∈ P

‖Xi‖P = 1 (Xi → t) ∈ P and t ∈MG \ {•}

An SLP in Chomsky normal form of size k cannot produce a word larger than 2k. Therefore,
the length of each word which it generates can be described by k bits. For such numbers,
basic operations as equality and addition can be done in linear time in k.

In order to avoid repeated computation of lengths, we assume that every unknown
occurring during the analysis will once for all be annotated with its length. For later use,
we collect a set of basic algorithms for SLPs (see, e.g., [14]).

Theorem 8.2. The following tasks can be realized in polynomial time:

(1) Given an SLP P representing a term t ∈ MG. Determine an SLP Q for the reverse of
t such that Q has the same size and depth as P .

(2) Given an SLP P representing a term t ∈ MG of some length k, and some number
0 ≤ h ≤ k. Determine an SLP Q for the prefix (suffix) of t of length h. The number of
new definitions in Q is bounded by the depth of P , and the depth of Q is not increased.

(3) Given SLPs P and Q for terms t, t′ ∈MG. Determine whether or not t = t′.



INTER-PROCEDURAL TWO-VARIABLE HERBRAND EQUALITIES 25

(4) Given SLPs P and Q for terms t, t′ ∈MG. Determine the length of the longest common
prefix (suffix) of t, t′.

(5) Given SLPs P and Q for terms t, t′ ∈MG. Determine an SLP for tt′. At most one new
definition is introduced and also the depth is increased at most by one.

Proof. An SLP for the reverse of t is obtained from P by introducing a fresh copy of un-
knowns X ′ for every unknown X in P together with a definition X ′ → f if X → f with
f ∈ MG, and a definition X ′ → Z ′Y ′ if P has a definition X → Y Z. This new SLP clearly
generates the reverse of the SLP P — proving assertion 1.

For a proof of assertion 2, we only consider the construction of an SLP for the prefix of
t of length h. The case where h = 0 is trivial. Therefore, assume that h > 0. We construct
the new SLP by successively introducing fresh unknowns X ′ for the unknowns X on a path
in P . in order to do so, we maintain the sum of the lengths l of the unknowns to the left
of the path. We start with the initial unknown X1 of P where l = 0 with corresponding
fresh unknown X ′

1. In general, assume that l < h, and we have reached an unknown X with
corresponding fresh unknown X ′. First assume that the definition of X in P is given by
X → f for some irreducible term f ∈MG. In this case, h = l+ 1, and we set the definition
of X ′ to X ′ → f . Then assume that the definition of X in P is given by X → Y Z. If
h ≤ l + ‖Y ‖P , then we introduce a fresh copy Y ′ for Y and the definition X ′ → Y ′ for X ′,
and proceed with Y ′. If l + ‖Y ‖P < h, then we introduce a fresh copy Z ′ for Z and the
definition X ′ → Y Z ′ for X ′ and proceed with Z ′. The resulting set of definitions, though,
may not meet our assumptions on SLPs. The definitions with single unknowns in their
right-hand sides, can however, be removed in polynomial time by a technique similar to the
removal of chain rules in context-free grammars.

Polynomial time algorithms for deciding equivalence of SLPs were independently dis-
covered by Hirshfeld et al. [9], Mehlhorn et al. [16], and Plandowski [24] proving assertion 3.
The algorithms can be applied to obtain a polynomial time algorithm for determining the
length of longest common prefixes of elements in a free monoid as claimed in assertion 4.
First, the algorithm from assertion 3 can be extended to decide whether or not t is a prefix
of t′ by first determining the lengths h and h′ of t and t′, respectively. If h > h′, t is not a
prefix of t′. Otherwise, we may determine an SLP Q′ of Q representing the prefix of t′ of
length h which then is checked for equivalence with P . In the next step, that algorithm is
extended to the case where t is not necessarily a prefix of t′ by performing binary search on
the prefixes of t.

Finally, consider assertion 5. If t or t′ equals •, the concatenation is trivial. So assume
that neither t nor t′ equal •, and that the initial unknowns of the SLPs P and Q equal X1

and Y1, respectively. Let X0 denote a fresh unknown. Then the term tt′ can be represented
by the SLP P ∪Q together with the initial definition X0 → X1Y1.

The size of a term t ∈ TΩ(X) ∪ TΩ(•) is given by size(t) which is recursively defined as
follows:

size(t) = 1 + Σk
i=1size(ti) if t = f(t1, . . . , tk) and f ∈ Ωk

size(t) = 1 if t ∈ X ∪ {•}

In the following we define the size of a program. As mentioned in Section 1 we do not
operate on the syntax of a program directly but on the corresponding control flow graph.
The size of a program is then given as the sum of the number of nodes, the number of edges,
and the sum of the sizes of terms of right-hand sides of assignments.



26 S. SCHULZE FRIELINGHAUS, M. PETTER, AND H. SEIDL

A non-ground term t = t′x containing occurrences of the variable x is then succinctly
represented by the pair (P,x) where P is an SLP for t′. Ground terms in T may be
factorized differently for initialization-restricted or unrestricted programs. In the following,
we first consider initialization-restricted programs, and subsequently unrestricted programs.

8.1. Polynomial-time Algorithms for IR Programs. For initialization-restricted pro-
grams, every ground term t possibly produced at run-time, can be uniquely factored into
t = t′r for t′ ∈MG and a ground term r ∈ R occurring as a right-hand side in the program.
Such a term t is represented by a pair (P, r) where P is an SLP for t′. We remark that the
size of the term r is bounded by the size of the program.

In a succinct representation of a post-condition φ, every occurring term in T ∪T ′ (recall
that T =MGR and T ′ =MGX) is represented by such a pair where the different SLPs need
not necessarily be disjoint but may share unknowns together with their definitions. The
weakest pre-condition of a post-condition φ w.r.t. a non-ground assignment x := ty is given
as φ[ty/x]. This means that ty must be substituted into each term sx, s ∈ MG occurring
in φ. If s or t equals •, the substitution is trivial. So assume that neither s nor t equal
•. Then by Theorem 8.2 an SLP P for st can be constructed from the SLPs for s and t
by adding one fresh unknown together with its definition, so that the depth of the involved
SLPs increases at most by one — even if the depth of the resulting term may be doubled.
The resulting term of the substitution is then represented by the pair (P,y).

