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Abstract. The Internet of Things (IoT) offers the infrastructure of the information society.
It hosts smart objects that automatically collect and exchange data of various kinds, directly
gathered from sensors or generated by aggregations. Suitable coordination primitives and
analysis mechanisms are in order to design and reason about IoT systems, and to intercept
the implied technological shifts. We address some of these issues from a foundational point
of view. To study them, we define IoT-LySa, a process calculus endowed with a static
analysis that tracks the provenance and the manipulation of IoT data, and how they flow
in the system. The results of the analysis can be used by a designer to check the behaviour
of smart objects, in particular to verify non-functional properties, among which security.

1. Introduction

Nowadays, an increasingly huge number of heterogeneous devices can be easily plugged
into a cyber-physical communication infrastructure, the Internet of Things (IoT). “Software
is eating the world” is the vivid slogan referring to the smartification of the objects and
devices around us. The vision offered by IoT as the infrastructure of the information society
is fascinating. It amounts to a global network of things, each with a unique identifier,
ranging from light bulbs to cars, equipped with suitable software allowing things to interact
each other and coordinate their behaviour. Furthermore, smart devices can automatically
exchange information of various kinds gathered from different sources (e.g. sensors) or
generated by aggregating several data sets.

IoT changes the way we interact with our surroundings. As an example, a smart alarm
clock can drive our coffeemaker to prepare us a cup of coffee in the morning; our home
automation system turns on our front door light when we arrive at home; then our smart
TV can suggest us some movies for the evening, based e.g. on our previous choices.

More connected smart devices and more applications available on the IoT mean more
software bugs and vulnerabilities to identify and fix. For instance, a bug can cause you to
wake up into a cold house in winter or an attacker can enter into your smart TV or baby
monitor and use it to severely deplete service availability, as it seems to be the case with the
recent DDoS attacks reported in the news.1
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Smart devices exhibit and require open-endedness to achieve full interactive and cooper-
ative behaviour over the Internet. Actually, they generalise the so-called “embedded systems”
that essentially are controllers of machines not connected to the Internet and therefore we
consider them to live in a closed world. Consequently, new software solutions have emerged
for supporting the design and development of IoT, e.g. Amazon AWS for IoT and Google
Brillo. We argue that the standard formal techniques and tools need to be adapted in order
to support open-endedness of IoT applications and the new complex phenomena that arise
in this hybrid scenario.

Here, we contribute to this emerging line of research by introducing the kernel of a
formal design framework for IoT, which will provide us with the foundations to develop
verification techniques and tools for checking properties of IoT applications.

Our starting point is the process calculus IoT-LySa, a dialect of LySa [8, 16], within
the process calculi approach to IoT [32, 34]. It has primitive constructs to model sensors and
actuators, and suitable primitives both for processing data and for managing the coordination
and communication capabilities of interconnected smart objects. We implicitly assume that
sensors are active entities that read data from the physical environment at their own fixed
rate. Actuators instead are passive: they just wait for a command to become active and
operate on the environment. Briefly, our calculus consists of:

(1) systems of nodes, made of (a representation of) the physical components, i.e. sensors
and actuators, and of software control processes for specifying the logic of the objects
in the node, including the manipulation of data gathered from sensors and from other
nodes. Intra-node generative communications are implemented through a shared store
à la Linda [26, 18]. The adoption of this coordination model supports a smooth
implementation of the cyber-physical control architecture: physical data are made
available by sensors to software entities that manipulate them and trigger the relevant
actuators to perform the desired actions of the environment.

(2) a primitive for asynchronous multi-party communication among nodes, which can be
easily tuned to take care of various constraints, mainly those concerning proximity;

(3) functions to process and aggregate data.

Our present version of IoT-LySa is specifically designed to model monitoring system typical
of smart cities, factories or farms. In this scenario, smart objects never leave their locations,
while mobile entities, such as cars or people, carry no smart device and can only trigger
sensors. For this reason we do not address mobility issues here.

A further contribution of this paper is the definition of an analysis for IoT-LySa to
statically predict the run time behaviour of smart systems. We introduce a Control Flow
Analysis that safely approximates the behaviour of a system of nodes. Essentially, it describes
the interactions among nodes, tracks how data spread from sensors to the network, and how
data are manipulated.

Technically, our analysis abstracts from the concrete values and only considers their
provenance and how they are put together and processed, giving rise to abstract values. In
more detail, it returns for each node ` in the network:

• an abstract store Σ̂` that records for each sensor and each variable a super-set of the
abstract values that they may denote at run time;
• a set κ(`) that over-approximates the set of the messages received by the node `, and for

each of them its sender;
• a set Θ(`) of possible abstract values computed and used by the node `.
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The results of the analysis provide us with the basis for checking and certifying various
properties of IoT systems. As it is, the components κ and Θ track how data may flow in the
network and how they influence the outcome of functions. An example of property that can
be statically checked using the component κ is the detection of redundant communications,
thus providing the basis for refactoring the system to increase its performance. Another
example concerns which nodes, if any, use the values read by a specific sensor, and this
property simply requires inspecting the component Θ to be established.

In order to assess the applicability of our analysis for verifying IoT systems, we ad-
ditionally consider some security properties. For that, we extend our core calculus with
cryptographic primitives, and propose a general schema in which some classical security
policies can be expressed, in particular secrecy and access control. We show then that static
checks on the outcome of the analysis help in evaluating the security level of the system and
in detecting its potential vulnerabilities.

Outline of the paper. The paper is organised as follows. The next section intuitively
introduces our proposal with the help of an illustrative example. In Section 3 we introduce
the process calculus IoT-LySa, and we present our Control Flow Analysis in Section 4. We
consider security issues in Section 5. Concluding remarks and related work are in Section 6.
The appendixes contain all the proofs with some auxiliary results, and a table with the
abbreviations and the notation used.

Portions of Sections 2, 3, and 4 appeared in a preliminary form in [11] where (i) sensors
did not probe the operating environment and the effects of actuators where not tracked; and
(ii) the analysis was less precise, because data were abstracted in a coarser way. Section 5
re-works almost completely our early proposal of checking security policies in [10].

2. A smart street light control system

The IoT European Research Cluster (IERC) has recently identified smart lighting in smart
cities [30] as one of most relevant applications for the Internet of Things. Recent studies,
e.g. [24, 25], show that smart street light control systems represent effective solutions to
improve energy efficiency. Many proposed solutions are based on sensors that acquire data
about the physical environment and regulate the level of illumination according to the
detected events. In this section we show how this kind of scenario can be modelled in
IoT-LySa and what kind of information our Control Flow Analysis provides to designers.

2.1. System specification. We consider a simplified system working on a one-way street,
inside a restricted traffic zone. It is made of two integrated parts. The first consists of
smart lamp posts that are battery powered, can sense their surrounding environment and
can communicate with their neighbours to share their views. If (a sensor of) the lamp post
perceives a pedestrian and there is not enough light in the street it switches on the light and
communicates the presence of the pedestrian to the lamp posts nearby. When a lamp post
detects that the level of battery is low, it informs the supervisor of the street lights, Ns, that
will activate other lamp posts nearby. The second component of the street light controller
uses the electronic access point to the street. When a car crosses the checkpoint, a message is
sent to the supervisor of the street accesses, Na, that in turn notifies the presence of the car
to Ns, which acts as a point of connectivity to the Internet. A notice is also sent to the node
Npd that represents a cloud service of the police department. This service checks whether
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Figure 1: The organisation of nodes in our street light control system.

the car is enabled to enter that restricted zone, through automatic number plate recognition;
below we will omit any further detail on this node, e.g. the components for fining the driver.
The supervisor Ns sends a message to the lamp post closest to the checkpoint that starts
a forward chain till the end of the street, thus completing the specification of the overall
cooperative behaviour. The structure of our control light system is in Figure 1. Below, we
will often use a sugared version of the syntax that is made precise in sub-section 3.1.

In our model we assume that each sensor has a unique identifier, hereafter a natural
number. Analogously, also actuators have a unique identifier. Since every node has a fixed
number of variables, the store of the node can be seen as an array, a portion of which is
designated to record the values read by sensors. A sensor identifier is then used as the index
to access its reserved store location. To emphasise that indexes are sensor identifiers, we
underline them.

In IoT-LySa each node consists of control processes, sensors and actuators, and of a
local store. Processes specify the logic of the system: they coordinate sensors and actuators,
communicate with the other nodes and manage data gathered from sensors and from other
nodes.

We now define the checkpoint Ncp node. It only contains a visual sensor Scp, defined
below, that takes a picture of the car detected in the street:

Scp = µh.(τ.probe(1)).τ. h

where 1 is the identifier of the sensor Scp, and probe(1) returns the picture of the car. The
sensor makes the picture available to the other components of the node Ncp by storing it in
the location (identified by) 1 of the shared store. The action τ denotes internal actions of
the sensor, which we are not interested in modelling, e.g. adjusting the camera focus; the
construct µh. implements the iterative behaviour of the sensor. Then, the taken picture is
enhanced (by using the function noiseRed for reducing noise) by the process Pcp and sent
to the supervisor Na

Pcp = µh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}. h
where `a is the label of the node Na; the assignment z := 1 stores in z the picture read by the
sensor Scp (recall that 1 is the identifier of Scp); and 〈〈z′〉〉 is a multi-output communication
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sending z′ to the nodes with labels indicated after . (here only to the single node Na). The
checkpoint Ncp is defined as

Ncp = `cp : [Pcp ‖ Scp ‖ Bcp]

where `cp is the identifier of Ncp and Bcp abstracts other components we are not interested
in, among which its store Σcp. The node Na receives the picture and communicates the
presence of the car to the lamp posts supervisor Ns and to the police department Npd. The
specification of Na is as follows

Na = `a : [ µh.(; x). 〈〈car, x〉〉 . {`s, `pd}. h ‖ Ba ]

where `s and `pd are the identifiers of Ns and Npd, respectively (see below for the intuition
of the general format of the input (;x)). The supervisor Ns contains the process Ps,1 that
receives the picture from Na and sends a message to the node closest to the checkpoint, call
it N1, labelled with `1:

Ps,1 = µh.(car; x). 〈〈x〉〉 . {`1}. h
The input (car;x) is performed only if the first element of the corresponding output matches
the element before the “;” (in this case the constant car), and the store variable x is bound
to the value of the second element of the output (see below for the full definition of Ns).

In our smart street light control system there is a node Np for each lamp post, each of
which has a unique identifier p ∈ [1, k]. Each lamp post is equipped with four sensors to
sense (1) the environment light, (2) the solar light, (3) the battery level and (4) the presence
of a pedestrian. We define each of them as follows

Sp,i = µh. probe(i). τ. h

where probe(i) returns the perceived value by the ith sensor Sp,i and i ∈ [1, 4], and stores it.
After some internal actions τ , the sensor Sp,i iterates its behaviour. The actuator for the
lamp post p is defined as

A5 = µh. (|5, {turnon, turnoff}|). h
It only accepts a message from Nc whose first element is its (undelined) identifier (here 5)
and whose second element is either command turnon or turnoff and executes it.

The control process of each lamp post node is composed by two parallel processes, Pp,1

and Pp,2. The first process is defined as follows

Pp,1 = µh.(x1 := 1. x2 := 2. x3 := 3. x4 := 4).

(x4 = true) ?

(x1 ≥ th1 ∧ x2 ≥ th2) ?

(x3 ≥ th3) ? 〈5, turnon〉. 〈〈x4〉〉 . Lp. h

: 〈〈err, `p〉〉 . {`s}. h
: h

: 〈5, turnoff〉. h
The process reads the current values from the sensors and stores them into the local variables
xi. The nested conditional statement says that the actuator is turned on if (i) a pedestrian
is detected in the street (x4 holds), (ii) the intensity of environment and solar lights are
greater than or equal to the given thresholds th1 and th2, and (iii) there is enough battery
(at least th3). In addition, the presence of the pedestrian is communicated to the lamp
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posts nearby, whose labels, typically `p−1 and `p+1, are in Lp. Instead, if the level battery
is insufficient, an error message, including its identifier `p, is sent to the supervisor node,
labelled `s. The second process Pp,2 is defined as follows

Pp,2 = µh.(; x). (x = true ∨ is a car(x)) ? (〈5, turnon〉. 〈〈x〉〉 . Lp).h : 〈5, turnoff〉. h
It waits for messages from its neighbours or from the supervisor node Ns. When one of
them is notified the presence of a pedestrian (x = true) or of a car (is a car(x) holds), the
current lamp post orders the actuator to switch the light on. Each lamp post p is described
as the IoT-LySa node below

Np = `p : [Σp ‖ Pp,1 ‖ Pp,2 ‖ Sp,1 ‖ Sp,2 ‖ Sp,3 ‖ Sp,4 ‖ Ap,5]

where Σp is the store of the node `p, shared among its components. The supervisor node Ns

of lamp posts is defined below, where x ranges over the k lamp posts

Ns = `s : [µh. (err; x). 〈〈true〉〉 . Lx. h ‖ Ps,1 ‖ Bs]

where Ps,1 is the process previously defined. As above the input (err;x) is performed only
if the first element of the corresponding output matches the constant err, and the store
variable x is bound to the value of the second element of the output, i.e. the label of the
relevant lamp post. If this is the case, after some internal computations, Ns warns the lamp
posts nearby x (included in Lx) of the presence of a pedestrian.

