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Abstract. For a quantale V, the category V-Top of V-valued topological spaces may be
introduced as a full subcategory of those V-valued closure spaces whose closure operation
preserves finite joins. In generalization of Barr’s characterization of topological spaces as the
lax algebras of a lax extension of the ultrafilter monad from maps to relations of sets, for V
completely distributive, V-topological spaces have recently been shown to be characterizable
by a lax extension of the ultrafilter monad to V-valued relations. As a consequence, V-Top
is seen to be a topological category over Set, provided that V is completely distributive. In
this paper we give a choice-free proof that V-Top is a topological category over Set under
the considerably milder provision that V be a spatial coframe. When V is a continuous
lattice, that provision yields complete distributivity of V in the constructive sense, hence
also in the ordinary sense whenever the Axiom of Choice is granted.

1. Introduction

Trivially, the category Top of topological spaces may be considered as a full subcategory of
the category Cls of closure spaces, given by those closure spaces X for which the closure
operation c : PX // PX preserves finite unions. Non-trivially, in [2], Barr showed that
Top is isomorphic to the category of lax Eilenberg-Moore algebras of the ultrafilter monad
U, laxly extended from Set to the category Rel of sets and relations. In the language of
monoidal topology [14], this latter category is the category (U, 2)-Cat of small (U, 2)-enriched
categories, with 2 denoting the two-element chain, considered as a quantale, while Cls is
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the category (P, 2)-Cat, with P denoting the power set monad, suitably extended from Set
to Rel.

In [20] the authors replaced the quantale 2 by an arbitrary quantale V and revisited
the category V-Cls of V-valued closure spaces, comprehensively studied earlier in [28] when
V is completely distributive, and then considered its full subcategory V-Top of V-valued
topological spaces. (We caution the reader that these terms appear in the literature also for
rather different concepts; see Remark 2.2(2) below.) For V the Lawvere quantale [0,∞] (see
[21]), V-valued topological spaces are exactly approach spaces as introduced by Lowen [22] in
terms of a point-set distance. For V the quantale ∆ of distance distribution functions, they
are probabilistic approach spaces, as considered recently in [18], which generalize Menger’s
[25] “statistical metric spaces”, just as approach spaces generalize metric spaces; see also
[3, 13]. The main result of [20] confirms that, when the quantale V is completely distributive,
the Barr representation of topological spaces remains valid at the V-level once the power set
monad and the ultrafilter monad are suitably extended from Set to the category V-Rel of
sets and V-valued relations. Briefly: the category V-Top, defined as the full subcategory of
(P,V)-Cat given by those V-valued closure spaces whose structure preserves finite joins, is
isomorphic to (U,V)-Cat – provided that V is completely distributive.

Since (T,V)-Cat is easily seen to be a topological category (in the sense of [1]) over
Set, for any laxly extended Set-monad T (see [14]), as a byproduct of the equivalence
result of [20] one obtains that V-Top is topological over Set whenever V is completely
distributive. The question was posed by Dexue Zhang and Lili Shen whether topologicity
may be confirmed without the provision of complete distributivity. In this paper we give
a partial answer to this question, and we do so without invoking the Axiom of Choice, by
showing that V-Top lies bicoreflectively in the topological category V-Cls and, hence, is
topological itself – provided that every element in V is the join of a set of coprime elements.
This provision is equivalent to the complete lattice V being a spatial coframe, i.e., being
isomorphic to the lattice of closed sets of some topological space (see [19]); in particular,
binary joins must distribute over arbitrary infima in V. In the presence of the Axiom of
Choice one can show that complete distributivity of a complete lattice V is equivalent to V
being continuous and a spatial coframe (see [12]).

In the next section we recall the definitions and main examples of V-valued closure
spaces and V-valued topological spaces, with a novel take on the transitivity/idempotency
axiom for a V-valued closure operation which turns out to be useful in what follows. Section
3 recalls some known facts on spatial coframes vis-á-vis complete distributivity, but we do
so being careful to avoid the Axiom of Choice to the extent possible. The main result of
the paper is given in Section 4, where we establish the coreflector of V-Cls onto V-Top, by
mimicking the construction of the additive core of a categorical closure operator, as given
in [10]. Finally, in Section 5, we show that the structure of a V-valued closure space and,
hence, also the structure of a V-valued topological space, may be equationally defined within
the category V-Cat of V-categories, which is somewhat surprising when one considers the
fact that the axioms governing reflexivity/extensitivity and transitivity/idempotency are
given in terms of inequalities, rooted in the order of V.