Now consider a substitution φ[t/x] for a ground term t = t′r where t′ ∈ MG and r ∈ R
is a ground term of some assignment. This means that t must be substituted into each term
sx occurring in φ. If s equals •, the substitution is trivial. Therefore, assume that s does
not equal •. Then by Theorem 8.2 an SLP P for st′ can be determined from the SLPs for
s and t′ in polynomial time. The resulting term of the substitution is then represented by
the pair (P, r). We thus have proven:

Lemma 8.3. Consider a single equality As1
.
= Bs2 or As

.
= C where s1, s2, s ∈ T ∪ T ′ are

succinctly represented. Then a succinct representation of the weakest pre-condition of the
equality w.r.t. an assignment x := t can be determined in time polynomial in the size of t.

The weakest pre-condition of a post-condition Asx
.
= Bty w.r.t. a procedure call p()

is given as φ′ = φ[As/A,Bt/B] if the weakest pre-condition of the generic post-condition
Ax

.
= By w.r.t. a procedure call p() is given as φ. This case is similar to the case of

(non-)ground program variable assignments. That means that, instead of a program variable
two template variables are substituted. In order to obtain succinct representations for the
terms in φ′, we again can apply our techniques for computing succinct representations for
the result of the substitution of terms.

Lemma 8.4. Consider a single equality Asx
.
= Bty (resp. As

.
= Btx, Asx

.
= Bt, or

Asx
.
= C) where the occurring terms s, t ∈MG are succinctly represented. Moreover, assume

that each term of type T ∪ T ′ occurring in the weakest pre-condition φ of a generic post-
condition Ax

.
= By (resp. Ax

.
= C) w.r.t. a procedure call p() is also succinctly represented.

Then a succinct representation of the weakest pre-condition of the equality w.r.t. a procedure
call p() can be computed in time polynomial in the number of equalities in φ.
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From Lemmas 8.3 and 8.4, we conclude that the sizes and depths of occurring SLPs
during the whole fixpoint computation for determining the WP transformers for procedures
as well as the WP transformers for reachability, remains polynomial in the size of the pro-
gram and the numbers of equalities occurring in pre-conditions. Accordingly, a polynomial
time algorithm for inferring valid Herbrand equalities is obtained whenever we are given
polynomial time algorithms for

• solving systems of ground equalities, as well as for
• approximate T -subsumption.

Consider a satisfiable equality of the form As
.
= Bt where s, t ∈ T are ground. Let

A = •, then the finite set of all solutions for B equals the set

{ uw ∈ CΩ | s = uvt and u, v ∈MG and v is irreducable and wt = vt } .

In the set above, each w equals v where some occurrences of • are substituted by t. That
means, once the decomposition of s into uvt is known, then all solutions can be trivially
derived. Still there exist 2i−1 many solutions if • occurs i times in the term v. Let u = JP K
be represented by some SLP P and t = JQKr be represented by some SLP Q and r ∈ R.
Then the set of all solutions for B is succinctly represented by the tuple

〈P, v,Q, r〉 (8.1)

Similarly, the finite set of all solutions for the template variable A is succinctly represented
by a tuple of the form (8.1), if B = •.

Theorem 8.5. In the following consider only equalities of the form As
.
= Bt where s, t ∈ T

are ground and succinctly represented.

(1) It is decidable in polynomial time whether or not the equality As
.
= Bt is satisfiable

where A or B receives the value •. Furthermore, if it is satisfiable, then a succinct repre-
sentation of the form (8.1) of the set of all solutions for A (resp. B) can be determined
in polynomial time.

(2) It is decidable in polynomial time whether or not the conjunction of the two distinct
equalities As1

.
= Bt1 and As2

.
= Bt2 is satisfiable where A or B receives the value •.

Furthermore, if it is satisfiable, then a succinct representation of the unique solution can
be determined in polynomial time.

Proof.

(1) Let A = •, i.e., we then consider s
.
= Bt. If the equality is satisfiable, then s = t′t for

some t′ ∈ MG must hold. Whether or not t is a suffix of s is decidable in polynomial
time.

Assume that the equality is satisfiable. Then each solution of B equals s where some
occurrences of t are substituted by •. Let s = uvt for some u, v ∈ MG and v is an
irreducible element in MG. A succinct representation Q of the prefix u of s of length
‖s‖−‖t‖− 1 can be determined in polynomial time. Likewise, the irreducible element v
occurring in the unique factorization of s can be determined in polynomial time. Assume
that t is succinctly represented by the tuple (P, r). Then the set of all solutions for B is
succinctly represented by the tuple 〈Q, v, P, r〉 of the form (8.1), from which the assertion
of this part follows.

(2) Let A = •, i.e., we then consider s1
.
= Bt1 and s2

.
= Bt2. If the conjunction of the two

equalities is satisfiable, then s1 = tt1 and s2 = tt2 for some t ∈MG must hold, i.e., B = t
is then a solution. From the succinctly represented term si a succinct representation
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of the prefix ui of length ‖si‖ − ‖ti‖ and the suffix vi of length ‖ti‖ can be determined
in polynomial time for i = 1, 2. If u1 = u2 and v1 = t1 and v2 = t2 holds, then the
conjunction is satisfiable and u1 is a solution for B. This is decidable in polynomial
time.

According to Theorem 3.3, t is a unique solution, i.e., there exists no other solution
t′ 6= t. A similar argument holds for the case B = •.

Assume that we are given a conjunction of ground equalities arising from the analysis.
Clearly, it allows to efficiently test any candidate templates whether or not they constitute
a solution. In light of Theorem 8.5, the conjunction allows to infer a succinct representation
of all valid equalities in polynomial time.

Theorem 8.6. T -subsumption for equalities of the form As
.
= C where s ∈ T ∪ T ′ are

succinctly represented is decidable in polynomial time.

Proof. Consider two equalities Asx
.
= C and Atx

.
= C with s, t ∈ MG (resp. As

.
= C and

At
.
= C with s, t ∈ T ). The conjunction of the two equalities is T -unsatisfiable, if s 6= t

holds which is decidable in polynomial time. Otherwise, if s = t holds, then one equality is
subsumed by the other.

