
Logical Methods in Computer Science
Vol. 13(3:26)2017, pp. 1–27
www.lmcs-online.org

Submitted Apr. 21, 2016
Published Sep. 26, 2017

IMPROVED ALGORITHMS FOR PARITY AND STREETT
OBJECTIVES ∗

KRISHNENDU CHATTERJEE a, MONIKA HENZINGER b, AND VERONIKA LOITZENBAUER c

a IST Austria, Klosterneuburg, Austria
e-mail address: krishnendu.chatterjee@ist.ac.at

b University of Vienna, Faculty of Computer Science, Vienna, Austria
e-mail address: monika.henzinger@univie.ac.at

c Bar-Ilan University, Ramat Gan, Israel
e-mail address: veronika@datalab.cs.biu.ac.il

Abstract. The computation of the winning set for parity objectives and for Streett
objectives in graphs as well as in game graphs are central problems in computer-aided
verification, with application to the verification of closed systems with strong fairness
conditions, the verification of open systems, checking interface compatibility, well-formedness
of specifications, and the synthesis of reactive systems. We show how to compute the
winning set on n vertices for (1) parity-3 (aka one-pair Streett) objectives in game graphs
in time O(n5/2) and for (2) k-pair Streett objectives in graphs in time O(n2 + nk log n).
For both problems this gives faster algorithms for dense graphs and represents the first
improvement in asymptotic running time in 15 years.

1. Introduction

In the formal verification and synthesis of systems graphs and game graphs are fundamental
models of systems, where vertices correspond to states of the systems and edges correspond
to transitions between states. ω-regular objectives are a canonical way to specify desired
and undesired behaviors of systems, and the algorithmic questions are to determine whether
a model satisfies its specification or to generate a strategy to satisfy the specification. In
this work we study Streett and parity objectives that can express all ω-regular objectives

Key words and phrases: Computer-aided verification; Synthesis; Graph games; Parity games; Streett
automata; Graph algorithms.
∗ A preliminary version of this paper appeared in [14].

a,b,c The authors are partially supported by the Vienna Science and Technology Fund (WWTF) grant ICT15-003
and the Austrian Science Fund (FWF): P23499-N23.

a Partially supported by the Austrian Science Fund (FWF): S11407-N23 (RiSE/SHiNE), an ERC Start
Grant (279307: Graph Games), and a Microsoft Faculty Fellows Award.
b,c The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506 and
the Vienna Science and Technology Fund (WWTF) grant ICT10-002.

c Work done while at University of Vienna.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(3:26)2017
c© K. Chatterjee, M. Henzinger, and V. Loitenbauer
CC© Creative Commons

http://creativecommons.org/about/licenses

2 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

and the algorithmic questions we consider are therefore core questions in formal verification
and synthesis. We first define the problem, next discuss its significance and previous work,
and then present our contributions.
Game graphs and graphs. Consider a directed graph (V,E) with a partition (V1, V2) of V ,
which is called a game graph. Let n = |V | and m = |E|. On the graph two players play the
following alternating game that forms an infinite path. They start by placing a token on
an initial vertex and then take turns indefinitely in moving the token: At a vertex v ∈ V1
player 1 moves the token along one of the outedges of v, at a vertex u ∈ V2 player 2 moves
the token along one of the outedges of u. If V2 = ∅, then we simply have a standard graph.
Objectives and winning sets. Objectives are subsets of infinite paths that specify the desired
set of paths for player 1, and the objective for player 2 is the complement of the player-1
objective (i.e., we consider zero-sum games). Given an objective φ, an infinite path satisfies
the objective if it belongs to φ. Given a starting vertex x ∈ V and an objective φ, if player 1
can guarantee that the infinite path starting at x satisfies φ, no matter what choices player 2
makes, then player 1 can win from x and x belongs to the winning set of player 1. The
winning sets partition the game graph, i.e., the complement of the winning set for player 1
is the winning set for player 2. In case the game graph is a standard graph (i.e., V2 = ∅),
the winning set consists of those vertices x such that there exists an infinite path starting at
x that satisfies φ. The winning set computation for game graphs is more involved than for
standard graphs due to the presence of the adversarial player 2.
Relevant objectives. The most basic objective is reachability where, given a set U ⊆ V
of vertices, an infinite path satisfies the objective if the path visits a vertex of U at least
once. The next interesting objective is the Büchi objective that requires an infinite path
to visit some vertex of U infinitely often. The next and a very central objective in formal
verification and automata theory is the one-pair Streett objective that consists of a pair
(L1, U1) of sets of vertices (i.e., L1 ⊆ V and U1 ⊆ V), and an infinite path satisfies the
objective iff the following condition holds: if some vertex of L1 is visited infinitely often,
then some vertex of U1 is visited infinitely often (intuitively the objective specifies that if
one Büchi objective holds, then another Büchi objective must also hold). A generalization of
one-pair Streett objectives is the k-pair Streett objective (aka general Streett objective) that
consists of k-Streett pairs (L1, U1), (L2, U2), . . . , (Lk, Uk), and an infinite path satisfies the
objective iff the condition for every Streett pair is satisfied (in other words, the objective
is the conjunction of k one-pair Streett objectives). A different generalization of one-pair
Streett objectives are parity objectives. For a parity objective the input additionally contains
a priority function that assigns each vertex a natural number called priority. The parity
objective is satisfied if the highest priority visited infinitely often is even. Parity objectives
with at most 2 different priorities are equivalent to Büchi objectives and parity objectives
with at most 3 different priorities are equivalent to one-pair Streett objectives.

We study (1) game graphs with parity-3 (aka one-pair Streett) objectives and their
generalization to parity objectives, and (2) graphs with general Streett objectives.
Significance in verification. Two-player games on graphs are useful in many problems in
computer science, specially in the verification and synthesis of systems such as the synthesis
of reactive systems [18, 48, 49], the verification of open systems [2], and checking interface
compatibility [22] and the well-formedness of specifications [23], and many others. General
and one-pair Streett objectives are central in verification as most commonly used specifications
can be expressed as Streett automata [50, 55]. Parity objectives are also canonical to express

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 3

properties in verification, since every Streett automaton can be converted to a parity
automaton [51]. Moreover, parity objectives are particularly important as solving parity
games is equivalent to µ-calculus model checking [27]. Dense game graphs can emerge from
a synchronous product of several components (where each component makes transitions at
each step) [42, 11].

Game graphs with parity-3 objectives arise in many applications in verification. We
sketch a few of them. (A) Timed automaton games are a model for real-time systems.
The analysis of such games with reachability and safety objectives (which are the dual of
reachability objectives) reduces to game graphs with parity-3 objectives [21, 20, 15, 17].
(B) The synthesis of Generalized Reactivity(1) (aka GR(1)) specifications exactly require
the solution of game graphs with parity-3 objectives [5]; GR(1) specifications are standard
for hardware synthesis [47] and even used in the synthesis of industrial protocols [33, 6]1.
(C) Finally, the problem of fair simulation [36] between two systems also reduces to game
graphs with parity-3 objectives [29, 8].

General Streett objectives in standard graphs arise, for example, in the verification
of closed systems with strong fairness conditions [43, 24, 31]. In program verification, a
scheduler is strongly fair if every event that is enabled infinitely often is scheduled infinitely
often. Thus, verification of systems with strong fairness conditions directly corresponds to
checking the non-emptiness of Streett automata, which in turn corresponds to determining
the winning set in standard graphs with Streett objectives. Note, however, that a Streett
objective can either specify desired behaviors of the system or erroneous ones, and for
erroneous specifications, it is useful to have a certificate (as defined below) to identify an
error trace of the system [25, 43, 24], such as in the counterexample-guided abstraction
refinement approach (CEGAR) [19].

Note that standard graphs are relevant for the verification of closed systems or open
systems with demonic non-determinism (e.g., all inputs are from the environment that are
not controllable); while game graphs are relevant for the synthesis and verification of open
systems with both angelic and demonic non-determinism (e.g., certain inputs are controllable,
and certain inputs are not controllable).
Previous results. We summarize the previous results for game graphs and graphs with Streett
and Parity objectives.

Game graphs. We consider the computation of the winning set for player 1 in game
graphs. For reachability objectives, the problem is PTIME-complete, and the computation
can be achieved in time linear in the size of the graph [3, 37]. For Büchi objectives, the
current best known algorithm requires O(n2) time [13]. For general Streett objectives, the
problem is coNP-complete [26], and for one-pair Streett objectives the current best known
algorithm requires O(mn) time [39]. One-pair Streett objectives also corresponds to the
well-known parity games problem with three priorities. Despite the importance of game
graphs with parity-3 objectives in numerous applications and several algorithmic ideas to
improve the running time for general parity games [56, 41, 53] or Büchi games [16, 13], there
has been no algorithmic improvement since 2000 [39] for parity-3 games. The parity games
problem in general is in UP ∩ coUP [38]; it is one of the rare and intriguing combinatorial
problems that lie in NP ∩ coNP but are not known to be in PTIME. Parity games can be

1A GR(1) specification expresses that if a conjunction of Büchi objectives holds, then another conjunction
of Büchi objectives must also hold, and since conjunction of Büchi objectives can be reduced in linear time to
a single Büchi objective, a GR(1) specification reduces to implication between two Büchi objectives, which is
an parity-3 objective.

4 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

Table 1: Comparison of Running Times for Few Priorities.

priorities

3 4 5 6 7

Big-Step [53] O(mn) O(mn3/2) O(mn2) O(mn7/3) O(mn11/4)
Big-Step [53] with m = Θ(n2) O(n3) O(n7/2) O(n4) O(n13/3) O(n19/4)
Our algorithm O(n5/2) O(n3) O(n10/3) O(n15/4) O(n65/16)

solved by a randomized algorithm in time nO(
√
n/ logn) [4] and by deterministic algorithms in

time nO(
√
n) [41] and for c ≥ 3 priorities in time O(m · (κn/c2)γ(c)) [53] for a small constant

κ and c/3 ≤ γ(c) ≤ c/3 + 1/2. Subsequent to our work, a quasi-polynomial time algorithm
for parity games was achieved in a breakthrough result by Calude et. al [7, 32]. In follow-up
work different quasi-polynomial time algorithms as well as O(mn log(n)c−1) time algorithms
for constant c were shown [40, 30].

