
Logical Methods in Computer Science
Vol. 14(2:5)2018, pp. 1–27
https://lmcs.episciences.org/

Submitted Oct. 27, 2017
Published Apr. 25, 2018

VAN KAMPEN COLIMITS AND PATH UNIQUENESS ∗

HARALD KÖNIG AND UWE WOLTER

Department of Informatics, University of Applied Sciences FHDW Hannover, Freundallee 15, 30173
Hannover, Germany
e-mail address: harald.koenig@fhdw.de

Department of Informatics, University of Bergen, P.O.Box 7803, 5020 Bergen, Norway
e-mail address: Uwe.Wolter@uib.no

Abstract. Fibred semantics is the foundation of the model-instance pattern of software
engineering. Software models can often be formalized as objects of presheaf topoi, i.e,
categories of objects that can be represented as algebras as well as coalgebras, e.g., the
category of directed graphs. Multimodeling requires to construct colimits of models,
decomposition is given by pullback. Compositionality requires an exact interplay of these
operations, i.e., diagrams must enjoy the Van Kampen property. However, checking
the validity of the Van Kampen property algorithmically based on its definition is often
impossible.

In this paper we state a necessary and sufficient yet efficiently checkable condition for
the Van Kampen property to hold in presheaf topoi. It is based on a uniqueness property
of path-like structures within the defining congruence classes that make up the colimiting
cocone of the models. We thus add to the statement ”Being Van Kampen is a Universal
Property” by Heindel and Sobociński the fact that the Van Kampen property reveals a
presheaf-based structural uniqueness feature.

1. Introduction

A presheaf topos is a category, that is based on an algebraic signature with unary operation
symbols. Presheaves can also be considered as intersection of algebras and coalgebras [10].
Van Kampen Colimits are a generalization of Van Kampen squares [24]. In [29] we gave a
necessary and sufficient condition for a pushout to be a Van Kampen square in a presheaf
topos. In the present paper a corresponding criterion is given for all colimiting cocones.

Key words and phrases: Van Kampen Cocone, Presheaf Topos, Fibred Semantics.
∗ This paper is an extended version of the CALCO ’17 paper ”Being Van Kampen is a Uniqueness Property

in Presheaf Topoi” [13].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(2:5)2018
© H. König and U. Wolter
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 H. KÖNIG AND U. WOLTER

1.1. Motivation. Software engineering and especially model-driven software development
requires the decomposition of large models into smaller components, i.e., successful develop-
ment of large applications requires system design fragmentation. Vice versa, a comprehensive
viewpoint of a related ensemble of heterogenous software-engineering components is taken up
by considering the amalgamation (union) of these artefacts modulo their relations amongst
each other. This assembly shall not only be carried out on a syntactical level (models), but
in the same way on the semantical level (instances). This interplay between assembly and
disassembly shows that composition and correct decomposition of an instance of a model
into instances of the model components always accompany each other. It can be shown that
correctness, i.e., compositionality [4, 5] is not always guaranteed [22].

Fibred semantics adheres to the model-instance pattern, a standard viewpoint in software
engineering: A model M is an object of an appropriate category C, semantics is given by
the comma category C↓M . In each object τ ∈ C↓M , τ ∶ I →M , I is the instance structure
and τ is its typing. Amalgamation is colimit (of the arrangement of components) and
decomposition is performed by taking pullbacks along the cocone morphisms of the colimit.

To wit: Compositionality means that colimit of semantics (instances) is controlled by
colimit of syntax (models) such that pullback of the instance colimit retrieves the original
instances. Thus compositionality is equivalent to the Van Kampen property [7], an abstract
characteristic which determines an exactness level for the interaction of colimits and pullbacks.
It is thus often necessary to check validity of this property. However, since the definition
of the property comes in terms of an equivalence of categories, see Def.3.2 in the present
paper, algorithmic verification based on the definition is hard even for a finite number of
finite models, because the involved comma categories are infinite nevertheless.

Artefacts like UML- or ER-models are based on directed multigraphs, which in turn can
be coded as a functor category SetB, where B has objects E (edges) and V (vertices) and
non-identical arrows s, t ∶ E → V . More general metamodels, however, use more sophisticated
categories B, such as E-graphs for attributed graphs [3], bipartite graphs for Petri nets [3],
or more complex structures for generalized sketches [2]. Hence, SetB with B an arbitrary
small category, will be the underlying category for the forthcoming investigations.

Constructing colimits in a category C is an operation on diagrams, which are usually
coded as functors from a small schema category I to C. In order to make our results usable
for software engineering, we use the older definition for diagrams: Instead of a small category,
the schema I is a finite multigraph and a diagram is a graph morphism from I to C [19]1.
The practical construction of colimits relies on mapping paths, i.e., chains of pairs of elements
that are mapped to each other by the morphisms in the diagram, cf. Def.3.3 in Sect.3. Thus,
colimit computation can easily be carried out algorithmically, if the diagram is finite and
consists of finite artefacts.

Summary: While colimit construction is easy, compositionality check (validation of the
Van Kampen property) is hard. The first contribution of the present paper is a theorem
(Theorem 3.5 in Sect.3), which states that a colimit in a presheaf topos has the Van Kampen
property if and only if there are no ambiguous mapping paths between any pair of elements
of the coproduct of the model artefacts. Thus the implementation of the colimit operation
on the model level already provides the material for more efficient compositionality checking.

The second contribution is a practical algorithm, which efficiently verifies whether
compositionality holds, i.e. whether the Van Kampen (henceforth often abbreviated ”VK”)

1 More precisely to the underlying graph of C, see Sect.2

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 3

property is satisfied. We provide a technique which combines (1) a more efficient colimit
computation and (2) a simultaneous check of the VK-property.

The paper is organized as follows: Sect. 2 introduces notation and background informa-
tion, Sect. 3 presents the main theorem and applies it to a Software Engineering problem.
Sect. 4 sketches the proof idea and thus provides insight in the corresponding underlying
foundations: We use a former result, in which a necessary and sufficient criterion is given
for pushouts [29]. This result is translated to coequalizers and, finally, lifted to colimits of
arbitrary diagrams. Sect. 5 exemplifies the limitation of Theorem 3.5: It turns out that it is
crucial to claim that the underlying category is a presheaf topos and the examples show
that this is the best one can achieve. The announced practical guidelines are contained in
Sect. 6. Sect. 7 concludes with a short discussion of future research directions.

Proofs in the present paper are only sketched. A reader who is interested in the
corresponding detailed proofs is referred to the technical report [12].

1.2. Related Work. The Van Kampen property has its origin in algebraic topology:
Topological spaces X can be investigated by a covering family of X which are related by
their inclusions. Topological properties are expressed with the help of the fundamental
groupoid. The Van Kampen Theorem [20] states that the colimit of the fundamental
groupoids of all covering spaces is the fundamental groupoid of X, thus inferring global
properties from local ones. The original idea was stated by Seifert [23] for pushouts and was
further elaborated by Van Kampen [26].

Inferring global properties from local ones is the heart of sheaf theory [18]. The fibred
view on sheaves is discussed in [27]. The application of Van Kampen’s ideas to graphical
modeling and to Software Engineering was invented in [14, 24] and then further detailed in
[3] for the theory of Graph Transformations. That extensive categories and especially topoi
are a reasonable playground for these theories is shown in [1, 15].

Amalgamation is a requirement for a collection of artefacts in computer science [4, 5]
which has been connected to the Van Kampen property in [29]. The same property is called
exactness in institution theory [22]. Being ”non-exact” seems to be a typical deficit of (1-,
2-, 3-. . .)categories, because Lurie shows that Higher Van Kampen theorems hold in greater
generality in ∞-topoi [17].

The importance of finding a feasible condition to check the Van Kampen property was
caused by investigations of new methods in Graph Transformations [11, 16]. That the Van
Kampen property can be characterized as a bicolimit in a comprising span bicategory [7] is
a fundamental statement. Moreover, the Van Kampen property has been investigated in
more special contexts [9] and can also be described with the help of weak 2-limits in CAT
(https://ncatlab.org/nlab/show/van+Kampen+colimit). However, all these characterisations
can hardly be applied in practice.

The present paper is an extended version of the CALCO ’17 paper ”Being Van Kampen
is a Uniqueness Property in Presheaf Topoi”. In addition to the conference version, we
added examples showing the limitations of our results in Sect. 5 and we bridge the gap to
concretely applicable algorithms (in Sect. 6) of the theoretical results of the paper.