2. V-valued topological spaces

Throughout the paper, let V = (V,⊗, k) be a (unital, but not necessarily commutative)
quantale, i.e., a complete lattice with a monoid structure whose binary operation ⊗ preserves
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suprema in each variable. We make no additional provisions for the tensor-neutral element
k vis-à-vis the bottom and top elements in V; in particular, we exclude neither the case
k = ⊥ (so that |V| = 1, i.e., V may be trivial), nor k < > (i.e., V may fail to be integral).
PX denotes the power set of the set X, and VX is the set of maps X // V.

We use the following simplification of the key definition of [20] which, in turn, builds on
the equivalent treatment of V-valued closure spaces given in [28]:

Definition 2.1. A V-valued closure space is a set X equipped with a map c : PX // VX

satisfying the reflexivity and transitivity conditions

(R) ∀x ∈ A ⊆ X : k ≤ (cA)(x),
(T) ∀A,B ⊆ X,x ∈ X :

(∧
y∈B(cA)(y)

)
⊗ (cB)(x) ≤ (cA)(x).

(X, c) is a V-valued topological space if, in addition, c : PX // VX is finitely additive,
i.e., preserves finite joins:

(A) ∀A,B ⊆ X, x ∈ X : (c∅)(x) = ⊥ and c(A ∪B)(x) = (cA)(x) ∨ (cB)(x).

A map f : X // Y of V-closure spaces (X, c), (Y, d) is continuous (or, depending on
context, contractive) if

(C) ∀A ⊆ X, x ∈ X : (cA)(x) ≤ d(fA)(fx).

We obtain the category V-Cls of V-valued closure spaces and its full subcategory V-Top
of V-valued topological spaces, and their continuous maps.

Remark 2.2.

(1) A V-valued closure space structure c on X satisfies the monotonicity condition (∅ 6=
B ⊆ A ⊆ X =⇒ cB ≤ cA). If V is integral (so that k = >), or if c is finitely additive,
then the restriction B 6= ∅ is, of course, not needed.

(2) The notion of V-valued closure operator as used here must be carefully distinguished
from the V-closure operators considered in other papers, notably in [8]. Rather than
investigating operators c : PX // VX , which simply generalize, from 2 to V, the truth
value of membership in the closure of a (standard) subset of X, [8] studies operators
c : VX // VX , thus relativizing also the arguments of c. Similarly, in [15] and other
literature, the term V-valued topological space has a meaning very different from the one
used here. Indeed, Höhle [15] relativizes the open-subset concept through the study of
certain substructures τ ⊆ VX ; as further examples of variations of this type of approach,
we refer also to [16, 26, 9].

Example 2.3.

(1) For the terminal quantale 1 one has 1-Cls = 1-Top ∼= Set.
(2) For the two-element chain 2 = {⊥ < >}, considered as a quantale (2,∧,>), under

the identification 2X = PX conditions (R) and (T) read respectively as A ⊆ cA and
(B ⊆ cA ⇒ cB ⊆ cA), for all A,B ⊆ X, where, in the presence of (R), condition
(T) breaks down to the conjunction of the monotonicity and idempotency conditions
(B ⊆ A ⇒ cB ⊆ cA) and ccA ⊆ cA, for all A,B ⊆ X. With (A) and (C) translating
to c∅ = ∅, c(A ∪ B) = cA ∪ cB and f(cA) ⊆ c(fA) for all A,B ⊆ X, one obtains
respectively 2-Cls = Cls and 2-Top ∼= Top, i.e., the standard categories of closure
spaces and of topological spaces, as described by closure operations. The presentation of
closure spaces as, in the language of [14], (P, 2)-categories (with P the powerset monad),
goes back to [27]; instead of P one may also use the “up-set monad” [28].
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(3) For any (multiplicatively written) monoid M with neutral element η, we consider the
quantale freely generated by M ; it is given by the power set PM , ordered by inclusion
and provided with the tensor product that extends the multiplication of M to its subsets:
AB = {αβ |α ∈ A, β ∈ B}. Note that, since {η} is neutral in PM , this quantale is
integral (so that {η} is its top element) only if M is trivial, and it is commutative only
if M is. Since maps PX // (PM)X ∼= (PX)M correspond to maps PX ×M // PX,
defining

x ∈ A · α :⇐⇒ α ∈ (cA)(x)

for all x ∈ X, A ⊆ X, α ∈M , we can rewrite a V-valued closure space structure c on X
as a lax right action · of the monoid M on the ordered set PX. Indeed, conditions (R)
and (T) read as

