A NEW CHARACTERIZATION OF COMPLETE HEYTING AND CO-HEYTING ALGEBRAS

FRANCESCO RANZATO

Dipartimento di Matematica, University of Padova, Italy *e-mail address*: francesco.ranzato@unipd.it

ABSTRACT. We give a new order-theoretic characterization of a complete Heyting and co-Heyting algebra C. This result provides an unexpected relationship with the field of Nash equilibria, being based on the so-called Veinott ordering relation on subcomplete sublattices of C, which is crucially used in Topkis' theorem for studying the order-theoretic stucture of Nash equilibria of supermodular games.

INTRODUCTION

Complete Heyting algebras — also called frames, while locales is used for complete co-Heyting algebras — play a fundamental role as algebraic model of intuitionistic logic and in pointless topology [Johnstone 1982, Johnstone 1983]. To the best of our knowledge, no characterization of complete Heyting and co-Heyting algebras has been known. As reported in [Balbes and Dwinger 1974], a sufficient condition has been given in [Funayama 1959] while a necessary condition has been given by [Chang and Horn 1962].

We give here an order-theoretic characterization of complete Heyting and co-Heyting algebras that puts forward an unexected relationship with Nash equilibria. Topkis' theorem [Topkis 1998] is well known in the theory of supermodular games in mathematical economics. This result shows that the set of solutions of a supermodular game, *i.e.*, its set of pure-strategy Nash equilibria, is nonempty and contains a greatest element and a least one [Topkis 1978]. Topkis' theorem has been strengthned by [Zhou 1994], where it is proved that this set of Nash equilibria is indeed a complete lattice. These results rely on so-called Veinott's ordering relation (also called strong set relation). Let $\langle C, \leq, \wedge, \vee \rangle$ be a complete lattice. Then, the relation $\leq^v \subseteq \wp(C) \times \wp(C)$ on subsets of C, according to Topkis [Topkis 1978], has been introduced by Veinott [Topkis 1998, Veinott 1989]: for any $S, T \in \wp(C)$,

$$S <^v T \iff \forall s \in S. \forall t \in T. \ s \land t \in S \& \ s \lor t \in T.$$

This relation \leq^v is always transitive and antisymmetric, while reflexivity $S \leq^v S$ holds if and only if S is a sublattice of C. If SL(C) denotes the set of nonempty subcomplete sublattices of C then $\langle SL(C), \leq^v \rangle$ is therefore a poset. The proof of Topkis' theorem is then based on the fixed points of a certain mapping defined on the poset $\langle SL(C), \leq^v \rangle$.

Key words and phrases: Complete Heyting algebra, Veinott ordering.

To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott poset $\langle \operatorname{SL}(C), \leq^v \rangle$. When is this poset a lattice? And a complete lattice? Our efforts in investigating these questions led to the following main result: the Veinott poset $\operatorname{SL}(C)$ is a complete lattice if and only if C is a complete Heyting and co-Heyting algebra. This finding therefore reveals an unexpected link between complete Heyting algebras and Nash equilibria of supermodular games. This characterization of the Veinott relation \leq^v could be exploited for generalizing a recent approach based on abstract interpretation for approximating the Nash equilibria of supermodular games introduced by [Ranzato 2016].

1. NOTATION

If $\langle P, \leq \rangle$ is a poset and $S \subseteq P$ then $\mathrm{lb}(S)$ denotes the set of lower bounds of S, *i.e.*, $\mathrm{lb}(S) \triangleq \{x \in P \mid \forall s \in S. \ x \leq s\}$, while if $x \in P$ then $\downarrow x \triangleq \{y \in P \mid y \leq x\}$.

Let $\langle C, \leq, \wedge, \vee \rangle$ be a complete lattice. A nonempty subset $S \subseteq C$ is a subcomplete sublattice of C if for all its nonempty subsets $X \subseteq S$, $\wedge X \in S$ and $\vee X \in S$, while S is merely a sublattice of C if this holds for all its nonempty and finite subsets $X \subseteq S$ only. If $S \subseteq C$ then the nonempty Moore closure of S is defined as $\mathcal{M}^*(S) \triangleq \{\wedge X \in C \mid X \subseteq S, X \neq \varnothing\}$. Let us observe that \mathcal{M}^* is an upper closure operator on the poset $\langle \wp(C), \subseteq \rangle$, meaning that: (1) $S \subseteq T \Rightarrow \mathcal{M}^*(S) \subseteq \mathcal{M}^*(T)$; (2) $S \subseteq \mathcal{M}^*(S)$; (3) $\mathcal{M}^*(\mathcal{M}^*(S)) = \mathcal{M}^*(S)$. We define

$$SL(C) \triangleq \{S \subseteq C \mid S \neq \emptyset, S \text{ subcomplete sublattice of } C\}.$$

Thus, if \leq^v denotes the Veinott ordering defined in Section then $\langle \operatorname{SL}(C), \leq^v \rangle$ is a poset. C is a complete Heyting algebra (also called frame) if for any $x \in C$ and $Y \subseteq C$, $x \wedge (\bigvee Y) = \bigvee_{y \in Y} x \wedge y$, while it is a complete co-Heyting algebra (also called locale) if the dual equation $x \vee (\bigwedge Y) = \bigwedge_{y \in Y} x \vee y$ holds. Let us recall that these two notions are orthogonal, for example the complete lattice of open subsets of $\mathbb R$ ordered by \subseteq is a complete Heyting algebra, but not a complete co-Heyting algebra. C is (finitely) distributive if for any $x, y, z \in C$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$. Let us also recall that C is completely distributive if for any family $\{x_{j,k} \mid j \in J, k \in K(j)\} \subseteq C$, we have that

$$\bigwedge_{j \in J} \bigvee_{k \in K(j)} x_{j,k} = \bigvee_{f \in J \leadsto K} \bigwedge_{j \in J} x_{j,f(j)}$$

Example 1.1. Let us recall that a subset $S \subseteq [0,1]$ of real numbers is a regular open set if S is open and S coincides with the interior of the closure of S. For example, (1/3,2/3) and $(0,1/3) \cup (2/3,1)$ are both regular open sets, while $(1/3,2/3) \cup (2/3,1)$ is open but not regular. Let us consider $\mathcal{C} = \langle \{S \subseteq [0,1] \mid S \text{ is a regular open set} \}, \subseteq \rangle$. It is known that \mathcal{C} is a complete Boolean algebra (see e.g. [Vladimirov 2002, Theorem 12, Section 2.5]). As a consequence, \mathcal{C} is a complete Heyting and co-Heyting algebra (see e.g. [Vladimirov 2002, Theorem 3, Section 0.2.3]).

