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ABSTRACT. We give a new order-theoretic characterization of a complete Heyting and co-Heyting
algebra C'. This result provides an unexpected relationship with the field of Nash equilibria, being
based on the so-called Veinott ordering relation on subcomplete sublattices of C, which is crucially
used in Topkis’ theorem for studying the order-theoretic stucture of Nash equilibria of supermodular
games.

INTRODUCTION

Complete Heyting algebras — also called frames, while locales is used for complete co-Heyting
algebras — play a fundamental role as algebraic model of intuitionistic logic and in pointless topology
[Johnstone 1982, Johnstone 1983]. To the best of our knowledge, no characterization of complete
Heyting and co-Heyting algebras has been known. As reported in [Balbes and Dwinger 1974], a
sufficient condition has been given in [Funayama 1959] while a necessary condition has been given
by [Chang and Horn 1962].

We give here an order-theoretic characterization of complete Heyting and co-Heyting algebras
that puts forward an unexected relationship with Nash equilibria. Topkis’ theorem [Topkis 1998]
is well known in the theory of supermodular games in mathematical economics. This result shows
that the set of solutions of a supermodular game, i.e., its set of pure-strategy Nash equilibria, is
nonempty and contains a greatest element and a least one [Topkis 1978]. Topkis’ theorem has been
strengthned by [Zhou 1994], where it is proved that this set of Nash equilibria is indeed a complete
lattice. These results rely on so-called Veinott’s ordering relation (also called strong set relation).
Let (C, <, A, V) be a complete lattice. Then, the relation <"C ©(C) x p(C) on subsets of C,
according to Topkis [Topkis 1978], has been introduced by Veinott [Topkis 1998, Veinott 1989]: for
any S, T € p(C),

S<UT £ YseSVteT.sAteS & svteT.

This relation <" is always transitive and antisymmetric, while reflexivity S <" S holds if and only
if S'is a sublattice of C'. If SL(C') denotes the set of nonempty subcomplete sublattices of C' then
(SL(C), <) is therefore a poset. The proof of Topkis’ theorem is then based on the fixed points of a
certain mapping defined on the poset (SL(C), <").
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To the best of our knowledge, no result is available on the order-theoretic properties of the
Veinott poset (SL(C'), <"). When is this poset a lattice? And a complete lattice? Our efforts in
investigating these questions led to the following main result: the Veinott poset SL(C') is a complete
lattice if and only if C' is a complete Heyting and co-Heyting algebra. This finding therefore
reveals an unexpected link between complete Heyting algebras and Nash equilibria of supermodular
games. This characterization of the Veinott relation <" could be exploited for generalizing a recent
approach based on abstract interpretation for approximating the Nash equilibria of supermodular
games introduced by [Ranzato 2016].

1. NOTATION

If (P, <) is a poset and S C P then 1b(.S) denotes the set of lower bounds of S, i.e., Ib(S) £ {x €
P|Vse S .o <s} whileif x ePthenixé{yePngx}.
Let (C, <, A, V) be a complete lattice. A nonempty subset S C C'is a subcomplete sublattice of C'
if for all its nonempty subsets X C S, AX € S and VX € S, while S is merely a sublattice of C' if
this holds for all its nonempty and finite subsets X C S only. If S C C' then the nonempty Moore
closure of S is defined as M*(S) £ {AX € C | X C S, X # @}. Let us observe that M* is an
upper closure operator on the poset (p(C'), C), meaning that: (1) S C T = M*(S) C M*(T);
(2) S T M*(S); 3) M*(M*(S)) = M*(S).
We define

SL(C) £ {S C C| S # @, S subcomplete sublattice of C'}.
Thus, if <" denotes the Veinott ordering defined in Section then (SL(C'), <) is a poset.
C' is a complete Heyting algebra (also called frame) if forany x € CandY C C,z A (VYY) =
\/er x A y, while it is a complete co-Heyting algebra (also called locale) if the dual equation
zV (AY)=/,cy ®Vyholds. Letus recall that these two notions are orthogonal, for example the
complete lattice of open subsets of R ordered by C is a complete Heyting algebra, but not a complete
co-Heyting algebra. C is (finitely) distributive if for any z,y,2 € C,z A (yV z) = (x Ay) V (A 2).
Let us also recall that C' is completely distributive if for any family {xz; | j € J,k € K(j)} C C,

