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RELATIVE ENTAILMENT AMONG PROBABILISTIC IMPLICATIONS
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ABSTRACT. We study a natural variant of the implicational fragment of propositional
logic. Its formulas are pairs of conjunctions of positive literals, related together by an
implicational-like connective; the semantics of this sort of implication is defined in terms of
a threshold on a conditional probability of the consequent, given the antecedent: we are
dealing with what the data analysis community calls confidence of partial implications or
association rules. Existing studies of redundancy among these partial implications have
characterized so far only entailment from one premise and entailment from two premises,
both in the stand-alone case and in the case of presence of additional classical implications
(this is what we call “relative entailment”). By exploiting a previously noted alternative
view of the entailment in terms of linear programming duality, we characterize exactly
the cases of entailment from arbitrary numbers of premises, again both in the stand-alone
case and in the case of presence of additional classical implications. As a result, we obtain
decision algorithms of better complexity; additionally, for each potential case of entailment,
we identify a critical confidence threshold and show that it is, actually, intrinsic to each set
of premises and antecedent of the conclusion.

1. INTRODUCTION

The quite deep issue of how to represent human knowledge in a way that is most useful for
applications has been present in research for decades now. Often, knowledge representation
is necessary in a context of incomplete information, whereby inductive processes are required
in addition. As a result, two facets that are common to a great number of works in knowledge
representation, and particularly more so in contexts of inductive inference, machine learning,
or data analysis, are logic and probability.

This journal paper is an archival, nontrivially extended version of the conference paper [6], where we prove
relevant particular cases of the results presented here, within a more focused view, due to the timing and to
the page limits.
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Adding probability-based mechanisms to already expressive logics enhances their expres-
siveness and usefulness, but pays heavy prices in terms of computational difficulty. Even
without probability, certain degrees of expressivity and computational feasibility are known
to be incompatible, and this is reflected in the undecidability results for many logics. In
other cases, the balance between expressivity and feasibility hinges on often open complexity-
theoretic statements. To work only within logics known to be polynomially tractable may
imply serious expressiveness limitations. Premier examples of polynomially tractable cases
are Horn logics.

Literally hundreds of studies have explored this difficult balance. Already within the
limits of the machine learning perspective, we could mention a large number of references
such as those cited in the book [10]; as well as existing studies, like [14], that include
fragments that relate very much to our focus, in the form of probability-endowed connectives
similar to implications. We must point out as well that a yearly meeting (Uncertainty in
Artificial Intelligence, these days in its 34th edition) keeps adding a steady flow of knowledge
to the area. A general trait of most of these publications is that they work in a context
substantially wider than ours.

Indeed, we concentrate on a much narrower focus, heavily influenced both by the afore-
mentioned Horn logic, in its most basic (propositional) incarnation, and by practice-oriented
data-mining frameworks, namely association rules; in exchange for such a narrow (but still
very relevant for practice) focus, we aim at obtaining stronger theorems.

Horn formulas can be seen as conjunctions of implications (details below). They have
been studied from the active learning perspective (see [4], [5]) and through their connections
with closure spaces and formal concept analysis ([12], [22]). They are also closely related to
inference rules for full-fledged logics and, in that direction, a contribution very relevant to
our work (as detailed below) is [21], which, in turn, builds on earlier work on the comparison
between probabilistic and qualitative variants of inference schemes [15].

Given that our focus is on notions of redundancy, that we will formalize in the form of
logical entailment, we point out some nice, related properties of Horn formulas. Syntactically,
it is known that a set of implications B entails another implication X = Y if and only if
X =Y is derivable from B via the Armstrong axiom schemes, namely, Reflexivity (X =Y
for Y C X)), Augmentation (if X = Y and X’ = Y’, then XX’ = Y'Y’ where juxtaposition
denotes conjunction) and Transitivity (if X = Y and Y = Z, then X = Z). See the survey
[22] for details and references’.

Besides, out of any set of implications, it is possible to identify a canonical and minimum-
cardinality subset from which the whole set can be derived (see e. g. [5], [12], and [22]).
In practice, its size is often amazingly small. All of this parallels closely related work on
functional dependencies in databases. Within the contexts of closure spaces and data mining,
these small sets of implications are usually called “bases”, whereas for dependency theory
they are often called “covers”.

Both in machine learning and in data mining, one particularly well-studied knowledge
representation mechanism is given by relaxed implication connectives: a natural abstract
concept which can be made concrete in various ways. The common idea is to relax the
semantics of the implication connective so as to allow for exceptions, a feature actually
mandatory in many applications in data analysis or machine learning. However, this can be
done in any of a number of ways; and each form of endowing relaxed implications with a

LAn earlier version of that survey, available at http://arxiv.org/abs/1411.6432v2, contains appendices
with more detailed explanations regarding these facts than the formal journal publication.
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precise meaning yields a different notion with, often, very different properties. See [19], the
survey [13] and the book [12]; but, again, the literature on the topic is huge: we mention
here only the references most relevant for our specific results, and refer for further context
and additional references to our earlier paper [7].

That paper, of which this one is a close follow-up, focuses on one of the simplest forms of
relaxed implication, endowed with its most natural semantics: the one given by conditional
probability. Syntactically, these partial implications are pairs of conjunctions of positive
propositional literals. For sets X and Y of propositional variables, we write the corresponding
partial implication as X — Y. Now, instead of the classical semantics, whereby a model
satisfies the implication if it either fails the antecedent or fulfills the consequent, we want
to quantify exceptions; hence, instead of individual propositional models, our semantic
structures are, then, so-called “transactional datasets”, that is, multisets of propositional
models. By mere counting, we find, on each dataset, a frequentist probability for X and Y
seen as conjunctions (or, equivalently, as events): then, the meaning of the implication is,
simply, that the conditional probability of the consequent, given the antecedent, exceeds
some fixed threshold, here denoted v € (0,1). Very often, that quantity, the frequentist
conditional probability, is called confidence of the partial implication. We also use this name
here.

This probabilistic version of implications has been proposed in different research commu-
nities. For instance, [20] introduced them as “partial implications”; much later, [2] defined
“association rules” (see also [3] and the surveys [8], [13]): these are partial implications that
impose the additional condition that the consequent is a single propositional variable, and
where additional related parameters (prominently “support”, defined below) are used to
assess their interest.

Actually, confidence does not seem to be the best choice in practice as the meaning of a
partial implication; this is discussed e. g. in [13]. However, it is clearly the most natural
choice and the obvious step to start the logical study of partial implications, many other
preferable options being themselves, actually, variations or sophistications of confidence.

Now: given a set of partial implications, all of them true of our data at confidence
threshold ~, assume we wish to identify a smallish subset from which all of them “follow
logically” — a task of “redundancy suppression” that is common in all practical applications
of association rules. Two proposals in [1] and [18] turned out to be equivalent among them
and were, in turn, as described in [7], equivalent to the natural notion of logical entailment
of one partial implication by another (modulo minor details such as allowing or disallowing
empty antecedents or consequents). This entailment means that any dataset in which
the premise reaches confidence at least v must assign confidence at least v as well to the
conclusion. The formalization is provided below, but, in essence, the antecedent of the
conclusion must include the antecedent of the premise (so that it “fires”), and the union of
antecedent and consequent of the premise must include the antecedent and consequent of
the conclusion [18].

But, then, what about using more than one premise? Entailment among partial
implications is quite different from entailment among classical implications. First, Transitivity
fails: it is not difficult to see that, if X — Y has confidence over 7, and Y — Z as well, still
most occurrences of Y could be without X, leaving low or even zero confidence for X — Z.
Even if we consider X — Y and XY — Z, the probabilities multiply together and leave just
7? < 7 as provable threshold. (Cf. [7] for further details.)
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Moreover, Augmentation fails as well. While A = B classically entails AC' = BC, such
entailment fails badly for partial implications:

Example 1.1. Consider a dataset consisting of many transactions AB, plus exactly one
transaction AC. Then A — B can have as high a confidence as desired, by enlarging the
dataset, while AC — BC' has confidence zero.

A tempting intuition is to generalize the observation and jump to the statement that
no nontrivial consequence follows from two partial implications; however, this statement is
wrong. We reproduce below in Section 3.1 a characterization from [7] of the cases of proper
entailment from two premises; for this introduction, we just present some explicit examples,
which motivate as well the extensions developed in this paper. We employ a simple, famous,
and relatively small dataset often used for teaching introductory data analysis courses.
It comes from data of each of the passengers of the Titanic. Among several existing variants
of this dataset, some of them pretty complete, we choose a reduced variant that keeps four
attributes, one of them (age) discretized. To describe the details of this dataset, we quote:

“The titanic dataset gives the values of four categorical attributes for each of the 2201
people on board the Titanic when it struck an iceberg and sank. The attributes are social
class (first class, second class, third class, crewmember), age (adult or child), sex, and
whether or not the person survived.”

(http://www.cs.toronto.edu/~delve/data/titanic/desc.html)

(According to that website, this variant of the data was originally compiled by Dawson [9]
and converted for use in the DELVE data analysis environment by Radford Neal.)

Example 1.2. We give first an example of the well-studied case of entailment of one partial
implication by another. Suppose that we analyze our dataset at a very mild confidence
threshold of 0.54 (with support threshold, defined below, of 1%). We then find the partial
implication

Class:3rd — Age:Adult Sex:Male Survived:No
together with

Class:3rd Sex:Male — Survived:No

which, in fact, can be omitted because, due to the inclusion properties, it must have as much
confidence, or more, as the previous one, whatever the dataset.

The contributions of [7] that are relevant to the present paper are, chiefly: first, syntactic
characterizations of one partial implication entailing another as in this example; second, a sim-
ilar fact for two partial implications entailing another; and, third, the generalization of both to
entailment relative to the presence of classical implications. (Further, that reference provides
studies about minimal bases for partial implications.) We return to our example dataset.

Example 1.3. In the same conditions as before, we find the partial implication

Class:1st Sex:Male Survived:Yes — Age:Adult
that is not redundant with respect to any other partial implication found at the same
confidence and support thresholds (we omit the details of the process that proves this: it
consists of applying the tools in Section 3.1). However, it turns out to be redundant if we
consider the pair of implications, also found at these thresholds,

Class:1st — Survived:Yes Age:Adult

Class:1st — Sex:Male Age:Adult
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where the entailment is a far from trivial fact that follows from a major contribution of [7]
that we extend in the present paper. We grab the opportunity to point out, though, that, in
practical datasets with real-life data, it seems to be extremely uncommon to find cases like
this one; and that, as of now, algorithms to efficiently decide entailment from more than one
premise are not yet available, as we discuss at length below.

