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Abstract. Normalisation in probability theory turns a subdistribution into a proper
distribution. It is a partial operation, since it is undefined for the zero subdistribution. This
partiality makes it hard to reason equationally about normalisation. A novel description of
normalisation is given as a mathematically well-behaved total function. The output of this
‘hyper’ normalisation operation is a distribution of distributions. It improves reasoning
about normalisation.

After developing the basics of this theory of (hyper) normalisation, it is put to use
in a similarly new description of conditioning, producing a distribution of conditional
distributions. This is used to give a clean abstract reformulation of refinement in quantitative
information flow.

1. Introduction

We start with the RGB colour model to illustrate normalisation of distributions. This model
describes each colour as an additive combination of the primary colours red (R), green (G)
and blue (B). It is standardly used in colour screens and cameras. We can write a colour C
for instance as sum:

C = 1
8 |R〉+ 1

4 |G〉+ 1
2 |B 〉 which is (colour) printed as C.

The ‘ket’ notation | − 〉 is used as meaningless syntactic sugar in such formal sums. We see
that the three weights add up to 1

8 + 1
4 + 1

2 = 7
8 . Normalisation, in its simplest form, re-scales

these weights so that they add up to one. This is done via division by their sum, as in:

nrm(C) =
1/8
7/8 |R〉+

1/4
7/8 |G〉+

1/2
7/8 |B 〉 = 1

7 |R〉+ 2
7 |G〉+ 4

7 |B 〉.

We see that in this normalised description nrm(C), the relative weights of the values is the
same, but their sum has been adjusted to one. We can understand nrm(C) as a formal
convex sum of R,G,B, that is, as a probability distribution over the set {R,G,B}. The
original colour C is called a subdistribution, since the sum of its values is below (sub) one.
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Normalisation of subdistributions (to distributions) is one of the fundamental operations
in probability theory. It forms the basis of many other constructions, notably of conditioning,
which is so important in calculating influences in Bayesian networks [2]. The problem with
normalisation is that it is a partial operation: it is undefined for the zero subdistribution —
of the form 0|R〉+ 0|G〉+ 0|B 〉 in the context of the above colour example. This partiality
makes it difficult to develop an equational system for normalisation.

The main contribution of this paper is a re-description of normalisation as a total
operation that satisfies various equations. This new, mathematically civilised formulation
makes use of ‘hyper’ distributions, that is, of distributions of distributions. Hence we
often refer to the new formulation as ‘hyper’ normalisation, in order to distinguish it
from traditional normalisation — illustrated in the earlier colour example. Our hyper
normalisation operation N takes the following form:

D(n ·A)
N // D

(
n · D(A)

)
The set A describes the sample space, and n is a natural number, used in the copower n ·A,
which produces n copies of A. A distribution ω ∈ D(n ·A) over the copower n ·A consists of
n subdistributions over A, over each of these copies of A. The normalisation N (ω) produces
a distribution of normalised distributions, by normalising these subdistributions in parallel,
each with weight proportional to the original subdistribution. How this works precisely is
explained in Section 3, once the notions of distribution and copower are described in detail.

Applying hyper normalisation in conditioning yields what we call ‘hyper’ conditioning.
It is again a total operation. The use of such hyper conditioning is briefly illustrated in
a Bayesian reasoning example, and more extensively in a re-description of refinement in
quantitative information flow. Since hyper normalisation satisfies various equations, for
which see Section 3, it may be a useful operation in languages for probabilistic programming
and reasoning; see e.g. [3, 27, 17, 1, 28, 16].

Actually, the whole idea of describing normalisation in ‘hyper’ form emerged from the
study of the ‘denotation of a channel’ construction in [19, 24, 22, 20]. Normalisation is an
implicit step in this construction, which is defined and characterised here as a separate,
explicit operation. The original denotation construction in information flow then re-appears
as hyper conditioning. We illustrate the close connection with a new, abstract proof of a
known result from the area (see Theorem 18 below).

In addition, there are two clear points of influence for the current work.

• Quantum probability theory. The systematic and formal description of aspects of probabil-
ity theory fits in a wider study of quantum foundations and probability theory [15, 9, 5, 16].
This influence becomes visible here in some of the notation, like the kets | − 〉, and in
some of the terminology, like tests and instruments. However, this quantum background
is not needed to follow what happens here.
• Category theory. Several descriptions, constructions and calculations in probability theory

can be greatly simplified by using the categorical notion of monad, concretely in the form
of the distribution monad D for discrete probability and the Giry monad G for continuous
probability, see [12] for more information. However, this categorical aspect is deliberately
suppressed here in order to reach a wider audience: the main ideas and constructions
of the paper are accessible, hopefully, to readers without such categorical background.
But the categorical influence is manifest, for instance in the frequent use of diagrams to
express equations.
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This paper focuses on normalisation and conditioning in discrete probability. The question
immediately arises: what about continuous or even quantum probability? This matter is
postponed to future work.

2. Mathematical background

2.1. Copowers. For a number n and a set A one commonly writes An for the n-fold cartesian
product A×· · ·×A of A with itself, consisting of all n-tuples of elements from A. Each function
f : A → B can be extended to fn : An → Bn by fn(a0, . . . , an−1) = (f(a0), . . . , f(an−1)).
More generally, for n different functions fi : A→ B we can define a map An → Bn that applies
fi to the i-th element in a tuple. This map is written as n-tuple 〈fi ◦ πi〉i<n : An → Bn,
where the maps πi are projections An → A. Finally, there is a diagonal map ∆: A→ An

sending an element a ∈ A to the diagonal n-tuple 〈a, . . . , a〉 ∈ An.
For n = 0, the power An is the singleton set, commonly written as 1. It contains only

the empty tuple. For each set B there is a unique function B → 1, which is written as !.
These sets An are called powers of A. There are also copowers n · A, given by the

cartesian product {0, . . . , n− 1} ×A. Its elements are thus pairs (i, a) where 0 ≤ i ≤ n− 1
and a ∈ A. We shall use ‘coprojection’ functions κi : A → n · A, given by κi(a) = (i, a).
As for powers, a function f : A → B gives rise to a function n · f : n · A → n · B, given
by κia 7→ κif(a). For different functions fi : A → B there is a map [κi ◦ fi]i<n mapping
κia ∈ n · A to κifi(a) ∈ n · B. Notice that the empty copower is the empty set 0. The
analogue of the diagonal map ∆: A→ An is the codiagonal ∇ : n ·A→ A sending each κia
to a. Clearly, it removes all the tags κi.

In line with these descriptions we write n not only for the natural number n ∈ N but
also for the n-element set {0, 1, . . . , n − 1}. Notice that 0 is then the empty set, 1 is the
singleton set {0}, and 2 = {0, 1} is the set of Booleans. We have 2 ∼= 2 ·1, and more generally
n ∼= n · 1. When the copower n ·A is read as product n×A, then ∇ is simply the second
projection π2 : n×A→ A. We freely switch between these descriptions.

(Categorically, the copower n ·A is the n-fold coproduct/sum A+ · · ·+A of sets, just
as the power An is the n-fold product A× · · · ×A. This coproduct description of copowers
generalises to other categories. The coincidence of copowers n ·A with products n×A for
sets does not work in general categories.)

2.2. Probability distributions. A (discrete) distribution over a ‘sample’ set A is a weigh-
ted combination of elements of A, where the weights are probabilities from the unit interval
[0, 1] that add up to 1. Here we only consider finite combinations and write them as:

ω = r1|a1 〉+ · · ·+ rn|an 〉 where

{
a1, . . . , an ∈ A
r1, . . . , rn ∈ [0, 1] with

∑
i ri = 1.

(2.1)

The ‘ket’ notation |a〉 is syntactic sugar, used to distinguish elements a ∈ A from their
occurrence in such formal convex sums. For instance, the uniform distribution of n-elements
a1, . . . , an is described as 1

n |a1 〉+ · · ·+ 1
n |an 〉, or more succinctly as

∑
i

1
n |ai 〉.

We write D(A) for the set of all (finite, discrete) distributions
∑

i ri|ai 〉 over A from (2.1).
Distributions are also called states; they express knowledge, in terms of likelihoods of
occurrence of elements of A. Notice that such a state ω ∈ D(A) can be identified with a
‘probability mass’ function ω : A→ [0, 1] with finite support supp(ω) = {a ∈ A | ω(a) 6= 0}
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and with
∑

a∈A ω(a) = 1. This function-description is often more convenient; we freely
switch between this function-description and the formal convex sum description in (2.1).

In formal convex sums like
∑

i ri|ai 〉 in (2.1) we implicitly use equations such as:
r|a〉 + s|b〉 = s|b〉 + r|a〉, and: r|a〉 + s|a〉 = (r + s)|a〉. Further, terms 0|a〉 do not
contribute to the sum and are omitted.

The elements of the set D(n) can be identified with n-tuples of non-negative real numbers
(r1, . . . , rn) with

∑
i ri = 1. The set D(n) is called the standard n− 1 simplex in topology.

A hyper distribution, according to [19, 20, 22, 24], is a distribution of distributions, that
is, an inhabitant of D2(A) = D(D(A)). There is ‘multiplication’ map µ : D2(A) → D(A)
turning a hyper distribution into an ordinary distribution, via:

µ
(∑

i ri|ωi 〉
)

=
∑

a
(
∑

i ri · ωi(a))
∣∣∣a〉. (2.2)

On the right hand side, the outer sum over a is a formal convex sum, whereas the inner sum
over i is an actual sum, in the unit interval [0, 1]. In this equation (2.2), the formal convex
sum and the function notation are mixed. We shall use the term ‘hyper distribution’ in
‘tagged’ form, as distribution on a copower n · D(A) of distributions, that is, as inhabitant
of D(n · D(A)).

The mapping A 7→ D(A) is functorial : it does not only work on sets, but also on
functions. Each function f : A → B gives rise to a function D(A) → D(B), for which we
use the overloaded notation D(f). It is given in the obvious way, like map-list in functional
programming:

D(f)
(∑

i ri|ai 〉
)

=
∑

i ri|f(ai)〉. (2.3)

The result is sometimes called the push-forward distribution. The sum on the right hand
side may involve fewer items than the original sum

∑
i ri|ai 〉, when f(ai) = f(aj) for certain

indices i 6= j. It is not hard to see that identity functions and compositions are preserved:
D(id) = id and D(g ◦ f) = D(g) ◦ D(f).