The whole intelligent controller N of the street lights is then described as the parallel
composition of the checkpoint node Ncp, the supervisors nodes Na and Ns, the nodes of
lamp posts Np, with p ∈ [1, k], and the police department node Npd:

N = Ncp | Na | Ns | N1 | · · · | Nk | Npd

2.2. Checking properties. We would like to statically predict how the system behaves
at run time. In particular, we want to compute: (i) how nodes interact each other; (ii)
how data spread from sensors to the network (tracking); and (iii) which computations each
node performs on the received data. To do that, we define a Control Flow Analysis, which
abstracts from the concrete values by only considering their provenance and how they are
manipulated. For example, consider the picture sent by the camera of Scp to its control
process Ppc. In the analysis we are only interested in tracking where the picture comes from,

and not in its actual value; so we use (a suitable representation of) the abstract value 1`cp to
record the camera that took it. The process Ppc reduces the noise in the pictures and sends
the result to Na. Our analysis keeps track of this manipulation through (a representation

of) the abstract value noiseRed
`cp

(1`cp), meaning that the function noiseRed, computed by
the node `cp, is applied to data coming from the sensor with identifier 1 of `cp.

In more detail, our analysis returns for each node ` in the network: an abstract store

Σ̂` that records for each variable a super-set of the abstract values that it may denote at
run time and for each sensor a specific abstract value as exemplified above; a set κ(`) that
approximates the set of the messages received by the node `; and the set Θ(`) of possible
abstract values computed and used by the node `. Actually, abstract values may grow
unbounded and we will thus represent them through regular tree grammars. In our example,
for each lamp post labelled `p, the analysis returns in κ(`p) both (the grammar representing)

the abstract value noiseRed
`cp

(1`cp) and the sender of that message, i.e. `p+1.
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The result of our analysis can be exploited to perform several verifications. For instance,
since the pictures of cars are sensitive data, one would like to check whether they are kept
confidential. A simple check on κ suffices for discovering that our system fails to protect
the pictures because they are always sent in clear. An obvious solution is to encrypt these
sensitive data before sending them. However, privacy is not guaranteed either, because the
encrypted information is correctly sent to the supervisor of the street access Na and to the
police department Npd, but also to all lamp posts. By inspecting κ and Θ we detect this
violation. A possible solution is making the picture anonymous through a suitable function
an, e.g. blurring the plate, before sending it to the supervisor of the street light Ns. In order
to reach a balance between protecting data for privacy and using them for safety, we can
resort to the following amended code of the process Pcp and of the node Na:

P ′cp = µh.(z := 1).(z′ := noiseRed(z)).〈〈{z′}k〉〉 . {`a}. h

N ′a = `′a : [ µh.(; y).decrypt y as {; x}k in 〈〈car, {x}k′〉〉 . {`pd}. 〈〈car, an(x)〉〉 . {`s}. h ‖Ba ]

Another way of exploiting the results of our analysis is detecting whether there are
redundant communications, which are possibly power consuming. For example, since the
street is one-way, when a car is present the lamp post at position p needs not to alert the
one at p− 1. By inspecting κ it is easy to detect a redundant, useless communication from
the next lamp post. On this basis, the designer can remove the label `p−1 from the set Lp of
receivers in the definition of Pp,2 for all lamp posts.

A further issue concerns the fact that an IoT system should be robust enough and work
in presence of a faulty device. Our analysis can support a “what-if” reasoning. For example,
suppose that the designer wants to check what happens if a lamp post, say `p−1, goes out of
order. By inspecting the κ component, the designer discovers that `p may receive messages
from `p−1 and `p+1. Assuming that redundancy has been removed as sketched above, no
message will be sent to `p from `p−1 when a car is in the street (as specified in the process
Pi−1,2). Consequently, all the lamp posts `q with q ≥ p− 1, will not be switched on, even
though a car is running in the street. Clearly, when pedestrians are walking there, the
relevant lamp post will be switched on as soon as their presence is detected, except for the
faulty one, of course. An easy fix is enlarging the set Lp in the process Pp,2 to also contain
`p+2, so introducing a possibly useful redundancy; similarly, the process Ps,1 will send its
message to both `1 and `2.

3. The calculus IoT-LySa

The IoT applications operate in a cyber-physical world, and therefore modelling them
requires taking into account both logical and physical aspects. Physical data, typically
collected by environmental sensors, influence the logics of an application, which in turn
modifies the physical world, through actuators. Here we are only interested in modelling the
logical components, in identifying their frontier with the physical world and in abstractly
representing the interactions between them. Typical representations of the world are based
on continuous models, like, e.g. (ordinary or stochastic) differential equations, or on discrete
version of them or on hybrid automata [28]. Instead, for us the physical world is a black
box from which sensors, that are always active, can measure the value of some observables
with a certain rate of their own. These values are made available to controllers that trigger
suitable actuators. Actuators are passive entities that can only execute their task when
activated; they operate on the physical world, so changing the value of some observables.
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Furthermore, we assume that the world can autonomously evolve, and that the changes of
its state are revealed and detected by sensors.

In order to model the logical components of IoT applications, we adapt the LySa
calculus [7, 8, 16], based on the π- [36] and the Spi-calculus [1]. For that we introduce:

(i) systems of nodes, in turn consisting of sensors, actuators and control processes, plus a
shared store within each node, allowing for internal communications;

(ii) primitives for measuring values in the world with sensors, and for triggering actuator
actions;

(iii) an asynchronous multi-party communication modality among nodes, subject to con-
straints, mainly concerning physical proximity;

(iv) functions to process data;
(v) explicit conditional statements.

We also extend our proposal in Section 5 with

(vi) encryption and decryption constructs to represent and handle some logical aspects of
security.

3.1. Syntax. The logical components of an IoT system are specified using a two-level syntax,
one describing the whole system and the other its components. At the first level one defines
system, consisting of the parallel composition of a fixed number of labelled nodes. Each node
is defined at the second level, and it hosts a store, control processes, sensors and actuators.
The label ` uniquely identifies the node ` : [B] and may represent further characterising
information (e.g. its location or other contextual information). The syntax of systems is as
follows.

N 3 N ::= systems of nodes
0 empty system
` : [B] single node (` ∈ L, the set of labels)
N1 | N2 parallel composition of nodes

B 3 B ::= node components
Σ` store of node `
P process
S sensor, with a unique identifier i ∈ I`
A actuator, with a unique identifier j ∈ J`
B ‖ B parallel composition of node components

A node component B contains #(I`) sensors S and #(J`) actuators A. It also has
finitely many control processes P that use a finite set of variables X`. We impose that in
` : [B] there always is a single store Σ` : X` ∪ I` → V, where V is the denumerable set
of values, including numbers, booleans etc., but neither labels nor identifiers of sensors
and actuators. (We feel free to omit from here afterwards the label ` when immaterial.)
Therefore, a store is essentially an array of fixed dimension, and intuitively a variable x ∈ X`

and an identifier i ∈ I` are interpreted as indexes in the array (no need of α-conversions).
We assume that store accesses are atomic, e.g. through CAS instructions [29].
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The syntax of control processes is as follows

P ::= control processes
0 inactive process
〈〈E1, · · · , Er〉〉 . L. P asynchronous multi-output L⊆ L
(E1, · · · , Ej ; xj+1, · · · , xr). P input (with matching)
E?P : Q conditional statement
h iteration variable
µh. P iteration

x := E.P assignment to x ∈ X`

〈j, γ〉. P output of action γ to actuator j

The prefix 〈〈E1, · · · , Er〉〉 . L implements a simple form of multicast communication
among nodes: the tuple E1, . . . , Er is asynchronously sent to the nodes with labels in L and
that are “compatible” (according, among other attributes, to a proximity-based notion and
to the transmission capability of the sender). The input prefix (E1,· · ·, Ej ;xj+1,· · ·, xr) is
willing to receive a r-tuple, provided that its first j terms match the input ones, and then
binds the remaining store variables (separated by a “;”) to the corresponding values (see
[16, 6] for a more flexible choice). Otherwise, the r-tuple is not accepted. A process repeats
its behaviour, when defined through the iteration construct µh. P , where h is the iteration
variable; an obvious sanity requirement is that any recursion variable h only occurs within
the scope of its binding µh. Finally, a process can command an actuator to perform an
action over the physical world.

Sensors and actuators have the form:

S ::= sensors A ::= actuators
0 inactive sensor 0 inactive actuator
τ.S internal action τ.A internal action
probe(i). S sense a value by (|j,Γ|). A command for actuator j

the ith sensor γ.A triggered action (γ ∈ Γ)
h iteration variable h iteration variable
µh . S iteration µh .A iteration

We recall that each sensor and each actuator is identified by a unique identifier belonging to
the sets I` and J`, respectively. A sensor can perform an internal action τ , e.g. for resetting
or for changing its battery mode. In addition, it senses the physical world and stores the
value observed in its location i. Recall that each sensor is dedicated to measure a specific
observable, e.g. the temperature or the humidity. Also an actuator can perform an internal
action τ . More interestingly, upon receiving a command γ from a controller, an actuator
executes γ, possibly causing a change in the physical state of the world. Both sensors and
actuators can iterate their behaviour.

The syntax of terms follows.

E ::= terms
v value (v ∈ V)
i sensor location (i ∈ I`)
x variable (x ∈ X`)
f(E1, · · · , Er) function on data (f ∈ F)
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The term f(E1, · · · , Er) is the application of function f to n arguments; we assume as
given a set of primitive functions F , typically for aggregating or comparing values, be they
computed or data sampled from the environment.

3.2. Operational Semantics. Our reduction semantics relies on an abstract model of the
evolution of the physical world from a state E to a state E ′. We write E . E ′ when a state
transition occurs, without detailing how this happens, because for us the world is a black
box. Similarly, we will write γ(E) . E ′ to represent the state transition caused by an actuator
that performs the action γ on E .

We take the syntactic elements of IoT-LySa up to the following structural congruence
≡ on nodes, processes, sensors and actuators. It is standard except for the last rule that
equates a multi-output with no receivers and the inactive process, and for the fact that
inactive components of a node are all coalesced.

− (N/≡, |, 0) and (B/≡, ‖, 0) are commutative monoids
− µh .X ≡ X{µh .X/h} for X ∈ {P,A, S} (F)
− 〈〈E1, · · · , Er〉〉 : ∅. 0 ≡ 0

We have a two-level reduction relation
E−−−→
E ′

reflecting the two-level structure of

IoT-LySa. It is defined as the least relation on both nodes and their components, satisfying
the set of inference rules in Table 1. The arrow is decorated with E , the state of the world
before the transition, and E ′ after its occurrence. We assume the standard denotational
interpretation [[E]]Σ for evaluating terms.

The first two rules implement the (atomic) asynchronous update of shared variables
inside nodes, by using the standard notation Σ{−/−} for store update. According to (Sense),
the ith sensor measures the value v of its observable through the semantic function measure
that operates on the environment; then it stores v into the location i. The rule (Asgm)
specifies how a control process updates the variable x with the value of E.