we have that
/\ \/ Ljk = \/ /\%',f(j)
)

je€J keK(j feJw~K jeJ

where .J and, for any j € J, K(j) are sets of indices and J ~ K = {f : J — Uje K (j) | Vj €
J. f(j) € K(j)} denotes the set of choice functions. It turns out that the class of completely
distributive complete lattices is strictly contained in the class of complete Heyting and co-Heyting
algebras. Clearly, any completely distribuitive lattice is a complete Heyting and co-Heyting algebra.
On the other hand, this containment turns out to be strict, as shown by the following counterexample.

Example 1.1. Let us recall that a subset S C [0, 1] of real numbers is a regular open set if S is open
and S coincides with the interior of the closure of .S. For example, (1/3,2/3) and (0,1/3) U (2/3,1)
are both regular open sets, while (1/3,2/3) U (2/3,1) is open but not regular. Let us consider
C = ({S C[0,1] | S is aregular open set}, C). It is known that C is a complete Boolean algebra
(see e.g. [Vladimirov 2002, Theorem 12, Section 2.5]). As a consequence, C is a complete Heyting
and co-Heyting algebra (see e.g. [Vladimirov 2002, Theorem 3, Section 0.2.3]).

Recall that an element a € C in a complete lattice C'is an atom if a is different from the least element
Lo of Candforany x € C,if Lo < x < athen z = a, while C' is atomic if forany x € C~ {L¢}
there exists an atom a € C such that ¢ < z. It turns out that C does not have atoms: in fact, any
regular open set S € C is a union of open sets, namely, S = U{U C [0,1] | U isopen, U C S}
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(see e.g. [Vladimirov 2002, Section 2.5]), so that no S € C . {@} can be an atom of C. In turn, this
implies that C is a complete Boolean algebra which is not atomic. It known that a complete Boolean
algebra is completely distributive if and only if it is atomic (see [Koppelberg 1989, Theorem 14.5,
Chapter 5]). Hence, since C is not atomic, we obtain that C is not completely distributive. ]

2. THE SUFFICIENT CONDITION

To the best of our knowledge, no result is available on the order-theoretic properties of the Veinott
poset (SL(C'), <"). The following example shows that, in general, (SL(C'), <") is not a lattice.

Example 2.1. Consider the nondistributive pentagon lattice N5, where, to use a compact notation,
subsets of V5 are denoted by strings of letters.
e

RN

I b

c\/
a

Consider ed, abce € SL(N3). It turns out that | ed = {a, ¢, d, ab, ac, ad, cd, ed, acd, ade, cde, abde,
acde, abede} and | abce = {a,ab, ac, abce}. Thus, {a, ab, ac} is the set of common lower bounds
of ed and abce. However, the set {a, ab, ac} does not include a greatest element, since a <" ab and
a <" ac while ab and ac are incomparable. Hence, ab and c are maximal lower bounds of ed and
abee, so that (SL(N5), <") is not a lattice. O

Indeed, the following result shows that if SL(C') turns out to be a lattice then C' must necessarily
be distributive.

Lemma 2.2. If (SL(C), <") is a lattice then C'is distributive.

Proof. By the basic characterization of distributive lattices, we know that C' is not distributive iff
either the pentagon N5 is a sublattice of C' or the diamond M3 is a sublattice of C. We consider
separately these two possibilities.

(N5) Assume that N5, as depicted by the diagram in Example 2.1, is a sublattice of C'. Following
Example 2.1, we consider the sublattices ed, abce € (SL(C), <") and we prove that their meet
does not exist. By Example 2.1, ab,ac € lb({ed, abce}). Consider any X € SL(C) such that
X € 1b({ed, abce}). Assume that ab <V X. If z € X then, by ab <" X, we have that bV = € X.
Moreover, by X <V abce, bV x € {a,b,c,e}. If bV x = e then we would have that e € X, and
in turn, by X <" ed,d = e Ad € X, so that, by X <" abce, we would get the contradiction
d=dVce{a,b,c,e}. Also,if bV x = cthen we would have that ¢ € X, and in turn, by ab <" X,
e = bAc € X, so that, as in the previous case, we would get the contradiction d = dV ¢ € {a,b, ¢, e}.
Thus, we necessarily have that b\ « € {a,b}. On the one hand, if bV = b then z < b so that, by
ab <" X,z =bAx € {a,b}. On the other hand, if b V x = a then z < a so that, by ab <" X,
x =aAx € {a,b}. Hence, X C {a,b}. Since X # &, suppose that a € X. Then, by ab <" X,
b=bVa e X.If, instead, b € X then, by X <" abce, a = b A a € X. We have therefore shown
that X = ab. An analogous argument shows that if ac <" X then X = ac. If the meet of ed and
abce would exist, call it Z € SL(C), from Z € Ib({ed, abce}) and ab, ac < Z we would get the
contradiction ab = Z = ac.