Marginalisation can be described via functoriality of D. For a distribution ω ∈ D(A×B)
on a product set, the marginalisations of ω are obtained as D(π1)(ω) ∈ D(A) and D(π2)(ω) ∈
D(B), via the two projections A

π1←− A×B π2−→ B. Explicitly:

D(π1)(ω) =
∑

a

(∑
b ω(a, b)

)∣∣∣a〉 and D(π2)(ω) =
∑

b

(∑
a ω(a, b)

)∣∣∣b〉.
2.3. Kleisli maps and Kleisli composition. The mapping A 7→ D(A) is an instance of
the categorical notion of monad. We shall suppress the categorical perspective, and stick
to rather concrete descriptions. It is not hard to see that a map of the form n → D(m)
corresponds to an m × n stochastic matrix, with n columns of m entries adding up to 1.
Matrix composition corresponds to a special form of function composition, which we shall
write as •. We often call • Kleisli composition, since it is composition in the so-called Kleisli
category associated with D, as monad.

We shall write f : A → B to express that f is a function A → D(B). Such a map is
sometimes called a conditional distribution, or just a conditional, since one can understand
f(a)(b) ∈ [0, 1] as the conditional probability P (b | a). The point of the notation A→ B is
that the letter ‘D’ can be suppressed in the codomain. A bit formally, we can write a state
ω ∈ D(A) as a Kleisli map ω : 1 → A, where 1 = {0} is the singleton set, as above. This
arrow formulation is useful in diagrams.
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If we have two such Kleisli maps A→ B and B → C, given by functions f : A→ D(B)
and g : B → D(C), then we write g • f = g∗ ◦ f : A→ C, where ◦ is ordinary composition,
and g∗ : D(B)→ D(C) is the ‘Kleisli lifting’ function defined by:

g∗

(∑
i ri|bi 〉

)
=
∑

c∈C
(
∑

i ri · g(bi)(c))
∣∣∣c〉. (2.4)

Abstractly, we can write g∗ = µ ◦ D(g).
When f, g are seen as matrices, then • is matrix composition. It is not hard to see

that Kleisli composition • is associative. Its unit is the ‘Dirac’ map η : A→ D(A) given by
‘point’ distributions η(a) = 1|a〉. In various calculations we shall use the following basic
equations about Kleisli extension (−)∗; they hold for monads in general. Proofs are left to
the interested reader.

Lemma 1. The above definition (2.4) satisfies:

(1) g∗ ◦ η = g;
(2) η∗ = id;
(3) (η ◦ f)∗ = D(f);
(4) D(h) ◦ g∗ = (D(h) ◦ g)∗;
(5) g∗ ◦ f∗ = (g • f)∗. �

The following special maps play an important role in the sequel.

Definition 2. Let A,B be arbitrary sets. There are two strength functions:

D(A)×B st1 // D(A×B) A×D(B)
st2 // D(A×B)

st1(
∑

i ri|ai 〉, b)
� //

∑
i ri|ai, b〉 st2(a,

∑
i ri|bi 〉)

� //
∑

i ri|a, bi 〉
(2.5)

For a function f : A→ D(B) there is a graph function:

A
gr(f)

// D(B ×A) via gr(f)(a) =
∑

b f(a)(b)|b, a〉. (2.6)

If we write tw = 〈π2, π1〉 : A× B
∼=−→ B × A for the ‘twist’ map, then we see that the

two strength maps are related via st2 ◦ tw = D(tw) ◦ st1. These strength functions sti make
D a ‘strong monad’, a basic notion in functional programming. The graph map can be
defined abstractly as gr(f) = st1 ◦ 〈f, id〉, as in [7].

We need some basic results about how strength and graph interact with marginalisation,
as succinctly expressed in the following diagrams.

D(A) D(A×B)
D(π1)
oo

D(π2)
// D(B) D(B) D(B ×A)

D(π1)
oo

D(π2)
// D(A)

D(A)×B

st1

OO

π2
//

π1

ee

B

η

OO

A

gr(f)

OO

f

ee

η

99

(2.7)

These results are easily verified. On an abstract level, the rectangle on the left follows from
the fact that D is a ‘strongly affine’ monad; see [10, 12].
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2.4. Normalisation, traditionally. In (2.1) we have seen that in a distribution
∑

i ri|ai 〉
the weights ri ∈ [0, 1] add up to one. We speak of a subdistribution when the sum is below
one, that is, when

∑
i ri ≤ 1. What we call normalisation, in the traditional sense, is the

process of turning a subdistribution into a proper distribution by adjusting the weights
so that they add up to one — as illustrated in the RGB example at the very beginning
of this article. Normalisation is a partial operation that can be described as follows. If
ω =

∑
i ri|ai 〉 is a subdistribution we first take the sum r =

∑
i ri of all weights; if r 6= 0,

then we can readjust the original weights to form a proper distribution:

nrm(ω) =
∑

i
ri
r |ai 〉. (2.8)

By construction nrm(ω) is a distribution since its weights add up to one:
∑

i
ri
r = r

r = 1.
Via the graph construction in Definition 2 one can produce a joint distribution on a set

B ×A from a Kleisli map (conditional) A→ D(B). The reverse process is sometimes called
disintegration. We shall concentrate on the special case of joint distributions on copowers
n ·A = n×A.

If have a ‘joint’ distribution Ω ∈ D(n ·A) on a copower n ·A we obtain for each element
a ∈ A a subdistribution on n, namely:

Ωa =
∑

i Ω(κia)|i〉. (2.9)

Normalisation of these subdistributions is what we call pointwise normalisation. It is crucial
in the following result showing how a conditional A→ D(n) can be associated with a joint
distribution on n · A. It can be seen as a discrete version of e.g. [6, Prop. 3.3] and [25,
Prop. 6.7]. The existence of such ‘regular conditional probability’ in (continuous) measure
theory is a consequence of the Radon-Nikodym Theorem. Here, in the discrete setting,
things are much simpler.

Proposition 3. There is a bijective correspondence between Ω above the double lines and
pairs (f, ω) below, in:

Ω ∈ D(n ·A) with supp
(
D(π2)(Ω)

)
= A

============================================
A

f
// D(n) and ω ∈ D(A) with supp(ω) = A

The side-condition r 6= 0 in normalisation (2.8) translates in this pointwise formalisation
into the requirement that the support of the relevant distributions is the whole set A.

Proof In the upward direction we define Ω(κi(a)) = ω(a) · f(a)(i). More formally, we first
take the graph gr(f) : A→ D(n ·A) from Definition 2 and then obtain a joint distribution
by applying its Kleisli extension to ω ∈ D(A), as in:

Ω = gr(f)∗(ω) =
∑

i,a
ω(a) · f(a)(i)

∣∣∣κia〉 ∈ D(n ·A). (2.10)

We show that D(π2)(Ω) = ω in two ways. First we reason with distributions:

D(π2)(Ω) =
∑

a

(∑
i ω(a) · f(a)(i)

)∣∣a〉
=
∑

a

(
ω(a) ·

∑
i f(a)(i)

)∣∣a〉
=
∑

a

(
ω(a) · 1

)∣∣a〉 since f(a) ∈ D(n)

= ω.
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A more abstract proof uses Lemma 1 and Diagram (2.7):

D(π2)(Ω) =
(
D(π2) ◦ gr(f)∗

)
(ω) =

(
D(π2) ◦ gr(f)

)
∗(ω) = η∗(ω) = ω.

Hence supp
(
D(π2)(Ω)

)
= supp(ω) = A.

In the other direction, given Ω ∈ D(n · A) we take ω = D(π2)(Ω) = D(∇)(Ω) ∈ D(A)
and use the subdistribution (2.9) to define a function f : A→ D(n) via normalisation:

f(a) = nrm(Ωa) =
∑

i

Ω(κia)∑
i Ω(κia)

∣∣∣i〉 =
∑

i

Ω(κia)
ω(a)

∣∣∣i〉. (2.11)

This is well-defined since supp(ω) = A, so that ω(a) =
∑

i Ω(κia) 6= 0, for each a ∈ A.
We show that Ω re-appears via the formula (2.10):

gr(f)∗(ω) =
∑

i,a
ω(a) · f(a)(i)

∣∣κia〉 =
∑

i,a
Ω(κia)

∣∣κia〉 = Ω.

We leave it to the interested reader to show that first applying (2.10) to f, ω and then (2.11)
yields the original pair f, ω. �

Since distributions in the current setting always have finite support, the assumptions
supp

(
D(π2)(Ω)

)
= A and supp(ω) = A in Proposition 3 imply that A must be a finite set.

Hence we could identify A with a finite set m.

3. Hyper normalisation

Having seen these preliminary definitions and results, we can turn to our new description of
normalisation in ‘hyper’ form. It will be a function N of the following type.

D
(
n ·A

) N // D
(
n · D(A)

)
This normalisation mapN thus sends a distribution over a copower of a set A to a distribution
over a copower of distributions over A. Before defining the map N in full generality we give
an illustration of how it works.

Consider a finite set A = {a, b, c, d} and number n = 3. Let’s start from the distribution
ω ∈ D(3 ·A) given by:

ω = 1
8 |κ0a〉+ 1

4 |κ0b〉+ 1
2 |κ1c〉+ 1

8 |κ1d〉.
This distribution contains elements a, b ∈ A from the first sum component in the copower
3 ·A = A+A+A, and elements c, d ∈ A from the second component, and nothing from the
third component. There are associated subdistributions ωi, for i ∈ 3, are given by:

ω0 = 1
8 |a〉+ 1

4 |b〉 ω1 = 1
2 |c〉+ 1

8 |d〉 ω2 = 0.

We see that these subdistributions ωi aggregate the items in ω from the same component
— i.e. with the same coprojection κi. Normalisation turns these subdistributions ωi into
proper ‘inner’ distributions in N (ω) via normalisation as in (2.8), while keeping track of
their origin. That is, N (ω) ∈ D

(
3 · D(A)

)
= D

(
D(A) +D(A) +D(A)

)
is given by:

N (ω) = 3
8

∣∣∣κ0(nrm(ω0))
〉

+ 5
8

∣∣∣κ1(nrm(ω1))
〉

+ 0
∣∣∣κ1(nrm(ω2))

〉
= 3

8

∣∣∣κ0(
1/8
3/8 |a〉+

1/4
3/8 |b〉)

〉
+ 5

8

∣∣∣κ1(
1/2
5/8 |c〉+

1/8
5/8 |d〉)

〉
.

