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Abstract. We present sound and complete environmental bisimilarities for a variant of
Dybvig et al.’s calculus of multi-prompted delimited-control operators with dynamic prompt
generation. The reasoning principles that we obtain generalize and advance the existing
techniques for establishing program equivalence in calculi with single-prompted delimited
control.

The basic theory that we develop is presented using Madiot et al.’s framework that
allows for smooth integration and composition of up-to techniques facilitating bisimulation
proofs. We also generalize the framework in order to express environmental bisimulations
that support equivalence proofs of evaluation contexts representing continuations. This
change leads to a novel and powerful up-to technique enhancing bisimulation proofs in the
presence of control operators.

1. Introduction

Control operators for delimited continuations, introduced independently by Felleisen [17]
and by Danvy and Filinski [14], allow the programmer to delimit the current context of
computation and to abstract such a delimited context as a first-class value. It has been
shown that all computational effects are expressible in terms of delimited continuations [19],
and so there exists a large body of work devoted to this canonical control structure, including
our work on a theory of program equivalence for the operators shift and reset [8, 9, 10, 11].

In their paper on type-directed partial evaluation for typed λ-calculus with sums,
Balat et al. [4] have demonstrated that Gunter et al.’s delimited-control operators set and
cupto [21], that support multiple prompts along with dynamic prompt generation, can have a
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practical advantage over single-prompted operators such as shift and reset. Delimited-control
operators with dynamically-generated prompts are now available in several production
programming languages such as OCaml [26] and Racket [20], and they have been given
formal semantic treatment in the literature. In particular, Dybvig et al. [16] have proposed
a calculus that extends the call-by-value λ-calculus with several primitives that allow for:
fresh-prompt generation, delimiting computations with a prompt, abstracting control up to
the corresponding prompt, and throwing to captured continuations. Dybvig et al.’s building
blocks were shown to be able to naturally express most of other existing control operators
and as such they form a general framework for studying delimited continuations. Reasoning
about program equivalence in Dybvig et al.’s calculus is considerably more challenging
than in single-prompted calculi: one needs to reconcile control effects with the intricacies
introduced by fresh-prompt generation and local visibility of prompts.

In this article we investigate the behavioral theory of a slightly modified version of Dybvig
et al.’s calculus that we call the λG#-calculus. One of the most natural notions of program
equivalence in languages based on the λ-calculus is contextual equivalence: two terms are
contextually equivalent if we cannot distinguish them when evaluated within any context.
The quantification over contexts makes this relation hard to use in practice, so it is common to
characterize it using simpler relations, like coinductively defined bisimilarities. As pointed out
in [28], among the existing notions of bisimilarities, environmental bisimilarity [36] is the most
appropriate candidate to characterize contextual equivalence in a calculus with generated
resources, such as prompts in λG#. Indeed, this bisimilarity features an environment which
accumulates knowledge about the terms we compare. This is crucial in our case to remember
the relationships between the prompts generated by the compared programs. We therefore
define environmental bisimilarities for λG#, as well as up-to techniques, which simplify the
equivalence proof of two given programs. We do so using the recently developed framework of
Madiot et al. [31, 32], where it is simpler to prove that a bisimilarity and its up-to techniques
are sound (i.e., imply contextual equivalence).

After presenting the syntax, semantics, and contextual equivalence of the calculus in
Section 2, in Section 3 we define a sound and complete environmental bisimilarity and its
corresponding up-to techniques. In particular, we define a bisimulation up to context, which
allows to forget about a common context when comparing two terms in a bisimulation proof.
The bisimilarity we define is useful enough to prove, e.g., the folklore theorem about delimited
control [7] expressing that the static delimited-control operators shift and reset [14] can be
simulated by the dynamic control operators control and prompt [17]. The technique, however,
in general requires a cumbersome analysis of terms of the form E[e], where E is a captured
evaluation context and e is any expression (not necessarily a value). We therefore define in
Section 4 a refined bisimilarity, called ?-bisimilarity, and a more expressive bisimulation up
to context, which allows to factor out a context built with captured continuations. Proving
the soundness of these two relations requires us to extend Madiot et al.’s framework. We
show how these new techniques can be applied to shift and reset in Section 5, improving
over the existing results for these operators [10, 11]. Finally, we discuss related work and
conclude in Section 6.

This article is an extended version of [1]. Compared to that paper, in Section 3.1 we
discuss in more detail the intricacies of our treatment of public/private prompts in the
definition of the LTS, whereas Section 5 is new. An accompanying research report [2]
contains the omitted proofs from Sections 3, 4, and 5.



BISIMULATIONS FOR CONTROL OPERATORS WITH DYNAMIC PROMPT GENERATION 3

2. The Calculus λG#

The calculus we consider, called λG#, extends the call-by-value λ-calculus with four building

blocks for constructing delimited-control operators as first proposed by Dybvig et al. [16]. 1

Syntax. We assume we have a countably infinite set of term variables, ranged over by x, y,
z, and k, as well as a countably infinite set of prompts, ranged over by p, q. Given an entity
denoted by a meta-variable m, we write −→m for a (possibly empty) sequence of such entities.
Expressions (e), values (v), and evaluation contexts (E) are defined as follows:

e ::= v | e e | Px.e | #ve | Gvx.e | v / e (expressions)

v ::= x | λx.e | p | pEq (values)

E ::= � | E e | v E | #pE (evaluation contexts)

Values include captured evaluation contexts pEq, representing delimited continuations,
as well as generated prompts p. Expressions include the four building blocks for delimited
control: Px.e is a prompt-generating construct, where x represents a fresh prompt locally
visible in e, #ve is a control delimiter for e, Gvx.e is a continuation grabbing or capturing
construct, and v / e is a throw construct.

Evaluation contexts, in addition to the standard call-by-value contexts, include delimited
contexts of the form #pE, and they are interpreted outside-in. We use the standard notation
E[e] (E[E′]) for plugging a context E with an expression e (with a context E′). Evaluation
contexts are a special case of (general) contexts, understood as a term with a hole and
ranged over by C.

The expressions λx.e, Px.e, and Gvx.e bind x; we adopt the standard conventions
concerning α-equivalence. If x does not occur in e, we write λ .e, P .e, and Gv .e. The set of
free variables of e is written fv(e); a term e is called closed if fv(e) = ∅. We extend these
notions to evaluation contexts. A variable is called fresh if it is free for all the entities under
consideration. We write #(e) (or #(E)) for the set of all prompts that occur in e (or E
respectively). The set sp(E) of surrounding prompts in E is the set of all prompts guarding
the hole in E, defined as {p | ∃E1, E2, E = E1[#pE2]}.

Reduction semantics. The reduction semantics of λG# is given by the following rules:

(λx.e) v → e{v/x}
#pv → v

#pE[Gpx.e] → e{pEq/x} p /∈ sp(E)

pEq / e → E[e]

Px.e → e{p/x} p /∈ #(e)

Compatibility
e1 → e2 fresh(e2, e1, E)

E[e1]→ E[e2]

The first rule is the standard βv-reduction. The second rule signals that a computation
has been completed for a given prompt. The third rule abstracts the evaluation context up
to the dynamically nearest control delimiter matching the prompt of the grab operator. In
the fourth rule, an expression is thrown (plugged, really) to the captured context. Note that,

1Dybvig et al.’s control operators slightly differ from their counterparts considered in this work, but they
can be straightforwardly macro-expressed in the λG#-calculus.
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like in Dybvig et al.’s calculus, the expression e is not evaluated before the throw operation
takes place. In the last rule, a prompt p is generated under the condition that it is fresh
for e.

The compatibility rule needs a side condition, simply because a prompt that is fresh for e
may not be fresh for a surrounding evaluation context. Given three entities m1, m2, m3 for
which # is defined, we write fresh(m1,m2,m3) for the condition (#(m1)\#(m2))∩#(m3) =
∅, so the side condition states that E must not mention prompts generated in the reduction
step e1 → e2. This approach differs from the previous work on bisimulations for resource-
generating constructs [30, 29, 38, 39, 40, 5, 33], where configurations of the operational
semantics contain explicit information about the resources, typically represented by a set.
We find our way of proceeding less invasive to the semantics of the calculus.

When reasoning about reductions in the λG#-calculus, we rely on the notion of permuta-
tion (a bijection on prompts), ranged over by σ, which allows to reshuffle the prompts of an
expression to avoid potential collisions: e with prompts permuted by σ is written eσ. E.g.,
we can use the first item of the following lemma before applying the compatibility rule, to
be sure that any prompt generated by e1 → e2 is not in #(E).

Lemma 2.1. Let σ be a permutation.

• If e1 → e2 then e1σ → e2σ.
• For any entities m1, m2, m3, we have fresh(m1,m2,m3) iff fresh(m1σ,m2σ,m3σ).

A closed term e either uniquely, up to permutation of prompts, reduces to a term e′, or
it is a normal form (i.e., there is no e′′ such that e→ e′′). In the latter case, we distinguish
values, control-stuck terms E[Gpk.e] where p 6∈ sp(E), and the remaining expressions that
we call errors (e.g., E[p v] or E[Gλx.ek.e′]). We write e1 →∗ e2 if e1 reduces to e2 in many
(possibly 0) steps, and we write e

 

when a term e diverges (i.e., there exists an infinite
sequence of reductions starting with e) or when it reduces (in many steps) to an error.