A ⊆ A · η and (B ⊆ A · α =⇒ B · β ⊆ A · (αβ))

or, equivalently, as

A ⊆ A · η, (A · α) · β ⊆ A · (αβ) and (B ⊆ A =⇒ B · β ⊆ A · β),

for all A,B ⊆ X, α, β ∈ M . Continuity of a map f : X // Y of PM -valued closure
spaces amounts to lax preservation of the lax right action: f(A · α) ⊆ (fA) · α, for all
A ⊆ X, α ∈M . For a PM -valued topological space, all translations (−) ·α : PX //PX
must preserve finite unions.

Note that, since A 7→ A·η is a closure operation on X, one has a functor PM -Cls //Cls
that restricts to PM -Top //Top.

(4) For the Lawvere quantale (([0,∞],≥),+, 0), using the point-set-distance function δ :
X × PX // [0,∞] with δ(x,A) = (cA)(x), we may re-state the above conditions as
(R) ∀x ∈ A ⊆ X : δ(x,A) = 0,
(T) ∀x ∈ X, A,B ⊆ X : δ(x,A) ≤ supy∈Bδ(y,A) + δ(x,B),
(A) ∀x ∈ X, A,B ⊆ X : δ(x, ∅) =∞ and δ(x,A∪B) = min{δ(x,A), δ(x,B)},
(C) ∀x ∈ X, A ⊆ X : δ(fx, fA) ≤ δ(x,A).
The resulting category [0,∞]-Top is the category App of approach spaces, as introduced
by Lowen [22, 23] under a slight, but equivalent, variation of condition (T). The ambient
category [0,∞]-Cls was considered in [27].

(5) Let & be a commutative monoid operation on [0, 1] with its natural order, preserv-
ing suprema in each variable (also known as a left-continuous t-norm on [0,1]), and
having 1 as its neutral element – such as the ordinary multiplication × of real num-
bers, the  Lukasiewicz operation α&β = max{α + β − 1, 0}, or the frame operation
α&β = min{α, β}. For the quantale [0, 1]& = (([0, 1],≤),&, 1) we may then consider its
coproduct ∆& with the Lawvere quantale [0,∞] in the category of commutative quan-
tales and their homomorphisms (= sup-preserving homomorphisms of monoids), which
may be described as follows (see [29, 11, 20]). (Note that, of course, [0, 1]× is isomorphic
to [0,∞].) The underlying set ∆ of ∆& = (∆,�, κ) of all distance distribution functions
ϕ : [0,∞] // [0, 1], required to satisfy the left-continuity condition ϕ(β) = supα<βϕ(α)
for all β ∈ [0,∞], inherits its order from [0, 1], and its monoid structure is given by the
commutative convolution product

(ϕ� ψ)(γ) = supα+β≤γϕ(α)&ψ(β).

The �-neutral function κ satisfies κ(0) = 0 and κ(α) = 1 for all α > 0. We note
that κ = > in ∆& (so ∆& is integral), while the bottom element in ∆& has constant
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value 0; we write ⊥ = 0. With the quantale homomorphisms σ : [0,∞] //∆& and
τ : [0, 1]& //∆&, defined by σ(α)(γ) = 0 if γ ≤ α, and 1 otherwise, and τ(u)(γ) =
u if γ > 0, and 0 otherwise, every ϕ ∈∆ has a presentation

ϕ =
∨

α∈[0,∞]

σ(α)� τ(ϕ(α)) =
∨

α∈(0,∞)

σ(α)� τ(ϕ(α)),

which then shows that σ, τ serve as the coproduct injections of ∆&. In terms of a point-
set-distance-distribution function δ : X × PX //∆, the relevant conditions describing
the category ∆&-Top ∼= ProbApp& of &-probabilistic approach spaces [17, 18] read as
(R) ∀x ∈ A ⊆ X : δ(x,A) = κ,
(T) ∀x ∈ X, A,B ⊆ X : infy∈Bδ(y,A)� δ(x,B) ≤ δ(x,A),
(A) ∀x ∈ X, A,B ⊆ X : δ(x, ∅) = 0 and δ(x,A ∪B) = max{δ(x,A), δ(x,B)},
(C) ∀x ∈ X, A ⊆ X : δ(x,A) ≤ δ(fx, fA).