The rules (Ev-out) and (Multi-com) drive asynchronous multi-communications among
nodes. In the first a node sends a tuple of values 〈〈v1, ..., vr〉〉, obtained by the evaluation of
〈〈E1, ..., Er〉〉. Asynchrony is realised by spawning the new process 〈〈v1, · · · , vr〉〉 . L. 0 (with
the inactive process as continuation) in parallel with the continuation P ; the new process
offers the message to all the receivers belonging to the set L. In the rule (Multi-com), the
message coming from `1 is received by a node labelled `2. The communication succeeds,
provided that (i) `2 belongs to the set L of possible receivers, (ii) the receiver is within the
transmision range of the sender, according to the compatibility function Comp, and (iii) that
the first j values match the evaluations of the first j terms in the input. Moreover, the label
`2 is removed by the set of receivers L of the message. The spawned process terminates when
all its receivers have received the message (see the last congruence rule in F). The role of the
compatibility function Comp is crucial in modelling real world constraints on communication.
A common requirement is that inter-node communications are proximity-based, i.e. that
only nodes that are in the transmission range of the sender can read the message. This
is easily encoded here by defining a possibly non-symmetric predicate (over node labels)
yielding true only when the second node is in the transmission range of the first. Of course,
this function could be enriched in order to consider finer notions of compatibility expressing
various policies, e.g. topics for event notification.
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(Sense)

measure(i, E) = v

Σ ‖ probe(i). S ‖ B E−−−→
E

Σ{v/i} ‖ S ‖ B

(Asgm)

[[E]]Σ = v

Σ ‖ x := E.P ‖ B E−−−→
E

Σ{v/x} ‖ P ‖ B

(Ev-out)
r∧

i=1

[[Ei]]Σ = vi

Σ ‖ 〈〈E1, · · · , Er〉〉 . L. P ‖ B
E−−−→
E

Σ ‖ 〈〈v1, · · · , vr〉〉 . L.0 ‖ P ‖ B

(Multi-com)

`2 ∈ L ∧ Comp(`1, `2) ∧
j∧

i=1

[[Ei]]Σ2 = vi

`1 : [〈〈v1, · · · , vr〉〉 . L. 0 ‖ B1] | `2 : [Σ2 ‖ (E1, · · · , Ej ;xj+1, · · · , xr).Q ‖ B2]
E−−−→
E

`1 : [〈〈v1, · · · , vr〉〉 . L \ {`2}. 0 ‖ B1] | `2 : [Σ2{vj+1/xj+1, · · · , vr/xr} ‖ Q ‖ B2]

(Cond)

[[E]]Σ = bi i ∈ {1, 2}

Σ ‖ E?P1 : P2 ‖ B
E−−−→
E

Σ ‖ Pi ‖ B
with b1 = true, b2 = false

(Int)

τ.X
E−−−→
E

X

(A-com)

γ ∈ Γ

〈j, γ〉. P ‖ (|j,Γ|). A ‖ B E−−−→
E

P ‖ γ.A ‖ B

(Act)

γ(E) . E ′

γ.A
E−−−→
E′

A

(Phys)

E . E ′

N
E−−−→
E′

N

(Node)

B
E−−−→
E′

B′

` : [B]
E−−−→
E′

` : [B′]

(ParN)

N1
E−−−→
E′

N ′1

N1 | N2
E−−−→
E′

N ′1 | N2

(ParB)

B1
E−−−→
E′

B′1

B1 ‖ B2
E−−−→
E′

B′1 ‖ B2

(CongrY)

Y ′1 ≡ Y1
E−−−→
E′

Y2 ≡ Y ′2

Y ′1
E−−−→
E′

Y ′2

Table 1: Reduction semantics, where X ∈ {S,A}, and Y ∈ {N,B}.

According to the evaluation of the expression E, the rule (Cond) says that the process
continues as P1 (if [[E]]Σ is true) or as P2 (otherwise). The rule (Int) applies to sensors and
actuators and simply governs the occurrence of internal actions.

A process commands the jth actuator through the rule (A-com), by sending it the pair
〈j, γ〉. The effect is that γ prefixes the actuator, if γ is one of its actions. The rule (Act)
says that the actuator performs the action γ over the current state E of the environment,
triggering an evolution to a new state. The other rule that changes the environment state is
(Phys). It models the fact that environments can evolve independently of the application in
hand. Since for us an environment is a black box, we resort to non-determinism to abstract
from this kind of independence.

The rules (ParN) and (ParB) propagate reductions across parallel composition; the rule
(Node) lifts the transitions from components to nodes. Finally, the rules (CongrY), with
Y ∈ {N,B}, for nodes and components are the standard reduction rules for the congruence
defined in (F).
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Back to our example of Section 2, consider a run where a picture of a car is taken by
the camera Scp in the node `cp and is sent to the node `a. First of all, we briefly recall the
definition of the camera Scp and of the control process Pcp of `cp:

Scp = µh.(τ.probe(1)).τ. h

Pcp = µh.(z := 1). (z′ := noiseRed(z)).〈〈z′〉〉 . {`a}. h︸ ︷︷ ︸
P ′cp

The sequence of transitions is as follows:

Ncp = `cp[Pcp ‖ Scp ‖ Σcp ‖ Bcp]
E−−→
E

+
(3.1)

`cp[Pcp ‖ τ.Scp︸ ︷︷ ︸
S′cp

‖ Σcp{v/1}︸ ︷︷ ︸
Σ1

cp

‖ Bcp]
E−−→
E

+
(3.2)

`cp[P
′
cp ‖ S′cp ‖ Σ1

cp{v/z}︸ ︷︷ ︸
Σ2

cp

‖ Bcp]
E−−→
E

(3.3)

`cp[〈〈z′〉〉 . {`a}. Pcp ‖ S′cp ‖ Σ2
cp{v′/z′}︸ ︷︷ ︸

Σ3
cp

‖ Bcp]
E−−→
E

(3.4)

`cp[Pcp ‖ S′cp ‖ Σ3
cp ‖ Bcp︸ ︷︷ ︸

B′cp

‖ 〈〈v′〉〉 . {`a}. 0] = N ′cp (3.5)

where as usual
E−−→
E

+
stands for the occurrence of one or more transitions. The rules

(CongrB), (Int) and (Sense) are applied to move from (3.1) to (3.2) and the value v amounts
to measure(1, E); the rules (CongrB) and (Asgm) drive the transition from (3.2) to (3.3);
once again the rule (Asgm) drives the transition from (3.3) to (3.4) where the value v′ is the
result of applying the function noiseRed to the value v; in the transition from (3.4) to (3.5)
the rule (Ev-out) is applied.

As a further example, consider the steps carried out by the node `a to receive the car
picture and to forward it to the policy station `pd and to the lamp post supervisor `s. Here
we recall the definition of the node Na:

Na = `a[ µh.(;x).〈〈car, x〉〉 . {`s, `pd}. h︸ ︷︷ ︸
Pa

‖ Σa ‖ Ba ]

The transitions are as follows:

N ′cp | Na
E−−→
E

(3.6)

`cp[B
′
cp ‖ 〈〈v′〉〉 . {`a}. 0] | `a[ (;x).〈〈car, x〉〉 . {`s, `pd}. Pa ‖ Σa ‖ Ba ]

E−−→
E

(3.7)

`cp[B
′
cp ‖ 〈〈v′〉〉 . ∅. 0] | `a[ 〈〈car, x〉〉 . {`s, `pd}. Pa ‖ Σa{v′/x}︸ ︷︷ ︸

Σ′a

‖ Ba ]
E−−→
E

(3.8)

`cp[B
′
cp] | `a[ 〈〈car, x〉〉 . {`s, `pd}. Pa ‖ Σa{v′/x}︸ ︷︷ ︸

Σ′a

‖ Ba ]
E−−→
E

(3.9)
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`cp[B
′
cp] | `a[ Pa ‖ Σ′a ‖ Ba ‖ 〈〈car, v′〉〉 . {`s, `pd}.0] (3.10)

where we apply the rule (CongrB) to the process Pa for the step from (3.6) to (3.7); the
rule (Multi-com) is used to move from (3.7) to (3.8), where v′ is the value sent by the node
`a; since in the message 〈〈v′〉〉 . ∅. 0 the receiver set is empty, the rule (CongrB) drives the
transition from (3.8) to (3.9); the last transition from (3.9) to (3.10) is performed by applying
the rule (Ev-out) where v′ is forwarded to nodes `s and `pd. Of course the transitions of part
of the nodes are preserved by the whole system of nodes N , by applying the (ParN) rule.

4. Control Flow Analysis

This section introduces a static analysis for IoT-LySa that safely approximates the abstract
behaviour of a system of nodes N , regardless of the environment that hosts it. Our analysis
tracks the usage of sensor values inside the local node where they are gathered and their
propagation in the network of nodes both as row data or processed via suitable functions.
It also describes which messages a node can receive and from which nodes, so abstractly
representing the communication structure of the system.

Technically, we define a Control Flow Analysis (CFA, for short), specified in terms
of Flow Logic [40], a declarative approach borrowing from and integrating many classical
static techniques [20, 27, 41, 31]. The distinctive feature of Flow Logic is to separate
the specification of the analysis from its actual computation. Intuitively, the specification
describes when its results, namely analysis estimates, are valid. Formally, a specification
consists of a set of clauses defining the validity of estimates. Furthermore, Flow Logic
provides us with a methodology to define a correct and efficient analysis algorithm, by
reducing the specification to a constraint satisfaction problem.

Below, we specify our analysis in a logical form by inducing on the syntax of the
constructs of IoT-LySa along the line of [8]. An algorithmic version of our analysis can be
easily derived from its logical specification. It suffices to induce on the syntax for generating
a set of constraints in AFPL, a logic used to specify static analyses [39]. The generated
constraints are solved in low polynomial time obtaining the minimal valid estimate through
the succinct solver presented in [39].

4.1. Abstract representation of data. In the following we represent data generated by
an IoT system as trees. The leaves of such trees either identify the sensor from which
an observable comes or represent a basic value, and the nodes represent the aggregation
functions applied to data. Since a system is designed to be continuously active and may
contain feedback loops, aggregated data can grow unbounded, and so are the trees used to
abstractly represent them. In order to have a finite representation we shall rely here on
regular tree grammars [19], rather than coalescing all trees exceeding a given depth in a
special abstract value as in [11, 10]. These new abstractions better approximate actual data,
and the results of the analysis are accordingly more precise.

A regular tree grammar is a quadruple Ĝ = (N,T, Z,R) where

• N is a set of non-terminals (with rank 0),
• T is a ranked alphabet, whose symbols have an associated arity,
• Z ∈ N is the starting non-terminal,
• R is a set of productions of the form A→ t, where t is a tree composed from symbols in
N ∪ T according to their arities.
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f`0

i`0 h`1

i`1 f`0

i`0 h`1

Figure 2: An infinite abstract tree

In the following we denote the language generated by a given grammar Ĝ with Lang(Ĝ).
Given a system of nodes N , the grammars we use will have the alphabet T consisting of

the following set of ranked symbols

• i` (with arity 0) for each sensor i ∈ I`
• v` (with arity 0) for each node ` ∈ L
• f ` (with arity r) for each function f ∈ F and ` ∈ L
The non-terminals N of our grammars include a symbol for each terminal, and just for
readability we shall use their capital counterparts, i.e. I`, V ` and F `. In this way, the
production F ` → f `(t1, ..., tr) generates the tree rooted in f ` and children generated by
t1, ..., tr.

It is convenient introducing some notation. For brevity and when no ambiguity may

arise, we will simply write v̂ = (Z,R) for the grammar Ĝ = (N,T, Z,R) with starting
non-terminal Z and regular productions in R, without explicitly listing the terminals and
the non-terminals. Then, we denote with R the set of all possible productions over N and T.

As an example of a possible infinite abstract tree, consider two nodes N`0 and N`1 with
two aggregation functions f and h. Suppose that N`0 applies f to a value read by the sensor
i0 and a value received from N`1 . Similarly, N`1 applies h to a value read by the sensor i1
and the value received from N`0 . The resulting value is abstracted as the possibly infinite
binary tree in Figure 2 that belongs to the language of the following grammar:

(F `0 , {F `0 → f `0(I`00 , H
`1), I`00 → i`00 , H

`1 → h`1(I`11 , F
`0), I`11 → i`11 })

Now we are ready to introduce the abstract terms that belong to the set

V̂ = 2N×R

4.2. Specification of the analysis. The result of our CFA is a pair (Σ̂,Θ) for terms E

and a triple (Σ̂, κ,Θ) for N , called estimate for E and for N , respectively. The components
of an estimate are the following abstract domains:

• abstract store Σ̂ =
⋃

`∈L Σ̂` : X ∪I` → 2V̂ where each abstract local store Σ̂` approximates
the concrete local store Σ`. It associates with each location a set of abstract values
representing the possible concrete values that the location may store at run time.

• abstract network environment κ : L → L ×
⋃m

i=1 V̂ i where m is the maximum arity of

the messages exchanged in the system under analysis (with V̂ i+1 = V̂ × V̂ i). Intuitively, κ
includes all the abstract messages that may be received by the node labelled `.
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(E-sen)

(I`, {I` → i`}) ∈ ϑ ⊆ Θ(`)

(Σ̂,Θ) |=` i : ϑ

(E-val)

(V `, {V ` → v`}) ∈ ϑ ⊆ Θ(`)

(Σ̂,Θ) |=` v : ϑ

(E-var)

Σ̂`(x) ⊆ ϑ ⊆ Θ(`)

(Σ̂,Θ) |=` x : ϑ

(E-fun)
r∧

i=1

(Σ̂,Θ) |=` Ei : ϑi ∧

∀ (Z1, R1), · · · , (Zr, Rr) :

r∧
i=1

(Zi, Ri) ∈ ϑi ⇒ (F `, {F ` → f `(Z1, · · · , Zr)} ∪
r⋃

i=1

Ri) ∈ ϑ ⊆ Θ(`)

(Σ̂,Θ) |=` f(E1, · · · , Er) : ϑ

Table 2: Analysis of terms (Σ̂,Θ) |=
`
E : ϑ.

• abstract data collection Θ : L → 2V̂ that, for each node labelled `, approximates the set
of abstract values that the node handles.