In the following we show that approximate T -subsumption of two-variable equalities is
decidable in polynomial time, too. In order to do so we first extend the idea of succinctly
represented terms in MG to terms in the corresponding free group FG. That means that
definitions of an SLP representing a term in FG are now either of the form X → Y Z for
suitable unknowns Y,Z or X → f where f is an irreducible term in FG. The length ‖t‖ of
a term t ∈ FG can be determined in time linear in the size of the SLP representing t similar
to any term s ∈ MG. The balance |t| of a term t ∈ FG which is represented by the SLP P
can be determined in linear time in the size of P as follows:

|Xi|P = |Xj |P + |Xl|P (Xi → XjXl) ∈ P
|Xi|P = 0 (Xi → •) ∈ P
|Xi|P = 1 (Xi → f) ∈ P and f ∈MG \ {•}
|Xi|P = −1 (Xi → f−) ∈ P and f ∈MG \ {•}

An SLP in Chomsky normal form of size k cannot produce a word larger than 2k. Therefore,
the balance of each word which it generates can be described by k+1 bits. For such numbers,
basic operations as equality, addition and subtraction can be done in time linear in k — even
if only single bit operations are considered as constant time.

Lemma 8.7. Assume that all terms are succinctly represented and let FG be the correspond-
ing free group of MG. Then the following tasks can be realized in polynomial time:

(1) All tasks described in Theorem 8.2 can also be realized for terms in FG.
(2) Given a term w ∈ FG, determine the term w−1 ∈ FG.
(3) Given two maximally canceled terms u, v ∈ FG, determine w = uv such that w is

maximally canceled.
(4) Given a term w ∈ FG, determine the term wr, r ≥ 1.

Proof. For the tasks described in Theorem 8.2 it is irrelevant from which algebraic structure
an element f in a definition X → f comes. That means, it does not matter if f ∈ MG or
f ∈ FG proving assertion 1.

Given an SLP P representing some term w ∈ FG, the SLP P ′ representing the term
w−1 can be constructed as follows. If the definition X → Y Z is included in P , then let
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X ′ → Z ′Y ′ be included in P ′. Otherwise, if the definition X → f , f ∈ FG is included in
P , then let X ′ → f−1 be in P ′. The size and the depth of P and P ′ are the same proving
assertion 2.

Assume that the SLPs P and Q represent the terms u and v from FG, respectively.
By assertion 2, an SLP for u−1 can be determined in polynomial time. Furthermore, by
Theorem 8.2, the length k of the longest common prefix of u−1 and v can be determined in
polynomial time. Again by Theorem 8.2, an SLP Q for the prefix u′ of u of length ‖u‖ − k
can be determined in polynomial time. Similarly, an SLP Q′ for the suffix v′ of v of length
‖v‖ − k can be determined in polynomial time. Finally, an SLP for the term w = u′v′ can
be determined in polynomial time. Since w is maximally canceled, this proves assertion 3.

The last assertion 4 can be proven as follows. The case where r = 1 is trivial. Therefore,
assume that r > 1. Let the term w be represented by the SLP P with initial unknown X0

and size sP . The term w2k , k ≥ 1 is then represented by the SLP Qk with initial unknown
Nk+1 and the following definitions (for fresh unknowns Nk):

N1 → X0X0

Ni+1 → NiNi 1 ≤ i ≤ log2(k)

Assume that the binary representation of r equals blog
2
(r) . . . b0 where b0 is the least significant

bit and let j1 < · · · < jn equal the list of indices j where bj = 1. Then we introduce the
SLP Q with initial unknown M1 and the following fresh definitions:

Mk → NjkMk+1 for 1 ≤ k < n
Mn → Njn

Thus, the SLP Q represents wr. The size of Q is in O(log2(r)+sP ) from which the assertion
follows.

A term uv which is not maximally canceled, may only be constructed during checks
of subsumption when two terms u, v ∈ FG are concatenated. According to Lemma 8.7,
however, a maximally canceled term corresponding to uv can be determined in polynomial
time. Therefore, in the following we assume that each succinctly represented term occurring
during subsumption checks are maximally canceled.

Lemma 8.8. Assume that all occurring terms are succinctly represented and maximally
canceled. Then the assertion of Lemma 4.2 is decidable in polynomial time, i.e., the question
whether for an equality of the form AuA−1 .

= Bu′B−1 with u, u′ ∈ FG and |u| = |u′| = 0, it
is decidable in polynomial time, whether it is trivial, is equivalent to an equality As

.
= B or

A
.
= Bs for some s ∈MG, or is contradictory.

Proof. Assume that u and u′ are represented by the SLPs P andQ, respectively. The equality
is trivial iff JP K = • = JQK which can be checked in constant time since we assumed that
succinctly represented terms are maximally canceled. If JP K = • 6= JQK, or JP K 6= • = JQK
holds, then the equality is contradictory. The latter can also be checked in constant time.

Otherwise, we proceed as follows. The length n ≤ ‖u‖ of the longest positive prefix of
u can be determined similarly to the length ‖u‖ of u, and thus can be determined in time
linear in the size of P . Likewise, the length m ≤ ‖u‖ of the longest negative suffix of u can
be determined in polynomial time, by first computing the inverse of u, i.e., u−1 and then
determining the longest positive prefix of u−1. We then proceed by determining SLPs for
the prefix x of u of length n and the remaining suffix w of u of length ‖u‖ − n. From the
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SLP representing w we then derive SLPs for the prefix y of length ‖w‖ −m and suffix of
length m of w such that u = xyz−1. This can be done in polynomial time.

Similarly, we determine succinct representations for the longest positive prefix x′ of u′,
longest negative suffix z′−1 and y′ such that u′ = x′y′z′−1.

Overall this means that the equivalent simplified conjunction Ax
.
= Bx′∧ y

.
= y′∧Az

.
=

Bz′ can be determined in polynomial time. Since y, y′ ∈MG, their equality can be checked
in polynomial time. If the conjunction is satisfiable then it is equivalent to a solved equality
As

.
= B or A

.
= Bs which means that either x = sx′ and z = sz′ or x′ = sx and z′ = sz

holds which can be checked in polynomial time.