2. Preliminaries

This chapter recapitulates the most important notation for the following elaboration. For
any category C, X ∈ C means that X is contained in the collection of objects in C. A

4 H. KÖNIG AND U. WOLTER

diagram in C is based on a directed multigraph I, the schema for the diagram. We write I0
and I1 for the sets of vertices and edges of I. Formally, a diagram D ∶ I→ U(C) is a graph
morphism where U denotes the forgetful functor assigning to each category its underlying
graph. For convenience reasons, however, the forgetful functor will be omitted, i.e., diagrams
will be denoted D ∶ I → C. This definition is used instead of the one, where I is a schema
category rather than a graph, because it will turn out, that the results in this paper can
easier be stated. The notions of (co-)cones and (co-)limits is the same modulo the adjunction
F ⊣ U where F ∶ Graphs → Cat assigns to any graph its freely generated category, see [19],
III, 4 for more details. Another advantage of this definition occurs in software engineering:
Although the schema graph is finite, F(I) may have infinitely many arrows.

Vertices of I play the role of indices for diagram objects, hence, we use letters i, j, . . .

for vertices. Edges of I will be depicted i
d // j and we write i = s(d), j = t(d) (source

and target of d). Images of edges under a diagram D ∶ I → C will be denoted Di
Dd // Dj

(slightly deviating from the usual notation D(i),D(d), etc).
Let E ,D ∶ I→ C be two diagrams, then a family

τ = (τi ∶ Ei → Di)i∈I0

of C-morphisms with τj ○ Ed = Dd ○ τi for all edges i
d // j in I1 will be called a natural

transformation between the diagrams and will be denoted in the usual way τ ∶ E ⇒ D. For
any S ∈ C, ∆S ∶ I→ C denotes the constant diagram, which sends each edge of I to idS . S
(as C-object) and ∆S (as diagram) will be used synonymously. Diagrams together with
natural transformations constitute the category CI. Note that ∆ ∶ C→ CI is itself a functor,
assigning to each object of C its constant diagram and to an arrow f ∶ A→ B the ”constant”
natural transformation (f)i∈I0 .

We assume all categories under consideration to have colimits. The coproduct cocone of
a family (Di)i∈I of C-objects will be denoted

(Di
⊆i// ∐j∈I Dj)i∈I .

The morphisms ⊆i are called coproduct injections. For a family of arrows (fi ∶ Di → A)i∈I
we write f⃗ ∶ ∐i∈I Di → A for the resulting unique mediating arrow.

We assume all categories under consideration to have pullbacks. In the sequel, we will

work with chosen pullbacks, i.e., for each pair of C-arrows B
h→ A

k←X a choice

Y
h′ //

h∗(k)
��

X

k��
B

h
// A

of pullback span (h∗(k), h′) is determined once and for all. For all h ∶ B → A, h∗(idA) shall
be chosen to be idB. Whenever we deviate from these choices, this will be emphasized. It is
well-known [6] that for fixed h ∶ B → A chosen pullbacks along h give rise to a (pullback)
functor h∗ ∶ C ↓A → C ↓B between comma categories. Pullbacks can be composed, i.e., if

C
h2→ B

h1→ A, then h∗2 ○ h∗1 yields a pullback along h1 ○ h2, and decomposed, i.e., if h∗1(k) and
(h1 ○ h2)∗(k) are computed, the resulting universal arrow from the latter into the former

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 5

pullback yields a pullback of h2 and h∗1(k). Note, that in both cases the automatically
appearing pullbacks need not be chosen.

The underlying category for all further considerations is a category of presheaves, i.e., the
category G ∶= SetB (with B a small (base) category, Set the category of sets and mappings)
of covariant functors from B to Set together with natural transformations between them2.
We will also use the term ”sort” for the objects in B and the term ”operation (symbol)”
for the morphisms in B. It is folklore that G has all colimits and all pullbacks, which are
computed sortwise, resp. G is a topos, i.e. a category with finite limits and colimits, which
has exponents and where the subobject functor is representable [6]. G will thus also be called

a presheaf topos. E.g., the category of multigraphs is a presheaf topos with B = (E
t
//

s //
V)

(plus identities). The simplest presheaf topos is Set (B = 1, the one-object-one-morphism
category).

In this paper, we will make frequent use of (sortwise) coproducts, i.e., disjoint unions
of sets. In order to make argumentations simpler, we will assume that for each X ∈ B the
artefacts (Di(X))i∈I0 are a priori disjoint, i.e., the coproduct is obtained by simple union.

An important property of presheaf topoi is (infinite) extensivity, i.e., the functor

∐ ∶∏
i∈I

G↓Di → G↓∐
i∈I
Di (2.1)

assigning to each object (fi ∶ Ai →Di)i∈I in ∏i∈I G↓Di the object ∐i∈I fi ∶ ∐i∈I Ai →∐i∈I Di

in G↓∐i∈I Di, is an equivalence of categories for each index set I and each I-indexed family
(Di)i∈I of objects in G. Its ”inverse” arises from constructing pullbacks along coproduct
injections. From these facts one derives the stability of coproducts under pullbacks, i.e., if

Ai
ai //

fi
��

A

g
��

∐i∈I Ai
a⃗ //

∐i∈I fi
��

A

g
��

Mi
gi // M ∐i∈IMi

g⃗ // M

(2.2)

are commutative diagrams, then the squares on the left-hand side are pullbacks for all i ∈ I,
if and only if the square on the right-hand side is a pullback [6]. In general topoi, all these
statements still hold for finite index sets I (finite extensivity).

3. An Equivalent Condition for the Van Kampen Property

In this chapter we introduce the Van Kampen property and state the main result of this
paper, a necessary and sufficient condition for the Van Kampen property to hold in G = SetB.

3.1. Van Kampen Colimits. A commutative cocone out of a diagram D ∶ I → G is a
natural transformation

κ ∶ D ⇒∆S. (3.1)

2 Normally presheaves are categories SetB
op

, i.e., contravariant Set-valued functors. But we prefer the
slightly deviating definition, because we found the contravariant version counterintuitive for our work. Clearly,
it is easy to switch to the contravariant setting, if one inverts all arrows of B.

6 H. KÖNIG AND U. WOLTER

For fixed i
d // j of I1, pulling back a G-arrow K

σ // S along κi and κj yields

Ei
Ed //

κ′i
''

κ∗i (σ) ��

Ej
κ∗j (σ)
��

κ′j // K

σ
��

Di
Dd //

κi

77Dj
κj // S

(3.2)

where the right and the outer rectangles are chosen pullbacks, Ed is the unique completion into
the right pullback, and the resulting left square is a pullback by the pullback decomposition
property. The left square may, however, not be a chosen one, but it results in diagram E as
well as natural transformation κ∗(σ) ∶= (κ∗i (σ))i∈I0 ∶ E ⇒ D, whose naturality squares are
pullbacks. This fact gives rise to the following definition:

Definition 3.1 (Cartesian Transformation). A natural transformation τ ∶ E ⇒ D ∶ I→ G is
called cartesian if all naturality squares are pullbacks.

For a fixed diagram D ∶ I→ G let GI ⇓ D be the full subcategory of GI ↓ D of cartesian
natural transformations. Thus, by (3.2), κ∗ maps objects of G ↓ S to objects in GI ⇓ D.
Moreover, any arrow γ ∶ σ → σ′ of G↓S yields a family of arrows (κ∗i (γ)) (universal arrows
into pullbacks) of which it can easily be shown that together they yield a cartesian natural
transformation κ∗(γ) ∶ κ∗(σ) → κ∗(σ′). Thus κ∗ becomes a functor

κ∗ ∶ G↓S → GI ⇓ D. (3.3)

Definition 3.2 (Van Kampen Cocone, [7]). Let D ∶ I→ G be a diagram and κ ∶ D ⇒ ∆S be
a commutative cocone. Then κ has the Van Kampen (VK) Property (”κ is VK”) if functor
κ∗ is an equivalence of categories.