The syntax directed rules of Tables 2 and 3 specify when an analysis estimate is valid and they

are almost in AFPL format [39]. For each term E, the judgement (Σ̂,Θ) |=
`
E : ϑ expresses

that ϑ ∈ 2V̂ approximates the set of values that E may evaluate to, given the component

Σ̂` of the abstract store Σ̂. A sensor identifier and a value evaluate to the set ϑ, provided
that their abstract representations belong to ϑ (rules (E-sen) and (E-val)). This abstract
representation is a grammar made of a non-terminal symbol whose production generates a
tree with a single node. For example, the abstract value for a sensor i is (I`, {I` → i`}) that
represents a grammar with the initial symbol is I` that only generates the tree i`. Similarly
in rule (E-var) where a variable x evaluates to ϑ, if this includes the set of values bound

to x in Σ̂`. The rule (E-fun) analyses the application of a r-ary function f to produce the
set ϑ. To do that (i) for each term Ei, it finds the sets ϑi, and (ii) for all r-tuples of values
(v̂1, · · · , v̂r) in ϑ1 × · · · × ϑr, it checks if ϑ includes the grammars with distinct symbol F `

generating the trees rooted in f ` with subtrees v̂1, · · · , v̂r. Also, in all the rules for terms,
we require that the abstract data collection Θ(`) includes all the abstract values in ϑ.

In the analysis of nodes we focus on which values can flow through the network and which

can be assigned to variables. The judgements have the form (Σ̂, κ,Θ) |= N and are defined
by the rules in Table 3. The rules for the inactive node (N-nil) and for parallel composition
(N-par) are standard, as well as the rules (B-nil) and (B-par) for node components. The rule
(N-node) for a single node ` : [B] requires that its component B is analysed, with the further

judgment (Σ̂, κ,Θ) |=
`
B, where ` is the label of the enclosing node. The rule (B-store)

connects actual stores Σ with abstract ones Σ̂ and it requires the locations of sensors to
contain the corresponding abstract values. The rule (B-sen) for sensors does not inspect
their form, because we are only interested in who will use their values and this information
can be retrieved by the abstract store. The same happens in rule (B-act) for actuators that
in our model are passive entities. Indeed, they obey commands of control processes and to
track the activities of actuators it thus suffices to consider the issued commands.

The rules for processes are in the lower part of Table 3, and all require that an estimate
is valid for the immediate sub-processes. The rule (P-out) for r-ary multi-output (i) finds
the sets ϑi, for each term Ei; and (ii) for all r-tuples of values (v̂1, · · · , v̂r) in ϑ1× · · ·×ϑr, it



16 CHIARA BODEI, PIERPAOLO DEGANO, GIAN-LUIGI FERRARI, AND LETTERIO GALLETTA

(N-nil)

(Σ̂, κ,Θ) |= 0

(N-par)

(Σ̂, κ,Θ) |= N1 ∧ (Σ̂, κ,Θ) |= N2

(Σ̂, κ,Θ) |= N1 | N2

(N-node)

(Σ̂, κ,Θ) |=` B

(Σ̂, κ,Θ) |= ` : [B]

(B-nil)

(Σ̂, κ,Θ) |=` 0

(B-store)

∀ i ∈ I`. (I`, {I` → i`}) ∈ Σ̂`(i)

(Σ̂, κ,Θ) |=` Σ

(B-sen)

(Σ̂, κ,Θ) |=` S

(B-act)

(Σ̂, κ,Θ) |=` A

(B-par)

(Σ̂, κ,Θ) |=` B1∧
(Σ̂, κ,Θ) |=` B2

(Σ̂, κ,Θ) |=` B1‖ B2

(P-out)
k∧

i=1

(Σ̂,Θ) |=` Ei : ϑi ∧ (Σ̂, κ,Θ) |=` P ∧ ∀v̂1, · · · , v̂r :

r∧
i=1

v̂i ∈ ϑi ⇒ ∀`′ ∈ L : (`, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`′)

(Σ̂, κ,Θ) |=` 〈〈E1, · · · , Er〉〉 . L. P

(P-in)
j∧

i=1

(Σ̂,Θ) |=` Ei : ϑi ∧ ∀(`2, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`1) : Comp(`2, `1)⇒

(
k∧

i=j+1

v̂i ∈ Σ̂`1(xi) ∧ (Σ̂, κ,Θ) |=`1
P

)
(Σ̂, κ,Θ) |=`1

(E1, · · · , Ej ; xj+1, · · · , xr). P

(P-ass)

(Σ̂,Θ) |=` E : ϑ ∧
∀ v̂ ∈ ϑ ⇒ v̂ ∈ Σ̂`(x) ∧ (Σ̂, κ,Θ) |=` P

(Σ̂, κ,Θ) |=` x := E.P

(P-cond)

(Σ̂,Θ) |=` E : ϑ ∧ (Σ̂, κ,Θ) |=` P1 ∧ (Σ̂, κ,Θ) |=` P2

(Σ̂, κ,Θ) |=` E?P1 : P2

(P-act)

(Σ̂, κ,Θ) |=` P

(Σ̂, κ,Θ) |=` 〈j, γ〉. P

(P-rec)

(Σ̂, κ,Θ) |=` P

(Σ̂, κ,Θ) |=` µh. P

(P-var)

(Σ̂, κ,Θ) |=` P

(Σ̂, κ,Θ) |=` h

Table 3: Analysis of nodes (Σ̂, κ,Θ) |= N , and of node components (Σ̂, κ,Θ) |=
`
B.

checks if they belong to κ(`′ ∈ L), i.e. if these r-tuples of values can be received by the nodes
with labels in L. In the rule (P-in) for input the terms E1, · · · , Ej are used for matching
values sent on the network: this rule (i) checks whether the first j terms have valid estimates
ϑi; and (ii) for each message (`2, 〈〈v̂1, · · · , v̂j , v̂j+1, . . . , v̂r〉〉) in κ(`1) (i.e. in any message
predicted to be receivable by the node with label `1), it checks that the values v̂j+1, . . . , v̂r
are included in the estimates for the variables xj+1, · · · , xr, provided that the two nodes can

communicate (Comp(`2, `1)). The rule (P-ass) for assignment requires that Σ̂`(x) includes
all the values v̂ in ϑ, the estimate for E. The rule (P-cond) is as expected and the rule
(P-act) is trivial. Finally, the rules (P-rec) and (P-var) for iteration are standard, where to
save notation, we assumed that each variable h is uniquely bound to the body P .

To show how our analysis works, consider again the example in Section 2 and the process
Pcp = µh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}. h. Moreover, let ι and ν be

ι = (Icp, {Icp → 1cp}) (4.1)

ν = (NoiseRedcp, {NoiseRedcp → noiseRedcp(Icp), Icp → 1cp}) (4.2)
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abstracting values of the camera Scp and its elaboration, respectively. Every valid CFA
estimate must include at least the following entries:

(a) Σ̂`cp(z) ⊇ {ι} (b) Σ̂`cp(z′) ⊇ {ι, ν}
(c) Θ(`cp) ⊇ {ι, ν} (d)κ(`a) ⊇ {(`cp, 〈〈ν〉〉)}

Indeed, all the following checks must succeed:

• (Σ̂, κ,Θ) |=
`cp

µh.(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}.h because

• (Σ̂, κ,Θ) |=
`cp

(z := 1).(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}, that in turn holds

• because (i) ι is in Σ̂`cp(z) by (a) ((Σ̂,Θ) |=
`

1 : ϑ 3 ι); and because

(ii) (Σ̂, κ,Θ) |=
`cp

(z′ := noiseRed(z)).〈〈z′〉〉 . {`a}, that in turn holds

• because (i) ν is in Σ̂`cp(z′) by (b) since

(Σ̂,Θ) |=
`cp

noiseRed(z) : ϑ 3 ν; and because

(ii) (Σ̂, κ,Θ) |=
`cp
〈〈z′〉〉 . {`a} that holds because (`cp, 〈〈ν〉〉) is in κ(`a) by (d).

The precision of the CFA above can be refined by replacing the abstract store Σ̂ with the pair

Σ̂in, Σ̂out. This extension requires a more verbose specification of the rules for accurately
handling the store updates, similarly to the treatment of side effects in [40]. We can obtain
a further improvement of the precision by making the analysis more context-sensitive. In
particular, an additional component can record the sequence of choices made in conditionals
while traversing the node under analysis. One can thus obtain better approximations of the
store or detect causal dependencies among the data sent by sensors and the actions carried
out by actuators, as well as casuality among nodes.

4.3. Correctness of the analysis. Our CFA respects the operational semantics. The
proof of this fact benefits from an instrumented denotational semantics for expressions. For

that we will introduce a set of trees T̂ , ranged over by t̂, t̂′, . . . , built over the ranked
alphabet T introduced above. The values of expressions become now pairs 〈v, t̂〉, and the
store and its updates are accordingly extended. The instrumented local store then becomes

Σi
` : X` ∪ I` → V × T̂ . We also endow Σi

` with an undefined value ⊥ for recording when a
sensor or a variable is not initialised. Accordingly, we assume that the semantic function
measure(i, E) returns a pair (v, i`). Finally, when no ambiguity arises, we shall overload the
symbol v to also denote the instrumented values.

The formal definition of the instrumented denotational semantics follows, where we
indicate with ↓i the projection on the ith component of the pair.

[[v]]i
Σi

`
= (v, v`)

[[i]]i
Σi

`
= Σi

`(i)

[[x]]i
Σi

`
= Σi

`(x)

[[f(E1, · · · , Er)]]
i
Σi

`
= (f([[E1]]i

Σi
`↓1
, · · · , [[Er]]

i
Σi

`↓1
), f `([[E1]]i

Σi
`↓2
, · · · , [[Er]]

i
Σi

`↓2
))

Since the CFA only considers the second component of the extended store, we need to define
when the concrete and the abstract stores agree.

Definition 1. Given a concrete store Σi
` and an abstract store Σ̂`, we say that they agree,

in symbols Σi
` ./ Σ̂`, if and only if for all w ∈ X` ∪ I` either Σi

`(w) = ⊥ or there exists

Ĝ ∈ Σ̂`(w) such that (Σi
`(w))↓2 ∈ Lang(Ĝ).
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Just to give an intuition, suppose that the expression E is such that [[E]]i
Σi

`
= (v, v`). Then,

the assignment x := E will result in the updated store Σi
`{(v, v`)/x}. Clearly, the standard

semantics of expressions used in Table 1 is obtained by the projection on the first component
of the instrumented one. In our running example, the assignment z′ := noiseRed(z) of
the process Pcp stores the pair (v, noiseRed`cp(1`cp)) made of the actual value v and of its
abstract counterpart.

The following theorem establishes the correctness of our CFA in that its valid estimates
are preserved under reduction steps.

Theorem 4.1 (Subject reduction). Given a system of nodes N , if (Σ̂, κ,Θ) |= N ; N
E−−−→
E ′

N ′

and ∀Σi
` in N it is Σi

` ./ Σ̂`, then (Σ̂, κ,Θ) |= N ′ and ∀Σi
`
′

in N ′ it is Σi
`
′
./ Σ̂`.

We also prove that the set of valid estimates to the specification in Table 3 is never
empty and that a minimal one always exists. This is because estimates form a Moore family
M, i.e. a set with a greatest element (t∅) and a least element (tM).

Theorem 4.2 (Existence of estimates). Given N , its valid estimates form a Moore family.

We now illustrate the role that the components of a valid estimate play in predicting
the behaviour of the analysed system. The following corollary follows from the fact that
the analysis respects the operational semantics, as stated in Theorem 4.1. The first item
below makes it evident that our analysis determines whether the value of a term may indeed
be used along the computations of a system, and clarifies the role of the component Θ;
the second item guarantees that κ predicts all the possible inter-node communications. In
the statement of this corollary we use the following notation for reductions, where we omit

writing the environments for readability. Let N
E1,...,Er−−−−−→` N

′ denote a reduction in which

all the expressions Ei are evaluated at node ` and let N
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′ be a reduction in
which the message sent by node `1 is received by node `2.

Corollary 4.3. Assume that (Σ̂, κ,Θ) |= N , then

(1) if N
E1,...,Er−−−−−→` N

′ then ∀k ∈ [0, n] there exists Ĝ ∈ Θ(`) such that

([[E]]i
Σi

`
)↓2 ∈ Lang(Ĝ);

(2) if N
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′ then it holds (`1, 〈〈v̂1, . . . , v̂r〉〉) ∈ κ(`2), and ∀i ∈ [0, r] there exists

Ĝ ∈ v̂i such that vi↓2 ∈ Lang(Ĝ).

Back again to our example at the end of sub-section 4.2, consider the assignment z := 1 in the
process Pcp. We have ([[1]]1

Σ1
`cp

)↓2 = 1`cp where v is the actual value received by the first sensor,

and that our analysis computes ι ∈ θ(`cp), where ι is defined in (4.1). It is immediate to see

that 1`cp ∈ Lang(ι). A similar reasoning can be done also for messages from `cp to `a. Indeed,

we have ([[z′]]1
Σ1

`cp

)↓2 = noiseRed`cp(1`cp) and that our analysis computes (`cp, 〈〈ν〉〉) ∈ κ(`a),

where ν is defined in (4.2). It is immediate to see that noiseRed`cp(1`cp) ∈ Lang(ν).

4.4. Some applications of the analysis. To give an idea on how the outcome of the
analysis can be used to detect where and how data are manipulated and how messages flow
in a system, we introduce below a couple of simple properties.
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A designer could be interested in checking whether a value taken by a specific sensor of
a node will be used as an ingredient of the data of a different node. This is formalised as
follows.

Definition 2. Let N be the node ` : [B] containing the sensor i.