Example 2.2. Let us assume that u, v, and w are values, e is an expression, p and q are
two different prompts with q not occurring in u, v, w and e. Then the following reduction
sequence illustrates how fresh prompts are generated (1), how delimited continuations are
captured (2 and 4), and how expressions are thrown to captured continuations (3):

Px.#xu (#pv (Gxk.w (k / (Gp .e)))) → (1)

#qu (#pv (Gqk.w (k / (Gp .e)))) → (2)

w (pu (#pv �)q / (Gp .e)) → (3)

w (u (#pv (Gp .e))) → (4)

w (u e)

If we throw Gx .e to k in the initial term instead of Gp .e, then the reduction sequence would
terminate with a control-stuck term w (u (#pv (Gq .e))) that could not be unstuck by any
evaluation context. Indeed, if we plug the initial expression modified as suggested above,
e.g., in the context #q�, the compatibility rule requires that in step (1) the generated
prompt q be renamed into some other prompt r that does not occur in the terms under
consideration, and the corresponding reduction sequence terminates with a control-stuck
term #qw (u (#pv (Gr .e))).
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When presenting more complex examples, we use the fixed-point operator fix, let-
construct, conditional if along with boolean values true and false, and sequencing ”;”, all de-

fined as in the call-by-value λ-calculus. We also use the diverging term Ω
def
= (λx.xx)(λx.xx),

and we define an operator
?
= to test the equality between prompts, as follows:

e1
?
= e2

def
= let x= e1 in let y= e2 in #x((#yGx .false);true)

If e1 and e2 evaluate to different prompts, then the grab operator captures the context up
to the outermost prompt to throw it away, and false is returned; otherwise, true is returned.

Contextual equivalence. We now define formally what it takes for two terms to be considered
equivalent in the λG#-calculus. First, we characterize when two closed expressions have
equivalent observable actions in the calculus, by defining the following relation ∼.

Definition 2.3. We say e1 and e2 have equivalent observable actions, noted e1 ∼ e2, if

(1) e1 →∗ v1 iff e2 →∗ v2,
(2) e1 →∗ E1[Gp1x.e′1] iff e2 →∗ E2[Gp2x.e′2], where p1 6∈ sp(E1) and p2 6∈ sp(E2),
(3) e1

 

iff e2

 

.

We can see that errors and divergence are treated as equivalent, which is standard.
Based on ∼, we define contextual equivalence as follows.

Definition 2.4 (Contextual equivalence). Two closed expressions e1 and e2 are contextually
equivalent, written, e1 ≡E e2, if for all E such that #(E) = ∅, we have E[e1] ∼ E[e2].

Contextual equivalence can be extended to open terms in a standard way: if fv(e1)∪ fv(e2) ⊆
−→x , then e1 ≡E e2 if λ−→x .e1 ≡E λ−→x .e2. We test terms using only promptless contexts,
because the testing context should not use prompts that are private for the tested expressions.
For example, the expressions λf.f p q and λf.f q p should be considered equivalent if nothing
is known from the outside about p and q. Prompts occur in expressions because we use
reduction semantics, also known as syntactic theory. But prompts, just as closures or
continuations, are runtime entities, and in other semantics formats such as, e.g., abstract
machines [16], they would not be a part of the syntax.

As common in calculi with resource generation [39, 38, 36], testing with evaluation
contexts (as in ≡E) is not the same as testing with all contexts: we have Px.x ≡E p, but
these terms can be distinguished by

let f =λx.� in if f λx.x
?
= f λx.x then Ω else λx.x

In the rest of the article, we show how to characterize ≡E with environmental bisimilarities.2

Remark 2.5. Definition 2.3 distinguishes control-stuck terms from errors, as making the
distinction allows comparisons with the previous work on shift and reset [11], where a similar
choice is made. However, unlike in [11], the contextual equivalence of the present article
cannot “unstuck” a control-stuck term in λG#, as we consider promptless contexts, so it can
be natural to treat stuck terms as errors. We explain how making this latter choice impacts
the definitions of our bisimilarities in Remark 3.10 and Remark 4.8.

2If ≡C is the contextual equivalence testing with all contexts, then we can prove that e1 ≡C e2 iff
λx.e1 ≡E λx.e2, where x is any variable. We therefore obtain a proof method for ≡C as well.
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3. Environmental Bisimilarity

In this section, we propose a first characterization of ≡E using an environmental bisimilarity.
We express the bisimilarity in the style of [31], using a so called first-order labeled transition
system (LTS), to factorize the soundness proofs of the bisimilarity and its up-to techniques.
We start by defining the LTS and its corresponding bisimilarity.

3.1. Labeled Transition System and Bisimilarity. In the original formulation of envi-
ronmental bisimulation [36], two expressions e1 and e2 are compared under some environment
E , which represents the knowledge of an external observer about e1 and e2. The definition
of the bisimulation enforces some conditions on e1 and e2 as well as on E . In Madiot et al.’s
framework [31, 32], the conditions on e1, e2, and E are expressed using a LTS between states
of the form (Γ, e1) (and (∆, e2)), where Γ (and ∆) is a finite sequence of values corresponding
to the first (and second) projection of the environment E . Note that in (Γ, e1), e1 may be a
value, and therefore a state can be simply of the form Γ. Transitions from states of the form
(Γ, e1) (where e1 is not a value) express conditions on e1, while transitions from states of the
form Γ explain how we compare environments. In the rest of the paper we use Γ, ∆ to range
over finite sequences of values, and we write Γi, ∆i for the i th element of the sequence. We
use Σ, Θ to range over states.

Figure 1 presents the LTS
α−→, where α ranges over all the labels. We define #(Γ) as⋃

i #(Γi). The transition
E−→ uses a relation e

=−→ e′, defined as follows: if e → e′, then

e
=−→ e′, and if e is a normal form, then e

=−→ e.3 To build expressions out of sequences of
values, we use different kinds of multi-hole contexts defined as follows.

C ::= Cv | C C | Px.C | #CvC | GCvx.C | Cv / C (contexts)

Cv ::= x | λx.C | pEq | �i (value contexts)

E ::= � | E C | Cv E | #�iE (evaluation contexts)

The holes of a multi-hole context are indexed, except for the special hole � of an evaluation
context E, which is in evaluation position (that is, filling the other holes of E with values
gives a regular evaluation context E). We write C[Γ] (respectively Cv[Γ] and E[Γ]) for the
application of a context C (respectively Cv and E) to a sequence Γ of values, which consists
in replacing �i with Γi; we assume that this application produces an expression (or an
evaluation context in the case of E), i.e., each hole index in the context is smaller or equal
than the size of Γ, and for each #�iE construct, Γi is a prompt. We write E[e,Γ] as a
shorthand for E[e] where E = E[Γ], meaning that e is put in the non-indexed hole of E (note
that e may also be a value). Notice that prompts are not part of the syntax of Cv, therefore a
multi-hole context does not contain any prompt: if C[Γ], Cv[Γ], or E[e,Γ] contains a prompt,
then it comes from Γ or e. Our multi-hole contexts are promptless because ≡E also tests
with promptless contexts.

We now detail the rules of Figure 1, starting with the transitions that one can find in

any call-by-value λ-calculus [31]. An internal action (Γ, e1)
τ−→ Σ corresponds to a reduction

step, except we ensure that any generated prompt is fresh w.r.t. Γ. The transition Γ
λ,i,Cv−−−→ Σ

3The relation
=−→ is not exactly the reflexive closure of →, since an expression which is not a normal form

has to reduce.
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e1 → e2 fresh(e2, e1,Γ)

(Γ, e1)
τ−→ (Γ, e2)

Γi = λx.e

Γ
λ,i,Cv−−−→ (Γ, e{Cv[Γ]/x}) Γ

v−→ Γ

Γi = pEq

Γ
p.q,i,C−−−−→ (Γ, E[C[Γ]])

Γi = p Γj = p

Γ
#,i,j−−−→ Γ

p /∈ #(Γ)

Γ
#−→ (Γ, p)

p /∈ sp(E) E[E[Gpx.e],Γ]
=−→ e′

(Γ, E[Gpx.e])
E−→ (Γ, e′)

Figure 1: Labeled Transition System for λG#

signals that Γi is a λ-abstraction, which can be tested by passing it an argument built from Γ

with the context Cv. The transition
p.q,i,C−−−−→ for testing continuations is built the same way,

except we use a context C, because any expression can be thrown to a captured context.

Finally, the transition Γ
v−→ Γ means that the state Γ is composed only of values; it does

not test anything on Γ, but this transition is useful for the soundness proofs of Section 3.2.
When we have Γ R (∆, e) (where R is, e.g., a bisimulation), then (∆, e) has to match with

(∆, e)
τ−→
∗ v−→ (∆, v) so that (∆, v) is related to Γ. We can then continue the proofs with two

related sequences of values. Such a transition has been suggested in [32, Remark 5.3.6] to
simplify the proofs for a non-deterministic language, like λG#.

We now explain the rules involving prompts. When comparing two terms generating
prompts, one can produce p and the other a different q, so we remember in Γ, ∆ that p

corresponds to q. But an observer can compare prompts using
?
=, so p has to be related only

to q. We check it with
#,i,j−−−→: if Γ

#,i,j−−−→ Γ, then ∆ has to match, meaning that ∆i = ∆j ,
and doing so for all j such that Γi = Γj ensures that all copies of Γi are related only to ∆i.