In the next section it will be convenient to use the following notation for any map
c : PX //VX , which suggests itself by Seal’s description [28] of V-valued closure spaces: for
all A ⊆ X,x ∈ X and v ∈ V we put

(cA)(x) :=
∨
v∈V

v ⊗ c(cvA)(x),

with cvA := {z ∈ X | v ≤ (cA)(z)}. The map c plays the role of the “composite of c with
itself”; indeed, we can reformulate (T), as follows:

Lemma 2.4. Let c : PX // VX be monotone. Then c ≤ c if c satisfies (R), and c satisfies
(T) if, and only if, c ≤ c. Furthermore, for any map d : PX // VX with d ≤ c one has
d ≤ c.

Proof. With the monotonicity of c one obtains from (R)

(cA)(x) ≤ k⊗ c(ckA)(x) ≤
∨
v∈V

v ⊗ c(cvA)(x) = (cA)(x),

for all A ⊆ X,x ∈ X. If c satisfies (T), for every v ∈ V one considers B := cvA, so that
v ≤ (cA)(y) for all y ∈ B. Then

v ⊗ (cB)(x) ≤ (
∧
y∈B

(cA)(y))⊗ (cB)(x) ≤ (cA)(x),

and (cA)(x) ≤ (cA)(x) follows. Conversely, assuming c ≤ c, for A,B, x as in (T) one
considers v :=

∧
y∈B(cA)(y). Then B ⊆ cvA, and with the monotonicity of c one concludes

v ⊗ (cB)(x) ≤ v ⊗ c(cvA)(x) ≤ (cA)(x) ≤ (cA)(x),

that is: (T). Finally, for d ≤ c one trivially has dvA ⊆ cvA for all v ∈ V and, hence,

(dA)(x) =
∨
v∈V

v ⊗ d(dvA)(x) ≤
∨
v∈V

v ⊗ c(dvA)(x) ≤
∨
v∈V

v ⊗ c(cvA)(x) = (cA)(x).

Recall that an element p in a poset L is coprime when p ≤
∨
F with F ⊆ L finite always

gives some x ∈ F with p ≤ x; that is: when p > ⊥ and, for all u, v ∈ L, one has p ≤ u ∨ v
only if p ≤ u or p ≤ v. The poset L is said to be sup-generated by its coprime elements if
every element is the supremum of a set of coprime elements in L. We will shed light on the
status of this property in the next section. Here we just use it to prove the following lemma
and proposition.
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Lemma 2.5. If V is sup-generated by its coprime elements and c is monotone, then

(cA)(x) =
∨

p∈V coprime

p⊗ c(cpA)(x)

for all A ⊆ X,x ∈ X.

Proof. By hypothesis, every v ∈ V can be written as v =
∨
p≤v coprime p, and with the

monotonicity one obtains

v ⊗ c(cvA)(x) =
∨

p≤v coprime

p⊗ c(cvA)(x) ≤
∨

p∈V coprime

p⊗ c(cpA)(x),

which shows “ ≤ ” of the desired equality; “ ≥ ” holds trivially.

Let us use the following auxiliary notion and call (X, c) a V-valued pretopological space
if the map c : PX // VX satisfies (R) and (A). With Lemma 2.5 one easily sees that these
properties survive the passage from c to c, as follows.

Proposition 2.6. For a V-valued pretopological space (X, c), when V is sup-generated by
its coprime elements, (X, c) is also a V-valued pretopological space.

Proof. (R) follows from Lemma 2.4, and for (A) we first note

(c∅)(x) =
∨
v∈V

v ⊗ c(cv∅)(x) =
∨
v∈V

v ⊗⊥ = ⊥

for all x ∈ X. Furthermore, since for p ∈ V coprime one obviously has cp(A ∪ B) =
(cpA) ∪ (cpB) whenever A,B ⊆ X, we obtain with Lemma 2.5

c(A ∪B)(x) =
∨
p

p⊗ c(cp(A ∪B))(x)

=
∨
p

p⊗ (c(cpA)(x) ∨ c(cpB)(x))

= (
∨
p

p⊗ c(cpA)(x)) ∨ (
∨
p

p⊗ c(cpB)(x))

= (cA)(x) ∨ (cB)(x).

Remark 2.7.

(1) For V = 2, V-valued pretopological spaces are precisely the usual pretopological spaces
(also known as Čech-topological spaces [4]; see also [10]), and for V = [0,∞] they go by
the name pre-approach spaces (see [24]).