Lemma 8.9. Assume that all occurring terms are succinctly represented and maximally
canceled. Then the assertion of Theorem 4.4 is decidable in polynomial time, i.e., it is
decidable in polynomial time whether the conjunction of the two equalities AuA−1 .

= Bu′B−1

and AvA−1 .
= Bv′B−1 with u, u′, v, v′ ∈ FG is equivalent to one solved equality, or to a single

equality, or are contradictory.

Proof. W.l.o.g. assume that |u| ≥ |v|. If |v| = 0, then from Lemma 8.8 follows that AvA−1 .
=

Bv′B−1 is either trivial, i.e., the conjunction of the two initial equalities is equivalent to
AuA−1 .

= Bu′B−1, or is contradictory, i.e., the conjunction of the two initial equalities is
equivalent to AvA−1 .

= Bv′B−1, or the equality is equivalent to one solved equality As
.
= B

(resp. A
.
= Bs). In the latter case either holds u = su′s−1 (resp. u′ = sus−1) and the

conjunction of the two equalities is equivalent to AvA−1 .
= Bv′B−1 or the conjunction is

contradictory. According to Theorem 8.2 and Lemma 8.7 the equality check u = su′s−1

(resp. u′ = sus−1) can be done in polynomial time — from which the assertion of this part
follows.

Otherwise, if |v| > 0, then let r = |u| mod |v| and we derive a third equality AwA−1 .
=

Bw′B−1 such that w = uv−r and w′ = u′v′−r. According to Lemma 8.7 the terms w,w′ can
be determined in polynomial time. We then start allover by considering the two equalities
AvA−1 .

= Bv′B−1 and AwA−1 .
= Bw′B−1 where |v| ≥ |w| holds. This algorithm is a

generalization of Euclid’s algorithm. Since Euclid’s algorithm performs at most logarithmic
many iterations [17, pp. 21–22] and in each iteration we introduce logarithmic many new
unknowns, the assertion of the theorem follows.

Theorem 8.10. For finite sets E,E′ of equalities of the form As
.
= Bt where s, t ∈ T ∪ T ′

are succinctly represented, it is decidable in polynomial time whether
∧

E approximately
T -subsumes

∧

E′ or not, whenever A or B equals •.

Proof. Consider equalities of the form As
.
= Bt where s, t ∈ T are ground terms. According

to Theorem 8.5 T -subsumption is decidable in polynomial time.
Consider the three equalities Asix

.
= Btiy, i = 1, 2, 3 and let w.l.o.g. |s1| ≥ |s2|, |s3|. We

then derive the two equalities AuA−1 .
= Bu′B−1 and AvA−1 .

= Bv′B−1 where u ≡ s1s
−1
2 ,

u′ ≡ t1t
−1
2 , v ≡ s1s

−1
3 , and v′ ≡ t1t

−1
3 are maximally canceled in polynomial time. According

to Lemma 8.9 it is decidable in polynomial time whether the conjunction is unsatisfiable,
or equivalent to one equality, i.e., equality As1x

.
= Bt1y is then subsumed, or is equivalent

to one solved equality. In the latter case from a fourth equality either follows the same
solved equality and is therefore subsumed or is contradictory. A similar argument holds for
equalities of the format As

.
= Btx (resp. Atx

.
= Bs).

We conclude that T -subsumption for equalities of the same format is decidable in poly-
nomial time. Since we consider only polynomial many different formats of equalities, the
assertion of the theorem follows.
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Theorem 8.11. Assume that all right-hand sides of assignments of an initialization-restricted
program contain at most one variable. Then for every program point u and program vari-
ables x and y, a succinct representation of the form (8.1) of the set of all valid two-variable
Herbrand equalities between x and y, can be determined in time polynomial in the size of
the program.

8.2. Polynomial-time Algorithms for Unrestricted Programs. For unrestricted pro-
grams there need not exist a unique factorization for every possible run-time value. Only
for large terms, i.e., terms in L = MGR̄, unique factorizations are possible. Accordingly, a
large term t = t′r where t′ ∈MG and r ∈ R̄ is succinctly represented by a pair (P, r) where
P is an SLP such that JP K = t′. We remark that the size of the term r is polynomially
bound by the size of the program and therefore can be represented explicitly.

For small terms, i.e., terms in S, on the other hand, we cannot hope for unique factor-
izations. Since the size of each small term is bound by the size of the program, each small
term s ∈ S is succinctly represented by a pair (P, s) where P is an SLP such that JP K = •.

Similar as for initialization-restricted programs, during the weakest pre-condition calcu-
lation, we assume that each occurring term is succinctly represented. Let us again consider
the operation substitution. In order to obtain polynomial algorithms, we must ensure that
substitution of succinctly represented terms is polynomial. Consider the non-ground terms
sx, ty where s, t ∈ MG. Then the succinct representation of the resulting term (sx)[ty/x]
is determined in a similar way as for initialization-restricted programs, and therefore can be
constructed in polynomial time. Now consider the terms sx, t where s ∈ MG and t ∈ T is
ground. Then the resulting term of the substitution (sx)[t/x] is given as st. If the term is
large, then in order to succinctly represent st, the unique factorization must be determined
in polynomial time.

Lemma 8.12. Given succinctly represented terms s, t where s ∈ MG and t ∈ T . Then
a succinct representation of st ∈ T can be determined in time polynomial in the size of a
maximal element in R̄.

Proof. First assume that t ∈ L is large. This means that t is represented by a pair (Q, r)
where Q is an SLP for some term t′ ∈MG and r is a term in R̄. Then the unique factorization
of st is given by s′r where s′ = st′ — for which an SLP can be constructed from an SLP for
s and Q by introducing one fresh unknown together with a single definition.