In the earlier conference version of the present paper [6], we generalized nontrivially the
characterization of entailment to an arbitrary number of premises, beyond the cases of one
and two premises in [7]. The case of two premises, specifically, is behind Example 1.3. The
proof of the characterization for this case in [7] is not deep, using just basic set-theoretic
constructions; but it is long, cumbersome, and of limited intuitive value. Attempts at
generalizing it directly to more than two premises rapidly reach unmanageable difficulties,
among which the most important one is the lack of hints at the right generalization of a
crucial property that we will explain below in Section 5.

Thus, in [6], we started the development of an alternative, quite different approach, that
turns out to be successful in finding the right characterization. Our first ingredient is a
connection with linear programming that is almost identical to a technical lemma in [21],
which applies to all values of the confidence threshold v € (0,1). Stated in our language,
the lemma asserts that k partial implications entail another one if and only if the dual of a
linear program naturally associated to the entailment is feasible. We prove a number of facts
related to that technical tool; then, we use them to get our main results. These concentrate
on a study of the different situations that may appear, depending on intervals to which ~
belongs:

1/ for low enough values of the confidence threshold «y, we show that k partial implications,
with k£ > 1, never entail nontrivially another one;

2/ for high enough values of 7, we characterize exactly the cases in which k partial
implications entail another one, in a manner that generalizes the approach of [7]; namely, the
characterization runs purely in terms of elementary Boolean-algebraic conditions involving
just simple set-theoretic properties of the partial implications involved;

3/ for the intermediate values of v, we explain how to identify the exact threshold, if
any, at which a specific set of k partial implications entails another one.

The characterizations provide algorithms to decide whether a given entailment holds.
More concretely, under very general conditions including the case that ~ is large, the
connection to linear programming gives an algorithm that is polynomial in the number of
premises k, but exponential in the number of attributes n. Our subsequent characterization
reverses the situation: it gives an algorithm that is polynomial in n but exponential
in k.

Our main characterization also shows that the decision problem for entailments at
large v is in NP, and this does not seem to follow from the linear programming formulation
by itself (since the program is exponentially big in n), let alone the definition of entailment
(since the number of datasets on n attributes is infinite due to the relevance of multiplicities).
We discuss this in Section 7.

The present, archival version of this paper includes an additional development: relative
entailment. To explain and motivate it, let us return once more to our dataset.

Example 1.4. We consider now partial implications in the Titanic dataset under the slightly
more demanding confidence threshold of 0.7. We find a case that looks, on the surface,
exactly like the previous one in Example 1.3; namely, we find these three partial implications:
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Class:Crew Sex:Male Age:Adult — Survived:No
Class:Crew — Age:Adult Survived:No
Class:Crew — Sex:Male Survived:No

and, exactly as before, the first is entailed jointly by the second and third. However, in
this case, if we take into account entailment relative to classical implications, things change
substantially. Indeed, it turns out that 100% of the cases obey the classical implication

Class:Crew = Age:Adult

(that is, child labor was absent in the Titanic, of course, at least according to the official
records). Taking the entailment relative to this classical implication, and resorting again to
the tools in Section 3.1, one can find that the partial implication

Class:Crew — Sex:Male Survived:No
suffices as premise to obtain the same conclusion
Class:Crew Sex:Male Age:Adult — Survived:No;
thus falling back into the case of one single partial premise, instead of two.

It pays off, therefore, to consider separately the classical implications, and to reason about
entailment among partial implications relative to classical ones. (This idea goes back at least
to [24]; see further references in [7].) Indeed this truly extends, both in theory and in practice,
the scope of applications of the efficient case of one single partial implication as premise.
The reason is that classical implications can be summarized better, because they allow for
Transitivity and Augmentation to apply in order to find redundancies, while these properties
are unavailable for partial implications. Thus, we will work in the presence of some fixed, ar-
bitrary set of classical implications; the entailment is considered relative to this set and, when
this set is empty, we fall back into the standard case of entailment among partial implications.

In [7], this sort of relative entailment was developed to cover up to two partial implications
as premises, but the conference version of this paper did not provide such a view for the
case of arbitrarily many premises. Allowing for this more general form is not trivial, because
we need to precisely identify the exact correlate of each of our technical definitions. We
complete the development here, aiming at a wider-scope, self-contained paper that does not
require to consult the conference paper.

2. PRELIMINARIES AND NOTATION

Our expressions involve propositional variables, which receive Boolean values from proposi-
tional models; we define their semantics through datasets: simply, multisets of propositional
models. However, we mostly follow a terminology closer to the standard one in the data
analysis community, where our propositional variables are called attributes or, sometimes,
items; likewise, a set of attributes (that is, a propositional model), seen as an element of a
dataset, is often called a transaction.

Thus, attributes take Boolean values, true or false, and a transaction is simply a subset
of attributes, those that would be set to true if we thought of it as a propositional model.
Typically, our set of attributes is simply [n] := {1,...,n}, for a natural number n > 0, so
transactions are subsets of [n]. Fix now such a set of attributes. For sets of attributes X, Z,
we say that Z covers X if X C Z. This term is used only when Z is a transaction, and will
be refined into various possible relationships between transactions and partial implications.
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Formally, a dataset, as a multiset of transactions, is a mapping from the set of all
transactions to the natural numbers, namely, their multiplicities: transactions mapped to
zero do not appear in the dataset, while nonzero values indicate the multiplicity with which
the transaction appears in the dataset. In practical applications, the dataset is, most often,
an ordered list of transactions, with repeated occurrences according to the multiplicities,
but here we prefer the more formal view where no ordering is unnecessarily imposed. Given
dataset D, we write Z € D to indicate a nonzero multiplicity and Z ¢ D for zero multiplicity.

If D is a dataset and X is a set of attributes, we write sp(X) for the so-called support
of X in D: the number of transactions in D that cover X, counted with multiplicity; that
is, the sum of all the multiplicities of transactions Z € D where X C Z. A number of
key practical algorithms in Data Mining rely on the antimonotonicity property of support:
sp(X) < sp(Y) whenever Y C X.

If X and Y are sets of attributes, we write their juxtaposition XY to denote their union
X UY. This is fully customary and very convenient notation in this context.

2.1. Classical implications and closure spaces. Our starting point is Horn logic or, more
precisely, definite Horn clauses. A clause is a disjunction of possibly negated propositional
variables; it is a definite Horn clause if it contains exactly one non-negated variable. All our
Horn clauses are definite: often we omit the adjective. A Horn formula is a conjunction of
Horn clauses. We represent Horn formulas in implicational form by grouping together into a
single expression X = Y all the Horn clauses with the set X of negated attributes, each
contributing their positive attribute to Y. We employ liberally the standard satisfaction
and entailment symbol: Z |= X = Y represents the fact that transaction Z satisfies the
implication, either vacuously, by not covering X, or by covering XY.

We will find it useful to introduce terminology distinguishing these two satisfaction
cases. That is, following standard usage (see e.g. [4]), we say that a transaction Z C [n]
covers an implication X = Y if it covers X: X C Z; and that Z violates the implication if
it covers X but not Y: X C Z but Y & Z. If Z covers X = Y without violating it, that is,
XY C Z, we say that Z witnesses X =Y.

For a set B of implications, Z = B means Z = A{X = Y|[(X = Y) € B}; and for a
dataset D, D |= B means that Z |= B for all Z € D. We also employ the same symbol with
its standard overloading: a set of implications entails another one, in symbols B = X = Y,
if for every Z = B we have Z = X = Y. As indicated in the Introduction, this happens
if and only if X = Y is derivable from B via the Armstrong axiom schemes: Reflexivity,
Augmentation and Transitivity. This gives us a clear and robust notion of redundancy among
implications, one that can be defined equivalently both in semantic terms and through a
syntactic calculus.

We will need some notation about closures. The fact, well-known in logic and knowledge
representation, that Horn theories are exactly those closed under bitwise intersection of
propositional models leads to a strong connection with Closure Spaces, where closure under
intersection always holds (see the discussions in [11] or [17]). A basic fact from the theory of
Closure Spaces is that closure operators are characterized by three properties: extensivity
(X C X), idempotency (X = X), and monotonicity (if X CY then X CY). A set is closed
if it coincides with its closure. Usually we speak of the lattice of closed sets (technically it is
just a semilattice in general but, in our case, the fact that we only employ definite Horn
clauses leads to a lattice). The bottom of the lattice is (), which equals X for every X C ().
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The connection between classical implications and closure operators runs as follows:
given B, a set of implications, the closure X of a set X is the largest set Y such that
B = X =Y (extensivity, idempotency, and monotonicity are easy to check); whereas, if
we are given a closure operator, we can axiomatize it by the set of implications {X = Y |
Y C X, X C [n]} or, equivalently, any set of implications that entails exactly this set. Thus,
BE X =Y ifand only if Y C X.

Proposition 2.1. Given a dataset D and a set of implications B, with its associated closure
operator mapping each itemset X C [n] to X, the following are equivalent:
1) DEB,
(2)VZeD, Z=17Z,
(3) VZ e€D,VX Cn], if X C Z then X C Z,
(4) VX C [n], sp(X) = sp(X).
Proof. (1) = (2) D |= B means that Z = B, forall Z € D. But Bl Z = Z, so that Z C Z,
which implies equality.

(2) = (3) For all X C Z, by monotonicity, X C Z = Z.

(3) = (4) We argue first that VX C [n](X C Z <= X C Z): one direction is because
X C X and the other by assumption. Then, the sums of multiplicities for computing sp(X)
and sp(X) run on the same transactions and, hence, give the same result.

(4) = (1) For every X, the facts that X C X and sp(X) = sp(X) imply that X and
X are subsets of exactly the same transactions Z € D. Let X =Y € B: then Y C X. For
every Z€ D,if XCZthenY CXCZsothat Z[FX =Y. O]

In practice, given a dataset D, we mainly consider two options for B and for the
corresponding closure operator: namely, B = (), where the closure operator is the identity,
X = X for all X (that is, all sets are closed); or 1B being the set of all implications that are
true in D (or any basis that entails that set); in this case, the closure of X is the largest set
such that sp(X) = sp(X). It is easy to prove that such a X exists and is unique. For instance,
in this case, 0 is exactly the set of attributes (if any) that appear in every transaction.