(Ms3) Assume that the diamond M3, as depicted by the following diagram, is a sublattice of C'.
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In this case, we consider the sublattices eb, ec € (SL(C'), <) and we prove that their meet does not
exist. It turns out that abce, abede € 1b({eb, ec}) while abce and abede are incomparable. Consider
any X € SL(C) such that X € lb({eb,ec}). Assume that abcde <" X. If z € X then, by
X <Y eb,ec, wehavethat t Ab,x Ac € X,sothatt AbAc =z ANa € X. From abcde <" X,
we obtain that for any y € {a,b,c,d,e},y =y V (z ANa) € X. Hence, {a,b,c,d,e} C X. From
X <" eb, we derive that z V b € {e, b}, and, from abede <" X, we also have that x V b € X. If
x Vb= ethenz < e, so that, from abcde <" X, we obtain z = e A z € {a,b,c,d,e}. If, instead,
x Vb= bthen x < b, so that, from abede <" X, we derive x = b Az € {a,b,c,d,e}. Inboth cases,
we have that X C {a, b, ¢, d, e}. We thus conclude that X = abcde. An analogous argument shows
that if abce <V X then X = abce. Hence, similarly to the previous case (/V5), the meet of eb and ec
does not exist. L]

Moreover, we show that if we require SL(C') to be a complete lattice then the complete lattice
C must be a complete Heyting and co-Heyting algebra. Let us remark that this proof makes use of
the axiom of choice.

Theorem 2.3. If (SL(C), <") is a complete lattice then C'is a complete Heyting and co-Heyting
algebra.

Proof. Assume that the complete lattice C' is not a complete co-Heyting algebra. If C is not
distributive, then, by Lemma 2.2, (SL(C'), <") is not a complete lattice. Thus, let us assume that
C is distributive. The (dual) characterization in [Gierz et al. 1980, Remark 4.3, p. 40] states that
a complete lattice C' is a complete co-Heyting algebra iff C' is distributive and join-continuous
(i.e., the join distributes over arbitrary meets of directed subsets). Consequently, it turns out that
C is not join-continuous. Thus, by the result in [Bruns 1967] on directed sets and chains (see also
[Gierz et al. 1980, Exercise 4.9, p. 42]), there exists an infinite descending chain {ag}g<o C C,
for some ordinal o € Ord, such that if 3 < v < « then ag > a4, and an element b € C such that

Np<a @8 < b < Ng_o(bV ag). We observe the following facts:

(A) o must necessarily be a limit ordinal (so that |«| > |NJ), otherwise if « is a successor ordinal
then we would have that, for any 8 < a, aq—1 < ag, so that /\B<a ag = aq—1 < b, and in turn
we would obtain Az_,(bV ag) =bV aa—1 = b, i.e., a contradiction.

(B) We have that A\ ;_,, ag < b, otherwise A\5_,, ag = b would imply that b < ag for any 8 < «,
sothat A\g_,(bV ag) = A\g_, ap = b, which is a contradiction.

(C) Firstly, observe that {bV ag} g4 is an infinite descending chain in C. Let us consider a limit
ordinal v < «. Without loss of generality, we assume that the glb’s of the subchains {a, },<~ and
{bVa,},<~ belong, respectively, to the chains {ag}g< and {bVag}s<q. For our purposes, this
is not arestriction because the elements /\ . a,and A ,_. (bVa,) can be added to the respective
chains {ag}s<q and {b V ag}s<, and these extensions would preserve both the glb’s of the
chains {ag}g<q and {b V ag} <, and the inequalities /\5_, ag <b < Ay, (bV ap). Hence,
by this nonrestrictive assumption, we have that for any limit ordinal v < a, A = a, and
Np<ry(bV ap) =V ayhold.

