Logical Methods in Computer Science
Vol. 13(3:15)2017, pp. 1-51 Submitted Jan. 24, 2017
https://Imcs.episciences.org/ Published Aug. 25, 2017

RETRACTABILITY, GAMES AND ORCHESTRATORS
FOR SESSION CONTRACTS

FRANCO BARBANERA AND UGO DE’ LIGUORO

Dipartimento di Matematica e Informatica, University of Catania
e-mail address: barba@dmi.unict.it

Dipartimento di Informatica, University of Torino
e-mail address: ugo.deliguoro@unito.it

ABSTRACT. Session contracts is a formalism enabling to investigate client /server interaction
protocols and to interpret session types. We extend session contracts in order to represent
outputs whose actual sending in an interaction depends on a third party or on a mutual
agreement between the partners. Such contracts are hence adaptable, or as we say
“affectible”. In client/server systems, in general, compliance stands for the satisfaction of all
client’s requests by the server. We define an abstract notion of “affectible compliance” and
show it to have a precise three-party game-theoretic interpretation. This in turn is shown to
be equivalent to a compliance based on interactions that can undergo a sequence of failures
and rollbacks, as well as to a compliance based on interactions which can be mediated by
an orchestrator. Besides, there is a one-to-one effective correspondence between winning
strategies and orchestrators. The relation of subcontract for affectible contracts is also
investigated.

The notion of contract [11, 14, 12] has been proposed as an abstraction to formally
specify and check the behaviour of software systems, and especially of web services. In
particular, in the setting of service-oriented architectures, the concept of agreement, often
called compliance, is of paramount importance while searching for components and ensuring
that they will properly interact with each other. The main challenge is that compliance has
to meet the contrasting requirements of guaranteeing correctness of interactions w.r.t. certain
safety and liveness conditions, while remaining coarse enough to maximize the possibilities
of finding compliant components in a library or services through the web.

The main conceptual tool to face the issue is that of relaxing the constraint of a perfect
correspondence among contracts through contract refinement, also called sub-contract [12, 10]
and sub-behaviour [2] relations, that is pre-order relations such that processes conforming
to more demanding contracts (which are lower in the pre-order) can be safely substituted

Key words and phrases: contract, session contract, retractability, orchestrator, concurrent game, strategy.

The present paper is a reorganised, revised and extended version of the COORDINATION 2016 conference
paper “A game interpretation of retractable contracts” [3] by the same authors.

This work was partially supported by the European Union ICT COST Action IC1405 Reversible computa-
tion - extending horizons of computing, the Project FIR 1B8C1 of the University of Catania and Project
FORMS 2015 of the University of Turin.

|IE"E1| LOGICAL METHODS © Barbanera and de’ Liguoro
IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(3:15)2017 @ Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 BARBANERA AND DE’ LIGUORO

in contexts allowing more permissive ones. Indeed contract refinement closely resembles
subtyping, as it is apparent in the case of session types [13, 2], and it is related to (but
doesn’t coincide with) observational pre-orders and must-testing in process algebra [14, §].

However, since the first contributions to the theory of contracts [12], a rather different
approach has been followed, based on the idea of filtering out certain actions that, althought
unmatched on both sides of a binary interaction, can be neglected or prevented by the
action of a mediating process called the orchestrator [16, 15, 5, 6], without compromising
the reaching of the goals of the participants, like the satisfaction of all client requests in a
client-server architecture.

Another route for the same purpose is to change the semantics of contracts so that
interacting processes can adapt to each other by means of a rollback mechanism: these are
the retractable contracts proposed in [4]. Although compliance can be decided in advance,
interaction among processes exposing retractable contracts undergoes a sequence of failures
and backtracks that might be avoided by extracting information from the compliance check.

The contribution of the present paper is to show that the use of orchestrators and
retractability are indeed two equivalent approaches to get compliance by adapting, affecting,
the behaviour of the partners of a client/server interaction, at least in the case of binary
session contracts [2, 9]. These are contracts that limit the non-determinism by constraining
both external and internal choices to a more regular form, so that they can be looked at
as an interpretation of session types into the formalism of contracts [2, 9]. In particular,
session contracts can be seen as binary session types without value or channel passing.

The contracts we consider in this paper are session contracts with external choices of
outputs that we abstractly look at, in a sense, as the affectible, adaptable parts of a contract.
These contracts are syntactically the same as the retractable session contracts [4], but
instead of adding rollback to the usual contract semantics, we formalise inside an abstract
notion of compliance the fact that the actual sending of affectible, adaptable outputs can be
influenced by an agreement between the interaction partners or by some entity external to
the system, in order to make the partners compliant. In particular, affectible compliance, i.e.
compliance got by means of a (run-time) adaptation of the contracts’ behaviours, will be
first abstractedly presented as a coinductively defined relation. This relation will be proved
later on to be decidable and to coincide both with the retractable compliance relation of [4]
involving failures and rollbacks and with the orchestrated compliance, where the (affectible)
synchronizations are influenced by elements of a particular class of orchestrators in the sense
of [16] and [6].

The essence of this equivalence is that the above mentioned orchestrators correspond to
winning strategies in certain concurrent games that naturally model affectible contracts. In
[7] the theory of contracts has been grounded on games over event structures among multiple
players; applying this framework to affectible contracts, the interaction among a client and
a server can be seen as a play in a three-party game. Player A moves according to the
normal actions of the client; player B moves according to the normal actions of the server,
whereas moves by player C correspond to affectible actions on both sides. The server o is
hence affectible compliant with the client p whenever C has a winning strategy in the game
with players A and B, where player C wins when she/he succeeds to lead the system p||lo to
a successful state (the client terminates) or the interaction proceeds indefinitely without
deadlocking.

The payoff of the game theoretic interpretation is that there is a precise correspondence
between winning strategies for player C and elements of a class of orchestrators in the sense

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 3

of [16] and [6]. Such a correspondence is of interest on its own, since strategies are abstract
entities while orchestrators are terms of a process algebra and concrete witnesses of the
agreement among participants of a session. Moreover, we can decide whether a client/server
pair is affectible compliant by means of an algorithm that synthesizes an orchestrator, if any,
or reports failure.

We also show that there is a one-to-one correspondence between orchestrators and derivations
in the formal system axiomatizing the relation of affectible compliance.

The substitutability relation (affectible subcontract) on servers, induced by the relation
of affectible compliance, can be defined as for the usual subcontract relations. Its decidability,
however has to be proved in a direct way: the introduction of adaptability implies that
decidability of the subcontract relation cannot be simply inferred from decidability of
compliance. It descends instead from correctness and termination of the proof recontruction
algorithm for the formal system for the affectible subcontract relation. Moreover, we shall
show how a derivation in such a formal system does correspond in an effective way to a
functor on orchestrators. In particular, if o is proved to be a subcontract of ¢/, the functor
transforms any orchestrator making ¢ compliant with a client p into an orchestrator making
o’ compliant with p.

The present paper is a reorganised, revised and extended version of [3], where most
of the proofs had been omitted and where the correspondence between derivations for the
compliance relation and orchestrators was not present. Besides, the relation of subcontract
was not investigated in [3], as well as the correspondence between derivations for the
subcontract relation and orchestrator functors.

Overview of the paper. In Section 1 we define affectible session contracts and the abstract
notion of compliance on them. In Section 2 we recall the notion of multi-player game from
[7] based on event structures. We then show how it is possible to interpret a client/server
system p||o with a three-players game G, by means of a turn-based operational semantics.
Sections 3 will be devoted to the formalization of the notion of interactions with rollbacks
and the related notion of retractable compliance. Orchestrators and orchestrated interactions
for affectible contracts will be defined in Section 4, together with the notion of orchestrated
compliance. In 5 an axiomatization for affectible compliance will be provided and we
shall show how all the above mentioned notions are related with each other: the Main
Theorem I will essentially state that the abstract notion of affectible compliance and its
game-theoretic interpretation are but an abstract representation of both retractable and
orchestrated compliance. The Main Theorem II will show instead how it is effectively
possible to get derivations, winning strategies and orchestrators out of each other. The
definition of the subcontract relation, its axiomatization and decidability, together with the
correspondence between subcontract derivations and orchestrators functors will be the topic
of Section 6. A Conclusion and Future Work section (Section 7) will be the last one before
some appendices. We shall use a simple working example through the various sections in
order to clarify the notions we introduce. Many proofs and accessory formalisms will be
detailed in the appendices at the end of the paper.

4 BARBANERA AND DE’ LIGUORO

1. AFFECTIBLE SESSION CONTRACTS

Affectible session contracts (affectible contracts for short) stem from session contracts [2, 8]*.
With respect to session contracts, affectible contracts add the affectible output construct,
which is called retractable output in [4]. The affectible output operator aims at representing
points where the client/server interaction can be influenced by a third party or by an
agreement between the two partners; consequently it is natural to use the CCS external
choice operator as it is the case of the input branching (which is always affectible). Outputs
in an internal choice are regarded as unaffectible actions and treated as unretractable in the
setting of [4].

Definition 1.1 (Affectible session contracts). Let N (names) be some countable set of
symbols and let N = {@ |a € N'} (co-names), with N NN = .

The set AC of affectible session contracts is defined as the set of the closed (with
respect to the binder rec) expressions generated by the following grammar,

op = |1

(

| Xieri-oi (
| > icr Gi-oi (affectible output)

(

(

(

success)

input)

| Dicrai-oi

| =

unaffectible output)
variable)

| recz.o recursion)

where

e [is non-empty and finite;

e names and co-names in choices are pairwise distinct;
e o is not a variable in reczx.o.

The set Act = N UN is the set of actions, ranged over by the metavariables a, o, o,

ag, etc. On Act the usual involution (7) is defined, that is such that @ = a.

Notation 1. As usual, when I = {1,..,n }, we shall indifferently use the notations a;.01 +
oo+ an.0n and Yicra;.04, as well as ay.01 @ - - @ @p.0, and P @;.0;.

We also shall write ay.0p + o’ to denote X;cra;.0; where k € I and o/ = Eie(l\{k})ai.ai.
Similarly for the internal choice.

We assume [never to be a singleton in Y;cra;.0;. This means that a term like ax.c has to
be unambiguously read as Gaie{k}ai'a and not as X;c(1}a;.0

Recursion is guarded and hence contractive in the usual sense. Unless stated otherwise,
we take the equi-recursive view of recursion, by equating recx.oc with o{z/recz.c}. The
trailing 1 is normally omitted: for example, we shall write a + b for a.1 + b.1. Affectible
contracts will be considered modulo commutativity of internal and external choices.

The notion of compliance for (client-server) pairs of contracts is usually defined by
means of an LTS. A client-server system (a system for short) is a pair p || o of contracts,
where p plays the role of client and o of server; let the relation p|oc — p'|| o’ represent
a communication step resulting into the new system p’,0’; nowp and o are compliant if
pllo = o ||¢’ 4 implies p = 1. Then one studies the properties of the compliance relation,
possibly with reference to the contract syntax alone (see e.g. [2]). With affectible contracts,

IThe name used in [2] was actually session behaviours.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 5

however, the semantics of || is more complex as it involves a form of backtracking. For
the present exposition we prefer to move from an abstract coinductive definition for the
affectible compliance relation. Later on we shall prove that defining compliance out of
the retractable operational semantics (Section 3) is equivalent to defining it out of the
orchestrated operational semantics (Section 4) and that both approaches are equivalent to
the abstract affectible compliance below.

Definition 1.2. The Affectible Compliance relation AC C ASC x AC is coinductively defined
as follows. Let p,o € ASC. Then p AC ¢ if one of the following conditions holds:

(1) p=1

(2) p=2icr @i-pis 0 =) c;0;.05 and Ik € I N J. pp ACoy;

(3) p=Dicr@i-pi, 0 = ZjeJaj.aj, I C Jand Vk € I. pp ACoy;

(4) p= Zie] a;.p;, 0 = @jeJﬁj.Uj, 12 Jand Vk € J. pi, AC y.

Let us informally describe the sense of the previous definition. Consider a system p|| o of
affectible contracts. An unaffectible communication between p and ¢ is a synchonization
involving unaffectible outputs and inputs. In such a synchronization, any of the unaffectible
outputs exhibited by one of the two contracts can be expected, since it depends on an
internal decision of the process whose behaviour is abstractedly represented by the contract.

An affectible communication, instead, is a synchronization involving affectible outputs

and inputs. Affectable outputs are intended not to depend on internal decisions, but to
be influenced from the outside in order to enable the system not to get to any stuck state.
In client/server interactions there is a bias towards the client. So a stuck state can be
interpreted by any pair p || o where p # 1 but no communication is possible.
So, in a system p || o, the server o is affectible-compliant with the client p if either p = 1,
namely the client has successfully terminated; or all unaffectible communications of the
system p || o lead to compliant systems; or there exists an affectible communication leading
to a compliant system.

In the above informal description, the worlds “ influenced from the outside” are rather
abstract; they can be made concrete either via the characterization in terms of retractable
computations, as done in Section 3, or in terms of orchestrated interactions as done in
Section 4.

4

Example 1.3. Let us consider the following example from [4]. A Buyer is looking for a bag
(bag) or a belt (belt); she will decide how to pay, either by credit card (card) or by cash
(cash), after knowing the price from the Seller:

Buyer = bag.price.(card @ cash) + belt.price.(card @ cash)

The Seller does not accept credit card payments for items of low price, like belts, but only for
more expensive ones, like bags:

Seller = belt.price.cash + bag.price.(card + cash)
From the previous definition it is not difficult to check that Buyer AC Seller.
Remark 1.4. Notice that, unlike for session contracts, we have no notion of syntactical

duality for affectible contracts, since it would not be definable in a natural way (i.e. in such
a way duality be involutive and a contract be always compliant with its dual). In fact for

affectible contracts we should define @ + b either as a + b or as @ ® b. In both cases, however,
we would lose the involutive property of the duality operator. In the first case we would

6 BARBANERA AND DE’ LIGUORO

get a+b=a+b=adb (since the duality operator should reasonably be a conservative
extension over session contracts, and hence a + b =a @ b). A similar problem would arise by

defininga +b=a @ b.

2. GAME-THEORETIC INTERPRETATION OF AFFECTIBLE CONTRACTS

Following [7] we interpret client-server systems of affectible contracts as games over event
structures. This yields a game-theoretic interpretation of affectible compliance that will be
of use to relate this last notion to both retractable and orchestrated compliance.

For the reader’s convenience we briefly recall the basic notions of event structure and
game associated to an LTS.

Definition 2.1 (Event structure [17]). Let E be a denumerable universe of events, ranged
over by e, €/, ..., and let A be a universe of action labels, ranged over by «, o/, 3,. ... Besides,
let £ C E and let # C E x E be an irreflexive and symmetric relation (called conflict
relation).
(1) The predicate CF on sets X C E and the set Con of finite conflict-free sets are defined by
CF(X) =Ve,e € X.—(efte) Con={X Cs, E| CF(X)}

(2) An event structure is a quadruple & = (E, #,, () where

e - C Con x FE is a relation such that sat(F) = F (i.e. - is saturated), where sat(F) =

{Ye)| XFe & XCY € Con};
e [: F — A is a labelling function.