Equivalently, it is also known that, for this second case, the closure of itemset X is
the intersection of all the transactions that contain X. Essentially, X C X implies that all
transactions contributing to the support of X include X as well: hence, if the support counts
coincide, then they must count exactly the same transactions (see [12], [24], and the references
therein for precise proofs of all these statements). Several quite good algorithms exist to find,
for a given dataset, the corresponding closed sets and their supports (see section 4 of [8]).

2.2. Partial implications. A partial or probabilistic implication consists of a pair of finite
subsets X and Y of attributes. We write them as X — Y. We extend also to partial
implications the terminology introduced above: we say that a transaction Z C [n] covers
X — Y if it covers X; that Z violates X — Y if it covers X but not Y, and that Z witnesses
X — Y if it covers XY . But it is important to note that these are not anymore directly
related to a = relationship, as the semantics of the partial implication is different.

Specifically, let X — Y be a partial implication with all its attributes in [n], let D be a
dataset on the set of attributes [n], and let v be a real parameter in the open interval (0, 1).
We write D =, X — Y if either sp(X) =0, or else sp(XY)/sp(X) > ~. Equivalently, and
with the advantage of not needing the zero-test: D =y X — Y if sp(XY') > ysp(X), since
sp(X) = 0 implies sp(XY) = 0 by antimonotonicity.
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Thus, if we think of D as specifying the probability distribution on the set of transactions
that assigns probabilities proportionally to their multiplicity in D, then D |=, X — Y if
and only if the conditional probability of ¥ given X is at least 4. The real number ~ is
often referred to as the confidence parameter.

For a partial implication X — Y, its classical counterpart is simply and naturally
X=Y. If Xg > Yy,...,Xi — Y, are partial implications, we write

X1—>Y1,...,Xk—>Yk|:7X0—>Yb (2.1)

to express that for every dataset D for which D =, X; — Y; holds for every i € [k], it also
holds that D =, Xy — Y. Note that the symbol =, is overloaded much in the same way
that the symbol = is overloaded in propositional logic. In case Expression (2.1) holds, we
say that the entailment holds, or that the set X; — Yi,..., X — Y; entails Xg — Y at
confidence threshold ~.

The extreme cases of v = 0 and v = 1, which are left out of our discussion since
v € (0,1), are worth a couple of words anyhow. Clearly v = 0 does not provide an interesting
setting: sp(XY') > vsp(X) is always true in this case, so the definition trivializes and every
X — Y is valid. On the other hand, for v = 1 the semantics of X — Y is that of a classic
implication, of which we have already discussed the major properties.

As discussed informally in the Introduction, there may be partial implications that do,
actually, reach confidence 1, that is, they are classical implications. Since v < 1, there is
no contradiction in treating them together with the rest; however, it has been observed ([7],
[24]) that, in practical cases, it is worthwhile to treat them separately, replacing them by
their canonical axiomatization, that is often very small in practice, and thus discussing the
truly partial implications separately.

Hence, several studies, prominently [24], have put forward a different notion of redun-
dancy; namely, they give a separate role to the full-confidence implications, often through
their associated closure operator. Along this way, one gets a stronger notion of redundancy
and, therefore, a possibility that smaller bases can be constructed. We follow up this line
of thought by considering relative entailment; more precisely, we discuss when entailment
among partial implications holds in a sense akin to that of Expression 2.1, but in the presence
of a fixed set of background classical implications B.

For this general case, we consider entailment relative to B in the following sense:

B,X1—>Y71,...,Xk—)yk ):,YXO—>YE). (22)

That is, in all datasets that satisfy (classically, of course) the classical implications B and
that give confidence at least v to the k partial implication premises, the partial implication in
the conclusion also must reach confidence at least «. Equivalently, at the time of discussing
entailment as in Expression 2.2, we restrict our discussion to datasets D that satisfy B.
The most interesting case is, of course, when B is (equivalent to) the set of all the classic
implications that hold in a given dataset. On the other hand, for the particular case of
B = 0, already mentioned, of course we fall back into Expression 2.1 at its face value.

If ¥ is a set of partial implications for which ¥ =, Xo — Yp holds, but I' =, Xy — Yj
does not hold for any proper subset I' C ¥, then we say that the entailment holds prop-
erly, with the corresponding variant for the relative case. Note that entailments without
premises vacuously hold properly when they hold. Of course, an improper entailment can
be transformed into a proper one by simply omitting the unnecessary premises:
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Proposition 2.2. The following are equivalent:
(1) B7X1 =Y, , Xy =2 Y ’:’Y Xo — Yo;
(2) there is a set L C [k]| such that B,{X; = Y; :i € L} =y Xo — Yo holds properly.

Proof. That (2) implies (1) is clear from the definition. It is also easy to see that (1) implies
(2): the family of all sets L C [k] for which the entailment B,{X; = Y;:i€ L} =, Xo — Yo
holds is non-empty, as (1) says that [k] belongs to it. Since it is finite, it has minimal
elements, and it suffices to pick one of them for L. L]

2.3. Linear programs. A linear program (LP) is the following optimization problem:
min{cTx : Az > b, 2 > 0}, where z is a vector of n real variables, b and c are vectors
in R™ and R™, respectively, and A is a matrix in R™*". The program is feasible if there
exists an x € R™ such that Az > b and x > 0. The program is unbounded if there exist
feasible solutions with arbitrarily small values of the objective function ¢'z. If the goal were
max instead of min, unboundedness would refer to arbitrarily large values of the objective
function. The dual LP is max{bTy : ATy < ¢, y > 0}, where y is a vector of m real variables.
Both LPs together are called a primal-dual pair. The duality theorem of linear programming
states that exactly one of the following holds: either both primal and dual are infeasible,
or one is unbounded and the other is infeasible, or both are feasible and have optimal points
with the same optimal value. (See [16], Corollary 25 and Theorem 23.)

3. PREVIOUS WORK AND SOME RELATED FACTS

We review here connected existing work. We describe first the results from [7] on entailments
among partial implications with one or two premises. The study there starts with a detailed
comparison of entailment as defined in Section 2 with the notions of redundancy among partial
implications previously considered in the literature. Also, that reference works permanently
under the assumption that a set of classical implications, with their corresponding closure
space, is present. Here we consider first entailment as defined in Section 2; for simplicity, we
just review, for the time being, the particular case where no background implications apply,
so that the associated closure operator is the mere identity: every set is closed. The actual
statement relative to background classical implications is postponed to a later section (Theo-
rem 4.1). Then, we develop a variant of a result in [21], adapted to our context and notation,
on which our main results are based, plus additional properties related to that variant.

3.1. Up to two premises. It can be easily checked that the case of zero premises, i.e. tau-
tological partial implications, trivializes to the classical case: =, Xo — Yp if and only if
Yy C Xp, at any positive confidence threshold ~. The first interesting case is thus the entail-
ment from one partial implication X7 — Y7 to another Xy — Y. If Xo — Y} is tautological
by itself, there is nothing else to say. Otherwise, entailment is still characterized by a simple
Boolean-algebraic condition on the sets Xg, Yp, X1, and Y7 as stated in the following theorem:

Theorem 3.1 [7]. Let v be a confidence parameter in (0,1) and let Xg — Yy and X; — V)
be two partial implications. Then the following are equivalent:

(1) X1 =Y =y Xo = Yo,

(2) either Yy C Xo, or X1 C Xg and XoYy C X1Y7.
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Note that the second statement is independent of . This shows that entailment at confidence
~v below 1 differs from classical entailment, as we have already pointed out earlier.

The case of two partial implications entailing a third was also solved in [7]. The starting
point for that study was a specific example of a non-trivial entailment:

A— BC, A— BD [/ ACD — B. (3.1)

Indeed, this entailment holds true at any 7 in the interval [1/2,1). This is often found
counterintuitive. A common intuition is that combining two partial implications that only
guarantee the threshold v < 1 would lead to arithmetic operations leading to values un-
avoidably below «, as it happens in our earlier discussions of Augmentation and Transitivity.
However, this intuition is incorrect, as Expression (3.1) shows. The good news is that a
similar statement, when appropriately generalized, covers all the cases of entailment from
two partial implication premises. We omit the proof of Expression (3.1) as it follows from
the next theorem, which will be generalized below in our main result.

Theorem 3.2 [7]. Let v be a confidence parameter in (0,1) and let Xo — Yy, X1 — Y1 and
Xo — Yy be three partial implications. If v > 1/2, then the following are equivalent:
(1) X1 — Yl, X2 — Yé ):7 X() — Y(),
(2) either Yo C Xy, or X; C Xo and XoYo C X,Y; for somei € {1,2}, or all seven inclusions
below hold simultaneously:
(a) X1 - X2Y2 and X2 - X1Y1,
(b) X1 - Xo and X2 - Xo,
(c) Xo C X1 XoY1Ys,
(d) Yo € XoY1 and Yy C XoYa.

Indeed, the characterization is even tighter than what this statement suggests: whenever
v < 1/2, it can be shown that entailment from two premises holds only if it holds from one
or zero premises. This was also proved in [7], thus fully covering all cases of entailment with
two premises and all confidence parameters . Clearly, all conditions stated in the theorem
are easy to check by an algorithm running in time O(n), where n is the number of attributes,
if the sets are given as bit vectors, say.

As already indicated, the original versions of these theorems in [7] are somewhat more
general: they are stated for relative entailment, that is, assuming a possibly nontrivial
closure space; but they do have our statements so far as particular cases (B = () as discussed
previously).

The proof of Theorem 3.2 in [7] is rather long and somewhat involved, although it uses
only elementary Boolean-algebraic manipulation. For instance, several different counterexam-
ples to the entailment are built ad hoc depending on which of the seven set-inclusion conditions
fail. Its intuition-building value is, actually, pretty limited, and a generalization to the case of
more than two premises remained elusive for quite some time. A somewhat subtle point about
Theorem 3.2 is that the seven inclusion conditions alone do not characterize proper entailment
(even if v > 1/2, that is): they are only necessary conditions for that. But when these neces-
sary conditions for proper entailment are disjuncted with the necessary and sufficient condi-
tions for improper entailment, what results is an if and only if characterization of entailment.
That is why the theorem is stated as it is, with the two “escape” clauses at the beginning
of part (2). Our main result will have a similar flavour, but with fewer cases to consider.