Recall that an element $a \in C$ in a complete lattice C is an atom if a is different from the least element \bot_C of C and for any $x \in C$, if $\bot_C < x \le a$ then x = a, while C is atomic if for any $x \in C \setminus \{\bot_C\}$ there exists an atom $a \in C$ such that $a \le x$. It turns out that C does not have atoms: in fact, any regular open set $S \in C$ is a union of open sets, namely, $S = \bigcup \{U \subseteq [0,1] \mid U \text{ is open, } U \subseteq S\}$

(see e.g. [Vladimirov 2002, Section 2.5]), so that no $S \in \mathcal{C} \setminus \{\emptyset\}$ can be an atom of \mathcal{C} . In turn, this implies that \mathcal{C} is a complete Boolean algebra which is not atomic. It known that a complete Boolean algebra is completely distributive if and only if it is atomic (see [Koppelberg 1989, Theorem 14.5, Chapter 5]). Hence, since \mathcal{C} is not atomic, we obtain that \mathcal{C} is not completely distributive.

2. The Sufficient Condition

To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott poset $\langle \operatorname{SL}(C), \leq^v \rangle$. The following example shows that, in general, $\langle \operatorname{SL}(C), \leq^v \rangle$ is not a lattice.

Example 2.1. Consider the nondistributive pentagon lattice N_5 , where, to use a compact notation, subsets of N_5 are denoted by strings of letters.

Consider ed, $abce \in SL(N_5)$. It turns out that $\downarrow ed = \{a, c, d, ab, ac, ad, cd, ed, acd, ade, cde, abde, acde, abcde\}$ and $\downarrow abce = \{a, ab, ac, abce\}$. Thus, $\{a, ab, ac\}$ is the set of common lower bounds of ed and abce. However, the set $\{a, ab, ac\}$ does not include a greatest element, since $a \leq^v ab$ and $a \leq^v ac$ while ab and ac are incomparable. Hence, ab and c are maximal lower bounds of ed and abce, so that $\langle SL(N_5), \leq^v \rangle$ is not a lattice.

Indeed, the following result shows that if $\mathrm{SL}(C)$ turns out to be a lattice then C must necessarily be distributive.

Lemma 2.2. If $\langle SL(C), \leq^v \rangle$ is a lattice then C is distributive.

Proof. By the basic characterization of distributive lattices, we know that C is not distributive iff either the pentagon N_5 is a sublattice of C or the diamond M_3 is a sublattice of C. We consider separately these two possibilities.

 (M_3) Assume that the diamond M_3 , as depicted by the following diagram, is a sublattice of C.

In this case, we consider the sublattices $eb, ec \in \langle \operatorname{SL}(C), \leq^v \rangle$ and we prove that their meet does not exist. It turns out that $abce, abcde \in \operatorname{lb}(\{eb, ec\})$ while abce and abcde are incomparable. Consider any $X \in \operatorname{SL}(C)$ such that $X \in \operatorname{lb}(\{eb, ec\})$. Assume that $abcde \leq^v X$. If $x \in X$ then, by $X \leq^v eb, ec$, we have that $x \wedge b, x \wedge c \in X$, so that $x \wedge b \wedge c = x \wedge a \in X$. From $abcde \leq^v X$, we obtain that for any $y \in \{a, b, c, d, e\}, y = y \vee (x \wedge a) \in X$. Hence, $\{a, b, c, d, e\} \subseteq X$. From $X \leq^v eb$, we derive that $x \vee b \in \{e, b\}$, and, from $abcde \leq^v X$, we also have that $x \vee b \in X$. If $x \vee b = e$ then $x \leq e$, so that, from $abcde \leq^v X$, we obtain $x = e \wedge x \in \{a, b, c, d, e\}$. If, instead, $x \vee b = b$ then $x \leq b$, so that, from $abcde \leq^v X$, we derive $x = b \wedge x \in \{a, b, c, d, e\}$. In both cases, we have that $X \subseteq \{a, b, c, d, e\}$. We thus conclude that X = abcde. An analogous argument shows that if $abce \leq^v X$ then X = abce. Hence, similarly to the previous case (N_5) , the meet of eb and ec does not exist.

Moreover, we show that if we require SL(C) to be a complete lattice then the complete lattice C must be a complete Heyting and co-Heyting algebra. Let us remark that this proof makes use of the axiom of choice.

Theorem 2.3. If $\langle SL(C), \leq^v \rangle$ is a complete lattice then C is a complete Heyting and co-Heyting algebra.

Proof. Assume that the complete lattice C is not a complete co-Heyting algebra. If C is not distributive, then, by Lemma 2.2, $\langle \operatorname{SL}(C), \leq^v \rangle$ is not a complete lattice. Thus, let us assume that C is distributive. The (dual) characterization in [Gierz *et al.* 1980, Remark 4.3, p. 40] states that a complete lattice C is a complete co-Heyting algebra iff C is distributive and join-continuous (*i.e.*, the join distributes over arbitrary meets of directed subsets). Consequently, it turns out that C is not join-continuous. Thus, by the result in [Bruns 1967] on directed sets and chains (see also [Gierz *et al.* 1980, Exercise 4.9, p. 42]), there exists an infinite descending chain $\{a_\beta\}_{\beta<\alpha}\subseteq C$, for some ordinal $\alpha\in \operatorname{Ord}$, such that if $\beta<\gamma<\alpha$ then $a_\beta>a_\gamma$, and an element $b\in C$ such that $\bigwedge_{\beta<\alpha}a_\beta\leq b<\bigwedge_{\beta<\alpha}(b\vee a_\beta)$. We observe the following facts:

- (A) α must necessarily be a limit ordinal (so that $|\alpha| \geq |\mathbb{N}|$), otherwise if α is a successor ordinal then we would have that, for any $\beta < \alpha$, $a_{\alpha-1} \leq a_{\beta}$, so that $\bigwedge_{\beta < \alpha} a_{\beta} = a_{\alpha-1} \leq b$, and in turn we would obtain $\bigwedge_{\beta < \alpha} (b \vee a_{\beta}) = b \vee a_{\alpha-1} = b$, *i.e.*, a contradiction.
- (B) We have that $\bigwedge_{\beta < \alpha} a_{\beta} < b$, otherwise $\bigwedge_{\beta < \alpha} a_{\beta} = b$ would imply that $b \le a_{\beta}$ for any $\beta < \alpha$, so that $\bigwedge_{\beta < \alpha} (b \vee a_{\beta}) = \bigwedge_{\beta < \alpha} a_{\beta} = b$, which is a contradiction.
- (C) Firstly, observe that $\{b \lor a_\beta\}_{\beta < \alpha}$ is an infinite descending chain in C. Let us consider a limit ordinal $\gamma < \alpha$. Without loss of generality, we assume that the glb's of the subchains $\{a_\rho\}_{\rho < \gamma}$ and $\{b \lor a_\rho\}_{\rho < \gamma}$ belong, respectively, to the chains $\{a_\beta\}_{\beta < \alpha}$ and $\{b \lor a_\beta\}_{\beta < \alpha}$. For our purposes, this is not a restriction because the elements $\bigwedge_{\rho < \gamma} a_\rho$ and $\bigwedge_{\rho < \gamma} (b \lor a_\rho)$ can be added to the respective chains $\{a_\beta\}_{\beta < \alpha}$ and $\{b \lor a_\beta\}_{\beta < \alpha}$ and these extensions would preserve both the glb's of the chains $\{a_\beta\}_{\beta < \alpha}$ and $\{b \lor a_\beta\}_{\beta < \alpha}$ and the inequalities $\bigwedge_{\beta < \alpha} a_\beta < b < \bigwedge_{\beta < \alpha} (b \lor a_\beta)$. Hence, by this nonrestrictive assumption, we have that for any limit ordinal $\gamma < \alpha$, $\bigwedge_{\rho < \gamma} a_\rho = a_\gamma$ and $\bigwedge_{\rho < \gamma} (b \lor a_\rho) = b \lor a_\gamma$ hold.
- (D) Let us consider the set $S = \{a_{\beta} \mid \beta < \alpha, \forall \gamma \geq \beta. \ b \leq a_{\gamma}\}$. Then, S must be nonempty, otherwise we would have that for any $\beta < \alpha$ there exists some $\gamma_{\beta} \geq \beta$ such that $b \leq a_{\gamma_{\beta}} \leq a_{\beta}$,

and this would imply that for any $\beta < \alpha$, $b \lor a_{\beta} = a_{\beta}$, so that we would obtain $\bigwedge_{\beta < \alpha} (b \lor a_{\beta}) = \bigwedge_{\beta < \alpha} a_{\beta}$, which is a contradiction. Since any chain in (*i.e.*, subset of) S has an upper bound in S, by Zorn's Lemma, S contains the maximal element $a_{\bar{\beta}}$, for some $\bar{\beta} < \alpha$, such that for any $\gamma < \alpha$ and $\gamma \geq \bar{\beta}$, $b \not\leq a_{\gamma}$. We also observe that $\bigwedge_{\beta < \alpha} a_{\beta} = \bigwedge_{\bar{\beta} \leq \gamma < \alpha} a_{\gamma}$ and $\bigwedge_{\beta < \alpha} (b \lor a_{\beta}) = \bigwedge_{\bar{\beta} \leq \gamma < \alpha} (b \lor a_{\gamma})$. Hence, without loss of generality, we assume that the chain $\{a_{\beta}\}_{\beta < \alpha}$ is such that, for any $\beta < \alpha$, $b \not\leq a_{\beta}$ holds.

For any ordinal $\beta < \alpha$ — therefore, we remark that the limit ordinal α is not included — we define, by transfinite induction, the following subsets $X_{\beta} \subseteq C$:

$$-\beta = 0 \Rightarrow X_{\beta} \triangleq \{a_0, b \lor a_0\}; -\beta > 0 \Rightarrow X_{\beta} \triangleq \bigcup_{\gamma < \beta} X_{\gamma} \cup \{b \lor a_{\beta}\} \cup \{(b \lor a_{\beta}) \land a_{\delta} \mid \delta \leq \beta\}.$$

Observe that, for any $\beta > 0$, $(b \vee a_{\beta}) \wedge a_{\beta} = a_{\beta}$ and that the set $\{b \vee a_{\beta}\} \cup \{(b \vee a_{\beta}) \wedge a_{\delta} \mid \delta \leq \beta\}$ is indeed a chain. Moreover, if $\delta \leq \beta$ then, by distributivity, we have that $(b \vee a_{\beta}) \wedge a_{\delta} = (b \wedge a_{\delta}) \vee (a_{\beta} \wedge a_{\delta}) = (b \wedge a_{\delta}) \vee a_{\beta}$. Moreover, if $\gamma < \beta < \alpha$ then $X_{\gamma} \subseteq X_{\beta}$.

We show, by transfinite induction on β , that for any $\beta < \alpha$, $X_{\beta} \in SL(C)$. Let $\delta \leq \beta$ and $\mu \leq \gamma < \beta$. We notice the following facts:

- (1) $(b \lor a_{\beta}) \land (b \lor a_{\gamma}) = b \lor a_{\beta} \in X_{\beta}$
- $(2) (b \lor a_{\beta}) \lor (b \lor a_{\gamma}) = b \lor a_{\gamma} \in X_{\gamma} \subseteq X_{\beta}$
- $(3) (b \vee a_{\beta}) \wedge ((b \vee a_{\gamma}) \wedge a_{\mu}) = (b \vee a_{\beta}) \wedge a_{\mu} \in X_{\beta}$
- (4) $(b \lor a_{\beta}) \lor ((b \lor a_{\gamma}) \land a_{\mu}) = (b \lor a_{\beta}) \lor (b \land a_{\mu}) \lor a_{\gamma} = b \lor a_{\gamma} \in X_{\gamma} \subseteq X_{\beta}$
- $(5) \left((b \vee a_{\beta}) \wedge a_{\delta} \right) \wedge \left((b \vee a_{\gamma}) \wedge a_{\mu} \right) = (b \vee a_{\beta}) \wedge a_{\max(\delta,\mu)} \in X_{\beta}$
- (6) $((b \vee a_{\beta}) \wedge a_{\delta}) \vee ((b \vee a_{\gamma}) \wedge a_{\mu}) = ((b \wedge a_{\delta}) \vee a_{\beta}) \vee ((b \wedge a_{\mu}) \vee a_{\gamma}) = (b \wedge a_{\min(\delta,\mu)}) \vee a_{\gamma} = (b \vee a_{\gamma}) \wedge a_{\min(\delta,\mu)} \in X_{\gamma} \subseteq X_{\beta}$
- (7) if β is a limit ordinal then, by point (C) above, $\bigwedge_{\rho<\beta}(b\vee a_\rho)=b\vee a_\beta$ holds; therefore, $\bigwedge_{\rho<\beta}\left((b\vee a_\rho)\wedge a_\delta\right)=\left(\bigwedge_{\rho<\beta}(b\vee a_\rho)\right)\wedge a_\delta=(b\vee a_\beta)\wedge a_\delta\in X_\beta$; in turn, by taking the glb of these latter elements in X_β , we have that $\bigwedge_{\delta\leq\beta}\left((b\vee a_\beta)\wedge a_\delta\right)=(b\vee a_\beta)\wedge\left(\bigwedge_{\delta\leq\beta}a_\delta\right)=(b\vee a_\beta)\wedge a_\beta=a_\beta\in X_\beta$