Finally, assume that the term t is small. Given an SLP P for the term s, our goal is
to determine the unique factorization st = s′r with s′ ∈ MG and r ∈ R̄. If s = •, nothing
must be done. Otherwise, assume that s is given as the factorization s1 · · · sk. Then we
consider the factorization s1 · · · sk−1s

′

k where s′k = sk[t/•]. This factorization equals the
term st. If k = 1, we are done. If k > 1 and the term s′k = sk[t/•] is contained in the
set R̄ of minimally large terms, i.e., s′k is not a small term, then we have found the unique
factorization of st. Otherwise, we proceed by constructing s′k−1 = sk−1[s

′

k/•] and so on,
until either we exhausted the factors of s or obtained the factorization st = s′s′k−h where

s′ = s1 · · · sk−h−1 and s′k−h = sk−h · · · skt ∈ R̄. Since the size of every term in R̄ is bounded
by the size of the input program, so is the number h. For every length h ≤ h′ ≤ k, SLPs for
the intermediately occurring prefixes of s can be determined in time O(d) by Theorem 8.2,
if d is the depth of the SLP for s.
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The previous Lemma 8.12 enables us to state the following two lemmas:

Lemma 8.13. Consider a single equality As1
.
= Bs2 or As

.
= C where s1, s2, s ∈ T ∪ T ′

are succinctly represented. Then a succinct representation of the weakest pre-condition of
the equality w.r.t. an assignment x := t can be determined in time polynomial in the size of
t and in the size of a maximal element in R̄.

Lemma 8.14. Consider a single equality Asx
.
= Bty (resp. As

.
= Btx, Asx

.
= Bt, or

Asx
.
= C) where the occurring terms s, t ∈MG are succinctly represented. Moreover, assume

that each term of type T ∪ T ′ occurring in the weakest pre-condition φ of a generic post-
condition Ax

.
= By (resp. Ax

.
= C) w.r.t. a procedure call p() is also succinctly represented.

Then a succinct representation of the weakest pre-condition of the equality w.r.t. a procedure
call p() can be computed in time polynomial in the number of equalities in φ and in the size
of a maximal element in R̄.

The proofs of the lemmas are analogous to the proofs of Lemma 8.3 and 8.4 except that
for the substitution we also need Lemma 8.12.

In order to compute solutions in polynomial time for the constraint systems S and R,
T -subsumption for one-variable and approximate T -subsumption for two-variable equalities
must be decidable in polynomial time.

Theorem 8.15. For finite sets E,E′ of equalities of the form As
.
= C where s ∈ T ∪ T ′ are

succinctly represented it is decidable in polynomial time whether
∧

E T -subsumes
∧

E′ or
not.

Proof. Consider two distinct equalities Asx
.
= C and Atx

.
= C. If the conjunction of them is

satisfiable, then s = wu and t = wv for some u, v, w ∈MG such that w is a longest common
prefix of s, t and u 6= v but ux = vx must hold. According to Theorem 8.2 the longest
common prefix of two succinctly represented terms can be determined in polynomial time.
Similar representations for u, v can be determined in polynomial time, too. Assume that the
sizes of the terms u, v are not bound by the maximal size of an element in R̄, then the terms
ux, vx are large terms no matter what ground term the variable x is actually bound to. But
then the terms u, v must have a common prefix which is a contradiction to the assumption
that w is the longest common prefix of s, t if the conjunction is satisfiable. Therefore, assume
that the sizes of the terms u, v are bound by the maximal size of an element in R̄. Then the
most general unifier of ux = vx can be determined in polynomial time. Assume the most
general unifier maps x to the ground term t′ ∈ S. Then the initial conjunction is equivalent
to the conjunction of the equalities Asx

.
= C and Att′

.
= C where the latter equality does

not contain any program variable. According to Lemma 8.12 a succinct representation of
the term tt′ can be determined in polynomial time. Overall, the equivalent conjunction can
be determined in polynomial time.

For equalities which contain no program variable we have the following result. Consider
two equalities As

.
= C and At

.
= C where s, t ∈ T are ground. If s = t, then one equality

subsumes the other. Otherwise, if s 6= t, then the conjunction of them is unsatisfiable. For
succinctly represented terms such equality checks can be performed in polynomial time from
which the assertion of the theorem follows.

Theorem 8.16. For finite sets E,E′ of equalities of the form As
.
= Bt where s, t ∈ T ∪ T ′

are succinctly represented, it is decidable in polynomial time whether
∧

E approximately
T -subsumes

∧

E′ or not, whenever A or B equals •.
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Proof. Ground equalities: Let us first consider only equalities of the form As
.
= Bt where

s, t ∈ T are ground. Then in the following we assume that each conjunction of equalities
is not trivially unsatisfiable, i.e., there exist no two equalities of the form As

.
= Bt and

As
.
= Bt′ where t 6= t′, or vice versa, where the roles of A and B are interchanged. If two

succinctly represented terms in T are equal or not, is decidable in polynomial time.
First consider equalities of the form As

.
= Bt where s, t ∈ L are large terms. The proof

is analogous to the corresponding proofs for Theorem 8.5 where the set T is replaced with
the set L =MGR̄, i.e., instead of the set R we rely on the set R̄ of unique end marker terms.

Now consider three equalities Asi
.
= Bti where si ∈ L are large terms and ti ∈ S are

small terms for i = 1, 2, 3. For the proof of this case, we require to extend the notion
of substitution to a replacement of occurrences of arbitrary subterms. Consider arbitrary
ranked terms s, t, t′ ∈ TΩ(X∪{•}). Then by s[t/t′] we denote the term where all occurrences
of t′ in s are replaced by the term t. Formally, if s does not contain the subterm t′, then
s[t/t′] = s. Otherwise, if s contains the subterm t′, then let s = s′t′ such that s′ ∈ CΩ does
not contain the subterm t′. Then s[t/t′] = s′t.

We then proceed as follows. Assume that there exist i, j ∈ [1, 3] such that ti does not
occur in sj. If i = j, then the single equality Asi

.
= Bti is not satisfiable. Therefore assume

now that i 6= j. If the conjunction of the three equalities is satisfiable, then the solution
for B must not contain occurrences of ti, i.e., u = si[•/ti] is the only possible solution for
B. If all three equalities are satisfied by this solution, then the first two would already have
B = u as their unique solution. Accordingly, the third equality is subsumed. Whether or
not B = u is a solution can be decided in polynomial time.