(D) Let us consider the set S = {ag | 8 < «, ¥y > B.b £ ay}. Then, S must be nonempty,
otherwise we would have that for any 3 < « there exists some 3 > 3 such that b < Ay, < ag,

p<ry @p
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and this would imply that for any 8 < a, bV ag = ag, so that we would obtain A 5_,(bVag) =
A B<aq @8> Which is a contradiction. Since any chain in (i.e., subset of) S has an upper bound
in .S, by Zorn’s Lemma, S contains the maximal element ag, for some 3 < «, such that
forany v < aandy > 3, b £ a,. We also observe that A\s_, a3 = Az<,.,ay and
Np<a(bVag) = Nj<ycn(bV ay). Hence, without loss of generality, we assume that the chain
{ag}p<q is such that, for any 5 < «, b £ ag holds.
For any ordinal § < « — therefore, we remark that the limit ordinal « is not included — we define,
by transfinite induction, the following subsets Xz C C:
-6=0= Xgé{ao, bVaplt;
-8>0= Xg=U, s X, U{bVagtU{(bVag)Aas|d <5}
Observe that, for any 5 > 0, (bV ag) A ag = ag and that the set {bV ag} U{(bVag) ANas |0 < S}
is indeed a chain. Moreover, if 6 < [ then, by distributivity, we have that (b V ag) A as =
(bAas)V (ag Aas) = (bAas)V ag. Moreover, if v < f < o then X, C Xp.
We show, by transfinite induction on /3, that for any 8 < «, Xg € SL(C). Let § < /3 and
1 <y < 5. We notice the following facts:
(1) (bVag)AN(bVay) =bVage Xz
) (b\/ag) (b\/av)—bVaW X CXg
(3) bVag)A((bVay)Aay) = (b\/ag)/\aﬂeXﬁ
4) bVag)V ((bVay)Aa,)=(bVag)V(bAay)Vay,=bVa,cX,C Xg
(5) ((bVag) Aas) A((bV ay) Aay) = (bV ag) A amaxs) € X3
©) ((bVag)Aas)V ((bVay)Aay) = ((bAas)Vag)V ((bAay)Vay) = (bAamine) Vay =
(bVay)A Qmin(s,u) € X, C Xg
(7) if B is a limit ordinal then, by point (C) above, A o< 6(b V a,) = bV ag holds; therefore,
Ao (BVap) Nag) = (N,<5(bVa,)) Nas = (bV ag) Aas € Xg; in turn, by taking the glb
of these latter elements in X3, we have that /\;_4 (bVag)Aas) = (bVag) A (/\5SB as) =
(b\/ag)/\ag =ag € Xg
Since Xy € SL(C) obviously holds, the points (1)-(7) above show, by transfinite induction, that for
any < a, X is closed under arbritrary lub’s and glb’s of nonempty subsets, i.e., X3 € SL(C). In
the following, we prove that the glb of { X3}, € SL(C) in (SL(C), <") does not exist.
Recalling, by point (A) above, that « is a limit ordinal, we define A = M*(|J s<a Xp). By
point (C) above, we observe that for any limit ordinal v < «, the | J 3<q X already contains the glb’s

/\(b\/ap):b\/aveX,y, /\ap:ayeXV,

{(N\N®Vay))ras|d <yt ={(bVay)Aas|d <~} CX,.

Hence, by taking the glb’s of all the chains in | J Bea XB> A turns out to be as follows:

A= UXgU{/\(b\/ag), /\aﬁ}u{(/\(bVag))Aa5|5<a}.

B<a B<a B<a B<a
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Let us show that A € SL(C). First, we observe that | J4_,, X is closed under arbitrary nonempty
lub’s. In fact, if S C (Jg, Xp then S = Jg_, (5 N Xp), so that

Vs=VUsnxs=\\snxs

B<a B<a
Also, if v < f < athen SNX, C SNXgand, inturn, \/ SNX,, <\/ SNXg, sothat {\/ SNX3}s<q
is an increasing chain. Hence, since (4., Xs does not contain infinite increasing chains, there exists
some v < a such that \/5_, \/ SN Xg =V SN X, € X,, and consequently \/ S € Uz, Xp.