Since $X_0 \in SL(C)$ obviously holds, the points (1)-(7) above show, by transfinite induction, that for any $\beta < \alpha$, X_{β} is closed under arbitrary lub's and glb's of nonempty subsets, *i.e.*, $X_{\beta} \in SL(C)$. In the following, we prove that the glb of $\{X_{\beta}\}_{\beta < \alpha} \subseteq SL(C)$ in $\langle SL(C), \leq^v \rangle$ does not exist.

Recalling, by point (A) above, that α is a limit ordinal, we define $A \triangleq \mathcal{M}^*(\bigcup_{\beta < \alpha} X_\beta)$. By point (C) above, we observe that for any limit ordinal $\gamma < \alpha$, the $\bigcup_{\beta < \alpha} X_\beta$ already contains the glb's

$$\bigwedge_{\rho < \gamma} (b \vee a_{\rho}) = b \vee a_{\gamma} \in X_{\gamma}, \qquad \bigwedge_{\rho < \gamma} a_{\rho} = a_{\gamma} \in X_{\gamma},$$

$$\{ \left(\bigwedge_{\rho < \gamma} (b \vee a_{\rho}) \right) \wedge a_{\delta} \mid \delta < \gamma \} = \{ (b \vee a_{\gamma}) \wedge a_{\delta} \mid \delta < \gamma \} \subseteq X_{\gamma}.$$

Hence, by taking the glb's of all the chains in $\bigcup_{\beta < \alpha} X_{\beta}$, A turns out to be as follows:

$$A = \bigcup_{\beta < \alpha} X_{\beta} \cup \{ \bigwedge_{\beta < \alpha} (b \vee a_{\beta}), \bigwedge_{\beta < \alpha} a_{\beta} \} \cup \{ (\bigwedge_{\beta < \alpha} (b \vee a_{\beta})) \wedge a_{\delta} \mid \delta < \alpha \}.$$

Let us show that $A \in SL(C)$. First, we observe that $\bigcup_{\beta < \alpha} X_{\beta}$ is closed under arbitrary nonempty lub's. In fact, if $S \subseteq \bigcup_{\beta < \alpha} X_{\beta}$ then $S = \bigcup_{\beta < \alpha} (S \cap X_{\beta})$, so that

$$\bigvee S = \bigvee \bigcup_{\beta < \alpha} (S \cap X_{\beta}) = \bigvee_{\beta < \alpha} \bigvee S \cap X_{\beta}.$$

Also, if $\gamma < \beta < \alpha$ then $S \cap X_{\gamma} \subseteq S \cap X_{\beta}$ and, in turn, $\bigvee S \cap X_{\gamma} \leq \bigvee S \cap X_{\beta}$, so that $\{\bigvee S \cap X_{\beta}\}_{\beta < \alpha}$ is an increasing chain. Hence, since $\bigcup_{\beta < \alpha} X_{\beta}$ does not contain infinite increasing chains, there exists some $\gamma < \alpha$ such that $\bigvee_{\beta < \alpha} \bigvee S \cap X_{\beta} = \bigvee S \cap X_{\gamma} \in X_{\gamma}$, and consequently $\bigvee S \in \bigcup_{\beta < \alpha} X_{\beta}$. Moreover, $\{\left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) \wedge a_{\delta}\}_{\delta < \alpha} \subseteq A$ is a chain whose lub is $\left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) \wedge a_{0}$ which belongs to the chain itself, while its glb is

$$\bigwedge_{\delta < \alpha} \big(\bigwedge_{\beta < \alpha} (b \vee a_\beta) \big) \wedge a_\delta = \big(\bigwedge_{\beta < \alpha} (b \vee a_\beta) \big) \wedge \bigwedge_{\delta < \alpha} a_\delta = \bigwedge_{\delta < \alpha} a_\delta \in A.$$

Finally, if $\delta \leq \gamma < \alpha$ then we have that:

- (8) $\left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) \wedge (b \vee a_{\gamma}) = \bigwedge_{\beta < \alpha} (b \vee a_{\beta}) \in A$
- $(9) \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta}) \right) \vee (b \vee a_{\gamma}) = b \vee a_{\gamma} \in X_{\gamma} \subseteq A$
- $(10) \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta}) \right) \wedge \left((b \vee a_{\gamma}) \wedge a_{\delta} \right) = \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta}) \right) \wedge a_{\delta} \in A$
- (11) We have that $\left(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\right)\vee\left((b\vee a_{\gamma})\wedge a_{\delta}\right)=\left(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\right)\vee\left(b\wedge a_{\delta}\right)\vee a_{\gamma}=\left(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\right)\vee a_{\gamma}$. Moreover, $b\vee a_{\gamma}\leq\left(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\right)\vee a_{\gamma}\leq\left(b\vee a_{\gamma}\right)\vee a_{\gamma}=b\vee a_{\gamma}$; hence, $\left(\bigwedge_{\beta<\alpha}(b\vee a_{\beta})\right)\vee\left((b\vee a_{\gamma})\wedge a_{\delta}\right)=b\vee a_{\gamma}\in X_{\gamma}\subseteq A$.

Summing up, we have therefore shown that $A \in SL(C)$.

We now prove that A is a lower bound of $\{X_{\beta}\}_{\beta<\alpha}$, *i.e.*, we prove, by transfinite induction on β , that for any $\beta<\alpha$, $A\leq^v X_{\beta}$.