= 3
8

∣∣∣κ0(1
3 |a〉+ 2

3 |b〉)
〉

+ 5
8

∣∣∣κ1(4
5 |c〉+ 1

5 |d〉)
〉
.
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The outer distribution is a convex combination 3
8 | − 〉+

5
8 | − 〉+ 0| − 〉 of inner distributions,

where the weights 3
8 = 1

8 + 1
4 and 5

8 = 1
2 + 1

8 and 0 are the normalisation factors for ω0

and ω1 and ω2. Notice that the third term 0
∣∣κ1(nrm(ω2))

〉
in the above first line of N (ω)

disappears because of the weight 0 upfront. This is good news, because normalisation of the
zero subdistribution ω2 is not defined. Hence the hyper formulation deals with undefinedness
in a natural way: it disappears automatically.

We are now ready for the general description of hyper normalisation.

Definition 4. Let A be a set, and n be a natural number. The hyper normalisation map
N : D

(
n ·A

)
→ D

(
n · D(A)

)
is defined as:

N (ω) =
∑

0≤i≤n−1
ω[i]6=0

ω[i]
∣∣∣κi(∑a∈A

ω(κia)
ω[i] |a〉

)〉
(3.1)

where:
ω[i] =

∑
a ω(κia) so that

∑
i ω[i] = 1.

Notice that each inner distribution
∑

a∈A
ω(κia)
ω[i] |a〉 in D(A) is the normalisation (2.8) of the

subdistribution ωi =
∑

a ω(κia)|a〉. It is well-defined, since ω[i] =
∑

a ω(κia) 6= 0 in the
above formal convex sum (3.1) and:∑

a
ω(κia)
ω[i] =

∑
a ω(κia)
ω[i] = ω[i]

ω[i] = 1.

For n ≤ 1 the map N : D(n ·A)→ D(n · D(A)) is trivial: if n = 0, then n ·A = 0 = n · D(A),
so that N is the identity map on the empty set 0 = D(0). For n = 1 we have 1 ·A ∼= A and
1 · D(A) ∼= D(A), so that the map N : D(1 · A) → D(1 · D(A)) can be identified with the
unit / Dirac map η : D(A)→ D(D(A)), sending ω to 1|ω 〉. We prefer not to exclude these
trivial border cases, to avoid unnecessary side conditions.

One can call a distribution ω ∈ D(n ·A) normalised if each κi occurs at most once in
ω. More formally, this can be expressed as N (ω) = D(n · η)(ω), so that N (ω) consists of
point distributions ri|κiη(a)〉, for subexpressions ri|κia〉 in ω. The fact that N (ω) is itself
normalised occurs in point (3) below.

The hyper normalisation map N is mathematically quite civilised: it satisfies some basic
equations, listed below. These equations are formulated — in categorical style — in terms
of commuting diagrams, so that the relevant types are clearly visible.

Lemma 5. The hyper normalisation map N from Definition 4 makes the diagrams below
commute.

(1) Normalising trivial input gives trivial output:

D(A)
D(κi)

//

κi
��

D(n ·A)

N
��

D(n)×A st1 //

id×η
��

D(n ·A)

N
��

n · D(A) η
// D(n · D(A)) D(n)×D(A)

st1
// D(n · D(A))

(3.2)
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(2) Destroying the output structure destroys normalisation:

D(n ·A)
N //

D(n·!)=D(π1)
��

D(n · D(A))

D(n·!)=D(π1)
��

D(n ·A)
N //

D(∇)=D(π2)
��

D(n · D(A))
D(∇)

// D(D(A))

µ

��

D(n) D(n) D(A) D(A)

(3.3)

(3) Normalisation is idempotent:

D(n ·A)
N //

N
��

D(n · D(A))

N
��

D(n · D(A))
D(n·η)

// D(n · D2(A))

(3.4)

And thus:

D(n ·A)
N //

N
��

D(n · D(A))
N // D(n · D2(A))

D(n·µ)

��

D(n · D(A)) D(n · D(A))

(3.5)

(4) Normalisation can be undone: it has a left inverse (is a split mono):

D(n ·A)
N // D(n · D(A))

(st2)∗
��

D(n ·A)

(3.6)

(5) Normalisation is natural both for ordinary functions and for Kleisli maps: for all functions
f : A→ B and g : A→ D(B) the following diagram commutes.

D(n ·A)
N //

D(n·f)

��

D(n · D(A))

D(n·D(f))

��

D(n ·A)
N //

(n·g)∗
��

D(n · D(A))

D(n·g∗)
��

D(n ·B)
N // D(n · D(B)) D(n ·B)

N // D(n · D(B))

(3.7)

We write n · g : n · A → D(n · B) for the function κia 7→
∑

b g(a)(b)|κib〉, that is,
n · g = st2 ◦ (idn × g). Commutation of the first rectangle in (3.7) follows from
commutation of the second one, for g = η ◦ f . But we prefer to make this special (first)
case explicit.

Proof (1) For the first diagram in (3.2) we have for ϕ ∈ D(A),(
N ◦ D(κi)

)
(ϕ) = N

(
D(κi)

(∑
a ϕ(a)|a〉

))
= N

(∑
a ϕ(a)|κia〉

)
= 1

∣∣κi(∑a ϕ(a)|a〉)
〉

= 1
∣∣κiϕ〉

=
(
η ◦ κi

)
(ϕ).
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Commutation of the second diagram is obtained via:(
N ◦ st1

)
(
∑

i ri|i〉, a) = N
(∑

i ri|κia〉
)

=
∑

i ri
∣∣κi(1|a〉)〉

= st1(
∑

i ri|i〉, 1|a〉)
=
(
st1 ◦ (id × η)

)
(
∑

i ri|i〉, a).

(2) For the first diagram in (3.3) we first note that:

D(π1)(ω) = D(π1)
(∑

i,a ω(κia)|κia〉
)

=
∑

i,a ω(κia)|π1(κia)〉
=
∑

i,a ω(κia)|i〉
=
∑

i(
∑

a ω(κia))|i〉
=
∑

i ω[i]|i〉.

Via a similar but simpler calculation one also gets D(π1)
(
N (ω)

)
=
∑

i ω[i]|i〉.
For the second diagram in (3.3) we have:(

µ ◦ D(π2) ◦ N
)
(ω) =

(
µ ◦ D(π2)

)(∑
i ω[i]

∣∣κi(∑a∈A
ω(κia)
ω[i] |a〉

)〉)
= µ

(∑
i ω[i]

∣∣ ∑
a∈A

ω(κia)
ω[i] |a〉

〉)
(2.2)
=
∑

a(
∑

i ω[i] · ω(κia)
ω[i] )|a〉

=
∑

a(
∑

i ω(κia))|a〉
= D(π2)

(∑
a,i ω(κia)|κia〉

)
= D(π2)(ω).

(3) Normalisation is idempotent since for ω ∈ D(n ·A),(
N ◦ N

)
(ω) = N

(∑
i
ω[i]
∣∣κi(∑a

ω(κia)
ω[i] |a〉

)〉)
=
∑

i
ω[i]
∣∣∣κi(1∣∣ ∑a

ω(κia)
ω[i] |a〉

〉)〉
= D(n · η)

(∑
i
ω[i]
∣∣κi(∑a

ω(κia)
ω[i] |a〉

)〉)
=
(
D(n · η) ◦ N

)
(ω).

Commutation of (3.5) is now easy:

D(n · µ) ◦ N ◦ N (3.4)
= D(n · µ) ◦ D(n · η) ◦ N
= D(n · (µ ◦ η)) ◦ N
= N
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(4) Recall from Definition 2 that st2(κiϕ) =
∑

a ϕ(a)|κia〉. Hence:(
(st2)∗ ◦ N

)
(ω) =

(
µ ◦ D(st2)

)(∑
i
ω[i]
∣∣κi(∑a

ω(κia)
ω[i] |a〉

)〉)
= µ

(∑
i
ω[i]
∣∣ ∑

a
ω(κia)
ω[i] |κia〉

〉)
=
∑

i,a

(
ω[i] · ω(κia)

ω[i]

)
|κia〉

=
∑

i,a
ω(κia)|κia〉

= ω.

(5) We only (need to) prove commutation of the diagram on the right in (3.7). So let
g : A→ D(B) be given. Then, for ω ∈ D(n ·A),(

N ◦ (n · g)∗
)
(ω) = N

(∑
i,b(
∑

a ω(κia) · g(a)(b))
∣∣κib〉)

=
∑

i
ω[i]
∣∣∣κi(∑b

∑
a ω(κia)·g(a)(b)

ω[i] |b〉
)〉

since
∑

b,a ω(κia) · g(a)(b)

=
∑

a ω(κia) · (
∑

b g(a)(b))

=
∑

a ω(κia)

= ω[i]

=
∑

i
ω[i]
∣∣∣κi(g∗(∑a

ω(κia)
ω[i] |a〉

))〉
= D(n · g∗)

(∑
i
ω[i]
∣∣∣κi(∑a

ω(κia)
ω[i] |a〉

)〉)
=
(
D(n · g∗) ◦ N

)
(ω). �

We need the following auxiliary map for the subsequent next result about hyper normal-
isation.

Definition 6. Let A be a set and n ∈ N an arbitrary number. We define a ‘sprinkle’
function

D(n)×D(A)n
spr
// D(A)

by:

spr
(
(r1, . . . , rn), (ϕ1, . . . , ϕn)

)
=
∑

i riϕi =
∑

a
(
∑

i ri · ϕi(a))
∣∣a〉.

This function spr thus sprinkles the convex n-tuple r1, . . . , rn of probabilities over the n-
tuple of distributions ϕ1, . . . , ϕn ∈ D(A), and produces a new distribution over A, namely the
convex sum of the ϕi. This works because the set D(A) is a convex set, in which such convex
sums

∑
i riϕi exist. More abstractly, the sprinkle map can be obtained from strength followed

by evaluation and multiplication: D(n)×D(A)n → D(n×D(A)n)→ D(D(A))→ D(A).
Our next result about normalisation is an equational characterisation. It says that N is

the unique function satisfying N
(∑

i riD(κi)(ϕi)
)

=
∑

i ri|κi(ϕi)〉. As before, this equation
is expressed in diagrammatic form.
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Theorem 7. For each set A and number n, the normalisation map N is the unique map
h : D(n ·A)→ D(n · D(A)) making the following diagram commute.

D(n)×D(A)n
id×〈D(κi)◦πi〉i

//

id×〈κi◦πi〉i
��

D(n)×D(n ·A)n
spr

// D(n ·A)

h
��

D(n)× (n · D(A))n
id×ηn

// D(n)×D
(
(n · D(A))

)n
spr

// D(n · D(A))

where spr is the sprinkle map from Definition 6.