Before we move on to larger numbers of premises, one more comment is in order. Among
the seven set-inclusion conditions in the statement of Theorem 3.2, those in the first item
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X1 C XoYs and X9 C X Y7 are by far the least intuitive. We present a little bit of additional
information about them.

Proposition 3.3. Assume Yy € Xg. Then, property Xo C X1Y1 is equivalent to: X1 —
Y ):’Y X1 Xo — Y.

Proof. By Theorem 3.1, the entailment is equivalent to the conjunction of X; C X;Xo,
which holds, and X1 XsY; C XY, which is equivalent to Xo C X;Y7. ]

Proposition 3.4. The properties X1 C XoYs and Xo C X1Y1, jointly, are equivalent to:
(Xl = Yl) VAN (X2 = YQ) |: (X1 = X1§/1X2Y2) VAN (X2 = X1Y1X2Y2).

Proof. Let Z = (X1 = Y1) A (X2 = Y2) and assume X; C Z: then we must have as well
Y1 C Z, hence X9 C Z, hence Yo C Z; the other implication is argued symmetrically.
Conversely, if X; € XoYs then Z = XoY5 satisfies both X = Y7 and X5 = Y5 (in different
ways) but violates Xy = X1Y7 XoY5, and symmetrically for the other possibility. ]

Discovering the right generalization of these properties turned out to be the key to
getting our results. This is discussed in Section 5. Before that, however, we need to discuss
a characterization of entailment in terms of linear programming duality. Interestingly, LP
will end up disappearing altogether from the statement that generalizes Theorem 3.2; its
use will merely be a (useful) technical detour.

3.2. Entailment in terms of linear programming. The goal in this section is to discuss
valid entailments as in Expression (2.2), where each X; — Y; is a partial implication on
the set of attributes [n], in terms of linear programming and duality. The characterization
can be seen as a variant, stated in the standard form of linear programming and tailored
to our setting, of Proposition 4 in [21], where it applies to deduction rules of probabilistic
consequence relations in general propositional logics. The linear programming formulation
makes it easy to check a number of simple properties of the solutions of the dual linear
program at play, which are necessary for our application (Lemma 3.11).

Before we state the characterization, we want to give some intuition for what to expect.
Our versions of the main theorems below will allow for the presence of a background set of
classical implications and their corresponding closure space. However, for the sake of building
intuition, we describe first just the case where the background set of classical implications
is empty and the closure operator is the identity, as we did in the previous subsection. We
leave to Section 3.3 the discussion of the general versions.

For each partial implication X — Y and each transaction Z, we define a weight
wz(X —Y) that, intuitively, measures the extent to which Z witnesses X — Y. Moreover,
since we are aiming to capture confidence threshold ~y, we assign the weight proportionally:

wz(X =-Y)=1—v if Z witnesses X — Y,
wz(X =Y)=—v if Z violates X — Y,
wz(X —-Y)=0 if Z does not cover X — Y.

With these weights in hand, we give a quantitative interpretation to the entailment in
Expression (2.1).

First note that the weights are defined in such a way that, as long as v > 0, a transaction
Z satisfies the implication X — Y interpreted classically if and only if wz(X — Y) > 0.
With this in mind, the entailment in Expression (2.1), interpreted classically, would read
as follows: for all Z, whenever all weights on the left are non-negative, the weight on the
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right is also non-negative. Of course, a sufficient condition for this to hold would be that
the weights on the right are bounded below by some non-negative linear combination of
the weights on the left, uniformly over Z. What the characterization below says is that this
sufficient condition for classical entailment is indeed necessary and sufficient for entailment
at confidence threshold +, if the weights are chosen proportionally to « as above. Formally:

Theorem 3.5. Let v be a confidence parameter in (0,1), and let Xg — Yp,..., Xr — Y%
be a set of partial implications. The following are equivalent:

(1) X1_>}/17"'an‘—>Yk ):’YXU—>%

(2) There is a vector A = (A1,..., ;) of real non-negative components such that for all
Z C [n]
k
D X wz (X = Y;) < wz(Xo — Yp). (3.2)
i=1

As already discussed, we wish a characterization able to encompass the case where the
premises are made up, jointly, by a set of partial implications and an additional set of classical
implications. Theorem 3.5 will follow as a corollary, for the particular case where B = ().
Any reader interested in the less general but slightly easier development corresponding to
not treating classical implications separately may check the corresponding proofs out in [6].

3.3. Characterization in the presence of classic implications. Thus, we move on to
explain what happens in the general case. Now our premises come in two parts: a (possibly
empty) set of classic implications B plus k partial implications. The scheme is exactly as
before, but now we want to “erase from the picture” sets that are not closed under B, as
we will want to characterize an entailment that imposes B as premises. Due to this, the new
version of the weights is:

Definition 3.6.

11—~ if Z= 7 and Z witnesses X — Y,
wz(X =-Y)=¢ —v if Z =7 and Z violates X — Y,
0 if Z # Z or Z does not cover X — Y.

where the closure operator is the one associated to B. That is, it is exactly as before, but
only for closed sets. Nonclosures are to be ignored, as they do not obey the implications,
and the way of making them irrelevant is, of course, by setting their weight to zero.

We will remain in the general case for the rest of the paper. Hence, the previously given
definitions of the weights are to be fully replaced by the new version. The more general
version of the characterization is now:

Theorem 3.7. Let v be a confidence parameter in (0,1), let Xg — Yp,..., X — Y be a
set of partial implications and let B be a set of implications. The following are equivalent:

(1) B,Xlﬁyl,..‘,Xk*)Yk |:'yX04)YVO

(2) There is a vector A = (A1,..., ;) of real non-negative components such that for all
Z C [n]
k
D X wz(Xi = Y:) < wz(Xo = Yp). (3.3)
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Towards the proof of Theorem 3.7, let us state a useful lemma. This gives an alternative
understanding of the weights wz(X — Y') than the one given above.

Lemma 3.8. Let v be a confidence parameter in (0,1), let X — 'Y be a partial implication,
let B be a set of implications, let D be a dataset that satisfies B, and for each Z C [n] let
xyz be the multiplicity of Z in D, that is, the number of times that Z appears as a complete
transaction in D. Then

Dy X =Y &3 scpuwz(X =Y) 27 >0.

Proof. We introduce some notation. We distribute all the transactions Z € D into three
sets, according to whether they cover, witness, or violate the partial implication. Let
U={ZeD|XCZ}),\V={ZeD|XCZY{Z},andW ={ZeD| XY C Z}. Note
that U = VUW and VNW = (). Note also that sp(X) = >,y 7 and, likewise, sp(XY) =
> zew Zz. Hence, the fact that D |=, X — Y means that ),y 22 > 7>, Tz, that is,

sz’Y(Z wz+sz) > 0.

zZeWw zZeWw zZeVv
Reordering the terms, the left-hand side equals

A=) > wz—v-Y 2z = > (1= 22+ Y () 2z

Zew Zev Zew Zev
= Y wz(X = Y)mz+ Y wy(X ->Y) 2y
Zew zev
= Z wz(X — Y) Ty
zeu

Now, the product wz(X — Y) -z is zero, hence irrelevant for any sum, in two cases: when
Z € D but Z ¢ U, because it does not cover X and wz(X — Y) = 0, and when Z ¢ D,
hence zz = 0. (There is, actually, a potential third case of wz(X — Y) = 0, namely when
Z # Z according to B, but no transaction falls in this case because D |= B, thus this case
is covered by Z ¢ D.) Allin all, 3, jwz(X = Y) 2z =3 scpwz(X = Y) -2z

Therefore, we have proved that D =y X — Y if and only if 3y, wz(X = Y) -2z >0
as desired. L]

This lemma is parallel to the first part of the proof of Proposition 4 in [21]. With this
lemma in hand we can prove Theorem 3.7. We resort to duality here, while the version in
[21] uses instead the closely related Farkas’ Lemma.

Proof of Theorem 3.7. The statement of Lemma 3.8 leads to a natural linear program: for
every Z, let zz be a non-negative real variable; impose on these variables the inequalities
from Lemma 3.8 for X; — Y7 through X3 — Y%, and check whether the corresponding
inequality for X¢ — Y{ can be falsified by minimizing its left-hand side:

P: min Y ,c,wz(Xo—Yo) 2z
s.t. Zzg[n} wz(Xi — Y;) -xy >0, Vie [k] ,
zz >0, VZ.
Observe that P is always feasible: the all-zero vector is always a feasible solution. The
dual D of P has one non-negative variable y; for every i € [k]|, and one inequality constraint
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for each non-negative variable xz. Since the objective function of D would just be the
trivial constant function 0, we write directly as a feasibility problem:

D: Zze[k] wz(XZ' — ﬁ) *Yi < wZ(Xo — Yg), vZ
y; >0, Vie k]
This is the characterization statement that we are trying to prove, replacing y; with \;.
Thus, the theorem will be proved if we show that the following are equivalent:
(1) B, X1 = Y1,.... X), = Y =, Xo = Yo,
(2) the primal P is (feasible and) bounded below,
(3) the dual D is feasible.

(1) = (2) Let us prove the contrapositive. Assume that P is unbounded below. Let
zz be a feasible solution with 3~ ;) wz(Xo = Yp) - 2z < 0. We may assume that zz has
rational components with a positive common denominator N, while preserving feasibility
and a negative value for the objective function. Then N -z is still a feasible solution and
its components are natural numbers. Also, for Z such that wz(Xo — Yp) = 0 the value of
xz is irrelevant, and we fix it to £z = 0 as well; note that this includes all cases of Z # Z.

Let D be a transactions multiset consisting of N -z copies of Z for every Z C [n]. As
just indicated, for Z # Z we add zero transactions so that Z = Z whenever Z € D, that
is, D |= B by Proposition 2.1.

By feasibility we have Zzg[n] wz(X; = Y;) - N-xzz >0 and therefore D =, X; = Y]
for every i € [k] by Lemma 3.8. On the other hand }_ ,,; wz(Xo — Yo) - N - 2z < 0 from
which it follows that D F~, Xy — Yp, again by Lemma 3.8.