As usual, a colimit (or colimiting cocone) is a universal cocone κ ∶ D ⇒ ∆S, i.e., for each

T ∈ G and commutative cocone ρ ∶ D ⇒∆T , there is a unique G-morphism S
u // T such

that ∆u ○ κ = ρ, i.e., u ○ κi = ρi for all i ∈ I0. S is called the colimit object.
κ∗ has a left-adjoint κ∗ ∶ GI ⇓ D → G↓S which assigns to a cartesian natural transfor-

mation τ ∶ E ⇒ D the unique arrow to S out of the colimit object of the colimiting cocone of
E [24]. I.e., κ∗ is the (pseudo-)inverse of κ∗, if the VK property holds. In this case, unit
and counit of the adjunction are isomorphisms. Note also that each VK cocone D ⇒∆S is
automatically a colimit (apply κ∗ to id∆S and use the definition of κ∗) such that we can use
the terms ”Van Kampen cocone” and ”Van Kampen colimit” synonymously.

Whereas the counit of this adjunction is always an isomorphism, if pullback functors
have right-adjoints (and thus preserve colimits), which is true in every (presheaf) topos [6],
the situation is more involved concerning the unit of the adjunction: The easiest example
of the VK property arises for the empty diagram. In this case the property translates to

the fact, that the initial object 0 is strict, i.e., each arrow A // 0 is an isomorphism.
This is true in all topoi [6]. In the same way, since all presheaf topoi are extensive (cf.
Sect.2), coproducts have the Van Kampen property. But the unit fails to be an isomorphism
for pushouts and coequalizers: Even in Set there are easy examples of pushouts which
violate the VK property [24]. In adhesive categories (and thus in all topoi [15]) pushouts
are VK, if one leg is monic, by definition. Vice versa, there are also pushouts with both
legs non-monic, which enjoy this property nevertheless [29]. Astonishingly, coequalizers

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 7

seldom are VK: Consider the shape graph 2 ∶= 1
d
//

d′ //
2 and the diagram D ∶ 2→ Set with

D1 = {∗1},D2 = {∗2}. Clearly,

D1
//// D2

// {∗} (3.4)

is a coequalizer in Set. Then the cartesian transformation

τ ∶ (E1 ∶= {a, b}
k
//

id // E2 ∶= {a, b}) ⇒ D,

with k the non-identical bijection of {a, b}, is mapped to id{∗} by κ∗, i.e., τ /≅ (κ∗ ○ κ∗)(τ).

3.2. Equivalent Condition. As mentioned in the introduction it is important for several
software engineering scenarios to find an easily checkable criterion for the Van Kampen
property. The presented condition of this paper comes in terms of the mapping behavior of
all morphisms Dd in the diagram.

Definition 3.3 (Mapping Path). Let G = SetB be a presheaf topos and D ∶ I → G be a
diagram w.r.t. shape graph I. Let Iop1 ∶= {dop ∣ d ∈ I1}.

● A Path Segment of sort X ∈ B is a triple (y, δ, y′) with δ ∈ I1 ∪ Iop1 and3

If δ = d ∈ I1 then y ∈ Ds(d)(X), y′ = Dd(y) ∈ Dt(d)(X)
If δ = dop ∈ Iop1 then y′ ∈ Ds(d)(X), y = Dd(y′) ∈ Dt(d)(X)

Two path segments (y1, δ1, y
′
1) and (y2, δ2, y

′
2) of sort X are equal if y1 = y2, δ1 = δ2,

and y′1 = y′2. Moreover, two path segments are weakly equal, (y1, δ1, y
′
1) =w (y2, δ2, y

′
2) in

symbols, if (y1, δ1, y
′
1) = (y2, δ2, y

′
2) or (y1, δ1, y

′
1) = (y′2, δ

op
2 , y2).4

● A Non-empty Mapping Path in D of sort X ∈ B is a sequence

P = [(y0, δ0, y1), (y1, δ1, y2), (y2, δ2, y3), . . . , (yn−1, δn−1, yn)]
of path segments of sort X, where any third component of a segment coincides with the
first component of its successor segment5, and where n ≥ 1. We say that the above path
connects y0 with yn in D.

● For each y ∈ Di(X), where i ∈ I0 and X ∈ B, we say that the Empty Mapping Path [] of
sort X connects y with itself in D.

● Two paths are equal, if they have the same length and are segmentwise equal.
● A mapping path is proper if there are no two distinct path segments that are weakly equal.

Examples of mapping paths for graphs are depicted in Fig.1 (the complete meaning of
the contents of Fig.1 will be explained in the next section): There are two paths (one along
the dashed path segments, the other one along the dotted segments) both connecting vertex
”Sort” with vertex ”Type”. Each arrow depicts a path segment with first component the
arrow’s source and third component its target. The middle component is annotated near
the arrows, resp., their names will be explained in the next section, as well.

3 Whenever i
d // j ∈ I1 and we apply a mapping in the family ((Dd)X ∶ Di(X) → Dj(X))X∈B, we write

Dd instead of (Dd)X .
4(dop)op ∶= d.
5 By the introductory remarks on disjointness of artefacts, this means that the third component and the

successor’s first component are elements of the same Di.

8 H. KÖNIG AND U. WOLTER

For any X ∈ B, any i, j ∈ I0 and any z ∈ Di(X), z′ ∈ Dj(X) we write z ≡X z′ (z ≡pX z′),
if there is a mapping path (proper mapping path) of sort X connecting z with z′. It is easy
to see that ≡ = ≡p and that this relation is a congruence relation on ∐i∈I0 Di (i.e., a family
of equivalence relations (≡X)X∈B compatible with operations of B), because paths can be
concatenated and reversed. Moreover, it is well-known [19] that the colimiting cocone of
diagram D ∶ I→ G is given by

D κ⇒ (∐
i∈I0
Di)/ ≡ = (∐

i∈I0
Di)/≡p (3.5)

where κi = []≡○ ⊆i with []≡ the canonical morphism. In the present paper we will show that
mapping paths also play a crucial role for a simpler characterization of the Van Kampen
property. The following examples hint at this connection.

Example 3.4. Let G = Set.
(1) In (3.4) there are proper mapping paths [] and [(∗2, d

op,∗1), (∗1, d
′,∗2)] both connecting

∗2 with itself.

(2) The shape graph 1 0
doo d′ // 2 yields pushouts. The easiest example of a non-VK

pushout arises from D0 = {x, y},D1 = {∗1},D2 = {∗2}, cf. [24]. In this case, we obtain
two different proper mapping paths [(∗1, d

op, x), (x, d′,∗2)] and [(∗1, d
op, y), (y, d′,∗2)]

both connecting ∗1 and ∗2 in D.
(3) Let I = ●d 99 consist of one vertex and one loop. I.e., diagrams depict endomorphisms

f ∶ A→ A. It is astonishing that even the colimiting cocone D +3 {∗} with Dd = id{∗}
is not VK: Take E = ({a, b} k // {a, b}) (with k the non-identity bijection of {a, b}),

τ ∶ {a, b} → {∗}, then E ’s colimit is a singleton. In this example, we have two proper
mapping paths [] and [(∗, d,∗)] in D both connecting ∗ with itself. Note that this is just
another presentation of example (3.4), since the colimit of f ∶ A→ A can be obtained by

the coequalizer of A
f
//

idA //
A).

(4) D = ({x}
f
//

g // {y, z}) with f(x) = y, g(x) = z has the VK property, which can be

checked by elementary means based on Def. 3.2. There is exactly one proper mapping
path connecting y and z, namely [(y, fop, x), (x, g, z)]. Moreover, there is exactly one
proper path connecting y with itself (namely the empty one, the hypothetical path
[(y, fop, x), (x, f, y)] is not proper, see Def.3.3). In the same way x has only one path
back to itself, namely the empty one (the hypothetical path [(x, f, y), (y, fop, x)] is not
proper).

As suggested by these examples, uniqueness of proper mapping paths between two
elements of the same sort X in the sets (Di(X))i∈I0 is a crucial feature for the Van Kampen
property to hold. Indeed, we will prove

Theorem 3.5 (VK is Path Uniqueness). Let G = SetB be a presheaf topos and D ∶ I → G
be a diagram. Let D κ⇒∆S be a colimiting cocone. The cocone is a Van Kampen cocone
if and only if for all X ∈ B, all i, j ∈ I0 and all z ∈ Di(X), z′ ∈ Dj(X): There are no two
different proper mapping paths in D connecting z and z′.