The transition
#,i,i−−−→ also signals that Γi is a prompt and should be related to a prompt.

The other transition involving prompts is Γ
#−→ (Γ, p), which encodes the possibility for an

observer to generate fresh prompts to compare terms. If Γ is related to ∆, then ∆ has to
match by generating a prompt q, and we remember that p is related to q. For this rule to
be automatically verified, we define the prompt checking rule for a relation R as follows:

Γ R ∆ p /∈ #(Γ) q /∈ #(∆)

(Γ, p) R (∆, q)
(#-check)

Henceforth, when we construct a bisimulation R by giving a set of rules, we always include

the (#-check) rule so that the
#−→ transition is always verified.

Finally, the transition
E−→ deals with stuck terms. An expression E[Gpx.e] is able to

reduce if the surrounding context is able to provide a delimiter #p. However, it is possible
only if p is available for the outside, and therefore is in Γ. If p /∈ sp(E[Γ]), then E[E[Gpx.e],Γ]

remains stuck, and we have E[E[Gpx.e],Γ]
=−→ E[E[Gpx.e],Γ]. Otherwise, it can reduce and

we have E[E[Gpx.e],Γ]
=−→ e′, where e′ is the result after the capture. The rule for

E−→ may
seem demanding, as it tests stuck terms with all contexts E, but up-to techniques will
alleviate this issue (see Example 3.8). Besides, we believe testing all contexts is necessary to
be sound and complete w.r.t. contextual equivalence. Inspired by the previous work on shift
and reset [10, 11], one could propose the following rule
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p /∈ sp(E) Γi = p #pE[E[Gpx.e],Γ]→ e′

(Γ, E[Gpx.e])
#�i

E
−−−→ (Γ, e′)

(∗)

which tests stuck terms with context of the form #pE, and only if p is in Γ. This rule
alone is not sound, as it would relate (∅,Ω) and (∅, E[Gpx.e]), because p does not occur in
the environment. We could retrieve soundness by simply adding a rule which tests if an
expression is control-stuck, to deal with this kind of situation. However, the rule (∗) is also
too discriminating and would break completeness, as we can see with the next two examples.

Example 3.1. Stuck terms may be equivalent, even though the prompts they use are not
related in Γ, ∆. For example, consider (p1, fix x.Gp1y.x) and (p2,Gqy.e), where p2 6= q and e
is any expression. Because we can use p1 to build testing contexts, we can trigger the capture
for the first term. By doing so, we make it reduce to itself, while the second term remains
stuck in any context. We can prove them bisimilar with the rules of Figure 1. In contrast,
(p2,Gqy.e) cannot make a transition with rule (∗) (because q 6= p2) while (p1, fix x.Gp1y.x)
can, so rule (∗) would wrongfully distinguish these two expressions.

Example 3.2. Assuming p 6= q, the expression e1
def
= Gq .Gp .v aborts the current contin-

uation up to the first enclosing delimiter #p which is behind a delimiter #q, and then

returns v. The term e2
def
= fix x.Gpk.if q ∈ sp(k) then v else x has the same behavior: it

decomposes the continuation piece by piece, repeatedly capturing k up to #p, until it finds
#q in k. Testing if q ∈ sp(k) can be implemented in a similar way as testing prompt

equality: q ∈ sp(k)
def
= Px.#x#q((#x(k / Gq .Gx .false));true). Again, the rule (∗) wrongfully

distinguishes (p, q, e1) and (p, q, e2), because e1 captures on q first while e2 captures on p.

For weak transitions, we define ⇒ as
τ−→
∗
,
α
=⇒ as ⇒ if α = τ and as ⇒ α−→⇒ otherwise.

We define bisimulation and bisimilarity using a more general notion of progress. Henceforth,
we let R, S range over relations on states.

Definition 3.3. A relation R progresses to S, written R� S, if R ⊆ S and Σ R Θ implies

• if Σ
α−→ Σ′, then there exists Θ′ such that Θ

α
=⇒ Θ′ and Σ′ S Θ′;

• the converse of the above condition on Θ.

A bisimulation is a relation R such that R � R, and bisimilarity ≈ is the union of all
bisimulations.

3.2. Up-to Techniques, Soundness, and Completeness. Before defining the up-to
techniques for λG#, we briefly recall the main definitions and results we use from [35, 31, 32];
see these works for more details. We use f , g to range over functions on relations on states.
An up-to technique is a function f such that R � f(R) implies R ⊆ ≈. However, this
definition is difficult to use to prove that a given f is an up-to technique, so we rely on
compatibility instead, which gives sufficient conditions for f to be an up-to technique.

We first define some auxiliary notions and notations. We write f ⊆ g if f(R) ⊆ g(R)
for all R. We define f ∪ g argument-wise, i.e., (f ∪ g)(R) = f(R) ∪ g(R), and given a
set F of functions, we also write F for the function defined as

⋃
f∈F f . We define fω as⋃

n∈N f
n. We write id for the identity function on relations, and f̂ for f ∪ id. A function f

is monotone if R ⊆ S implies f(R)⊆ f(S). We write Pfin(R) for the set of finite subsets
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of R, and we say f is continuous if it can be defined by its image on these finite subsets,
i.e., if f(R)⊆

⋃
S∈Pfin(R) f(S). The up-to techniques of the present paper are defined by

inference rules with a finite number of premises, so they are trivially continuous. Continuous
functions are interesting because of their properties:4

Lemma 3.4. If f and g are continuous, then f ◦ g and f ∪ g are continuous.

If f is continuous, then f is monotone, and f ◦ f̂ω ⊆ f̂ω.

Definition 3.5. A function f evolves to g, written f g, if for all R � S, we have

f(R)� g(S). A set F of continuous functions is compatible if for all f ∈ F, f F̂ω.

Lemma 3.6. Let F be a compatible set, and f ∈ F; f is an up-to technique, and f(≈)⊆ ≈.

Proving that f is in a compatible set F is easier than proving it is an up-to technique, because
we just have to prove that it evolves towards a combination of functions in F. Besides, the
second property of Lemma 3.6 can be used to prove that ≈ is a congruence just by showing
that bisimulation up to context is compatible.

The first technique we define allows to forget about prompt names; in a bisimulation
relating (Γ, e1) and (∆, e2), we remember that Γi = p is related to ∆i = q by their position i,
not by their names. Consequently, we can apply different permutations to the two states to
rename the prompts without harm, and bisimulation up to permutations5 allows us to do so.
It is reminiscent of bisimulation up to renaming [38], which operates on reference names.
Given a relation R, we define perm(R) as Σσ1 perm(R) Θσ2, assuming Σ R Θ and σ1, σ2

are any permutations.
We then allow to remove or add values from the states with, respectively, bisimulation

up to weakening weak and bisimulation up to strengthening str, defined as follows

(−→v ,Γ, e1) R (−→w ,∆, e2)

(Γ, e1) weak(R) (∆, e2)

(Γ, e1) R (∆, e2)

(Γ,Cv[Γ], e1) str(R) (∆,Cv[∆], e2)

Bisimulation up to weakening diminishes the testing power of states, since less values means

less arguments to build from for the transitions
λ,i,Cv−−−→,

p.q,i,C−−−−→, and
E−→. This up-to technique

is usual for environmental bisimulations, and is called “up to environment” in [36]. In
contrast, str adds values to the state, but without affecting the testing power, since the
added values are built from the ones already in Γ, ∆.

Finally, we define the well-known bisimulation up to context, which allows to factor out
a common context when comparing terms. As usual for environmental bisimulations [36], we
define two kinds of bisimulation up to context, depending whether we operate on values or
any expressions. For values, we can factor out any common context C, but for expressions
that are not values, we can factor out only an evaluation context E, since factoring out any
context in that case would lead to an unsound up-to technique [32]. We define up to context
for values ctx and for any expression ectx as follows:

4Unlike in [32], we use f̂ instead of f in the last property of Lemma 3.4 (expressing idempotence of f̂ω),
as id has to be factored in somehow for the property to hold.

5Madiot defines a bisimulation “up to permutation” in [32] which reorders values in a state. Our
bisimulation up to permutations operates on prompts.
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Γ R ∆

(Γ,C[Γ]) ctx(R) (∆,C[∆])

(Γ, e1) R (∆, e2)

(Γ,E[e1,Γ]) ectx(R) (∆,E[e2,∆])

Lemma 3.7. The set {perm,weak, str, ctx, ectx} is compatible.

The function ectx particularly helps in dealing with stuck terms, as we can see below.

Example 3.8. Let Σ
def
= (Γ,Gpx.e1) and Θ

def
= (∆,Gqx.e2) (for some e1, e2), so that

Σ R Θ. If p and q are not in Γ, ∆, then the two expressions remain stuck, as we have

Σ
E−→ (Γ,E[Gpx.e1,Γ]) and similarly for Θ. We have directly (Γ,E[Gpx.e1,Γ]) ectx(R)

(∆,E[Gqx.e2,∆]). Otherwise, the capture can be triggered with a context E of the form

E1[#�iE2], giving Σ
E−→ (Γ,E1[e1{pE2[Γ]q/x},Γ]) and Θ

E−→ (∆,E1[e2{pE2[∆]q/x},∆]).
Thanks to ectx, we can forget about E1 which does not play any role, and continue the
bisimulation proof by focusing only on (Γ, e1{pE2[Γ]q/x}) and (∆, e2{pE2[∆]q/x}).