Given a set F of events, E°° denotes the set of sequences (both finite and infinite) of its
elements. We denote by e = (egey - - -) (or simply egey - - -) a sequence of events?. Given e,
we denote by € the set of its elements, by |e]| its length (either a natural number or co) and
by e/;, for i < |e|, the subsequence (egey - --e;—1) of its first 7 elements. Given a set X we
denote by | X| its cardinality. N is the set of natural numbers. The symbol ‘—’ will be used,
as usual, to denote partial mappings.

Definition 2.2 (LTS over configurations [7]). Given an event structure & = (E, #,,1), we
define the LTS (Pin(E), E, —¢) (where Pi, (E) is the set of states, E the set of labels and
the labelled transition —¢) as follows:

C SeCu{e} if Cle egCand CF(CU{e})
We shall omit the subscript in —¢ when clear from the context. For sake of brevity we shall
often denote an LTS (S, L, —) by simply (S,—) or — .

Given an LTS (S5, —) and a state s € S, we denote by Tr(s, —) the set of the (finite or
infinite) traces in (S, —) starting in s, that is Tr(s, —) = { sos1--- | so = s,8;i = Siy1 }-

2Differently than in [7], we use the notation e for sequences instead of o, which refers to a contract here.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 7

2.1. Multi-player games. All the subsequent definitions and terminology are from [7],
except in the case of games that we call “multi-player” instead of “contracts”, which would
be confusing in the present setting.

A set of participants (players) to a game will be denoted by 8, whereas the universe
of participants is denoted by PBs. We shall use A, B,...as variables ranging over 3 or By,.
The symbols A, B, ...will denote particular elements of 3 or Ps;. We assume that each
event is associated to a player by means of a function 7 : E — B¢ Moreover, given A € Py
we define E4 ={ec E|m(e) = A}.

Definition 2.3 (Multi-player game).

(1) A game G is a pair (£,P) where &€ = (FE,#,H,l) is an event structure and
O Py — E* — {—1,0,1} associates each participant and trace with a payoff.
Moreover, for all X ein &, (7 (e)) is defined. We say that G is a game with participants
B whenever ® A is defined for each player A in 3.

(2) A play of a game G = (€, ®) is a (finite or infinite) trace of (), —¢) i.e. an element of
Tr(@, —)5).

Definition 2.4 (Strategy and conformance).

(1) A strategy X for a participant A in a game G is a function which maps each finite play
e=(eg - - ep) to a (possibly empty) subset of E4 such that: e€¥(e) = ee is a play of G.

(2) A play e = (epe1---) conforms to a strategy ¥ for a participant A in G if, for all
0<i<lel,e; € Ea = e €X(ey).

In general there are neither a turn rule nor alternation of players, similarly to concurrent
games in [1]. A strategy X provides “suggestions” to some player on how to legally move
continuing finite plays (also called “positions” in game-theoretic literature). But ¥ may be
ambiguous at some places, since ¥(e) may contain more than an event; in fact it can be
viewed as a partial mapping which is undefined when X(e) = ().

We refer to [7] for the general definition of winning strategy for multi-player games
(briefly recalled also in Remark 2.15 below), since it involves the conditions of fairness and
innocence, which will be trivially satisfied in our interpretation of affectible client-server
systems, where the notion of winning strategy corresponds to the one that will be given in
Definition 2.12.

We define now the notion of univocal strategy. When showing the equivalence between
the various notions of compliance and the existence of winning strategies, we shall restrict
to univocal strategies for the sake of simplicity.

Definition 2.5 (Univocal strategies). ¥ is univocal if Ve. |E(e)| < 1.

2.2. Turn-based operational semantics and compliance. Toward the game theoretic
interpretation of a client-server system p| o, we introduce an operational semantics of
affectible contracts, making explicit the idea of a three-player game. We interpret the
internal choices and the input actions of the client as moves of a player A and the internal
choices and the input actions of the server as moves of a player B. The synchronisations due
to affectible choices are instead interpreted as moves of the third player C.

From a technical point of view this is a slight generalization and adaptation to our
scenario of the turn-based semantics of “session types” in [7], §5.2. The changes are needed
both because we have three players instead of two, and because session types are just session
contracts, that is affectible contracts without affectible outputs.

8 BARBANERA AND DE’ LIGUORO

Cict@ipi |6 =% [alpell & Sicraipi |l @l 2% prllo
pl @icraioi =% 5l [alox @lp | Sicraios 2% pllo
ap+pllac+o =% plo ap+pllac+o =% oo
aptpllac =% plo apllac+o =% plo

. o/ ~
1lp — 0fp

where (k € I)

Figure 1: Turn-based operational semantics of turn-based configurations

Definition 2.6 (Single-buffered ASC). The set Ascll of single-buffered affectible contracts is
defined by
ACll = Ascu{0lu{[ao|aeN,o e AL}

We use the symbols g,5, 7,5 ... to denote elements of ASCIl. A turn-based configuration (a
configuration for short) is a pair j || &, where g, 5 € ACL.

As in [7], we have added the “single buffered” contracts [a]o to represent the situation in
which @ is the only output offered after an internal choice. Since the actual synchronization
takes place in a subsequent step, @ is “buffered” in front of the continuation o. Such a
technical device is adopted for two separate motivations. First, since we wish our game
interpretation of configurations to extend the one provided in [7]. Second, since by means of
that we shall manage to get easier proofs. In fact, using the following turn-based operational
semantics any move of player A, unless getting to a stuck state, is necessarily followed by a
move of B; and any move of player B is necessarily preceded by a move of A.

Definition 2.7 (Turn-based operational semantics of configurations). Let tbAct = {A,B, C}x
(Act U{ Vv }), where A, B, C are particular elements of By,.
In Figure 1 we define the LTS —» over turn-based configurations, with labels in tbAct.

An element A:a (resp. A:a) of tbAct represents an output (resp. input) action performed
by player A. Similarly for B. An element C:a represents one of the possible way the player C
can affect the interaction between affectible-outputs and inputs. An element C:v/ represents
instead a “winning” move. We use the symbols 3, ', ... to denote elements of tbAct.
Comparing —» with the usual LTS for session contracts [2, 9], we observe that
[@]o is a duplicate of @.o, with the only difference that now there is a redundant step in

@icrai.pi || & Aty [ak]pk || & when I is the singleton {k}. Also, besides the reductions
concerning the affectible choices, we have the new reduction 1 || p C—'/» 0 || p to signal when
player C wins.

Let B={(f1 - Bn) €tbAct*. We shall use the notation By Prygiiio By

The relation of turn-based compliance on single-buffered affectible contracts (and hence
on affectible contracts) is defined coinductively using the operational semantics formalised
by the LTS —» , as follows.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 9

Definition 2.8 (Turn-Based Compliance Relation).

(1) Let H : P(ACHxASC—P(ASCUASCH!) be such that, for any ® C ASCUIXASCH | we have
(p,5) € H(R) if the following conditions hold:
(a) pllo —» implies p = 0;
(b) V75" [pll6 > 7|5 implies ' &6,
where 8 € {A:a,A:a,B:a,B:a | a € N'};
(¢) Ja e N.j|6 =% implies 37,6 a. [p||6 <% |5 and i & &];
(2) A relation ® C ASCHl x ASCU is a turn-based compliance relation if & C H(R).
- is the greatest solution of the equation X = H(X), that is 4y = vH.
(3) For p,o € ASC, we say that o is turn-based compliant with p if p 4y o.

We can now show that turn-based compliance restricted to contracts in ASC and affectible
compliance do coincide.

Proposition 2.9 (AC and , equivalence.). Let p,o € AC.
pwo & pACo.
Proof. See Appendix A]

It will be relatively easy to get a game interpretation of the relation —y. So the
proposition 2.9 will be used to get a game interpretation for the relation AC.

2.3. Three-player game interpretation for ASC client/server systems. Using the
turn-based semantics, we associate to any client/server system an event structure, and then
a three-player game®, extending the treatment of session types with two-player games in
[7]. For our purposes we just consider the LTS of a given client/server system instead of an
arbitrary one.

Definition 2.10 (ES of affectible-contracts systems). Let p|| o be a client/server system of
affectible contracts. We define the event structure [p || o] = (E, #,F, 1), where
e E={(n,B)|neN,jctbAct}
o #={((n,p1),(n,B2)) | n €N, B, B2 € tbAct, 81 # 2 }
o = sat(l—p”g)
snd(X) ., ~, B

where b= { (X, (m,8)) | plo 25 7 |5 2> andn = |x|+1)
° l(n,B)=1p
where the partial function snd(-) maps any X = {(4,5;) }i=1.n to (B1---Bn), and it is
undefined over sets not of the shape of X.

Events in [[p| o] are actions in tbAct paired with time stamps. Two events are in
conflict if different actions should be performed at the same time, so that configurations
must be linearly ordered w.r.t. time. The relation X b, (n,8) holds if X is a trace in the
LTS of p || o of length n — 1; therefore the enabling Y F (n, 8) holds if and only if Y includes
a trace of length n — 1 that can be prolonged by 3, possibly including (n, 8) itself and any
other action that might occur after 8 in the LTS.

3 Such interpretation is called semantic-based in [7] and it applies quite naturally to our context. Instead
the syntaz-based approach (which is equivalent to the semantic-based one in a two-players setting; see [7]
§5.3.2) cannot be straightforwardly extended to a three-player game.

10 BARBANERA AND DE’ LIGUORO

Example 2.11. By the above definition, Fgyyer|selier in [Buyer || Seller] corresponds to

{ 0 '_BuyerHSeIIer (la (C:belt))v 0 FBuyerHSelIer (1> (C:bag)),
{(17 (C:belt))} I_Buyer||SeIIer (27 (B:price)), {(17 (C:bag))} I_Buyer||SeIIer (27 (B:price)),
{(1,(C:belt)), (2, (Seller:price))} Fpuyer|selier (3, (A:price)),...
X I_Buyer||SeIIer (6’ (C7 ‘/)) }

where X; = {(1, (C:bag)), (2, (B:price)), (3, (A:price)), (4, (A:cash)), (5, (B:cash)) }. The
Fy|lo of this simple example is finite. It is not so in general for systems with recursive
contracts.

The following definition is a specialisation of Definitions 4.6 and 4.7 in [7].
We use MaxTr(s,—) and FinMaxTr(s,—) to denote the set of maximal traces and finite
maximal traces, respectively, of Tr(s, —).

Definition 2.12 (Game G,|;). Given p,o € ASC, we define the game G, as ([p| o], ®),
where: w(n,3) = A if § = A:a, PA is defined only if A € {A,B,C} and

1 if P(4,e)
PAe = { —1 otherwise

where P(A, e) holds whenever
eETI’(Q), —quU]I) & [66 FinMaxTr(@, _>|[p||a]]) = 36’,7‘&. e = e'(n,(A:/))].

In words P (4, e) holds if whenever e is a maximal trace in the LTS Tr(, =, ,1) which is
finite, then it ends by the event (n,(A:v'), where n is just a time stamp, A:v/ is the successful
action performed by the participant A. Note that if e is not a trace of the LTS or it is not
maximal, then P(A, e) trivially holds.

A player A wins in the sequence of events e if PAe > 0. A strategy X for player A is
winning if A wins in all plays conforming to X.

Note that, if an element e of Tr({), —[,)) is infinite, P(A, e) holds for any A since the
implication is vacuously satisfied. If e is finite, instead, P (A, e) holds only in case the last
element of the sequence e is of the form (n,(A:v)).

Example 2.13. For the game Gg,yer || seller, it is possible to check that, for instance,
(I)C.Sl = 1, CI)AS;[= —1, CI)BSZ = —1, (I)C83 =—1
where

s1=(1, (C:bag))(2, (B:price))(3, (A:price))(4, (A:cash))(5, (B:cash))(6, (C,v)),

s2 = (4, (A:bag))(1, (C:price)) L
s3 = (1,(C:bag))(2, (B:price))(3, (A:price))(4, (A:cash))(5, (B:cash))

Let us define a particular strategy 3 for C in OBuyer || Seller as follows:
_ {(1,(C:bag)) } if s = ()
Y(s)=¢ {(6,(C,v))} ifs=ss3 (2.1)
0 for any other play
The strategy s for C in GBuyer | Seller 18 Winning (actually it is the only winning strategy for

the game of this example). Moreover, ¥ is univocal (in our simple example there are not
non univocal strategies for player C).

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 11

In a game G|, it is not restrictive to look, for player C, at univocal strategies only, as
established in the next lemma.
We say that ¥ refines ¥/, written ¥ < 3/, if and only if X(e) C ¥/(e) for all e.

Lemma 2.14. If C has a winning strateqy X, then C has a univocal winning strateqy Y’
such that ¥/ < X.

Proof. Let ¥(e) ={ey,...,ey }. Since events are a countable set we may suppose w.l.o.g.
that there is a total and well founded ordering over E, so that if {ej,...,e, } # 0 there
exists an ¢/ = min{ ey,..., e, }; let us define ¥'(e) = €.

By definition ¥’ is a univocal refinement of ¥ such that any play which conforms Y’
conforms ¥ as well. Now if ¥ is winning then the payoff ®Ce = 1 for any play e conforming

Y and hence a fortiori for any play conforming ¥’; hence ¥/ is winning for C.]
Remark 2.15. According to [7], A wins in a play if WAe > 0, where WAe = ®Ae if all
players are “innocent” in e, while WAe = —1 if A is “culpable”. Moreover, if A is innocent

and someone else culpable, WAe = +1. A strategy X of A is winning if A wins in all fair
plays conforming to ¥. A play e is “fair” for a strategy X of a player A if any event in F4
which is infinitely often enabled is eventually performed. Symmetrically A is “innocent” in
e if she eventually plays all persistently enabled moves of her in e, namely if she is fair to
the other players, since the lack of a move by A might obstacle the moves by others; she
is “culpable” otherwise. As said above, Definition 2.12 is a particularisation of the general
definitions in [7]. In fact in a game G|, no move of any player can occur more than once
in a play e because of time stamps. Therefore no move can be “persistently enabled”, nor
it can be prevented, since it can be enabled with a given time stamp only if there exists a
legal transition in the LTS with the same label. Hence any player is innocent in a play e of
G|l and all plays are fair. Therefore W coincides with ®.

The last lemma is useful in proofs, and it is essentially a definition unfolding.

Lemma 2.16. In a play e of a three-player game G, player A wins if and only if
either e is infinite or A = C and ey, = (epe1 - - (k,C:v)) for some k.

Proof. By Definition 2.12 ®Ae > 0 if either e is infinite or it contains a move (k, (A : V))
which has to be a move by A. But the only player that can play such a move is C (see
Fig. 1). [

Notice that, by Remark 2.15, in our setting this lemma holds also in case we take into
account the definition of winning in a play provided in [7], where Wis used.

3. RETRACTABLE OPERATIONAL SEMANTICS AND RETRACTABLE COMPLIANCE.

We provide now an operational semantics for client-server systems of affectible contracts,
based on a rollback operation, as proposed in [4]. The rollback operation acts on the
recording of the branches discarded during the retractable syncronizations. The retractable
syncronizations are those involving affectible outputs. The actual sending of such outputs
can hence be looked at as depending on an agreement between client and server. The
computation can roll back to such agreement points when the client/server interaction gets
stuck. When this happens, the interaction branch that had been followed up to this moment
is discarded and another, possibly successful branch of interaction is pursued.