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 9

Since, in colimit computations, all mapping paths need to be computed (see (3.5)),
and – according to Theorem 3.5 – the Van Kampen property can be checked by means
of mapping paths, algorithmic verification of the Van Kampen property can be carried
out in the background of colimit computation. A detailed elaboration of these combined
computations is carried out in Sect.6.

3.3. Application of Theorem 3.5. In order to demonstrate the benefits of the path
uniqeness criterion, we consider a more substantial example than the ones in Example 3.4.

We let B = (E
t
//

s //
V) (idE and idV not shown), thus our base presheaf topos is G = SetB,

the category of directed multigraphs. In the sequel, we depict vertices as rectangles and
edges are arrows pointing from its source to its target. In Fig.1 the three highlighted graphs6

D1, D2, and D3 depict meta-models for type systems:

Sort

Operation

in
D1

d-13

return1

Interface

Operation

in return1

own

D3

Type

Function

in

D2
return

Method

implmnts

S/I

Op

d13

in return

S/T

d-12

D13

D12

d12

in

T/I

F/M

in

D23

d23

d-23

1

-13op

13

-12op 12

-23

23op

Figure 1: A diagram of metamodels and two mapping paths

● D1 represents parts of the domain of algebraic specifications: Operations have an arbitrary
number of sort-typed input parameters and exactly one return parameter.

● In D2 terminology of abstract data types is used: Functions have an arbitrary number of
typed input and return parameters, resp.

● D3 is the object-oriented view: Interfaces own operations, which have inputs and one
return parameter typed in interfaces, resp. Methods implement operations, their input
parameters may be of specialized type.

Figure 1 represents a multimodeling scenario [21]. Reasoning about these collective models
(the multimodel) as one artefact requires matching of different terminology of each of the
model graphs: Sameness of terminology in graphs D1 and D2 is formally enabled by defining a
relation on D1×D2 by means of auxiliary graph D12, which consists of exactly one vertex S/T ,

6These are not just graphs since they contain ”multiplicity constraints”. They can be formalized, actually,
as generalized sketches, i.e., graphs with diagrammatic predicates, in the sense of [2].

10 H. KÖNIG AND U. WOLTER

d−12(S/T) = Sort, d12(S/T) = Type, such that span D1
d−12← D12

d12→ D2 specifies sameness
of terms ”Sort” and ”Type” in graphs D1, D2 and no other commonalities. In the same

way span D1
d−13← D13

d13→ D3 specifies sameness of terms ”Sort” and ”Interface” (in D1 and
D3) as well as ”Operation” (in both graphs) together with the in- and return-relationships.
Moreover, relation ”in” of term ”Method” in D3 is declared to be equal to property ”in” of

term ”Function” in D2 via span D3
d23← D23

d−23→ D2.
We now describe a scenario, in which colimit computation of the graphs in Fig.1 and

amalgamation of instances typed over these graphs is important. It is common to reason
about the multimodel by imposing constraints that spread over different models. We could,
e.g., claim that ”The return type of a method’s implemented operation (as specified in D3)
has to be contained in the list of return types of the corresponding function (as specified in
D2)”. In order to check this inter-model constraint, it is necessary to construct the diagram’s
colimit. Formally, for schema graph I =

1 12
−12oo 12 // 2

13
−13

``

13 !!

23
−23

>>

23}}
3

we obtain diagram D ∶ I→ G and construct the colimiting cocone D κ⇒∆S.
Assume now that we want to check consistency of given typed instances τi ∶ Ei → Di,

i ∈ {1, 2, 3} against the above formulated constraint. For this we have to declare sameness of
elements within E1,E2, and E3 with the help of new relating typing morphisms τk ∶ Ek → Dk,
k ∈ {12, 13, 23} and spans E1

e−12← E12
e12→ E2, E1

e−13← E13
e13→ E3, and E2

e−23← E23
e23→ E3. Of course,

all τk have to be compatible with model matching and sameness declaration within E1,E2,
and E3, i.e., we obtain a natural transformation τ ∶ E ⇒ D between diagrams of type I→ G.
Consistency checking is then carried out by constructing the colimit object K of E and
checking whether the resulting typing arrow σ ∶K → S fulfills the constraint, see [21].

Let us momentarily ignore constraint checking and just consider the relation between
this amalgamated instance σ and the original component instances (τi)i∈{1,2,3,12,13,23}: It is
necessary to faithfully recover all τi from σ, otherwise we would loose information about
the origin of the elements in the domain of σ. This means that we require, for all i,
κ∗i (σ) ≅ τi, i.e., the Van Kampen property for the cocone κ has to hold. However, it turns
out, that the property is violated: This can be seen by considering the following instance
constellation (we write x∶T whenever τ (x) = T): Let E1(V) = {s∶Sort, s′∶Sort},E1(E) = ∅,
E2(V) = {t1∶Type, t2∶Type},E2(E) = ∅, and E3(V) = {i∶ Interface, i∶ Interface},E3(E) = ∅.
One may now declare sameness of elements within E1,E2, and E3 as follows

s = t1, s′ = t2 by span (e−12, e12); s = i, s′ = i by (e−13, e13); t1 = i, t2 = i by (e−23, e23).
This is established as described above, e.g., graph E12 consists of two vertices 1∶S/T and
2∶S/T . Graph morphisms e−12 maps 1∶S/T ↦ s and 2∶S/T ↦ s′ wheras e12 maps 1∶S/T ↦ t1
and 2∶S/T ↦ t2. We omit the obvious formal definitions of the other two spans.

Unfortunately, by transitivity, this matching also yields s = s′, an unwanted anomaly.
But in practice this effect may happen, if two modelers work separately: One modeler might
define matches (e−12, e12) and (e−13, e13) and, independently and inadvertently, the second

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 11

modeler defines the match (e−23, e23). The inconsistent matching yields a colimit K of E
with one vertex only, because each sort/type/interface is connected with each other along
mapping paths. Clearly, κ∗i (σ) /≅ τi since κi are monomorphisms, hence the domains of
κ∗i (σ) are singleton sets, as well.

In this simple example, a small instance constellation allowed for the detection of a VK
violation witness. However, it is hard to determine such witnesses in more complex examples.
In these cases, Theorem 3.5 is a more reliable indicator for VK validity or violation, because
we do not need to find violating instance constellations. Instead, the violation of the VK
property can be detected by analysing mapping path structures of the metamodels only.
In the present example, the indicator are the two different proper mapping paths of sort V
shown in Fig.1 both connecting ”Sort” and ”Type” (one is depicted by dashed, the other one
by dotted arrows) such that Theorem 3.5 immediately yields violation of the Van Kampen
property. At least from this example we derive the slogan that the Van Kampen property
holds, if there is no redundant matching information in D. It is easy to see that the negative
effect vanishes if we reduce the diagram accordingly, i.e. if we erase matching via D12 since
this information is already contained in the transitive closure of matchings D13 and D23. In
this way, the above mentioned modelers can indeed work independently!

4. An Outline of the Proof of Theorem 3.5

In this section, we sketch the main steps for the proof of our main theorem. Each step is
given by a Lemma for which detailed proofs can be found in the technical report [12].

4.1. Pushouts. Often, the Van Kampen property for pushouts is formulated as follows: A

pushout of a diagram D1 D0
h1oo h2 // D2 is said to have the Van Kampen property if for

any commutative cube

E0

��

}}

// E2

��

~~
E1

��

// K

σ

��

D0
h2 //

h1

}}

D2

κ2~~
D1 κ1

// S

with this pushout in the bottom and back faces pullbacks, the front faces are pullbacks if
and only if the top face is a pushout. In [29] we already stated a characterization of the Van
Kampen property for pushouts based on this definition. It comes in terms of cyclic mapping
structures within D0:

Definition 4.1 (Domain Cycle, [16]). Consider a span D1 D0
h1oo h2 // D2 in G = SetB.

For X ∈ B we call a sequence [x0, x1, . . . , x2k+1] of elements of D0(X) a domain cycle (for
the span (h1, h2)) (of sort X), if k ∈ N and the following conditions hold:

(1) ∀j ∈ {0,1, . . . ,2k + 1} ∶ xj /= xj+1

(2) ∀i ∈ {0, . . . , k} ∶ h1(x2i) = h1(x2i+1)
(3) ∀i ∈ {0, . . . , k} ∶ h2(x2i+1) = h2(x2i+2)

12 H. KÖNIG AND U. WOLTER

where 2k + 2 ∶= 0. A domain cycle is proper if xi /= xj for all 0 ≤ i < j ≤ 2k + 1.