Graphs. In graphs the winning set for parity objectives with c priorities can be computed
in O(m log c) time [12]. We study the computation of the winning set for general Streett
objectives. If x belongs to the winning set, it is often useful to output a certificate for x.
Let S be a vertex set reachable from x that induces a strongly connected subgraph such
that for all 1 ≤ j ≤ k we have either S ∩ Lj = ∅ or S ∩ Uj 6= ∅ (i.e., if S contains a vertex
from Lj then it also contains a vertex from Uj). A certificate is a “lasso-shaped” path that
consists of a path to S and a (not necessarily simple) cycle between the vertices of S [25].
The basic algorithm [28, 44] for the winning set problem has an asymptotic running time
of O((m + b) min(n, k)) with b =

∑k
j=1(|Lj | + |Uj |) ≤ 2nk. Within the same time bound

Latvala and Heljanko [43] additionally compute a certificate of size at most nmin(n, 2k).
Duret-Lutz et al. [24] presented a space-saving “on-the-fly” algorithm with the same time
complexity for the slightly different transition-based Streett automata. The current fastest
algorithm for the problem by Henzinger and Telle [35] from 1996 has a running time of
O(mmin(

√
m logn, k, n) + bmin(logn, k)); however, given a start vertex x, to report the

certificate for x adds an additive term of O(nmin(n, k)) to the running time bound.
Our contributions. In this work our contributions are two-fold.

Game graphs. We show that the winning set computation for game graphs with parity-3
objectives can be achieved in O(n5/2) time. Our algorithm is faster for m ∈ Ω(n1.5), and
breaks the long-standing O(mn) barrier for dense graphs. Our algorithm for parity-3 games
also extends to general parity games and improves the running time for dense graphs when
the number of priorities is sub-polynomial in n. Let, as in [53], γ(c) = c/3 + 1/2− 4/(c2− 1)
for odd c and γ(c) = c/3 + 1/2− 1/(3c)− 4/c2 for even c, and let β(c) = γ(c)/(bc/2c+ 1).
We obtain that the running time of our algorithm is O(n1+γ(c+1)) = O(n2+γ(c)−β(c)) for
parity games with c priorities, i.e., for a constant number of priorities we replace m of [53]
by n2−β(c). Since the value of β(c) quickly approaches 2/3 with increasing c, we have that
n2−β(c) approaches n4/3. For small c we compare our running times with the Big-Step
algorithm of [53] in Table 1.

Graphs. We present an algorithm with O(n2 + b logn) running time for the win-
ning set computation in graphs with general Streett objectives, which is faster for m ∈

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 5

Ω(max(n4/3 log−1/3 n, b2/3 log1/3 n)) and k ∈ Ω(n2/m). We additionally provide an algo-
rithm that, given the winning set, computes a certificate for a vertex x in the winning set in
time O(m+ nmin(n, k)). We also provide an example where the smallest certificate has size
Θ(nmin(n, k)), showing that no algorithm can compute and output a certificate faster. In
contrast to [35], the running time of our algorithm for the winning set computation does not
change with certificate reporting. Thus when certificates need to be reported and k = Ω(n),
our algorithm is optimal up to a factor of logn as the size of the input is at least b and the
size of the output is Ω(n2).
Technical contributions. Both of our algorithms use a hierarchical (game) graph decomposition
technique that was developed by Henzinger et al. [34] to handle edge deletions in undirected
graphs. In [13] it was extended to deal with vertex deletions in directed and game graphs.
We combine and extend this technique in two ways.

Game graphs. The classical algorithm for parity-3 objectives repeatedly solves Büchi
games such that the union of the winning sets of player 2 in the Büchi games is exactly
the winning set for the parity-3 objective. Schewe [53] showed with his Big-Step algorithm
that the small progress measure algorithm for parity games by Jurdziński [39] can be used
to compute small subsets of the winning set of player 2, called dominions, and thereby
improved the running time for general parity games. However, the Big-Step algorithm does
not improve the running time for parity-3 games. With Schewe’s approach dominions with
at most h vertices in Büchi games can be found in time O(mh). We extend this approach by
using the hierarchical game graph decomposition technique to find small dominions quickly
and call the O(n2) Büchi game algorithm of [13] for large dominions. This extension is
possible as we are able to show that, rather surprisingly, it is sufficient to consider game
graphs with O(nh) edges to detect dominions of size h. Our approach extends to general
parity games.

Graphs. In prior work that used the hierarchical graph decomposition technique the
running time analysis relied on the fact that identified vertex sets that fulfilled a certain
desired condition were removed from the (game) graph after their detection. The work for
identifying the vertex set was then charged in an amortization argument to the removed
vertex set. This is not possible for general Streett objectives on graphs, where a strongly
connected subgraph is identified and some but not all of its vertices might be removed. As a
consequence a vertex might belong to an identified strongly connected subgraph multiple
times. We show how to overcome this difficulty by identifying a strongly connected subgraph
with at most half of the vertices whenever a vertex set seizes to be strongly connected. We
identify these strongly connected subgraphs by running Tarjan’s SCC algorithm [54] on the
graph and its reverse graph, thereby finding the smallest top (i.e. with no incoming edges)
or bottom (i.e. with no outgoing edges) SCC contained in the formerly strongly connected
subgraph. The algorithm takes O(n) time per vertex in the identified set. This will allow us
to bound the total running time for this part of the algorithm with O(n2).

In Section 2 we present our algorithm for game graphs with parity objectives with c
priorities, where the special case of c = 3 corresponds to one-pair Streett objectives. In
Section 3 we present the algorithm for general Streett objectives in graphs.

2. Parity Objectives in Game Graphs

2.1. Preliminaries. Notation. Let for all c ∈ N denote the set {0, 1, . . . , c− 1} by [c].

6 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

0 0 2 1 1

1 1 0 2 1

Figure 1: An example of a parity game P = (G, α) with three priorities. Circles denote
E-vertices, triangles denote O-vertices. The values in the vertices are the priorities.

Parity games. A parity game P = (G, α) with c ≤ n priorities consists of a game graph
G = (G, (VE , VO)) with G = (V,E) and a priority function α : V → [c] that assigns an
integer from the set [c] to each vertex. The sets VE ⊆ V and VO ⊆ V form a partition of V .
We denote the two players by E (for even) and O (for odd). We say that the vertices in VE
are E-vertices and the vertices in VO are O-vertices. Player E (resp. player O) wins a play if
the highest priority occurring infinitely often in the play is even (resp. odd). We use z to
denote one of the players {E ,O} and z to denote her opponent. Parity-3 games are parity
games with α : V → {0, 1, 2} and Büchi games have α : V → {0, 1}, where the vertices in
the set B = {v | α(v) = 1} are called Büchi vertices.
One-pair Streett and parity-3 games. A one-pair Streett objective with pair (L1, U1) is
equivalent to a parity game with three priorities. Let the vertices in U1 have priority 2, let
the vertices in L1 \ U1 have priority 1, and let the remaining vertices have priority 0. Then
player 1 wins the game with the one-pair Streett objective if and only if player E wins the
parity-3 game. As our algorithm for parity-3 games extends to general parity games, we use
the notion of parity games (i.e., player E and player O instead of player 1 and player 2).
Plays. For technical convenience we consider that every vertex of the game graph G has at
least one outgoing edge. A game is initialized by placing a token on a vertex. Then the
two players form an infinite path called play in the game graph by moving the token along
the edges. Whenever the token is on a vertex of Vz, player z moves the token along one of
the outgoing edges of the vertex. Formally, a play is an infinite sequence 〈v0, v1, v2, . . .〉 of
vertices such that (v`, v`+1) ∈ E for all ` ≥ 0.

For a vertex u ∈ V , we write Out(G, u) = {v ∈ V | (u, v) ∈ E} for the set of successor
vertices of u in G and In(G, u) = {v ∈ V | (v, u) ∈ E} for the set of predecessor vertices of u
in G. We denote by Outdeg(G, u) = |Out(G, u)| the number of outgoing edges from u, and
by Indeg(G, u) = | In(G, u)| the number of incoming edges. We omit the reference to G if it
is clear from the context.
Strategies. A strategy of a player z ∈ {E ,O} is a function that, given a finite prefix of
a play ending at v ∈ Vz, selects a vertex from Out(v) to extend the play. Memoryless
strategies do not depend on the history of a play but only on the current vertex. That is, a
memoryless strategy of player z is a function σ : Vz → V such that for all v ∈ Vz we have
σ(v) ∈ Out(v). It is well-known that for parity games it is sufficient to consider memoryless
strategies (see Theorem 2.1 below). Therefore we only consider memoryless strategies from
now on. A start vertex v, a strategy σ for E , and a strategy π for O define a unique play
ω(v, σ, π) = 〈v0, v1, v2, . . .〉 as follows: v0 = v and for all j ≥ 0, if vj ∈ VE , then σ(vj) = vj+1,
and if vj ∈ VO, then π(vj) = vj+1.

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 7

Winning strategies and sets. A strategy σ is winning for player z at start vertex v if the
resulting play is winning for player z irrespective of the strategy of player z. A vertex v
belongs to the winning set Wz of player z if player z has a winning strategy from v. By the
following theorem every vertex is winning for exactly one of the two players. When required
for explicit reference of a specific game graph G or specific parity game P, we use Wz(G)
and Wz(P) to refer to the winning sets. The algorithmic question for parity games is to
compute the sets WE and WO.
Theorem 2.1 ([27, 46]). For every parity game the vertices V can be partitioned into
the winning set WE of player E and the winning set WO of player O. Each player has a
memoryless strategy that is winning for her from all vertices in her winning set.

For the analysis of our algorithm we further introduce the notions of traps, attractors,
and dominions.
Traps. A set U ⊆ V is a z-trap if for all z-vertices u in U we have Out(u) ⊆ U and for all
z-vertices v in U there exists a vertex w ∈ Out(v) ∩ U [57]. Note that player z can ensure
that a play that currently ends in a z-trap never leaves the z-trap against any strategy of
player z by choosing an edge (v, w) with w ∈ Out(v) ∩ U whenever the current vertex v
is in U ∩ Vz. Given a game graph G and a z-trap U , we denote by G[U] the game graph
induced by the set of vertices U . Note that given that in G each vertex has at least one
outgoing edge, the same property holds for G[U]. By a slight abuse of notation, we denote
the sub-game induced by U by (G[U], α), where the priority function α is evaluated only
on U and we say that the highest priority of (G[U], α) is maxv∈U α(v).
Attractors. In a game graph G, a z-attractor Attrz(G, U) of a set U ⊆ V is the set of vertices
from which player z has a strategy to reach U against all strategies of player z. We have
that U ⊆ Attrz(G, U). A z-attractor can be constructed inductively as follows: Let Z0 = U ;
and for all i ≥ 0 let

Zi+1 = Zi ∪ {v ∈ Vz | Out(v) ∩ Zi 6= ∅}
∪ {v ∈ Vz | Out(v) ⊆ Zi}.

(‡)

Then Attrz(G, U) =
⋃
i≥0 Zi.