(2) In [20], drawing on [28], various alternative, but equivalent descriptions of V-valued
closure spaces and topological spaces are provided. First of all, a V-valued closure space
structure c on X gives a family of maps (cv : PX // PX)v∈V satisfying
(C0) if B ⊆ A, then cvB ⊆ cvA,
(C1) if v ≤

∨
i∈I ui, then

⋂
i∈I c

uiA ⊆ cvA,
(C2) A ⊆ ckA,
(C3) cucvA ⊆ cv⊗uA,
for all A,B ⊆ X and u, v, ui ∈ V (i ∈ I). Conversely, for any family of maps cv :
PX // PX (v ∈ V) satisfying the conditions (C0)–(C3), putting

(cA)(x) :=
∨
{v ∈ V | x ∈ cvA} (A ⊆ X, x ∈ X)
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makes (X, c) a V-valued closure space, and the two processes are inverse to each
other. Under this bijection, when V is completely distributive so that, in particular,
V is generated by its coprime elements (see [12]), V-valued topological structures are
characterized by

cp∅ = ∅ and cp(A ∪B) = cpA ∪ cpB
for all coprime elements p in V and A,B ⊆ X.

(3) Next, V-valued closure spaces are equivalently presented as (P,V)-categories in the sense
of [14], with the powerset monad P on Set laxly extended to the category V-Rel of sets
and V-valued relations by

P̂r(A,B) =
∧
y∈B

∨
x∈A

r(x, y),

for all V-relations r : X 9 Y, A,B ⊆ X. Furthermore, when V is completely distributive,
V-valued topological spaces are equivalently presented as (U,V)-categories, with U
denoting the ultrafilter monad on Set, laxly extended to V-Rel by

Ur(x, y) =
∧

A∈x,B∈y

∨
x∈A,y∈B

r(x, y),

for all r : X 9 Y, x ∈ UX, y ∈ UY : see [20] for details. Of course, these bijective
correspondences pertain also to the relevant morphisms and therefore give isomorphisms
of categories that commute with the underlying Set functors.

3. Some known properties of spatial coframes and continuous lattices

Since in the following section we will heavily rely on the property encountered in Lemma
2.5 and Proposition 2.6, in this section we recall some well-known facts on lattices that are
sup-generated by their coprime elements.

Remark 3.1. The following two statements are immediate consequences of the definition
of coprimality:

(1) For every element p in a poset L, the characteristic map

χp : L // 2 = {0 < 1}
of the up-set ↑p, defined by (χp(x) = 1 ⇐⇒ p ≤ x) for all x ∈ L, preserves all (existing)
infima. The map χp preserves finite suprema if, and only if, p is coprime.

(2) Let X be any subset of the poset L. Then every element in L is a supremum of elements
in X if, and only if, the following condition holds for all x, y ∈ L:

∀p ∈ X (p ≤ x⇒ p ≤ y) =⇒ x ≤ y;

equivalently, x � y only if for some p ∈ X one has p ≤ x, but p � y.

Proposition 3.2. If a complete lattice L is sup-generated by its coprime elements, then it
is a coframe, that is: finite suprema distribute over arbitrary infima in L.

Proof. (See Theorem I-3.15 of [12]; the fact that in [12] the bottom element is considered
coprime has no bearing on the validity of the statement.) By Remark 3.1(1), the map

χ : L //
∏

p∈L coprime

2, x 7→ (χp(x))p,
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preserves arbitrary infima and finite suprema. Furthermore, by Remark 3.1(2), it is an
injective map. Consequently, L is isomorphic to a subcoframe of a power of the coframe 2.

Rewriting the codomain of the map χ as the powerset of X = {p ∈ L | p coprime}, under
the hypothesis of the Proposition we can re-interpret L as the lattice of closed sets of a
topology on X. In the language of (co)locale theory (see [19]), this means precisely that
L is a spatial coframe. Explicitly then, let us re-state (the dual of) Exercise 1.5 in [19], as
follows:

Corollary 3.3. A complete lattice is sup-generated by its coprime elements if, and only if,
it is a spatial coframe.

Proof. For the “if” part, let us just note that a spatial coframe L can be thought of as
the set of closed sets of a topological space X. To see then that every A ∈ L is the join of
coprime elements, so that

A =
⋃
{P ∈ L | P coprime, P ⊆ A},

it suffices to note that for every x ∈ A, the set {x} is coprime in L.