Proof We first show that the map N as introduced in Definition 4 makes the above rectangle
commute. (

N ◦ spr ◦ (id × 〈D(κi) ◦ πi〉i)
)
((r1, . . . , rn), (ϕ1, . . . , ϕn))

=
(
N ◦ spr

)
((r1, . . . , rn), (D(κ1)(ϕ1), . . . ,D(κn)(ϕn)))

= N
(∑

i ri(
∑

a ϕi(a)|κia〉)
)

= N
(∑

i,a ri · ϕi(a)|κia〉
)

=
∑

i ri
∣∣κi(∑a ϕi(a)|a〉)

〉
=
∑

i ri
∣∣κi(ϕi)〉

= spr
(
(r1, . . . , rn), (1|κ1(ϕ1)〉, . . . , 1|κn(ϕn)〉))

=
(
spr ◦ (id × ηn) ◦ (id × 〈κi ◦ πi〉i)

)
((r1, . . . , rn), (ϕ1, . . . , ϕn)).

Next, let h : D(n · A) → D(n · D(A)) make the above diagram commute. Then, for
ω ∈ D(n ·A),

h(ω) = h
(∑

a,i ω(κia)|κia〉
)

= h
(∑

i,ω[i] 6=0 ω[i](
∑

a
ω(κia)
ω[i] |κia〉)

)
= h

(∑
i,ω[i] 6=0 ω[i]D(κi)(

∑
a
ω(κia)
ω[i] |a〉)

)
=
(
h ◦ spr ◦ (id × 〈D(κi) ◦ πi〉i)

)
((ω[1], . . . , ω[n]), (ϕ1, . . . , ϕn))

where ϕi =

{∑
a
ω(κia)
ω[i] |a〉 if ω[i] 6= 0

arbitrary otherwise

=
(
spr ◦ (id × η) ◦ (id × 〈κi ◦ πi〉i)

)
((ω[1], . . . , ω[n]), (ϕ1, . . . , ϕn))

= spr
(
(ω[1], . . . , ω[n]), (1|κ1(ϕ1)〉, . . . , 1|κn(ϕn)〉)

)
=
∑

i ω[i]
∣∣κiϕi 〉

=
∑

i ω[i]
∣∣κi(∑a

ω(κia)
ω[i] |a〉)

〉
= N (ω). �

In Lemma 5 (5) we have seen naturality of the normalisation map N : D(n · A) →
D(n · D(A)) in the parameter A. But what about naturality in the other parameter n? This
also exists, but in more complicated form.
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Lemma 8. For a Kleisli map h : n→ D(m) write h ·A = st1 ◦ (h× id) : n ·A→ D(m ·A)
for the map κia 7→

∑
j h(i)(j)|κja〉. The following diagram then commutes.

D(n ·A)

(h·A)∗
��

N // D(n · D(A))
(h·D(A))∗

// D(m · D(A))
N // D(m · D2(A))

D(m·µ)

��

D(m ·A)
N

// D(m · D(A))

(3.8)

Proof For ω ∈ D(n ·A) we compute:(
D(m · µ) ◦ N ◦ (h · D(A))∗ ◦ N

)
(ω)

=
(
D(m · µ) ◦ N ◦ (h · D(A))∗

)(∑
i
ω[i]
∣∣κi(∑a

ω(κia)
ω[i] |a〉

)〉)
=
(
D(m · µ) ◦ N

)(∑
i,j
h(i)(j) · ω[i]

∣∣κj(∑a
ω(κia)
ω[i] |a〉

)〉)
= D(m · µ)

(∑
j

(∑
i h(i)(j) · ω[i]

)∣∣κj(∑i
h(i)(j)·ω[i]∑
i h(i)(j)·ω[i] ·

(∑
a
ω(κia)
ω[i] |a〉

))〉)
=
∑

j

(∑
i h(i)(j) · ω[i]

)∣∣κj(∑a

(∑
i

h(i)(j)·ω[i]∑
i h(i)(j)·ω[i] ·

ω(κia)
ω[i]

)
|a〉
)〉

=
∑

j

(∑
i h(i)(j) · ω[i]

)∣∣κj(∑a

∑
i h(i)(j)·ω(κia)∑
i h(i)(j)·ω[i] |a〉

)〉
=
∑

j

(∑
i,a h(i)(j) · ω(κia)

)∣∣κj(∑a

∑
i h(i)(j)·ω(κia)∑

i,a h(i)(j)·ω(κia) |a〉
)〉

= N
(∑

j,a

(∑
i h(i)(j) · ω(κia)

)∣∣κja〉)
=
(
N ◦ (h ·A)∗

)
(ω). �

Remark 9. Normalisation N : D(n ·A)→ D(n · D(A)) is not an affine map, that is, it does
not preserve convex combinations. We describe a simple counterexample, for A = {a, b} and
n = 2.

1
4N (1|κ0a〉) + 3

4N (1|κ0b〉) = 1
4

(
1|κ0(1|a〉)〉

)
+ 3

4

(
1|κ0(1|b〉)〉

)
= 1

4 |κ0(1|a〉)〉+ 3
4 |κ0(1|b〉)〉

N
(

1
4(1|κ0a〉) + 3

4(1|κ0b〉)
)

= N
(

1
4 |κ0a〉+ 3

4 |κ0b〉
)

= 1|κ0(1
4 |a〉+ 3

4 |b〉)〉.

One may ask how pointwise normalisation from Proposition 3 and hyper normalisation
are related. This requires some preparatory work, where we use a ‘twisted’ version of
Proposition 3, using the twist map tw = 〈π2, π1〉. For a distribution ω ∈ D(n ·A) we write
ωtw = D(tw)(ω) ∈ D(A× n) and assume that ω1 = D(π1)(ω) = D(π2)(ωtw) ∈ D(n) satisfies
supp(ω1) = n. Notice that ω1(i) =

∑
a ω(κia) = ω[i], as introduced in Definition 4. Via

Proposition 3 we can write ωtw = gr(f)∗(ω1), for the unique conditional f : n→ D(A). This
map f is, basically as described in (2.11):

f(i) = nrm(ωi) =
∑

a

ω(κia)∑
a ω(κia)

∣∣a〉 =
∑

a

ω(κia)
ω[i]

∣∣a〉 (3.9)

We see that these f(i)’s are the normalised ‘inner’ distributions occurring in the formula for
N (ω) in Definition 4. The next result describes this situation in a precise manner.

Proposition 10. Let ω ∈ D(n·A) be a distribution whose twisted version ωtw = D(tw)(ω) ∈
D(A× n) has conditional f : n→ D(A), so that:

ωtw = gr(f)∗(ω1) where ω1 = D(π1)(ω).
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The hyper normalisation N (ω) ∈ D(n · D(A)) of ω can then be described via the adapted
conditional η ◦ f : n→ D(D(A)) as:

N (ω)tw = gr(η ◦ f)∗(ω1) ∈ D(D(A)× n).

Proof We first notice that the graph function gr(η ◦ f) : n → D(D(A) · n) is given by
gr(η ◦ f)(i) = 1|f(i), i〉, see Definition 2. Then:

gr(η ◦ f)∗(ω1)
(2.4)
=
∑

i,ϕ

(∑
j ω1(j) · gr(η ◦ f)(j)(ϕ, i)

)∣∣κiϕ〉
=
∑

i,ϕ
ω[i]
∣∣f(i), i

〉
(3.9)
=
∑

i
ω[i]
∣∣tw(κi(∑a

ω(κia)
ω[i]

∣∣a〉))〉
(3.1)
= D(tw)

(
N (ω)

)
= N (ω)tw. �

3.1. Comparison to other formulations of normalisation. We briefly compare our
‘hyper’ approach to normalisation to other approaches. First, in [15] normalisation is defined
for non-zero subdistributions. A subdistribution on A is a subconvex combination

∑
i ri|ai 〉

with
∑

i ri ≤ 1. It may be identified with a distribution ω ∈ D(A + 1) on A + 1, of the
form

∑
i≤n ri|κ1ai 〉+ rn+1|κ20〉, where rn+1 = 1− (

∑
i ri) is the ‘one-deficit’ capturing the

probability of non-termination; see also [23, 21]. This ω is non-zero if rn+1 6= 1. In that case
we can normalise it to

∑
i

ri
1−rn+1

|ai 〉. This process is described abstractly in [15].

We sketch how it fits in the current setting. We first map ω ∈ D(A+1) to the distribution
ω′ ∈ D

(
(A+ 1) + (A+ 1)

)
, given by ω′ = D(κ1 + κ2)(ω). Applying our hyper normalisation

operation N : D
(
(A+ 1) + (A+ 1)

)
→ D

(
D(A+ 1) +D(A+ 1)

)
yields N (ω′) of the form:

(1− rn+1)
∣∣∣κ1

(
r1

1−rn+1
|κ1a1 〉+ · · ·+ rn

1−rn+1
|κ1an 〉

)〉
+ rn+1

∣∣∣κ2

(
1|κ20〉

)〉
.

The normalised distribution now appears as the first inner component.
Second, in [28] normalisation is defined wrt. a ‘score’. We slightly adapt its description,

so that it fits in the current setting. Normalisation like in [28] can then be described as a
partial function D([0, 1]×A)→ D(A). The number in [0, 1] in the input type D([0, 1]×A)
is called the score. It is a non-negative real number in [28], but here we restrict it to the
unit interval. It allows us to massage the input type via a strength map, so that it becomes
a subdistribution that can be normalised, as above. We use that [0, 1] ∼= D(2) in:

D
(
[0, 1]×A

)
o

D
(
D(2)×A

) D(st1)
// D(D(2×A)

)
o

D
(
D(A+A)

) µ
// D(A+A)

D(id+!)
// D(A+ 1)

This form of normalisation sends a distribution
∑

i ri|(si, ai)〉 ∈ D
(
[0, 1]×A

)
, with scores

si, to
∑

i
ri·si∑
i ri·si

|ai 〉 ∈ D(A). It is only defined if
∑

i ri · si 6= 0.
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4. Normalisation as distributive law

This section is meant for the categorically proficient reader, knowing about (co)monads and
distributive laws — see e.g. [11] for more information. It can be skipped safely, since it
presents only a categorical curiosity. This section shows that hyper normalisation N forms
a distributive law, between a comonad and a functor. It is not a distributive law between
two comonads, since one of the counit laws fails to hold — whereas the corresponding
comultiplication law does hold.

The standard adjunction K̀ (D) � Sets between a Kleisli category and its underlying
category induces a comonad on K̀ (D), which shall write as D. On objects it is given by
X 7→ D(X). It sends a map f : X → D(Y ) to D(f) = η ◦ f∗ = η ◦ µ ◦ D(f) : D(X) →
D2(Y ). The counit ε : D(X)→ X is the identity map D(X)→ D(X). The comultiplication

δ : D(X)→ D2
(X) is η ◦ η = D(η) ◦ η.