The following lemma summarizes two well-known facts about attractors and traps that
we use frequently.
Lemma 2.2. Let U ⊆ V .
(1) [3, 37] The attractor A = Attrz(G, U) can be computed in O(

∑
v∈A|In(v)|) time.

(2) [57, Lemma 4] Let G be a game graph in which each vertex has at least one outgoing
edge. Then the set V \Attrz(G, U) is a z-trap in G.

Dominions. A non-empty set of vertices D ⊆ V is a z-dominion if player z has a winning
strategy from every vertex of D that also ensures only vertices of D are visited. Note that a
z-dominion is also a z-trap and that the z-attractor of a z-dominion is again a z-dominion.
In parity games dominions of size |D| ≤ h+1 can be computed by running the small-progress
measure algorithm of Jurdziński [39] with a reduced codomain [53]. We use this algorithm,
whose properties are stated in the lemma below, as a subroutine.
Lemma 2.3 ([53]). Let (G, α) be a parity game with game graph G, n vertices, m edges,
a priority function α, and c priorities. There is an algorithm ProgressMeasure(G, α, h, z)
that returns the union of all z-dominions of size at most h+ 1, including a winning strategy
for z, in time O(c ·m ·

(h+dc/2e
h

)
).

8 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

The lemma below summarizes some well-known facts about dominions and winning sets.

Lemma 2.4. The following assertions hold for game graphs G with at least one outgoing
edge per vertex and (in particular) parity objectives. Let U ⊆ V .
(1) [41, Lemma 4.4], [45, Lemma 2.6.11] Let U be a z-trap in G. Then a z-dominion in
G[U] is a z-dominion in G.

(2) [41, Lemma 4.1] The set Wz(G) is a z-dominion.
(3) [41, Lemma 4.5] Let U be a subset of the winning set Wz(G) of player z and let A be

its z-attractor Attrz(G, U). Then the winning set Wz(G) of the player z is the union of
A and the winning set Wz(G[V \A]), and the winning set Wz(G) of the opponent z is
equal to Wz(G[V \A]).

2.2. Algorithm. In this subsection we present our new algorithm to compute the winning
sets of player E and player O in a parity game P = (G, α) with c ≤

√
n priorities in time

O(n1+γ(c+1)), where γ(c) = c/3+1/2−4/(c2−1) for odd c, and γ(c) = c/3+1/2−1/(3c)−4/c2

for even c. The slightly simpler special case for c = 3 is described explicitly in the conference
version [14].
High level idea and relation to existing algorithms. The classical algorithm for parity games
[46, 57] identifies in each iteration a player-z dominion by a recursive call to a parity game
with one priority less, then removes its z-attractor from the game graph and recurses on the
remaining game graph until no z-dominion can be found any more; the remaining vertices
form the winning set of player z. The sub-exponential time algorithm of [41] limits the
number of recursive calls by computing z-dominions with up to

√
n vertices in a brute-force

manner before each recursive call. In the Big-Step algorithm [52, 53] this search for dominions
before the recursive calls is made more efficient by adapting the small progress measure
algorithm for parity games [39] to computing dominions of a bounded size. Our algorithm
refines the Big-Step algorithm of [52, 53] for dense graphs; the main new insight is that to
find dominions of size at most h, it is sufficient to consider a specific subgame with O(n · h)
edges. For the special case of parity games with 2 priorities, i.e., Büchi games, our algorithm
is equivalent to the algorithm of [13]. We next describe our algorithm and then prove its
correctness and running time.
Initialization (steps 1–3 of Procedure Parity). If all vertices of the parity game have priority
zero, player E wins from all vertices and thus the algorithm terminates and returns the
set of all vertices as the winning set of player E and the empty set as the winning set of
player O. Otherwise we set z according to the parity of the highest priority c − 1 in the
parity game. The procedure then iteratively determines the winning set of player z and in
the end identifies Wz as the complement of Wz.
Iterated vertex deletions (steps 4–11 of Procedure Parity). The algorithm repeatedly removes
vertices from the game graph G. During the algorithm, we denote by G the remaining game
graph after vertex deletions. The vertex removal is achieved by identifying parts of the
winning set of player z, i.e, z-dominions, and removing their attractors from the maintained
game graph.
Dominion find and attractor removal. The algorithm repeatedly finds dominions of player z
in parity games P ′ where the highest priority is at most c − 2. The parity game P ′ is
constructed by removing the z-attractor of vertices with priority c−1 from G (this is implicit

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 9

Procedure Parity(G, α, h)

Input : game graph G = ((V,E), (VE , VO)) with n = |V |,
priority function α : V → [c] with c ≥ 1, and
parameter h ∈ [1, n] ∩ N

Output : winning sets (WE ,WO) of player E and player O
1 if c = 1 then return (V, ∅)
2 let z be player E if c is odd and player O otherwise
3 Wz ← ∅
4 repeat
5 W ′z ← Dominion(G, α, h, z)
6 if W ′z = ∅ and c ≥ 3 then
7 G′ ← G \Attrz(G, α−1(c− 1))
8 (W ′E ,W ′O)← Parity(G′, α)
9 A← Attrz(G,W ′z); Wz ←Wz ∪A

10 G ← G \A
11 until W ′z = ∅
12 Wz ← V \Wz

13 return (WE ,WO)

0 0 2 1 1

1 1 0 2 1

Figure 2: The resulting Büchi game (G′, α) (in black) after removing AttrE(G, α−1(2)) from G.
The vertex in the top left corner is an E-vertex with out-degree larger than

√
n,

i.e., a blue vertex of G′i for i ≤ log2(
√
n). The two Büchi vertices in the bottom

left corner are contained in AttrE(G′i,Bli) and we have Di = ∅.

in the Procedure Dominion and explicit before the recursive call to Procedure Parity; more
details follow). After a z-dominion in the parity game P ′ is found, its z-attractor is removed
from G. Then the search for z-dominions is continued on the remaining vertices. If all
vertices in the parity game P ′ are winning for z, i.e., no z-dominion exists in P ′, then the
procedure terminates. The winning set of player z is the union of the z-attractors of all
found z-dominions. The remaining vertices are winning for player z. We now describe the
steps to find z-dominions.
Steps of dominion find. For the search for z-dominions in the parity game P ′ we use two
different procedures, Procedure Dominion and a recursive call to Procedure Parity. We first
search for “small” z-dominions with up to h vertices with Procedure Dominion, where h is
a parameter that will be set later to balance the running times of the two procedures. If
no z-dominion is found, we can conclude that either all z-dominions contain more than h
vertices or the winning set of z on the current game graph is empty. In the latter case the

10 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

Procedure Dominion(G, α, h, z)

Input : game graph G = ((V,E), (VE , VO)),
priority function α : V → [c] with c ≥ 2,
parameter h ∈ [1, n] ∩ N, and
player z

Output : a z-dominion that contains all z-dominions with at most h vertices or
possibly the empty set if no such z-dominion exists

1 for i← 1 to dlog2(h)e do
2 construct Gi
3 Bli ← {v ∈ Vz | Outdeg(Gi, v) = 0} ∪ {v ∈ Vz | Outdeg(G, v) > 2i}
4 G′i ← Gi \Attrz(Gi, α−1(c− 1) ∪ Bli)
5 if c = 2 then
6 Di ← the vertex set of G′i
7 e
8 else
9 Di ← ProgressMeasure(G′i, α, 2i, z)

10 if Di 6= ∅ then
11 return Di

12 return ∅

0 0 2 1 1

1 1 0 2 1

Figure 3: The winning set of player O in the Büchi game (G′, α) and its O-attractor in G.

0 0 2 1 1

1 1 0 2 1

Figure 4: The remaining graph. The two vertices on the right are an O-dominion, the
remaining vertices form the winning set of player E .

algorithm terminates. The former case occurs at most n/h times and in such a case we use
the recursive call to Procedure Parity on the parity game P ′ with one priority less to obtain
a z-dominion. Below we describe the details of Procedure Dominion.

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 11

Example 2.5 (Illustration of the Algorithm for Parity-3.). Figure 1 shows a parity game
with priorities {0, 1, 2}, and Figure 2 shows the Büchi game we obtain when we remove the
E-attractor of the vertices with the highest priority 2. Figure 3 shows the winning set of
player O in the Büchi game, which is an O-dominion in the parity game, and its O-attractor
in the original game graph. Finally, Figure 4 shows the remaining game graph after the
removal of the O-dominion and its attractor.

Graph decomposition for Procedure Dominion. In Procedure Dominion we use the following
hierarchical graph decomposition. For a game graph G = (G, (VE , VO)) with G = (V,E) we
denote its decomposition with respect to player z by {Gi}. The decomposition {Gi} consists
of dlog2 ne game graphs Gi = (Gi, (VE , VO)) with underlying graphs Gi = (V,Ei). We call
1 ≤ i ≤ dlog2 ne the level of Gi. For the definition of Ei we consider the incoming edges
of each vertex in a fixed order: First the edges from vertices of Vz, then the remaining
edges. The set of edges Ei contains for each vertex v ∈ V with Outdeg(G, v) ≤ 2i all its
outgoing edges in E and in addition for each vertex v ∈ V its first 2i incoming edges in E.
Note that (1) Ei ⊆ Ei+1, (2) |Ei| ≤ 2i+1n, and (3) Gdlog2 ne = G. We color z-vertices v with
Outdeg(G, v) > 2i and z-vertices without outgoing edges in Gi blue in Gi and denote the set
of blue vertices by Bli. All other vertices are called white.
Procedure Dominion. The Procedure Dominion searches in the game graph Gi, starting
at i = 1. As long as no z-dominion is found, the level i is increased one by one up to at
most i = dlog2(h)e. At each level only a subgame of Gi that only contains white vertices
is considered. This subgame is obtained by removing the z-attractor of the blue vertices
Bli and the vertices with the maximum priority c− 1 from Gi. This (a) reduces reduce the
number of priorities in the parity game by one and (b) ensures that z-dominions found in the
subgame are also z-dominions in G. In the subgame of Gi for c ≥ 3 the ProgressMeasure
algorithm (Lemma 2.3) is used to find z-dominions of size at most O(2i). For c = 2, i.e.,
Büchi games, we have that any non-empty set of remaining vertices is a dominion of player z.
Outline correctness. The correctness of Procedure Parity follows from the correctness of
the Big-Step algorithm as soon as we have established the correctness of Procedure Do-
minion. Let V ′i be the vertices of G′i = Gi \ Attrz(Gi, α−1(c− 1) ∪ Bli). The correctness of
Procedure Dominion follows from the following arguments:
(1) the vertex set V ′i is a z-trap in Gi and thus a z-dominion of G′i is a z-dominion of Gi;
(2) the vertices of V ′i are white and hence a z-dominion of Gi is a z-dominion of G; and
(3) thus the correctness of Procedure Dominion follows from the correctness of the progress

measure algorithm that is used for determining dominions in G′i.
Outline running time. We first analyze the running time without the recursive calls and
then show a bound of O(n1+γ(c+1)) for the running time including the recursive calls by
induction over c. For the latter we use that we only do recursive calls when no z-dominion of
size at most h exists and we balance the cost of the recursive calls and the other operations
by setting the parameter h accordingly, similar to [52]. The running time without the
recursive calls is, for c ≥ 3, dominated by the running time of Procedure Dominion. For
Procedure Dominion we show that any z-dominion that, including its z-attractor, contains
at most 2i vertices can be identified as a z-dominion in Gi. Thus if some z-dominion is found
in the search for z-dominions at level i but was not found at level i− 1, then it must contain
Ω(2i) vertices. Since Gi contains O(2i · n) edges, we can account for the time that was spent

12 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

proportional to the edges of Gi by charging it, with an additional factor of n, to the vertices
in the z-dominion. This is crucial for the improved running time on dense graphs.