(2) = (3) Direct consequence of the duality theorem.

(3) = (1) Assume D is feasible and let y be a feasible solution. Let D be a transactions
multiset such that D |= B and D =, X; — Y;, for every i € [k]. For every Z C [n], let 2
be the multiplicity of Z in D. Since y is a feasible solution and xz is non-negative, we have:

Y wzr(Xo—=Yo)wz = Y (D wiXi oY)y | a2z

ZC[n] ZCln] \i€[k]
= Zyz Z wz(X; = Y;) zz
iclk] ZC[n]

This is not negative since y; is not negative and also 2] W 7z(Xi; — Y;)-zz is not nega-
tive by the assumption on D and Lemma 3.8. This proves that Zzg[n] wz(Xo — Yy)-zz >0,
from which D =, Xo — Y) once more by Lemma 3.8. ]

The sort of argumentations deployed so far will be pervasive in what follows. However,
instead of sums along Z C [n], as in the primal form, we will mostly find sums along i € [k]
as in the dual formulation. Again, it will be helpful to factor out the most common algebraic
manipulations into a technical lemma. We employ now the following notational variant:
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Definition 3.9. Given k partial implications X; — Y; for ¢ € [k]:

Vy = {i€[k]: Z violates X; — Y},
Wz = {i€lk]:Z witnesses X; — Y;},
U; = {i€lk]:Z covers X; —» Y} soUz =V, UWj.

Lemma 3.10. Let v be a confidence parameter in (0,1), let X1 — Y1,..., X — Y; be a
set of partial implications, let B be a set of implications, let A = A\1,..., \; be a vector of
non-negative reals, let Z C [n] be such that Z = Z, and let T = Dicp) Ni - wz(Xs = Y5), that
is, the left-hand side of Inequality 3.3. Then

() T'=(1=9): ZzeWZ =7 2iev, Ai (whence I' > —vy- 370y, Ai).
(2) T'=2iew, X —7- ZzeUz i

(3) I'> )\ ’YZzeUZ)‘ for all j € Wy.

()F<Z€UZZ7E] — - ZzEUZ/\ forall j € Vz

Proof. (1) First, we split the sum according to Uz:

k
Z)‘i'wZ(Xi — Y;) = Z )\i -wz(XZ‘ — Y;) + Z )\i ‘wZ(X,- — Y;)
i=1 €Uy i1¢Uy
If i ¢ Uy then wyz(X; — Y;) =0, so that Zi¢UZ Ai - wz(X; = Y;) = 0. Therefore,

k
Z/\sz(Xz%YVz) = Z Asz(Xz%}/z)
=1 €Uy
= Z /\sz(Xz_>}/;)+Z)\sz(Xz_>}/;)
iEWy i€Vy
= 1= > =7 D) A
1€EWy 1€Vy

Since v € (0,1) and \; >0, (1 —7) - ZzGWZ Ai — - ZzeVZ i > —- ZzeVZ
(2) By (1), S8\ wz(Xi = Vi) = (1= 9) - Siew, M — 7 Ssev, Ai- Then:

k
D hirwz(Xi =Y = > =y D N[ DN

=1 €Wy €Wy 1€Vy
DRYEETN I DPYES PPV
iEWy iEWy i€Vy

PR PP

ieWy €Uz
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(3) Since j € Wz and A\; > 0, and all weights are at least —v, the right-hand side of the
inequality is at least :
k
Z)\i . wz(Xi — YZ) = Z )\i . wz(Xi — YZ)
=1 €Uz

> A=) N+(En Y A

i€Uz—{j}
e ARV B EEED DEPYE EDYERD PP
icUz—{j} €Uz

(4) Since j € Vz and A; > 0, and all weights are at most 1 — v, we have:

k
Z)\i . wz(Xi — Y;) = Z )\z' . ’wz(XZ' — Yz)
=1 1€Uz
<(I=7) D, Ai-
i€eUz—{j}
= D> x—[r D N -0-N)
i€Uz—{j} i€Uz—{j}
= Z Ai = Z A ]
iEUZ_{j} iEUZ

3.4. Properties of the LP characterization. Whenever an entailment holds properly,
the characterization in Theorem 3.7 gives a good deal of information about the inclusion
relationships that the sets satisfy, and about the values that the )\; can take. In this section
we discuss this.

Lemma 3.11. Let v be a confidence parameter in (0,1), let Xog — Yp,..., X — Y% be a
set of partial implications with k > 1, and let B be a set of implications. Assume that the en-
tailment B, X1 — Y1,..., Xy = Y =y Xo — Yo holds properly. In particular, Yo € Xo. Let
A= (A1,..., ) denote any vector as promised to exist by Theorem 3.7 for this entailment.

The following hold:

XoYy € X1Y7 - XYy,

X,Y; & X for every i € [k].

(

(2)

(3)

(4) Xi C Xo for every i € [k].
()

(6)

(

Proof. (1) If any \; is zero then, by Theorem 3.7, applied to the smaller set of partial
implications whose corresponding coefficients are nonzero, the entailment would not be a
proper entailment.
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(2) Let Z = X1Y7..X Yy then Z = X1Y1.. XY, = X1Y7.. XY, = Z by idempotency,
so we have Vi € [k],wz(X; — Y;) = 1—~. If XYy € Z, then the inequality from Theorem 3.7
would be either —y > (1 =) > ;e Ai or 0= (1 =) 32, Ais but those are not possible
since the right-hand side is strictly positive by the previous item and the fact that v < 1.
Thus, XYy C X,Y;... Xx Y.

(3) Because of the previous point, (1 —7) = (1 =) > ;e Ai, hence 12 37,000 Ai.

(4), (5) and (6) Let Z = Xo, by idempotency Z = Z. Since Yy € X, we have Yy Z X
so wz(Xo — Yp) = —v. From Theorem 3.7 and Lemma 3.10(1), —y > —v- >,y Ai. Then
> icv, Ai > 1since v > 0. By (3), we have Zie[k& < 1, and all are strictly positive; thj
only way to add up to 1is Vz = [k]. Hence, Z = X violates every X; — Y}, i.e.,, X; C X
and X;Y; ¢ Xo; and, besides, e Ni = 1.

(7) Let Z = XoY; for any i € [k], again by idempotency Z = Z. By (4) we get X; C X
and then X;Y; C XY, that is, i € Wy. Let us assume Yy € Z so wz(Xo — Yp) = —7. We
would have, from Theorem 3.7 and Lemma 3.10(3), =7 = Ai =7 > ;e Ai = Ai =7 Dieqp Ai
since by (4) X; C Xy C Z for all i € [k]. But this cannot be the case: \; — VD ek Ai i
strictly larger than —y because A; > 0 by (1) while >,y Ai =1 by (6). This contradiction
proves that the assumption Yj ¢_ Z was wrong. Thus Yy C Z = XyY; ]

4. Low THRESHOLDS: CASES OF IMPROPER ENTAILMENT

As it turns out, there are some simple but interesting cases where our results allow us to
prove that there cannot be any relative entailment as in Expression (2.2) that does not
already hold from just one of its partial premises. The characterization, then, follows from
known ones. This is what the two results of this section state. Both of them are very
intuitive and might be known (although we have not been able to find any specific reference).

In the first one, we discuss the case where the antecedent of the conclusion is empty:
this will complement the picture when we discuss the nonempty case below in Section 6.
The other case is when the confidence parameter v is too low.

We will need to apply the actual variant of Theorem 3.1 proved in [7], which differs
from the one given above in that it allows for the background set of classical implications BB
and its closure operator:

Theorem 4.1 [7]. Let v be a confidence parameter in (0,1), let B be a set of implications,
and let Xg — Yy and X1 — Y7 be two partial implications. Then the following are equivalent:
(1) B, X1 = Y1 Fy Xo — Yo,

(2) either Yy C Xo, or X1 C Xo and XoYp C X1Y7

4.1. Empty antecedent in the conclusion. For one of our results in Section 6, it will
be useful to have studied separately the case where Xy C 0 (that is, Xo = 0 or equivalent
to it under B, since Xy C () if and only if Xy = 0).

Proposition 4.2. Let v be a confidence parameter in (0,1), let Xg — Yo,..., Xx — Y be
a set of partial implications, and let B be a set of implications such that the entailment
B, X1 —Y1,....X = Y, =, Xo — Yy holds, where Xo C 0. Then, there is j € [k] such
that B, X; = Y; =y Xo — Y0.



Vol. 15:1 RELATIVE ENTAILMENT AMONG PROBABILISTIC IMPLICATIONS 10:19

To prove it, we apply Theorem 4.1: the intended conclusion of this proposition is
equivalent to: either Yy C X, or X; C X and XoYy C X;Y; for some j € [k]; note that
this alternative formulation is again independent of ~.

Proof. Assume that the indicated entailment holds. We start by passing to a subset for
which the entailment is proper as per Proposition 2.2: fix L such that the entailment
B A{X;—Y;:ie L}, Xo— Y holds properly.

If L =0, then any j € [k] will do, as we will have the entailment already just from B
(Yo € Xo). Thus, assume L nonempty, and fix any j € L. By Lemma 3.11(4), X; C X,.
Also, using monotonicity and idempotency of closures, Xo C () C Y; so that XoY; C Yj; then,
by Lemma 3.11(7), Yy € X,Y; C Y}, that is, considered together, XYy C Y; C X;Y; as well.
Our claim follows from Theorem 4.1. Note that, necessarily, |L| = 1 in this case. []

4.2. Low thresholds. The remainder of the paper will be driven by a case study based on
the value of v. First, we see that when it is below a certain value, every entailment trivializes
in the same sense as the one just described in Proposition 4.2. In the next section, we will
study the case where it is high enough that the solution vector A can be chosen to have the
same value at all nonzero components, and another section will explain what happens for
intermediate values of ~.

Our main result for low -~ is:

Theorem 4.3. Let v be a confidence parameter in (0,1), let Xg — Yo, ..., X — Y be a
set of partial implications with k > 1 and let B be a set of implications. If v < 1/k, then
the following are equivalent:

(1) B,Xl — Yl,...,Xk — Yk ’:'Y XO — Yb,

(2) B,X; =Y =y Xo = Yy for some i € [k,

(3) either Yy C Xy, or X; C Xo and XoYy C X;Y; for some i € [k].