- $(A \leq^v X_0)$: this is a consequence of the following easy equalities, for any $\delta \leq \beta < \alpha$: $(b \vee a_\beta) \wedge a_0 \in X_\beta \subseteq A$; $(b \vee a_\beta) \vee a_0 = b \vee a_0 \in X_0$; $(b \vee a_\beta) \wedge (b \vee a_0) = b \vee a_\beta \in X_\beta \subseteq A$; $(b \vee a_\beta) \vee (b \vee a_0) = b \vee a_0 \in X_0$; $((b \vee a_\beta) \wedge a_\delta) \wedge a_0 = (b \vee a_\beta) \wedge a_\delta \in X_\beta \subseteq A$; $((b \vee a_\beta) \wedge a_\delta) \vee a_0 = a_0 \in X_0$; $((b \vee a_\beta) \wedge a_\delta) \wedge (b \vee a_0) = (b \vee a_\beta) \wedge a_\delta \in X_\beta \subseteq A$; $((b \vee a_\beta) \wedge a_\delta) \vee (b \vee a_0) = b \vee a_0 \in X_0$.
- $(A \leq^v X_\beta, \beta > 0)$: Let $a \in A$ and $x \in X_\beta$. If $x \in \bigcup_{\gamma < \beta} X_\gamma$ then $x \in X_\gamma$ for some $\gamma < \beta$, so that, since by inductive hypothesis $A \leq^v X_\gamma$, we have that $a \land x \in A$ and $a \lor x \in X_\gamma \subseteq X_\beta$. Thus, assume that $x \in X_\beta \smallsetminus (\bigcup_{\gamma < \beta} X_\gamma)$. If $a \in X_\beta$ then $a \land x \in X_\beta \subseteq A$ and $a \lor x \in X_\beta$. If $a \in X_\mu$, for some $\mu > \beta$, then $a \land x \in X_\mu \subseteq A$, while points (2), (4) and (6) above show that $a \lor x \in X_\beta$. If $a = \bigwedge_{\beta < \alpha} (b \lor a_\beta)$ then points (8)-(11) above show that $a \land x \in A$ and $a \lor x \in X_\beta$. If $a = (\bigwedge_{\gamma < \alpha} (b \lor a_\gamma)) \land a_\mu$, for some $\mu < \alpha$, and $\delta \leq \beta$ then we have that:
 - $(12) \left(\left(\bigwedge_{\gamma < \alpha} (b \vee a_{\gamma}) \right) \wedge a_{\mu} \right) \wedge (b \vee a_{\beta}) = \left(\bigwedge_{\gamma < \alpha} (b \vee a_{\gamma}) \right) \wedge a_{\mu} \in A$
 - (13) $((\bigwedge_{\gamma < \alpha} (b \lor a_{\gamma})) \land a_{\mu}) \lor (b \lor a_{\beta}) = ((\bigwedge_{\gamma < \alpha} (b \lor a_{\gamma})) \lor (b \lor a_{\beta})) \land (a_{\mu} \lor (b \lor a_{\beta})) = (b \lor a_{\beta}) \land (b \lor a_{\min(\mu,\beta)}) = b \lor a_{\beta} \in X_{\beta}$

(14)
$$\left(\left(\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\right)\wedge a_{\mu}\right)\wedge\left((b\vee a_{\beta})\wedge a_{\delta}\right)=\left(\bigwedge_{\gamma<\alpha}(b\vee a_{\gamma})\right)\wedge a_{\max(\mu,\delta)}\in A$$

(15)
$$\left(\left(\bigwedge_{\gamma < \alpha} (b \vee a_{\gamma}) \right) \wedge a_{\mu} \right) \vee \left((b \vee a_{\beta}) \wedge a_{\delta} \right) =$$

$$\left(\left(\bigwedge_{\gamma < \alpha} (b \vee a_{\gamma}) \right) \vee (b \vee a_{\beta}) \right) \wedge \left(\left(\bigwedge_{\gamma < \alpha} (b \vee a_{\gamma}) \right) \vee a_{\delta} \right) \wedge \left(a_{\mu} \vee (b \vee a_{\beta}) \right) \wedge \left(a_{\mu} \vee a_{\delta} \right) =$$

$$\left(b \vee a_{\beta} \right) \wedge \left(b \vee a_{\delta} \right) \wedge \left(b \vee a_{\min(\mu, \beta)} \right) \wedge a_{\min(\mu, \delta)} =$$

$$\left(b \vee a_{\beta} \right) \wedge a_{\min(\mu, \delta)} \in X_{\beta}$$

Finally, if $a = \bigwedge_{\gamma < \alpha} a_{\gamma}$ and $x \in X_{\beta}$ then $a \le x$ so that $a \wedge x = a \in A$ and $a \vee x = x \in X_{\beta}$. Summing up, we have shown that $A \le^v X_{\beta}$.

Let us now prove that $b \not\in A$. Let us first observe that for any $\beta < \alpha$, we have that $a_\beta \not\le b$: in fact, if $a_\gamma \le b$, for some $\gamma < \alpha$ then, for any $\delta \le \gamma$, $b \lor a_\delta = b$, so that we would obtain $\bigwedge_{\beta < \alpha} (b \lor a_\beta) = b$, which is a contradiction. Hence, for any $\beta < \alpha$ and $\delta \le \beta$, it turns out that $b \ne b \lor a_\beta$ and $b \ne (b \land a_\delta) \lor a_\beta = (b \lor a_\beta) \land a_\delta$. Moreover, by point (B) above, $b \ne \bigwedge_{\beta < \alpha} (b \lor a_\beta)$, while, by hypothesis, $b \ne \bigwedge_{\beta < \alpha} a_\beta$. Finally, for any $\delta < \alpha$, if $b = (\bigwedge_{\beta < \alpha} (b \lor a_\beta)) \land a_\delta$ then we would derive that $b \le a_\delta$, which, by point (D) above, is a contradiction.