In the remaining part of this section we prove the correctness and running time of
Procedure Parity (including the calls to Procedure Dominion). The following lemma captures
the essence of why the hierarchical graph decomposition is helpful for graph games. The
lemma is a generalization of related lemmata for Büchi games in [13] and for parity-3 games
in the conference version of this paper [14] and was also used in subsequent work [9]. The
first part of the lemma is essential for the correctness of the hierarchical graph decomposition
technique on game graphs: It shows that every z-trap in Gi that contains only white vertices
is also a z-trap in G. The second part is essential for the running time: Every z-trap in
G that, including its z-attractor, contains at most h vertices, is a z-trap induced by white
vertices in Gdlog2 he. Note that the z-attractor of a z-trap is itself a z-trap and thus this
holds in particular for maximal z-traps of size at most h.

Lemma 2.6. Let G = ((V,E), (VE , VO)) be a game graph and {Gi} its hierarchical graph
decomposition w.r.t. to player z. For 1 ≤ i ≤ dlog2 ne let Bli be the set consisting of the
player-z vertices that have no outgoing edge in Gi and the player-z vertices with more than
2i outgoing edges in G.
(1) If a set S ⊆ V \ Bli is a z-trap in Gi, then S is a z-trap in G.
(2) If a set S ⊆ V is a z-trap in G and |Attrz(G, S)| ≤ 2i, then (i) S is a z-trap in Gi, (ii)

the set S is in V \ Bli, and (iii) Gi[S] = G[S].

Proof.
(1) By S ⊆ V \ Bli we have for all v ∈ S ∩ Vz that Out(G, v) = Out(Gi, v). Thus if

Out(Gi, v) ⊆ S, then also Out(G, v) ⊆ S. Each edge of Gi is contained in G, thus we
have for all v ∈ S ∩ Vz that Out(Gi, v) ∩ S 6= ∅ implies Out(G, v) ∩ S 6= ∅.

(2) By the definition of a z-attractor, all u ∈ Vz for which there exists a w ∈ S such that
(u,w) ∈ E are contained in Attrz(G, S). Thus by |Attrz(G, S)| ≤ 2i all vertices of S have
less than 2i incoming edges from vertices of z. Hence by the ordering of the incoming
edges in the construction of Gi
(a) all edges (u,w) with u ∈ Vz and w ∈ S are contained in Ei and thus in particular
(b) (u,w) ∈ Ei for all (u,w) ∈ E with u ∈ S ∩ Vz and w ∈ S.
Note furthermore that since S is a z-trap in G, there exists a w ∈ S such that (u,w) ∈ E
for all u ∈ S ∩Vz; by (a) we have (u,w) ∈ Ei for this w. Together with Ei ⊆ E it follows
that (i) S is a z-trap in Gi. The existence of such an edge (u,w) also ensures that every
vertex in Vz ∩ S has an outgoing edge in Gi, i.e.,
(c) Bli ∩ Vz ∩ S = ∅.
Since S is a trap for player z in G and |S| ≤ 2i, we have for all v ∈ Vz that

Outdeg(G, v) < 2i. Thus
(d) Bli ∩ Vz ∩ S = ∅ and
(e) (u,w) ∈ Ei for all (u,w) ∈ E with u ∈ S ∩ Vz and w ∈ S.
Combining (c) and (d) yields (ii) S ∩ Bli = ∅, and (b) and (e) give (iii) Gi[S] = G[S].

In the next lemma we consider not just z-traps but z-dominions and thus argue additionally
about winning strategies of player z. The first part of the lemma shows the soundness
of Procedure Dominion, while the second part shows completeness and is crucial for the
running time analysis of the overall algorithm.

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 13

Lemma 2.7. Let the parity game (G, α) with c priorities, the parameter h, and the player z
be the input to Procedure Dominion. Let Di, G′i and Bli be as in Procedure Dominion.
(1) Every Di 6= ∅ is a z-dominion in the parity game (G, α) and the priority of the vertices

of Di is at most c− 2.
(2) If there exists a z-dominion D with |Attrz(G, D)| ≤ 2i in (G, α) such that the highest

priority in D is at most c− 2, then D is a z-dominion in the parity game (G′i, α).

Proof.
(1) By definition the highest priority in G′i and thus in Di is at most c− 2. Let V ′i be the

vertices of G′i. By Lemma 2.2 (2) the set V ′i is a z-trap in Gi and by V ′i ∩ Bli = ∅ and
Lemma 2.6 (1) also in G. If c = 2, we have V ′i = Di and since Di only contains vertices
with priority 0, the set Di is a z-dominion in (G, α). Suppose now c ≥ 3. Then Di is the
set returned by ProgressMeasure(G′i, α, 2i, z) and we have by Lemma 2.3 that Di is a
z-dominion in the parity game (G′i, α). Since V ′i is a z-trap in Gi, the set Di is also a
z-dominion in Gi by Lemma 2.4 (1). Since Di contains only white vertices, we have
(a) the set Di is a z-trap in G by Lemma 2.6 (1) and
(b) all outgoing edges of vertices of Vz ∩Di are present in Gi.
Thus by Ei ⊆ E the winning strategy of player z for the vertices of Di in Gi is also a
winning strategy in G and hence Di is a z-dominion in the parity game (G, α).

(2) By Lemma 2.6 (2) we have (i) D is a z-trap in Gi, (ii) D∩Bli = ∅, and (iii) G[D] = Gi[D].
Thus
(a) D is contained in G′i and
(b) player z can play the same winning strategy in Gi[D] as in G[D].

In the following corollary we state the insights of the previous two lemmata as needed for
the running time analysis. The first part shows that when we use the hierarchical graph
decomposition with increasing level i to search for a z-dominion and we have to go up to
level i∗, then the found z-dominion, or at least its z-attractor (which is again a z-dominion),
contains a number of vertices proportional to 2i∗ , which allows us to charge the work done in
the search to the vertices in the identified dominion. The second part of the corollary states
that no “small” z-dominions exist in the maintained parity game if Procedure Dominion
returns the empty set, where “small” is specified by the parameter h that will be set to
balance the running time of Procedure Dominion and the recursive calls. In this case either
no z-dominion exists in the parity game and the algorithm terminates or the subsequent
recursive call identifies a z-dominion with more than h vertices; the latter can happen at
most O(n/h) times and allows us to bound the number of iterations in Procedure Parity.

Recall that we set z to E if the highest priority in the parity game is even and to odd
otherwise, i.e., when we search for z-dominions, we search for dominions of the player that
tries to avoid the highest priority. For the proof of the second part we use that in this case
every z-dominion D contains a subset D′ that is a z-dominion itself and does not contain
any vertex with the highest priority c− 1 (Proposition 2 of [39]). Intuitively, D′ is the set of
vertices that are contained in the cycles of D that are induced by the memoryless winning
strategy of player z in G[D].

Corollary 2.8. Let the parity game (G, α) with c priorities, the parameter h, and the player z
be the input to Procedure Dominion. Let Di, G′i and Bli be as in Procedure Dominion.
(1) If for some i > 1 we have Di 6= ∅ but Di−1 = ∅, then |Attrz(G, Di)| > 2i−1.

14 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

(2) If Procedure Dominion returns the empty set, then we have for every z-dominion D in
the given parity game |Attrz(G, D)| > h.

Proof.
(1) By Lemma 2.7 (1) we have that Di is a z-dominion in (G, α) and the vertices of Di have

a priority of at most c− 2. Assume by contradiction that |Attrz(G, Di)| ≤ 2i−1. Then
by Lemma 2.7 (2) the set Di−1 contains Di and thus is not empty, a contradiction.

(2) Assume by contradiction that Procedure Dominion returns the empty set and there
exists a z-dominion D with |Attrz(G, D)| ≤ h in (G, α). By Proposition 2 of [39] in
this case also a z-dominion D′ ⊆ D exists such that the vertices of D′ have priority at
most c − 2. By Lemma 2.7 (2) the set D′ is a z-dominion in the parity game (G′i, α)
for i ≥ dlog2(|D′|)e and thus in particular for i = dlog2(h)e. Hence by Lemma 2.3
Procedure Dominion returns a non-empty set, a contradiction.

In the following lemma we use Lemma 2.3 that bounds the running time of the calls to the
progress measure algorithm together with the relation between levels in the hierarchical
graph decomposition and the size of z-dominions, provided by the corollary above, to bound
the running time of Procedure Parity without recursive calls.

Lemma 2.9. Let (G, α) be a parity game with a game graph G = ((V,E), (VE , VO)) with
n = |V |, a priority function α, and c priorities and let h ∈ [1, n] be a parameter that for
c = 2 is equal to h = n. The running time of Procedure Parity(G, α) without the recursive
calls, and without the attractor computation before the recursive calls, is O

(
c · n2 ·

(h+bc/2c
h

))
for c ≥ 3, O(n2) for c = 2, and O(n) for c = 1.

Proof. All operations before and after the repeat-until loop can be done in O(n) time, which
shows O(n) for c = 1. Further the attractor computations and the updates of the maintained
sets in lines 9–10 can be done in total time O(m). Thus it remains to bound the total time
for the calls to Procedure Dominion.

To efficiently construct the graphs Gi and the vertex sets Bli, we maintain ordered lists
of the incoming and outgoing edges of each vertex. These lists can be updated whenever an
obsolete entry is encountered in the construction of Gi; as each entry is removed at most
once, this takes total time O(m).

