eng
episciences.org
Logical Methods in Computer Science
1860-5974
2017-09-13
Volume 13, Issue 3
10.23638/LMCS-13(3:22)2017
3926
journal article
Localic completion of uniform spaces
Tatsuji Kawai
We extend the notion of localic completion of generalised metric spaces by
Steven Vickers to the setting of generalised uniform spaces. A generalised
uniform space (gus) is a set X equipped with a family of generalised metrics on
X, where a generalised metric on X is a map from the product of X to the upper
reals satisfying zero self-distance law and triangle inequality.
For a symmetric generalised uniform space, the localic completion lifts its
generalised uniform structure to a point-free generalised uniform structure.
This point-free structure induces a complete generalised uniform structure on
the set of formal points of the localic completion that gives the standard
completion of the original gus with Cauchy filters.
We extend the localic completion to a full and faithful functor from the
category of locally compact uniform spaces into that of overt locally compact
completely regular formal topologies. Moreover, we give an elementary
characterisation of the cover of the localic completion of a locally compact
uniform space that simplifies the existing characterisation for metric spaces.
These results generalise the corresponding results for metric spaces by Erik
Palmgren.
Furthermore, we show that the localic completion of a symmetric gus is
equivalent to the point-free completion of the uniform formal topology
associated with the gus.
We work in Aczel's constructive set theory CZF with the Regular Extension
Axiom. Some of our results also require Countable Choice.
https://lmcs.episciences.org/3926/pdf
Mathematics - General Topology
Computer Science - Logic in Computer Science
03F60, 06D22, 54E45, 54E15