12 BARBANERA AND DE’ LIGUORO

We begin by defining the notion of contracts with history as follows:

Definition 3.1 (Contracts with history). Let Histories be the set of expressions (referred to
also as stacks) generated by the grammar:

~ =[] |~:0 where o € ACU {o}.
Then the set of contracts with history is defined by:
RCH = {y< o | v € Histories,oc € ASCU {0} }.

Histories are finite lists of contracts representing the branches that have not been
followed in the previous agreement points. The effect of rolling back to the last agreement
point is modeled by restoring the last contract of the history as the current contract and by
trying a different branch, if any. In case a contract in a history was a sum whose branches
have all been tried, the empty sum of remaining alternatives is represented by o (see the
next definition of transition). We use the notation v=< o for the contract o with history ~.

This is formalised by the operational semantics of contracts with histories that is defined
as follows.

Definition 3.2 (LTS of Contracts with History).

(+) A<ao+d S vi0'<o (®) <G00 5 y=<a.0
(@) y<a.o -2 ~:0<0 (rb) 7;0/_<0i> ¥=<o'

Rule (+4) formalises the selection of a branch of an external choice. The effect of the

selection is that the unselected branches are memorised on top of the stack as last contract
of the history. Notice that the memorization on the stack occurs also in case of an external
input choice, like for instance in y<a.o1 + b.o9 LN ~:b.co<o1. This because a possible
partner could be an external output choice and the resulting syncronization would hence
be a retractable one. However, in case the partner were an internal choice and hence in
case the resulting syncronization were unretractable, the memorized contract should not be
taken into account by any future rollback. The operational semantics manages to take care
of such a possibility by means of the use of the symbol ‘o’ (see Example 3.4 below).
Rule () formalises the fact that when an internal choice occurs, the stack remains unchanged.
Rule () concerns instead the execution of a single action: the history is modified by pushing
a ‘o’ on the stack, meaning that the only available branch has been tried and no alternative
is left. Rule (rb) recovers the contract on the top of the stack (if the stack is different from
[]) and replaces the current one with it. Note that the combined effect of rules (&) and ()
is that the alternative branches of an internal choice are unrecoverable.

The interaction of a client with a server is modeled by the reduction of their parallel
composition, that can be either forward, consisting of CCS style synchronisations and single
internal choices, or backward if there is no possible forward reduction, the client is different
than 1 (the fulfilled contract) and rule (rb) is applicable on both sides.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 13

Definition 3.3 (TS of Client/Server Pairs). We define the relation — over pairs of
contracts with histories by the following rules:

d<p - 8<p y=<o -~ <0o
(comm)

d<plly=<o—&=<p||v' =<0
d<p -1 6=y

(7)
d<plly=<o —d8=<p ||v=<0o

v=p 2 N<p S<o 2 5= p#1

(rbk)
y=<plld<o —~'<p' ||6'<0’

plus the rule symmetric to (7) w.r.t. ||. Moreover, rule (rbk) applies only if neither (comm)
nor (1) do.

Example 3.4. Let us consider the following client /server system
y=<a.c.p1 + b.pa || 6<a@.d.oy + b.og

We are in presence of an agreement point, and the operational semantics defined above is
such that during the following syncronization the unchosen branches are memorized:

y=<a.c.p1 +b.pa || 6<G.d.oy + b.oy — y:b.pa<c.p1||d:b.oa<d.oy

Now, no syncronization is possible in the system ~:b.p2<c.p1 || & :b.09<d.o1, and hence
the rules dealing with rollback allow to recover the branches which were not selected in the
previous agreement point:

~:b.pa=<c.p1|8:b.oa<d.cy — y=<b.ps || 6=<b.oo

The interaction can now proceed along the previously unchosen branches.
Let us consider now, instead, the following client/server system:

~=<a.c.p1 + b.py || 6<a.d.oy @ b.oo

We are not in presence of an agreement point and the interaction involves an internal choice
by the server:

y=<a.c.p1 + b.pa || 6<a.d.oy ® b.oy — y=<a.c.p1 + b.pz || 6<a.d.oy

Now the syncronization in y< a.c.p; +b.p2 | < a.d.oq causes, in the client, the memorization
of b.pa, namely the client’s branch not selected by the output @. In the server, instead, the
single action @ causes the memorization of ‘o’ on the stack:

y=<a.c.pr +b.ps||6<a.d.oy — y:b.pa<c.p1||d:0<d.oq

Since the system ~:b.pa<c.p1 || §: 0<d.oq is stuck, we recover the tops of the stacks as
current contracts:

y:b.pa=<c.p | d:0<d.og — y<b.pa|[d=<0

The fact that ‘o’ cannot synchronize with anything forces us to apply again rule (rbk) on
~=<b.pa || §< o, that is to keep on rolling back in order to get to the first agreement point
memorized in v and 8. The contract b.p2 and the symbol ‘o’ recovered from the top of the
stacks will be simply “thrown away”.

14 BARBANERA AND DE’ LIGUORO

Up to the rollback mechanism, compliance in the retractable setting is defined as usual with
client-server contracts.
Definition 3.5 (Retractable Compliance, 4™).
(1) The binary relation 4™ on contracts with histories is defined as follows:
for any &', p',~', o', 6< p 1™ v< o holds whenever
d<plly<o - &</ ||v'<o'—~+ implies p' =1
(2) The relation 4™ on affectible contracts is defined by: p 4™ o if []< p 4™ []< 0.

Example 3.6 ([4]). In the Buyer/Seller example we have that, in case a belt is agreed upon
and the buyer decides to pay using her credit card, the system gets stuck in an unsuccessful
state. This causes a rollback enabling a successful state to be reached.

[]<Buyer | []=<Seller
@M pag.price.(card @ cash)<price.(card ® cash) | bag.price.(card + cash)<price.cash
comn bag.price.(card @ cash):o0< (card ¢ cash) | bag.price.(card+ cash):o<cash
- bag.price.(card @ cash):o<card | bag.price.(card+ cash):o<cash
ok, bag.price.(card @ cash)<o | bag.price.(card + cash)<o
1ok, [|<bag.price.(card @ cash) | []<bag.price.(card+ cash)
comm o<price.(card @ cash) | o<price.(card+ cash)
comim o:0<(card @ cash) | o:0<(card+ cash)
LN o:o<card | o:0<(card+ cash)
comm o:0:0<1 || o:o:cash<1
s

There are other possible reduction sequences: the one in which a belt is agreed upon but
the buyer decides to pay by cash; the one in which a bag is agreed upon and the buyer
decides to pay by cash; the one in which a bag is agreed upon and the buyer decides to pay
by credit card.

It is possible to check that also for all these other reduction sequences a successful state is
reached. So we have that Buyer 4 Seller.

It can be checked that if y<p||d<0 — v'<p’||6’< 0’ and v and § have the same
length, then this is also true of 4" and &’.
Now, let []<p||[]=0 == ~'<p || 8'< o'+~ Since v/ < p' || 8'< o'/, a fortiori rule (rbk)
does not apply and then, by rule (rb), either 4/ or §’ must be empty. Besides, by what said
before, they must have the same lenght. Hence they are both empty.
This is stated in the item (1) of the following lemma (see Appendix B.2 for the proof) and
it will be essential, together with item (2), to prove some relevant results in Section 5 about
the retractable compliance relation.

Lemma 3.7.
(1) If[J=pll[]=o = 8=<p |y=0'+, then § =~ = [].
(2) If §<p 4™* v< 0, then §':6<p 4™* ~":v< 0o for all &', +'.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 15

4. ORCHESTRATED OPERATIONAL SEMANTICS AND ORCHESTRATED COMPLIANCE

In the present section we define an operational semantics for affectible contracts and for
client-server systems, where the interaction between a client and a server — in particular
when affectible outputs are concerned — is driven by a third process, a mediator, called
orchestrator. For a general discussion on orchestrators for contracts and session-contracts,
we refer to [16, 15] and [6] respectively.

Definition 4.1 (LTS for affectible session contracts). Let Act = N UN U{at |ae N }.

_ at
(+) aoc+d 5 o (F) ao+d 5 o
(®) ao®do — ao (@) aoc 5 o

As for other orchestrated formalisms, the task of an orchestrator is to mediate the
interaction between a client and a server, by selecting or constraining the possible interactions.
In the present setting orchestrators, that we dub strategy-orchestrators, are defined as a
variant of the session-orchestrators of [6], which in turn are a restriction of orchestrators in
[16].

A strategy orchestrator does mediate between two affectible session contracts by selecting
one of the possible affectible choices and constraining non-affectible ones. The orchestration
actions have two possible shapes: either (a, @), enabling the unaffectible synchronization, or
{a, @)™, enabling the affectible synchronization.

Definition 4.2 (Strategy Orchestrators).
(1) The set OrchAct of strategy-orchestration actions is defined by
OrchAct = {(a,@) |a e VNUN JU {{a,a@)T |a e NUN'}
We let p, 4/, . .. range over elements of OrchAct with the shape (a,a), and pt, 1/, ...
range over elements of OrchAct with the shape (a,a)™.

(2) We define the set Orch of strategy orchestrators, ranged over by f,g,..., as the closed
(with respect to the binder rec) terms generated by the following grammar:

fig == 1 (idle)
| pwtf (prefix)
| p1.f1V...Vuy.frn (disjunction)
| = (variable)
| recx.f (recursion)

where the u;’s in a disjunction are pairwise distinct. Moreover, we impose strategy
orchestrators to be contractive, i.e. the f in recz.f is assumed not to be a variable.

We write \/,c; pi- fi as short for py.f1 V...V . fr, where I ={1,...,n}.
If not stated otherwise, we consider recursive orchestrators up-to unfolding, that is we equate
recz.f with f{z/recz.f}. We omit trailing 1’s.

Strategy orchestrators are “simple orchestrators” in [16] and “synchronous orchestrators”
n [15], but for the kind of prefixes which are allowed in a single prefix or in a disjunction.
In fact a prefix (a, @)™ cannot occur in disjunctions, where all the orchestrators must be
prefixed by (o, @) actions. When clear from the context we shall refer to stategy orchestrators
just as orchestrators.

16 BARBANERA AND DE’ LIGUORO

Definition 4.3 (Strategy orchestrators LTS). We define the labelled transition system
(Orch, OrchAct, —) by
+ o
ph b f (Vierpaf) B fu (k)

An orchestrated system p ||y o is the client-server system p || o whose interactions are
mediated by the orchestrator f.

Definition 4.4 (LTS for orchestrated systems?).
Let p,o € ASC and f € Orch.

p— p oc— o
pllo—= plyo pllfo— pligo’
= ot —t _ 2+
p g FY T e T o PR B A Y
¥ T
pllfo— p'lyo pllfo— p'llyo
<O‘70‘> ! «a /
p—p [f o0 o
(e e NUN)

pllyo— pllyo’
Moreover we define = =—* o (1 U —).

In both transitions — and - , synchronization may happen only if the orchestrator
has a transition with the appropriate orchestration action. This is because in an orchestrated
interaction both client and server are committed to the synchronizations allowed by the
orchestrator only. Because of its structure an orchestrator always selects exactly one
synchronisation of affectible actions on client and server side, while the disjunction of
orchestrators represents the constraint that only certain synchronisations of unaffectible
actions are permitted.

Definition 4.5 (Strategy-orchestrated Compliance).
(1) f:p -9 o if for any p’ and o’, the following holds:

pllfo="*p |0’ == implies p =1
(2) pA9h g it Jf. [f:p 0N o]

Example 4.6. Let f = (bag,bag)™.(price,price).((card, card).1 V {cash, cash).1). For our
Buyer/Seller example, we can notice that the orchestrator f forces the buyer and the seller
to agree on a bag, and then leaves to the client the choice of the type of payment. Hence, in
case the client chooses to pay by card, the orchestrated client/server interaction proceeds
as follows.

AThe present LTS corresponds to a three-way synchronous communication, which could cause some
problems from the implementation point of view. We abstract away from these problems in the theoretical
setting of the present paper; an actual implementation might modularize each orchestrated synchronizations
into two distinct binary synchronizations.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 17

(Ax) (Hyp)

"T,pHo>pao
Tap+pqaoc+o >pqo

(+:4):

Vi e I. F,@ielai.piqzjeluJaj.aj > piA0;

:Fl>1v40

F'>ap+pqa.oc+o

@D -+ —
(LD @ @i-pi A jerus5-0;
(+ @) . VZ S I. F7EjEIUJa]"Gj “ ®l6161p1 > pszz
P> 3 ieriusi-05 4D ai-pi
Figure 2: System >
Buyer H<bag,ﬁ>+.(price,price).((card,ﬁ).l\/(cash,ﬁ%l) Seller

— price.(card & cash) price.(card + cash)

H (price,price).({card,card).1V (cash,cash).1)

- (card @ CaSh) H (card,card).1V(cash,cash).1 card + cash
- card H (card,card).1V(cash,cash).1 card + cash
— 1 |, 1

—>

Since there are not infinite reduction sequences and a succesful state is reached for any other
possible maximal reduction sequence (the only other possible one being the one where the
buyer chooses to pay by cash), we have that f : Buyer 49" Seller.

Remark 4.7. As we shall see, strategy-orchestrators do correspond to univocal strategies
for player C in G|, and are technically easier to work with. (In the proofs it will be easier
to deal with partial functions rather than relations). On the other hand, we can recover
a full correspondence among unrestricted strategies for C and orchestrators by allowing
disjunctions of affectible synchronization actions (o, @) ™. In a session-based scenario, however,
we expect any nondeterminism to depend solely on either the client or the server. By allowing
f=(@a)T.f1V(b,b)T.fs in the system a.p1 + b.p2 || @.01 + b.02, the nondeterminism would
depend on the orchestrator as well.

5. LINKING UP ALL TOGETHER: MAIN RESULTS.

In this section we connect all the notions defined up to now. We begin by showing that the
relation AC can be axiomatized by means of the following formal system. In such a system
the symbol | is the syntactic counterpart for the AC relation.

Definition 5.1 (Formal system > for AC). An environment I' is a finite set of expressions
of the form § «| v where §,v € ASC. The judgments of System > are expressions of the form
I'> pojo. The axioms and rules of > are as in Figure 5, where in rule (+-+) we assume
that a term of the form a.p can be used instead of a.p + p'.

18 BARBANERA AND DE’ LIGUORO

We shall write > p{o as an abbreviation for () > p-{o. Moreover, we shall write
D :: T > po to denote that D is a derivation having the judgment I' > p | o as conclusion.
When clear from the context, we shall write simply I" > p o to state that there exists a
derivation D such that D :: ' > po.

Example 5.2. Let us derive in system > the judgment () > Buyer 4 Seller

(AX) (Ax)

I">141 I">141
(®,+)

I'" 1> card @ cash 4 card + cash

4+
Buyer 4 Seller > price.(card @ cash) «{ price.(card + cash) E
+

> Buyer 4 Seller

where

I" = Buyer A Seller, price.(card @ cash) | price.(card + cash)
and I =T, card @ cash | card + cash

We now prove the relevant properties of this system. First, the proposed axiomatisation
exactly captures AC as intended.