Since complete lattices that are sup-generated by their coprime elements have the
distributivity property of a coframe, it is natural to ask when such lattices may be completely
distributive; more precisely, since so far we were able to avoid any use of the Axiom of Choice,
we would like to know when they are constructively completely distributive (ccd) (see [30]).
Recall that a complete lattice L is ccd if every element a ∈ L is the join of all elements
x� a (“x totally below a”); here x� a means that, whenever a ≤

∨
B for B ⊆ L, then

x ≤ b for some b ∈ B. For ccd complete lattices to be completely distributive (cd) in the
classical sense, one needs the Axiom of Choice (AC); in fact the validity of (AC) is equivalent
to ((ccd)⇔ (cd)) holding for all complete lattices: see [30].

To answer the question raised, recall that L (which, in general, may just be a poset) is
continuous if every element a ∈ L is the directed join of all elements x ≺≺ a (“x way below
a”); here x ≺≺ a means that, whenever a ≤

∨
D with D ⊆ L directed, then x ≤ d for some

d ∈ D. Without reference to (AC) one may still state the following Proposition:

Proposition 3.4. If the complete lattice L is continuous and sup-generated by its coprime
elements, then L is constructively completely distributive.

Proof. Every a ∈ L is the (directed) join of all x ≺≺ a, with each x being the join of all coprime
elements p ≤ x; hence, a =

∨
{p ∈ L | p coprime, ∃x (p ≤ x ≺≺ a)}. It suffices to note now

that each such p is totally below a. Indeed, if a ≤
∨
B, since

∨
B =

∨
{
∨
F |F ⊆ B finite}

is a directed join, one first has x ≤
∨
F for some finite F ⊆ B, and then p ≤ b for some

b ∈ F , by coprimality of p.

It is well known that, with (AC) now granted, the sufficient condition for (ccd) of
Proposition 3.4 is also necessary:

Theorem 3.5. Under the Axiom of Choice, a complete lattice is completely distributive if,
and only if, it is a continuous spatial coframe.

Proof. For the part of the proof not yet covered by Proposition 3.4 and Corollary 3.3, we
refer to Theorem I-3.16 in [12].



A NOTE ON THE TOPOLOGICITY OF QUANTALE-VALUED TOPOLOGICAL SPACES 9

We do not know whether there is a “constructive version” of this theorem, that is:
whether one can prove without invoking AC the converse statement of Proposition 3.4, so
that a complete ccd lattice is a continuous spatial coframe.

4. V-Top as a topological category

From the presentation 2.7(3) we know that the forgetful functor |-| : V-Cls // Set is
topological (see [14]), a fact that may easily be checked also directly, as follows.

Lemma 4.1. For a family (of any size) of maps fi : X // Yi from a set X into V-valued
closure spaces (Yi, di), (i ∈ I), the |-|-initial structure c on X is given by

(cA)(x) =
∧
i∈I

di(fiA)(fix)

for all x ∈ X, A ⊆ X.

Proof. (R) holds trivially, and for (T) we note that, for all x ∈ X and A,B ⊆ X,

(
∧
y∈B

(cA)(y))⊗ (cB)(x) = (
∧
y∈B

∧
i∈I

di(fiA)(fiy))⊗
∧
i∈I

di(fiB)(fix)

≤
∧
i∈I

((
∧
y∈B

di(fiA)(fiy))⊗ di(fiB)(fix))

≤
∧
i∈I

di(fiA)(fix) = (cA)(x).

In order for us to conclude that the full subcategory V-Top of V-Cls is topological over
Set as well, it suffices to show that it is bicoreflective (=coreflective, with all coreflections
being bimorphisms, i.e., both epic and monic) in V-Cls. To this end, for a subset A of
X, let FinCov(A) denote the set of finite covers of A, i.e., of strings (M1, ...,Mm) with
M1 ∪ ... ∪Mm = A; here m = 0 (the empty string ∅) is permitted when A = ∅. With the
usual “finer” relation

(M1, ...,Mm) ≤ (N1, ..., Nn) ⇐⇒ ∀i ∈ {1, ...,m}∃j ∈ {1, ..., n} (Mi ⊆ Nj),

FinCov(A) becomes a down-directed preordered set, i.e., a preordered set in which finite sets

have lower bounds. For a V-valued closure space structure c on X and
−→
M = (M1, ...,Mm) ∈

FinCov(A), x ∈ X, let us write

(c
−→
M)(x) := (cM1)(x) ∨ ... ∨ (cMm)(x)

and define the finitely additive core c+ of c by

(c+A)(x) =
∧

−→
M∈FinCov(A)

(c
−→
M)(x).