We now analyze the time spent in an iteration i of the for-loop in Procedure Dominion.
The graph Gi contains O(2i · n) edges and both Gi and Bli can be constructed from the
maintained lists of in- and outedges in O(2i · n) time. Also the attractor computation takes
time O(2i · n). Thus for c = 2 the time in iteration i is O(2i · n), while for c ≥ 3 the time
is dominated by the call to ProgressMeasure. Note that with the attractor computation
the vertices with the highest priority are removed from the parity game, thus the call to
ProgressMeasure is done for a parity game with c − 1 priorities and parameter h = 2i.
Hence by Lemma 2.3 iteration i for c ≥ 3 takes time

O

(
c · n · 2i ·

(
2i + d(c− 1)/2e

2i

))
= O

(
c · n · 2i ·

(
2i + bc/2c

2i

))
.

The time for all iterations up to the i-th iteration forms a geometric series and thus satisfies
the same running time bound.

Let i∗ be the last iteration of the for-loop in a call to Procedure Dominion. Let z be E
if c is odd and O otherwise. By Corollary 2.8 either
(1) Di∗ is a z-dominion with |Attrz(G, Di∗)| > 2i∗−1 vertices or

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 15

(2) i∗ = dlog2(h)e and G does not contain any z-dominion D with Attrz(G, D) ≤ h vertices.
In case (1) more than 2i∗−1 vertices are removed from the maintained graph in this iteration.
We charge each of these vertices O

(
c · n ·

(2i+bc/2c
2i

))
time, which can be bounded by O

(
c · n ·(h+bc/2c

h

))
(per vertex). Hence the total running time is bounded by

O

(
c · n2 ·

(
h+ bc/2c

h

))
.

In case (2) either
(a) c ≥ 3 and a z-dominion with more than h vertices in its z-attractor is detected in the

subsequent recursive call to Procedure Parity or
(b) there is no z-dominion in the maintained parity game and this is the last iteration of

the repeat-until loop in the Procedure Parity.
In Case (a) we have again that more than 2i∗−1 vertices are removed from the maintained
graph in this iteration and thus can apply the same argument as for Case (1). Case (b) can
happen at most once and its running time is bounded by O(n2) for c = 2 and by

O

(
c · n · 2log2(h) ·

(
2log2(h) + bc/2c

2log2(h)

))
for c ≥ 3, which can be bounded by O

(
c · n2 ·

(h+bc/2c
h

))
.

To bound the running time including the recursive calls, we use a similar analysis and
similar parameters as for the Big-Step algorithm in [52, 53]. Let γ(c) = c/3+1/2−4/(c2−1)
for odd c and γ(c) = c/3+1/2−1/(3c)−4/c2 for even c. Further let β(c) = γ(c)/(bc/2c+1).
It can easily be verified that γ(c+ 1) = 1 + γ(c)− β(c) holds. We set h = nβ(c) for c ≥ 3
and additionally h = n for c = 2. We show by induction over c a running time bound of
O(n1+γ(c+1)) = O(n2+γ(c)−β(c)) for parity games with c priorities. The running time of the
Big-Step algorithm for parity games with c priorities is O(m · (6e5/3n/c2)γ(c)), i.e., for a
constant number of priorities we replace m by n2−β(c).

Lemma 2.10 (Running time). For parity games with c ≤
√
n priorities Procedure Parity

takes time O(n1+γ(c+1)), where γ(c) = c/3 + 1/2 − 4/(c2 − 1) for odd c and γ(c) = c/3 +
1/2− 1/(3c)− 4/c2 for even c.

Proof. For the base case of c = 2 we have γ(c+1) = 1 and no recursive calls. Thus the running
time of Procedure Parity for c = 2 is O(n2) by Lemma 2.9 (in this case Procedure Parity is
equivalent to the algorithm of [13]). Suppose Procedure Parity runs in time O(n1+γ(c)) for a
parity game with c− 1 ≥ 2 priorities. We show that this implies that Procedure Parity runs
in time O(n1+γ(c+1)) for a parity game with c priorities for 3 ≤ c ≤

√
n. Let h = nβ(c) for

β(c) = γ(c)/(bc/2c+ 1). We have β(c) ≥ 1/2 for all c ≥ 3 and thus h ≥
√
n. By Lemma 2.9

the time spent in Procedure Parity without the recursive calls is O
(
c · n2 ·

(h+bc/2c
h

))
. With

Stirling’s approximation of (x/e)x ≤ x! we have(
h+ bc/2c

h

)
≤ (h+ bc/2c)bc/2c

bc/2c! ,

≤
((h+ bc/2c) · e

bc/2c

)bc/2c
.

16 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

Using 3 ≤ c ≤
√
n ≤ h, we obtain((h+ bc/2c) · e

bc/2c

)bc/2c
≤
(2eh+ ec

c− 1

)bc/2c
,

≤
(5eh

c

)bc/2c
.

Thus we have

c ·
(
h+ bc/2c

h

)
≤ (5e)bc/2c

cbc/2c−1 h
bc/2c ,

which is ≤ hbc/2c for c ≥ (5e)3/2 and ≤ κhbc/2c for some constant κ for c < (5e)3/2. Hence the
time without the recursive calls is bounded by O(n2 ·hbc/2c), which is equal to O(n2+β(c)bc/2c)
for h = nβ(c). By the choice of β(c) we have β(c)bc/2c = γ(c)− β(c) and thus we can write
this bound as O(n2+γ(c)−β(c)). By Corollary 2.8 there are at most O(n/h) = O(n1−β(c))
recursive calls to Procedure Parity. Each recursive call is for a parity game with one priority
less and thus takes time O(n1+γ(c)). Hence the total time for all recursive calls is bounded
by O(n1−β(c)+1+γ(c)). For γ(c) as defined above we have γ(c+ 1) = 1 + γ(c)− β(c), which
completes the proof.

The correctness proof for Procedure Parity follows mostly the correctness proof of the
classical algorithm for parity games and is folklore; additionally Lemma 2.7 (1) shows the
correctness of Procedure Dominion.

Lemma 2.11 (Correctness). Given a parity game P = (G, α), let z be player E if c is odd
and player O otherwise and let Wz and Wz be the output of Procedure Parity. We have:
(1) (Soundness). Wz ⊆Wz(P); and (2) (Completeness). Wz(P) ⊆Wz.

Proof. The proof is by induction over the number of priorities c. The induction base is
c = 1, where the algorithm correctly returns WE = V and WO = ∅. Suppose the algorithm is
correct for parity games with c− 1 priorities. We show the correctness for parity games with
c priorities by proving (1) by induction on the iterations of the repeat-until loop that all
vertices of Wz are indeed winning for player z (soundness) and then (2) construct a winning
strategy for player z on the remaining vertices Wz = V \Wz (completeness).

Soundness will follow from showing that whenever the set W ′z determined in an iteration
of the repeat-until loop is not empty, then it is a z-dominion. This is sufficient because by
Lemma 2.4 (3) it is valid to determine a z-dominion, remove its z-attractor, and recurse on
the remaining game graph; and hence W ′z being a z-dominion implies soundness by induction
over the repeat-until loop. If W ′z 6= ∅ is returned by Procedure Dominion, then it is a z-
dominion by Lemma 2.7 (1). If W ′z 6= ∅ is returned by the recursive call to Procedure Parity
for the game graph G′ = G \Attrz(G, α−1(c− 1)), then W ′z is a z-dominion by the following
argument: By the induction assumption the set W ′z is a z-dominion in G′. By Lemma 2.2 (2)
the vertices of G′ form a z-trap in G and by Lemma 2.4 (1) a z-dominion in a subgame
induced by a z-trap is a z-dominion in the full game.

We now prove the completeness result. When Procedure Parity terminates, the winning
set W ′z of player z in the parity game (G′, α) is empty. Also note that since the algorithm
removes attractors of z, the set Wz is a trap for z by Lemma 2.2 (2). Consider the set

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 17

Z = {v ∈ Wz | α(v) = c− 1}, its attractor X = Attrz(G, Z), and the subgame induced by
U = Wz \X. Note that the game graphs G[U] and G′[U] coincide. Thus all vertices of U
must be winning for player z in the parity game (G′, α) as otherwise W ′z would have been
non-empty for (G′, α). We prove the lemma by describing a winning strategy for player z
in P for all vertices in Wz. For vertices of Z ∩ Vz the winning strategy chooses an edge in
Wz, which exists since Wz is a z-trap. For vertices in X \ Z player z follows her attractor
strategy to Z. In the subgame induced by U = Wz \X player z follows her winning strategy
in the parity game (G′, α). Then in a play either (i) X is visited infinitely often; or (ii) from
some point on only vertices of U are visited. In the former case, the attractor strategy
ensures that then some vertex of Z with priority c− 1 is visited infinitely often; and in the
later case, the subgame winning strategy ensures that the highest priority visited infinitely
often has the same parity as c− 1. It follows that Wz ⊆Wz(P), i.e., Wz(P) ⊆Wz, and the
desired result follows.

Lemmata 2.10 and 2.11 yield the following result.

Theorem 2.12. Procedure Parity correctly computes the winning sets in parity games with
n vertices and c ≤

√
n priorities in O(n1+γ(c+1)) time, where γ(c) = c/3 + 1/2− 4/(c2 − 1)

for odd c and γ(c) = c/3 + 1/2− 1/(3c)− 4/c2 for even c.

Computation of winning strategies. In parity-3 games the previous results for computing
winning strategies for the players in their respective winning sets are as follows: The small-
progress measure algorithm of [39] requires O(mn) time to compute the winning strategy
of player E and O(mn2) time to compute the winning strategy for player O; Schewe [53]
shows how to modify the small-progress measure algorithm to compute the respective
winning strategies of both players in O(mn) time. Schewe’s running time bound for general
parity games also holds when both winning strategies are requested [53]. We show that our
algorithm also computes the respective winning strategies without increasing the running
time, i.e., in O(n5/2) time for parity-3 games and in O(n1+γ(c+1)) time for parity games
with c ≤

√
n.

For parity-3 we first observe that for Büchi games [13] we can construct in O(n2) time also
the respective winning strategies of both players since the algorithm is based on identifying
traps and attractors, and the corresponding winning strategies are identified immediately
with the computation. The proof of Lemma 2.11 describes the strategy computation for a
winning strategy of player O which involves an attractor strategy and the sub-game strategy
for Büchi games, each of which can be computed in O(n2) time. A winning strategy for
player E is obtained in the iterations of the algorithm, i.e., whenever we obtain a dominion
by solving Büchi games, we also obtain a corresponding winning strategy, and similarly for
the attractor computation. Thus the winning strategy for player E can be computed in
O(n5/2) time. For general parity games the winning strategies for both players are constructed
in a similar way; the argument uses parity-3 games as base case and then induction over the
recursive calls. Let z be player E if c is odd and player O otherwise. First note that the
time bound in Lemma 2.3, and therefore the time bound of Procedure Dominion, includes
the computation of a winning strategy for player z within a z-dominion determined by
Procedure Dominion. The winning strategy of player z is a combination of his winning
strategies for the dominions identified in Procedure Dominion and the dominions identified
in the recursive calls for parity games with one priority less and the corresponding attractor
strategies. The winning strategy of player z, as described in Lemma 2.11, is identified in

18 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

the last iteration of the repeat-until loop and consists of her winning strategy for the parity
game for which the last recursive call is made and her attractor strategy to vertices with
priority c− 1.