Moreover, {( Ag_,(bV ag)) Aas}s<a C Ais achain whose lub is ( Az, (b V ag)) A ag which
belongs to the chain itself, while its glb is

/\(/\(b\/aﬂ))/\%:(/\ (bV ag)) /\aa—/\a(;EA

<a P<a B<a <o <o
Finally, if 6 < v < « then we have that:
®) (Ap<aldVag) AbVay) =Ago(bVag) €A
) (Ap<albVag)V(Va,)=bVa, X, CA
(10) (AgealbV ag) A ((bV ar) Aas) = (Aseg(bV ag)) Aas € A
(11) We have that (/\B<a (bVag)) VvV ((bVay) Aas) = (/\5<a(b Vag)) V (bAas)Va, =
(Ap<aldVag)) Va,. Moreover, bV a, < (Ag_o(bVag)) Vay, < (bVay)Va,=0bVay;
hence, (/\B<a(b\/ ag)) vV ((bVay) Aas) =bVa, € X, C A

Summing up, we have therefore shown that A € SL(C).

We now prove that A is a lower bound of { X3} 3<,. i.e., we prove, by transfinite induction on

B, that for any 3 < a, A <" Xp.

° (A <v XO): this is a consequence of the following easy equalities, for any § < [
(b\/ag)Aa() € Xg C A, (b\/ag)\/ao =bVagy € Xo; (b\/aﬁ) (bVag) = bVag e Xz
(bVag)V(bVay) =bVay € Xo; ((bVag)Aas) Aag = (bVag) Aas € Xp
((b\/aﬁ)/\a(s) Vag = ag € Xo; ((b\/aﬁ)/\a(g) (bVapg) = (bVag)ANas € Xz
((b\/CLB)Aa(;) \Y (b\/ao) =bVay € Xp.

o (A<"Xp,8>0):Letac Aandz € Xp. If x € |, 4 X, then z € X, for some y < 3, s0
that, since by inductive hypothesis A <" X, we have thata Az € Aanda V z € X, C Xp.
Thus, assume that z € X5\ (U, .3 X;). Ifa € Xgthena Az € Xg C AandaV iz € Xp. If
a € X, for some 4 > B, thena Az € X, C A, while points (2), (4) and (6) above show that
aVz € Xg. Ifa= \g_,(bVag) then points (8)-(11) above show thata Az € AandaVz € Xp.
Ifa = (/\Ka(b V ay)) A ay, for some p < a, and § < 3 then we have that:

(12) ((/\'y<a bva'Y )/\a#) b\/aﬁ (/\’y<o¢(b\/a7))/\a#6‘4

(13) ((Ay<a®Vay)) Nay) Vv (bVag) = ((AycadVay))V(bVag) Aa,V (bVag)) =
(b\/ag) (b\/amm(ﬂﬁ))—b\/GBEXﬁ

(14) ((/\'y<a b\/ Ay ) A a#) A ( b Vv a/B /\ aé) (/\'y<a(bv aV)) A Gmax(p,6) €A

(6%
A;
A;
A

N 1N m A
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(15)
((N\®Vay)Aay) Vv ((bVag)Aas) =

<o

(( /\(bv%)) Vv (bVag)) A (( /\(b\/aw)) Veas) A(ay vV (bVag)) Ala, Vag) =
<o y<a
(bVag) AbVas) A bV aminus)) A Gmin(us) =
(b V CLB) VAN Omin(p,5) € Xﬂ

Finally, ifa = A\ _,ayandz € Xgthena < zsothataNz =a € AandaVz =z € Xp.

Summing up, we have shown that A <" Xp.
Let us now prove that b ¢ A. Let us first observe that for any 3 < «, we have that ag £ b: in fact, if
a, < b, for some 7 < « then, forany <, bV as = b, so that we would obtain /\B<a(b Vag) =b,
which is a contradiction. Hence, for any § < o and § < §, it turns out that b # bV ag and
b# (bAas)Vag = (bVag)Aas. Moreover, by point (B) above, b # Az_,(bV ag), while, by
hypothesis, b # A5, ag. Finally, forany § < o, if b = ( Nps<albV ag)) A as then we would derive
that b < ag, which, by point (D) above, is a contradiction.