5.1. Soundness and Completeness of > with respect to AC. In this subsection we
prove that the system > is sound and complete with respect to the affectible compliance
relation AC, namely
> pAo if and only if pACo
Moreover, we shall get decidability of AC as a corollary.
We begin by showing that the relation AC of Definition 1.2 can be equivalently defined
in a stratified way.

Definition 5.3.
(1) Let K : P(AC x AC) — P(AC x AC) be such that, for any ® C ASC x ASC, we get
(p,0) € K(R) if either p = 1 or one of the following holds:
(@) p=2 i1 i-pis 0 =) ;c;0;.05 and Ih € INJ. (pn,0n) € R;
(b) p=Bicri-pi, 0 = ng%*%‘: ICJandVh el (pp,on) € R;
(c) p= Zjejaj.pj, 0 =;c;6i.0i, I CJand Vh € 1. (py,0n) € R.
(2) A relation & C ASC x AC is an affectible compliance relation if R C K(R).
(3) For any n € N we define AC,, C ASC x AC as follows:
ACy = AC x AC, whereas, for n >0 AC,, = K(AC,,—1)
(4) We define AC,, = (,,ey AC,

Fact 5.4. AC = AC,, = v(K).

Notice that ACp C ACy_; for all k. We define now a stratified notion of validity for
judgments in system .

Definition 5.5 (Stratified AC-semantics for). Let I" be a set of statements of the form
po and let k € N. We define

(1) =T if VY(p'q0’)el. p ACro';
(2) TEEL pqo if EET = pACio .

We can now proceed by proving the soundness of >.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 19

Prove(Il' > p o)

if pzlthen(Ax):PDlAU

else if po €T then (HYP):vawbpvw

else if p=@, ;a;.p; and 0 = Zje, aj.o;and I CJ
and for all k € I D, = Prove(T', p| o > pi o)) # fail
(Vk € I) Dy

I'>pyo
else if p=3_,a,p;and o= @jelﬁj.aj and I D J

then (o-+):

and for all k € J Dy, = Prove(T', p Ao > p A 0oy) # fail

(Vk € J) Dy
I'>pyo

else if p=3, ;aip;ando =3, ;@;.0/

and exists k € INJ s.t. D= Prove(l',po > ppoi) # fail

then (+-@): else fail

D
then (+-+): P —— else fail
pAc

else fail

Figure 3: The procedure Prove.

Proposition 5.6 (Soundness of >). If > p o, then E* po.
Proof. Actually we show a stronger property, namely that
I'> po impliesT € pqo.
By Fact 5.4, it is enough to show that
I'>po implies I' E=E pofo for all k.

We proceed by simultaneous induction over the derivation D :: I' > p<|o and over k.
Since I' =4¢ p o trivially holds, we shall keep the case k = 0 implicit. Let k > 0; we
distinguish the possible cases of the last rule in D.

Case (Ax): Then D consists of the inference

(%)

I'clyo

and the thesis is immediate since 1 ACy o;
Case (Hyr): Then D consists of the inference:

—_— (uw)
Iipdo>po

and ', p o [=4C p o trivially holds.

20 BARBANERA AND DE’ LIGUORO

Case (+ - +): Then D ends by

Toap+p Aaoc+ao >pdo

+ot
I'>ap+p daoc+o ()

If =4E T then =4C | T'; by induction over k we know that I’ =1 | ae.p+ p/ A @.0 + o’ that
implies that a.p+ p’ ACj_1 @.0 + 0’ and hence =4° | I', a.p+ p' A @.0 +¢’. From this, by
induction over D, we get p ACj,_; o; by definition of ACy, this implies a.p+p' € @.o+0’
and we conclude that T' |=4° a.p + p/ J@.0 + o as desired.

Cases (+- @) and (+ - @): Similar to case (4 - +). O

To get decidability and to prove the completeness property of system >, we study the
proof-search procedure Prove defined in Figure 3. The procedure Prove, given a judgment
I' > po, attempts to reconstruct a derivation of it in system >. Such a procedure is correct
and terminating: it either returns a derivation, if any, or it fails, in case the judgment is not
derivable in the system.

Lemma 5.7. The proof search algorithm Prove for > is correct and terminating. In
particular,

(1) Prove(I' > pA o) =D # fail implies D ::T' > po;

(2) Prove(I' > po) = fail implies T [=4° pA o for some k;

(3) Prove(l' > p o) terminates for all judgments T' > pAo.

Proof.

(1) Immediate by construction of Prove.

(2) Let Prove(T' > p o) = fail. Then the procedure terminates: let h be the number of
nested calls of Prove in this execution. We claim that I" béfﬁ_l p o which we prove by
induction over h. If h = 0 then p 4o ¢ I' and none of the conditions defining AC; is
satisfied. If A > 0 then again p o &€ I" and also p # 1. As h > 0 there is at least one
recursive call of Prove and hence either p = >, ; a;.p;, 0 = ZjeJaj.Uj and INJ #0
or p= e i-pi, 0= e 505 and I CJor p=73 ", 0.pi, 0 = Djc; ;.05 and
I D J. In the first case the hypothesis that Prove(I' > p o) = fail implies that for
alli € INJ, Prove(I' > p; - 0;) = fail; but the number of recursive calls in any call of
Prove(I' > p; +0;) will be less than h, hence by induction there exists some | < h such
that T' 5%, pi A 0y, that implies I' &3 p; A 0 for all i € TN .J since AC, € ACpyqp. It
follows that T' 55, p4 o by clause (2) in the definition of ACp,; that is the only one
that applies. The other cases of p and o are treated similarly.

(3) Notice that in all recursive calls Prove(T', p+ o > pi 4 0y) inside Prove(I' > po)
the expressions pp and oy are subexpressions of p and o respectively. Since contract
expressions generate regular trees, there are only finitely many such subexpressions;
therefore the if clause p 4o € I' corresponding to axiom (HYP) cannot fail infinitely
many times. This implies that the number of nested calls of procedure Prove is always
finite.]

Decidability now immemdiately descends as a corollary.
Corollary 5.8. The relation AC is decidable.
The previous lemma also enables us to get the completeness property.

Proposition 5.9 (Completeness w.r.t). If Epqo, then > po.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 21

Proof. Now suppose that p AC o; by 5.7.(3) the computation of Prove(() > p | o) terminates;
the value cannot be fail by 5.7.(2), since p ACy o for all k£ by hypothesis, hence the algorithm
Prove yields a derivation D of) > po by 5.7.(1). O

5.2. Characterizations of AC. The relation p AC o can be characterized in terms of the
existence of a winning strategy for player C in the game G,,, a condition that in turn is
equivalent to p and ¢ being retractable compliant as well as being orchestrated compliant.
This is the content of the next theorem, whose proof establishes a tight correspondence
among strategies and orchestrators.

Theorem 5.10 (Main Theorem I).
Let p,o € AC, The following conditions are equivalent:

(1) pACo
(2) p ™o
(3) There exists a winning strategy for player C in G, .
(4) There exists an orchestrator f such that f : p 4" o.

By the above theorem, soundness and completeness of system >, as well as the decid-
ability property, immediately transfers from AC to both 4™ and 4°°". This might look a
bit weird at a first sight, since the judgements of system > abstract away from both histories
and orchestrators, which are essential, respectively, for the definition of rollback (and hence
of retractable compliance) and for the definition of orchestrated compliance. However, much
as it happens with logic, “proofs”, namely derivations, can be interpreted as strategies in
games determined by their conclusion; on the other hand the informative contents of a
derivation lies in the choice of actions and co-actions involved in the interaction among a
client and a server, which is exactly the effect of an orchestrator.

The proof of Theorem 5.10 will be developed in Appendix B by proving the following
equivalences:

B4

(4)
The proofs of such equivalences roughly follow the following schemas.

(1) & (2): The relation ™ is completely characterized by the properties defining the relation
AC, using in an essential way Lemma 3.7.
(1) & (3): Since AC = -y by Theorem 2.9, it is enough to show that

p T o if and only if there exists a winning strategy for player C in G, »

This is proved by using a characterization of -y in terms of regular trees without
“synchronization-failure” leaves. A tree of this sort can be obtained out of a winning
strategy, and vice versa.

(1) & (4): We provide a formal system > that is sound and complete with respect to the
—Oreh relation. Then we define a procedure that, given a derivation D :: > p Ao, returns
a derivation D’ :: X f(D) : pA%No, where f(-) is a map from derivation to orchestrators,
simultaneously defined together with the first procedure.

22 BARBANERA AND DE’ LIGUORO

5.3. Getting strategies, derivations and orchestrators out of each other. Strategies,
derivations and orchestrators mentioned in the Main Theorem I 5.10 can effectively be
computed out of each other as stated in the following theorem.

Theorem 5.11 (Main Theorem II).

(1) Given a derivation D for > p Ao, an orchestrator fp can be computed out of D, such
that fp : p 49" o;

(2) Given an orchestrator f such that f : p O o, a strategy Xt which is winning for
player C in game G, ||, can be effectively obtained out of f;

(3) Given a winning strategy ¥ for player C in the game G, 5, an orchestrator fs such that
fs 1 p 9N o can be effectively obtained out of the strategy;

(4) Given an orchestrator f such that f : p 4°°" o, a derivation Dy for > pAo can be
effectively obtained out of f.

The proof of Main Theorem II is in Appendix C and the related constructions are provided
along the following lines:

(1) C.1: We use the function f(-) from derivations to orchestrators defined in the proof of
(1) & (4) of Theorem 5.10.

(2) C.2: A “turn-based” version (-2'") of the relation 49" is provided at the beginning of
Appendix C. Given an orchestrator f such that f: p 42" o (and hence f : p 49" o)
we define a procedure yielding a suitable regular tree which can be decorated in order
obtain a winning strategy X%y for player C in G,|,.

(3) C.3: We use a construction defined in the proof of (1) < (3) of Theorem 5.10. Given a
univocal winning strategy ¥ for player C in the game G|, we obtain a tree T representing
all the possible plays of the game where player C follows the stategy 3. Then an
orchestrator fs is obtained out of T, such that fx : p 49" o (and hence fx, : p =9 o).

(4) C.4: We define a procedure O2D that, given f, p and o such that f : p 49" o, returns
a derivation Dy :: > po. The procedure O2D is obtained by adaptating the proof
search procedure Prove. In particular, in O2D the search is driven by the orchestrator
f. Correctness and termination of O2D are proved as for Prove.

Example 5.12. Let D be the derivation in Example 5.2. If we consider the function f()
from derivation to orchestrators mentioned before (and formally defined in Appendix B.4,
Definition B.12), we have that:

f(D) = (bag, bag) ".(price, price).((card, card).1 V (cash, cash).1)?

If we dub f = f(D), we have that the strategy ¥, obtained by the construction in the proof
of (2), is such that

{(1,(C:bag)) } if e = ()
Ef(e) = { (6’ (C’ ‘/)) } ife=s3
0 for any other play
where s3 = (1, (C:bag))(2, (BZ@))(37 (A:price))(4, (A:cash))(5, (B:cash)). Observe that X

corresponds to the strategy X as defined in Example 2.13. The construction of (3), instead,
yields f out of ¥;, whereas O2D(f, Buyer, Seller) = D.

5Actually the application of f to the derivation D does produce some vacuous rec binders. We omit them
here for sake of readability.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 23

Synth(T', p,0) =
if z:pA%°Ng €T then {z}
else if p=1 then {1}
else if p=@,c;a.p; and 0 =} ., ;a;.0; then
let IV =T, 2:pA%s in
{rec x. Vi€I<ai7ai>.fi ‘ Vi € I.fi c Synth(I”,pi,ai}
else if p= ZjeluJﬁj.pi and 0 = @, a;.0; then
let I’ =T, z:pA%Ng; in
{rec x. \/i€I<ai,6i>.fi ‘ Vi € If, S Synth(F’,pi,Ui}
else if p=3_, ;@.p; and o =}, ;a;.0; (where a € NUN) and |I| > 2 then
let I/ =T, 2:pA%Ns in
Uier{reca (s, @) .f | f € Synth (I, p;, 04) }

else ()
Figure 4: The algorithm Synth.

5.4. Orchestrator synthesis. Working on Proposition 5.7 and Theorem 5.11(1) we obtain
a synthesis algorithm Synth that is defined in Figure 5.4. The algorithm Synth takes a
(initially empty) set of assumptions I' and two affectible contracts p and o, and returns a
set O of orchestrators (and hence a set of strategies by the above results), if any, such that
for any f € O we have f : p 49" 7; the algorithm returns the empty set in case no such
an orchestrator exists. In the algorithm Synth we consider orchestrators as explicit terms,
that is we do not consider recursion up-to recursion unfolding.

Example 5.13. It is not difficult to check that by computing Synth((), Buyer, Seller) we
get a set just consisting of exactly the orchestrator f of Example 4.6, which we have shown
to be such that f : Buyer - Seller:

Synth((),Buyer,Seller) = { (bag,bag) " .(price,price)((card, card).1V (cash, cash>.l)}
The algorithm Synth can be proved to be terminating.
Proposition 5.14 (Termination of Synth). Synth(T', p, o) terminates for any ', p and o.

Proof. All session contracts in the recursive calls of Synth are sub-expressions of either p or
o or of a session contract in a judgement in I' (which is finite). Since session contracts are
regular trees, their sub-expressions are a finite set, so that the test z : p 4%"o € ' in the
first clause of Synth is always successfully reached in case the algorithm does not terminate
because of the last clause.]

The algorithm Synth can be proved to be correct and complete in the following sense:
whenever it does not fail, it does return a set of correct orchestrators. Moreover, if an
orchestrator exists for given p and o, it is actually ”captured” by our synthesis algorithm.

Given an orchestrator f we denote by tree(f) its corresponding (possibly infinite) regular
tree.

24 BARBANERA AND DE’ LIGUORO

Proposition 5.15 (Correctness and Completeness of Synth).

1) If f € Synth(0, p,0) # 0 then f: p 4" 0.
2) If f : p 49" & then there exists g € Synth((), p, o) # 0 such that with tree(f) = tree(g).

Proof. See Appendix D. 0]

6. SUBCONTRACT RELATION: DEFINITION AND MAIN RESULTS.

The notion of compliance naturally induces a substitutability relation on servers that may
be used for implementing contract-based query engines (see [16] for a discussion).

Definition 6.1 (Affectible subcontract relation). Let 0,0’ € ASC . We define
oc<d 2 Vp[pACo = pACo’]

Example 6.2. Consider the following new version of Seller, that also accepts cheques as
payment for the bag and enables customers (may be those with a fidelity card or those who
make shopping on Christmas eve) to win the bag by means of a scratch card.

Sellerll = belt.price.cash

+

bag. (price.(card + cash + cheque)
.I
scratchcard)

It turns out that Seller < Sellerll, so that in particular Buyer AC Sellerll holds.

As done for several notions of compliance for session contracts, decidability of the
subcontract relation could be obtained as an immediate consequence of decidability of AC
if we managed to have a proper notion of dual contract and if the following property could
be proved:

oo & TAC (6.1)

However, as already discussed in Remark 1.4, in the present setting the notion of duality
is hardly definable so that we have no chance to get (6.1).