Now, we define $B \triangleq \mathcal{M}^*(A \cup \{b\})$, so that

$$B = A \cup \{b\} \cup \{b \land a_{\delta} \mid \delta < \alpha\}.$$

Observe that for any $a \in A$, with $a \neq \bigwedge_{\beta < \alpha} a_{\beta}$, and for any $\delta < \alpha$, we have that $b \wedge a_{\delta} \leq a$, while $b \vee \left(\left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) \wedge a_{\delta}\right) = \left(b \vee \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right)\right) \wedge (b \vee a_{\delta}) = \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) \wedge (b \vee a_{\delta}) = \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) \wedge (b \vee a_{\delta}) = \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) \wedge (b \vee a_{\delta}) = b \vee a_{\delta} \in B$. Also, for any $\delta \leq \beta < \alpha$, we have that $b \vee \left((b \vee a_{\beta}) \wedge a_{\delta}\right) = \left(b \vee (b \vee a_{\beta})\right) \wedge (b \vee a_{\delta}) = b \vee a_{\delta} \in B$. Also, $b \vee \left(\bigwedge_{\beta < \alpha} (b \vee a_{\beta})\right) = \bigwedge_{\beta < \alpha} (b \vee a_{\beta}) \in B$ and $b \vee \bigwedge_{\beta < \alpha} a_{\beta} = b \in B$. We have thus checked that B is closed under lub's (of arbitrary nonempty subsets), *i.e.*, $B \in \operatorname{SL}(C)$. Let us check that B is a lower bound of $\{X_{\beta}\}_{\beta < \alpha}$. Since we have already shown that A is a lower bound, and since $b \wedge a_{\delta} \leq b$, for any $\delta < \alpha$, it is enough to observe that for any $\beta < \alpha$ and $x \in X_{\beta}$, $b \wedge x \in B$ and $b \vee x \in X_{\beta}$. The only nontrivial case is for $x = (b \vee a_{\beta}) \wedge a_{\delta}$, for some $\delta \leq \beta < \alpha$. On the one hand, $b \wedge \left((b \vee a_{\beta}) \wedge a_{\delta}\right) = b \wedge a_{\delta} \in B$, on the other hand, $b \vee \left((b \vee a_{\beta}) \wedge a_{\delta}\right) = b \vee \left((b \wedge a_{\delta}) \vee a_{\beta}\right) = b \vee a_{\beta} \in X_{\beta}$.

To close the proof, it is enough to observe that if $\langle C, \leq \rangle$ is not a complete Heyting algebra then, by duality, $\langle \operatorname{SL}(C), \leq^v \rangle$ does not have lub's.

3. THE NECESSARY CONDITION

It turns out that the property of being a complete lattice for the poset $(\operatorname{SL}(C), \leq^v)$ is a necessary condition for a complete Heyting and co-Heyting algebra C.

Theorem 3.1. If C is a complete Heyting and co-Heyting algebra then $\langle SL(C), \leq^v \rangle$ is a complete lattice.

Proof. Let $\{A_i\}_{i\in I}\subseteq SL(C)$, for some family of indices $I\neq\varnothing$. Let us define

$$G \triangleq \{x \in \mathcal{M}^*(\cup_{i \in I} A_i) \mid \forall k \in I. \ \mathcal{M}^*(\cup_{i \in I} A_i) \cap \downarrow x \leq^v A_k \}.$$

The following three points show that G is the glb of $\{A_i\}_{i\in I}$ in $\langle SL(C), <^v \rangle$.

(1) We show that $G \in SL(C)$. Let $\bot \triangleq \bigwedge_{i \in I} \bigwedge A_i$. First, G is nonempty because it turns out that $\bot \in G$. Since, for any $i \in I$, $\bigwedge A_i \in A_i$ and $I \neq \emptyset$, we have that $\bot \in \mathcal{M}^*(\cup_i A_i)$. Let $y \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow \bot$ and, for some $k \in I$, $a \in A_k$. On the one hand, we have that $y \wedge a \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow \perp$ trivially holds. On the other hand, since $y \leq \perp \leq a$, we have that $y \lor a = a \in A_k$.

Let us now consider a set $\{x_i\}_{i\in J}\subseteq G$, for some family of indices $J\neq\varnothing$, so that, for any $j \in J$ and $k \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow x_j \leq^v A_k$.

First, notice that $\bigwedge_{j\in J} x_j \in \mathcal{M}^*(\cup_i A_i)$ holds. Then, since $\downarrow (\bigwedge_{j\in J} x_j) = \bigcap_{j\in J} \downarrow x_j$ holds, we have that $\mathcal{M}^*(\cup_i A_i) \cap \downarrow (\bigwedge_{j \in J} x_j) = \mathcal{M}^*(\cup_i A_i) \cap (\bigcap_{j \in J} \downarrow x_j)$, so that, for any $k \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow(\bigwedge_{j \in J} x_j) \leq^v A_k$, that is, $\bigwedge_{j \in J} x_j \in G$.

Let us now prove that $\bigvee_{i \in I} x_i \in \mathcal{M}^*(\cup_i A_i)$ holds. First, since any $x_i \in \mathcal{M}^*(\cup_{i \in I} A_i)$, we have that $x_j = \bigwedge_{i \in K(j)} a_{j,i}$, where, for any $j \in J$, $K(j) \subseteq I$ is a nonempty family of indices in I such that for any $i \in K(j)$, $a_{j,i} \in A_i$. For any $i \in I$, we then define the family of indices $L(i) \subseteq J$ as follows: $L(i) \triangleq \{j \in J \mid i \in K(j)\}$. Observe that it may happen that $L(i) = \emptyset$. Since for any $i \in I$ such that $L(i) \neq \emptyset$, $\{a_{j,i}\}_{j \in L(i)} \subseteq A_i$ and A_i is meet-closed, we have that if $L(i) \neq \emptyset$ then $\hat{a}_i \triangleq \bigwedge_{l \in L(i)} a_{l,i} \in A_i$. Since, given $k \in I$ such that $L(k) \neq \emptyset$, for any $j \in J$, $\mathcal{M}^*(\cup_{i\in I}A_i)\cap \downarrow x_j\leq^v A_k$, we have that for any $j\in J$, $x_j\vee\hat{a}_k\in A_k$. Since A_k is join-closed, we obtain that $\bigvee_{j\in J}(x_j\vee\hat{a}_k)=(\bigvee_{j\in J}x_j)\vee\hat{a}_k\in A_k.$ Consequently,

$$\bigwedge_{\substack{k \in I, \\ L(k) \neq \varnothing}} \left(\left(\bigvee_{j \in J} x_j \right) \vee \hat{a}_k \right) \in \mathcal{M}^*(\cup_{i \in I} A_i).$$

Since C is a complete co-Heyting algebra,

$$\bigwedge_{\substack{k \in I, \\ L(k) \neq \varnothing}} \left(\left(\bigvee_{j \in J} x_j \right) \vee \hat{a}_k \right) = \left(\bigvee_{j \in J} x_j \right) \vee \left(\bigwedge_{\substack{k \in I, \\ L(k) \neq \varnothing}} \hat{a}_k \right).$$

Thus, since, for any $j \in J$,

$$\bigwedge_{\substack{k \in I, \\ (k) \neq \varnothing}} \hat{a}_k = \bigwedge_{j \in J} \bigwedge_{i \in K(j)} a_{j,i} \le x_j,$$

 $\bigwedge_{\substack{k \in I, \\ L(k) \neq \varnothing}} \hat{a}_k = \bigwedge_{j \in J} \bigwedge_{i \in K(j)} a_{j,i} \leq x_j,$ we obtain that $(\bigvee_{j \in J} x_j) \vee (\bigwedge_{\substack{k \in I, \\ L(k) \neq \varnothing}} \hat{a}_k) = \bigvee_{j \in J} x_j$, so that $\bigvee_{j \in J} x_j \in \mathcal{M}^*(\cup_{i \in I} A_i)$.