Proof. The equivalence of (2) and (3) is exactly Theorem 4.1. Also, (2) = (1) is immediate.

To complete the proof we argue that (1) = (2). Let L C [k] be minimal under set
inclusion with B,{X; = Y; : ¢ € L} =y Xy — ¥ as in Proposition 2.2. If |L| < 1 we already
have what we want, because either L = () and B |=, Xo — Yj, that is, ¥j C X, or [L| =1
and then, for i € L, B, X; = Y; =y Xo — Yy. Now, assuming |L| > 2, we just have to prove
~v > 1/k, thus contradicting our hypothesis.

Let A = (\; : ¢ € L) be a solution to Expression (3.3) for B,{X; — Y; :i € L} |=,
Xo — Yy as per Theorem 3.7. By the minimality of L, that entailment is proper. As «
is in (0,1) and |L| > 1, indeed |L| > 2, Lemma 3.11 applies, so we have X; C X, for all
i € L. By the fact that |L| > 2, and the characterization of entailment with at most one
premise, Theorem 4.1, we have XYy ¢ X;Y; for all i € L: otherwise, the entailment would
not be proper. Taking a fixed i in L, and Z = X;Y;, where Z = X;Y; = X,;Y; = Z, we have:
wz(Xo = Yy) <0, wz(X; —Y;) =1—1~. Since Wz # () and the entailment is proper, by
Theorem 3.7 and Lemma 3.10(3) we get 0 > A\; — -3 Aj. By Lemma 3.11(3), we have
> el Aj <1s00 >\ —~. We conclude that \; <y, and this holds for every ¢ € L. Adding
over i € L we get » ;.; A\; < -|L|, and the left-hand side is 1 by Lemma 3.11(6). Thus
~v > 1/|L| > 1/k and the theorem is proved. ]

It has been suggested to us that this result can be probably obtained without resorting
to the linear programming framework. That observation may be correct. However, the
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argument, as given, is an excellent way to start the study and get a first contact with the
usage of our toolkit.

5. HIGH THRESHOLDS

The goal of this section is to characterize entailments from k partial implications when the con-
fidence parameter + is large enough, and our proofs will show that (k—1)/k is enough. Ideally,
the characterization should make it easy to decide whether an entailment holds, or at least eas-
ier than solving the linear program given by Theorem 3.7. We come quite close to that. Before
we get into the characterization, let us first discuss the key new concept on which it rests.

Definition 5.1. We say that a set of partial implications X7 — Yi,..., X — Y; enforces
homogeneous implicational satisfaction for a given set of implications B and its closure
operator, if, for every Z = Z, the following holds:

if for all i € [k] either X; € Z or X;Y; C Z holds,
then either X;  Z holds for all i € [k]
or X;Y; C Z holds for all i € [k].

For economy of words, when the condition holds we most often say that the set of partial
implications “enforces homogeneity” for B.

In words, enforcing homogeneous implicational satisfaction means that every Z that
does not violate any X; — Y;, either witnesses them all, or does not cover any of them. Seen
as the classical implication counterparts, if they are all simultaneously satisfied, then they
are satisfied in a homogeneous manner: all of them vacuously, or all of them witnessed. Note
that this definition does not depend on any confidence parameter.

If B is not mentioned, we refer to B = (), with the trivial closure operator associated,
namely the identity; then, the condition defining homogeneous implicational satisfaction
applies to every Z.

Sets of less than two partial implications always enforce homogeneity; in the case of the
empty set, it does so vacuously. Thus, every set of partial implications has some subset that
enforces homogeneity.

5.1. Enforcing homogeneity: main property. Homogeneity sounds like a very strong
requirement. However, as the following lemma shows, it is at the heart of proper entailments.

Lemma 5.2. Let X1 — Yi,..., X — Yy be a set of partial implications with k > 1 and let B
be a set of implications. If there exist a partial implication Xo — Yy and a confidence param-
eter v in the interval (0,1), for which the entailment B, X1 — Y1,..., X —= Y =y Xo = Y
holds properly, then X1 — Yi,..., Xy — Y enforces homogeneity for B.

Proof. By definition, we have to prove that if Vi € [k] wz(X; — Y;) # —v then either
Vi € [Klwz(X; = Y;) = 1—vyorVi € [kJwz(X; — Y;) = 0; and this for all Z such that Z = Z.

Thus, fix such a Z = Z and assume indeed that Vi € [k], wz(X; — Y;) # —v, that is,
for all i € [k], either wz(X; = Y;) =1 — v or wz(X; — Y;) = 0. Thus, wz(X; — Y;) > 0.
If Vi € [k] wz(X; — Y;) =0, then we are done. Then, let us assume that there exists j such
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that wz(X; = Y;) # 0, so that wz(X; = Y;) =1—7, X;Y; C Z, and j € Wz. We apply
Theorem 3.7 with all weights and coefficients non-negative, hence:
k
wz(Xo = Y0) = > i wz(Xi » Vi) =0 (=) + ) \i-wz(X; = V) >0
i=1 i#j

because Aj - (1 —+) > 0 already. This implies wz(Xo — Yp) =1 — so that Xo C XY, C Z
and therefore Xo C Z = Z by monotonicity of closures.

By Lemma 3.11(4) we know Vi € [k] X; C Xo, so X; C Z and, by hypothesis, Z does
not violate any X; — Y;; then Vi € [k] X;Y; C Z, just what we want to prove. ]

5.2. Main result for high threshold. We are ready to state and prove the characterization
theorem for v > (k — 1) /k.

Theorem 5.3. Let v be a confidence parameter in (0,1), let Xg — Yy, ..., X — Y% be a
set of partial implications with k > 1 and let B be a set of implications. If v > (k —1)/k
then the following are equivalent:
(1) B,Xl — Yl,...,Xk — Yk 'Z’Y XO — Yb,
(2) there is a set L C [k] such that B,{X; = Y; :i € L} =, Xo — Yo holds properly,
(3) either Yy C Xy, or there is a non-empty L C [k] such that the following conditions hold:
(a) {X; = Y;:i€ L} enforces homogeneity for B,
(b) UieL Xi C XO - UieL Xi}/i;
(©) Yo C e KoY.

Proof. The equivalence of (1) and (2) is Proposition 2.2.

From (2) to (3), the index set L will be the same in both statements, unless L = (), in
which case Yy C X must hold and we are done. Assume then that L is not empty. Part (a)
we get automatically from Lemma 5.2 since B,{X; — Y; : i € L} properly entails Xy — Yj
at threshold v. Now we prove (b). By Theorem 3.7, let A = ()\; : ¢ € L) be a solution to the
inequalities in Expression (3.3) for the entailment B,{X; — Y; :i € L} =, Xo — Y. From
the fact that this entailment is proper and the assumptions that |L| > 1 and v € (0,1), we
are allowed to apply Lemma 3.11.

The first inclusion in (b) follows from that lemma, (4). The second inclusion in (b) also
follows from that lemma, (2). Finally, for (c) we just refer to (7) of the same lemma, where
we get Yy C XY,..., Yy C XY and then Yy C Micr XoY; (which is itself a closed set).

For the implication from (3) to (1) we proceed as follows. If Yy C X then Xg — Yj
is already entailed by B (even Xy = Yj is). Assume then that L is non-empty and satisfies
(a), (b), and (c). By Theorem 3.7 it suffices to show that the inequalities in Expression (3.3)
for the entailment B,{X; — Y; :i € L} =, Xo — Y have a solution A = (\; : i € L) with
non-negative components.

Let £ = |L| and set A; = 1/¢ for i € L. Recall that L is not empty so £ > 1 and this
is well-defined. For fixed Z, we prove that the inequality in Expression (3.3) for this Z is
satisfied by these \;. If Z # Z, then that inequality is satisfied trivially since all weights
at both sides of the inequality are zero. Thus, let Z = Z. In the following, let X = Uier Xi
and Y =, Y;. We distinguish cases according to whether X C Z.

First assume that X C Z. In this case Z covers X; — Y; for every ¢ € L: then L = Uy.
Thus, we split L into two sets, L = V; U Wz. We consider three subcases.
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Subcase 1. If Wz = ), then by Lemma 3.10(2), >°..; \i - wz(X; = Y;) = —v- >",cp A and,
using that the A\;’'sadd up to 1, —y->",.; A = —y < wz(Xo — Yp); i.e. the inequality holds.
Subcase 2. If W, = L, then every X; — Y; with ¢ € L is witnessed: X;Y; C Z for all
i € L. Using (b), and monotonicity and idempotency of the closure operator, we get
X, C Uier XiY; C 7 = Z, and the non-emptiness of L applied to (c) ensures the existence of
some i € L for which Yy C XyY; C Z = Z. Thus Xy — Yp is also witnessed, all the weights
in the inequality (3.3) are 1 — =, the coefficients add up to 1, and the inequality holds.
Subcase 3. We consider now the general case where W, # () and W, # L. The fact that
Wy # () ensures that there is some i € L such that Y; C Z. By (c¢), Yy € XoY;; then,
wz(Xo — Yy) > 0, specifically 1 —~ or 0 according to whether Xy C Z. The fact that
Wz # L implies that Vz # (J; by Lemma 3.10(4), with Uz = L, >~,.; hiwz(X; = Y;) <
ZieL_{j} Xi =¥ icr Ai where j € Vz. As all the \; are 1/¢:
{—1 k—1
Z)\in(Xi—)Yi) < T—’YS T—’Yﬁoﬁwz(XO%YO)-
€L

Assume now instead X ¢ Z. Then, by the first inclusion in (b), Xy € Z, so Z does
not cover Xg — Yy and wz(Xo — Yo) = 0. If X;Y; € Z for every i € L, then Z does not
witness any X; — Y;, so wz(X; — Y;) <0 for every i € L. Whence ) . ; A\ - wz(X; = Y;)
is non-positive and then bounded by wz(Xo — Yp) = 0 as required. Hence, suppose now
that there exists ¢ € L such that X,Y, C Z. As X ¢ Z, we also have a j € L such that
X; € Z. Thus Z witnesses X, — Y, and fails to cover X; — Y}, and both ¢ and j are in
L. As {X; — Y; : i € L} enforces homogeneity, this means that Z must violate X; — Y},
for some h € L: h € V; # (; then, by Lemma 3.10(4) we have:

€L 1€Uz—{h} €Uy

Let |[Uz| = u < £ < k. Replacing the values of \;,

1 1 1—7y)—1
§in-wZ(Xi—m)gg(u—l)—gm—“(ﬁg
i€L

(1-7)—1 £-1 k-1
< = —r < —~.
< ; e

In turn, this last value is non-positive, and thus bounded by wz(Xo — Yy) = 0, by the
assumption that v > (k — 1)/k. This proves that the inequalities corresponding to these
Z’s are satisfied.