Now, we define B £ M*(A U {b}), so that

B=AU{btU{bNas|d<a}.
Observe that for any a € A, with a # /\B<oc ag, and for any 4 < «, we have that b A a5 < a,

while bV ((AgcalbV ) Aas) = (bV (AscaldV ag)) AV as) = (AsealbV ag) A
(bVas) = Ng<o(bVag) € B. Also, forany § < 8 < «, we have that b V ((bVag) Aas) =
(bV (bVag) A(bVas) =bVas € B. Also, bV (A\geo(bVag)) = Ngo(bVas) € Band
bV A g<a @8 = b € B. We have thus checked that B is closed under lub’s (of arbitrary nonempty
subsets), i.e., B € SL(C). Let us check that B is a lower bound of {Xg}g<,. Since we have already
shown that A is a lower bound, and since b A ag < b, for any § < «, it is enough to observe that for
any f < aandz € Xg,bAz € Band bV z € Xg. The only nontrivial case is for x = (bV ag) Aas,
for some § < 8 < . On the one hand, b A ((bV ag) A as) = b Aas € B, on the other hand,
bV ((bVag)Nas) =bV ((bAas)Vag) =bVag€ Xp.

Let us now assume that there exists Y € SL(C) such that Y is the glb of {Xg}g<, in
(SL(C), <"). Therefore, since we proved that A is a lower bound, we have that A <" Y. Let
us consider y € Y. Since bV ag € A, we have that bV ag Vy € Y. Since Y <" Xy = {ap,b V ap},
we have that bV ag VyVag =bVagVy € {ap,bVap}. IfbVagVy = agthen b < ag, which,
by point (D), is a contradiction. Thus, we have that bV ag Vy = b V ag, so that y < bV ag and
bV ag €Y. We know that if x € X3, for some § < «, then z < bV ag, so that, from Y <" X3,
we obtain that (b ap) A x = x € Y, thatis, Xg C Y. Thus, we have that Uﬂ<a X3 CY,and,in
turn, by subset monotonicity of M*, we get A = M* (g, Xp) € M*(Y) =Y. Moreover, from
y < bVag,since A <Y andbVay € A, weobtain (bVay) Ny =y € A, thatisY C A. We
have therefore shown that Y = A. Since we proved that B is a lower bound, B <" Y = A must
hold. However, it turns out that B <" A is a contradiction: by considering b € B and /\ B<a 08 € A,
we would have that bV ( A f<a ag) = b € A, while we have shown above that b ¢ A. We have
therefore shown that the glb of { X3} 3.4 in (SL(C), <) does not exist.

To close the proof, it is enough to observe that if (C, <) is not a complete Heyting algebra then,
by duality, (SL(C'), <") does not have lub’s. ]
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3. THE NECESSARY CONDITION

It turns out that the property of being a complete lattice for the poset (SL(C'), <") is a necessary
condition for a complete Heyting and co-Heyting algebra C'.

Theorem 3.1. If C' is a complete Heyting and co-Heyting algebra then (SL(C'), <) is a complete
lattice.

Proof. Let {A;}icr C SL(C), for some family of indices I # &. Let us define
G2 {x € M*(UjerAi) | Vk € T. M*(Ujer 4A;) N Lo <Y Ag}.
The following three points show that G is the glb of { A;};c; in (SL(C), <Y).

(1) We show that G € SL(C). Let L £ A\,.; A A;. First, G is nonempty because it turns out
that | € G. Since, forany i € I, NA; € A; and I # &, we have that L € M*(U;4;).
Lety € M*(U;A;) N | L and, for some k € I, a € Aj. On the one hand, we have that
yANa € M*(U;A;) N | L trivially holds. On the other hand, since y < L < a, we have that
yVa=aé€ A

Let us now consider a set {z;};c; C G, for some family of indices J # @, so that, for any
jeJandk € 1, M*(UZAl) N J,.Z‘j <V A;.

First, notice that A ;c; z; € M*(U;4;) holds. Then, since | (A\;c;2;) = (e +2; holds,
we have that M*(U;4;) N | (Aje;25) = M*(UiAi) N (Njes + x;), so that, for any k € I,
M*(UZAZ) N i(/\jeJ JIj) <V A, that is, /\jGJ T; € G.