Nonetheless decidability of < can be obtained in a direct way by means of a formal
system axiomatising the subcontract relation and of a proof-search algorithm in the style of
Prove.

6.1. A sound and complete formal system for <.

Definition 6.3 (The Formal System » for <). A judgment in the formal system » is
an expression of the form I' » p <« o where I is a finite set of expressions with the form
0 < 7y, with p,0,d,v € SC. Axioms and inference rules of » are as in Figure 5, where the
following provisos hold:

e in rule (@ +-<) we assume that a term of the form @.o; can be used instead of @.o01 + o;
e in rule (& +-<) we assume either Y-, ;@;.0; or 3,y ;.05 (not both) can be of the

form @.o®.

6This conditions are needed in order to let the system to be syntax-directed.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 25

(Ax-<<):F > 1< (HYP-<<)5F,U<<U’ > oo

I'a.o1 ® o2 L a.0y +0h » 01 <o
T » G010 < a0y +0s

(@ +-<):

Vh e l. FineIO‘i-Ui <K Zje]u.]o‘j'o-; » O'h<<()';L

/
L'y 3 ier@io8 K 3 erur®5-0;5

(+-+-<):

Vh e 1I. F,@jeluJaj.O'j <<€Bi€16¢.a§ > o K O';L

— ’ —
I'» @crus.0; < Djerti-o;

(@ 0-<):

Figure 5: The formal system »

In system », the symbol < is used as syntactical counterpart of the relation <.

The ideas behind rules (4 - +-<) and (@ - ®-<) are fairly intuitive. Let us informally
see why rule (@ - +-<) can relate affectible and unaffectible outputs, unlike what happens
for other subcontract relations for session contracts. We first observe that a contract p which
is compliant with a term of the form @, c ;an.0, must be such that p = 7, ;5 an.p; with
pn, Aoy, for any h € H. A term o' different from @, an.0; and such that p o’ can be
either of the form @, ¢ j@r.0k, and this case is dealt with by rule (& - @-<); or of the form
> e k-0 Notice that in order to have Y, pvan.pi &Y 1k @k-0) it is enough that there
exists p € H' N K such that p, 0;. This is precisely what is guaranteed by the premise of
rule (+ - +-x).

We can prove system » to be sound and complete for the subcontract relation <.

Proof search termination for system » can be shown in the same way as done for .

Proposition 6.4 (Proof search termination). For system ®», proof search does terminate.

We can now proceed with the soundness and completeness properties for » with
respect to the relation <.
We begin by defining a non-involutive “quasi-dual” operator on affectible contracts, that we
shall use to build counterexamples in the proof of Proposition 6.7 below.

Definition 6.5 (An operator of quasi-duality). The operator = : ASC — ASC is inductively
defined as follows.

1 =1

- _—— —~

Dic@i-0i = D c0i-0i

- J— o~

Y ier®i-0i = Diesai-0i

- ~

dier@i-0i =) ie1Qi0;
—_—
—_—

—

It is immediate to check that the operator = is not involutive: a+b=a+b=a®b.
However it is enough for us it to enjoy the following property.

Lemma 6.6. Let 0 € ASC.
cACo

26 BARBANERA AND DE’ LIGUORO

Proof. By induction on the structure of ¢. The base case is immediate. Let us just consider

the most interesting case, the other ones being similar.

Case 0 = > ,.;G;.0;: By the induction hypothesis we have that Vi € I.6; AC 0; (and hence,
a fortiori, 3k € (INI).5; ACo;). So, we get 0 = 3,c7a;.0; AC Y, ;G;.0; = o by definition
of AC (in particular Definition 1.2(2)). O

Proposition 6.7. o < ¢’ if and only if one of the following conditions holds:

(1) o =1;

(2) o= @jeﬂj.aj, o = Zielai'gi and Jk € (Iﬂ J) =+ 0. o < O';c,’

(3) 0= c1i-0i, 0" =3 jcr,505.05 and Yh € . o, X 0,5

(4) o = D,cr0s85-05, 0" = @jc 0.0, and Vh € I. py, < 0.

Proof. (=) Let o < o’. Then the only possibilities are necessarily the following ones:

(1) o=1;

(2) 0 =@jcsa;.05 and o' = 3, @;.0;;

(3) 0 =Yeri-oi and o' = 3 e p,505.05;

(4) 0 = @jc1usa5-05 and o' = ;¢ ai.0;.

We proceed now by cases, according to the shapes of o and o’.

(1) Immediate.

(2) Weshow 3k € INJ. o), < o), by contradiction. Let us then assume Vk € (INJ) # 0. oy, %
0y, and let { pp, }re(ing) be such that, for any k € (I N J), py, ACo and —(pp,, ACd').
By this and Lemma 6.6. It is easy to check that 3"y ;n) akppy + 2 je (1n)2-05 AC T,
whereas =Xy (1n7)WhPpe + 2 jesn(1ns)@i-05 AC0’). That is o # o’.

The other cases can be proved in a similar way. []

Let us define now a stratified version of < inspired by Proposition 6.7.

Definition 6.8.
(1) For n € N, the relation <, C ASC x ASC is defined as follows:
<0= ASC x ASC
For n > 0, 1 <, o for any o, whereas o <, ¢’ holds if one of the following conditions
holds:
(a) 0 = Djcsa5-04 o' =3 icai.05 and Ik € (INJ) # 0. o Sn—1 03
(b) 0 =ic10i0i 0" =3 jc,505.05 and Yh € 1. 0 <p—1 0p;
(C) o= @jelujaj.oj, o = @ie[ﬁiﬂ; and Vh € I. pp, <n—1 Op-
(2) We define <.,2 N, <n

Lemma 6.9. < = <

Definition 6.10 (<-semantics for system »). Let I" be a set of statements of the form
p < 0. We define

(1) BT if V(' <d)el. [p=xd];

2 TE p<xeo if BT = p<xo.

Soundness and completeness of » can hence be formalized as
> oo s o<

As done for >, we use a stratified version of Definition 6.10.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 27

Definition 6.11 (Stratified <-semantics for »). Let I" be a set of statements of the form
p < o and let k € N. We define

(1) BT if Y <o)el. [p=kd];
2) T p<o if BT = pxio.
It is possible now to verify the following:

Lemma 6.12.
(1) <%+1 € =k

< <
2 Fa T =K1
B)Vk. [o<d] = ITEo<o.
Proposition 6.13 (Soundness of » w.ort EX). If T’ » p< o, then T S p<o.
Proof. By Lemma 6.12(3), it is enough to show that

I' » p<o implies I' =} p < o for all k.

To do that we proceed by simultaneous induction over the derivation D :: T' » p <K o
and over k.
Since I" |:§ p < o trivially holds, we shall keep the case k = 0 implicit. We distinguish the
possible cases of the last rule in D.

Case (+ - +-<): Then D ends by

Vh el T,3,c00.00 K3 jep,,05.05 » on Lo,
I » Zielai.ai < ZjeIUJaj.a;

We have to prove that I' =} Y2c 0404 < Y jerusay-0; for all k.

Let k£ > 0; assume, by the induction hypothesis over k, that I"):i_l Dier@i-op K
Zje[ujaj'aé" If }zi I', then):i—l I', which implies Y, ;04.04 <p—1 ZjeIuJO‘j-U} and
hence):76_1 DY ierio K Zje[UJOtj.O';.

By the induction hypothesis over D we can hence get that oy, <;—; o}, for all h. Now, by
Definition 6.8, we get o < 0.

The other cases can be proved similarly.]

Completeness can be shown in the same way as done for > with respect to AC.
Proposition 6.14 (Completeness of » w.r.t). o <0’ implies » o <o’
We then get decidability as a corollary.
Corollary 6.15 (Decidability of x). The relation < is decidable.

Remark 6.16. By Lemma 6.6 it easily descends the following relation between the systems
>and »: » o<o =p>odo’. ~
The opposite does not hold. In fact @+ b = a + b - @, but it is easy to check that @+ b # @.

28 BARBANERA AND DE’ LIGUORO

Example 6.17. Let us now formally derive that Seller < Sellerll:

'.» 1«1 'y 1K1 ', » 1K1
I'y » csh < csh I's » crd+ csh < crd + csh + cheque
S < Sll » pr.csh <« pr.csh S < Sl » pr.(crd 4 csh) < pr.(crd + csh + cheque) + scratchcard

» Seller < Sellerll
(6.2)

where

I'y = Seller <« Sellerll, pr.csh <« pr.csh

I's, =T1,csh <« csh

I's = Seller <« Sellerll, pr.(crd + csh) < pr.(crd + csh + cheque) + scratchcard
I'y =T's,crd + csh < crd + csh + cheque

6.2. Derivations as orchestrator functors. By Definition 6.1 and Theorem 5.10, ¢ < ¢’
implies that, in case there exists f such that f : p 49" o, there exists also f’ such that
f': p A9 ¢’. In the present subsection we show how the computation of f’ out of f can be
effectively carried out by any derivation of » o < ¢’, which can indeed be interpreted as a
functor.

In particular, the following definition shows how to get, out of a derivation D :: » o < o,
the functor Fp mapping an orchestrator f such that f : p 49" o for a certain p, to an
orchestrator f’ such that f': p -0 .

In functors, functor variables will be denoted by F, F’, ...In order to better grasp
how Definition 6.18 below works, we shall use the following equivalent presentation of rule
(0-+-<)

U, @, 0i.0: K3 jc ,a5.0; » o L), (keIndJ) | J|>2
L > @ 0i0i K3 1050,
where | J | denotes the cardinality of J

(& +-<)

Besides, we shall use the following two rules instead of the more compact (+ - +-<)

(Vh (S I) F?Ziela’i'gi <K ZjEIUJaj'U/j | NN 0’;1
r » Ziela‘i'ai <<Z]-E[UJaj.(7/j

(+ +-<-1)

(VhGI) F,Zielm.ai <K ZjeluJaj.O'/j » (J'h<<0';L

r» Zielm.m < ZjEIUJaj’O.,j
where the same proviso for rule (+ - +-<) (see Definition 6.3) applies.

(+-+-<2)

We call extended environment a set of elements of thg ﬁ(\)rm F : 0o’ where F is an
orchestrator variable and o, 0’ € ASC. We use the symbols T',T”, ... to range over extended
environments.

Definition 6.18. Given D :: ' » o < ¢/, the functor Fp is defined by
Fp = F(D,0)

where F is binary partial function from derivations and extended environments to orchestrator
functors. We define F by induction on the structure of the first argument. The second

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 29

argument is used as an accumulator during the construction of the orchestrator functor. It
enables us to build recursive orchestrators by keeping the name of recursion variables to
be used in case get to an application of rule (Hvr-<). So a rec binder is introduced in any
step of the construction of an orchestrator. Of course the variable introduced will remain
vacuously bind in case rule (Hyr-<) is not encountered. We assume any orchestrator variable

introduced to be fresh. F(D, f) is inductively defined as follows.

D (AX'<<) :

“I'el<o
F(D,T) = Af. 1

D (HYP-<<) .

!/

TTo<gd »o<o
F(D,T)=F
ifFr:o<o’ €l

D/

D= I'@ic/Gi-0i <3 a5.0; » o <oy, (kelnJ) [J[>2

F(D,T) = rect Af. if (f = Vyepor(@n an)-fo) then (ax,ap)t.F(D,T')(fi) else 1,
where I =T, F : Dicrbi-0i < 3 je 5.0
Note that the interaction between a contract and @,;c;a;.0; (with |[I| > 2), in case

they are affectible compliant, is mediated by an orchestrator which is necessarily of the
form \/}, ¢ y>7(@n, an).fr or 1 (in case the contract is 1).

(& +-<)°

Dy,
Vhel
D= () F?Eielai'ai < ZjEIUJaj'OJj > o K U;l

/
Lo > ieraioi K3 cr05-0 5

.
.

(+ +-<4)

F(D,T) =
recFAf. if (f = Ve (an an)-fn)

then /),y (an, @) F(Dp, ') (f2)
else case f
of (aya) ™ f, & {onan) " FDuT)(f) (hel)
otherwise : 1

™ _T p. /
where I =T',F : 37,0 70,.00 < 3 c1,505-0';

Note that a contract which is in AC relation with), ;a;.0; is either of the form
®hercian.oy, or of the form Y, - yay.o;, with H N1 # (). Moreover, in the first case the
orchestrator which mediates their interaction has necessarily the form \/; ¢ i/~ 5 (an, @n). fn;
in the second case it has necessarily the form (a,a;)".f’ with k € I. We have also to
take into account the possibility of f to be 1 (in case the contract is 1).

30

BARBANERA AND DE’ LIGUORO
Dy,
_hel) g, Yie10i-0i K 3jer 3-0'i » on Loy :
— —— (+-+-<=2)
Iow > @00 K 3 ieusa5-0 5

F(D,T) =
recF.Af. if |[I| =1 and f = (a,a).f' V [

then (a,a)".F(D',T)(f)

else case f

of (@n,an)™.f}, : (@n,an)t. F(Dp, T')(f) (Vh e I)

otherwise : 1

™ _ T . = a:.0
where I =T',F : 37 1ai.00 < 3 5cp0y@5.0'

Note that a contract which is in AC relation with Y, ;@;.04 is of the form Y, o yay.0y,
with I N H # (. Moreover, in case |I| > 2, the orchestrator which mediates their
interaction has necessarily the form (@, a;)".f" with k € I N H. If, instead, |I| = 1, the
orchestrator could also be of the form (a,a).f’ vV f”. In such a case, the functor has to
transform the orchestration action (a,a) into (a,a)™ (see Example 6.21 for an example
of a case like that). Notice that the present rule cannot be used in case |I| = [I U J| = 1.
We have also to take into account the possibility of f to be 1 (in case the contract is 1).

Dy,
Vhel _ _
= () U @jec10s85-0) < Dic @i-0'i » op <oy :
- — (¢ ®-<)
> Djerusbioj) < Dierdi-oi
f(D7f) -

recF.Af. if f = VhGH/ <ah,ah>.fh then Vh€I<6h,ah>.f(Dh,)(fh) else 1
where I = T, F : Djc10s-05 K Bjicr@i-0’;

Note that a contract which is in AC relation with ,c;;a;.0; is necessarily of
the form) c y70an.0},. Moreover, the orchestrator which mediates their interaction
has necessarily the form \/},c i~ 70/ (@n, an).fn. We have also to take into account the
possibility of f to be 1 (in case the contract is 1).

It is easy to check the following.

Fact 6.19. The function F restricted to empty contexts is total, i.e. given a derivation D
in », the computation of Fp always returns an orchestrator functor.

Example 6.20. Let us consider the affectible contracts d+b.(b& <€) and d.a+b.(a+<c+e).
Is possible to prove that

d+b.(b@®c)gxda+b.(at+c+e)

by means of the following derivation D in system » .