The sensor i is an ingredient of a node N ′ with label `′ if and only if N ′
E1,...,Er−−−−−→`′ N

′′ and
there exists k ∈ [1, r] such that ([[E]]i

Σi
`
)↓2 is a tree with a leaf i`.

The following property is an immediate consequence of Corollary 4.3.

Proposition 4.4. Let i be a sensor of the node N with label `; let N ′ be a node with label

`′; and let (Σ̂, κ,Θ) |= N | N ′.
The sensor i is an ingredient of N ′ if there exists Ĝ ∈ Θ(`′) and a tree in its language with
a leaf i`.

Consider again our example at the end of sub-section 4.2, for which estimates are such
that Θ(`a) ⊇ {ν} (because κ(`a) ⊇ {(`cp, 〈〈ν〉〉)}), showing that the sensor 1cp is an ingredient
of the node Na.

Note that the schema above can be used to verify other properties by inspecting the
component Θ. It suffices to express properties of tree languages and check them with the
standard tools, e.g. tree automata model checking.

Our next example works over the problem of checking the robustness of the communica-
tions in the smart street light example discussed at the end of Section 2, where we assumed
the lamp post `q to be our of order.

Consider the following abstract values, each for every p:

νcp = (Carp, {Carp → carp}) νwp = (Truep, {Truep → truep})
the first is used to signal the presence of a car, the second one represents a boolean for the
pedestrian. Every valid CFA estimate for our example includes in the component κ the
following entries for all lamp posts p:

κ(`p) ⊇ {(`p−1, 〈〈νcp−1〉〉), (`p−1, 〈〈νwp−1〉〉), (`p+1, 〈〈νwp+1〉〉)}
In particular, this holds also for the lamp post `q+1 and the designer can check that the
messages (`q, 〈〈νcq〉〉), (`q, 〈〈νwq 〉〉) are never received because the lamp post `q is out of order.

If needed, the designer can make this situation more explicit, by encoding the fault of
`q in the compatibility function. To this aim, it suffices to modify the function only for the
faulty lamp post, by putting Comp(`q, `p) = false for all lamp posts. Then, the designer can
re-apply the analysis and obtain that (`q, 〈〈νcq〉〉), (`q, 〈〈νwq 〉〉) /∈ κ(`q+1), from which deducing
that these messages will never be received by the lamp posts from position q + 1 onwards.

5. CFA at work: verifying security policies

Security is a crucial issue in IoT since it “deals not only with huge amount of sensitive
data (personal data, business data, etc.) but also has the power of influencing the physical
environment with its control abilities” [30]. Traditional security risks are magnified [5] in
the IoT world, where opportunities for potential breaches dramatically increase hand in
hand with the number of connected things. Actually, security concerns both the physical
and the logical facets of cyber-physical systems and poses manifold challenges. However,
these aspects have not received much attention so far. Counter-measures against a physical
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attack are very hard to implement, sensors are often in not protected locations and can thus
easily be damaged and their transmissions disrupted. Yet more standard, security of the
logical components raises new issues, mainly because IoT systems must perform all in a
lightweight way.

Here we extend our proposal with encryption and decryption constructs for representing
and handling some aspects of security from the side of applications. Encryption is indeed
the traditional mechanism to provide security, but it is very expensive in a setting where
energy, computation and storage are rather limited. Our CFA may help IoT designers in
singling out the pieces of information to be kept confidential and in detecting whether the
security assets are protected inside the system. In addition, we will show that a static check
suffices to detect if certain data are propagated within a system of nodes according to a
given policy. In the first part of this section we propose a general schema that captures a
family of security and access control policies. We then instantiate the schema to a couple of
classical security notions and a more sophisticated policy that controls how information is
propagated.

In particular, we show how our CFA can address data security, by detecting leakages,
once values and data are partitioned in confidential and public. The designer of a system
of nodes can then suitably protect sensitive information, by only encrypting their relevant
parts, typically the values coming from sensors or from data aggregations. In addition,
we re-cast the classical no-read-up/no-write down in our framework. Indeed, we can then
statically check if information is exchanged between nodes in the right direction with respect
to their level of clearance. Finally, we instantiate the general schema with a finer policy that
restricts the propagation of certain confidential data only within a specific sub-system. We
show that our CFA suffices to detect whether some confidential information unintentionally
reaches a node that should not get it. Remarkably, verifying the above properties, and
others, is done on the estimates of our CFA that are computed once and for all.

We are here assuming a symmetric encryption schema, which is the one commonly used
in IoT systems because less energy consuming; however, using public key encryption will
only require slight changes in the definitions below. Formally, the encryption of a message
m under a key k can be defined as the result of an aggregation function encrypt(m, k) and
the decryption as the application of its inverse encrypt−1(x, k). The machinery developed
so far would then formally work as it is. However the importance of security calls for an
explicit treatment of its aspects, described in this section.

Our current analysis is restricted to the system of nodes under investigation, and
does not consider the possible presence of active malicious attackers that can intervene in
communications by injecting forged messages. We do not feel these restrictions too heavy.
One reason is that in many real IoT systems, e.g. those developed with Zigbee [46], keys
are seldom exchanged in communications. In this real world systems cryptographic keys, if
present at all, are often fixed once and for all and exchanged in a secure manner when the
system starts its setup or upon a reboot. Also, it is not difficult to handle the case when
the design of the system benefits from a key distribution. Indeed, one can re-use existent
techniques for doing that, e.g. based on CFA [8, 45], through which also active attackers are
implicitly included.

5.1. Extending the language and the analysis. We extend here the syntax of processes
and terms with encryption and decryption primitives as in LySa, taking for simplicity a
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symmetric encryption schema. As argued above, we feel free to assume as given a finite set
K of secret keys owned by nodes, previously exchanged in a secure way.

Terms now include also encryptions written

{E1, · · · , Er}k
the result of which comes from encrypting the values of the expressions Ei, for i ∈ [1, r],
under the shared key k in K.

The syntax of processes now has also the following construct

decrypt E as {E1, · · · , Ej ; xj+1, · · · , xr}k in P

This process receives a message encrypted with the shared key k ∈ K. Also in this case we
use pattern matching, as explained below.

The new decryption construct requires the following semantic rule:

(Decrypt)

[[E]]Σ = {v1, · · · , vr}k ∧
j∧

i=1

vi = [[E′i]]Σ

Σ ‖ decrypt E as {E′1, · · · , E′j ; xj+1, · · · , xr}k in P ‖ B E−−→
E

Σ{vj+1/xj+1, · · · , vr/xr} ‖ P ‖ B

In this inference rule the encryption {v1, · · · , vr}k, resulting from E, has to match
against the pattern in decrypt E as {E′1, · · · , E′j ;xj+1, · · · , xr}k in P , i.e. the first j values

vi must match those of the corresponding E′i. In addition the keys must be the same (this
models perfect symmetric cryptography). When all the above holds, the values of the
remaining expressions are bound to the corresponding variables.

In order to extend the analysis for each node `, we first add to the alphabet T the
following new symbols, with elements:

• enc`r, each with rank r ranging from 2 to m, where m− 1 is the maximum arity of the
encrypted terms used in the system;
• ki, for each key ki ∈ K.

As done above, we assume that there is a non-terminal for each of the new terminals, written
with capital letters. It is convenient to define the following auxiliary function D for extracting
the ordered list of the grammars concerning the abstract sub-terms of an encryption under
the key k (otherwise it returns the empty list):

D((Enc`
r, R), k) = [(Zi, Ri) | ∃ Enc`

r → enc`r(Z1, · · · , Zr,K),K → k ∈ R ∧ Ri = D∗(Z,R)]

where D∗(Z,R) extracts the productions in R that are used to derive trees from Z and is
defined below

D∗(Z,R) = {Z → t̂ ∈ R | t̂ ∈ T} ∪
⋃

Z→M∈R
{D∗(W,R) |W occurs in M ∈ N ∪ T}

To better understand how the function D works, consider the node N ′a of the example in
Section 2. The analysis tells us that the variable y could take the abstract value ε defined as
follows

(Enccp
1 , {Enc

cp
1 → enccp1 (NoiseRedcp,K),K → k,

NoiseRedcp → NoiseRedcp(Icp), Icp → 1cp }).
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The function D applied to ε extracts the grammar approximating the enhanced version of
the picture taken by the sensor 1 in the node Ncp:

(NoiseRedcp, {NoiseRedcp → noiseRedcp(Icp), Icp → 1cp}).
We now introduce the following new rules for analysing encrypted terms and decryption

processes.

(E-enc)
r∧

i=1

(Σ̂,Θ) |=
`
Ei : ϑi ∧ ∀ (Z1, R1), · · · , (Zr, Rr) :

r∧
i=1

(Zi, Ri) ∈ ϑi ⇒

(Enc`
r, {Enc`

r → enc`r(Z1, · · · , Zr,K),K → k} ∪
r⋃

i=1

Ri) ∈ ϑ ⊆ Θ(`)

(Σ̂,Θ) |=
`
{E1, · · · , Er}k : ϑ

(P-dec)

(Σ̂,Θ) |=
`
E : ϑ ∧

j∧
i=1

(Σ̂,Θ) |=
`
Ei : ϑi ∧

∀ v̂ ∈ ϑ s.t. D(v̂, k) = [v̂1, · · · , v̂r]⇒

 r∧
i=j+1

v̂i ∈ Σ̂`(xi) ∧ (Σ̂, κ,Θ) |=
`
P


(Σ̂, κ,Θ) |=

`
decrypt E as {E1, · · · , Ej ; xj+1, · · · , xr}k in P

Similarly to the rule for evaluating function applications, (E-enc) analyses an encryption
term and produces the set ϑ. To do that (i) for each term Ei, it finds the sets ϑi, and (ii)
for all r-tuples of values (v̂1, · · · , v̂r) in ϑ1 × · · · × ϑr, it checks if ϑ includes the grammar
with the production for the single node k, the key, and distinct symbol Enc`

r, with arity
r, generating the trees rooted in enc`r with subtrees v̂1, · · · , v̂r. The premises of the rule
(P-dec) (i) check if each ϑi approximates the values of each term Ei involved in the matching;
(ii) inspect the approximation ϑ of E to be decrypted and from each v̂ in this abstract
value it extracts the set of ordered lists L = [v̂1, . . . , v̂r] of the grammars associated with the
sub-terms of E through the auxiliary function D; (iii) check that the presence of such a list
L implies that the values v̂i that at run time are bound to xi (i ∈ [j + 1, r]) are correctly

predicted (i.e. belong to Σ̂`(xi)), and in addition that the estimate in hand is valid for the
continuation P (note that this last check is only done if there exist a non-empty list L). If
all the above holds, the decryption process is correctly analysed.

In order to establish the subject reduction for proving the correctness of this extension
to our CFA, we extend the instrumented denotational semantics for terms in the following
expected way:

[[{E1, · · · , Er}k]]iΣi
`

= ({[[E1]]iΣi
`↓1
, · · · , [[Er]]

i
Σi

`↓1
}k, enc`r([[E1]]iΣi

`↓2
, · · · , [[Er]]

i
Σi

`↓2
, k))

Now we simply assert that the theorems and the corollary of the previous sections still
hold, without formally writing them, as nothing changes in their statements. Their proofs
have already been included in those of the original versions.
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5.2. Controlling data propagation. We now introduce our general schema to express
security policies and a way of checking them at static time. As said above, we provide the
designer with ways to classify data and nodes and to regulate how data are propagated
within the system. In the next sub-sections we will illustrate this schema by instantiating it
on three specific cases.

In order to classify data, the designer associates with them a security tag, taken from a
finite set D. Then, it defines a pair of functions that accordingly assign tags to abstract
values. As expected, all the trees generated by a grammar must have the same tag that is
also assigned to the grammar.

Definition 3 (Tagging data). Given a finite set D of tags, the functions

TD : T̂ → D TS : V̂ → D

are tagging functions if and only if, given Ĝ ∈ V̂ , for all t̂ ∈ Lang(Ĝ) the following condition
holds

TD(t̂) = TS(Ĝ)

The other element of the schema is a policy P. In our case, it is simply defined as a
predicate over tags and labels. Intuitively, a designer dictates through a policy if data with
a specific tag can be exchanged between two nodes and how, e.g. encrypted or as clear text.
Our schema is formalised below.

Definition 4 (Data propagation policies). Let N be a system of nodes with labels in L; let

D be a finite set of tags; let TD : T̂ → D; and let P ⊆ D × L × L be a data propagation
policy.
Then N enjoys P if and only if N →∗ N ′ and for all `1, `2 ∈ L there is no transition such

that N ′
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′′ and P(TD(vi↓2), `1, `2) does not hold, for some i ∈ [1, r].

The following theorem guarantees that the component κ of the analysis can be inspected
to statically check if a given system of nodes enjoys the wanted security policy.

Theorem 5.1 (Well propagation). Let N be a system of nodes with labels in L; let D be a
finite set of tags; let TD,TS be a pair of tagging functions; and let P ⊆ D× L× L.
Then N enjoys P if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then ∀ i ∈ [1, r] it holds P(TS(v̂i), `1, `2).