Because bisimulation up to context is compatible, Lemma 3.6 ensures that ≈ is a
congruence w.r.t. all contexts for values, and w.r.t. evaluation contexts for all expressions.
As a corollary, we can deduce that ≈ is sound w.r.t. ≡E ; we can also prove that it is complete
w.r.t. ≡E , leading to the following full characterization result.

Theorem 3.9. e1 ≡E e2 iff (∅, e1) ≈ (∅, e2).

For completeness, we prove that {(Γ, e1), (∆, e2) | ∀E,E[e1,Γ] ∼ E[e2,∆]} is a bisimulation
up to permutation.

Remark 3.10. If we consider control-stuck terms as errors, as suggested in Remark 2.5,
then a control-stuck term that cannot be unstuck can be related to a term that reduces
to another kind of error or that diverges. To take this into account, we would change the

transition
E−→ as follows:

E[e,Γ]
=−→G e′

(Γ, e)
E−→ (Γ, e′)

where the relation
=−→G differs from

=−→ in that it enforces only the continuation-grabbing
reduction step, if possible. Note that this transition is useless when comparing two states
(Γ, e1) and (∆, e2) where neither e1 nor e2 is stuck, but in that case, we obtain (Γ,E[e1,Γ])
and (∆,E[e2,∆]), which are directly related by ectx.

With such a change, the results of this section remain valid with respect to the notion
of contextual equivalence defined in Remark 2.5. The proofs are almost the same, since the

extra cases involving the
E−→ transition applied to expressions that are not control-stuck can

be dealt with using ectx, as explained above.

3.3. Example. As an example, we show a folklore theorem about delimited control [7],
stating that the static operators shift and reset can be simulated by the dynamic operators
control and prompt. In fact, what we prove is a more general and stronger result than
the original theorem, since we demonstrate that this simulation still holds when multiple
prompts are around.
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Example 3.11 (Folklore theorem). We encode shift, reset, control, and prompt as follows

shiftp
def
= λf.Gpk.#pf(λy.#pk / y) controlp

def
= λf.Gpk.#pf(λy.k / y)

resetp
def
= p#p�q promptp

def
= p#p�q

Let shift′p
def
= λf.controlp (λl.f (λz.promptp / l z)); we prove that the pair (shiftp, resetp)

(encoded as λf.f shiftpresetp) is bisimilar to (shift′p, promptp) (encoded as λf.f shift′ppromptp).

Proof. We iteratively build a relation R closed under (#-check) such that R is a bisimulation

up to context, starting with (p, shiftp) R (p, shift′p). The transition
#,1,1−−−→ is easy to check.

For
λ,2,Cv−−−−→, we obtain states of the form (p, shiftp, e1), (p, shift′p, e2) that we add to R,

where e1 and e2 are the terms below

Γ R ∆

(Γ,Gpk.#pCv[Γ] (λy.#pk / y)) R (∆,Gpk.#p(λl.Cv[∆] (λz.promptp / l z)) (λy.k / y))

We use an inductive, more general rule, because we want
λ,2,Cv−−−−→ to be still verified after we

extend (p, shiftp) and (p, shift′p). The terms e1 and e2 are stuck, so we test them with
E−→.

If E does not trigger the capture, we obtain E[e1,Γ] and E[e2,∆], and we can use ectx to
conclude. Otherwise, E = E′[#�1E′′] (where #�1 does not surround � in E′′), and we get

E′[#pCv[Γ] (λy.#ppE′′[Γ]q / y),Γ] and E′[#pCv[∆] (λz.promptp / (λy.pE′′[∆]q / y) z),∆]

We want to use ctx to remove the common context E′[#�1Cv �i], which means that we have
to add the following states in the definition of R (again, inductively):

Γ R ∆

(Γ, λy.#ppE′′[Γ]q / y) R (∆, λz.promptp / (λy.pE′′[∆]q / y) z)

Testing these functions with
λ,i,Cv−−−→ gives on both sides states where #�1E′′[Cv] can be

removed with ctx. Because (∅, λf.f shiftp resetp) weak(ctx(R)) (∅, λf.f shift′p promptp), it
is enough to conclude. Indeed, R is a bisimulation up to context, so R ⊆ ≈, which implies
weak(ctx(R)) ⊆ weak(ctx(≈)) (because weak and ctx are monotone), and weak(ctx(≈)) ⊆ ≈
(by Lemma 3.6). Note that this reasoning works for any combination of monotone up-to
techniques and any bisimulation (up-to).

What makes the proof of Example 3.11 quite simple is that we relate (p, shiftp) and
(p, shift′p), meaning that p can be used by an outside observer. But the control operators
(shiftp, resetp) and (shift′p, promptp) should be the only terms available for the outside, since p
is used only to implement them. If we try to prove equivalent these two pairs directly, i.e.,

while keeping p private, then testing resetp and promptp with
p.q,2,C−−−−→ requires a cumbersome

analysis of the behaviors of #pC[Γ] and #pC[∆]. In the next section, we define a new kind
of bisimilarity with a powerful up-to technique to make such proofs more tractable.
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4. The ?-Bisimilarity

In this section we develop a refined version of bisimilarity along with a powerful up to context
technique for the λG#-calculus that relies on testing captured continuations with values
only, instead of with arbitrary expressions. In order to account for such an enhancement we
generalize Madiot’s framework.

4.1. Motivation. Let us start with identifying some drawbacks of the existing environmental
bisimulation techniques for control operators, such as the one of Section 3 and the ones
of [10, 11], in the way captured contexts are tested and exploited.

Testing continuations. In Section 3, a continuation Γi = pEq is tested with Γ
p.q,i,C−−−−→

(Γ, E[C[Γ]]). We then have to study the behavior of E[C[Γ]], which depends primarily on
how C[Γ] reduces; e.g., if C[Γ] diverges, then E does not play any role. Consequently, the

transition
p.q,i,C−−−−→ does not really test the continuation directly, since we have to reduce C[Γ]

first. To really exhibit the behavior of the continuation, we change the transition so that it

uses a value context instead of a general one. We then have Γ
p.q,i,Cv−−−−→ (Γ, E[Cv[Γ]]), and the

behavior of the term we obtain depends primarily on E. However, this is not equivalent to
testing with C, since C[Γ] may interact in other ways with E if C[Γ] is a stuck term. If E is
of the form E′[#pE

′′] with p /∈ sp(E′′), and p is in Γ, then C may capture E′′, since p can
be used to build an expression of the form Gpx.e. To take into account this possibility, we

introduce a new transition Γ
p.q,i,j−−−→ (Γ, pE′q, pE′′q), which decomposes Γi = E′[#pE

′′] into
pE′q and pE′′q, provided Γj = p. The stuck term C[Γ] may also capture E entirely, as part
of a bigger context of the form E1[E[E2]]. To take this into account, we introduce a way to
build such contexts using captured continuations. This is also useful to make bisimulation
up to context more expressive, as we explain in the next paragraph.

A more expressive bisimulation up to context. As we already pointed out in [10, 11], bisimu-
lation up to context is not very helpful in the presence of control operators. For example,
suppose we prove the βΩ axiom of [25], i.e., (λx.E[x]) e is equivalent to E[e] if x /∈ fv(E)
and sp(E) = ∅. If e is a stuck term Gpy.e1, we have to compare e1{pE1[(λx.E[x]) �]q/y}
and e1{pE1[E]q/y} for some E1. If e1 is of the form y / (y / e2), then we get respectively

E1[(λx.E[x]) E1[(λx.E[x]) e2]] and E1[E[E1[E[e2]]]].

We can see that the two resulting expressions have the same shape, and yet we can only
remove the outermost occurrence of E1 with ectx. The problem is that bisimulation up
to context can factor out only a common context. We want an up-to technique able to
identify related contexts, i.e., contexts built out of related continuations. To do so, we
modify the multi-hole contexts to include a construct ?i[C] with a special hole ?i, which can
be filled only with pEq to produce a context E[C]. As a result, if Γ = (p(λx.E[x])�q) and
∆ = (pEq), then E1[(λx.E[x]) E1[(λx.E[x]) �]] and E1[E[E1[E[�]]]] can be written E[Γ],
E[∆] with E = E1[?1[E1[?1[�]]]]. We can then focus only on testing Γ and ∆.

However, such a bisimulation up to related context would be unsound if not restricted
in some way. Indeed, let pE1q, pE2q be any continuations, and let Γ = (pE1q), ∆ = (pE2q).

Then the transitions Γ
p.q,1,Cv−−−−→ (Γ, E1[Cv[Γ]]) and ∆

p.q,1,Cv−−−−→ (∆, E2[Cv[∆]]) produce states
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of the form (Γ,C[Γ]), (∆,C[∆]) with C = ?1[Cv]. If bisimulation up to related context
was sound in that case, it would mean that pE1q and pE2q would be bisimilar for all E1

and E2, which, of course, is wrong.6 To prevent this, we distinguish passive transitions

(such as
p.q,i,Cv−−−−→) from the other ones (called active), so that only selected up-to techniques

(referred to as strong) can be used after a passive transition. In contrast, any up-to technique
(including this new bisimulation up to related context) can be used after an active transition.
To formalize this idea, we have to extend Madiot et al.’s framework to allow such distinctions
between transitions and between up-to techniques.