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 31

I's » 1<<1(~<)
—— (¢ 0-<)
(rx-<) [P e€e o
— (AXx- — C -
' » 1«3 I'' » bPc<a+c
(+ +-<-1)

» d+b.(bdc)Kdat+b(at+c+e)
where
I''={d+b.(b®c)<da+b(a+c+e)}
I'y=T;,b@c<Ka+c
Fg = FQ,E <L cC

According to Definition 6.18, out of D we can compute the following functor
Fp =Af.if (f =(d,d).faV (b,D).fp V ')
then (d,d).1 V (b,b)....
else case f
of (d,d)".fq: {(d,d)T.1
<b76>+'fb : <b76>+'if (fb = <Bvb>fl; v (Ea C>f(,: \ f”)
then (c,c)t.1
else 1
otherwise : 1

(We have omitted the part ’..." for sake of readability, as well as the vacuous rec binders.)
It is possible to check that
C+b.(b+c)ACd+b.(bdT)
and that

where f = (b,b)".({b,b).1V (¢, c).1)
We have now that
Fp(f) = (b,0)T.(c,c) .1
and Fp(f) :c+b.(b+c) 9N da+b.(a+c+e))
Example 6.21. Let us take f = (bag,bag)™.(price,price).({card, card).1 V (cash, cash).1).

We have seen in Example 5.12 that f : Buyer 4°" Seller. If we dub now D’ the derivation
6.2 in Example 6.17, we get that

Fp/ (f) = (bag,bag) " .(price, price)*t.((card, card).1 V (cash, cash).1).

Notice how the functor does transform the orchestration action (price,price) of f into
the action (price,price)™. In fact, whereas (price,price) in f has simply to enable the
exchange of the price message, the new orchestrator in that point has to deal with an
affectible choice, since also the summand scratchcard is present in Sellerll.

It is possible to prove that any functor Fp behaves as expected.

Theorem 6.22 (» derivations as orchestrator functors). Given D :: » o < o', it is
possible to compute a functor Fp : Orch — Orch such that:

for any p and f such that f : p 4" o, it holds that Fp(f) : p 4" o’.

32 BARBANERA AND DE’ LIGUORO

Proof. See Appendix E.]

7. CONCLUSION AND FUTURE WORK

We have studied two approaches to loosening compliance among a client and a server in
contract theory, based on the concepts of dynamic adaptation and of mediated interaction
respectively. We have seen that these induce equivalent notions of compliance, which can be
shown via the abstract concept of winning strategy in a suitable class of games.

The byproduct is that the existence of the agreement among two contracts specifying
adaptive behaviours is established by statically synthesizing the proper orchestrator, hence
avoiding any trial and error mechanism at run time. The study in this paper has been
limited to the case of binary sessions since this is the setting in which both orchestrators and
retractable contracts have been introduced. However strategy based concepts of agreement
have been developed in the more general scenario of multiparty interaction, which seems a
natural direction for future work.

Acknowledgments. The authors wish to thank Mariangiola Dezani for her support and
Massimo Bartoletti for the preliminary insight that led to the development of the paper.

REFERENCES

[1] S. Abramsky and P.-A. Mellies. Concurrent games and full completeness. In Logic in Computer Science,
1999. Proceedings. 14th Symposium on, pages 431-442, 1999.
[2] Franco Barbanera and Ugo de’ Liguoro. Sub-behaviour relations for session-based client/server systems.
MSCS, 25(6):1339-1381, 2015.
[3] Franco Barbanera and Ugo de’ Liguoro. A game interpretation of retractable contracts. In COORDINA-
TION 2016, volume 9686 of Lecture Notes in Computer Science, pages 18-34. Springer, 2016.
[4] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, and Ugo de’ Liguoro. Retractable
contracts. In PLACES, volume 203 of EPTCS, pages 61-72. Open Publishing Ass., 2015.
[5] Franco Barbanera, Steffen van Bakel, and Ugo de’ Liguoro. Orchestrated session compliance. In Proceed-
ings ICE’15, volume 189 of EPTCS, pages 21-36, 2015.
[6] Franco Barbanera, Steffen van Bakel, and Ugo de’ Liguoro. Orchestrated session compliance. Journal of
Logical and Algebraic Methods in Programming, 2016.
[7] Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna, and Roberto Zunino. Contracts as games on
event structures. J.of Logical and Algebraic Methods in Progr., 85(3):399 — 424, 2016.
[8] Giovanni Bernardi and Matthew Hennessy. Compliance and testing preorders differ. In Software Engi-
neering and Formal Methods - SEFM 2013, volume 8368 of LNCS, pages 69-81, 2013.
[9] Giovanni Tito Bernardi and Matthew Hennessy. Modelling session types using contracts. Mathematical
Structures in Computer Science, 26(3):510-560, 2016.
[10] Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong service compliance. Mathematical
Structures in Computer Science, 19(3):601-638, 2009.
[11] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of contracts for Web Services.
In WS-FM, number 4184 in LNCS, pages 148-162. Springer, 2006.
[12] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services. ACM
Trans. on Prog. Lang. and Sys., 31(5):19:1-19:61, 2009.
[13] Simon Gay and Malcolm Hole. Subtyping for Session Types in the Pi-Calculus. Acta Informatica,
42(2/3):191-225, 2005.
[14] Cosimo Laneve and Luca Padovani. The Must Preorder Revisited: An Algebraic Theory for Web Services
Contracts. In CONCUR’07, volume 4703 of LNCS, pages 212—225. Springer, 2007.
[15] Luca Padovani. Contract-based discovery and adaptation of web services. In SFM, volume 5569 of LNCS,
pages 213-260. Springer, 2009.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 33

[16] Luca Padovani. Contract-Based Discovery of Web Services Modulo Simple Orchestrators. Theoretical
Computer Science, 411:3328-3347, 2010.
[17) Glynn Winskel. Event structures. In Advances in Petri Nets 1986, Part II, 1987.

APPENDIX A. PROOF OF PROPOSITION 2.9 (AC AND -y EQUIVALENCE).

The proof of Theorem 2.9 is developed in the present section along the following lines:

e We first recall the equivalent stratified version of Definition 1.2;

e To each pair p|| o we associate a set of regular trees rts(p|| o) and show that p AC o holds
if and only if there exists a tree in rts(p || o) with no leaf labeled by the symbol X;

e A set rts(p || o) of regular trees is also associated to any turn-based system p || o. Also for
p |l o, we prove p —, o to hold if and only if there exists a tree in rts(p || o) with no leaf
labeled by X;

e We conclude by showing how to map rts(p|| o) to rts(p || o) and vice versa so that a tree
without X is always sent to a tree with the same property.

In Definition 5.3 we have seen that the co-inductive definition of AC (Def. 1.2) can
be stratified by the family { ACj }ren, such that AC, C ACk_; for all £ and AC =

Nhen AC, .

Definition A.1. Let p,0 € ASC. We define the set of regular trees of the pair p || o, which
we dub rts(p || o), as follows:

its(1]|o) = {1\\0}

pllo
its(p|lo) = { Jo\ ‘ hEI,Therts(thah)}
Ty--- T,
if either p = @ielai.pi, o= ZjeJaj.crj, I1CJ
or p= Zjej a;.pj, 0 = @ie[aiﬂi’ rcJ
where I = {1,..,n}.

pllo
ts(pll0) = Unerns{ | | Terstonlion)
T

ifpzzielai.pi, o = Zjejaj.O'j, helnJ

pllo
rts(p||lo) = { | }otherwise
X

Lemma A.2. Let p,o € AC. pACo iff there exists a tree in rts(p|| o) without any leaf
labeled by X.

Proof. (<=) Let T € rts(p|| o) such that no leaf is labeled by X and consider the following
relation:
R={(p,0') | p'||o"is anode of T}

34 BARBANERA AND DE’ LIGUORO

Then pR o as p| o is the label of the root of T. Besides, it is easy to check that R is an
affectible compliance relation according to Definition 5.3.

(=) Recall that AC = [,y ACk. Then we prove by induction over k that if p ACyo then
there exists a tree T € rts(p || o) such the cut of T at level k, written T, has no leaf labelled
by X.

If K = 0 we just observe that Tl is the root of a tree T € rts(p|| o), that cannot be
labelled by X.

Let k > 0, then we proceed according to the cases in the definition of T. If T}, =10

pllo
there is nothing to prove. The case T|, = { | } is impossible since it implies that none
X
of the cases of Definition 5.3(1) holds. This contradicts p ACo, as k > 0.
pllo
Suppose that T = /---\ € rts(p| o), where p and o are as described in the
Ty Tp

definition. The hypothesis p ACyo implies that pp ACr_10}, for all h; hence by induction, for
all h there exists T} € rts(py, || o1) such that T} |,_; has no leaf labelled by X. It follows

pllo
that "= /---\ is a tree in rts(p|| o), such that T’}; has no leaf labelled by X.
T ... T
pllo
Finally if T = | where p and o are as in the third case of the definition and
Th
heIndJand Ty € rts(pp || on), then by induction and reasoning as in the previous case we
pllo
get a tree T} € rts(py, || op) with no leaf labelled by X. Hence T" = | € rts(p| o) is
T
such that T’ 41 has no leaf labelled by X.]

Definition A.3. Let 5,6 € ACl. We define the set of regular trees of the system j || &,
which we dub rts(p || 7); let B = {A:a,A:a,B:a,B:a | a € N'}, then:

16

ts(15) = { 0”|’~ }
Ak

ts(ple) = { Y | Ty e nts(puhd1), . Ta € res(pa Il) }
T

~ |l ~ I~ o~ B I~
where { i || 6i Yim1.n ={P' 16" | pll6 — p'llo’, BeB}#0

pllo
-~ -t o~ - ~ C: ~ ~ ~ -
rts(p || o) = {] ’ 3,6 a. pllo = I a’, T erts(p | a’)}
T

K
ts(ple) = { | bif pALand)G —»

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 35

Lemma A.4. Let p,o € ASC(C ASCl]).
p o o iff there exists a tree in rts(p || o) such that no leaf is labeled by X.

Proof. Similar to the proof of Lemma A.2.]

Next we define a function toy: rts(p || o) — rts(p || o), for which some technical results
are in order.

Lemma A.5. Let p,o € ASC C ACH and let 5,6 € ASC! such that pllo —* 5| 6.

(1) If plo Py then only one of the following cases can occur:
(a) Be{A:a,B:a|aec N} and 3 is unique;
(b) pe{A:a,B:a|aeN};
(c) Be{C:a|ae N} and B is unique.

2) Ifp4o& andpl|6 —» § |6 —>» , where 3 € {A:@,B:a|ac N}, then p,é € AC
and there erists a unique 8’ € {A:a,B:a|a € N} such that ¢ | ¢’ N o'l o’ with
p',o’ € AC. Moreover, p|| 6 = p'| o

Proof. Immediate by definition of ASCl and —» . O

Definition A.6. Let T € rts(p || o) where p, o € ASC. We define the regular tree to|(T) as
follows:

let B={A:a,B:a|a €N} and B = {A@,B:a|ac N}

115 ~
tO”(|)) = 1 H o
0fa
plio
A pllo
o @lorllo [@lonlo) = [+
|| to|(T1) -+ - to(Tn)
Ti T . Ay ~
1fP|||0' —5 [ak]pk|||0-f0rk::17"'7na
and similarly if p || o Aty o |l [ak]o-
Cia
<PH|\U) P\’|0 daeN.pllo —
to| = if or
T to)(T') IBeB.pllo L»
ol ol
to||< |) = | else
X X

Lemma A.7. Let T € rts(p || o) where p,o € AC and such that all its leaves are of the
form 0| . Then all leaves of to|(T) are of the form 1| .

Proof. By definition of toj.]

36 BARBANERA AND DE’ LIGUORO

We define now a function toy: rts(p || o) — rts(p || o). The following facts are immediate
by definition.

Lemma A.8. Let p, o, pp,op € AC have the form as in (1b) or (1c) of 5.3, where h € I.
Xa -~ X

Then pllo = plld = pnlon - -

for some p,6 € AC!, a e N and X € {A,B}, where X =A if X =B and X =B if X = A.

Lemma A.9. Let p, 0, pp, o, € AC have the form as in (1a) of 5.3, where h € I.

Then p|| o RSN pn || on for some a € N.

Definition A.10. Let T € rts(p || o) where p,o € ASC. We define the regular tree to(T) as
follows:

~ 17
toy(115) = |
0o
pllo
pllo
tom(/o \) = pill61---pnlldn if p and o are as in (1b) or (1c) of 5.3
T .
tOm(Tl) R tOm(Tn)
-l ~ Il ~ B ~1 Il ~ -
where { p; || 6i bim1n ={P' 16" | pllo — p'l|6". € B}
with B = {A:@,B:a | a € N'}
pllo plle
to|”< |) = | if p and o are as in (1a) of 5.3
T tOm(T/)
pllo plle
o) =
X X

Lemma A.11. Let T € rts(p|| o) where p,o € ASC and such that all its leaves are of the
form 11| G. Then all the leaves of to|(T) are of the form 0 || &.

Proof. By definition of toy. L]
The following immediately descends from Lemmas A.7 and A.11.

Theorem A.12. p,o € AC(c ACl).

(1) Let T € rts(p || o) such that all its leaves are of the form O || &, then there exists
T erts(p| o) such that all its leaves are of the form 1 || &.

(2) Let T € rts(p|| o) such that all its leaves are of the form 1| &, then there exists T' €
rts(p || o) such that all its leaves are of the form O || &.

We then get Theorem 2.9 as a corollary of Lemmas A.4, A.2 and Theorem A.12.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 37

APPENDIX B. PROOF OF MAIN THEOREM I (THEOREM 5.10)

B.1. Proof of (1) & (2) of Theorem 5.10 (™ = AC).
In order to prove the equivalence of items (1) and (2) of the Main Theorem I (Theorem
5.10), that is
4% = AC,
we need to prove that 4™ satifies the properties in Lemma 3.7.

B.2. Proof of Lemma 3.7 ([4]) (Rollback properties). *
Lemma 3.7(1) If [|< p| []< o —= 6= p' || y=<0'+>, then § =~v = [].

Proof. Clearly d< p’ || yv< o’—~ implies either § =[] or v = []. Observe that:

e rule (comm) adds one element to both stacks;
e rule (7) does not modify both stacks;
e rule (rbk) removes one element from both stacks. [

Lemma 3.7(2) If §< p 1™ v< o, then §’:5<p 1™* ~/:~< 0 for all & , 4.
Proof. 1t suffices to show that
d<pd*y<0 = pé<pd*¥vy<oand §<p ¥ o' :v<0

which we prove by contraposition.
Suppose that p’:6< p A™ v< 0o; then

pd=<plly<o == 8=<p"|v <"+ and p” #1
If p’ is never used, then §' = p/':6” and 4/ =[], so that we get
§<pllv=o—=8"<p"||[]<o"+
Otherwise we have that
po<plv=o = p'<p" |7 <0" — []=<p||7"< 0"

and we assume that — is the shortest such reduction. It follows that p” # 1. By the

minimality assumption about the length of — we know that p’ neither has been restored
by some previous application of rule (rbk), nor pushed back into the stack before. We get

d=plly=o = [1=p"¥"< 0"+
In both cases we conclude that §< p A% v< o as desired.
Similarly we can show that < p A™ ¢’:v<0 = 6<p A*~v=<o0.]

"The proof of Lemma 3.7 is from the workshop paper [4]. We restate it here for the reader’s convenience.

38 BARBANERA AND DE’ LIGUORO

We can now show that the rollback compliance and the relation AC do coincide.