Finally, in order to prove that $\bigvee_{j \in J} x_j \in G$, let us show that for any $k \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow$ $(\bigvee_{j\in J} x_j) \leq^v A_k$. Let $y\in \mathcal{M}^*(\cup_i A_i)\cap \downarrow (\bigvee_{j\in J} x_j)$ and $a\in A_k$. For any $j\in J,\,y\wedge x_j\in A_k$ $\mathcal{M}^*(\cup_i A_i) \cap \downarrow (\bigvee_{j \in J} x_j)$, so that $(y \wedge x_j) \vee a \in A_k$. Since A_k is join-closed, we obtain that $\bigvee_{j\in J} \left((y\wedge x_j) \vee a \right) = a \vee \left(\bigvee_{j\in J} (y\wedge x_j) \right) \in A_k. \text{ Since } C \text{ is a complete Heyting algebra, } a \vee \left(\bigvee_{j\in J} (y\wedge x_j) \right) = a \vee \left(y \wedge (\bigvee_{j\in J} x_j) \right). \text{ Since } y \wedge \left(\bigvee_{j\in J} x_j \right) = y, \text{ we derive that } y \vee a \in A_k.$ On the other hand, $y \wedge a \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow(\bigvee_{j\in J} x_j)$ trivially holds.

- (2) We show that for any $k \in I$, $G \leq^v A_k$. Let $x \in G$ and $a \in A_k$. Hence, $x \in \mathcal{M}^*(\cup_i A_i)$ and for any $j \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow x \leq^v A_j$. We first prove that $\mathcal{M}^*(\cup_i A_i) \cap \downarrow x \subseteq G$. Let $y \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x$, and let us check that for any $j \in I$, $\mathcal{M}^*(\cup_i A_i) \cap \downarrow y \leq^v A_j$: if $z \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow y$ and $u \in A_j$ then $z \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x$ so that $z \vee u \in A_j$ follows, while $z \wedge u \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow y$ trivially holds. Now, since $x \wedge a \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x$, we have that $x \wedge a \in G$. On the other hand, since $x \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow x \leq^v A_k$, we also have that $x \vee a \in A_k$.
- (3) We show that if $Z \in \operatorname{SL}(C)$ and, for any $i \in I$, $Z \leq^v A_i$ then $Z \leq^v G$. By point (1), $\bot = \bigwedge_{i \in I} \bigwedge A_i \in G$. We then define $Z^\perp \subseteq C$ as follows: $Z^\perp \triangleq \{x \vee \bot \mid x \in Z\}$. It turns out that $Z^\perp \subseteq \mathcal{M}^*(\cup_i A_i)$: in fact, since C is a complete co-Heyting algebra, for any $x \in Z$, we have that $x \vee (\bigwedge_{i \in I} \bigwedge A_i) = \bigwedge_{i \in I} (x \vee \bigwedge A_i)$, and since $x \in Z$, for any $i \in I$, $\bigwedge A_i \in A_i$, and $Z \leq^v A_i$, we have that $x \vee \bigwedge A_i \in A_i$, so that $\bigwedge_{i \in I} (x \vee \bigwedge A_i) \in \mathcal{M}^*(\cup_i A_i)$. Also, it turns out that $Z^\perp \in \operatorname{SL}(C)$. If $Y \subseteq Z^\perp$ and $Y \neq \emptyset$ then $Y = \{x \vee \bot\}_{x \in X}$ for some $X \subseteq Z$ with $X \neq \emptyset$. Hence, $\bigvee Y = \bigvee_{x \in X} (x \vee \bot) = (\bigvee X) \vee \bot$, and since $\bigvee X \in Z$, we therefore have that $\bigvee Y \in Z^\perp$. On the other hand, $\bigwedge Y = \bigwedge_{x \in X} (x \vee \bot)$, and, as C is a complete co-Heyting algebra, $\bigwedge_{x \in X} (x \vee \bot) = (\bigwedge X) \vee \bot$, and since $\bigwedge X \in Z$, we therefore obtain that $\bigwedge Y \in Z^\perp$. We also observe that $Z \subseteq^v Z^\perp$. In fact, if $x \in Z$ and $y \vee \bot \in Z^\perp$, for some $y \in Z$, then, clearly, $x \vee y \vee \bot \in Z^\perp$, while, by distributivity of C, $x \wedge (y \vee \bot) = (x \wedge y) \vee \bot \in Z^\perp$. Next, we show that for any $i \in I$, $i \in I$ while, $i \in I$ for some $i \in I$ and $i \in I$. Then, by distributivity of $i \in I$ distributivity of $i \in I$ and $i \in I$ have that $i \in I$ have that $i \in I$ have that $i \in I$ have $i \in I$ have i

Summing up, we have therefore shown that for any $Z \in \operatorname{SL}(C)$ such that, for any $i \in I, Z \leq^v A_i$, there exists $Z^\perp \in \operatorname{SL}(C)$ such that $Z^\perp \subseteq \mathcal{M}^*(\cup_i A_i)$ and, for any $i \in I, Z^\perp \leq^v A_i$. We now prove that $Z^\perp \subseteq G$. Consider $w \in Z^\perp$, and let us check that for any $i \in I, \mathcal{M}^*(\cup_i A_i) \cap \downarrow w \leq^v A_i$. Hence, consider $y \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow w$ and $a \in A_i$. Then, $y \wedge a \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow w$ follows trivially. Moreover, since $y \in \mathcal{M}^*(\cup_i A_i)$, there exists a subset $K \subseteq I$, with $K \neq \emptyset$, such that for any $k \in K$ there exists $a_k \in A_k$ such that $y = \bigwedge_{k \in K} a_k$. Thus, since, for any $k \in K$, $z \wedge a_k \in \mathcal{M}^*(\cup_i A_i) \cap \downarrow z \leq^v A_i$, we obtain that $\{(z \wedge a_k) \vee a\}_{k \in K} \subseteq A_i$. Since A_i is meet-closed, $A_i \in K$ ($A_i \in K$) and $A_i \in K$ is a complete co-Heyting algebra, $A_i \in K$ ($A_i \in K$) and

To close the proof of point (3), we show that $Z^{\perp} \leq^v G$. Let $z \in Z^{\perp}$ and $x \in G$. On the one hand, since $Z^{\perp} \subseteq G$, we have that $z \in G$, and, in turn, as G is join-closed, we obtain that $z \vee x \in G$. On the other hand, since $x \in \mathcal{M}^*(\cup_i A_i)$, there exists a subset $K \subseteq I$, with $K \neq \varnothing$, such that for any $k \in K$ there exists $a_k \in A_k$ such that $x = \bigwedge_{k \in K} a_k$. Thus, since $Z^{\perp} \leq^v A_k$, for any $k \in K$, we obtain that $z \wedge a_k \in Z^{\perp}$. Hence, since Z^{\perp} is meet-closed, we have that $\bigwedge_{k \in K} (z \wedge a_k) = z \wedge \left(\bigwedge_{k \in K} a_k \right) = z \wedge x \in Z^{\perp}$.