This closes the cycle of implications and the theorem is proved. ]

5.3. Enforcing homogeneity: further properties. Enforcing homogeneity turned out
to play a key role in the main result about the case of high confidence threshold. In this
section we collect a few additional observations about it.

We already mentioned the case of sets of less than two partial implications. The case
k = 2 is a bit more interesting. We find that this case of enforced homogeneity corresponds
exactly to the conditions under label (a) in Theorem 3.2(2), that we found mysterious for
many years (cf. the discussion at the end of Section 3.1).

Lemma 5.4. A set of two partial implications X1 — Y1, Xo — Yo enforces homogeneity for
B if and only if both X1 C XoYs and Xo C X Y7 hold.
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Proof. (=) Pick Z = X,Y5; then, assuming X; ¢ Z directly violates the definition of
enforcing homogeneity; then argue symmetrically.

(<) Assume X7 C XoYs and X5 C X1Y7, and let Z = Z. Suppose that either X;Y; C Z
or X1 ¢ Z, and likewise either X2Ys C Z or Xy € Z, but not homogeneously. Rename
if necessary so that X; ¢ Z and X»Y> C Z, and apply monotonicity and idempotency:
XYy C Z = Z; then, X; C X5Y5 is not possible. Thus, homogeneity holds. ]

The next lemma characterizes sets of partial implications that enforce homogeneity, and
provides us with a polynomial-time algorithm to test them.

Lemma 5.5. Let X1 — Y1,..., Xy — Y be a set of partial implications and let U =
X1 Y1 - XY, Then, the following are equivalent:

(1) X1 = Y1,..., X — Yy enforces homogeneity for B,

(2) B,Xi=Y,....Xi =Y, ’:XZ:>U, all i € [k?]

Proof. Assume X; — Yi,..., X}, — Y) enforces homogeneity for B; let Z = B, that is,
Z = Z, and assume that Z |= X; = Y; for all i € [k]. Then, by homogeneity, either X; Z Z
for all ¢ € [k] or X;Y; C Z for all i € [k]. If X; € Z for all i € [k], then it also holds
ZEX;,=Uforallic [k]. Else, if X;Y; C Z foralli € [k] then U C Z, and Z = X; = U
for all i € [k] as well. Therefore, X; = Y1,..., X; = Y} entail every X; = U.

Conversely, assume that B, X; = Yi,..., X, = Y, entail every X; = U and let
Z =7 X; =Y, forallié€ k], hence Z = X; = U for all i € [k]. Then either U C Z,
in this case X;Y; C Z for all i € [k] and we are done; or U  Z and, then, the only way to
satisfy all these classical implications is by falsifying all the premises, so that X; € Z for
all i € [k]. Therefore we have proved that X; — Y7,..., X} — Y} enforces homogeneity. []

Note that condition (2) in the lemma can be decided efficiently by testing the unsat-
isfiability of all the propositional Horn formulas of the form A BA (X1 = Y1) A+ A (X =
Y:) A Xj A=A as j ranges over [k] and A ranges over the attributes in U.

This characterization is quite useful. Consider, for instance, the set of three partial
implications B — ACE,C — AD,D — AB on the attributes A, B,C, D, E. By the lemma,
this set enforces homogeneity, but any of its two-element subsets fails to do so.

Finally, a recurrent situation concerns sets of partial implications with a common
left-hand side; more generally, when the closures of the left hand sides coincide.

Lemma 5.6. Every set of partial implications of the form X1 — Y1,..., Xy — Yy such that,
for some X and alli € [k], X; = X, enforces homogeneity for .

Proof. Consider any Z = Z such that for all i € [k] either X; € Z or X;Y; C Z. If X; € Z
for all i € [k], then homogeneity is enforced. Assume that, for some j € [k], X; C Z; then
X; C Z for all i € [k], since X; C X; = X; C Z = Z, and the only remaining option is that
X,;Y; C Z for all i € [k], again enforcing homogeneity. ]

6. INTERVENING THRESHOLDS

The rest of the values of v require ad hoc consideration in terms of the actual partial
implications involved. We start by defining what will end up being the critical confidence
threshold for a given entailment.

Definition 6.1. Let ¥ = {X; — Y1,..., X — Yi} be a set of partial implications with
kE > 1, let B be a set of implications and all their attributes in [n], and let X C [n] with
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X # (. Define the critical threshold for ¥ and X as follows:

ZieW Ai
v =4%(%, X) := inf max =——%— (6.1)

A ZiEUZ )\Z
where Z ranges over all subsets of [n] with X ¢ Z and Z = Z according to B, and A
ranges over vectors (\q, ..., A\;) of non-negative reals such that Zz‘e[k} A; = 1. Moreover, by

convention, in Expression (6.1), any occurrence of 0/0 is taken as 0.

We can also agree that a vacuous maximum is taken as 0; however, note that this
last case occurs only if X C () since otherwise there is always the possibility of taking
Z = ). We will avoid usage of this definition for these X as that case was already covered
in Propositon 4.2. On the other hand, we required k£ > 1. This ensures that the inf is not
vacuous, which in turn implies 0 < +* < 1: the lower bound is obvious, and for the upper
bound just take \; = 1/k for every i € [k], which is well-defined when k > 1.

Observe that v* is defined for a set of partial implications and a single set X of attributes.
Typically X will be the left-hand side of another partial implication Xy — Yp, but v*(2, Xj)
is explicitly defined not to depend on Yj.

It should be pointed out that the convention about 0/0 is not an attempt to repair a
discontinuity; in general, the discontinuities of the rational functions inside the max are not
repairable. However, since all \; are non-negative, the only way the denominator can be
zero is by making the numerator also zero; jointly with our convention about 0/0, we will
be able to avoid the fraction in the next proposition.

The bounds on A define a closed and bounded polytope; thus, it is a compact set. It
follows that the limit v* is actually reached:

Proposition 6.2. Fiz ¥ and X as in the definition of v* = ~*(X,X) (with the same

conventions). Then there is a vector \* such that, for every Z such that X € Z and Z = Z,
Dicw, Ni < ot valentl A < A\t
Scvin S equivalently, 3 ey, AT <Y ey, M-

Proof. For every non-negative integer n, we know that there is a vector A = (/\gn), ce )\,(gn))
Diewy A
Sieug N
account our convention about 0/0, this is the same as ),y /\En) < (v 4+ D iUy, )\En)
(recall that if the sum on Uy is zero, so is the sum on Wy C Uy).

We can rewrite that bound as follows: »;cy Agn) <Y Diev, AR 4 %ZieUZ A <

(2 K3 —

such that, for every Z such that X ¢ Z and Z = Z, < v+ % Taking into

~* Zz’eUZ )\(”) + % given that a sum of )\(n)’s is always bounded above by 1. Thus,

7 (2
Z’iEWZ )\E”) - PY* ZiGUZ )\E”) < %

The sequence {A\(™} must have at least one accumulation point \* = ( 1,...,A) in the
polytope, due to compactness. We prove that it enjoys the property as claimed. We argue
the contrapositive, by assuming that, for some Z, ZieWZ AF > F ZieUZ A; or, equivalently,
that n > 0 where n = oy, AT — 7" D icp, A7 where, of course, X € Z and Z = Z. Fix
that Z for the rest of the argument.

Let ng > 2/n, so that 1/n < n/2 for every n > ng thanks to the assumption that n > 0.
Let § = W so that dk(1+~*) = n/2, and let n > ng be large enough so that, for every

ie k], A = x| <.
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Then:
o= Y N-v D N

iEWy €Uy

< Y v S M-
1iEWy €Uy

= 3 A ST 1 s(Wa| + 4 |U2))
€Wy €Uz
1

< k(1497 <

where the last two inequalities come directly from the properties of A", ng, and 6, and lead
to a clearly contradictory outcome. Thus, n < 0, and the claimed property follows. []

6.1. Characterization for all thresholds. The main result of this section is a character-
ization theorem in the style of Theorem 5.3 that captures all possible confidence parameters.

Theorem 6.3. Let v be a confidence parameter in (0,1), let Xg — Yy, ..., X — Y% be a
set of partial implications with k > 1 and let B be a set of implications. The following are
equivalent:
(1) B,Xl —-Y,.... Xy =2 Y, ':7 Xo — Yo,
(2) there is a set L C [k] such that B,{X; = Y; :i € L} =, Xo — Yo holds properly,
(3) either Yo C Xq, or there is a non-empty L C [k] such that the following conditions hold:
(a) {X; = Y; i€ L} enforces homogeneity for B,
(b) User Xi € Xo € Ujer, XiYi,
(¢) Yo € MNicL XoYi,
(d) either Xo =0 ory>~*({X; = Y;:i € L}, Xp).

Note that the case Xy = @, mentioned in (d), trivializes to |L| < 1, as proved in Proposi-
tion 4.2.

Proof. As before, the equivalence of (1) and (2) is Proposition 2.2.

(2) = (3) If L = ) then the entailment follows from B and Yy C X. Assume then that L
is not empty: part (a) follows from Lemma 5.2. By Theorem 3.7, we know that there exist
A = (\;),7 € L solution to the inequalities in Expression 3.3. We apply Lemma 3.11.

By Lemma 3.11(2), we have that X C XoYy C | X;Y;. Thus, Xy € | X;Y; by mono-
tonicity and idempotency of the closure operator. The other inclusion in (b) follows from
Lemma 3.11(4).

From Lemma 3.11(7), we have Yy C XoY1,Yy € X(Y2,... so on for every i € L thus
implies Yy C (V;c;, XoY;. This gives us (c).