Corollary 2.13. Winning strategies for player E and player O in their respective winning
sets in parity games with n vertices and c ≤

√
n priorities can be computed in O(n1+γ(c+1))

time.

3. Streett Objectives in Graphs

In this section we present our algorithm for graphs with Streett objectives, and an upper
and a lower bound for reporting a certificate for a vertex in the winning set. The input is a
directed graph G = (V,E) and k Streett pairs (Lj , Uj), j = 1, . . . , k. The size of the input is
measured in terms of m = |E|, n = |V |, k, and b =

∑k
j=1(|Lj |+ |Uj |) ≤ 2nk. Our algorithm

runs in time O(n2 + b logn).

3.1. Preliminaries. Let Outdeg(G, u) be the number of outgoing edges of vertex u in the
graph G; we omit G if clear from the context. Let G[S] denote the subgraph of a graph
G = (V,E) induced by the set of vertices S ⊆ V . RevG denotes the graph with vertices V
and all edges of G reversed. Let GraphReach(G,S) be the set of vertices in G that can reach
a vertex of S ⊆ V . A strongly connected component (SCC) of a directed graph G = (V,E)
is a subgraph G[S] induced by a maximal subset of vertices S ⊆ V such that there is a
path in G[S] between every pair of vertices in S. We use the abbreviation SCS to denote a
strongly connected subgraph that is not necessarily an SCC (i.e., is not necessarily maximal
w.r.t. strong connectivity). We call an SCS (resp. SCC) trivial if it only contains a single
vertex and no edges. All other SCSs (resp. SCCs) are non-trivial. The set GraphReach(G,S)
and the SCCs of a graph G can be found in linear time by, e.g., depth-first search [54].
Algorithm Streett and good component detection. Consider an SCC C; the good component
detection problem asks to (a) output a non-trivial SCS G[X] ⊆ C induced by some set of
vertices X such that for all 1 ≤ j ≤ k either no vertex of Lj or at least one vertex of Uj is
contained in the SCS (i.e., Lj ∩X = ∅ or Uj ∩X 6= ∅), or (b) detect that no such SCS exists.
In the former case, there exists an infinite path that visits X infinitely often and satisfies
the Streett objective, while in the later case there exists no infinite path that visits vertices
of the SCC C infinitely often and satisfies the Streett objective. It follows from the results
of [1] that the following algorithm, called Algorithm Streett, suffices for the winning set
computation:
(1) Compute the SCC decomposition of the graph;
(2) for each SCC C for which the good component detection returns an SCS, label the SCC

C as satisfying;
(3) output the set of vertices that can reach a satisfying SCC as the winning set.
Since the first and last step are linear time, the running time of Algorithm Streett is
dominated by the detection of good components in SCCs. In the following we assume that
the input graph is strongly connected and focus on good component detection.

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 19

1 [1] 4 [2] 3 [2]

5 [1] 2 [1] 6 [3]

Figure 5: An example for a “jungle” constructed by Tarjan’s SCC algorithm for an SCC.
Backedges are dotted, spanning tree edges are solid. Backlinks are curved. The
numbers of the vertices represent the order in which the vertices are visited, the
numbers in brackets are the lowlinks.

3.2. Certificate computation. In this subsection we present our results for the certificate
computation. Given a start vertex x that belongs to the winning set, a certificate or lasso [25]
is a path from x that consists of a simple path and a not necessarily simple cycle such that
the a play that traverses the cycle infinitely often satisfies the objective. From the certificate
an example of an accepting run, i.e., an infinite path from x that satisfies the objective, can
be constructed. The output of Algorithm Streett can be used to obtain a certificate. Let
X be a set of vertices that induces a good component G[X] and let x be a start vertex that
can reach X. We generate a certificate for x being in the winning set as follows. A simple
path from x to X can be found in linear time by a depth-first search. Let v be the vertex of
X where this path ends. We call v the root of the good component G[X]. We show next
how to obtain, in O(m+ nmin(n, k)) time, from the good component G[X] a cycle starting
and ending at the root v such that the path resulting from the simple path and the cycle is
indeed a certificate. For this it is sufficient that the cycle in G[X] contains for each Lj with
Lj ∩X 6= ∅ a vertex of Uj ∩X, i.e., we do not have to include all vertices of X.

We can use Tarjan’s depth-first search based SCC algorithm [54] to traverse the subgraph
G[X] in linear O(m) time, starting from root v. Tarjan’s algorithm constructs a graph
called jungle with O(|X|) edges that for the strongly connected (sub)graph G[X] consists
of a spanning tree and at most one backedge per vertex of X. The vertices are assigned
pre-order numbers in the order they are traversed. We say an edge of G[X] is a backedge if
it leads from a vertex with a higher number to a vertex with a lower number. Spanning tree
edges always lead from lower numbered vertices to higher numbered vertices. In Tarjan’s
algorithm a lowlink is determined for each vertex u which refers to the lowest numbered
vertex w that u can reach by a sequence of tree edges followed by at most one backedge. We
additionally store at each vertex u 6= v a backlink that is the first edge on the path from u
to its lowlink. The backlinks can be determined and stored during the depth-first search
without increasing its running time.

Example 3.1 (Illustration of Tarjan’s jungle graph.). Figure 5 shows the types of edges and
the values at the vertices as assigned by Tarjan’s SCC algorithm for a small example graph.

With this data structure we can find within G[X] a path from root v to a vertex u ∈ X,
u 6= v, and back by first searching for u in the spanning tree and then following the backlinks
back to v. Since no vertex appears more than twice on this path, its size and the time to
compute it is O(|X|). As it suffices to find such paths for one vertex per non-empty set Uj∩X,
we can generate a certificate from G[X] in O(m + |X|min(|X|, |{j | Uj ∩X 6= ∅}|)) time,
which can be bounded by O(m+ nmin(n, k)). This certificate has a size of O(nmin(n, k)).

20 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

s

t v1 vi vk

Θ(n)

· · · · · ·

Figure 6: Let the only path between s and t be of length Θ(n/2) = Θ(n), not containing any
of the vertices vj for 1 ≤ j ≤ k. Each vj has only an edge from t and an edge to s.
Let the Streett pairs (Lj , Uj) be given by Lj = {s} and Uj = {vj} for 1 ≤ j ≤ k.
Then the size of the smallest certificate is Θ(nk), where k can be of order n.

Example 3.2 (Lower bound.). Figure 6 shows that the smallest existing certificate can be
as large as Θ(nmin(n, k)).

3.3. Good Component Detection. In this subsection we present the algorithm for good
component detection. First we introduce the different concepts used in the algorithm for
good component detection. We start with describing the hierarchical graph decomposition
technique for this setting, which is crucial for the running time analysis.
Graph decomposition. In our algorithm we decompose a graph G in the following way. For
i ∈ {1, . . . , dlogne}, let Gi = (V,Ei) be a subgraph of G with Ei = {(u, v) | Outdeg(u) ≤ 2i},
i.e., the edges of Gi are the outedges of the vertices with outdegree at most 2i. Note that for
i = dlogne we have that Gi = G. We say vertices in G with Outdeg(v) > 2i are colored blue
in Gi and denote the set of blue vertices in Gi by Bli. All other vertices are white. Note that
all vertices in G = Gdlogne are white and that all vertices in Bli have outdegree zero in Gi.
Top and bottom strongly connected components. The algorithm repeatedly finds a top or a
bottom SCC in the remaining graph G. A bottom SCC G[S] in a directed graph G, induced
by some set of vertices S, is an SCC with no edges from vertices in S to vertices in V \ S,
i.e., no outgoing edges. A top SCC is a bottom SCC of RevG, i.e., an SCC without incoming
edges. Note that every graph has at least one bottom and at least one top SCC. If the graph
is not strongly connected, then there exist a top and a bottom SCC that are disjoint and
thus one of them contains at most half of the vertices of G.
Bad vertices. In contrast to good components we also define bad vertices. The basic idea
behind the algorithms for good component detection, described for example in [35], is to
repeatedly delete bad vertices until either a good component is found or it can be concluded
that no such component exists. A vertex is bad if for some index j with 1 ≤ j ≤ k the vertex
is in Lj but it is not strongly connected to any vertex of Uj . All other vertices are good.
Note that good vertices can become bad if some vertex deletion disconnects an SCS or a
vertex of a set Uj is deleted. A good component is a non-trivial SCS that only contains
good vertices.
Data structure. The algorithm maintains for the current graph G = (V,E) (some vertices
of the input graph might have been deleted) a decomposition into vertex sets S ⊆ V such
that every SCC of G is completely contained in G[S] for one of the sets S. For all the
sets S a data structure D(S) is saved in a list Q. The data structure D(S) supports the
following operations: (1) Construct(S) initializes the data structure for the set S, (2)
Remove(S,D(S), B) removes a set B ⊆ V from S and updates the data structure of S

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 21

accordingly, and (3) Bad(D(S)) returns the set {v ∈ S | ∃j with v ∈ Lj and Uj ∩ S = ∅}.
In [35] an implementation of this data structure is described that achieves the following
running times. For a set of vertices S ⊆ V let bits(S) be defined as

∑k
j=1 (|S ∩ Lj |+ |S ∩ Uj |).

Lemma 3.3 (Lemma 2.1 in [35]). After a one-time preprocessing of time O(k), the
data structure D(S) can be implemented in time O(bits(S) + |S|) for Construct(S), time
O(bits(B) + |B|) for Remove(S,D(S), B), and constant running time for Bad(D(S)).