Note that a more general version of the above can be obtained by turning the set D into

a finite complete lattice (D,v); requiring that the tagging functions satisfy TD(t̂) v TS(Ĝ)
rather than equality; and imposing that P is monotone in its first argument.

The next two sub-sections instantiate the above schema on two classical security proper-
ties, confidentiality and no-read-up/no-write down, while the third sub-section instantiates
the above schema the security property discussed in the example of Section 2. As we will see,
confidentiality only requires classifying data and imposes no constraint on nodes. Instead,
the second property neglects the tags of data and only considers clearance levels of nodes.
The last one has constraints on both data and the way these are propagated within the
system.



24 CHIARA BODEI, PIERPAOLO DEGANO, GIAN-LUIGI FERRARI, AND LETTERIO GALLETTA

Preventing Leakage. As the first example of how the notion of well propagation is
instantiated, we consider the common approach of identifying the sensitive content of
information and of detecting possible disclosures. Hence, we partition values into security
classes and prevent classified information from flowing in clear or to the wrong places. In
the following, we assume that the designer defines the set S` containing the sensors of the
node N with label ` that have to be protected, i.e. the values of which are to be kept secret.
This implicitly introduces also the set P` of public sensors as the complement of S`. In this
case, the set of tags D is {secret, public}.

The abstract values are partitioned through the two tagging functions D and S defined
below. The intuition behind them is that a single “drop” of secret turns to secret the
(abstract) term. Of course there is the exception for encrypted data: what is encrypted is
public, even if it contains secret components. Besides classifying sensors, one can obviously
consider the case of aggregation functions whose result has to be kept secret.

Definition 5. Given the sets S` and P` of secret and of public sensors of the node N with
label `, we define the pair of functions

• D : T̂ → {secret , public} as follows:

D(i`) =

{
secret if i ∈ S`
public if i ∈ P`

D(v`) = public

D(encr`r(t̂1, · · · , t̂r, k)) = public

D(f `(t̂1, . . . , t̂r)) =

{
secret if ∃ t̂i s.t. D(t̂i) = secret

public otherwise

• S : V̂ → {secret , public} as follows:

S (v̂) =

{
secret if ∃(Z,R) ∈ v̂ s.t. S ∗((Z,R)) = secret

public otherwise

where S ∗ : N× R→ {secret , public} is:

S ∗((I`, R)) =

{
secret if i` ∈ S`
public if i` ∈ P`

S ∗((V `, R)) = public

S ∗((Enc`
k, R)) = public

S ∗((F `, {F ` → f `(Z1, · · · , Zr)} ∪ R)) =

{
secret if ∃(Zi, Ri) s.t. S ∗((Zi, Ri)) = secret

public otherwise

Fact 5.2. D and S are a pair of tagging functions.

Since our analysis computes information on the values exchanged during the communi-
cation, we can statically check whether a value, devised to be secret to a node N , is never
sent to another node, similarly to [13]. We first give a dynamic characterisation of when
a node N never discloses its secret values, i.e. when neither it nor any of its derivatives
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can send a message that includes a secret value (recall that N
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′ stands for
sending the message from `1 to `2).

Definition 6. Let N be a system of nodes with labels in L, and let S = {S` | ` ∈ L} be
the set of its secret sensors.
Then N has no leaks with respect to S if and only if N →∗ N ′ and for all `1, `2 ∈ L there is

no transition N ′
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′′ such that D(vi↓2) = secret for some i ∈ [1, r].

The definition above instantiates the predicate P by imposing that the first argument
has to be public and it simply ignores the labels of the nodes. The component κ allows us
to statically detect when a system of nodes N has no leaks with respect to a given set of
secret sensors, as an instance of Theorem 5.1.

Theorem 5.3 (Confidentiality). Let N be a system of nodes with labels in L, and let
S = {S` | ` ∈ L} be the set of its secret sensors. Then N has no leaks with respect to S if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then ∀ i ∈ [1, r] S (v̂i) = public.

Back to our running example of Section 2, we said that the pictures of cars are sensitive
data, and that consequently one would like to keep them secret. To check this, we classify
data coming from the sensor Scp such that D(1cp) = S (ι) = secret (recall the definition of
ι in (4.1)). Accordingly to Definition 5, we also get D(noiseRedcp(1cp)) = S (ν) = secret
(recall ν from (4.2)). Hence, by simply inspecting κ we discover that the sensitive data
of cars could be sent in clear to the street supervisor `a, so violating secrecy: indeed
κ(`a) ⊇ {(`cp, 〈〈ν〉〉}. We illustrated an amended system in Section 2 that does not suffer
from this problem.

Communication policies. We present a second example of instantiation of the general
schema above. It considers the case when security is enforced by defining policies that rule
information flows among nodes, by allowing some flows and forbidding others.

Below we consider the well-known no read-up/no write-down policy [4, 23]. It is based
on a hierarchy of clearance levels for nodes, and it requires that a node classified at a
high level cannot write any value to a node at a lower level, while the converse is allowed;
symmetrically a node at low level cannot read data from one of a higher level.

For us, it suffices to classify the node labels with an assignment function level : L → L,
from the set of node labels to a given set of levels L. We then introduce a condition for
characterising the allowed and the forbidden flows: it suffices requiring that whenever a
message is sent by to a node `1 to a node `2, their levels satisfy the condition level(`1) ≤
level(`2), as defined below. We instantiate the schema as follows: we take a singleton set for
D; a pair of constant functions as tagging functions; and a predicate P that ignores the first
argument and checks the required disequalities between levels.

Definition 7. Given an assignment function level, and a system of nodes N with labels
in L, then N respects the levels if and only if N →∗ N ′ and for all `1, `2 ∈ L there is no

transition such that N ′
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′′ and level(`1) ≤ level(`2).

Again the component κ of the analysis can be used to statically predict when the
components of a system of nodes will communicate respecting the assigned levels of clearance,
as an instance of Theorem 5.1.
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Theorem 5.4 (No-read-up/no-write-down). Given an assignment function level, and a
system of nodes N with labels in L. Then N respects the levels if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then level(`1) ≤ level(`2).

More in general, we can constrain communication flows according to a specific policy,
by stating whom a node is allowed to send (and/or from which it can receive) a message. It
suffices to define a relation R ⊆ L× 2L, in place of the relation used above that is based on
the partial ordering between the levels of nodes.

Selective data propagation. We consider now a form of access control policy that confines
exchange of a specific piece of information within a group of nodes in a system. An example
of such a policy has been intuitively discussed at the end of Section 2. It dictates that the
picture of an incoming car must only be sent to Na, the supervisor of the camera, and to
Ns, the supervisor of the lamp posts, but not to the lamp posts Np, if the picture has not
been anonymised.

In order to express the above policy in our general schema, we follow the pattern of the
above examples. Assume to have the set R` containing the sensors of the node N with label
`, the values of which are to be kept confined, together with its complement, the open values.
In this case, the set D is {confined , open}.

The abstract values are partitioned through the two tagging functions C and O defined
below. The intuition behind them is that a single “drop” of confined in a term makes
such the whole, with the exception when the anonymisation function is applied: what is
anonymised is open, even if it contains confined elements.

Definition 8. Let R` be the set of confined sensors of the node N with label `, and F̃ ⊆ F
be the set of anonymisation functions, possibly including encryptions. Then we define the
following pair of functions

• C : T̂ → {confined , open} as follows:

C (i`) =

{
confined if i ∈ T`
open otherwise

C (v`) = open

C (f `(t̂1, . . . , t̂r)) =

{
confined if ∃ t̂i s.t. C (t̂i) = confined ∧ f 6∈ F̃
open otherwise

• O : V̂ → {confined , open} as follows:

O(v̂) =

{
confined if ∃(Z,R) ∈ v̂ s.t. O∗((Z,R)) = confined

open otherwise
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where O∗ : N× R→ {confined , open} is:

O∗((I`, R)) =

{
confined if i` ∈ T`
open otherwise

O∗((V `, R)) = open

O∗((F `, {F ` → f `(Z1, · · · , Zr)} ∪ R)) ={
confined if ∃(Zi, Ri) s.t. O∗((Zi, Ri)) = confined ∧ f 6∈ F̃
open otherwise

Fact 5.5. C and O are a pair of tagging functions.

The following definition formalises when a system of nodes propagates confined data
only within the selected sub-system. For that, we let the set L̃ ⊆ L to include such nodes.

Definition 9. Let N be a system of nodes with labels in L, and let R = {R` | ` ∈ L} be
the set of its confined sensors.
Then N selectively propagates confined data with respect to R and L̃ if and only if N →∗ N ′

and for all `1, `2 ∈ L there is no transition N ′
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′′ such that O(vi↓2) = confined

and (`1 6∈ L̃ or `2 6∈ L̃), for some i ∈ [1, r].

Once again, the component κ allows us to statically detect when a system of nodes N
selectively propagates confined data within a sub-system, as an instance of Theorem 5.1.

Theorem 5.6 (Selective data propagation). Let N be a system of nodes with labels in L;

let R = {R` | ` ∈ L} be the set of its confined sensors; and let L̃ ⊆ L be a sub-system. Then

N selectively propagates confined data with respect to R and L̃ if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then whenever O(v̂i) = confined for some

i ∈ [1, r], it is `1, `2 ∈ L̃.

Back to our example, let the set of confined sensors R be the singleton {Scp}, the set of

allowed nodes L̃ be {`cp, `a, `pd} and the set of anonymisation function F̃ be {an}. From
our analysis we know that κ(`s) ∈ (`a, 〈〈X,Y 〉〉), where (Car, {Car→ car}) ∈ X and ν ∈ Y
where ν is defined in (4.2). We discover a policy violation since O(Y ) = confined but `s /∈ L̃.
Now consider our example with the node N ′a, introduced at the end of Section 2. In this case
we have no policy violation because, from our analysis, we obtain that κ(`s) ∈ (`′a, 〈〈X,Z〉〉)
where X is as above, and Y includes

(An, {An→ an`
′
a(NoiseRed`cp),NoiseRed`cp → noiseRed`cp(M `cp),M `cp → 1`cp})

and O(Y ) = open.
Above, we only have two tags, but one can easily adapt the definition taking into account

a set of tags. Accordingly, the system of nodes can be partitioned in many sub-systems. It
is easy to constrain the propagation of a piece of information with a certain tag to only
occur within given sub-nets. A further generalisation refines the data propagation policy by
defining for each node N` and each tag d the set of nodes to which N` is allowed to send
data tagged with d.
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6. Conclusions

We proposed the process calculus IoT-LySa as a formal design framework for IoT. It aims
at supporting the designer of IoT applications and at providing techniques for checking
their properties. IoT-LySa has constructs to describe sensors and actuators, and suitable
primitives for managing the coordination and the communication capabilities of intercon-
nected smart objects. We equipped our calculus with a Control Flow Analysis that statically
computes a safe over-approximation of system behaviour. In particular it predicts how nodes
interact, how data spread from sensors to the network, and how data are processed.

These approximations offer the basis for checking various properties of IoT systems,
among which the classical security properties of secrecy and no-read-up/no-write-down. In
addition, we considered a combination of policies ruling access control and data propagation.
In order to better assess the feasibility of our proposal, we are implementing a tool to assist
the designer in defining the properties of interest, e.g. following the schema of Section 5, and
in checking them on the system at hand. Prior to that is the computation of the (minimal)
valid estimate. This requires deriving a set of constraints from the analysis specification and
using the succinct solver of [39].

In order to experiment on the usability of IoT-LySa as a specification language we
are currently considering a few case studies. In a scenario of precision agriculture, we are
modelling an efficient and sustainable irrigation system to manage water in a vineyard [9].
Another example considers an IoT system that controls the temperature in a smart storehouse
with particular attention to countermeasures in case an attacker tampers with sensors [15].
We recently started a collaboration with Zerynth, a spin-off of the Pisa University2 for
designing a smart fridge system.

Further future work concerns the extension of IoT-LySa itself. A first issue is considering
mobility of smart objects. A simple solution would be making dynamic the topology of
the network through suitable primitives that update the compatibility function Comp at
run time. However, the accuracy of our present analysis would be certainly affected by the
arising non-determinism. A richer solution would be representing also spatial information in
the code and providing the designer with primitives that specify the movement of objects
from one location to another.

Addressing mobility makes it evident that smart objects should adapt their behaviour
according to the different features of the location hosting them. Indeed, in the IERC words:
“there is still a lack of research on how to adapt and tailor existing research on autonomic
computing to the specific characteristics of IoT” [30]. To contribute to these issues, we plan
to extend our calculus with linguistic mechanisms and a verification machinery to deal with
adaptivity in the style of [22, 12].

As it is, IoT-LySa assumes that the components of a node never fail. To relax this
assumption, a quantitative semantics will help in taking into account the probability of
failure of each node component. Of course, the analysis and the verification will be deeply
affected by this new semantics. Actually, a quantitative semantics would support tuning the
design of a system. For example, a designer can better shape the dimension of a node with
respect to energy consumption, or balance the computational load of nodes by allocating
specific data aggregations within the system. A quantitative semantics would also help in
studying the trade-off between the costs of protecting some assets in IoT system and the
damage an attacker can cause.