In the following we therefore assume that for each i, j ∈ [1, 3] the term ti occurs at least
once in the term sj. We define an equivalence relation of terms as follows. Let # denote
a fresh symbol and let s, s′, t, t′ ∈ T . If t, t′ are incomparable, i.e., there exists no u ∈ MG

such that t = ut′ or t′ = ut, then the terms s, s′ are equivalent modulo the terms t, t′ if
s[#/t,#/t′] = s′[#/t,#/t′] holds. Otherwise, if there exists a u ∈ MG such that t = ut′,
then the terms s, s′ are equivalent modulo the terms t, t′ if (s[#/t])[#/t′] = (s′[#/t])[#/t′]
holds. The case where t′ = ut holds is similar. For all three cases we can decide which
term to substitute first by comparing the size of both terms t, t′. That means, if t = ut′

(resp. t′ = ut) holds, then size(t) > size(t′) (resp. size(t′) > size(t)) must hold, too.
In case the terms are incomparable it does not matter in which order we substitute the
terms. Assume size(t) ≥ size(t′), then the terms s, s′ are equivalent modulo the terms
t, t′ if (s[#/t])[#/t′] = (s′[#/t])[#/t′] holds, which we denote by (s = s′) mod t, t′. We
extend the equivalence relation as follows. Let t′′ ∈ T and assume that size(t) ≥ size(t′) ≥
size(t′′), then s and s′ are equivalent modulo the terms t, t′, t′′ if ((s[#/t])[#/t′])[#/t′′] =
((s′[#/t])[#/t′])[#/t′′] holds which we denote by (s = s′) mod t, t′, t′′. We observe that if the
conjunction As1

.
= Bt1∧As2

.
= Bt2 is satisfiable, then s1, s2 differ only in some occurrences

of t1, t2. That means that (s1 = s2) mod t1, t2 must hold. A similar argument holds for
the conjunction As1

.
= Bt1 ∧ As3

.
= Bt3 and for the conjunction As2

.
= Bt2 ∧ As3

.
= Bt3.

Observe that the other direction does not necessarily hold, i.e., if the conjunction is not
satisfiable, then (s1 6= s2) mod t1, t2 need not hold. For example, consider the conjunction
Af(a, b)

.
= Ba ∧ Af(b, a)

.
= Bb which is not satisfiable but f(a, b)[#/a,#/b] = f(#,#) =
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f(b, a)[#/a,#/b] holds. However, we claim that if

(s1 = s2) mod t1, t2 (8.2)

(s1 = s3) mod t1, t3 (8.3)

(s2 = s3) mod t2, t3 (8.4)

(s1 = s2 = s3) mod t1, t2, t3 (8.5)

holds, then the conjunction As1
.
= Bt1 ∧ As2

.
= Bt2 ∧ As3

.
= Bt3 is satisfiable. Since for

A = •, the two first equalities uniquely determine the solution for B, we conclude that the
third equality is subsumed. Our claim is proved as follows.

In the following we denote by s|p = t that a term s ∈ T contains at position p the
subterm t ∈ T . From (8.5) follows that all three terms s1, s2, s3 share a common pattern u′

which is obtained by successively replacing all subterms t1, t2, t3 with #, where we proceed
from the larger to the smaller terms. From u′, we then construct a solution u for B by
replacing the occurrences of # in u′ with terms t1, t2, t3 or •. Let p be any position of a leaf
# in u′.

If s1|p = s2|p then let u|p = s1|p (8.6)

If s1|p 6= s2|p then let u|p = • (8.7)

We claim that the resulting term u is indeed a solution for B, which satisfies all three
equalities. If u|p = t1 then according to (8.6) s1|p = s2|p = t1 and from (8.4) follows that
s3|p = t1. If u|p = t2 then according to (8.6) s1|p = s2|p = t2 and from (8.3) follows that
s3|p = t2. Otherwise, assume that u|p = t3. Then according to (8.6) s1|p = s2|p = t3. If
s3|p = t1, then (8.4) implies that s2|p = t1 which is a contradiction. Similarly, if s3|p = t2,
then (8.3) implies that s1|p = t2 which again is a contradiction. Therefore, s3|p = t3 must
hold. In total we have, if u|p = ti, then s1|p = s2|p = s3|p = ti for i = 1, 2, 3. Now consider
the case where u|p = •. Assume that s1|p = t2, then from (8.2) and (8.7) follows s2|p = t1.
However, then from (8.3) follows that s3|p = t2 and from (8.4) follows that s3|p = t1 which
is a contradiction. Hence, s1|p = t1 and s2|p = t2 must hold. A similar argument holds for
s3|p = t3 from which we conclude that si = uti for i = 1, 2, 3. Therefore, B = u is indeed a
solution satisfying all three equalities. This complete the proof of our claim.

What remains to prove is that the equality checks (si = sj) mod ti, tj and (si = sj) mod
t1, t2, t3 can be done in polynomial time. For that we must show that from an arbitrary
succinctly represented large term, a succinctly represented and uniquely factorized term can
be derived where certain small terms are substituted by a fresh symbol. We explain the
idea for the test (s1 = s2) mod t1, t2. W.l.o.g. let size(t1) ≥ size(t2) and σ = [#/t1][#/t2].
Let G′ = { gσ | g ∈ G } and R′ = { rσ | r ∈ R }. We extend the factorization of terms in
T = MGR to terms in T ′ = MG′R′. In Section 6 we have partitioned the set of terms T
into non-uniquely factorizable small terms S and uniquely factorizable large terms L, i.e.,
T =MGR = S ⊎ L. We proceed along the same line for T ′ which we partition into #-small
terms S′ which are non-uniquely factorizable, and into #-large terms L′ which are uniquely
factorizable. The set S′ equals then the set (G′ ∪R′)∗ where ∗ is the subterm closure, and
the set L′ equals the set MG′R′ \S′. We call a term minimally #-large if it is a minimal term
in L′. The (finite) set of all minimally #-large terms is denoted by R̄′. Then every #-large
term s′ ∈ L′ can be uniquely factored into s′ = u′r′ where u′ ∈ MG′ and a term r′ ∈ R̄′