Structure of algorithm. We denote by G the current graph maintained by the algorithm
where some edges and vertices might have been deleted and use input graph to denote
the unmodified, strongly connected graph for which a good component is searched. Our
algorithm for good component detection is given in Algorithm GoodComp. It maintains
in a list Q a partition of the vertices in G into sets such that every SCC of G is contained
in the subgraph induced by one of the vertex sets. The list is initialized with the set of all
vertices in the strongly connected input graph. We show that if a good component exists,
its vertices must be fully contained in one of the vertex sets in the partition. The algorithm
repeatedly removes a set S from Q and identifies and deletes bad vertices from G[S]. If no
edge is contained in G[S], the set S is removed as it can only induce trivial SCCs. Otherwise
the subgraph G[S] is either determined to be strongly connected and output as a good
component or a “small” SCC in G[S] is identified.
Search for small SCCs. To find a small SCC, the algorithm searches alternatingly in G[S]
and in RevG[S] for a bottom SCC and stops as soon as one of the searches stops. (A bottom
SCC in RevG[S] is a top SCC in G[S].) We only describe the search in G[S] here, the search
in RevG[S] is analogous. The algorithm uses the hierarchical graph decomposition of G[S].
The subgraph Gi[S] for any i contains only the outedges of vertices with an outdegree of
at most 2i. The search for a bottom SCC is started at i = 1, then i is increased one by
one if necessary, up to at most dlog(|S|)e. If for some i we can identify a bottom SCC
that does not contain any blue vertex (i.e., a vertex for which some edges are missing in
Gi), then the found SCC in Gi[S] must also be a bottom SCC in G[S]. If multiple bottom
SCCs (without blue vertices) are found in Gi[S], we only consider the smallest one. The
Procedure SmallestBSCC(H ′) returns the set of vertices that induces the smallest bottom
SCC in the graph H ′. We then put the newly detected SCC and the “rest” of S back into Q.
Outline running time. The idea of the running time analysis is as follows. We can show
that a bottom SCC of G[S] identified in iteration i of the outer for-loop must contain Ω(2i)
vertices. In time O(n · 2i) a standard SCC algorithm can compute all SCCs of Gi[S] and
thus also the smallest bottom SCC. The time needed for the search in all graphs Gi′ [S] for
1 ≤ i′ < i can be bounded by an additional factor of two. Thus the work for the search is
O(n) per vertex in the identified SCC.

Given that the subgraph G[S] was split into at least one top and one bottom SCC,
the smallest top or bottom SCC contains at most half of the vertices of the subgraph. By
searching for a smallest bottom SCC (without blue vertices) in Gi[S] and RevGi[S], we find
one top or bottom SCC with at most half of the vertices of the subgraph. We charge the
work for finding such an SCC to the vertices in this SCC. We show that this yields a total
running time of O(n2) for computing SCCs.

We additionally have to take the time for the maintenance of the data structures into
account. Here we use the properties of the data structure D(S) described in Lemma 3.3 to
obtain a running time of O((n+ b) logn) for the maintenance of the data structures and the

22 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

Algorithm GoodComp: Detection of good components for the winning set compu-
tation in graphs with k-pair Streett objectives

Input : strongly connected graph G = (V,E) and
Streett pairs (Lj , Uj) for j = 1, . . . , k

Output : a good component in G if one exists
1 add Construct(V) to Q
2 while Q 6= ∅ do
3 pull D(S) from Q

4 while Bad(D(S)) 6= ∅ do
5 D(S)← Remove(S,D(S), Bad(D(S)))
6 if G[S] contains at least one edge then
7 for i← 1 to dlog(|S|)e do
8 foreach H ∈ {G,RevG} do
9 construct Hi[S]

10 Bli ← {v ∈ S | Outdeg(H, v) > 2i}
11 Z ← S \ GraphReach(Hi[S],Bli)

/* Z cannot reach Bli */
12 if Z 6= ∅ then
13 X ← SmallestBSCC(Hi[Z])
14 if X = S then

/* good component found */
15 return G[S]
16 if |X| ≤ |S|/2 then
17 add Remove(S,D(S), X) to Q
18 add Construct(X) to Q
19 continue with pull of next D(S) from Q (Line 3)

20 return no good component exists

identification of bad vertices over the whole algorithm. Combined these ideas lead to a total
running time of O(n2 + b logn).

Lemma 3.4. Let H ∈ {G,RevG} be the graph and let i∗ be the iteration for which
in Algorithm GoodComp the outer for-loop stops. Let Z be the non-empty set S \
GraphReach(Hi∗ [S],Bli∗) and let X be the set of vertices that induces the smallest bot-
tom SCC H[X] in Hi∗ [Z] returned by SmallestBSCC(Hi∗ [Z]). Assume we have |X| ≤ |S|/2.
Then H[X] contains at least 2i∗−1 vertices.

Proof. As Bli∗−1 is the set of vertices inHi∗−1[S] with outdegree larger than 2i∗−1, any bottom
SCC H[Y] that contains a vertex of Bli∗−1, has |Y | ≥ 2i∗−1. Hence it suffices to show that
X ∩Bli∗−1 6= ∅. Assume by contradiction that X ∩Bli∗−1 = ∅. Since H[X] is a bottom SCC,
no vertex ofX can reach any vertex of Bli∗−1, i.e., X ⊆ S\GraphReach(Hi∗ [S],Bli∗−1). As all
edges in Hi∗−1[S] are contained in Hi∗ [S], this implies X ⊆ S\GraphReach(Hi∗−1[S],Bli∗−1).

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 23

Since SmallestBSCC finds the smallest bottom SCC in graph Hi for each i, the outer for-loop
would thus have terminated in an iteration i ≤ i∗ − 1. Contradiction.

Lemma 3.5 (Running time). Algorithm GoodComp can be implemented in time O(n2 +
b logn).

Proof. The preprocessing and initialization of the data structure and the removal of bad
vertices in the whole algorithm take time O(m + k + b) using Lemma 3.3. Additionally
we maintain at each vertex a list of its incoming and a list of its outgoing edges including
pointers to the lists of its neighbors, which we use to update the lists of its neighbors. Since
each vertex is deleted at most once, this data structure can be constructed and maintained
in total time O(m).

Consider the while loop where a set S is removed from Q. If G[S] does not contain any
edge after the removal of bad vertices, then S is not considered further by the algorithm.
Otherwise G[S] and RevG[S] are search for bottom SCCs. The search in G[S] and RevG[S]
only increases the running time by a factor of two, thus we restrict the analysis of the
running time to G[S]. Let n′ ≤ n be the number of vertices in S. The construction of Gi[S],
Z, and G[X] can all be done in time O(n′ · 2i) for each i, i.e., in total time O(n′ · 2i∗) up
to level i∗. If X = S, then the algorithm terminates and the time for processing S can be
bounded by O(n′ · 2logn′) = O((n′)2). If the processing of S ends when some bottom SCC
G[X] ⊆ G[S] induced by some set of vertices X is found, let i∗ be the value of i when G[X]
is detected and inserted into Q, and let c be some constant such that the time spent in
this search for X is bounded by c · n′ · 2i∗−1. By Lemma 3.4 the set X contains at least
2i∗−1 vertices. Let |X| = n1. The algorithm ensures n1 ≤ n′/2. We claim that the total
running time for processing all sets S, except for the work in Remove and Construct, can be
bounded by f(n) = 2cn2. Whenever the algorithm does not terminate, we have by induction,
and in particular for n′ = n,

f(n′) ≤ f(n1) + f(n′ − n1) + cn′n1 ,

≤ 2cn2
1 + 2c(n′ − n1)2 + cn′n1 ,

= 2cn2
1 + 2c(n′)2 − 4cn′n1 + 2cn2

1 + cn′n1 ,

= 2c(n′)2 + 4cn2
1 − 3cn′n1 ,

≤ 2c(n′)2 ,

where the last inequality follows from n1 ≤ n′/2.
The operations Remove and Construct are called once per found bottom SCC G[X]

with X 6= S and take by Lemma 3.3 O(|X| + bits(X)) time. By n1 ≤ n′/2 we have that
whenever a vertex v is in X, the size of the set in Q containing v is halved; this can happen
at most dlogne times. Hence, by charging O(1) to the vertices in X and, respectively, to
bits(X), the total running time for this part can be bounded by O((n + b) logn), as each
vertex and bit is only charged O(logn) times. Combining all parts yields the claimed running
time bound of O(n2 + b logn).

To prove the correctness of Algorithm GoodComp, we first show that all candidates
for good components are in Q before each iteration of the algorithm.

Lemma 3.6. Before each iteration of the outer while-loop every good component of the
input graph is contained in one of the subgraphs G[S] for which the data structure D(S) is
maintained in the list Q.

24 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

Proof. We show that the algorithm never removes edges or vertices that belong to a good
component, which together with a correct initialization of the list Q implies the lemma. At
the beginning of the algorithm one data structure for the whole strongly connected input
graph is added to Q. Thus every good component is contained in this data structure in Q
after the initialization. At the beginning of each iteration of the outer while-loop the data
structure of one of the subgraphs G[S] is pulled from the list Q. In Lines 4–5 we remove
vertices from the subgraph that are in some set Lj but not strongly connected to any vertex
in Uj , i.e., bad vertices. In Line 6 we remove trivial SCCs. Observe that a good component
is non-trivial and does not contain any bad vertices. Thus the removal of bad vertices and
trivial SCCs does not remove any vertices of a good component, i.e., after the removal of
these vertices the updated subgraph G[S] still contains the good components it contained
before. If no good component is identified in this iteration, i.e., the algorithm does not
terminate, we find a bottom or top SCC G[X], induced by some set of vertices X. Since a
good component is strongly connected, every good component in G[S] either is a subgraph of
the newly identified SCC G[X] or does not contain any vertex of X. Thus the removed edges
between G[X] and the remaining subgraph cannot belong to a good component. Finally,
we add the data structures for G[X] as well as for G[S \X] to Q. Thus no vertex or edge
of a good component was removed and every good component continues to be completely
contained in a subgraph in Q.

As all candidates for good components are maintained in the list Q, it remains to show
that the algorithm correctly outputs a good component if and only if one exists.
Lemma 3.7 (Correctness). Algorithm GoodComp outputs a good component if one exists,
otherwise the algorithm reports that no such component exists.
Proof. First we show that whenever Algorithm GoodComp outputs a subgraph G[S] induced
by some set of vertices S, then G[S] is a good component. Line 6 ensures only non-trivial
SCSs are considered. After the removal of bad vertices from S in Lines 4–5, we know that
for all 1 ≤ j ≤ k and all vertices in S ∩ Lj there exists a vertex in S ∩ Uj . Thus if G[S] is
strongly connected, then G[S] is a good component, and the only SCC in G[S] is G[S] itself.
Only in this case G[S] is output (in Line 15).

Algorithm GoodComp terminates if a good component is identified or Q is empty; in
the latter case it reports that no good component exists. Lemma 3.6 shows that before every
iteration of the outer while-loop every good component is contained in one of the subgraphs
G[S] in Q. That is, if a good component exists in G and no good component was identified
yet by the algorithm, then Q is not empty and thus the algorithm does not terminate until
a good component is identified. Hence if the algorithm terminates because Q is empty, then
no good component exists. By Lemma 3.5 the algorithm terminates after a finite number of
steps.