Let us prove (d). First, note that for every Z such that Xo ¢ Z we have wz(Xo —
Yy) = 0 (although only those where Z = Z are relevant in the maximization for v*). By
Lemma 3.10(2), the corresponding inequality reads 0 > > oy, Ai — 7+ D iepy, Ai- Rear-
ranging, we get v > (o, Ai)/ (D iep, Ai) (in the general case) and the maximum of the
right-hand side is v*, and thus v* is also bounded by 7. Note that we get the same result for
the particular case of a null denominator because of how it is handled in the definition of ~*.
(3) = (1) If Yy C Xy, then B, X1 — Yi,..., X = Vi =y Xo — Yo holds trivially. As-
sume L non-empty; to prove B, X; — Yi,... X}, = Y, =y Xo — Y it is enough to find
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a solution to the inequality D ,.; Ai - wz(X; = Vi) < wz(Xo — Yp) for every Z € [n]. If
Z # Z the inequality is satisfied since all the weights are zero. Thus, fix Z = Z; we prove
Yoiendi-wz(X; = Y;) Swz(Xo — Yy) by cases.

(1) First assume that XoYy C Z. Then, Z witnesses Xg — Yy and wz(Xo — Yy) =1 — .
By Lemma 3.10(1), the left-hand side can be written as (1 —7) > ey, Ai =7 Dicv, Ni-
Any solution with A\; > 0 and ), ; A\; = 1 satisfies the inequality.

(2) Now, we assume that Xo C Z but Yy € Z. (As Z is closed, this includes the case where
Xo = 0.) Since Xg C Xp, we have wz(Xo — Yy) = —v. By (b) we have X; C X,
whereas, by (c), we know that Yy C X(Y; for every i € L. Since Xy C Z and Y ¢ Z,
this means that X; C Z but Y; g Z for every i € L. It follows that Z violates all the
X; — Y; so that wz(X; — Y;) = —v for every i € L. Pick again any solution with
Ai > 0and ) ,.; A; = 1: then the left-hand side of the inequality is —v - > ., A =
—y = wz(Xop — Yp) so that the inequality holds (with equality in this case).

(3) Assume Z does not cover Xy — Yy, the only remaining case: then wz(Xo — Yy) = 0.
Let \* = (A7 : i € L) be a vector attaining v* as in Proposition 6.2: for every closed
Z not including Xo, > ey, A7 < 7" Diep, Af- This last inequality can be rewritten
as D iew, M — V" Diev, M < 0 =wz(Xo — Yp). The desired inequality follows once
more from Lemma 3.10(2).

This closes the cycle of implications and the proof. []

6.2. An interesting example. In view of the characterization theorems obtained so far,
one may wonder if the critical v of any entailment among partial implications is of the form
(k—1)/k. This was certainly the case for k = 1 and k = 2, and Theorems 5.3 and 6.3 may
sound as hints that this could be the case. In this section we refute this for kK = 3 in a strong
way: we compute v* for a specific entailment for £ = 3 to find out that it is the unique real
solution of the equation

L=y + (1 =7)?/v+ 1=/ =1 (6.2)
Numerically [23], the unique real solution is
e 22 0.56984 . ...

Example 6.4. Consider the following 5-attribute entailment for a generic confidence pa-
rameter -y:
B — ACH, C - AD, D - AB =, BCDH — A.

Let us compute its v*(X, X)) where ¥ is the left-hand side, and X = BCDH. In other words,
we want to determine a triple A = (A1, A2, A3) that minimizes

max ZieWz /\i

7 Yievyuwy N

as Z ranges over the sets that do not include X = BCDH, and subject to the constraints
that A1, A2, A3 > 0 and A + Mg + A3 = 1. There are 2° = 32 possible Z’s out of which two
(ABCDH and BCDH) contain X and therefore do not contribute to the maximum. Some
others give value 0 to the ratio and therefore do not contribute to the maximum either. Note
that if either |Z| < 2, or |Z] =3 and A ¢ Z, then W = (), so the numerator is 0 and hence the
ratio is also 0 (recall the convention that 0/0 is 0). Thus, the only sets Z that can contribute
non-trivially to the maximum are those of cardinality 4 or 3 that contain the attribute A.



Vol. 15:1 RELATIVE ENTAILMENT AMONG PROBABILISTIC IMPLICATIONS 10:27

There are four Z of the first type (ABCD, ABCH, ABDH and ACDH) and six Z of the
second type (ABC, ABD, ABH, ACD, ACH and ADH). The corresponding ratios are
Ao+ A3 A A3 A9 0 A3 0 Ao 0 O
MAXNFA3A F XA F A3 Ao+ A37 A+ N )\1+/\3’)\717 )\24-)\37/\727)\73.
Those with 0 numerator cannot contribute to the maximum so, removing those as well as
duplicates, we are left with
Ao+ A3 A1 A3 A9
MAX+FA3 M F X A+ 237 Ao+ A3
Since all \; are non-negative, the first dominates the third and we are left with three ratios:
Ao+ A3 A1 A9

AMA+A2+ A3 A+ A2 A+ A3
We claim that a \. that satisfies the constraints and minimizes the maximum of the three
terms in Expression (6.3) is

(6.3)

)\c,l = 1- Ve
Az = (1- '70)2/'70
)\0,3 = (1 - 76)3/73

where 7, is the unique real solution of the equation in Expression (6.2). Clearly this choice
of ). satisfies the constraints of non-negativity, and they add up to one precisely because
their sum is the left-hand side in Expression (6.2). By plugging in, note also that this A.
makes all three terms in Expression (6.3) equal to v.; that is,

>\c,2 + )\0,3 )\c,l )\0,2

)\c,l + )\0,2 + )\0,3 - )\c,l + )\0,2 B )\0,2 + )\0,3 B

For later reference, let us note that the left-hand side of Expression (6.2) is a strictly
decreasing function of « in the interval (0,~.] (which can be seen by differentiating it, or
simply by plotting it) and therefore

L=+ (1 =7) %+ 1—7)*/7%>1 (6.5)

Ye- (6.4)

whenever 0 < v9 < 7.

In order to see that A. minimizes the maximum of the three terms in Expression (6.3)
suppose for contradiction that A satisfies the constraints and achieves a smaller maximum,
say 0 < 709 < 7. Since 7p is the maximum of the three terms in Expression (6.3) we have

Yo = ()\2 + )\3)/()\1 + Ao + )\3)

Y > A/(A+A2)
Y > Aa/(A2+ Az).

Using A1, A2, A3 > 0 and A\; + A2 + A3 = 1, and rearranging, we get
> 1=
A2 > A (1=10)/7 = (1—=10)%/7

> A2 (L=70)/7 = (1 —)%/7.

Adding all three inequalities we get
A+ A2+ A3 > 1=+ (1=10)%/70 + (1 —10)°/7%-

But this is a contradiction: the left-hand side is 1 since \ satisfies the constraints, and the
right-hand side is strictly bigger than 1 by Expression (6.5). This proves the claim.

>
V
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Finally, this example also shows that for v midway through 1/k and (k—1)/k, the vector
solution to the inequalities in (3.3) could be very non-uniform. In this example with v = 7,
the solution is A, ~ (0.43016,0.32472,0.24512). In contrast, for v > (k — 1)/k, the proof of
Theorem 5.3 shows that it is always possible to take A; = 1/|L| fori € L and \; = 0 for ¢ € [k]\
L. In this case, the vector (A1, A2, A3) = (1/3,1/3,1/3) works for v > 2/3, but fails otherwise.
To see that it fails when v < 2/3, take the inequality for Z = ABCD in Expression (3.3).

By the way, Theorem 6.3 tells us that ~. =~ 0.56984 is the smallest confidence at which
this entailment holds: indeed, it is easy to check that conditions (a), (b) and (c) hold for
this example, and thus (d) characterizes entailment.

7. CLOSING REMARKS

Our study gives a useful handle on entailments among partial or probabilistic implications.
The very last comment of the previous section is a good illustration of its power. However,
there are a few questions that arose and were not fully answered by our work.

For the forthcoming discussion, let us take v = (k — 1)/k for concreteness. The linear
programming characterization in Theorem 3.7 gives an algorithm to decide if entailment
holds that is polynomial in k£, the number of premises, but exponential in n, the number
of attributes. This is due to the dimensions of the matrix that defines the dual LP: this
is a 2™ x k matrix of rational numbers in the order of 1/k (for our fixed v = (k — 1)/k). On
the other hand, the characterization theorem in Theorem 5.3 reverses the situation: there
the algorithm is polynomial in n but exponential in k. In order to see this, first note that
condition (a) can be solved by running O(nk) Horn satisfiability tests of size O(nk) each, as
discussed at the end of Section 5.3. Second, conditions (b) and (c) are really straightforward
to check if the sets are given as bit-vectors, say. So far we spent time polynomial in both n
and k in checking the conditions of the characterization. The exponential in k blow-up comes,
however, from the need to pass to a subset L C [k], as potentially there are 2¥ many of those
sets to check. It does show, however, that the general problem in the case of v > (k—1)/k is
in NP. This does not seem to follow from the linear programming characterization by itself,
let alone the definition of entailment. But is it NP-hard? Or is there an algorithm that is
polynomial in both k& and n? One comment worth making is that an efficient separation
oracle for the exponentially many constraints in the LP of Theorem 3.7 might well exist,
from which a polynomial-time algorithm would follow from the ellipsoid method.

It is tempting to think that the search over subsets of [k] can be avoided when we start
with a proper entailment. And indeed, this is correct. However, we do not know if this gives
a characterization of proper entailment. In other words, we do not know if conditions (a),
(b) and (c), by themselves, guarantee proper entailment. The proof of the direction (3) to (1)
in Theorem 5.3 does not seem to give this, and we suspect that they do not. If they did, we
would get an algorithm to check for proper entailment that is polynomial in both n and k.

From a wider and less theoretical prespective, it would be very interesting to find real-life
situations in problems of data analysis, say, in which partial implications abound, but many
are redundant. In such situations, our characterization and algorithmic results could perhaps
be useful for detecting and removing such redundancies, thus producing outputs of better
quality for the final user. This was one of the original motivations for the work in [7], and
our continuation here. Also, again along the same lines, it has been argued that confidence,
while the most natural measure for the strength of a partial implication, may not be the
most useful one in practice, and a number of alternatives have been put forward (see [13]).
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Redundancy studies, like the one developed here for confidence, are definitely worthwhile
for the most commonly employed among these.
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