2https://www.zerynth.com/

https://www.zerynth.com/
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For the time being, IoT-LySa models only the logical part of a system, leaving the
physical world as a black box. A further extension consists in opening this box and in
modelling the world through standard techniques as e.g. hybrid automata. This extension
not only improves the precision of IoT-LySa models but also could allow designers to
understand how sensors are used and how an action triggered on an actuator affects the
whole system. As an example, one can predict if an actuator is maliciously triggered by
an attacker, as happened in the recent attack performed through a vehicular infotainment
network.3

6.1. Related work. As all new paradigms, IoT poses new challenging scenarios for formal
methodologies. To the best of our knowledge, few papers address the specification and
verification of IoT systems from a process calculi perspective.

A first proposal is the IoT-calculus [32]. It explicitly includes sensors and actuators,
and smart objects are represented as point-to-point communicating nodes of networks,
represented as a graph. Differently from ours, their interconnection topology can vary at
run time, when the system interacts with the environment. This is rendered by a first
kind of transitions, the others taking care of the node activities. The authors propose two
notions of bisimilarity, each based on the different kinds of transitions, that capture system
behaviour from the point of view of end-users and of the selected devices. The clean algebraic
presentation enables compositional reasoning on systems.

The timed process calculus CIoT [34] specifies physical and logical components, ad-
dresses both timing and topology constraints, and allows for node mobility. Furthermore,
communications are either short-range or internet-based. The semantics is given on terms
of a labelled transition system with transitions that represent the interactions with the
physical environment and transitions that represent the node actions. The focus of this
paper is mainly on an extensional semantics that emphasises the interaction of IoT systems
with the environment, and that provides a fully abstract characterisation of the proposed
contextual equivalence. The hybrid process calculus CCPS [35] describes both the cyber
and the physical aspects of systems (state variables, physical devices, evolution laws, etc.).
It has a clearly defined behavioural semantics, based on a transition system and a notion of
bisimulation. As in our case, a cyber component governs the interactions with sensors and
actuators, and the communications with other cyber components. The physical world is
modelled by a tuple of suitable functions over the real numbers that describe how it changes.

Many design choices of the above-discussed proposals are similar to ours. The main
difference is that our coordination model is based on a shared store à la Linda instead of
a message-based communication à la π-calculus. Furthermore, differently from [32, 34],
we are here mainly interested in developing a design framework that includes a static
semantics to support various verification techniques and tools for checking properties of
IoT applications. In addition, as said above, here we are only interested in modelling
the logical components, in determining their boundaries with the physical world, and in
abstractly representing the interactions between them. Modelling the physical environment
is left as future work, e.g. along the lines suggested in [35]. Finally, we opted for an
asynchronous multi-party communication modality among nodes, while in IoT-calculus and
in CIoT internode communications are synchronous and point-to-point.

3See http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
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The calculi above and ours are built upon those previously introduced for wireless,
sensor and ad hoc networks ([33, 43, 38] to cite only a few). In particular, the calculus in [38]
is designed to model so-called broadcast networks, with a dynamically changing topology. It
presents some features very similar to ours: an asynchronous local broadcast modality, while
intra-node communication relies on a local tuple space. Also, the analysis of the behaviour
of broadcast networks is done by resorting to a multi-step static machinery.

Also aggregate programming has been proposed for the design and implementation of
complex IoT software systems [3], through the Field calculus [21], a functional language with
constructs to model computation and interaction among large numbers of devices. Aggregate
programming overcomes the single-device viewpoint, by adopting a cooperating collection of
devices as basic computing unit. Also the rule-based approach of [17] describes a network of
sensors and actuators as a distributed collaborative system. It chiefly focusses on globally
coordinating the activities of the devices and on controlling the events raised by sensors and
the effects of the actions of actuators they trigger. Our approach is complementary to theirs,
because we are mainly interested in how the data gathered from sensors are communicated
and subsequently aggregated by the nodes in the network. The goals of ThingML [37] are
similar to ours in that its authors propose a modelling language for IoT. However, our work
is oriented towards formal verification, while theirs is devoted to tools for supporting the
development of applications, within a Software Engineering approach.

Security in IoT and cyber-physical systems has been addressed from a process algebraic
perspective by a certain number of papers, e.g. [45, 44, 2]. An IoT protocol (the MQ
Telemetry Transport 3.1) is formally model in terms of a timed message-passing process
algebra [2]. The protocol is statically analysed to understand the robustness of its behaviour
in scenarios with different quality of service. The Applied Quality Calculus is used in [44] to
study the trade-off between the security requirements and the broadcast communications in
wireless-based Cyber-Physical Systems, where nodes have limited capabilities and sensors
are poorly reliable. In this proposal, standard cryptographic mechanisms are modelled via
term rewriting. Furthermore it is possible to reason about denial of service, because the
calculus has explicit notions of failing and unwanted communications.

Very similar to ours is the work in [45], where the key establishment protocol of
ZigBee [46] is specified in LySa [8, 16] and statically analysed with a CFA. They discovered
a security flaw arising because freshness is not guaranteed, and proposed a fix.

A variant of the CFA presented here is proposed in [14] for tracking sensitive and
untrustworthy data. Taint analysis is used for marking data and for monitoring their
propagation at run time across an IoT system so as to check whether those computations
considered security critical are not affected by tainted data.

Finally, security is studied in [15] from an “economical” perspective, by providing an
enhanced version of IoT-LySa to infer quantitative measures of cryptographic mechanisms.
This paper provides the means for estimating the costs of possible counter-measures to
several security risks that may arise in IoT systems. A game theoretical approach to the
same problem is in [42]. The authors compute a resource allocation plan as a Pareto-optimal
solution, and estimate its efficiency with respect to the energy consumption of the security
infrastructure and the costs of its components.
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Appendix A. Notation

N ∈ N system of nodes N v ∈ V values
` ∈ L the set of labels x ∈ X` variables of node `
` : [B] node at ` with component B f ∈ F functions on terms E
S, A sensors and actuators [[E]]Σ denotational semantics of terms
i ∈ I`, j ∈ J` unique identifiers of S and A E state of the world

Σ` : X` ∪ I` → V store of node `
E−−−→
E′

reduction relation

Ĝ = (N,T, Z,R) regular tree grammar i`, v`, f ` ∈ T abstract sensor, value, function

Lang(Ĝ) language of Ĝ t̂ ∈ T tree over T
v̂ = (Z,R) shorthand for Ĝ V̂ = 2N×R abstract terms

R the productions over N,T Σ̂` : X ∪ I` → 2V̂ abstract store at `

(Σ̂,Θ) estimate for terms E Σ̂ =
⋃

`∈L Σ̂` abstract store

(Σ̂, κ,Θ) estimate for nodes N κ : L → L×
⋃m

i=1 V̂
i abstract network environment

ϑ ∈ 2V̂ set of approximated values Θ : L → 2V̂ abstract data collection

Comp(`2, `1) compatibility function Σi
` : X` ∪ I` → V × T̂ instrumented store

[[E]]i
Σi

`
instrumented semantics Σi

` ./ Σ̂` concrete and abstract store agree

k ∈ K crypto key enc`r, ki abstract values for security

D set of security tags TD : T̂ → D and tagging functions

P ⊆ D× L× L security policy TS : V̂ → D

Table 4: Notation and abbreviations

Appendix B. Proofs

In this appendix, we restate the theorems presented earlier in the paper and give the proofs
of their correctness, with the help of some auxiliary lemmata.

Our first lemma guarantees that the analysis for expressions respects the instrumented
denotational semantics.

Lemma 1 (Subject reduction for expressions).

For all E, (Σ̂,Θ) |=
`
E : ϑ implies that there exist Σi

` and Ĝ ∈ ϑ such that Σi
` ./ Σ̂` and

([[E]]i
Σi

`
)↓2 ∈ Lang(Ĝ).

Proof. A straightforward induction on all the rules in Table 2 and on rule (E-enc) suffices.

Before proving the correctness of the analysis for systems of nodes, we prove that it is
invariant under the structural congruence and is preserved under node components reduction.

Lemma 2 (Congruence).

• If B ≡ B′ then (Σ̂, κ,Θ) |=
`
B iff (Σ̂, κ,Θ) |=

`
B′.

• If N ≡ N ′ then (Σ̂, κ,Θ) |= N iff (Σ̂, κ,Θ) |= N ′.

Proof. It suffices to inspect the rules for ≡, since associativity and commutativity of ∧
reflects the same properties of both | and ‖, and to recall that any triple is a valid estimate
for 0.
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Lemma 3 (Subject reduction for node components).

If (Σ̂, κ,Θ) |=
`
B and B

E−−−→
E ′

B′ and Σi
` ./ Σ̂`, for Σi

` (in B) then (Σ̂, κ,Θ) |=
`
B′ and

Σi
`
′
./ Σ̂`, for Σi

`
′

(in B′).

Proof. Our proof is by induction on the shape of the derivation of B
E−−−→
E ′

B′ and by cases

on the last rule used. In all the cases below we will have that for Σi and B1 components of

B, both facts (*) (Σ̂, κ,Θ) |=
`

Σi, and (**) (Σ̂, κ,Θ) |=
`
B1 trivially hold. So we will omit

mentioning these judgements below, for the sake of brevity. Also, we will implicitly apply
the rules of Table 3, e.g. the repeated applications of rule (B-par).

• Case (Sense). We assume (Σ̂, κ,Θ) |=
`

Σi ‖ probe(i). S ‖ B1 that has been proved be-

cause rule (B-sen) proves that (Σ̂, κ,Θ) |=
`
probe(i). S holds. By the same rule also

(Σ̂, κ,Θ) |=
`
S holds, and thus (Σ̂, κ,Θ) |=

`
Σi{(v, i`)/i} ‖ S ‖ B1. We are left to show

that Σi
`
′
./ Σ̂`. By hypothesis Σi

`
′
(y) = Σi

`(y) for all y ∈ X` ∪ I` such that y 6= i, while

(Σi
`(i))↓2 = i` ∈ Lang(Ĝ), for some Ĝ ∈ Σ̂`(i), which trivially holds by (*) and Lemma 1.

• Case (Asgm). We assume (Σ̂, κ,Θ) |=
`

Σi ‖ x := E.P ‖ B1 that has been proved because
the following conditions hold:

(Σ̂,Θ) |=
`
E : ϑ (B.1)

∀v̂ : v̂ ∈ ϑ ⇒ v̂ ∈ Σ̂`(x) (B.2)

(Σ̂, κ,Θ) |=
`
P (B.3)

We have to prove that (Σ̂, κ,Θ) |=
`

Σi{(v, v̂)/x} ‖ P ‖ B1 that trivially holds because of

(*); (B.3) and Lemma 1; and (**). We have only to prove that Σi
`
′
./ Σ̂`, by knowing

that (by hypothesis) Σi
` ./ Σ̂`, that implies Σi

`
′
(y) = Σi

`(y) for all y ∈ X` ∪ I` such

that y 6= x. Therefore Σi
`
′
(y) = Σi

`(y) for all y ∈ X` ∪ I` such that y 6= x, while

(Σi
`(x))↓2 ∈ Lang(v̂ ∈ Σ̂`(x)) because of (B.2) and of Lemma 1.

• Case (E-out). We assume (Σ̂, κ,Θ) |=
`

Σi ‖ 〈〈E1,· · ·, Er〉〉 . L. P ‖ B1 that has been proved
because the following conditions hold:

r∧
i=1

(Σ̂,Θ) |=
`
Ei : ϑi

(Σ̂, κ,Θ) |=
`
P

∀v̂1, · · · , v̂r :

r∧
i=1

v̂i ∈ ϑi ⇒ ∀`′ ∈ L : (`, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`′)

Proving that (Σ̂, κ,Θ) |=
`
〈〈v1, · · · , vr〉〉 . L. 0 ‖ P ‖ B1 is straightforward because of the

three above conditions and because of Lemma 1.
• Case (Decrypt). We assume

(Σ̂, κ,Θ) |=
`

Σi ‖ decrypt E as {E′1, · · · , E′j ; xj+1, · · · , xr}k in P ‖ B1 that has been proved
because the following conditions hold

(Σ̂,Θ) |=
`
E : ϑ (B.4)
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r∧
i=1

(Σ̂,Θ) |=
`
Ei : ϑi (B.5)

and ∀ v̂ ∈ ϑ such that D(v̂, k) = [v̂1, · · · , v̂r] that also implies the following two conditions
r∧

i=j+1

v̂i ∈ Σ̂`(xi) (B.6)

(Σ̂, κ,Θ) |=
`
P (B.7)

We have to prove that (Σ̂, κ,Θ) |=
`

Σi ‖ P [vj+1/xj+1, · · · , vr/xr] ‖ B1 that trivially holds
because of (*); (B.4), (B.5), (B.7) and Lemma 1; and (**). We are left to prove that

Σi
`
′
./ Σ̂`, by knowing that (by hypothesis) Σi

` ./ Σ̂`, that implies Σi
`
′
(y) = Σi

`(y) for all

y ∈ X` ∪ I` such that y 6= x. Therefore Σi
`
′
(y) = Σi

`(y) for all y ∈ X` ∪ I` such that y 6= x,

while (Σi
`(x))↓2 ∈ Lang(v̂ ∈ Σ̂`(x)) because of (B.4), (B.5) and because of Lemma 1.