Next we show that if there exists a good component in G, then the algorithm outputs a
good component. Let Y be a maximal good component in G and let SY be the vertex set
maintained in Q that currently contains the vertices in Y . By the arguments above after a
finite number of steps either (1) another good component is detected or (2) D(SY) is pulled
from Q. In Case (1) we are done, the argument for Case (2) is as follows. By Lemma 3.6 the
component Y is never split by the algorithm thus after Case (2) happened at most n times,
one of the following two cases occurs: either (a) D(SY) is pulled from Q with G[SY] ⊃ Y
and after the removal of bad vertices from SY , G[SY] without the bad vertices is equal to
Y or (b) G[SY] = Y is pulled from Q. In both cases the good component Y is output and

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 25

the algorithm terminates: Since Y is non-trivial, the condition in Line 6 is satisfied. The
algorithm searches for a top or bottom SCC in Y . Since Y is strongly connected, the only
top or bottom SCC in Y is Y itself. Hence the algorithm outputs Y in Line 15.

Recall Algorithm Streett that calls Algorithm GoodComp for each SCC in the
input graph and then computes reachability to the union of the identified good components.
Lemmata 3.5 and 3.7 yield the following result.

Theorem 3.8. Algorithm Streett correctly computes the winning set in graphs with
k-pair Streett objectives in O(n2 + b logn) time. Given a vertex x in the winning set and a
good component reachable by x, a certificate for x can be output in time O(m+nmin(n, k)).

Remark 3.9 (Optimality). We have shown that in a graph with k-pair Streett objectives the
winning set and a certificate can be computed and output in time O(n2 +b logn). Example 3.2
shows a lower bound of Ω(nmin(n, k)) for outputting a certificate. Note that the size of
the input is at least b. Hence the presented algorithm is optimal up to a log factor when
k = Ω(n) and a certificate is required.

4. Conclusion

In this work we have considered two classical algorithmic questions for parity and Streett
objectives on graphs and game graphs.

We have presented an algorithm for parity games with n vertices and c priorities with a
running time of roughly O(n4/3+c/3), which improves the running time over previous results
for game graphs with Ω(n4/3) edges when the number of priorities is sub-polynomial in n.
In particular we improved the long standing running time for 3 priorities from O(mn) to
O(n5/2).

For graphs with Streett objectives we have presented an O(n2 + b logn)-time algorithm
(where b is the total number of elements in the Streett pairs), and a lower bound that shows
that this running time is tight up to a log factor when a certificate has to be reported. The
algorithm improves upon the known running time bounds when the number of edges m is at
least of order n4/3 log−1/3 n+ b2/3 log1/3 n and the number of Streett pairs is at least of order
n2/m. This algorithm was extended to Markov Decision Processes (MDPs) in subsequent
work [10, 45].

In particular in the light of the quasi-polynomial time algorithm for parity games in a
breakthrough result subsequent to our work [7], showing new upper and (conditional) lower
bounds for parity games remains a very interesting challenge. The techniques of [7] as well
as the techniques presented here are inherently non-symbolic. An interesting open question
is thus to find improved symbolic algorithms for these classical problems.

Acknowledgement

We would like to thank Tom Henzinger and the anonymous referees for their useful comments.

26 K. CHATTERJEE, M. HENZINGER, AND V. LOITENBAUER

References
[1] R. Alur and T. A. Henzinger. Computer-aided verification. 2004.
[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. JACM, 49:672–713, 2002.
[3] C. Beeri. On the membership problem for functional and multivalued dependencies in relational databases.

ACM Trans. Datab. Sys., 5(3):241–259, 1980.
[4] H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithms for parity games. In

STACS, pages 663–674, 2003.
[5] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Jobstmann. Robustness in the presence

of liveness. In CAV, pages 410–424, 2010.
[6] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. Journal

of Computer and System Sciences, 78(3):911–938, 2012.
[7] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in quasipolynomial

time. In STOC, pages 252–263, 2017.
[8] K. Chatterjee, S. Chaubal, and P. Kamath. Faster algorithms for alternating refinement relations. In

Conference on Computer Science Logic (CSL), pages 167–182, 2012.
[9] K. Chatterjee, W. Dvořák, M. Henzinger, and V. Loitzenbauer. Conditionally Optimal Algorithms for

Generalized Büchi Games. In MFCS, pages 25:1–25:15, 2016.
[10] K. Chatterjee, W. Dvořák, M. Henzinger, and V. Loitzenbauer. Model and objective separation with

conditional lower bounds: Disjunction is harder than conjunction. In LICS, pages 197–206, 2016.
[11] K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis. Algorithms for algebraic path

properties in concurrent systems of constant treewidth components. In POPL, pages 733–747, 2016.
[12] K. Chatterjee and M. Henzinger. Faster and Dynamic Algorithms For Maximal End-Component

Decomposition And Related Graph Problems In Probabilistic Verification. In SODA, pages 1318–1336,
2011.

[13] K. Chatterjee and M. Henzinger. Efficient and Dynamic Algorithms for Alternating Büchi Games and
Maximal End-component Decomposition. Journal of the ACM, 61(3):15, 2014. Announced at SODA’11
and SODA’12.

[14] K. Chatterjee, M. Henzinger, and V. Loitzenbauer. Improved Algorithms for One-Pair and k-Pair Streett
Objectives. In LICS, pages 269–280, 2015.

[15] K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Timed parity games: Complexity and robustness.
Logical Methods in Computer Science, 7(4), 2011.

[16] K. Chatterjee, M. Jurdziński, and T. A. Henzinger. Simple stochastic parity games. In CSL, pages
100–113, 2003.

[17] K. Chatterjee and V. S. Prabhu. Synthesis of memory-efficient, clock-memory free, and non-zeno safety
controllers for timed systems. Information and Computation, 228:83–119, 2013.

[18] A. Church. Logic, arithmetic, and automata. In ICM, pages 23–35, 1962.
[19] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement

for symbolic model checking. J. ACM, 50(5):752–794, September 2003.
[20] L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with an application to

timed games. In CAV, pages 108–120, 2007.
[21] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of surprise in

timed games. In CONCUR, pages 142–156, 2003.
[22] L. de Alfaro and T. A. Henzinger. Interface automata. In International Symposium on Foundations of

Software Engineering (FSE), pages 109–120, 2001.
[23] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent Circuits. The MIT

Press, 1989.
[24] A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur. On-the-fly Emptiness Check of Transition-Based

Streett Automata. In ATVA, pages 213–227, 2009.
[25] R. Ehlers. Short Witnesses and Accepting Lassos in ω-Automata. In LATA, pages 261–272, 2010.
[26] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs (extended

abstract). In FOCS, pages 328–337, 1988.
[27] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy. In FOCS, pages 368–377,

1991.
[28] E.A. Emerson and C.-L. Lei. Modalities for Model Checking: Branching Time Logic Strikes Back. Science

of Computer Programming, 8(3):275–306, 1987.

IMPROVED ALGORITHMS FOR PARITY AND STREETT OBJECTIVES 27

[29] K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation relations, parity games, and state space
reduction for büchi automata. SIAM J. Comput., 34(5):1159–1175, 2005.

[30] J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. An Ordered Approach to Solving Parity
Games in Quasi Polynomial Time and Quasi Linear Space. In SPIN, pages 112–121, 2017.

[31] N. Francez. Fairness. Springer, New York, 1986.
[32] H. Gimbert and R. Ibsen-Jensen. A short proof of correctness of the quasi-polynomial time algorithm

for parity games. 2017.
[33] Y. Godhal, K. Chatterjee, and T. A. Henzinger. Synthesis of AMBA AHB from formal specification: A

case study. Journal of Software Tools Technology Transfer, 15(5-6):585–601, 2013.
[34] M. Henzinger, V. King, and T. Warnow. Constructing a Tree from Homeomorphic Subtrees, with

Applications to Computational Evolutionary Biology. Algorithmica, 24(1):1–13, 1999. Announced at
SODA’96.

[35] M. Henzinger and J. A. Telle. Faster Algorithms for the Nonemptiness of Streett Automata and for
Communication Protocol Pruning. In SWAT, pages 16–27, 1996.

[36] T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. Information and Computation,
173(1):64–81, 2002.

[37] N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer and
System Sciences, pages 384–406, 1981.

[38] M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters,
68(3):119–124, 1998.

[39] M. Jurdziński. Small Progress Measures for Solving Parity Games. In STACS, pages 290–301, 2000.
[40] M. Jurdziński and R. Lazić. Succinct progress measures for solving parity games. In LICS, pages 1–9,

2017.
[41] M. Jurdziński, M. Paterson, and U. Zwick. A Deterministic Subexponential Algorithm for Solving Parity

Games. SIAM J. Comput., 38(4):1519–1532, 2008.
[42] W. Kuijper and J. van de Pol. Computing weakest strategies for safety games of imperfect information.

In TACAS, pages 92–106, 2009.
[43] T. Latvala and K. Heljanko. Coping With Strong Fairness. Fundamenta Informaticae, 43(1-4):175–193,

2000.
[44] O. Lichtenstein and A. Pnueli. Checking That Finite State Concurrent Programs Satisfy Their Linear

Specification. In POPL, pages 97–107, 1985.
[45] V. Loitzenbauer. Improved Algorithms and Conditional Lower Bounds for Problems in Formal Verification

and Reactive Synthesis. PhD thesis, 2016.
[46] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic, 65(2):149–184,

1993.
[47] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VMCAI, pages 364–380, 2006.
[48] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190, 1989.
[49] P.J. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete-event processes. SIAM

J. Control Optim., 25(1):206–230, 1987.
[50] S. Safra. On the complexity of ω-automata. In FOCS, pages 319–327, 1988.
[51] S. Safra. Exponential Determinization for omega-Automata with Strong-Fairness Acceptance Condition

(Extended Abstract). In STOC, pages 275–282, 1992.
[52] S. Schewe. Solving Parity Games in Big Steps. In FSTTCS, pages 449–460, 2007.
[53] S. Schewe. Solving Parity Games in Big Steps. Journal of Computer and Systems Science, 84:243–262,

2017. Announced at FSTTCS’07.
[54] R. E. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal of Computing, 1(2):146–

160, 1972.
[55] W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages: Volume 3 Beyond

Words, pages 389–455. Springer, 1997.
[56] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving parity games. In CAV,

pages 202–215, 2000.
[57] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.

Theoretical Computer Science, 200(1–2):135–183, 1998.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 9404, USA

	1. Introduction
	2. Parity Objectives in Game Graphs
	2.1. Preliminaries
	2.2. Algorithm

	3. Streett Objectives in Graphs
	3.1. Preliminaries
	3.2. Certificate computation
	3.3. Good Component Detection

	4. Conclusion
	Acknowledgement
	References