The main outcome of [29] is the following fact:

Lemma 4.2 (Condition for VK Pushouts). A pushout

D0
h2 //

h1
��

D2

κ2
��

D1 κ1
// S

in G = SetB is a Van Kampen cocone iff there is no proper domain cycle for (h1, h2).

This result can be proven by means of elementary set-based arguments [16], but also by
investigating forgetful functors between categories of descent data [8] for general topoi [29].

It is easy to see that the above definition for pushouts is an instance of the general
definition of Van Kampen colimits in Def. 3.2:

● If the front faces are pullbacks, then the back faces are the result of applying κ∗. Then
the counit ε ∶ κ∗ ○ κ∗ ⇒ Id of adjunction is an isomorphism if and only if the cube’s top
face is already a pushout.

● If the top face is a pushout, then (up to isomorphism) σ is the result of applying κ∗. Then
the unit η ∶ Id⇒ κ∗ ○κ∗ is an isomorphism if and only if κ∗(σ) produces the original cube
up to isomorphism, i.e., the original front faces are pullbacks.

Hence, the two implications ”Front face pullbacks iff top face pushout” actually reflect the
two statements ”The counit is an isomorphism” and ”The unit is an isomorphism”.

Thus Lemma 4.2 is a good starting point for the proof of Theorem 3.5: We first transfer
this knowledge to special mapping paths in coequalizer diagrams (Sect.4.2) and then from
there to mapping paths in arbitrary colimits (Sect.4.3).

4.2. From Pushouts to Coequalizers. The transfer from pushouts to coequalizers is
accomplished in two steps. The first step connects the VK property for coequalizers and
pushouts:

Lemma 4.3. Let G be a general topos and B
f
//

g //
D be two arrows in G. Let two arrows

κD ∶D → S and κB ∶ B → S be given such that the diagrams

B

κB

77
f
//

g //
D

κD // S B +B
[f,g] //

[id,id]
��

D

κD
��

B κB
// S

are commutative, resp.

(1) The left diagram is a coequalizer if and only if the right diagram is a pushout.
(2) The left diagram is a VK cocone if and only if the right diagram is.

Proof. 1 is well-known [19]. 2 is proven by means of Def.3.2, where the transfer is possible,
because topoi are (finitely) extensive, cf. Sect.2, and especially because of property (2.2).

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 13

The second step establishes a connection between domain cycles and mapping paths. It
comes in terms of disjoint mapping paths, i.e., paths P1 and P2 for which none of the path
segments in P1 is weakly equal7 to a path segment in P2. The proof is rather technical and
will be omitted, see [12], Lemma 14.

Lemma 4.4 (Domain Cycles vs. Mapping Paths). Let G = SetB, f and g as in Lemma 4.3,

and X ∈ B. There is a proper domain cycle of sort X for B B +B
[f,g] //[id,id]oo D , if and only

if there are z, z′ ∈D(X) and two disjoint proper mapping paths connecting z and z′.

Lemmas 4.2, 4.3, and 4.4 yield

Corollary 4.5 (Condition for VK Coequalizers). Let G = SetB, let 2 be the schema graph

1
d
//

d′ //
2 , and D ∶ 2→ G. The coequalizer diagram

D1

κ1

77
Dd

//
Dd′ // D2

κ2 // S

has the Van Kampen property, if and only if for all X ∈ B and all z, z′ ∈ D2(X) : There are
no two disjoint proper mapping paths of sort X in D connecting z and z′.

Recall the already made observations in Example 3.4, 1. and 4., which confirm this
statement.

4.3. From Coequalizers to Colimits. It is well-known [19], that the colimit of D ∶ I→ G
can be computed by constructing the coequalizer of

∐d∈I1 Ds(d) D⃗d

//
i⃗d //
∐j∈I0 Dj , (4.1)

where D⃗d and i⃗d are mediators out of the involved coproducts:

∐d∈I1 Ds(d)
D⃗d // ∐j∈I0 Dj ∐d∈I1 Ds(d)

i⃗d // ∐i∈I0 Di

Di

⊆i,d
OO

Dd // Dj

⊆j
OO

Di

⊆i,d
OO

Di

⊆i
OO

(4.2)

(for all edges i
d // j in I1).8

Let D ∶ 2→ G be the functor mapping 2 to the objects and arrows in (4.1), where schema
graph 2 is given as before (cf. e.g. Cor. 4.5). Then a technical analysis shows that we can
combine mapping paths of D with special mapping paths of D (again, we omit the proof
and refer to [12]):

Lemma 4.6. Let G = SetB and X ∈ B. The following statements are equivalent:

7Recall the definition of weak equality in Def. 3.3.
8Note that in the left coproduct of (4.1) an object Di occurs as often as there are edges d leaving i in I.

Moreover, ⊆i,d in (4.2) denotes the embedding of Di into its appropriate copy, namely the source of Dd.

14 H. KÖNIG AND U. WOLTER

● ∀i, j ∈ I0 ∶ ∀z ∈ Di(X),∀z′ ∈ Dj(X): There are no two disjoint proper mapping paths in D
connecting z and z′.

● ∀z, z′ ∈ D2(X) = ∐j∈I0 Dj(X): There are no two disjoint proper mapping paths in D
connecting z and z′.

The main part of the proof of Theorem 3.5 is to carry over the VK property for the
coequalizer of (4.1) to its underlying colimiting diagram for D.

Lemma 4.7. For G ∶= SetB, the cocone (3.1) is VK if and only if the cocone

∐d∈I1 Ds(d)
κ′

55
D⃗d

//
i⃗d //
∐j∈I0 Dj

κ // S (4.3)

resulting from constructing the coequalizer in (4.1) is VK.

Proof: Let κ∗ ∶ G↓S → GI ⇓ D be the functor introduced in (3.3) and κ∗ ∶ G↓S → G2 ⇓ D
be the corresponding functor for the colimiting cocone in (4.3). Using (2.1) and (2.2), one
can show that for each cartesian τ ∶ E ⇒ D the squares

∐d∈I1 Es(d)
i⃗d //

∐d∈I1 τs(d)
��

∐i∈I0 Ei
∐i∈I0 τi
��

∐d∈I1 Ds(d)
i⃗d // ∐i∈I0 Di

∐d∈I1 Es(d)
E⃗d //

∐d∈I1 τs(d)
��

∐j∈I0 Ej
∐j∈I0 τj
��

∐d∈I1 Ds(d)
D⃗d // ∐j∈I0 Dj

are pullbacks, i.e., there is the assignment τ ↦ (∐d∈I1 τs(d),∐i∈I0 τi). It can be shown with
elementary arguments that it extends to an equivalence of categories:

φ ∶ GI ⇓ D ≅ G2 ⇓ D.
Moreover, the colimit construction principle, see (4.1), yields commutativity of

G↓S
κ∗

zz
κ∗
$$

GI ⇓ D
φ

// G2 ⇓ D

up to natural isomorphism, hence, by Def. 3.2, the desired result.

4.4. Combining the Results. We are now ready to prove Theorem 3.5 for disjoint proper
mapping paths. This follows by combining Lemma 4.7, Corollary 4.5 and Lemma 4.6.
Afterwards we can get rid of disjointness by showing that any two proper mapping paths
connecting the same two elements also admit two disjoint proper paths (probably connecting
two different elements).

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 15

5. Counterexamples in other Categories

The valuable implication in the equivalence statement of Theorem 3.5 is ”Path-Uniqueness
implies the Van Kampen Property”. In this section, we show that this implication immedi-
ately breaks, if we leave the universe of presheaf topoi, i.e. there are simple counter-examples
in categories that are simililar to, but don’t meet all axioms of presheaf topoi. We separate
the examples depending on whether unit η or counit ε of adjunction κ∗ ⊣ κ∗ fails to be
isomorphic (cf. Def.3.2 and ensuing remarks) although path uniqueness holds.

For the sake of completeness we finally give an example for a violation of the reverse
direction of the equivalence in Theorem 3.5. It illustrates a situation of a Van Kampen
cocone, although path uniqueness does not hold.