4.2. Labeled Transition System and Bisimilarity. First, we explain how we alter the
LTS of Section 3.1 to implement the changes we sketched in Section 4.1. We extend the
grammar of multi-hole contexts C (resp. E) as follows:

C ::= Cv | C C | Px.C | #CvC | GCvx.C | Cv / C | ?i [C] (contexts)

E ::= � | E C | Cv E | #�iE | ?i [E] (evaluation contexts)

The grammar of value contexts Cv is unchanged. The hole ?i can be filled only with a
continuation; when we write (?i[C])[Γ], we assume Γi is a continuation pEq, and the result
of the operation is E[C[Γ]] (and similarly for E).

We also change the way we deal with captured contexts, by replacing the rule for
p.q,i,C−−−−→

with the two following rules—we otherwise keep unchanged the other transitions of Figure 1:

Γi = pEq

Γ
p.q,i,Cv−−−−→ (Γ, E[Cv[Γ]])

Γi = pE1[#pE2]q Γj = p p /∈ sp(E2)

Γ
p.q,i,j−−−→ (Γ, pE1q, pE2q)

The transition
p.q,i,Cv−−−−→ is the same as in Section 3, except that it tests with an argument built

with a value context Cv instead of a regular context C. We also introduce the transition
p.q,i,j−−−→, which decomposes a captured context pE1[#pE2]q into sub-contexts pE1q, pE2q,
provided that p is in Γ. This transition is necessary to take into account the possibility for
an external observer to capture a part of a context, scenario which can no longer be tested

with
p.q,i,Cv−−−−→, as explained in Section 4.1, and as illustrated with the next example.

Example 4.1. Let Γ = (p, p#p�q), ∆ = (q, p�q); then Γ
p.q,2,Cv−−−−→ (Γ,#pCv[Γ])

τ−→ (Γ,Cv[Γ])

and ∆
p.q,2,Cv−−−−→ (∆,Cv[∆]). Without the

p.q,i,j−−−→ transition, Γ and ∆ would be bisimilar, which
would not be sound (they are distinguished by the context �2 / G�1x.Ω).

The other rules are not modified, but their meaning is still affected by the change in

the contexts grammars: the transitions
λ,i,Cv−−−→ and

E−→ can now test with more arguments.
This is a consequence of the fact that an observer can build a bigger continuation from a
captured context. For instance, if Γ = (p, pEq, λx.x / v), then with the LTS of Section 3, we

have Γ
p.q,2,E1[G�1

x.x]
−−−−−−−−−−→

#�1
E2

−−−−→ λ,3,�4−−−−→ (Γ, pE1[E[E2[Γ]],Γ]q, pE1[E[E2[Γ]],Γ]q / v). In the new
LTS, the first transition is no longer possible, but we can still test the λ-abstraction with

the same argument using Γ
λ,3,E1[?2[E2]]−−−−−−−−→ (Γ, pE1[E[E2[Γ]],Γ]q / v).

6The problem is similar if we test continuations using contexts C (as in Section 3) instead of Cv.
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As explained in Section 4.1, we want to prevent the use of some up-to techniques (like
the bisimulation up to related context we introduce in Section 4.3) after some transitions,

especially
p.q,i,Cv−−−−→. To do so, we distinguish the passive transitions

p.q,i,Cv−−−−→,
v−→ from the other

ones, called active. A passive transition Σ1
α−→ Σ2 can be inverted by an up-to technique,

which is possible if no new information is generated between the states Σ1 and Σ2. For

example, the transition Γ
v−→ Γ is passive, as we already know that Γ is composed only

of values. In contrast, the transition Γ
#,i,j−−−→ Γ is active, as we gain some information:

the prompts Γi and Γj are equal. The transition Γ
p.q,i,Cv−−−−→ (Γ, e) is passive at it simply

recombines existing information in Γ to build e, without any reduction step taking place,
and thus without generating new information. Some extra knowledge is produced only when
(Γ, e) evolves (with active transitions), as it then tells us how the tested context Γi actually

interacts with the value constructed from Cv. Finally,
λ,i,Cv−−−→ and

E−→ correspond to reduction

steps and are therefore active, and
p.q,i,j−−−→ is also active as it provides some information by

telling us how to decompose a continuation.
With this distinction, we change the definition of progress, to allow a relation R to

progress towards different relations after passive and active transitions.

Definition 4.2. A relation R diacritically progresses to S, T written R�� S, T , if R ⊆ S,
R ⊆ T , and Σ R Θ implies that

• if Σ
α−→ Σ′ and

α−→ is passive, then there exists Θ′ such that Θ
α
=⇒ Θ′ and Σ′ S Θ′;

• if Σ
α−→ Σ′ and

α−→ is active, then there exists Θ′ such that Θ
α
=⇒ Θ′ and Σ′ T Θ′;

• the converse of the above conditions on Θ.

A ?-bisimulation is a relation R such that R�� R,R, and ?-bisimilarity
?≈ is the union of

all ?-bisimulations.

With the same LTS, � and �� would entail the same notions of bisimulation and
bisimilarity; the distinction between active and passive transitions is interesting only when
considering up-to techniques. We change the notation for the bisimilarity

?≈ to emphasize
that we use a different LTS in this section.

4.3. Up-to Techniques, Soundness, and Completeness. We now discriminate up-to
techniques, so that regular up-to techniques cannot be used after passive transitions, while
strong ones can. An up-to technique (resp. strong up-to technique) is a function f such
that R�� R, f(R) (resp. R�� f(R), f(R)) implies R ⊆ ?≈. We also adapt the notions of
evolution and compatibility.

Definition 4.3. A function f evolves to g, h, written f g, h, if for all R �� R, T , we
have f(R)�� g(R), h(T ).

A function f strongly evolves to g, h, written f s g, h, if for all R�� S, T , we have
f(R)�� g(S), h(T ).

Strong evolution is very general, as it uses any relation R, while regular evolution is more
restricted, as it relies on relations R such that R�� R, T . But the definition of diacritical
compatibility below still allows to use any combinations of strong up-to techniques after a
passive transition, even for functions which are not themselves strong. In contrast, regular
functions can only be used once after a passive transition of an other regular function.
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Definition 4.4. A set F of continuous functions is diacritically compatible if there exists
S ⊆ F such that

• for all f ∈ S, we have f s Ŝ
ω, F̂ω;

• for all f ∈ F, we have f Ŝω ◦ F̂ ◦ Ŝω, F̂ω.

If (Si)i∈I is a family of subsets of F which verify the conditions of the definition, then⋃
i∈I Si also verifies them. We can therefore consider the largest of such subsets, written

strong(F), which can be defined as the union of all subsets of F verifying the conditions of
the definition. This (possibly empty) subset of F contains the strong up-to techniques of F.

Lemma 4.5. Let F be a diacritically compatible set.

• If R�� ̂strong(F)
ω
(R), F̂ω(R), then F̂ω(R) is a ?-bisimulation.

• If f ∈ F, then f is an up-to technique. If f ∈ strong(F), then f is a strong up-to technique.
• For all f ∈ F, we have f(

?≈)⊆ ?≈.

Proof. Let S
def
= ̂strong(F). For the first item, we prove that for all n

(Sω ◦ F̂ ◦Sω)n(R)��(Sω ◦ F̂ ◦Sω)n(Sω(R)), F̂ω(R)

by induction on n. There is nothing to prove for n = 0. Suppose n > 0. We know that

(Sω ◦ F̂ ◦Sω)n−1(R)��(Sω ◦ F̂ ◦Sω)n−1(Sω(R)), F̂ω(R).

For all f ∈ S, we have

f((Sω ◦ F̂ ◦Sω)n−1(R))��Sω(Sω ◦ F̂ ◦Sω)n−1(Sω(R)), F̂ω(F̂ω(R)),

therefore we have

Sω(((Sω ◦ F̂ ◦Sω)n−1(R)))��Sω(Sω ◦ F̂ ◦Sω)n−1(Sω(R)), F̂ω(R).

Because Sω ◦(Sω ◦ F̂ ◦Sω)n−1 = Sω ◦(Sω ◦ F̂ ◦Sω)n−1 ◦Sω, for all f ∈ F̂, we have

f(Sω(((Sω ◦ F̂ ◦Sω)n−1(R)))��(Sω ◦ F̂ ◦Sω)(Sω(Sω ◦ F̂ ◦Sω)n−1(Sω(R))), F̂ω(F̂ω(R)),

which implies F̂(Sω(((Sω ◦ F̂ ◦Sω)n−1(R)))��(Sω(Sω ◦ F̂ ◦Sω)n(Sω(R))), F̂ω(R). Finally,
composing again with Sω, we obtain

Sω(((Sω ◦ F̂ ◦Sω)n(R))��Sω ◦(Sω ◦ F̂ ◦Sω)n(Sω(R)), F̂ω(R),

as wished.
Because F̂ω = (Sω ◦ F̂ ◦Sω)ω, we get that F̂ω(R)�� F̂ω(R), F̂ω(R), i.e., F̂ω(R) is a

?-bisimulation.
For the second item, let f ∈ F and R�� R, f(R). Then R ⊆ F̂ω(R) by definition of ω

and F̂ω(R)⊆ ?≈ by the first item. Therefore we have R ⊆ ?≈ and f is an up-to technique.
Similarly, we can show that f ∈ strong(F) and R �� f(R), f(R) imply R ⊆ ?≈, meaning
that f is a strong up-to technique.