Let us now prove that \/; ; z; € M*(U;4;) holds. First, since any z; € M*(Ujer4;), we
have that z; = /\ieK(j) a; i, where, for any j € J, K(j) C I is a nonempty family of indices
in I such that for any ¢ € K(j), a;; € A;. For any ¢ € I, we then define the family of indices
L(i) C J as follows: L(i) = {j € J | i € K(j)}. Observe that it may happen that L(i) = @.
Since for any i € I such that L(i) # @, {a;.};ecr) € Ai and A; is meet-closed, we have that if
L(i) # @ then a; = /\leL(i) a;; € A;. Since, given k € I such that L(k) # @, for any j € J,
M*(UierAi) N Loy <Y Ag, we have that for any j € J, z; V aj, € Ay. Since Ay, is join-closed, we
obtain that \/; ;(z; V ax) = (Ve 25) V ar € Ag. Consequently,

/\ ((\/ i) V ag) € M*(Uier4y).

kel, jeJ
L(k)#2

Since C'is a complete co-Heyting algebra,

A (Vzp)var) =\ z)v( N\ an).

kel jeJ jed kel
L(k)#@ L(k)#@

Thus, since, for any j € J,

N k= N\ Niexiaii < =,

kel, jeJ

L(k)#2
we obtain that (\/ ;¢ ; ;) V ( /\ ak) =V ey zj, sothat \V ;o x; € M*(UierAs).
kel,
Lo

Finally, in order to prove that \/; ; #; € G, let us show that for any k € I, M*(U;4;) N |
(Vjeszj) <¥ Ap. Lety € M*(U;A;) N L (V eyzj) and a € Ay. Forany j € J,y Az; €
M (UiAi) N L (Vjeyzj)s so that (y A x;) Va € Ay. Since Ay is join-closed, we obtain that
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Vijes (yAzj)Va) =aV (VjeJ(y A zj)) € Aj. Since C is a complete Heyting algebra,

aV (VjeJ(y Azj)) =aV (yA (Vjes z;)). Since y A (Vjes ) =y, we derive that y V a € Ag.
On the other hand, y A a € M*(U;4;) N L(V ¢ ;) trivially holds.

(2) We show that for any k € I, G <" Aj. Letx € G and a € Ai. Hence, z € M*(U;A;)
and for any j € I, M*(U;4;) N L« <" A;. We first prove that M*(U;4;) N | = C G. Let
y € M*(U;A;) N |z, and let us check that for any j € I, M*(U;4;) N |y <” Aj: if 2z €
M*(U;A;) N L yand u € Aj then z € M*(U;4;) N | x so that z V u € A; follows, while
z ANu € M*(U;A;) N |y trivially holds. Now, since z A a € M*(U;4;) N | z, we have that
x A a € G. On the other hand, since x € M*(U;4;) N |z <Y A, we also have that x V a € Ay.

(3) We show that if Z € SL(C) and, for any i € I, Z <" A, then Z <" G. By point (1),
L = Njes NAi € G. We then define Z+ C C as follows: Z+ £ {z vV L |z € Z}. It turns
out that Z+ C M*(U;A;): in fact, since C' is a complete co-Heyting algebra, for any 2 € Z, we
have that 2 V (A\,;c; A 4i) = Nicr(z V A A;), and since x € Z, forany i € I, \ A; € A;, and
Z <" A;, we have that z V \ A; € A;, so that A\, (xz vV A\ A;) € M*(U;A;). Also, it turns
out that Z+ € SL(C). f Y C Z+ andY # @ thenY = {x V L},cx for some X C Z with
X # @. Hence, \/Y = \/,cx(zV 1) =(VX)V.L and since \/ X € Z, we therefore have
that \/Y € Z+. On the other hand, A\Y = A,y (z V 1), and, as C is a complete co-Heyting
algebra, A\, y(zV L) = (AX)V L, and since A X € Z, we therefore obtain that A\ Y € Z+.
We also observe that Z <V Z=. In fact, if z € Z and yvleZz L for some y € Z, then, clearly,
rVyV L € Z*+, while, by distributivity of C, z A (y vV L) = (x Ay) V L € Z+. Next, we show that
forany i € I, 7+ <V A, Letz Vv L e Z+, forsome z € Z1, and a € A;. Then, by distributivity of
C,(zvL)Aha=(zAa)V(LANa)=(zAa)V_L, andsince, by Z <V A;, we know thatz A a € Z,
we also have that (x A @) V L € Z+. On the other hand, (x V 1)V a = (z V a) V L, and since, by
Z <V A;,weknow that | <z Va€ A;, weobtainthat (zVa)VL=xVacA,.