5.1. Path Uniqueness, but no Isomorphic Unit. Consider the category HSet, whose
objects are sets, where in each set at most one element may be highlighted (we also say
”marked”). We denote such a set with (x,A) (indicating that x ∈ A is marked). If no element
is highlighted, we write (�,A). Formally these sets are partial algebras [4, 30, 31, 32] w.r.t.
the algebraic signature Σ with one sort and one constant symbol h (”highlighted”), such
that in any Σ-algebra with carrier set A there is a constant, which can be understood as
a partial map h ∶ {∗} → A, i.e. there may or may not be a marked element depending on
whether h is defined for ∗ or not. A morphism between (x,A) and (y,B) is a total mapping
f ∶ A→ B for which the additional property

x /= � ⇒ (y /= � and f(x) = y)
holds. It can be shown [4] that HSet possesses all limits and colimits.

In Fig.2, the bottom face is a pushout (note that the one element set {∗} arises from the
fact that there can not be more than one marked element). The behaviour of each mapping
should be obvious. Clearly, the back faces are pullbacks. Although the top face is a pushout,
the front faces fail to be pullbacks. Path uniqueness for (h1, h2) is satisfied trivially.

(�,∅)

��

yy

// (�,{1})

��

xx
(�,{2})

��

// (�,{1,2})

��

(�,∅) h2 //
h1

yy

(1,{1})

κ2xx
(2,{2}) κ1

// (∗,{∗})

Figure 2: Path Uniqueness, but not VK, I

16 H. KÖNIG AND U. WOLTER

��

{{

//

��

ww

��

//

σ

��

h2 //

h1 {{
κ2
ww

κ1
//

Figure 3: Path Uniqueness, but not VK, II

5.2. Path Uniqueness but no Isomorphic Co-Unit. By the remarks in Sect.3, this can
only be the case, if the pullback functor possesses no right-adjoint. For this, we consider
the category C = CAT of all small categories together with functors between them. The
following example in C simultaneously shows (1) a non-VK-pushout with path uniqueness
and (2) that the pullback functor has no right-adjoint. In Fig.3 each shaded rectangle shows
a category, e.g. in the bottom there is a category with exactly one element 1, two categories
with one non-identity arrow between objects 0 and 1, 1 and 2, resp., and a category with
three elements 0,1, and 2 where the arrow from 0 to 2 is the composition of the other two. In
all cases, identity arrows are not shown. Arrows between the shaded rectangles are functors
that map according to the numbering. This example has already been discussed in [24].

Obviously, the bottom square is a pushout in C and the back faces are pullbacks (∅
denotes the empty category). Moreover, the front faces are pullbacks, but the top face fails
to be a pushout (the pushout should be the category consisting of two objects 0 and 2 and
no non-identity arrow), hence ε is not an isomorphism. The pullback functor σ∗ maps the
bottom square to the top square. If it would possess a right-adjoint, it would preserve the
bottom colimit, which is not the case.

Clearly, path uniqueness holds in span (h1, h2), because both functors are injective on
objects and arrows, resp. Note that we treat C as a many-sorted algebra with carrier sets
O(bjects) and (Hom(x, y))x,y∈O (Hom-Sets) and (in contrast to graphs) with a family of
binary operations (○x,y,z ∶Hom(y, z)×Hom(x, y) →Hom(x, z))x,y,z∈O, a family of constants
(idx ∈ Hom(x,x))x∈O, and the appropriate monoidal axioms for neutrality (of identities)
and associativity (of operations ○ , ,).

5.3. Van Kampen holds, but Path Uniqueness is Violated. This requires an artificial
and radical narrowing of the size of the underlying category. We consider a category C
which has sets X with two constants 0 and 1 (actually an algebra for a signature with one
sort and two constant symbols) subject to the following axiom

∀x ∈X ∶ x = 0 ∨ x = 1.

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 17

Let sets X and Y with constants 0X ,1X and 0Y ,1Y be given, then an arrow from X to Y
is a mapping f ∶ X → Y , which preserves constants, i.e. f(0X) = 0Y and f(1X) = 1Y . It is
not forbidden that the two constants coincide, such that the above equation reduces this
category to two sets 2 ∶= {0, 1} and 1 ∶= {01} (in set 1, the constants coincide). It can further
be observed that the only non-identity arrow is 2→ 1. Furthermore, the only pullback of a
co-span with two non-identity arrows is

2 2

��
2 // 1

It can even be shown that this (very small) category has all limits and colimits (e.g. the
initial object is 2, terminal object is 1).

We can now pick up the coequalizer example (3.4) of Sect.3.1. There is the coequalizer

diagram 1 //// 1 // (1 =∶ S) where all arrows are identities. As pointed out in Example

3.4, 1 path uniqueness is violated.
In each pullback pair

A ////

��

B

��
1 //// 1

we must have A = B and the two top mappings must both be identities. Note that the
non-identical bijection of {0, 1} as in (3.4) can no longer occur. Thus, only two such pullback
pairs exist. There are also exactly two objects in C↓S, namely id1 and 2→ 1, and it is easy
to see that they correspond to each other via κ∗ and κ∗. Hence the coequalizer has the Van
Kampen property, although path uniqueness is violated.

6. Practical Guidelines

A main use case of the previous results can be found in software engineering and especially
in model-driven software designs: Components of diagrams are models (e.g. data models
or metamodels which govern the admissible structure of models), morphisms are relations
between the models. As described in the introduction, model assembly is often important
(cf. Sect.3.3). It shall not only be carried out on a syntactical level (models), but in the
same way on the semantical level (instances) such that assembled instances can correctly be
decomposed into their original instances by pullback.

It is a goal to efficiently verify whether compositionality holds, i.e. whether the Van
Kampen property is satisfied. Since model composition always requires computation of
colimits, VK-verification at the same time is desirable. In this section we will describe (1)
an efficient colimit computation and (2) how to simultaneously check the VK-property.

To further reduce verification effort, we will first look for criteria to decide, for a given
diagram, if VK holds or not, without checking explicitly the path conditions of Theorem
3.5. Moreover, we will show that – in cases where the path condition is needed – one does
not need to check the condition for all i, j ∈ I0 but only for a smaller subset of indices. All
investigations lead to a decision diagram, which guides a modeler who has to decide whether
a given diagram has the VK property or not. This diagram is given in the end of this section,
see Fig, 4.

18 H. KÖNIG AND U. WOLTER

All additional constructions are elementary and will not be elaborated in detail. Instead
we refer the reader to the corresponding technical report [12].

6.1. Relevant Types of Mapping Paths. We will discuss now what kinds of paths and
what pairs of paths we really need to check in practice. The attentive reader may have
noticed already that properness excludes cycles w.r.t. path segments but does not exclude
cycles w.r.t. elements. Let P = [(y0, δ0, y1), (y1, δ1, y2), . . . , (yn−1, δn−1, yn)] be a mapping
path in a diagram D ∶ I→ SetB with finite I. By ιi, we denote the unique vertex in I0 with
yi ∈ Dιi .
Definition 6.1. A mapping path is called inner-cycle free, if for all indices 0 ≤ i < j ≤ n
with j − i ≤ n − 1: yi /= yj .

Empty mapping paths or paths of length 1 are inner-cycle free by definition. Note, that
we allow P to be an ”outer” cycle, i.e., y0 = yn. An elementary construction [12] shows
that each path can be reduced to an inner-cycle free non-empty (sub-)path. The reduction
preserves properness and disjointness of mapping paths. Moreover, one can easily see that
two different proper paths from z to z′ even yield two disjoint proper paths (probably
between other elements). Thus we obtain the following corollary of Theorem 3.5:

Corollary 6.2. Let G = SetB be a presheaf topos and D ∶ I→ G be a diagram with I a finite
directed multigraph. Let

D κ⇒∆S

be a colimiting cocone. The following are equivalent:

(1) The cocone is a Van Kampen cocone
(2) ∀X ∈ B, i, j ∈ I0, z ∈ Di(X), z′ ∈ Dj(X) ∶ There are no two different proper paths

from z to z′

(3) ∀X ∈ B, i, j ∈ I0, z ∈ Di(X), z′ ∈ Dj(X) ∶ There are no two disjoint proper paths
from z to z′

(4) ∀X ∈ B, i, j ∈ I0, z ∈ Di(X), z′ ∈ Dj(X) ∶ There are no two disjoint inner-cycle free
proper paths from z to z′

In addition to a better variety of VK characterisations, this result also provides a high
degree of freedom for the implementation of algorithms: The result does not depend on
whether an algorithm generates only disjoint pairs of paths, or also builds paths with inner
cycles. However, every algorithm based on Corollary 6.2 still has to traverse all components
(Di)i∈I0 . The next sections will explain why the traversal of components can significantly be
reduced.