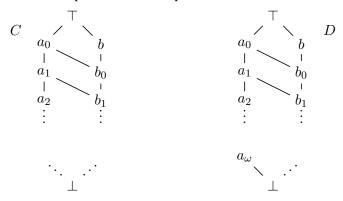
To conclude the proof, we notice that $\{\top_C\} \in SL(C)$ is the greatest element in $\langle SL(C), \leq^v \rangle$. Thus, since $\langle SL(C), \leq^v \rangle$ has nonempty glb's and the greatest element, it turns out that it is a complete lattice.

We have thus shown the following characterization of complete Heyting and co-Heyting algebras.

Corollary 3.2. Let C be a complete lattice. Then, $\langle \operatorname{SL}(C), \leq^v \rangle$ is a complete lattice if and only if C is a complete Heyting and co-Heyting algebra.

To conclude, we provide an example showing that the property of being a complete lattice for the poset $\langle SL(C), \leq^v \rangle$ cannot be a characterization for a complete Heyting (or co-Heyting) algebra C.

Example 3.3. Consider the complete lattice C depicted on the left.



C is distributive but not a complete co-Heyting algebra: $b \lor \left(\bigwedge_{i \geq 0} a_i \right) = b < \bigwedge_{i \geq 0} (b \lor a_i) = \top$. Let $X_0 \triangleq \{\top, a_0\}$ and, for any $i \geq 0$, $X_{i+1} \triangleq X_i \cup \{a_{i+1}\}$, so that $\{X_i\}_{i \geq 0} \subseteq \operatorname{SL}(C)$. Then, it turns out that the glb of $\{X_i\}_{i \geq 0}$ in $\langle \operatorname{SL}(C), \leq^v \rangle$ does not exist. This can be shown by mimicking the proof of Theorem 2.3. Let $A \triangleq \{\bot\} \cup \bigcup_{i \geq 0} X_i \in \operatorname{SL}(C)$. Let us observe that A is a lower bound of $\{X_i\}_{i \geq 0}$. Hence, if we suppose that $Y \in \operatorname{SL}(C)$ is the glb of $\{X_i\}_{i \geq 0}$ then $A \leq^v Y$ must hold. Hence, if $y \in Y$ then $\top \land y = y \in A$, so that $Y \subseteq A$, and $\top \lor y \in Y$. Since, $Y \leq^v X_0$, we have that $\top \lor y \lor \top = \top \lor y \in X_0 = \{\top, a_0\}$, so that necessarily $\top \lor y = \top \in Y$. Hence, from $Y \leq^v X_i$, for any $i \geq 0$, we obtain that $\top \land a_i = a_i \in Y$. Hence, Y = A. The whole complete lattice C is also a lower bound of $\{X_i\}_{i \geq 0}$, therefore $C \leq^v Y = A$ must hold: however, this is a contradiction because from $b \in C$ and $\bot \in A$ we obtain that $b \lor \bot = b \in A$.

It is worth noting that if we instead consider the complete lattice D depicted on the right of the above figure, which includes a new glb a_{ω} of the chain $\{a_i\}_{i\geq 0}$, then D becomes a complete Heyting and co-Heyting algebra, and in this case the glb of $\{X_i\}_{i\geq 0}$ in $\langle \operatorname{SL}(D), \leq^v \rangle$ turns out to be $\{\top\} \cup \{a_i\}_{i\geq 0} \cup \{a_{\omega}\}$.

ACKNOWLEDGEMENTS

The author has been partially supported by the University of Padova under the 2014 PRAT project "ANCORE".

REFERENCES

[Balbes and Dwinger 1974] R. Balbes and P. Dwinger. *Distributive Lattices*. University of Missouri Press, Columbia, Missouri, 1974.

[Bruns 1967] G. Bruns. A lemma on directed sets and chains. *Archiv der Mathematik*, 18(6):561-563, 1967. [Chang and Horn 1962] C.C. Chang and A. Horn. On the representation of α -complete lattices. *Fund. Math.*, 51:254-258, 1962.

[Funayama 1959] N. Funayama. Imbedding infinitely distributive lattices completely isomorphically into

Boolean algebras. Nagoya Math. J., 15:71-81, 1959.

[Gierz et al. 1980] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. A Compendium of Continuous Lattices. Springer, Berlin, 1980. [Johnstone 1982] P.T. Johnstone. Stone Spaces. Cambridge University Press, 1982. [Johnstone 1983] P.T. Johnstone. The point of pointless topology. Bull. Amer. Math. Soc., 8(1):41-53, 1983. [Koppelberg 1989] S. Koppelberg. Handbook of Boolean algebras, vol. 1. Edited by J.D. Monk and R. Bonnet, North-Holland, 1989. [Ranzato 2016] F. Ranzato. Abstract interpretation of supermodular games. In X. Rival editor, Proceedings of the 23rd International Static Analysis Symposium (SAS'16), Edinburgh, UK, LNCS vol. 9837, pages 403-423, Springer, 2016. [Topkis 1978] D.M. Topkis. Minimizing a submodular function on a lattice. Operations Research, 26(2):305-321, 1978. [Topkis 1998] D.M. Topkis. Supermodularity and Complementarity. Princeton University Press, 1998. [Veinott 1989] A.F. Veinott. Lattice programming. Unpublished notes from lectures at Johns Hopkins University, 1989.

> D.A. Vladimirov. Boolean Algebras in Analysis. Springer Netherlands, 2002. L. Zhou. The set of Nash equilibria of a supermodular game is a complete lattice. Games and

Economic Behavior, 7(2):295-300, 1994.

[Vladimirov 2002]

[Zhou 1994]