For the last item, for all f ∈ F, we have f(
?≈) ⊆ F̂ω(

?≈), and F̂ω(
?≈)⊆ ?≈ by the first

item, so we have f(
?≈)⊆ ?≈ as wished.
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We now use this framework to define up-to techniques for the ?-bisimulation. The
definitions of perm and weak are unchanged. We define bisimulation up to related contexts
for values rctx and for any term rectx as follows:

Γ R ∆

(Γ,
−→
Cv[Γ],C[Γ]) rctx(R) (∆,

−→
Cv[∆],C[∆])

(Γ, e1) R (∆, e2)

(Γ,
−→
Cv[Γ],E[e1,Γ]) rectx(R) (∆,

−→
Cv[∆],E[e2,∆])

The definitions look similar to the ones of ctx and ectx, but the grammar of multi-hole
contexts now include ?i. Besides, we inline strengthening in the definitions of rctx and
rectx, allowing Γ, ∆ to be extended. This is necessary because, e.g., str and rectx cannot be
composed after a passive transition (they are both not strong), so rectx have to include str
directly. Note that the behavior of str can be recovered from rectx by taking E = �.

Lemma 4.6. F
def
= {perm,weak, rctx, rectx} is diacritically compatible, with strong(F) =

{perm,weak}.

As a result, these functions are up-to techniques, and weak and perm can be used after
a passive transition. Because of the last item of Lemma 4.5,

?≈ is also a congruence w.r.t.
evaluation contexts, which means that

?≈ is sound w.r.t. ≡E . We can also prove it is complete
the same way as for Theorem 3.9, leading again to full characterization.

Theorem 4.7. e1 ≡E e2 iff (∅, e1)
?≈ (∅, e2).

Remark 4.8. If we consider control-stuck terms as errors, as in Remark 2.5, then we can
use the transition of Remark 3.10, considered as active, and the results of this section scale
to such a version of the bisimilarity. While the compatibility proof for rectx does not change

much, the one for rctx needs an extra case analysis to deal with the modified
E−→ transition;

see [2, Remark B.3] for further details.

4.4. Examples. We illustrate the use of
?≈, rctx, and rectx with two examples that would

be much harder to prove with the techniques of Section 3.

Example 4.9 (βΩ axiom). We prove (λx.E[x]) e
?≈ E[e] if x /∈ fv(E) and sp(E) = ∅. Define

R starting with (p(λx.E[x]) �q) R (pEq), and closing it under the (#-check) and the
following rule:

Γ R ∆

(Γ, (λx.E[x]) Cv[Γ]) R (∆, E[Cv[∆]])

Then (∅, (λx.E[x]) e) weak(rctx(R)) (∅, E[e]) and R is a bisimulation up to context, since

the sequence Γ
p.q,1,Cv−−−−→ (Γ, (λx.E[x]) Cv[Γ])

τ−→ (Γ, E[Cv[Γ]]) fits ∆
p.q,1,Cv−−−−→ (∆, E[Cv[∆]])

τ
=⇒

(∆, E[Cv[∆]]), where the final states are in rctx. Notice we use rctx after
τ−→, and not after

the passive
p.q,1,Cv−−−−→ transition.

Example 4.10 (Exceptions). A possible way of extending a calculus with exception handling
is to add a construct tryr e with v, which evaluates e with a function raising an exception
stored under the variable r. When e calls the function in r with some argument v′,
even inside another try block, then the computation of e is aborted and replaced by v v′.
We can implement this behavior directly in λG#; more precisely, we write tryr e with v
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as handle (λr.e) v, where handle is a function expressed in the calculus. One possible
implementation of handle in λG# is very natural and heavily relies on fresh-prompt generation:

handle
def
= λf.λh.Px.#xf (λz.Gx .h z)

The idea is to raise an exception by aborting the current continuation up to the corresponding
prompt. The same function can be implemented using any comparable-resource generation
and only one prompt p:

handlep
def
= λf.λh.Px.(#plet r= f raisep,x in λ .λ .r) x h

raisep,x
def
= fix r(z).Gp .λy.λh.if x

?
= y then h z else r z

Here the idea is to keep a freshly generated name x and a handler function h with the prompt
corresponding to each call of handlep. The exception-raising function raisep,x iteratively
aborts the current delimited continuation up to the nearest call of handlep and checks the
name stored there in order to find the corresponding handler. Note that this implementation
also uses prompt generation, since it is the only comparable resource that can be dynamically
generated in λG#, but the implementation can be easily translated to, e.g., a calculus with
single-prompted delimited-control operators and first-order store.

Proof. We prove that both versions of handle are ?-bisimilar. As in Example 3.11 we
iteratively build a relation R closed under the (#-check) rule, so that R is a bisimulation up

to context. We start with (handle) R (handlep); to match the
λ,1,Cv−−−−→ transition, we extend

R as follows:

Γ R ∆

(Γ, λh.Px.#xCv[Γ] (λz.Gx .h z)) R (∆, λh.Px.(#plet r=Cv[∆] raisep,x in λ .λ .r) x h)

We obtain two functions which are in turn tested with
λ,n+1,C′v−−−−−−→, and we obtain the states

(Γ,#p1Cv[Γ] (λz.Gp1 .C′v[Γ] z)) and (∆, (#plet r=Cv[∆] raisep,p2 in λ .λ .r) p2 C′v[∆]).

Instead of adding them to R directly, we decompose them into corresponding parts using up
to context (with C = ?n+1[Cv �n+2]), and we add these subterms to R:

Γ R ∆ p1 /∈ #(Γ) p2 /∈ #(∆)

(Γ, p#p1�q, λz.Gp1 .C′v[Γ] z) R (∆, p(#plet r=� in λ .λ .r) p2 C′v[∆]q, raisep,p2)
(∗∗)

Testing the two captured contexts with
p.q,n+1,C′′v−−−−−−−→ is easy, because they both evaluate to the

thrown value. We now consider λz.Gp1 .C′v[Γ] z and raisep,p2 ; after the transition
λ,n+2,Cv−−−−−−→

we get the two control stuck terms

Gp1 .C′v[Γ] Cv[Γ] and Gp .λy.λh.if p2
?
= y then h Cv[∆] else raisep,p2 Cv[∆]

Adding such terms to the relation will not be enough. The first one can be unstuck only
using the corresponding context p#p1�q, but the second one can be unstuck using any
context added by rule (∗), even for a different p2. In such a case, it will consume a part of
the context and evaluate to itself. To be more general we add the following rule:

Γ R ∆ E[Gp1 .C′v[Γ] Cv[Γ],Γ] is control-stuck

(Γ,E[Gp1 .C′v[Γ] Cv[Γ],Γ]) R (∆,Gp .λy.λh.if p2
?
= y then h Cv[∆] else raisep,p2 Cv[∆])
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The newly introduced stuck terms are tested with
E′−→; if E′ does not have ?i surrounding �,

they are still stuck, and we can use up to evaluation context to conclude. Assume E′ =
E1[?i[E2]] where E2 has not ?j around �. If i points to the evaluation context added by (∗∗)
for the same p2, then they both evaluate to terms of the same shape, so we use up to
context with C = E1[C′vCv]. Otherwise, we know the second program compares two different

prompts, so it evaluates to E1[Gp .λy.λh.if p2
?
= y then h Cv[∆] else raisep,p2 Cv[∆],∆] and

we use rectx with the last rule.

5. Shift and Reset

In this section, we show how ?-bisimilarity can be defined for λS , a λ-calculus extended
with shift and reset. These operators can be encoded in λG# (see Example 3.11), but relying
on this encoding would lead to a sound, but not complete bisimilarity for shift and reset.
Indeed, there are terms equivalent in λS , the encodings of which are no longer equivalent
with the more expressive constructs of λG#: see Example 5.3. This is why we work with λS
is this section, and not λG#.

We study several bisimilarities for λS in previous works [8, 9, 10, 11]. In particular, we
define environmental ones in [10, 11], but without a relation equivalent to bisimulation up
to related contexts, which makes the proof of the βΩ axiom very difficult in these papers.
The proof in Example 4.9 is as easy as the proof of the βΩ axiom in [9], but the bisimilarity
of [9] is not complete. Therefore, a sound and complete ?-bisimilarity for λS which allows
for simple equivalence proofs thanks to up-to techniques improves over our previous work.

5.1. Syntax, Semantics, and Contextual Equivalence. The calculus λS is a single-
prompted version of λG#, where the now unique delimiter 〈·〉 is called reset and the capturing
construct S is called shift. The syntax of the different entities is as follows.

e ::= v | e e | 〈e〉 | Sx.e (expressions)

v ::= x | λx.e (values)

E ::= � | E e | v E (pure contexts)

F ::= � | F e | v F | 〈F 〉 (evaluation contexts)

We distinguish two kinds of evaluation contexts: pure contexts, ranged over by E, can be
captured by shift, while those represented by F are the regular evaluation contexts. Captured
contexts are no longer part of the syntax, but are instead turned into λ-abstractions, as we
can see in the following reduction rules.

(λx.e) v → e{v/x}
〈v〉 → v

〈E[Sx.e]〉 → 〈e{λy.〈E[y]〉/x}〉 y fresh

Compatibility
e1 → e2

F [e1]→ F [e2]

The operator S captures a surrounding context E up to the first enclosing reset. This reset
is left in place, but E remains delimited when captured in λy.〈E[y]〉.