Summing up, we have therefore shown that for any Z € SL(C') such that, forany i € I, Z <
A;, there exists Z+ € SL(C) such that Z+ C M*(U;A;) and, for any i € I, Z+ <" A;. We now
prove that Z+ C G. Consider w € Z, and let us check that for any i € I, M*(UU; A;) Nlw <Y A;.
Hence, consider y € M*(U;4;) N L w and a € A;. Then, y A a € M*(U;A;) N | w follows
trivially. Moreover, since y € M™*(U; 4;), there exists a subset K C I, with K # &, such that
for any k € K there exists ap € Ay such that y = /\keK ar. Thus, since, for any k£ € K,
zNag € M*(U;A;) N Lz <Y A;, we obtain that {(z A ag) V a}rex C A;. Since A; is meet-closed,
Awer ((wA ag) Va) € A;. Since C is a complete co-Heyting algebra, A, r (w A ag) Va) =
aV (ApexwAag)) =aV (wA (Npegar)) =aV(wAy) =aVy,sothataVy € A; follows.

To close the proof of point (3), we show that Z+ <V G. Let z € Z+ and z € G. On the
one hand, since Z1+ C G, we have that z € G, and, in turn, as G is join-closed, we obtain that
zV x € G. On the other hand, since x € M*(U;A;), there exists a subset K C I, with K # &,
such that for any k € K there exists a;, € Ay, such that x = A\, _j ax. Thus, since Z+ <V Ay,
for any k € K, we obtain that z A a; € Z+. Hence, since Z1 is meet-closed, we have that
Nierx(ZNar) =2 A (Npe ar) =2 Ax € Z+.
To conclude the proof, we notice that { T} € SL(C) is the greatest element in (SL(C'), <"). Thus,
since (SL(C'), <") has nonempty glb’s and the greatest element, it turns out that it is a complete
lattice. L]

We have thus shown the following characterization of complete Heyting and co-Heyting algebras.
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Corollary 3.2. Let C be a complete lattice. Then, (SL(C'), <") is a complete lattice if and only if C'
is a complete Heyting and co-Heyting algebra.

To conclude, we provide an example showing that the property of being a complete lattice for
the poset (SL(C'), <") cannot be a characterization for a complete Heyting (or co-Heyting) algebra
C.

Example 3.3. Consider the complete lattice C' depicted on the left.

T T
C VRN 7\ D
agp ao b
NG | |
al bo al bo
| \ I | I
ag by az b1
Ay
1 1

C is distributive but not a complete co-Heyting algebra: bV ( A;sqai) =b < Ajso(bVa;) =T.
Let Xo = {T,a0} and, for any i > 0, X;411 = X; U {a;11}, so that {X;};>0 € SL(C). Then, it
turns out that the glb of {X;};>¢ in (SL(C), <") does not exist. This can be shown by mimicking
the proof of Theorem 2.3. Let A £ {1} U J,5¢ Xi € SL(C). Let us observe that A is a lower
bound of {X;};>0. Hence, if we suppose that Y € SL(C) is the glb of {Xi}i>o then A <" Y must
hold. Hence,ify € Ythen T Ay =y € A,sothatY C A,and T Vy € Y. Since, Y <" X, we
havethat TVyV T =T Vy € Xg={T,ap}, so that necessarily T Vy = T € Y. Hence, from
Y <Y X;, forany ¢ > 0, we obtain that T A a; = a; € Y. Hence, Y = A. The whole complete
lattice C' is also a lower bound of {X; }i>o, therefore C' <" Y = A must hold: however, this is a
contradiction because from b € C and | € A we obtainthatbV 1 =b € A.

It is worth noting that if we instead consider the complete lattice D depicted on the right of the
above figure, which includes a new glb a,, of the chain {a;};>0, then D becomes a complete
Heyting and co-Heyting algebra, and in this case the glb of {X;}i>0 in (SL(D), <") turns out to be
{TrU{ai}izo U{aw}. [
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