6.2. Cyclic Shape Graphs. A directed cycle in I is a set of pairwise distinct edges
d0, . . . , dn−1 in I1 for some n ≥ 1 with t(di−1) = s(dimodn) (i ∈ {1, . . . , n}). If n = 1, the
cycle is also called a loop (cf. Example 3.4, 3). Let ends(d) = {s(d), t(d)} be the set of
endpoints of an edge d, then an undirected cycle in I is a set of pairwise distinct edges
d0, . . . , dn−1 in I1 for some n ≥ 2 with ends(di−1) ∩ ends(dimodn) /= ∅ (i ∈ {1, . . . , n}). An
example for an undirected cycle is the shape graph 2 and also the shape graph in the example
of Sect.3.3.

An important observation is that VK is violated, if I posseses a directed cycle

p = (i0
d0→ i1

d1→ . . .
dn−1→ in = i0)

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 19

and if for some X ∈ B and some i ∈ {i0, . . . , in} the component Di(X) is a finite set. To see
this, let w.l.o.g. i = i0 and

Dp ∶= Ddn−1 ○ . . . ○ Dd1 ○ Dd0 ∶ Di0(X) → Din(X) = Di0(X).
be the corresponding composed function. Obviously, there exist y ∈ Di0(X) and 1 ≤ k ≤
∣Di0(X)∣ such that Dkp(y) = y, where the mappings can be chosen such that this results in
a non-empty proper mapping path connecting y with itself: Because the empty path also
connects y with itself (cf. Def.3.3), VK is violated by Cor.6.2.

6.3. Specialized Construction of Colimits. In this section, we prepare a general and
more efficient algorithm for VK verification, which runs in the background of a colimit
computation. For this we need to distinguish between different characteristics of shape graph
I and derive from that a specialized colimit construction.

The universal construction recipe for colimits (4.1) shows how to construct the colimit
of any diagram in a uniform way by means of a coequalizer. It allows to prove general results
about colimits (as we have demonstrated in the previous sections). Especially, in case of
graphs I with infinite descending chains and/or with directed cycles, this universal recipe is
the best we have. E.g. colimit construction of

D1

Dd ++ D2,
Dd′
jj

and its VK verification is based on mapping paths within the coproduct D1 +D2 and there
is no way of minimizing the space for investigation.

A first step in simplifying colimit computation and VK verification can be found, if we
consider coequalizers. They can be investigated within a smaller space: A coequalizer is not
VK, if we can find for the corresponding diagram D ∶ 2→ SetB a sort X ∈ B and an element
y ∈ D1(X) such that Dd(y) = Dd′(y), thus reducing investigations to D1. However, even if
Dd and Dd′ do have sortwise disjoint images, VK may be violated. Note, that those image
disjoint diagrams are exactly the diagrams we obtain when constructing pushouts, in the
traditional way, by means of sums and coequalizer. To have VK we can require, in addition,
that Dd and Dd′ are monic, since then [Dd,Dd′] is monic and hence the pushout along this
mono is VK (because each topos is adhesive [15, 24]). In these special cases, this provides
again significant simplification.

Even in the cases left unclear, the check of the VK property for coequalizers must not
utilize the condition in Cor.6.2, which is based on the universal construction recipe (4.1) for
colimits9. Instead, we can use directly the condition in Corollary 4.5, i.e. we need to check
the condition in Cor.6.2 only for the case i = j = 2, thus reducing investigations to D2. We
will see in the forthcoming parts that all these effects can often be used in more general
cases to reduce analysis effort.

Beside these effects, there may be components that do not contribute to the construction
of the colimit at all. In many cases, this simplifies colimit construction, because it is
not necessary to compute a quotient of the entire coproduct ∐j∈I0 Dj . Moreover, we
will investigate how certain further assumptions on the properties of arrows in D (image-
disjointness, injectivity) also simplify the algorithm. We will discuss some further examples
to motivate the announced specialized and practical construction of colimits.

9Note, that we could apply the universal construction recipe again to the diagram in (4.1) and so on.

20 H. KÖNIG AND U. WOLTER

Since the case of directed cycles can immediately be handled in practical situations10,
we assume from now on that I is finite and has no directed cycles.

Irrelevant components: For all indices in I with no incoming and exactly one outgoing edge,
the corresponding component does not contribute to the construction of the colimit. Typical
examples are

D1
Dd // D2 D1

Dd1 // D3 D2,
Dd2oo

(in an arbitrary category). For the left diagram D2 can be taken as the colimit object and
we can set κ2 ∶= idD2 , κ1 ∶= Dd. For the right diagram D3 can serve as colimit object and we
have κ3 ∶= idD3 , κ1 ∶= Dd1 , κ2 ∶= Dd2 .

Jump-over components: For all indices in I with exactly one incoming and one outgoing edge
we can jump over the corresponding component. As examples, we consider the diagrams

D0

Dd1 // D1

Dd2 // D2 D3 D0

Dd1 //
Dd3oo D1

Dd2 // D2,

(in an arbitrary category). For the left diagram, D2 can be taken as the colimit object and
we have κ2 ∶= idD2 , κ1 ∶= Dd2 , κ0 ∶= Dd2 ○ Dd1 . For the right diagram the colimit object is
obtained by the pushout of Dd2 ○ Dd1 ∶ D0 → D2 and Dd3 ∶ D0 → D3. The missing injections
are given by κ1 ∶= κ2 ○ Dd2 and κ0 ∶= κ2 ○ Dd2 ○ Dd1(= κ3 ○ Dd3).

Minimal components: We consider diagrams for coequalizer and pushouts, respectively,

D1

Dd **

Dd′
44 D2 D1 D0

Ddoo Dd′ // D2

and the corresponding diagrams according to the universal recipe (4.1)

D1 +D1
[⊆2○Dd,⊆2○Dd′]

//

[⊆1,⊆1] // D1 +D2 D0 +D0
[⊆1○Dd,⊆2○Dd′]

//

[⊆0,⊆0] // D0 +D1 +D2

In case of coequalizer we construct, usually, a quotient of D2 and not of D1 + D2 and, in
case of pushouts we construct a quotient of D1 +D2 and not of D0 +D1 +D2. Also in the
example in Figure 1 we factorize the sum D1 +D2 +D3 and not the sum of all 6 components.
In all three cases we build first the coproduct of all minimal components (see Def. 6.3) and
construct then a quotient of this restricted coproduct.

Definition 6.3 (Minimal Components). For a finite directed multigraph I we denote by
Min(I) the set of all (local) minimal indices, i.e., of all vertices in I0 without outgoing edges.
For a diagram D ∶ I→ SetB we say that Di is a minimal component if i ∈Min(I).

Since I is finite and has no directed cycles, each index is either minimal or there exists a
non-empty finite sequence of edges to at least one minimal index. This fact will be used
several times in the sequel. To construct the colimit of a diagram with finite I with no
directed cycles we need, in practice, only the minimal components as outlined below.

10 . . . where, presumably, components are finite artefacts . . .

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 21

Branching components: The essence in constructing the colimit of a diagram is to converge
diverging branches in the diagram (in a minimal way). In presheaf topoi this can be done
by sortwise identifying certain elements. What elements, however, have to be identified?

In case of coequalizers we have to identify for all sorts X ∈ B and all y ∈ D1(X) the
two elements Dd(y) and Dd′(y) in D2(X). These primary identifications induce further
identifications when we construct the smallest congruence in D2 comprising all these primary
identifications. For pushouts we have to identify for all X ∈ B and all y ∈ D0(X) the two
elements Dd(y) and Dd′(y) seen as elements in D1(X) + D2(X). In this case, we construct
then the smallest congruence in D1 +D2 comprising all the primary identifications.

Now we look at slightly more general diagrams. First, we consider three parallel arrows.