Lemma B.1. We have p ™ o if and only if one of the following conditions holds:

(1) p=1;

(2) p=2icr Qiepis 0 =2 jc ;0505 and 3k € IN.J. py ™ 5.5

(3) p=Bicr@i-pi, 0 => e 0505, I CJ and Vk € I. py & o s

(4) p=> e Qi-pi, 0 = @jejaj.aj, IDJ and Vk € J. pj, 7™ oy,.

Proof. (<) Immediate.

(=)® We prove this by contraposition and by cases according to the possible shapes of
p and o in the conditions of Definition 1.2. Suppose p = >, ®i.pi, 0 = . ;@;.05,
INJ={ki,...,kn} and pg, /™ oy, for 1 <i < n. Then we get

(1= pw [1= 0w, = 8= p; | i< i~
for 1 <14 <n, where p, # 1 and §; = ~; = [| by Lemma 3.7. This implies
Yie [k 1P Py | e\ (kYO -0G= Oy — Yien{kn %-Pi= P11 e iy 0505 < 01
Let I'=T\J and J' = J\ I. We can reduce [|<p||[]< o only as follows:
[=pll]=o — >iengry @-Pi= P | 2ojenfr } @-0j= 0k, by (comm)

— Zie[\{kl}ai'pi<pll | ZjeJ\{k1}aj'Uj_<0/1
— (1= Yienginy @-0i 1112 Yjenny @o; by (1bk)

dier Cipi= P || 22 e 0 @j05= 0y,
[1= D ier @iepi I [1= 22 e @505 by (rbk)
and [< D 7;cpaipi || [1= 20 @j.0j is stuck since I' N J" = (.

|]

Suppose p = @D, @ipiand o =3, jo5.05. U T Z Jlet k €1\ J; then we get
[I=pllll=xe — [l<@kpel[l<o by (1)

7L>

Otherwise I C J and p;, /™ o}, for some k € I. By reasoning as above we have

[=pkll[1=<or — [1=<p" I[]= o'+
and
o=k || X je (k-0 = O —> 0= ol e k)00 o'
which imply
[I=plll=xoc — [IRakpk|[]=0o by ()
—r o< pg H Zjej\{k}aj.aj<ak by (Comm)
— O-<p/|| Z]EJ\{k‘}a]O-J-<OJ

8This proof of the direction of the Lemma was presented in the workshop paper [4]. We restate it here for
the reader’s convenience.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 39

In both cases we conclude that p A™ o.
The proof in case p =} _;c; @.pi, 0 = B jc; @j.0; is similar. O

From Lemma B.1 and definition of AC we immediately have % = AC.

B.3. Proofof (1) & (3) of Theorem 5.10. Since (by Theorem 2.9) we have that AC = —,
it is enough to show that

p ~w o if and only if there exists a winning strategy for player C in G, » (B.1)
We recall that a strategy X is univocal if [X(e)| < 1 for all e.
We begin by (B.1)(<)

Definition B.2.
(1) Let p,0 € ASCUl let = be a univocal strategy for player C and let e be a play. We define
the tree rt-auxs(p || 0, e) as follows:

1o
rt-auxy (1| 6,e) = |
0o
- plla
taus(plde) = oo\
Ty--- T,
if 3BeB.plls 2»
where Ty = rt-auxs(p1 || 61,€061), ..., Tn = rt-auxs(py || 1, €6n)

. - - - - o~ B - -

with {p; | 6 }imin ={p' 6" | pllc —» I, Be B}
o~ Bi o~ g~

and p |6 —» pi | o

pllo
rt-auxs(pf|5.e) = |
T
it plo =% 5
where Y(e) = (k, C:a) for some k ,
and where T = rt-auxs (g || ¢/, eX(e))

plle
rt-auxs(p || 6,e) = | otherwise
X
(2) Let p,o € ASC and let ¥ be a univocal strategy for player C for the game G,,. We
define
rts(pllor) 2 r-auxs (pllo, <)

Lemma B.3. Let X be a unwocal winning strategy for player C for the game G,,. Then
all the leaves of rtx(p||o) are of the form 0| &.

We hence get (B.1)(<) by Lemmas B.3 and A 4.

40 BARBANERA AND DE’ LIGUORO

We can now proceed with (B.1)(=).

Definition B.4. Let T € rts(p| o) such that all its leaves are of the form 0 || &.

(1) The moves-labelled tree of T, dubbed mlt(T) is obtained out of T by labelling its edges
as follows: if E is an edge from a node N to a child M of its, we label it by (L(N),),

where (3 is such that N Ly M and L(N) is the level of N.

(2) Given a finite path p in mlt(T) starting from the root, we define Fp(p) as the sequence
of labels of the edges of the path.
(3) Given a finite path p in mlt(T) starting from the root, we define
A (B) if (%)
nextm(p) =
0 otherwise

(*) the last node N in p is of the form 3, ai.p; || D2, ;.05 or 1 || & and (n, 8) is the
label of the only edge out of V.

Lemma B.5. Let T € rts(p||o) such that all its leaves are of the form O || & and let p be a
finite path in mlit(T). Then ¥P(p) is a finite play of G,|»

Proof. By Definition B.4 and by definition of play of G, L]

Definition B.6. Let T € rts(p| o) such that all its leaves are of the form O || . We define
the strategy Y1 in G for player C, by

pllo>
N nextm(p) if (%)
» A
T(e) { 1] otherwise

(*) e = Fp(p) for some p which is a finite path in mlt(T).

Lemma B.7. Let T € rts(p||o) such that all its leaves are of the form O | 6. Then X1 is a

univocal winning strategy for player C for the game G, .

We hence get (B.1)(=) from the above Lemma and A.4.

B.4. Proof of (1) & (4) of Theorem 5.10. In the following proof we could have proceed
by using a lemma similar to B.1. However, in order to get also a correspondence between
orchestrators and derivations to be used for the proof of the Main Theorem II (5.11),
we proceed by providing two formal systems axiomatizing the relation of orchestrated
compliance.

B.4.1. (Formal systems and synthesis for 4°"). In the following, orchestrators are considered
as explicit recursive terms rather than as possibly infinite regular trees. We first define a
formal system >, in which the relation of derivability characterizes the relation 4°"". In
System >, the relation 49" is the intended interpretation of the symbol ~©r",

Definition B.8 (Formal System for Orchestrated Compliance). An environment I is a finite
set of expressions of the form f : § 4%y where 6,7 € ASC and f € Orch. The judgments of
System >, are expressions of the form I' > f : p{°"g. The axioms and rules of >, are as
in Figure 6.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 41

(AXx) (HyP) :

:FDolilv{orCha' 'F,fipdorChUDOf:pAOrChU

I Do f:pv*Orcho_
Lo (@)t fap+p %0 + 0o

where I =T, (@, a)t.f t aep+ p/ A% a0 + o

(+-+4)

() Vi e l. I >o fl [y dOrcho_i
o-+): — —
oo Vieg1ny (@i @)-fa; © @;er@i-pi WOth]‘eIuJaj-Uj

_ — h
where IV = FaVig{i:l..n}<aivai>'fi : ®i61ai~Pi W‘Orc ZjeIuJa’j'Gj

() Viel. T fi:pid®No;
+-P) : — _
I o Vie{i=1..n}<aiaai>-fi 12 jerus5-0; WOfCh@ieﬂiﬂi

_ h _
where TV = F’Vie{ lun}<ai,ai).fi : Z].eIUJa]-.aj W‘OI’C ®i61ai'pi

Figure 6: System >,

Theorem B.9 (Soundness and Completeness of System >, w.r.t =°"),
[>0f2pm|orChO' o f:p_|Orch o

Proof. The proof can be developed along the very same lines of the proofs for Proposition
5.6 and Lemma 5.7 for what concerns, respectively, soundness and completeness. L]

We provide now a formal system >} equivalent to >,. In such a system, unproper
(namely open) orchestrators can be used. However we shall apply the system only for proper
(namely closed) orchestrators.

The algorithm Synth corresponds to a proof-search algorithm in system >5: it synthe-
sises, given p and o, an orchestrator f such that f: p 49" &, and hence a univocal winning

strategy for player C in the game G,,.

Definition B.10 (The equivalent System >%). An environment I is a finite set of expressions
of the form z : § 49"y where 6, € ASC and z is an orchestrator variable. The judgments of
System >, are expressions of the form I' > f : p {°"o, where f is an orchestrator, possibly
open. The axioms and rules of >} are as in Figure 7.

Proposition B.11. Let f be a proper (closed) orchestrator.
o f . pm|0rcha = I>; f . pm|0rch0

Now we show how to build an orchestrator f and a derivation in >§ such that >¥ f: po
when a derivation of > p o is given.

Definition B.12.

(1) The partial functions fder-aux(-,-) and f-aux(-,-), from derivations in > and environments
to, respectively, derivations in > and (possibly open) orchestrators, are inductively and
simultaneously defined as follows:

42

BARBANERA AND DE’ LIGUORO

(Ax)

: r I>é 1 140rch0_ (HyP) :

Tiz:py

Orch

F/ I>)éftpw{0mh0'

oy Tp

(+-+):

where I =T,z : a.p+ p’

m|Orch

Orch—

‘T reca.(@a).f i ap+p 000+ o

a.oc+ o'

’

Vie I T' DX fa, : pi A%y

Orch o

(@-+):

’_ . - _Orch o
where I'' =T,z : @, i-pi A~ D 5e0%5-05

Vi€ L T 5% fa, t pi

Orch o

i

. X N —_ . ,Orch .)
Pgreca. Vo imi oy fai t @ier@ipi A7 2 jer0s95-0;

(+-@):

’ . Orch —
where IV = F,\/{ ailiml.n} fa; ZjeIUJaj'Jj “ D, i-pi

Figure 7: System >

. X . . . _Orch - .
Lpgreca. Vo imi oy fai 1 2 5e10505.05 47 @ier@i-pi

D

D

D

D

D

“I'>lyo (AX):
fder—aux(D, FX) = ™ |>é 1 lv{Orcho_ (Ax)
f-aux(D, T™) = 1
=T, po > pjo (V)
fder-aux(D,I™) = o, {0 (1)
f-aux(D, ™) =
D/
(o)

CTooaptpdao+o

} if z: pA9°Ng € T,

fder-aux(D’, (I, z:ae.p + p' A% '&

o +0)=T)

fder-aux(D,I™*) =

f-aux(D, ™) = recz.(@,a).f-aux(D', T)

where zx is a fresh variable.

Viel. D;

D> @icr@ipiAXjcr0505-0;

(e

Vi € I. fder-aux(D;, (I™, m:@; ¢ ;@i-pi A”"Y e 10, 05.05) = ™)

)

Orch—

™ 5 recz. (@, o) f-aux(D', T') : a.p + p' 49"

’
o+o

(+-4)

fder-aux(D,I™) =

f-aux(D, ™) = recz. . 1im1.0y faux(Di, T)

where f,, = f-aux(D;, ™) and z is a fresh variable.

Viel. D;

(

- I'> > ierusi-0j @ie[ai'piK

@)

X . — . Orch o
I'>p recaz.\/{ ailizl.n} Jai 1 Bic@ipiA" " 210505

(e-+)

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 43

fder-aux(D,T%) = Vi € I. fder-aux(D;, (1™, 2:3" ¢ 11, 05.05 A2 D, ¢ @i.pi) = T7)
’ I' b5 reca. V{ a;li=1..n} Jai 2 305e10.005-0; “*Omh@z'efai-ﬂi
f-aux(D, ™) = recx. \/{,,iz1.n) Faux(D;, 1)

where f,, = f-aux(D;,I’™') and z is a fresh variable.

(2) The partial function fder(-) from derivations in > to derivations in %, and the partial
function f-aux(-) from derivations in > to (possibly open) orchestrators are defined by

fder(D) = fder-aux(D, ()
f(D) = f-aux(D, 0)
Lemma B.13. Let D ::i> po. Then fder(D) and f(D) are well-defined, f(D) is a proper
(i.e. closed) orchestrator and
fder(D) :: X f(D) : pA"o
Proof. By Induction.]

We hence get (1) = (4) as an immediate consequence of Lemma B.13 above, Proposition
B.11 and Theorem B.9.

The implication (4) = (1) is instead an easy consequence of the observation that by
erasing all orchestrators in a derivation of >, f : pj o we get a derivation of > p 0.

ApPPENDIX C. PROOF OF MAIN THEOREM II (5.11)
(GETTING DERIVATIONS, ORCHESTRATORS AND STRATEGIES OUT OF EACH OTHER)

We begin by providing a stratified version of orchestrated compliance.
Definition C.1 (Coinductive orchestrated compliance).
Let { +9"°" };en be the family of relations over Orch x ASC x ASC such that

(1) 9" = Orch x ASC x ASC and
(2) f:p AT o if either:
(a) p=1;or

(b) p#1,plfo=>and p|yoc=>p'||p o’ implies f': p/ —2" o
Then we define H2/"= keN —|§3’°h_
Proposition C.2. The relation 49" and the compliance relation 4" coincide, i.e.

f:,o—gc"a & f:p—iorCha.

As done for the relation AC, we provide an equivalent ”turn-based” version of the
relation —Or°h.

Definition C.3 (Turn-based operational semantics of turn-based orchestrated configura-
tions). Let tbAct = {A,B,C} x (Act U{Vv }). In Figure 8 we define the LTS —, over
turn-based configurations, with labels in tbAct.

We define — = UseipAct —5»0 :

Definition C.4 (Turn-based orchestrated compliance 49"). Let f € Orch and p, 5 € Ascll.

44 BARBANERA AND DE’ LIGUORO

Siertipi lro % [aolyo (kel)
Sicrai.pi Iy, @ [@le 2% pxllzoo (ke NH))

p s Bicraios =%, pllslador (kel)
[@lp I,y @nany s Sicraioi — pllgoon (ke (INH))

_ C: _ C:
i+ loarpaote 5 plpo aptd lgarpaocted <5 pllpo

~ cv ~
Llyp — Ollyp

Figure 8: Turn-based operational semantics of orchestrated-configurations systems

(1) f:pA G if
pllsoc —» o' Nl 6" — implies §' =1.
(2) pAZN G if 3f. [f:p oG]

Along the very same lines of the proof of Theorem 2.9, it is possible to show the
equivalence of 4" and —H9re".

Lemma C.5. Let p,o € ASC(C ASCl)) and f e Orch.
f:p"orChO' = fip—th)rChJ

C.1. Proof of Theorem 5.11(1). We can simply use the function f(-, () described in the
proof of Lemma B.13.