Theorem 4.2. Let the quantale V be sup-generated by its coprime elements. Then (X, c) 7→
(X, c+) describes a right adjoint functor of V-Top ↪→ V-Cls which commutes with the
underlying Set-functors and has its counits mapping identically.
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Proof. Trivially, for x ∈ X, A ⊆ X, since (A) ∈ FinCov(A), one has (c+A)(x) ≤ (cA)(x).

Also, for all
−→
M = (M1, ...,Mm) ∈ FinCov(A), x ∈ A implies x ∈Mi for some i and, hence,

k ≤ (cMi)(x) ≤ (c
−→
M)(x), which shows that c+ is reflexive: k ≤ (c+A)(x).

To verify that c+ is finitely additive, first note that, since the empty string covers the

empty set, we have ⊥ = (c
−→
∅ )(x) ≥ (c+∅)(x) for all x ∈ X. Furthermore, for A,B ⊆ X and

(M1, ..,Mm) ∈ FinCov(A), (N1, ..., Nn) ∈ FinCov(B), one has (M1, ...,Mm, N1, ..., Nn) ∈
FinCov(A ∪B). Consequently, since V is a coframe by Proposition 3.2, with the repeated
application of the corresponding distributivity property (but exploited only for down-directed
infima), one obtains

c+(A ∪B)(x) ≤
∧
−→
M

∧
−→
N

((c
−→
M)(x) ∨ (c

−→
N )(x))

=
∧
−→
M

((c
−→
M)(x) ∨ (

∧
−→
N

(c
−→
N )(x)))

=
(∧
−→
M

(c
−→
M)(x)

)
∨ (c+B)(x)

= (c+A)(x) ∨ (c+B)(x).

The reverse inequality holds since c+ obviously inherits the monotonicity from c (even when
V is not integral).

The crucial argument of the proof, namely the verification of (T) for c+, can be given

very compactly, as follows. From c+ ≤ c we conclude d := c+ ≤ c ≤ c with Lemma 2.4.
Since, by Proposition 2.6, d is finitely additive, d ≤ c trivially implies d ≤ c+ (as outlined
more generally just below). This, by Lemma 2.4 again, means that c+ is transitive.

Finally, to verify the adjunction, we must show that, for (Y, d) ∈ V-Top, every continuous
map g : (Y, d) // (X, c) is also continuous as a map (Y, d) // (X, c+). But for C ⊆ Y and
all (M1, ...,Mm) ∈ FinCov(gC) one trivially has (g−1M1 ∩ C, ..., g−1Mm ∩ C) ∈ FinCov(C)
and therefore, by the finite additivity of d, for every y ∈ Y ,

(dC)(y) ≤ d(g−1M1)(y) ∨ ... ∨ d(g−1Mm)(y)

≤ c(gg−1M1)(gy) ∨ ... ∨ c(gg−1Mm)(gy)

= (cM1)(gy) ∨ ... ∨ (cMm)(gy).

Consequently, (dC)(y) ≤ c+(gC)(gy) follows, as desired.

Corollary 4.3. Let the quantale V be a spatial coframe. Then the forgetful functor
V-Top // Set is topological, with initial liftings to be formed by coreflecting the initial
lifting with respect to V-Cls // Set into V-Top. Accordingly, limits in V-Top are formed
by applying the coreflector to the corresponding limits formed in V-Cls.

Remark 4.4. As topological functors, the underlying Set-functors of V-Cls and V-Top
have both, a full and faithful left adjoint and a full and faithful right adjoint, given by the
discrete and indiscrete structures, respectively. But these are available without any extra
provisions on V. The discrete V-valued closure structure on a set X is given by the map

cdisc : PX // VX , (cdiscA)(x) = k if x ∈ A, and ⊥ otherwise,
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which is already finitely additive. The indiscrete V-valued closure space structure cindisc
maps A ⊆ X to the constant function with value >, but has to be corrected in case A = ∅ to
the constant function ⊥ in order to give the indiscrete V-valued topological structure on X.

5. A V-categorical presentation of V-valued closure and topological spaces

Recall that a (small) V-category is given by a set X of objects and a “hom map” homX =
a : X ×X // V satisfying the conditions k ≤ a(x, x) and a(y, z)⊗ a(x, y) ≤ a(x, z) for all
x, y, z ∈ X. A V-functor f : (X, a) // (Y, b) is a map f : X // Y with a(x, y) ≤ b(fx, fy)
for all x, y ∈ X. The resulting category is V-Cat, which is topological over Set. There are
three particular V-categories that will be used in what follows:

(1) V itself becomes a V-category with its hom-map [−,−], characterized by

u ≤ [v, w] ⇐⇒ u⊗ v ≤ w
for all u, v, w ∈ V, so that every [v,−] is right adjoint to (−)⊗ v : V // V (as monotone
maps).