• The cases (Cond), (Int) and (A-com) are straightforward; the case (Act) is trivial because
for us the world is a black box; the case (ParB) directly follows from the induction
hypothesis; Lemma 2 suffices to prove the case (CongrB).

Theorem 4.1 (Subject reduction). Given a system of nodes N , if (Σ̂, κ,Θ) |= N ; N
E−−−→
E ′

N ′

and ∀Σi
` in N it is Σi

` ./ Σ̂`, then (Σ̂, κ,Θ) |= N ′ and ∀Σi
`
′

in N ′ it is Σi
`
′
./ Σ̂`.

Proof. Our proof is by induction on the shape of the derivation of N
E−−−→
E ′

N ′ and by cases

on the last rule used. In all the cases below we will have that (*) (Σ̂, κ,Θ) |=
`

Σi, as well as

that (**) (Σ̂, κ,Θ) |=
`
Bm (whenever m ≥ 1), for Σi, Bm components of N . So we will omit

mentioning these judgements below, for the sake of brevity. Also, we will implicitly apply
the rules of Table 3, e.g. the applications of rules (N-node) and (N-par).

• Case (Multi-com). We assume

(Σ̂, κ,Θ) |= `1 : [〈〈v1,· · ·, vr〉〉 . L. 0 ‖ B1] | `2 : [Σi
`2
‖ (E1,· · ·, Ej ;xj+1,· · ·, , xr).Q ‖ B2]

that is implied by (Σ̂, κ,Θ) |= `1 : [〈〈v1, · · · , vr〉〉 . L. 0 ‖ B1] and by

(Σ̂, κ,Θ) |= `2 : [Σi
`2
‖ (E′1, · · · , E′j ;xj+1, · · · , xr).Q ‖ B2] that have been proved because

the following conditions hold:

r∧
i=1

(Σ̂,Θ) |=
`1
vi : ϑi (B.8)

(Σ̂, κ,Θ) |=
`1

0 (B.9)

∀v̂1, · · · , v̂r :

r∧
i=1

v̂i ∈ ϑi ⇒ ∀`′ ∈ L : (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`′) (B.10)

j∧
i=1

(Σ̂,Θ) |=
`2
Ei : ϑ′i (B.11)

(B.12)

and ∀(`1, 〈〈v̂1, · · · , v̂k〉〉) ∈ κ(`2) such that Comp(`1, `2) (♣)
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r∧
i=j+1

v̂i ∈ Σ̂`2(xi) (B.13)

(Σ̂, κ,Θ) |=
`2
Q (B.14)

Note that since ♣ holds, also B.13 and B.14 do. Also, ∀i (Σ̂,Θ) |=
`1
vi : ϑi implies v̂i ∈ ϑi,

where v̂i = ([[vi]]
i
Σi

`2

)↓2 , and that `2 ∈ L because N
E−−−→
E ′

N ′. We have to prove that

(Σ̂, κ,Θ) |= `1 : [〈〈v1, · · · , vr〉〉 . L \ {`2}.0‖B1] | `2 : [Σi
`2
{vj+1/xj+1, · · · , vr/xr}‖Q‖B2]

that in turn amounts to prove that

(a) (Σ̂, κ,Θ) |=
`1
〈〈v1, · · · , vr〉〉 . L \ {`2}. 0 ‖ B1

(b) (Σ̂, κ,Θ) |=
`2

Σi
`2
{(vj+1, v̂j+1)/xj+1, · · · , (vr, v̂r)/xr} ‖ Q ‖ B2

We have that (a) holds trivially because of (B.8), (B.9) and (B.10) (of course L\{`2} ⊆ L),
while (b) holds because of the remaining conditions and of Lemma 1. We are left to prove

that Σi
`2

′
./ Σ̂`2 . Now, we know that Σi

`2

′
(y) = Σi

`2
(y) for all y ∈ X`2 ∪ I`2 such that

y 6= xi. The condition (Σi
`2

(xi))↓2 ∈ Lang(v̂ ∈ Σ̂`2(xi)) holds for all xi because of (B.13).
• The case (CongrN) follows from Lemma 2; and the remaining cases directly follow from

the induction hypothesis.

Definition 10. The set of estimates can be partially ordered by setting

(Σ̂1, κ1,Θ1) v (Σ̂2, κ2,Θ2) iff

• ∀x ∈ X` ∪ I` : Σ̂1(x) ⊆ Σ̂2(x)
• ∀` ∈ L : κ1(`) ⊆ κ2(`)
• ∀` ∈ L : Θ1(`) ⊆ Θ2(`)

This suffices for making the set of proposed solutions into a complete lattice; we can thus

write (Σ̂1, κ1,Θ1) t (Σ̂2, κ2,Θ2) for the binary least upper bound (defined point-wise), uM
for the greatest lower bound of a set M of proposed solutions (also defined pointwise), and
(⊥,⊥,⊥) for the least element.

A Moore family M contains a greatest element (u∅) and a least element (uM). Since
the set of analysis estimates constitutes a Moore family, we have that there always is a least
estimate to the specification in Table 3.

Theorem 4.2 (Existence of estimates). Given N , its valid estimates form a Moore family.

Proof. Let M = {(Σ̂r, κr,Θr)} be a set of estimates for N . We proceed by structural

induction on N , to check that uM = (Σ̂′, κ′,Θ′) |= N . We just consider one case. The
others are similar.

Case ` : [B]. Since ∀r : (Σ̂r, κr,Θr) |= ` : [B], then (Σ̂r, κr,Θr) |=`
B.

Using the induction hypothesis and the fact that the components of (Σ̂′, κ′,Θ′) are ob-

tained pointwise, it follows that (Σ̂′, κ′,Θ′) |=
`
B thus establishing the required judgement

(Σ̂′, κ′,Θ′) |= ` : [B].
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The following auxiliary lemma helps proving Corollary 4.3, and in its statement we let

B
E1,...,En−−−−−→` B

′ denote a reduction in which all Ei are evaluated at node `, omitting the
environment for readability.

Lemma 4. If (Σ̂, κ,Θ) |=
`
B and B

E1,...,En−−−−−→` B
′ then ∀r ∈ [0, n] there exists Ĝ ∈ Θ(`)

such that ([[Er]]
i
Σi

`
)↓2 ∈ Lang(Ĝ).

Proof. By Lemma 3, (Σ̂, κ,Θ) |=
`
B′ holds. The proof proceeds by induction on the shape

of the derivation of B
E−−−→
E ′

B′ and by cases on the last rule used.

• Case (Asgm). If this rule is applied, then B = Σi ‖ x := E.P ‖ B1. Since (Σ̂, κ,Θ) |=
`
B

we have that, in particular, (Σ̂, κ,Θ) |=
`
x := E.P and in turn that (Σ̂,Θ) |=

`
E : ϑ, and

Lemma 1 suffices for establishing that (Σ̂,Θ) |=
`

[[E]]i : ϑ. By the rules in Table 2, we
have the required ϑ ⊆ Θ(`).
• Case (Decrypt). In this case we have that

(Σ̂, κ,Θ) |=
`
B = Σi ‖ decrypt E as {E′1, · · · , E′j ; xj+1, · · · , xr}k in P ‖ B1. Since the es-

timate is valid, we have in particular that the premises of the rule (i.e. conditions (B.4),

(B.5), and (B.6) stated in the proof of Lemma 3) hold. The existence of the required Ĝ
now follows, because Lemma 1 can be used to recover the abstract values v̂, v̂1, . . . , v̂n
needed in the rule (P-dec).
• The cases (Ev-out), and (Cond) are similar.
• The cases (ParB) and (CongrB) directly follow from the induction hypothesis.
• No other rules evaluate terms and their proof is trivial.

Corollary 4.3. Assume that (Σ̂, κ,Θ) |= N , then

(1) if N
E1,...,Er−−−−−→` N

′ then ∀k ∈ [0, n] there exists Ĝ ∈ Θ(`) such that

([[E]]i
Σi

`
)↓2 ∈ Lang(Ĝ);

(2) if N
〈〈v1,...,vr〉〉−−−−−−→`1,`2 N

′ then it holds (`1, 〈〈v̂1, . . . , v̂r〉〉) ∈ κ(`2), and ∀i ∈ [0, r] there exists

Ĝ ∈ v̂i such that vi↓2 ∈ Lang(Ĝ).

Proof.

(1) Immediate; note that for the rule (Node) Lemma 4 suffices.

(2) By Theorem 4.1, we have that (Σ̂, κ,Θ) |= N ′, so we proceed by induction on the shape

of the derivation of N
E−−−→
E ′

N ′ and by cases on the last rule used.

• Case (Multi-com) follows directly from the subject reduction Theorem 4.1.
• Cases (ParN), (CongrN), and (Node) directly follow from the induction hypothesis,

and for the other rules the premise is false.

Proposition 4.4. Let i be a sensor of the node N with label `; let N ′ be a node with label

`′; and let (Σ̂, κ,Θ) |= N | N ′.
The sensor i is an ingredient of N ′ if there exists Ĝ ∈ Θ(`′) and a tree in its language with
a leaf i`.

Proof. Immediate.
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Theorem 5.1 (Well propagation). Let N be a system of nodes with labels in L; let D be a
finite set of tags; let TD,TS be a pair of tagging functions; and let P ⊆ D× L× L.
Then N enjoys P if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then ∀ i ∈ [1, r] it holds P(TS(v̂i), `1, `2).

Proof. Suppose that both items (1) and (2) hold and assume by contradiction that N enjoys

P with respect to D, i.e. that N →∗ N ′ 〈〈v1,...,vr〉〉−−−−−−→`1,`2 N
′′ and that ∃ī : P(TD(vī↓2), `1, `2)

does not hold. Then, by Corollary 4.3, it holds (`1, 〈〈v̂1, . . . , v̂r〉〉) ∈ κ(`2), where for all i

there exists Ĝ ∈ v̂i such that vi↓2 ∈ Lang(Ĝ). Now, since item (2) holds, we know that

∀i. P(TS(v̂i), `1, `2) holds. Since TD,TS is a pair of tagging functions, for all t̂ ∈ Lang(Ĝ)
we have that P(TS(v̂i), `1, `2) = P(TD(t̂), `1, `2), in particular for i = ī: contradiction.

Fact 5.2. D and S are a pair of tagging functions.

Proof. Immediate by inducing on the structure of t̂.

Theorem 5.3 (Confidentiality). Let N be a system of nodes with labels in L, and let
S = {S` | ` ∈ L} be the set of its secret sensors. Then N has no leaks with respect to S if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then ∀ i ∈ [1, r] S (v̂i) = public.

Proof. Follows easily from Theorem 5.1 by letting D = {secret, public}; S ,P as pair of
tagging functions (Lemma 5.2); and P(d, `1, `2) = true if and only if d = public.

Theorem 5.4 (No-read-up/no-write-down). Given an assignment function level, and a
system of nodes N with labels in L. Then N respects the levels if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then level(`1) ≤ level(`2).

Proof. Follows easily from Theorem 5.1 by letting D = {•}; TS,TD as pair of (constant)
tagging functions; and P(d, `1, `2) = true if and only if level(`1) ≤ level(`2).

Fact 5.5. C and O are a pair of tagging functions.

Proof. Immediate by inducing on the structure of t̂.

Theorem 5.6 (Selective data propagation). Let N be a system of nodes with labels in L;

let R = {R` | ` ∈ L} be the set of its confined sensors; and let L̃ ⊆ L be a sub-system. Then

N selectively propagates confined data with respect to R and L̃ if

(1) (Σ̂, κ,Θ) |= N and
(2) ∀`1, `2 ∈ L if (`1, 〈〈v̂1, · · · , v̂r〉〉) ∈ κ(`2) then whenever O(v̂i) = confined for some

i ∈ [1, r], it is `1, `2 ∈ L̃.

Proof. Follows easily from Theorem 5.1 by letting D = {confined , open}; TS = O and
TD = C that form a pair of tagging functions by Lemma 5.5; and P(d, `1, `2) = true if and

only if d = confined and `1, `2 ∈ L̃.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	Outline of the paper

	2. A smart street light control system
	2.1. System specification.
	2.2. Checking properties.

	3. The calculus IoT-LySa
	3.1. Syntax.
	3.2. Operational Semantics.

	4. Control Flow Analysis
	4.1. Abstract representation of data
	4.2. Specification of the analysis
	4.3. Correctness of the analysis.
	4.4. Some applications of the analysis 

	5. CFA at work: verifying security policies
	5.1. Extending the language and the analysis
	5.2. Controlling data propagation
	Preventing Leakage
	Communication policies.
	Selective data propagation

	6. Conclusions
	6.1. Related work

	References
	Appendix A.  Notation
	Appendix B.  Proofs