For each n ∈ N the n-fold copower n · (−) is a comonad on a category with finite
coproducts. This is also the case on the Kleisli category K̀ (D). In this case we describe it
with a star n ∗ (−), to distinguish it from n · (−) on Sets. For a map f : X → D(Y ) we get
n ∗ f : n ∗X → D(n ∗Y ) given by st2 ◦ (idn× f). Explicitly, (n ∗ f)(κix) =

∑
y f(x)(y)|κiy 〉.

The counit ε : n ∗X → X is η ◦ ∇. The comultiplication δ : n ∗X → n ∗ (n ∗X) is the map
η ◦ (κ1 + · · ·+ κn) = [η ◦ κi ◦ κi]i.

Thus we are looking at a situation:

K̀ (D)

a
��

n∗(−)
nn

D
00

Sets

BB

D
OO

where D(n ∗ (−))
N +3 n ∗ D(−) (4.1)

The normalisation operation N is a map NA : D(n ∗ A) → n ∗ D(A) in K̀ (D). It is
natural by (3.7), since for a map f : A→ B in K̀ (D),

(n ∗ D)(f) • NA = µ ◦ D(st2 ◦ (id ×D(f))) ◦ N
= µ ◦ D(st2 ◦ (id × η) ◦ (id × f∗)) ◦ N
= µ ◦ D(η ◦ (id × f∗)) ◦ N
= D(id × f∗) ◦ N

(3.7)
= NB ◦ (n ∗ f)∗

= µ ◦ η ◦ NB ◦ (n ∗ f)∗

= µ ◦ D(NB) ◦ η ◦ (n ∗ f)∗

= NB • D(n ∗ f).
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The normalisation map N commutes appropriately with the comultiplication maps of
the two comonads, as expressed in the two rectangles:

D(n ∗A) •
δn∗A //

•NA

��

D2
(n ∗A)

•D(NA)
��

D(n ∗A) •
D(δA)

//

•NA

��

D(n ∗ (n ∗A))

•Nn∗A
��

D(n ∗ D(A))

•ND(A)
��

n ∗ D(n ∗A)

•n∗NA

��

n ∗ D(A) •
n∗δA

// n ∗ D2
(A) n ∗ D(A) •

δD(A)

// n ∗ (n ∗ D(A))

Commutation of the diagram on the left follows from (3.4):

ND(A) • D(NA) • δn∗A
= µ ◦ D(N ) ◦ µ ◦ D(η ◦ µ ◦ D(N )) ◦ η ◦ η
= µ ◦ D(N ◦ µ ◦ D(N )) ◦ η ◦ η
= µ ◦ η ◦ N ◦ µ ◦ D(N ) ◦ η
= N ◦ µ ◦ η ◦ N
= N ◦ N

(3.4)
= D(id × η) ◦ N
= µ ◦ D(η ◦ (id × η)) ◦ N
= µ ◦ D(st2 ◦ (id × (η ◦ η))) ◦ N
= (n ∗ δA) • NA.

The above diagram on the right requires more work:(
n ∗ NA • Nn∗A • D(δA)

)
= µ ◦ D(n ∗ NA) ◦ µ ◦ D(Nn∗A) ◦ η ◦ µ ◦ D(η ◦ [κi ◦ κi]i)
= µ ◦ D(n ∗ NA) ◦ µ ◦ η ◦ Nn∗A ◦ D([κi ◦ κi]i)
= µ ◦ D(n ∗ NA) ◦ Nn∗A ◦ D([κi ◦ κi]i)
(∗)
= D([κi ◦ κi]i) ◦ NA
= µ ◦ D([η ◦ κi ◦ κi]i) ◦ NA
= δD(A) • NA
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We explicitly prove the marked equation:(
µ ◦ D(n ∗ NA) ◦ Nn∗A ◦ D([κi ◦ κi]i)

)
(ω)

=
(
µ ◦ D(n ∗ NA) ◦ Nn∗A

)(∑
i,a ω(κia)|κiκia〉

)
=
(
µ ◦ D(n ∗ NA)

)(∑
i
ω[i]
∣∣κi(∑a

ω(κia)
ω[i] |κia〉

)〉)
= µ

(∑
i
ω[i]
∣∣ ∑

ϕNA
(∑

a
ω(κia)
ω[i] |κia〉

)
(ϕ)|κiϕ〉

〉)
= µ

(∑
i
ω[i]
∣∣1∣∣κiκi(∑a

ω(κia)
ω[i] |a〉

)〉〉)
=
∑

i
ω[i]
∣∣κiκi(∑a

ω(κia)
ω[i] |a〉

)〉
= D([κi ◦ κi]i)

(∑
i
ω[i]
∣∣κi(∑a

ω(κia)
ω[i] |a〉

)〉)
=
(
D([κi ◦ κi]i) ◦ NA

)
(ω).

Commutation of N with the two counits is expressed in the diagrams:

D(n ∗A) •N //

•εn∗A

��

n ∗ D(A)

•n∗εA
��

D(n ∗A) •N //

•D(εA)
��

n ∗ D(A)

•εD(A)

��

n ∗A n ∗A D(A) D(A)

The diagram on the left commutes:

n ∗ εA • N = µ ◦ D(st2 ◦ (id × id)) ◦ N
= (st2)∗(N )

(3.6)
= id

= εn∗A.

Somewhat surprisingly, the above rectangle on the right does not commute, despite (3.3).
The latter diagram translates into the following diagram in K̀ (D).

D(n ∗A) •N //

•D(εA)
��

n ∗ D(A)

•εD(A)

��

D(A)

•εA
��

D(A)

•εA
��

A A

This non-standard diagram does commute in K̀ (D), because:

εA • εD(A) • N = µ ◦ D(id) ◦ µ ◦ D(η ◦ ∇) ◦ N
= µ ◦ D(∇) ◦ N

(3.3)
= D(∇)

= µ ◦ D(η ◦ ∇)

= (η ◦ ∇)∗

= µ ◦ D(id) ◦ η ◦ (εA)∗

= εA • D(εA)
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We summarise what we have described above.

Proposition 11. In the situation (4.1) the hyper normalisation map N is a distributive law
of the functor n ∗ (−) over the comonad D. It commutes with the n ∗ (−)-comultiplication,
but not with the n ∗ (−)-counit. �

5. Predicates

We continue the main line of our story by using the new ‘hyper’ form of normalisation
to describe conditioning. Our description of conditioning makes crucial uses of predicates.
Hence we first have to explain what predicates in a (discrete) probabilistic setting are, and
how they are used as ‘evidence’. The current section provides the required background
information on predicates, which is used in the next section to describe ‘hyper’ conditioning.

5.1. Events and predicates. Let A be an arbitrary set, seen as ‘sample space’. An event
is a subset E ⊆ A of the sample space. These events are traditionally used as predicates on
A. We need to use a more general ‘fuzzy’ kind of predicate, namely functions p : A→ [0, 1],
where [0, 1] ⊆ R is the unit interval. An event E ⊆ A can be identified with a ‘sharp’
predicate A→ {0, 1} ⊆ [0, 1], taking values in the subset {0, 1} of Booleans. For an event E
we write 1E ∈ [0, 1]A for the associated sharp predicate, given by the indicator function 1E ,
defined by 1E(a) = 1 if a ∈ E and 1E(a) = 0 if a 6∈ E.

Sharp predicates (subsets) on A form a Boolean algebra. The set [0, 1]A of (non-sharp,
fuzzy) predicates over A however is an ‘effect module’, see [14, 9, 5]. We briefly describe
the relevant structure, without going into the details of what an effect module precisely is.
There are truth and falsity predicates 1,0 ∈ [0, 1]A which map each element a ∈ A to 1,
or to 0 respectively. Given two predicates p, q ∈ [0, 1]A we say that they are orthogonal,
written as p ⊥ q, if p(a) + q(a) ≤ 1, for all a ∈ A. In that case we write p > q ∈ [0, 1]A

for the pointwise sum: (p > q)(a) = p(a) + q(a). These (>,0) make [0, 1]A a partially
commutative monoid. There is also a ‘negation’, usually written as orthosupplement p⊥,
with (p⊥)(a) = 1 − p(a). Notice that p⊥⊥ = p and p > p⊥ = 1. Moreover, (1E)⊥ = 1¬E ,
where ¬E = {a ∈ A | a 6∈ E}. Finally, for a scalar s ∈ [0, 1] and a predicate p ∈ [0, 1]A there
is a ‘scaled’ predicate s · p ∈ [0, 1]A given by (s · p)(a) = s · p(a).

An n-tuple of predicates p1, . . . , pn ∈ [0, 1]A is called a test — or an n-test, to be more
specific — if p1 > · · ·> pn = 1. This terminology comes from quantum theory, see e.g. [9, 5].
This means that these predicates pi add up to one, pointwise. When we write such sum
expressions, we implicitly assume that the relevant predicates are orthogonal.

Notice that D(1) ∼= 1 and D(2) ∼= [0, 1]. Hence we can identify predicates on A with
maps A → D(2). It takes a bit more effort to see that n-tests on A can be identified
with functions p : A→ D(n), that is, with Kleisli maps A→ n. Indeed, the i-th predicate
pi ∈ [0, 1]A can be extracted from p as pi(a) = p(a)(i), using the functional notation for
distributions. We thus see that a test can be seen as a probabilistic partition. After all, an
ordinary, partition of a set A into n-parts can be identified with a function A→ n, see also
Section 7. A predicate p ∈ [0, 1]A can be identified with a 2-test, consisting of p itself and
and its orthosupplement p⊥.
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For a Kleisli map f : A→ B and a predicate q ∈ [0, 1]B there is a (weakest precondition)
predicate f∗(q) on A defined by:

f∗(q)(a) =
∑

b∈B f(a)(b) · q(b). (5.1)

It is not hard to see that this map f∗ : [0, 1]B → [0, 1]A preserves the effect module structure
described in Subsection 5.1. In this way an n-test q1, . . . , qn can be turned into an n-test
f∗(q1), . . . , f∗(qn) on A.