The original semantics of shift and reset [6] applies these rules only to terms with an
outermost reset; this requirement is often lifted in practical implementation [16, 19] or
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studies of these operators [3, 24]. As in [10, 11], we define equivalences for the original and
the relaxed semantics. The two semantics differ mainly in the normal forms they produce:
an expression 〈e〉 cannot reduce to a control-stuck term E[Sx.e′] in the original semantics,
while such a normal form can still be obtained with the relaxed semantics. As a result, we
distinguish the observable actions for the original semantics ∼o from those for the relaxed
semantics ∼r. Unlike in λG#, both semantics cannot produce errors, so we simply write e ↑
when e diverges.

Definition 5.1. We write e1 ∼o e2 if

(1) e1 →∗ v1 iff e2 →∗ v2,
(2) e1 ↑ iff e2 ↑.
We write e1 ∼r e2 if

(1) e1 →∗ v1 iff e2 →∗ v2,
(2) e1 →∗ E1[Sx.e′1] iff e2 →∗ E2[Sx.e′2],
(3) e1 ↑ iff e2 ↑.

Similarly, we define a contextual equivalence for each semantics.

Definition 5.2 (Contextual equivalence). Given two closed expressions e1 and e2, we write
e1 ≡o

E e2 if for all E, we have 〈E[e1]〉 ∼o 〈E[e2]〉, and we write e1 ≡r
E e2 if for all E, we have

E[e1] ∼r E[e2].

Because we no longer have resource generation, note that testing with evaluation contexts F
is equivalent to testing with any context C in λS [11].

Example 5.3. The expressions 〈〈e1〉 (〈e2〉 Sx.λy.y)〉 and 〈〈e2〉 (〈e1〉 Sx.λy.y)〉 are contex-
tually equivalent in λS with either semantics, but their encodings are not bisimilar in λG#.
In λS , depending on whether 〈e1〉 or 〈e2〉 diverge or reduce to a value, the two above terms
either diverge or reduce to λy.y. In λG#, the encoding of 〈e1〉 can reduce to a control-stuck
term, e.g., if e1 = Px.Gxy.y, making 〈〈e1〉 (〈e2〉 Sx.λy.y)〉 stuck as well, while e2 may diverge,
and a stuck term is not equivalent to a diverging one.

Remark 5.4. We can equivalently define λS with captured pure contexts as values and a
throw construct v / t, as in λG#, using the following reduction rules

Sx.e → e{pEq/x}
pEq / v → E[v]

and with pEq / F as an evaluation context and pEq / E′ as a pure context. Only values are
thrown to captured contexts, unlike in λG#. In this section, we stick to the syntax we use
in [10, 11] to facilitate comparisons with these papers. We discuss how to adapt the LTS to
the syntax with throw in Remark 5.5.

5.2. Bisimilarity and Up-to Techniques. For bisimulation up to related contexts to be
useful, we want to be able to save evaluation context (not necessarily pure) in states. To do
so, we let Ψ, Φ range over sequences of evaluation contexts, and we consider states of the
form (Ψ,Γ, e), where Γ is still a sequence of values. Multi-hole contexts, whose syntax is
given below, are now filled with Ψ and Γ.
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Rules common to both semantics:

e1 → e2

(Ψ,Γ, e1)
τ−→ (Ψ,Γ, e2)

Γj = λx.e

(Ψ,Γ)
λ,j,Cv−−−→ (Ψ,Γ, e{Cv[Ψ,Γ]/x}) (Ψ,Γ)

v−→ (Ψ,Γ)

e is stuck F[e,Ψ,Γ]
=−→ e′

(Ψ,Γ, e)
F−→ (Ψ,Γ, e′) (Ψ,Γ)

�,i,Cv−−−−→ (Ψ,Γ,Ψi[Cv[Ψ,Γ]])

Ψi = E

(Ψ,Γ)
�,i−−→ (Ψ,Γ)

Ψi = F [〈E〉]

(Ψ,Γ)
〈�〉,i−−−→ (Ψ, F [〈�〉], 〈E〉,Γ)

Extra rule for the original semantics:

e is not stuck

(Ψ,Γ, e)
F−→ (Ψ,Γ,F[e,Ψ,Γ])

Up-to techniques for both semantics:

(
−→
F ,Ψ,−→v ,Γ, e1) R (

−→
F ′,Φ,−→w ,∆, e2)

(Ψ,Γ, e1) weak(R) (Φ,∆, e2)

(Ψ,Γ) R (Φ,∆)

(Ψ,
−→
F [Ψ,Γ],Γ,

−→
Cv[Ψ,Γ],C[Ψ,Γ]) rctx(R) (Φ,

−→
F [Φ,∆],∆,

−→
Cv[Φ,∆],C[Φ,∆])

(Ψ,Γ, e1) R (Φ,∆, e2)

(Ψ,
−→
F [Ψ,Γ],Γ,

−→
Cv[Ψ,Γ],F[e1,Ψ,Γ]) rectx(R) (Φ,

−→
F [Φ,∆],∆,

−→
Cv[Φ,∆],F[e2,Φ,∆])

Figure 2: LTS and up-to techniques for shift and reset

C ::= Cv | C C | 〈C〉 | Sx.C | ?i [C] (contexts)

Cv ::= x | λx.C | �i (value contexts)

F ::= � | F C | Cv F | 〈F〉 | ?i [F] (evaluation contexts)

We write C[Ψ,Γ] to say that ?i of C is filled with the context Ψi, as in Section 4, and
each hole �j is plugged with the value Γj . As before, it assumes that each index i of ?i is
smaller than the size of Ψ, and each j of �j is smaller than the size of Γ. Similarly, we write
F[e,Ψ,Γ] for evaluation contexts, so that e goes into �.

We present the LTS and up-to techniques for the two semantics of λS in Figure 2. In
λG#, having ? holes in multi-hole contexts helps when testing captured contexts as well as
for the up-to techniques. In contrast, in λS , ? holes are useful only for the up-to techniques,
and not for the bisimilarity itself, even if we consider the syntax with captured contexts (see

Remark 5.5). As a result, some of the transitions are only for the bisimilarity, namely
τ−→,

λ,j,Cv−−−→,
v−→, and

F−→, while the remaining three are for bisimulations up to context: they are
used only if Ψ is not empty.
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The transition
�,i,Cv−−−−→ tests the evaluation context Ψi by passing it a value built from Ψ

and Γ. A stuck term is able to distinguish a pure context from an impure one, and it can
extract from F [〈E〉] the context up to the first enclosing reset 〈E〉. However, unlike in λG#,
we cannot decompose F further, because the capture leaves the delimiter in place: we can

distinguish � from 〈�〉, but not 〈�〉 from 〈〈�〉〉. We use
�,i−−→ and

〈�〉,i−−−→ to perform these

tests:
�,i−−→ simply states that Ψi is pure, while

〈�〉,i−−−→ decomposes Ψi = F [〈E〉] into F [〈�〉]
and 〈E〉. Because we leave a reset inside F , applying

〈�〉,i−−−→ to F [〈�〉] does not decompose F
further, but simply generates F [〈�〉] again (and 〈�〉), and duplicated contexts can then be
ignored thanks to strengthening.

The transition
F−→ compares stuck terms in the relaxed semantics. In the original

semantics, we can also relate with the extra rule a stuck term with a regular term: we prove
in Example 5.8 that Sk.k e is equivalent to e in that semantics if k /∈ fv(e). When the extra
rule is applied to two non stuck terms e1 and e2, it generates expressions F[e1,Ψ,Γ] and
F[e2,Φ,∆] which are automatically related with up to contexts, so the extra rule does not

produce additional testing for regular terms. The transition
F−→ uses any evaluation context F,

and not simply a context of the form 〈E〉 with E a pure context, as we do in [10, 11]. We
do so to take ?i into account: a context ?i[E] may also trigger a capture if Ψi is an impure
context. Besides, if (Ψ,Γ, e1) R (Φ,∆, e2) and Ψi is pure, then Φi may be impure if e1 and e2

contain infinite behavior (and thus, the transitions
�,i−−→ and

〈�〉,i−−−→ are never applied). For

example, we have (�, ∅,Sk.Ω)
?1[�]−−−→ (�, ∅,Sk.Ω) and (〈�〉, ∅,Sk.Ω)

?1[�]−−−→ (〈�〉, ∅, 〈Ω〉); the
two resulting states are distinguished in the relaxed semantics, but they are equated in the
original one. However, what is beyond the first enclosing reset of a testing context F[Ψ,Γ],
and therefore do not interact with the tested terms, can be ignored thanks to bisimulation
up to related contexts, as in Example 3.8.

The transitions
τ−→,

λ,j,Cv−−−→, and
F−→ are active because they correspond to reduction steps,

and
�,i−−→ and

〈�〉,i−−−→ are active because they provide information on the tested contexts (being

pure or not, and how to decompose contexts that are not pure). As before,
v−→ is passive

because it informs about the nature of the tested states (composed only of values), and
�,i,Cv−−−−→ is passive because it does not provide any information on the tested context nor does
it correspond to a reduction step.