C.2. Proof of Theorem 5.11(2). We proceed as follows: given an orchestrator f such
that f : p 49" o (and hence f : p 4" o, by Lemma C.5) we build a regular tree which
corresponds to a tree in rts(p ||) (see Def. A.3) with no leaf of the form X. We can then
decorate such a tree so that it is easy to obtain a winning strategy for player C in G|,

We begin by showing how to get a regular tree out of a turn-based orchestrated system

Definition C.6. Let p,6 € ACll and f € Orch. We define the regular tree of the orches-
trated system p || y &, which we dub rt(p || s &), as follows:

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 45

let B={A:a,A:a,B:a,B:a|acN}

10
t(l|lyo) = |
0o
pllyo 5
t(pllyo) = /---\ if 3BEB.pllf5
T,---T,

5l 5 S s s B o
where {pi ||, i Yimin ={P' ;0" | pll;6 — p'lpd', BB}
and T; =rt(p; ||, 03) (i =1..n)

~ ~ . ~ ~ C ~ ~
rt(pllfo) = | if 3JaeN.jpllpec —%% @ lpd
T
where T = rt(p || s &)
o plyo o
rt(pllyo) = | if p#£Lland pllpo —4
X

Notice that the condition of the third clause in the above definition is actually nondeter-
ministic; so, strictly speaking, we are not defining a function. We can get a proper function
definition by any method through which it is possible to get rid of such an ambiguity. For
instance, by totally ordering the set N and considering the first element of its satisfying the
condition.

Lemma C.7. Let 5,6 € AC!) and f € Orch. f:p =2 5 iff in rt(p || £ &) all the leaves are
of the form 0 ||y &

Given rt(p || f o), we denote by rt(p || f o)~ the tree obtained out of rt(p || f o) by erasing
the orchestrators from the label of its nodes.
Lemma C.8. Let p,o € ASC(C ASCH)) and f € Orch. If f = p 42" o, then rt(p lfo)” e
rts(p || o).
Definition C.9. Let p,0 € ASC(C ASCH) and f € Orch. We define the strategy regular tree

of the orchestrated system p || y o, which we dub srt(p || f o), as follows:
let B={A:a,A:aB:aB:a@|aec N} and let srt-aux(p || 5,n) with p,6 € ASC and

46 BARBANERA AND DE’ LIGUORO

n € N be defined by

Lo
srt-aux(1 || s o,n) = | (n+1,C:v)
0f o
pliso 5
srt-aux(p || o,m) = (+1,8)/ - \n+1,8,) if IBEB.pllc —
Ty Ty

where p ||y & ﬁ»o pi Iy 73y Bi € B,i=1..n, and T; = srt-aux(p; || 5;,n + 1)

pllyo ,
srt-aux(p || 5,m) = nt1ca) if JaeN. o6 =%, §|pd
T
where T =rt(p || &)
pllyo
srt-aux(7 || 5,m) = | if p#£Lland jll& —A
X

hence
sit(p | s o) = srt-aux(p | 5 . 0).

The same observation we made after Definition C.6 holds here for what concerns the
third clause of the definition of srt-aux.

Notice that, by construction, srt(p || s o) is but a ”decorated” version of rt(p || o). We
hence get the following

Fact C.10. All the leaves of srt(p || f o) are of the form 0 || & if and only if all the leaves of
rt(p || o) are so.

Definition C.11. Given an orchestrated system p || f o, the strategy 3, for C in the game
ng - is defined as follows:
let e = (e - ey) be a finite play in G

plle
B (k+1,C:a) if (%)
Hle) = { 0 otherwise

(*) e is a sequence of labels in srt(p || s) from the root to a node of the form
a.p' + p" ||y .o’ + 0", and where where (k, 3) is the label of the arc above such a node
node (k = 0 if the node coincides with the root).

Fact C.12. Given an orchestrated system p || y o, the strategy ¥ is univocal.

Lemma C.13. Let f : p 49" 0. The strategy Y is unwocal and winning for C in the game

Gollo-

Proof. Let f: p =°°" o, then by Lemma C.5 we have that f: p 40" 0. By Lemma C.7, no
leaf in rt(p || r), and hence in rt(p || f o) (by Fact C.10), is of the form X. By definition of
Yy and by Lemma 2.16, it is winning for C in the game G, ,. It is also univocal by Fact

C.12. [

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 47

C.3. Proof of Theorem 5.11(3).

Let X be a univocal winning strategy for player C for the game G,,. We then take
into account the tree rty(p||o) as defined in Definition B.2. We show now how to get an
orchestrator such that f : p 49" o (and hence f : p 4") out of rtx(p| o).

By means of the following definition we shall be able to get an orchestrator out of a tree
in rts(p || o) which does not contain leaves of the form X.

Definition C.14. Let T € rts(p ||), the unproper orchestrator orch(T) (that is possibly
containing leaves of the form X) is defined as follows:

1o

orch(| > = 1
0f o
plle

orch(* /-+\) = Vieqrnorch(T:)
Ty---T,

where, for i = 1..n, T; € rts(p; || 0;) with p|| o R o’ and Y € {A,B}.

orch(|) = (@, a).orch(T)

where T € rts(p/ || o) with p |0 =%, o' || 0.

orch(y) = (a,a@).orch(T)

where T € rts(p’ || o’) with p|| o EL»o Pl

orch(]) = (a,@)".orch(T)

where pl|c=a.p+p |aoc+o" and T € rts(p|| o).

orch(|) - X

By the above definition it is immediate to check the following fact.

Fact C.15. Let T € rts(p || o) such that all its leaves are of the form 0 || &.
Then orch(T) is a proper orchestrator, i.e. it does not contain any leaf of the form ‘X’.

Lemma C.16. Let T € rts(p || o). The definition of orch(T) is well-founded

Proof. By the regularity of T. L]
Lemma C.17. Let T € rts(p || o) and let f = orch(T). Thenrt(p | fo)” =T.

Proof. By construction.]

48 BARBANERA AND DE’ LIGUORO

By Lemma B.3 we have that rty(p| o) is such that all its leaves are of the form 0 || &.
Let now f = orch(T). By Fact C.15, f is a proper orchestrator. By Lemma C.17 we have
that rt(p | o)™ =T. Sort(p || o)~, and hence rt(p || f 0), is such that all its leaves are of
the form O || 5. We now get the thesis by Lemma C.7.

C.4. Proof of Theorem 5.11(4).

Definition C.18. We define the procedure O2D by
02D(f,p,0) £ O2D-aux(f,0, p+ o)
where O2D-aux is defined as in Figure 9.

Lemma C.19. Let f be such that f : p =°" o holds.
Then O2D(f,p,o) terminates and O2D(f,p,0) :: > pAo

Proof. Similar to the proof of Lemma 5.7.]

O2D-aux(f,T,p o)

if p:lthen(Ax):FDlv“r

else ifpm|c7€I‘then(HYP):Fpvwbpvm

else if f=(ak ap).fandp=3,,;ip;and o=}, ;q;.0;
and k € INJ and D = O2D-aux(f", T, p o > pi A o) # fail

D
then (4. +) : —— else fail
I'>pyo
else if f=V,cxlar,ar).fr and p =@, ;@.p; and 0 = ZjeJ a;.o;
and K DI CJ
and for all s € I D; = O2D-aux(f;, I, p o > p; A 0;) # fail
VieID;)
then (¢.-+): —— else fail
I'>pdo
else if f=Viex(@,ar).frand p=3", ;a;.p; and 0 = P, ; a;.0;

and] D JCK
and for all j € J D; = O2D-aux(f;,I', pA o > p; | 0;) # fail
VjeJ D,

then (+- @) - else fail
pAo

else fail

Figure 9: The procedure O2D-aux.

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 49

APPENDIX D. PROOF OF PROPOSITION 5.15
(CORRECTNESS AND COMPLETENESS OF Synth)

Recall that in the algorithm Synth (defined in Figure 4) we are not considering orchestrators
up to recursion unfolding.

We prove now a version of Proposition 5.15, in which derivability in system >% (defined
in Figure 7) is taken into account instead of the orchestrated compliance relation. Given an
orchestrator f we denote by tree(f) its corresponding (possibly infinite) regular tree.

Lemma D.1.

(1) If f =Synth(0, p, o) # fail then X f : p {90,
(2) If X f : pA°™No then there exists g such that g =Synth((, p, o) with tree(f) = tree(g).

Proof.

(1) Immediate, since the procedure Synth is the formalisation of a proof search in System
X, as defined in Definition 5.1

(2) Given a derivation tree for X f : p %o, let us consider one path p starting from the
root, and such that
e p ends with an occurrence of (HYP): IV, x : p/ ONo’ X 22 p/ 4ONo!
e p contains more than one other judgments of the form I X f: o/
If no such a path exists, then any rule in the derivation does precisely correspond to
a clause of the algorithm Synth and hence the algorithm returns f. Otherwise, since
the rules of System D are such that the proof search is deterministic it is possible to
modify the derivation such that in the path from the root to the last judgment of p
there is just one other judgment of the form I X f” : o’ 49Ng’. The conclusion of the
new derivation will now be > ¢’ : pA%"g with tree(f) = tree(g’). We can now keep on
applying such a procedure until paths like p above no longer exists. L]

Orch O'/.

=

Now we can get Proposition 5.15 as a corollary of Lemma D.1, using Proposition 5.14,
Theorem B.9 and Proposition B.11.

APPENDIX E. PROOF OF THEOREM 6.22
(DERIVATIONS AS ORCHESTRATOR FUNCTORS)

Form now on, we consider orchestrators, contracts and functors as the (possibly infinite)
regular trees they represent. We consider now infinitary versions of >,, » and .
Definition E.1. We define

o ¥° as the system >, without rule (Hyp);
e P» as the system B without rule (Hyr-<«);
e > as the system > without rule (Hvp).

Moreover, infinite derivations are allowed in the above systems.
It is not difficult now to check the following lemma.

Lemma E.2.
(1) Do f . pm‘OrchU = I>%O f . meOrcho.
(2) oo & »° o<

50 BARBANERA AND DE’ LIGUORO

We now prove Theorem 6.22 by proceeding as follows: We first define a proof reconstruction

procedure R™ taking as argument two derivations D’ :: 2 f : p 9o and D" :: »°0 < o,

and, in case it does not fails, it produces a (possibly infinite) derivation D" in system >

partially decorated with orchestration actions. We then show that R does not fail and that the

derivation D" can be easily turned in a derivation D" is such that D :: 2 F(f) : p A9 "o,
Theorem 6.22 hence descends immediately by Theorem B.9 and Lemma E.2.

Definition E.3 (The algorithm R™). Let D' ::° f : p 9o and D" :: »¥° o < o’. The
algorithm R is defined by
R*(D', D") = Raux(D’, D”, ()

where R®aux is a procedure with an extra argument (an environment), defined by cases
according to the following clauses.We name the clauses with the name of the last rules
applied in the first two derivations.The algorithm fails in case no clause can be applied.

Clause *-(Ax-<):

\

N - o
R'aux<1“1 >y A% e 1w Y T) =T o110

Notice that it is not necessary to have a Clause *-(Ax), since in that case 0 = 1 and hence
also p = 1. This means that Clause (Ax)-x applies.

Clause (+-@)-(® - +-<):

\ v /
R°9aux(LR it pi A9 (Vi€ D)
1 0% Ve (@isai).fi s Sjerusag.p; AOrch P, Gi0i
where Fll =TIy, Vie[(a’ﬁ CL7,>fZ : ZjEIUJ aj.pj M‘OrCh Dicr a;.04

(heINK) T ¥ op <o} ®+-<) ,Fs)
Ty »° @ielai.0¢<<2k€1(ak.0';€
where I'y = T2, ;¢ @i-0; K gk ar-0,

\ D /
s, pAo’ 52 p:pp %Mo), (heINK)

— . Orch — ’
D3 5° (@n,an)t : Bjerusaj.p; A% Srexar.of,

+-@)

(+:+)

where

\ D / \ Di [\ P

T3, pA0’ 0° e pp A0y = R@aux(ﬂ B2 fi: pi A9 "oy Ty » op < oy, (T, p0"))

and p = Yjcrusaj.p; and o’ = Xpegay.o).

Clause (+ - +)-(+ +-<):

RETRACTABILITY, GAMES AND ORCHESTRATORS FOR SESSION CONTRACTS 51

P

R-aux(llbc:)o f/:pdercho_p (pGIﬁK) 1) 5
Iy 5% (ap,ap) . f : ShexOr-pr A
where Fll = F17 <ap,ap>+.f’ : EkeKak.pk v‘|orChEie[ai.O'i

NS era.0;

D;
Iy, »° o <o (Viel)) FS):
= 7 (- 4+-x)
T2 »° Yicraio < Yjerus;.oj
where I'y = I'z, Sicroi.0: < Ljerusa;.o)

\ o /
U3, pA0" 5° pu:ppAoy, (pe({UJ)NK)
T3 5 {ap,ap) T i pqo’

(+:+)

where

\ Dy / \ Dy [\ D]

F3,pm\or0ho'/ B 11 pp A 0-1/0 = Ro—oauX(F’l [0 1 P M‘Orcho.w FIQ ¥ o, < 0';), (T3, p 0/))

and p = Ypegai.pr and o’ = Eje[uJOéj.O';-,

Clause (& +)-(+ - +-<):
The construction follows a definition pattern similar to those of the previous clauses.

Clause (+ - @)-(¢ - &-<K):
The construction follows a definition pattern similar to those of the previous clauses.
Proposition E.4.
Let D' : 22 f: pA9 g and D" :: »° o < o', and let Fpr be defined as in Definition 6.18.
(1) The computation of R (D', D") never fails.
(2) R®(D',D") = D:: 1> pAo’, where D is decorated with orchestration actions. More-
over, out of D it is possible to get D such that D :: ° Fpi(f): pACho’.

Proof. By inspection of the clauses of the procedure, the computation never fails if we start
from D’ and D" as above.

Out of the (possible infinite) decorated derivation D is is possible to get an orchestrator f
such that f : p Ao’ (because of the regularity of the derivation tree D) and a derivation
D f : pA9No’. Besides, working on the form of the clauses of the procedure, it can be
shown that f = Fpr(f). [

Theorem 6.22 descends now as a corollary from the above proposition.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Overview of the paper.
	1. Affectible session contracts
	2. Game-theoretic interpretation of affectible contracts
	2.1. Multi-player games
	2.2. Turn-based operational semantics and compliance
	2.3. Three-player game interpretation for ASC client/server systems.

	3. Retractable operational semantics and retractable compliance.
	4. Orchestrated operational semantics and orchestrated compliance
	5. Linking up all together: Main Results.
	5.1. Soundness and Completeness of with respect to AC
	5.2. Characterizations of AC
	5.3. Getting strategies, derivations and orchestrators out of each other
	5.4. Orchestrator synthesis

	6. Subcontract relation: Definition and Main Results.
	6.1. A sound and complete formal system for
	6.2. Derivations as orchestrator functors

	7. Conclusion and Future Work
	References
	Appendix A. Proof of Proposition ?? (AC and tb equivalence).
	Appendix B. Proof of Main Theorem I (Theorem ??)
	B.1. Proof of ?? ?? of Theorem ?? (rbk = AC).
	B.2. Proof of Lemma ?? (BDLdL15) (Rollback properties)
	B.3. Proof of ?? ?? of Theorem ??
	B.4. Proof of ?? ?? of Theorem ??

	Appendix C. Proof of Main Theorem II (??) (Getting derivations, orchestrators and strategies out of each other)
	C.1. Proof of Theorem ????
	C.2. Proof of Theorem ????
	C.3. Proof of Theorem ????
	C.4. Proof of Theorem ????

	Appendix D. Proof of Proposition ?? (Correctness and completeness of Synth)
	Appendix E. Proof of Theorem ?? (Derivations as orchestrator functors)