5.2. Validity. Given an event E ⊆ A on a sample space A we often like to know its
probability wrt. a distribution on A. This probability is commonly written as P (E). In order
to make the underlying distribution ω ∈ D(A) explicit we prefer to write Pω(E) instead of
just P (E). This probability is defined as Pω(E) =

∑
a∈E ω(a). Notice that this is a finite

sum, in [0, 1], since the distribution ω has finite support.
More generally, for a not necessarily sharp predicate p ∈ [0, 1]A and a distribution

ω ∈ D(A) we define the validity (expected value) ω |= p in [0, 1] as:

ω |= p
def
=
∑

a∈A ω(a) · p(a) so that ω |= 1E = Pω(E). (5.2)

It is easy to see that (ω |= 1) = 1 and (ω |= 0) = 0. Moreover, (ω |= p⊥) = 1− (ω |= p) and
(ω |= p> q) = (ω |= p) + (ω |= q).

5.3. Conditionals, traditionally. For a predicate p ∈ [0, 1]A and a distribution ω ∈ D(A)
with ω |= p 6= 0 we describe a conditional distribution ω|p ∈ D(A), pronounced as “ω given
p”, and defined as:

ω|p =
∑

a∈A
ω(a)·p(a)
ω|=p

∣∣a〉. (5.3)

The big nuisance with these ‘traditional’ conditionals ω|p is that they are not always defined:
they involve division by the validity ω |= p ∈ [0, 1], which should thus be non-zero. The key
improvement in our novel ‘hyper’ description of conditioning (in the next section) is that it
is a total operation which does not require such side-conditions — like hyper normalisation.

As illustration of validity and conditioning, consider a distribution ω = 1
4 |a〉+

1
3 |b〉+

5
12 |c〉

on a set A = {a, b, c}, an event E = {a, c} ⊆ A and a predicate p ∈ [0, 1]A with p(a) =
1
2 , p(b) = 1

4 , p(c) = 1. Then:

ω |= p = 5
8 ω|p = 1

5 |a〉+ 2
15 |b〉+ 2

3 |c〉 Pω(E) = ω |= 1E = 2
3

ω |= p⊥ = 3
8 ω|p⊥ = 1

3 |a〉+ 2
3 |b〉 ω|1E = 3

8 |a〉+ 5
8 |c〉.

6. Hyper conditioning

We shall formulate our characterisation of conditionals for tests and not for predicates. As
noted before, predicates are subsumed by tests, as 2-tests. Tests not only provide greater
generality, but also better capture the underlying idea. They lead to what may be called
‘parallel’ conditioning. Therefor we use the sign ‖, commonly used for a parallel processes in
concurrency theory.
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Definition 12. Let t : A→ D(n) be an n-test on a set A, and ω ∈ D(A) be distribution on
A. The ‘hyper’ conditional ω‖t ∈ D(n · D(A)) is defined as:

ω‖t
def
= N

(
gr(t)∗(ω)

)
.

Thus, the hyper conditioning is a function:

(−)‖t =
(
D(A)

gr(t)∗
// D(n ·A)

N // D(n · D(A))
)

(6.1)

The map (6.1) is a Kleisli map D(A) → n · D(A). It is called an ‘abstract channel’
in [22, 24], where it is claimed that such abstract channels capture the essence of leakages in
quantitative information flow. This will be elaborated in Section 7.

The map gr(t) : A→ D(n ·A) is called the instrument associated with the test t : A→ n,
in the sense of [9, 10, 12].

This definition of ω‖t is quite abstract, so we give a more concrete illustration. We
re-use the example from the end of Subsection 5.3, with A = {a, b, c}, and p ∈ [0, 1]A given
by p(a) = 1

2 , p(b) = 1
4 , p(c) = 1. We identify the predicate p with the 2-test t = (p, p⊥),

giving a graph map gr(t) : A→ D(2 ·A) defined by gr(t)(a) = p(x)|κ0x〉+ p⊥(x)|κ1x〉.
The distribution ω = 1

4 |a〉+ 1
3 |b〉+ 5

12 |c〉 on A gives rise to:

gr(t)∗(ω)
(2.4)
=
∑

z∈A+A
(
∑

x∈A ω(x) · gr(t)(x)(z))
∣∣z 〉

= ω(a) · p(a)
∣∣κ0a

〉
+ ω(b) · p(b)

∣∣κ0b
〉

+ ω(c) · p(c)
∣∣κ0c

〉
ω(a) · p⊥(a)

∣∣κ1a
〉

+ ω(b) · p⊥(b)
∣∣κ1b

〉
+ ω(c) · p⊥(c)

∣∣κ1c
〉

= 1
8

∣∣κ0a
〉

+ 1
12

∣∣κ0b
〉

+ 5
12

∣∣κ0c
〉

+ 1
8

∣∣κ1a
〉

+ 1
4

∣∣κ1b
〉
.

Let’s use the short name ρ = gr(t)∗(ω) for the latter distribution. Then, according to
Definition 4,

ρ[0] =
∑

x∈A ρ(κ0x) = 1
8 + 1

12 + 5
12 = 5

8 = ω |= p.

Similarly, we have ρ[1] = 3
8 = ω |= p⊥. We can now describe the hyper conditional more

concretely:

ω‖t = N (ρ) since we abbreviate ρ = gr(t)∗(ω)
(3.1)
= ρ[0]

∣∣∣κ0(
∑

x
ρ(κ0x)
ρ[0] |x〉

)〉
+ ρ[1]

∣∣∣κ1(
∑

x
ρ(κ1x)
ρ[1] |x〉

)〉
= (ω |= p)

∣∣∣κ0(
∑

x
ω(x)·p(x)
ω|=p |x〉)

〉
+ (ω |= p⊥)

∣∣∣κ1(
∑

x
ω(x)·p⊥(x)
ω|=p⊥ |x〉)

〉
= (ω |= p)

∣∣κ0(ω|p)
〉

+ (ω |= p⊥)
∣∣κ1(ω|p⊥)

〉
= 5

8

∣∣κ0(1
5 |a〉+ 2

15 |b〉+ 2
3 |c〉)

〉
+ 3

8

∣∣κ1(1
3 |a〉+ 2

3 |b〉)
〉
.

Generalising this example we get the following formulation of hyper conditioning in
terms of traditional conditioning.

Lemma 13. For an n-test t = (p1, . . . , pn) of predicates pi and a state ω we have:

ω‖t =
∑

1≤i≤n
ω|=pi 6=0

(ω |= pi)
∣∣∣κi(ω|pi)〉.

�
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Notice that the problem that traditional conditionals ω|pi are not defined if ω |= pi = 0
(again) disappears in this ‘hyper’ formulation, since the entries with ω |= pi = 0 do not show
up in the above formal convex sum.

It turns out that under the distribution ω and test t can be recovered from a hyper
conditional Ω = ω‖t, via the bijective correspondence of Proposition 3.

Proposition 14. Let ω ∈ D(A) be a distribution with supp(ω) = A, and let t : A→ D(n) be
an n-test. Then both ω and t can be recovered from the hyper conditional ω‖t ∈ D(n ·D(A)),
namely via:

• ω = (π2)∗
(
ω‖t

)
;

• t : A→ D(n) is the map determined by the distribution Ω = (st2)∗(ω‖t) ∈ D(n ·A), as in
Proposition 3.

Proof The first bullet point is easy:

(π2)∗
(
ω‖t

) (3.3)
= D(π2)

(
gr(t)∗(ω)

)
=
(
D(π2) ◦ gr(t)

)
∗(ω)

(2.7)
= η∗(ω) = ω.

For the second bullet point, we write Ω = (st2)∗(ω‖t) ∈ D(n · A). We first show that
D(π2)(Ω) = D(∇)(Ω) = ω, using what we have just proven:

D(π2)(Ω) =
(
D(π2) ◦ (st2)∗

)
(ω‖t) = (D(π2) ◦ st2)∗(ω‖t)

(2.7)
= (π2)∗(ω‖t) = ω.

Hence the side-condition in the bijective correspondence of Proposition 3 is satisfied for Ω.
Thus, we can write Ω = gr(f)∗(ω), as in (2.10), for a unique map f : A→ D(n). We have to
show that f = t, the original test. But this follows from:

Ω = (st2)∗(ω‖t) =
(
(st2)∗ ◦ N

)(
gr(t)∗(ω)

) (3.6)
= gr(t)∗(ω). �

Example 15. We illustrate how the distribution and test can be recovered for a hyper
distribution Φ ∈ D(2 ·D({H,T})) over the 2-element set {H,T} of ‘head’ and ‘tail’ outcomes.

Φ = 1
2

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
2

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉

The first bullet in Proposition 14 says that we can obtain the underlying distribution
ω ∈ D({H,T}) as:

ω = (π2)∗(Φ) = µ
(
D(π2)

(
1
2

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
2

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉)

= µ
(

1
2

∣∣ 2
3 |H 〉+ 1

3 |T 〉
〉

+ 1
2

∣∣ 1
3 |H 〉+ 2

3 |T 〉
〉)

= 1
2 ·

2
3 |H 〉+ 1

2 ·
1
3 |T 〉+ 1

2 ·
1
3 |H 〉+ 1

2 ·
2
3 |T 〉

= 1
2 |H 〉+ 1

2 |T 〉.
For the second bullet we compute:

(st2)∗(Ψ) = µ
(
D(st2)

(
1
2

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
2

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉)

= µ
(

1
2

∣∣ 2
3 |κ0H 〉+ 1

3 |κ0T 〉
〉

+ 1
2

∣∣ 1
3 |κ1H 〉+ 2

3 |κ1T 〉
〉)

= 1
3 |κ0H 〉+ 1

6 |κ0T 〉+ 1
6 |κ1H 〉+ 1

3 |κ1T 〉.

The recipe (2.10) now gives a test function s : {H,T} → D(2), namely:

s(H) =
1/3
1/2 |0〉+

1/6
1/2 |1〉 = 2

3 |0〉+ 1
3 |1〉 s(T ) =

1/6
1/2 |0〉+

1/3
1/2 |1〉 = 1

3 |0〉+ 2
3 |1〉.

Then indeed, Φ = ω‖s, as can be checked easily.
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The reader may wish to do a similar computation for the hyper distribution Ψ ∈
D(3 · D({H,T})) given by:

Ψ = 1
3

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
3

∣∣κ1(1
2 |H 〉+ 1

2 |T 〉)
〉

+ 1
3

∣∣κ2(1
3 |H 〉+ 2

3 |T 〉)
〉

The answer appears in Example 19.

We illustrate how the ‘hyper’ approach works in Bayesian reasoning, for a standard
medical examination example copied from [16].