Remark 5.5. If captured contexts are considered values, as suggested in Remark 5.4, then
they are stored in Γ and ∆, and therefore cannot be used to fill a ? hole in a multi-hole
context. They are tested with the same rule as in λG#

Γi = pEq

(Ψ,Γ)
p.q,i,Cv−−−−→ (Ψ,Γ, E[Cv[Ψ,Γ]])

except it would be an active transition in λS , as testing with a value corresponds to the
throw reduction rule. So unlike in λG#, we have two transitions to test contexts, in this
version of λS : one, active, to test a pure context in Γ, which is used for the bisimulation, and
one, passive, to test any evaluation context in Ψ, which is useful only for up-to techniques.

The definitions of the up to techniques are as expected, with weakening and strengthening
for contexts as well as for values. We write

?≈o
and

?≈r
for the ?-bisimilarities obtained from
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the transitions for respectively the original and relaxed semantics. For both semantics, the
following lemma holds.

Lemma 5.6. F
def
= {weak, rctx, rectx} is diacritically compatible, with strong(F) = {weak}.

As before, this lemma implies that
?≈o

and
?≈r

are sound w.r.t. respectively ≡o
E and ≡r

E , and
completeness proofs are as usual.

Theorem 5.7. e1 ≡o
E e2 iff (∅, ∅, e1)

?≈o
(∅, ∅, e2), and e1 ≡r

E e2 iff (∅, ∅, e1)
?≈r

(∅, ∅, e2).

5.3. Examples. We give examples for the original semantics of equivalences proved in [10,
11], to show that the proofs are much easier here.

Example 5.8. If k /∈ fv(e), then (∅, ∅,Sk.k e) ?≈o
(∅, ∅, e). We show that the relation

R def
={(∅, ∅,Sk.k e), (∅, ∅, e)} ∪ {(〈λx.〈E[x]〉�〉, 〈〈�〉〉, ∅), (〈E〉, 〈�〉, ∅) | x /∈ fv(E)}

is a bisimulation up to related contexts. If e is not control-stuck, the transition (∅, ∅,Sk.k e) F−→
(∅, ∅, F [〈λx.〈E[x]〉 e〉])) is matched by the transition (∅, ∅, e) F−→ (∅, ∅, F [〈E[e]〉]), assuming
x is fresh and F[∅, ∅] = F [〈E〉] (the case F[∅, ∅] = E is simple). If e = E′[Sk′.e′], then

(∅, ∅, e) F−→ (∅, ∅, F [〈e′{λx.〈E[E′[x]]〉/k′}〉]) is matched by the sequence (∅, ∅,Sk.k e) F−→ τ−→
(∅, ∅, F [〈e′{λx.〈(λy.E[y]) E′[x]〉/k′}〉]), with x, y fresh and F[∅, ∅] = F [〈E〉]. In both

cases, the resulting states are in rctx(R). Let (Ψ, ∅) def
= (〈λx.〈E[x]〉�〉, 〈〈�〉〉, ∅) and

(Φ, ∅) def
= (〈E〉, 〈�〉, ∅). Then the sequence (Ψ, ∅) �,1,Cv−−−−→ τ−→ (Ψ, ∅, 〈〈E[Cv[Ψ, ∅]]〉〉) is matched

by (Ψ, ∅) �,1,Cv−−−−→ (Ψ, ∅, 〈E[Cv[Ψ, ∅]]〉), since the resulting states are in rctx(R), and we use

up to related contexts after a
τ−→ transition. Finally, (Ψ, ∅) �,2,Cv−−−−→ τ−→ τ−→ (Ψ, ∅,Cv[Ψ, ∅]) is

matched by (Φ, ∅) �,2,Cv−−−−→ τ−→ (Φ, ∅,Cv[Φ, ∅]), and the context splitting transitions
〈�〉,i−−−→ are

easy to check for i ∈ {1, 2}.

Example 5.9. If k /∈ fv(e2), then (∅, ∅, (λx.Sk.e1)e2)
?≈o

(∅, ∅,Sk.((λx.e1) e2)). The relation

R def
={(∅, ∅, (λx.Sk.e1) e2), (∅, ∅,Sk.((λx.e1) e2))}

∪ {(〈E[(λx.Sk.e1)�]〉, ∅), (〈λx.e1{λy.〈E[y]〉/k}�〉, ∅) | y /∈ fv(E)}
is a bisimulation up to related contexts. As in the previous example, a case analysis on

whether e1 is control-stuck or not shows that the
F−→ transitions from (∅, ∅, (λx.Sk.e1) e2)

and (∅, ∅,Sk.((λx.e1) e2)) produce states in rctx(R). If (Ψ, ∅) def
= (〈E[(λx.Sk.e1)�]〉, ∅) and

(Φ, ∅) def
= (〈λx.e1{λy.〈E[y]〉/k}�〉, ∅), then

(Ψ, ∅) �,1,Cv−−−−→ τ−→ τ−→ (Ψ, ∅, 〈e1{Cv[Ψ, ∅]/x}{λy.〈E[y]〉/k}〉)

(Φ, ∅) �,1,Cv−−−−→ τ−→ (Φ, ∅, 〈e1{Cv[Φ, ∅]/x}{λy.〈E[y]〉/k}〉)

The resulting states are in rctx(R), as wished. A completely written proof of this result takes
less than a page, while the proof of the same result in [11] requires several pages, because of
the lack of useful up-to techniques.
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6. Related Work and Conclusion

Related work. We discuss our previous work on shift and reset at the beginning of Section 5.
In [42], the authors propose an environmental bisimilarity for a calculus with call/cc, an
operator which captures the whole surrounding context. The difficulty in such a language is
that reduction is not preserved by evaluation context: e→ e′ does not imply E[e]→ E[e′],
as E may be captured by e. As a result, the environmental bisimilarity of [42] factors
in these evaluation contexts when testing values. This relation is also not coinductive,
making it closer to contextual equivalence than to a regular environmental bisimilarity.
An accompanying bisimulation up to context is also defined, but it is barely used in the
examples of [42]. The equivalence proofs of these examples are thus almost as difficult as
with contextual equivalence. It is not clear if and how ?-bisimilarity can improve on these
results; we plan to investigate further this question.

Environmental bisimilarity has been defined in several calculi with dynamic resource
generation, like stores and references [30, 29, 38], information hiding constructs [39, 40], or
name creation [5, 33]. In these works, an expression is paired with its generated resources,
and behavioral equivalences are defined on these pairs. Our approach is different since we
do not carry sets of generated prompts when manipulating expressions (e.g., in the semantic
rules of Section 2); instead, we rely on side-conditions and permutations to avoid collisions
between prompts. This is possible because all we need to know is if a prompt is known to
an outside observer or not, and the correspondences between the public prompts of two
related expressions; this can be done through the environment of the bisimilarity. This
approach cannot be adapted to more complex generated resources, which are represented
by a mapping (e.g., for stores or existential types), but we believe it can be used for name
creation in π-calculus [33].

A line of work on program equivalence for which relating evaluation contexts is crucial,
as in our work, are logical relations based on the notion of biorthogonality [34]. In particular,
this concept has been successfully used to develop techniques for establishing program
equivalence in ML-like languages with call/cc [15], and for proving the coherence of control-
effect subtyping [12]. Hur et al. combine logical relations and behavioral equivalences in the
definition of parametric bisimulation [22], where terms are reduced to normal forms that
are then decomposed into subterms related by logical relations. This framework has been
extended to abortive control in [23], where stuttering is used to allow terms not to reduce for
a finite amount of time when comparing them in a bisimulation proof. This is reminiscent
of our distinction between active and passive transitions, as passive transitions can be seen
as “not reducing”, but there is still some testing involved in these transitions. Besides, the
concern is different, since the active/passive distinction prevents the use of up-to techniques,
while stuttering has been proposed to improve plain parametric bisimulations.

Conclusion and future work. We have developed a behavioral theory for Dybvig et al.’s
calculus of multi-prompted delimited control, where the enabling technology for proving
program equivalence are environmental bisimulations, presented in Madiot’s style. The
obtained results generalize our previous work in that they account for multiple prompts
and local visibility of dynamically generated prompts. Moreover, the results of Section 4
considerably enhance reasoning about captured contexts by treating them as first-class
objects at the level of bisimulation proofs (thanks to the construct ?i) and not only at
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the level of terms. The resulting notion of bisimulation up to related contexts improves
on the existing bisimulation up to context in the presence of control operators, as we can
see when comparing Example 4.9 to the proof of the same result in [10, 11]. Moreover,
as demonstrated in Section 5, the approach of Section 4 smoothly carries over to more
traditional calculi with delimited-control operators, where, in contrast to λG#, captured
continuations are represented as functions.

We would like to see if this work scales to other formulations of control and continuations,
such as symmetric calculi [18, 13, 41]. We believe bisimulation up to related contexts could
be useful also for constructs akin to control operators, like passivation in π-calculus [33]. The
soundness of this up-to technique has been proved in an extension of Madiot’s framework;
we plan to investigate further this extension, to see how useful it could be in defining up-to
techniques for other languages. Finally, it may be possible to apply the tools developed in
this paper to [27], where a single-prompted calculus is translated into a multi-prompted one,
but no operational correspondence is given to guarantee the soundness of the translation.
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[1] A. Aristizábal, D. Biernacki, S. Lenglet, and P. Polesiuk. Environmental bisimulations for delimited-
control operators with dynamic prompt generation. In D. Kesner and B. Pientka, editors, 1st International
Conference on Formal Structures for Computation and Deduction (FSCD 2016), volume 52 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 9:1–9:17, Porto, Portugal, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.
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