(2) For every set X, VX is the X-th power of V in V-Cat when provided with the V-category
structure

[σ, τ ] =
∧
x∈X

[σx, τx] (σ, τ ∈ VX).

We note that, of course, X 7→ VX gives a functor Setop // V-Cat when one assigns to
a map f : X // Y the V-functor

f ! : VY // VX , σ 7→ σf.

(3) For every set X, the power set PX becomes a V-category when provided with the initial
structure induced by the map cdisc : PX // VX of Remark 4.4 (with respect to the
underlying Set-functor of V-Cat), so that

homPX(A,B) = [cdiscA, cdiscB] (A,B ⊆ X).

Proposition 5.1. The following conditions are equivalent for a map c : PX // VX :

(i) c is V-closure space structure on X;
(ii) cdiscA ≤ cA and [cdiscB, cA] ≤ [cB, cA], for all A,B ⊆ X;
(iii) [cdiscB, cA] = [cB, cA], for all A,B ⊆ X.

Proof.

(i)⇔(ii): By definition of cdiscA, (R) is equivalent to (cdiscA)(x) ≤ (cA)(x) for all x ∈ X.
(T) may be written equivalently as∧

y∈B
(cA)(y) ≤

∧
x∈X

[(cB)(x), (cA)(x)].

Since [⊥, w] = > and [k, w] = w for all w ∈ V, the left-hand side of this inequality equals∧
x∈X [(cdiscB)(x), (cA)(x)], so that (T) then becomes equivalent to the second inequality

of (ii).
(ii)⇒(iii): cdiscB ≤ cB gives [cdiscB, cA] ≥ [cB, cA], since [−, w] reverses the order for all

w ∈ V.
(iii)⇒(ii): Since (k ≤ [v, w] ⇐⇒ v ≤ w) for all v, w ∈ V, from [cdiscA, cA] = [cA, cA] ≥ k

one obtains cdiscA ≤ cA.
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Corollary 5.2. Every V-valued closure space structure c on a set X gives a V-functor
c : PX // VX .

Proof. Since [v,−] is monotone for all v ∈ V, Proposition 5.1 gives [cdiscB, cdiscA] ≤
[cdiscB, cA] ≤ [cB, cA], for all A,B ⊆ X.

For every V-category X = (X, a), one has the Yoneda V-functor

yX : X // VX , x 7→ homX(−, x) = a(−, x).

We can now state:

Corollary 5.3. For a set X, a map c : PX // VX is a V-valued closure space structure on
X if, and only if,

(PX
c // VX

y
VX // VVX c!disc // VPX) = (PX

c // VX
y
VX // VVX c! // VPX)

in V-Cat or, equivalently, in Set. The map c makes X a V-valued topological space if, and
only if, it preserves finite suprema.

Proof. The equality of the two composite maps simply rephrases condition (iii) of Proposition
5.1.

Remark 5.4. Since, by the Yoneda Lemma, or by an easy direct inspection, [cdisc{x}, σ] =
σ(x) for all σ ∈ VX , x ∈ X, so that ({−} · cdisc)! · yVX = idVX , the map c may be recovered
from the composite map of Corollary 5.3, as

c = (PX
c // VX

y
VX // VVX c!disc // VPX {−}! // VX),

with {−} : X // PX.

In conclusion of this section, we see that the syntax needed to define V-valued closure
spaces and V-valued topological spaces can be seen as living in V-Cat, and that the axioms
defining them are equational. Hence, when we consider these objects together with closure
preserving maps as their morphisms (so that the inequality of the continuity condition
(C) becomes an equality), we obtain categories that are equationally defined within the
V-Cat environment. In particular, topological spaces, with closed continuous maps as their
morphisms, form a category that is equationally defined within the realm of Ord, the
category of preordered sets and monotone maps.
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[1] J. Adámek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Wiley,
New York, 1990. Republished as: Reprints in Theory and Applications of Categories, 17, 2006.

[2] M. Barr. Relational algebras. In: Lecture Notes in Mathematics 170, pp. 39–55. Springer, Berlin-
Heidelberg-New York, 1970.

[3] P. Brock and D.C. Kent. Approach spaces, limit tower spaces, and probabilistic convergence spaces.
Applied Categorical Structures, 5:99-110, 1997.
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Kluwer, Dordrecht, 1999.
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