Example 16. Write 2D = {d, d⊥} and 2T = {t, t⊥} for two 2-element sets, where d represents
‘disease’ and d⊥ represents ‘no disease’. Similarly, the element t represents a positive test
(examination outcome), and t⊥ a negative outcome. Consider the following simple Bayesian
network, described as Kleisli maps (as in [16]):

1 •ω // 2D •s // 2T with


ω = 1

100 |d〉+ 99
100 |d

⊥ 〉
s(d) = 9

10 |t〉+ 1
10 |t

⊥ 〉
s(d⊥) = 1

20 |t〉+ 19
20 |t

⊥ 〉.

The state ω captures the prior probability of 1% of having the disease. The function
s : 2D → D(2T ) describes the sensitivity of the test.

We write T?: 2T → [0, 1] for the (sharp) predicate given by T?(t) = 1 and T?(t⊥) = 0.
Together with T?⊥ it forms a 2-test T ! = (T?, T?⊥) on 2T . It gives rise to a 2-test
s∗(T !) = (s∗(T?), s∗(T?⊥)) on 2D via (5.1), given by:

s∗(T?)(d) = 9
10 s∗(T?⊥)(d) = 1

10 s∗(T?)(d⊥) = 1
20 s∗(T?⊥)(d⊥) = 19

20 .

The associated instrument map gr(s∗(T !)) : 2D → D(2 · 2D) is:

gr(s∗(T !))(d) = 9
10 |κ0d〉+ 1

10 |κ1d〉 gr(s∗(T !))(d⊥) = 1
20 |κ0d

⊥ 〉+ 19
20 |κ1d

⊥ 〉

When applied to the (prior) state ω it gives:

gr(s∗(T !))∗(ω) = 9
1000 |κ0d〉+ 1

1000 |κ1d〉+ 99
2000 |κ0d

⊥ 〉+ 1881
2000 |κ1d

⊥ 〉

The resulting hyper conditional ω‖s∗(T !) = N
(
gr(s∗(T !))∗(ω)

)
is then:

ω‖s∗(T !) = 117
2000

∣∣∣κ0( 18
117 |d〉+ 99

117 |d
⊥ 〉)
〉

+ 1883
2000

∣∣∣κ1( 2
1883 |d〉+ 1881

1883 |d
⊥ 〉)
〉

This hyper distribution ω‖s∗(T !) ∈ D(2 · D(2D)) is obtained by backward learning, from
the 2-test T !. It is given by a convex combination of two conditional (normalised) inner
distributions. The left inner distribution describes the probability 18

117 ∼ 15% of having
the disease after a positive test outcome T?, whereas the right inner distribution gives the
probability 2

1883 ∼ 0.1% of having the disease after a negative outcome T?⊥. One could say
that the parallel conditioning that happens in a hyper conditional ω‖t corresponds to a
many worlds view — as is sometimes used, for instance, in counter factual reasoning [26].

The hyper approach does not give direct access to these inner distributions. But further
calculations can be done with this hyper distribution. If one is not interested in the second
inner distribution it can be removed via a ! map to the final (singleton) set 1, leading to a
distribution:

117
2000

∣∣∣κ0( 18
117 |d〉+ 99

117 |d
⊥ 〉)
〉

+ 1883
2000

∣∣∣κ10
〉
∈ D

(
D(2D) + 1

)
.
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Via multiplication it can be further reduced to a distribution in D(2D + 1), but then one
loses the conditional, as in:

18
2000 |κ0d〉+ 99

2000 |κ0d
⊥ 〉+ 1883

2000 |κ10〉 ∈ D
(
2D + 1

)
.

7. Applications in quantitative information flow

The hyper conditional construction ω‖t that we use here — see Definition 12 — is inspired by
a ‘denotation of a channel’ construction in quantitative information flow, see [19, 24, 22, 20].
This will be sketched first. Subsequently we describe how tests and hyper distributions are
ordered, and how these orders are related.

An abstract channel in [19, 24, 22, 20] from a set X to set Y is what we call a Kleisli
map c : X → Y , that is, a function c : X → D(Y ). The sets X,Y used in this context are
finite, so we can replace them by numbers, and write a channel as Kleisli map n→ m. As
noted in Subsection 2.3 such a channel gives an m-test on n.

The denotation of a channel c : n→ m is defined in [24, 22] as a function [[ c ]] : D(n)→
D2(n). It uses conditional distributions, via normalisation. We redescribe this denotation
via the notation from this paper. Let channel c : n → m correspond to m-test ci ∈ [0, 1]n

given by ci(j) = c(j)(i). The denotation [[ c ]](ω) ∈ D(D(n)) is defined for ω ∈ D(n) as:

[[ c ]](ω) =
∑

0≤i≤m−1
ω|=ci 6=0

(
ω |= ci

)∣∣∣ω|ci〉.
(7.1)

There is an obvious similarity with ‘our’ formula for hyper conditioning in Lemma 13. The
difference is that we use an inner copower D(m·D(n)) instead of D(D(n)), with corresponding
coprojections κj , to keep the inner conditional distributions ω|ci separate.

It is not hard to see that the above formulation (7.1) can be obtained from ours as
[[ c ]](ω) = D(∇)(ω‖c), by removing the coprojections, via the codiagonal∇ : m·D(n)→ D(n).
In [22] it is observed1 that applying multiplication µ to [[ c ]](ω) yields the original distribution
ω. In our case this follows directly from the first bullet in Proposition 14.

Denotations [[ c ]] : D(n)→ D2(n) are instances of Hidden Markov Models in [22], whose
action on ‘uncertainty measures’ is characterised in terms of uncertainty transformers. Here
we zoom in on the order theoretic aspects.

7.1. Refinements. We continue with refinements of partitions (tests), and start with the
ordinary (non-probabilistic) case. Let (Si)i∈n be a partition of a set A. That means Si ⊆ A
with

⋃
i Si = A, and Si ∩ Si′ = ∅ for i 6= i′. Thus, each element a ∈ A can be mapped to a

unique element i ∈ n with a ∈ Si. Hence the partition (Si) can be identified with a function
s : A→ n, where Si = s−1(i).

If we have two partitions (Si)i∈n and (Tj)j∈m of the same set A we can say that
(Si) v (Tj) if for each i ∈ n there is a j ∈ m with Si ⊆ Tj . This means that the S-partition
is more refined than the T -partition, since each subsets Si fits in some Tj .

1See after Defn. 7 in [22], where multiplication µ is called average. We add that the construction of [[ c ]](ω)
in [24, 22] requires some ad hoc ‘removal’ and ‘renaming’ of redundant data that happens automatically in
the current situation by the formal convex sum formalism from Subsection 2.2.
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There is particularly simple way to express this refinement relation when we switch
to the description in terms of functions. Let s : A → n and t : A → m be the functions
corresponding to the partitions (Si) and (Tj). Then it is not hard to see:

(Si) v (Tj) ⇐⇒ there is a h : n→ m with

n

h

��

A

s 55

t ))
m

Here we have to assume that Si 6= ∅, for each i ∈ n. Then we can define h(i) = j iff Si ⊆ Tj .
This yields what is sometimes called the lattice of information [18].

This functional description of refinement can be translated very easily to a probabilistic
setting, simply by using Kleisli maps instead of ordinary functions. This done in the first
item below. The second item givens an alternative formulation of refinement on hyper
distributions, used in quantitative information flow, see e.g. [19, 24, 22, 20]. We slightly
adapt it to the current setting.

Definition 17. Let A be a set and n,m be natural numbers.

(1) For two tests s : A→ D(n) and t : A→ D(m) on A one defines:

s v t iff there is a function h : n→ D(m) with h • s = t, as in:

n

•h
��

A
•s

55

•
t ))

m

(2) For two hyper distributions Φ ∈ D(n · D(A)) and Ψ ∈ D(m · D(A)) we put:

Φ v Ψ iff

{
there is an Ω ∈ D(m · D(n · D(A))) with

(π2)∗(Ω) = Φ and D
(
m · (π2)∗

)
(Ω) = Ψ.

The theorem below is a basic result in quantitative information flow, see [19, 24, 22, 20].
Our aim is to illustrate how our approach to normalisation and conditioning can be used, by
giving abstract proof constructions.

Theorem 18. In the situation of Definition 17,

(1) if s v t then ω‖s v ω‖t for each ω ∈ D(A);
(2) if ω‖s v ω‖t for some ω ∈ D(A) with supp(ω) = A and supp

(
s∗(ω)

)
= n, then s v t.

Proof Let s v t via Kleisli map h : n → D(m), so that h • s = t. We write h1 = h ◦
π1 : n · D(A)→ D(m), with associated graph map gr(h1) : n · D(A)→ D(m · (n · D(A))). For
an arbitrary distribution ω ∈ D(A) we take:

Ω
def
=
(
ω‖s

)
‖h1 = N

(
gr(h1)∗

(
ω‖s

))
∈ D

(
m · D

(
n · D(A)

))
. (7.2)

By construction, (π2)∗(Ω) = ω‖s, see Proposition 14. The proofs of the following two
auxiliary equations are easily obtained.

D(m · π2) ◦ gr(h1) = h · D(A) (h ·A) • gr(s) = gr(h • s) (7.3)
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Then ω‖s v ω‖t via Ω follows from:

D
(
m · (π2)∗)

)
(Ω) =

(
D(m · µ) ◦ D(m · D(π2)) ◦ N ◦ gr(h1)∗ ◦ N ◦ gr(s)∗

)
(ω)

(3.7)
=
(
D(m · µ) ◦ N ◦ D(m · π2) ◦ gr(h1)∗ ◦ N ◦ gr(s)∗

)
(ω)

=
(
D(m · µ) ◦ N ◦ (D(m · π2) ◦ gr(h1))∗ ◦ N ◦ gr(s)∗

)
(ω)

(7.3)
=
(
D(m · µ) ◦ N ◦ (h · D(A))∗ ◦ N ◦ gr(s)∗

)
(ω)

(3.8)
=
(
N ◦ (h ·A)∗ ◦ gr(s)∗

)
(ω)

=
(
N ◦ ((h ·A) • gr(s))∗

)
(ω)

(7.3)
=
(
N ◦ gr(h • s)∗

)
(ω)

=
(
N ◦ gr(t)∗

)
(ω)

= ω‖t .

In the other direction, let ω‖s v ω‖t via Ω ∈ D
(
m ·D(n ·D(A))

)
, so that (π2)∗(Ω) = ω‖s

and D(m · (π2)∗)(Ω) = ω‖t, where ω ∈ D(A) satisfies supp(s∗(ω)) = n and supp(ω) = A.
We need to find a map h : n→ D(m) with h • s = t. Consider the distribution:

Θ =
(
(st2)∗ ◦ D(m · D(π1))

)
(Ω) ∈ D(m · n). (7.4)

It is not hard to see that the second marginal D(π2)(Θ) ∈ D(n) equals s∗(ω). Since the
support of the latter distribution is n, by assumption, we may use Proposition 3. Hence
there is a unique map h : n→ D(m) with Θ = gr(h)∗(s∗(ω)).