which is minimally #-large. If one of the terms s1σ or s2σ is not #-large, then the size of
that term is polynomial. Therefore, the equality test can be realized in polynomial time as
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well. Accordingly assume that the terms s1σ and s2σ are both #-large. In this case, our
goal is to determine from the succinct representations of the factorizations of s1, s2, succinct
representations for the factorizations of s1σ, s2σ which then can be compared in polynomial
time. For that, consider a factorization s = u1 · · · ukr of a large term s ∈ T into irreducible
factors ui ∈ MG and a minimally large term r ∈ R̄, and assume that s′ = sσ is #-large.
Then there is a maximal index j such that r′j = (uj · · · ukr)σ is #-large. This index can

be found in polynomial time. Moreover, r′j can then be uniquely factored in polynomial

time into r′j = u′r′ for a minimally #-large term r′ ∈ R̄′ and u′ ∈ MG′ . Then the unique

factorization of s′ is given by:
s′ = v′1 · · · v

′

j−1u
′r′

where for each i, v′i is a factorization of uiσ into irreducible factors in MG′ . Note that the
lengths of the factorizations v′i are bounded by the sizes of the corresponding factors and thus
of the sizes of right-hand sides of the input program. Therefore these factorizations can be
obtained in polynomial time as well. These factorizations then allow us to construct from an
SLP for u1 · · · uj−1, an SLP for v′1 · · · v

′

j−1u
′. Altogether, we obtain a succinct representation

for s′ from a succinct representation of s in polynomial time from which the assertion of this
part follows.

A similar argument holds for equalities of the form As
.
= Bt where s ∈ S is small and

t ∈ L is large.
Non-ground Equalities: Now we consider equalities which contain at least one pro-

gram variable. We first prove that L-subsumption for finite conjunctions of equalities of the
same format is decidable in polynomial time.

For equalities of the formats [Fx,y], [Fx,·], [F·,x] the proofs are analogous to the corre-
sponding proofs of Theorem 8.10 where the set T is replaced with the set L = MGR̄, i.e.,
instead of the set R we rely on the set R̄ of unique end marker terms.

Now consider two equalities As
.
= Btx and As

.
= Bt′x where s ∈ S is a small term,

i.e., equalities of the format [Fs,x]. Then the first equality L-subsumes the second equality,
if t = t′ holds. This is decidable in polynomial time. Otherwise, the conjunction is L-
unsatisfiable. A similar argument holds for two equalities of the format [Fx,s].

We conclude that L-subsumption for equalities of the same format is decidable in polyno-
mial time. In order to decide T -subsumption between conjunctions of sets E,E′ of equalities
of the same format, for each small substitution σ, L-subsumption between Eσ and E′σ has
to be decided. Since there exist at most polynomial many small substitutions and formats of
equalities, we conclude that approximate T -subsumption is decidable in polynomial time.

We showed that solutions to the constraint systems S and R can be determined in
polynomial time. For initialization-restricted programs we also showed that a succinct rep-
resentation of all solutions can be determined in polynomial time. Whereas for unrestricted
programs we show that given a candidate solution for the template variables A and B where
at least one equals •, it is decidable in polynomial time whether or not the solution holds.

Theorem 8.17. Given a term u ∈ CΩ and an equality As
.
= Bt where s, t ∈ T are ground

and succinctly represented. Then it is decidable in time polynomial in the size of the term
u and in the size of a maximal term in S, whether or not A = u and B = •, or vice versa,
A = • and B = u is a solution for the equality.

Proof. Let us first consider the case for A = u and B = •, i.e., decide if us = t holds or not.
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Assume that s, t ∈ L are large terms. If u ∈ MG, i.e., all subterms of u are small,
then u must be a prefix of t, and s must be a suffix of t, i.e., us = t must hold. This is
decidable in time polynomial in the size of u and polynomial in the sizes and lengths of the
SLPs representing s, t. Otherwise, if u contains large terms as subterms, i.e., u ∈ CΩ \MG.
Then u = vw for some v ∈ MG and some irreducible element w ∈ CΩ \ MG must hold.
Furthermore, t = vw′s for some irreducible element w′ ∈ MG such that w equals w′ where
some occurrences of • are substituted by s must hold. This is decidable in time polynomial
in the size of u and polynomial in the lengths of the SLPs representing s, t.

Now consider the case where s ∈ S is small and t ∈ L is large. Then us = t is decidable
in time polynomial in the size of u and in the size of s which is bound by the size of the
program.

Otherwise, if s ∈ L is large and t ∈ S is small, then the equality is not satisfiable.
Now assume that both s, t ∈ S are small. Whether or not us is a small term and if us

equals t is decidable in polynomial time.
Furthermore, verifying if A = • and B = u is a solution for the equality is similar from

which the assertion of this theorem follows.

Finally this enables us to state our main result for unrestricted programs and one- or
two-variable equalities:

Theorem 8.18. Assume that p is a program where all right-hand sides of assignments
contain at most one variable. Then for every program point u of p and every equality of the
form x

.
= t where t ∈ T ∪ T ′, it can be verified in time polynomial in the size of the program

as well as the size of t whether or not the equality is an invariant.

Recall that for initialization-restricted programs, each possible run-time value can be
uniquely factorized. This property enabled us to derive in polynomial time from a ground
equality As

.
= Bt where s, t ∈ T all possible solutions for the template variables A and B

where at least one equals •. Consider the case where A = • and assume that s = uvt for
some u, v ∈ MG where v is an irreducible element. Then each solution for B has u as a
prefix — which might be exponentially large. That means, that the solutions only differ in
the very last factor which can be derived from the element v. Accordingly, we were able to
provide a succinct characterization of all solutions. The situation is more complicated for
unrestricted programs. For these, only weaker forms of factorization are available. Thus,
substitutions of right-hand sides may still result in terms which are still small and therefore
cannot be uniquely factorized.