Our aim is to prove s v t via h • s = t. We shall switch to a more concrete level. Since
the distributions ω‖s ∈ D(n · D(A)) and ω‖t ∈ D(m · D(A)) are normalised, we can write
them as formal convex combinations:

ω‖s =
∑

i∈n
ui
∣∣κiϕi 〉 and ω‖t =

∑
j∈m

vj
∣∣κjψj 〉, (7.5)

for ϕi, ψj ∈ D(A) and ui, vj ∈ [0, 1] with
∑

i ui = 1 =
∑

j vj . The equation D(m·(π2)∗)(Ω) =

ω‖t means that we can write:

Ω =
∑

j∈m
vj
∣∣κjρj 〉 for ρj ∈ D(n · D(A)) with (π2)∗(ρj) = ψj . (7.6)

The other equation about Ω gives:

ω‖s = (π2)∗(Ω) = µ
(
D(π2)(Ω)

)
= µ

(∑
j vj |ρj 〉

)
=
∑

i,χ

(∑
j vj · ρj(κiχ)

)∣∣κiχ〉.
But since this ω‖s is normalised, as described in (7.5), the only possible distributions
χ ∈ D(A) are ϕi. Hence we can write:

ρj =
∑

i
ρj(κiϕi)

∣∣κiϕi 〉 with ui =
∑

j vj · ρj(κiϕi). (7.7)

The second equation in (7.6) can now be unfolded to:

ψj = (π2)∗(ρj)
(7.7)
= µ

(
D(π2)

(∑
i ρj(κiϕi)

∣∣κiϕi 〉))
= µ

(∑
i ρj(κiϕi)

∣∣ϕi 〉)
=
∑

a

(∑
i ρj(κiϕi) · ϕi(a)

)∣∣a〉. (7.8)



26 BART JACOBS

We can now express the distribution Θ ∈ D(m · n) from (7.4) as:

Θ =
(
(st2)∗ ◦ D(m · D(π1))

)
(Ω)

(7.6)
= (st2)∗

(∑
j
vj |κjD(π1)(ρj)〉

)
(7.7)
= µ

(
D(st2)

(∑
j
vj |κj

(∑
i ρj(κiϕi)|i〉

)
〉
))

= µ
(∑

j
vj |
∑

i ρj(κiϕi)|κji〉〉
)

=
∑

j,i
vj · ρj(κiϕi)|κji〉.

According to (2.11), the function h : n→ D(m) corresponding to this Θ ∈ D(m · n) is given
by:

h(i) =
∑

j

Θ(κji)∑
j Θ(κji)

∣∣j 〉 =
∑

j

vj · ρj(κiϕi)∑
j vj · ρj(κiϕi)

∣∣j 〉 (7.7)
=
∑

j

vj · ρj(κiϕi)
ui

∣∣j 〉. (7.9)

We now prove the following equality of distributions in D(m ·A).

gr(h • s)∗(ω)
(7.3)
=
(
(h ·A) • gr(s)

)
∗(ω)

(3.6)
=
(
(h ·A)∗ ◦ (st2)∗

)
(ω‖s)

(7.5)
=
(
(h ·A)∗ ◦ µ ◦ D(st2)

)(∑
i ui
∣∣κiϕi 〉)

=
(
(h ·A)∗ ◦ µ

)(∑
i ui
∣∣ ∑

a ϕi(a)|κia〉
〉)

=
(
µ ◦ D(h ·A)

)(∑
i,a ui · ϕi(a)|κia〉

)
= µ

(∑
i,a ui · ϕi(a)

∣∣ ∑
j h(i)(j)|κja〉

〉)
=
∑

j,i,a ui · ϕi(a) · h(i)(j)|κja〉
(7.9)
=
∑

j,i,a ϕi(a) · vj · ρj(κiϕi)|κja〉
=
∑

j,a vj ·
(∑

i ϕi(a) · ρj(κiϕi)
)
|κja〉

(7.8)
=
∑

j,a vj · ψj(a)|κja〉
= µ

(∑
j vj
∣∣ ∑

a ψj(a)|κja〉
〉)

= µ
(
D(st2)

(∑
j vj
∣∣κjψj 〉)

(7.5)
= (st2)∗(ω‖t)

(3.6)
= gr(t)∗(ω).

We have D(π2)
(
gr(t)∗(ω)

)
= ω, and supp(ω) = A by assumption. Hence we can use

uniqueness from Proposition 3 to obtain the required conclusion h • s = t. �

We conclude with an example of this refinement theorem, taken from the unpublished
extended version2 of [22], building on Example 15.

Example 19. We recall the two hyper distributions in D(2·D({H,T})) and D(3·D({H,T}))
from Example 15:

Φ = 1
2

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
2

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉

Ψ = 1
3

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
3

∣∣κ1(1
2 |H 〉+ 1

2 |T 〉)
〉

+ 1
3

∣∣κ2(1
3 |H 〉+ 2

3 |T 〉)
〉

2Available from http://www.cse.unsw.edu.au/~carrollm/probs/Papers/LiCS15.pdf

http://www.cse.unsw.edu.au/~carrollm/probs/Papers/LiCS15.pdf
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They satisfy (π2)∗(Φ) = ω = (π2)∗(Ψ), for ω = 1
2 |H 〉+

1
2 |T 〉. Moreover, they can be written

as Φ = ω‖s and Ψ = ω‖t for tests s : {H,T} → D(2) and t : {H,T} → D(3) given by:{
s(H) = 2

3 |0〉+ 1
3 |1〉

s(T ) = 1
3 |0〉+ 2

3 |1〉
and

{
t(H) = 4

9 |0〉+ 1
3 |1〉+ 2

9 |2〉
t(T ) = 2

9 |0〉+ 1
3 |1〉+ 4

9 |2〉

We claim Φ = ω‖s v ω‖t = Ψ, via the distribution Ω ∈ D(3 · D(2 · D({H,T}))) given by:

Ω = 1
3

∣∣∣κ0

(
1
∣∣κ0(2

3 |H 〉+ 1
3 |T 〉)

〉)〉
+

1
3

∣∣∣κ1

(
1
2

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
2

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉)〉

+

1
3

∣∣∣κ2

(
1
∣∣κ1(1

3 |H 〉+ 2
3 |T 〉)

〉)〉
This Ω proves the refinement Φ v Ψ as in Definition 17, since:

(π2)∗(Ω) =
(
µ ◦ D(π2)

)
(Ω) = 1

3

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+
1
6

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
6

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉

+
1
3

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉

= 1
2

∣∣κ0(2
3 |H 〉+ 1

3 |T 〉)
〉

+ 1
2

∣∣κ1(1
3 |H 〉+ 2

3 |T 〉)
〉

= Φ

D(3 · (π2)∗)(Ω) = D
(
3 · (µ ◦ D(π2))

)
(Ω) = 1

3

∣∣κ0

(
2
3 |H 〉+ 1

3 |T 〉
)〉

+
1
3

∣∣κ1

(
2
6 |H 〉+ 1

6 |T 〉+ 1
6 |H 〉+ 2

6 |T 〉
)〉

+
1
3

∣∣κ2

(
1
3 |H 〉+ 2

3 |T 〉)
〉

= 1
3

∣∣κ0

(
2
3 |H 〉+ 1

3 |T 〉
)〉

+
1
3

∣∣κ1

(
1
2 |H 〉+ 1

2 |T 〉
)〉

+
1
3

∣∣κ2

(
1
3 |H 〉+ 2

3 |T 〉)
〉

= Ψ.

We illustrate how to obtain from Ω the map h : 2→ D(3) that proves the refinement s v t,
as in the proof of Theorem 18, via the distribution Θ in (7.4):

Θ =
(
(st2)∗ ◦ D(3 · D(π1))

)
(Ω)

= µ
(
D(st2)

(
1
3

∣∣∣κ0

(
1
∣∣0〉)〉+ 1

3

∣∣∣κ1

(
1
2

∣∣0〉+ 1
2

∣∣1〉)〉+ 1
3

∣∣∣κ2

(
1
∣∣1〉)〉))

= µ
(

1
3

(
1
∣∣κ00

〉)
+ 1

3

(
1
2

∣∣κ10
〉

+ 1
2

∣∣κ11
〉)

+ 1
3

(
1
∣∣κ21

〉))
= 1

3

∣∣κ00
〉

+ 1
6

∣∣κ10
〉

+ 1
6

∣∣κ11
〉

+ 1
3

∣∣κ21
〉

From this Θ we obtain the function h : 2→ D(3) by pointwise normalisation (2.11):

h(0) =
1/3
1/2 |0〉+

1/6
1/2 |1〉 = 2

3 |0〉+ 1
3 |1〉 h(1) =

1/6
1/2 |1〉+

1/3
1/2 |2〉 = 1

3 |1〉+ 2
3 |2〉

There is a refinement s v t, as in Definition 17, since we have h • s = t.
In the other direction, given this function h : 2 → D(3), one may check that the

formula (7.2) gives the distribution Ω that we used above.
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8. Concluding remarks

This paper provides a novel perspective on normalisation of discrete probability distributions,
by presenting it in ‘hyper’ form as a map N : D(n ·A)→ D(n · D(A)) that satisfies various
nice properties. The associated hyper conditioning operation ω‖t performs conditioning for
all the predicates incorporated in the test t in parallel, and is a total operation too. It has
been implemented in the EfProb tool [4], see especially the manual [13].

Since we deal with finite discrete probability distributions, using this copower is n ·A is
quite natural. But one could have described normalisation also using a cartesian product
B ×A, for an arbitrary not necessarily finite set B, or as an indexed coproduct

∐
i∈I Ai, as

in:

D(B ×A)
N // D(B ×D(A)) or as D(

∐
i∈I Ai)

N // D(
∐
i∈I D(Ai))

This does not fundamentally change the theory.
A different dimension of change is to consider other functors than distribution D. First,

one could use the multiset functor M over the non-negative real number, given by:

M(X) = {ϕ : X → R≥0 | supp(ϕ) is finite}.

Then one can generalise normalisation from subdistributions to such multisets (or ‘scores’,
as in [28]) via a map:

M(n ·A) //M(n · D(A))

One then normalises non-negative real numbers to 1.
A more drastic step is the move from discrete probability to continuous probability,

by replacing the distribution monad D on sets with the Giry monad G on measurable
spaces [8, 25]. How to best do this will be explored in later work.
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