Example 8.19. Assume that a, b ∈ S are small terms and r ∈ R̄ is a minimally large term.
Then consider the uniquely factorized equalities

A f(•, •) g(a, h(b, •, a), h(b, •, b)) r
.
= B a

A f(g(a, •, •), g(b, •, •)) h(b, •, b) r
.
= B b

Since a and b are small terms and the template variable A is applied to large terms, B
cannot equal • in any possible solution. Therefore, now assume that A = •. Then the
unique solution for B, satisfying both equalities, equals

f(g(a, h(b, r, •), h(b, r, b)), g(•, h(b, r, •), h(b, r, b)))

Thus, all three factors from the original equality are collapsed into a single irreducible term
for B. This irreducible term contains the large term h(b, r, b) as a subterm and is contained
in CΩ \MG.
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From the previous example we conclude that, in contrast to initialization-restricted
programs, we have for unrestricted programs that a solution is not necessarily in MG but
might very well also be in CΩ \MG. The solution need not reflect the factorizations of the
terms of the initial equalities. The factorization of terms, however, was the basis of our
compression scheme via SLPs. Accordingly, it remains unclear how to derive compressed
representations of solutions in polynomial time.

8.3. Complexity results for Verifying Multi-Variable Equalities. Let us now con-
sider a multi-variable invariant candidate such as x

.
= f(gy, z). In this case, the right-hand

side f(gy, z) = t[y, z] where t is the (multi-variable) pattern t = f(g•1, •2) for distinct
variables •1, •2. Now consider a generic post-condition x′ .= f(gAy′, Bz′) which might oc-
cur during the proof that the given equality indeed is an invariant at some program point.
In contrast to the pattern, the terms which may be substituted into one of the program
variables or the template variables A,B of the right-hand side during the fixpoint iteration
may grow exponentially deep and therefore should be succinctly represented. Now consider
a term which is substituted into the left-hand side. For this term, the root must be de-
constructed according to the constructors occurring in t. This deconstruction can also be
realized for succinctly represented terms in polynomial time.

For the multi-variable case we observe that during the WP computation we obtain for
a post-condition a conjunction possibly containing one-, two-, and multi-variable equalities.
A conjunction of two multi-variable equalities which coincide in the left-hand side and the
pattern of the right-hand side is equivalent to a conjunction of one of them and polynomial
many one- and two-variable equalities. Such an equivalent conjunction can be determined
in time polynomial in the size of the invariant candidate. Since for conjunctions of one-
and two-variable equalities approximate T -subsumption is decidable in polynomial time,
approximate T -subsumption is also decidable in polynomial time for conjunctions containing
multi-variable equalities, i.e., we have proven the following lemma:

Lemma 8.20. For finite sets E,E′ of one-, two-, and multi-variable equalities where each
term in T ∪ T ′ is succinctly represented, it is decidable in polynomial time whether

∧

E
approximately T -subsumes

∧

E′ or not.

We note that from a single invariant candidate x
.
= t where t ∈ TΩ(X), exponentially

many generic multi-variable post-conditions can be derived, i.e., we have exponentially many
different formats of multi-variable equalities. Still, we have:

Theorem 8.21. Assume that p is a program where all right-hand sides of assignments
contain at most one variable. Then for every program point u of p and every multi-variable
Herbrand equality x

.
= t where t ∈ TΩ(X) has at most k variables, it can be verified in time

polynomial in the size of the program as well as the size of t, and exponential only in k
whether or not the equality is an invariant.

9. Conclusion

We have provided an analysis which infers all inter-procedurally valid Herbrand equalities for
programs where all assignments are taken into account whose right-hand sides depend on at
most one variable. The novel analysis is based on three main ideas. First, we restricted gen-
eral satisfiability, subsumption and equivalence to satisfiability, subsumption and equivalence
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w.r.t. a set of values subsuming all possible run-time values of a given program. Together
with our factorization theorem, this allowed us to apply the monoidal methods from [8]
to effectively infer all inter-procedurally valid two-variable Herbrand equalities, at least for
programs, which we called initialization-restricted. In the second step, we abandoned this
restriction by introducing the extra distinction between large values (which can be uniquely
factored) and small ones (of which there are only finitely many). Finally, we showed how
general Herbrand equalities could be handled. In Section 8 we then provided a polynomial-
time algorithm which infers all two-variable Herbrand equalities for initialization-restricted
programs. For unrestricted programs, we were at least able to verify in polynomial time
whether or not a given equality is an invariant at a given program point. This algorithm
could also be extended to general Herbrand equalities (possibly containing more than one
two variables).

Still, it remains open whether general Herbrand invariants can be inferred also for
programs where right-hand sides may contain more than one variable.

Acknowledgments. The authors would like to thank the anonymous reviewers for their valu-
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Appendix A. Global and Local Program Variables

In this appendix we indicate how our method can be extended in order to also deal with
programs which contain global as well as local variables. For this we first extend our program
model from Section 1 as follows. We now assume that the (finite) set of program variables X
contains a subset L ⊆ X consisting of local program variables, while the remaining variables
are considered as global. The scope of local variables is meant to be restricted to the body
of the current procedure. At the start of a procedure call, the fresh local variables are
assumed to be uninitialized, i.e., have any value, whereas at procedure exit, the current
locals are abandoned while the locals of the calling procedure are recovered. By means of
global variables, this simple model already allows to realize call-by-value variable passing as
well as the returning of functional results.
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In order to deal with a non-empty set of locals, we enhance the weakest pre-condition
calculus by an operator H which takes the WP-transformation realized by the body of a
procedure as an argument, and returns the WP-transformation of the procedure call. For
a given WP-transformation f , the WP-transformation H(f) is defined as follows.

H(f)(Ax
.
= C) = ∀L. f(Ax

.
= C) x global

H(f)(Ax
.
= By) = ∀L. f(Ax

.
= By) x,y global

H(f)(Ax
.
= By) = (∀L. f(Ax

.
= C))[By/C] x global, y local

H(f)(Ax
.
= By) = (∀L. f(Ay

.
= C))[B/A,Ax/C] x local, y global

H(f)(e) = e e contains no globals

where L is the sequence of local variables in L. Accordingly, the constraints for call edges in
the constraint systems S and R must be changed into:

JuK⊺ =⇒ H(JspK
⊺) ◦ JvK⊺ for each (u, p(), v) ∈ E

and

[v]⊺ =⇒ [u]⊺ ◦ H(JspK
⊺) for each (u, p(), v) ∈ E

respectively.
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