D1

Dd1

&&
Dd2

//

Dd3

88 D2

In this case, we have to identify for all sorts X ∈ B and all y ∈ D1(X) the three elements
Dd1(y), Dd2(y) and Dd3(y) in D2(X), and then we construct the smallest congruence in D2

comprising these identifications. Second, we consider two generalizations of pushouts

DI
Dis

}}

Dib

""

D1 D13

Dd−13oo
Dd13 // D3

DS DP
Dmoo Dr // DB D12

Dd−12

OO

Dd12 // D2 D23

Dd−23oo

Dd23

OO

A situation, as in the left diagram, appears, for example, if we want to avoid that the

instantiation of a ”parameterized specification” DP
Dr // DB via a ”match” DP

Dm // DS
generates two copies of a specification DI that had been imported as well by the ”body” DB
of the parameterized specification as by the ”actual parameter” DS . The diagram on the
right is taken from the example in Figure 1.

In the left diagram we have to identify for all X ∈ B and all y ∈ DP (X) the two elements
Dm(y) and Dr(y) seen as elements in DS(X) +DB(X). In addition, we have to identify for
all z ∈ DI(X) the two elements Dis(z) and Dib(z), again seen as elements in DS(X)+DB(X).

In the right diagram, we have, analogously, that the elements in D12 force identifications
of elements in D1 and D2, seen as elements in D1 + D2 + D3, the elements D13 force
identifications of elements in D1 and D3, seen as elements in D1 +D2 +D3, and the elements
in D23 force identifications of elements in D2 and D3, seen as elements in D1 +D2 +D3.

Generalizing the examples we want to coin the following definition.

Definition 6.4 (Branching Components). For a finite directed multigraph I we denote by
Br(I) the set of all branching indices, i.e., of all indices with, at least, two outgoing edges.
For a diagram D ∶ I→ SetB we say that Di is a branching component if i ∈ Br(I).

A sequence of edges p = (i0
d0→ i1

d1→ . . .
dn−1→ in) in I is called a branch, if i0 ∈ Br(I) and

in ∈Min(I).
Note, that Br(I) and Min(I) are disjoint by definition. Thus any branch has at least

length 1. Note further, that branching indices can be connected in I, in contrast to minimal
indices. To illustrate our discussion and definitions we consider a simple toy example.

22 H. KÖNIG AND U. WOLTER

Example 6.5. Let I =

1
a // 2
b

��

4 c
//

e

%%
5

d
// 6

g��
h
��

3 7

f

OO

8 9
l // 10

Here we have Min(I) = {3,8,10}, Br(I) = {4,6} and the four branches (4 c→ 5
d→ 6

g→ 8),
(4 c→ 5

d→ 6
h→ 9

l→ 10), (4 e→ 6
g→ 8), and (4 e→ 6

h→ 9
l→ 10).

The indices 1 and 7 are irrelevant and we can jump over the indices 5 and 9. We can
also jump over the index 2, but since 1 is irrelevant also 2 becomes irrelevant. Be aware
that the edges c, d, e constitute an undirected cycle in I.

Branching indices give rise to special positions in mapping paths:

Definition 6.6 (Branching Position in Proper Paths). For a pair of subsequent segments

(yj−1, d
op, yj), (yj , d′, yj+1)

of a proper mapping path P (hence d /= d′) the position j is called a branching position of P .
Consequently ιj is a branching index of I.

A specialized construction of colimits: Now, we have everything at hand to describe a
construction of colimits in presheaf topoi. Let I be a finite directed multigraph with no
directed cycles. Then we can construct the colimit of a diagram D ∶ I→ SetB as follows:

(1) Construct the coproduct ∐i∈Min(I)Di (by sortwise coproducts in Set).

(2) For each pair p = (i d→ . . .→ j), p′ = (i d
′
→ . . .→ j′) of branches in I with common source

i ∈ Br(I) and d /= d′, and for each sort X ∈ B there is the set

≈p,p
′

X ∶= {(⊆j (Dp(y)),⊆j′ (Dp′(y))) ∣ y ∈ Di(X)}
of pairs (primary identifications) in∐i∈Min(I)Di.11 Each pair is represented by a mapping
path (called a primary mapping path) connecting the pair’s components12. By ≈X we

denote the union of all those sets ≈p,p
′

X for sort X. This results in a family ≈= (≈X)X∈B
of binary relations in ∐i∈Min(I)Di.

(3) Construct the smallest congruence ≅= (≅X)X∈B in ∐i∈Min(I)Di which comprises ≈ by
enlargement with transitive (i.e. concatenation of primary mapping paths) and reflexive
(empty mapping paths) closure13.

(4) Construct the colimit object as the sortwise quotient (∐i∈Min(I)Di)/ ≅ and get, in such
a way, also the canonical morphisms []≅ ∶ ∐i∈Min(I)Di → (∐i∈Min(I)Di)/ ≅.

(5) The colimiting cocone of diagram D is given by

D κ⇒ (∐
i∈Min(I)

Di)/ ≅ (6.1)

11 Recall the previous definition of Dp in Sect. 6.2 as the compositions of all Dd with d an arrow of path p
12It can be shown inductively over the path length that each pair can even be represented by a path with

exactly one branching position.
13≈ is already symmetric by definition and the transitive closure preserves symmetry. It is then easy to

see that compatibility with operation symbols holds.

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 23

where κi ∶= []≅○ ⊆i for all minimal indices i ∈ Min(I) and κi ∶= κj ○ Dp for all other
indices i ∈ I0 ∖Min(I), where p = (i→ . . .→ j) is an edge sequence from i to j ∈Min(I).

A detailed proof for the validity of (6.1) is given in [12]. Note, that the definition of κi
is independent of the choice of p since we have, by construction, κj ○ Dp = κj′ ○ Dp′ for all
branches p = (i→ . . .→ j), p′ = (i→ . . .→ j′) in I with a common source.

The main advantage of this construction is that mapping paths are now computed
traversing branching components only. These components, however, are often just tiny
”connectors” as in Fig.1. Note, that all the components Di with i ∈Min(I) not being the
target of any branch are not affected by the quotient construction, i.e. congruence classes
[z]≅ are singletons for all z ∈ Di(X). In Example 6.5 this is the case for index 3. Let Af(I)
denote the set of all affected minimal indices. We could then be even more specific and
construct the colimit object as

(∐
i∈Min(I)∖Af(I)

Di) + (∐
i∈Af(I)

Di)/ ≅ (6.2)

6.4. Efficient Checking of the Van Kampen Property. Based on (6.2) we can conclude,
independent of Corollary 6.2, that a diagram D ∶ I→ SetB is VK if I, in addition of being
finite and having no directed cycles, does not have branching indices either. In this case,
Af(I) is empty and the colimit of the diagram is simply given by the coproduct of all
minimal components, thus the VK property of the diagram is ensured by the VK property of
coproducts (extensivity) and pullback composition. In the presence of branching, however,
we do not have VK for free. We have to check one of the conditions in Cor.6.2.

The specialized colimit construction (6.2) suggests another practical relevant possibility
to reduce our effort for checking VK in case I has no directed cycles. In applications that
deal with nets of software components (e.g. multimodels), there is usually only one type
of relation between the components: Relations either specify sameness of model elements,
versions of one model element in evolving environments, or elements to be preserved when
applying transformation rules [3]. Thus, rarely will it be the case that there are two or more
morphisms in the same direction between two given components. An even weaker and also
reasonable claim for two different relations is that they don’t interfere in common codomains,
thus the following definition is not too restrictive:

Definition 6.7 (Image-Disjointness). A diagram D ∶ I→ SetB is called image disjoint, if for
each pair of different branches p = (i→ . . .→ j), p′ = (i→ . . .→ j′) in I starting in the same
branching index i and all elements y ∈ Di(X), X ∈ B we have Dp(y) /= Dp′(y).
Fact 6.8. If D is not image-disjoint, the colimt D ⇒∆S does not have the Van Kampen
property.

Proof. The two different branches p, p′ and y ∈ Di(X) with Dp(y) = Dp′(y) yield two different
mapping paths from y to Dp(y). Thus the result follows from Cor.6.2.

If there are no undirected cycles in I, then we have image disjointness for free, because
we always assume that all components Di are pairwise disjoint. If there are undirected cycles
in I, as in the case of coequalizers, for example, it can happen that j = j′. Thus we have to
test, first, for image disjointness before the ”different paths criterion for paths connecting
affected minimal components” below can be applied. Note, that image disjointness implies
that we have Dp(y) /= Dp′(y) for all y ∈ Di(X), X ∈ B not only for branches but for arbitrary

24 H. KÖNIG AND U. WOLTER

pairs of paths p = (i → . . . → j), p′ = (i → . . . → j′) starting in a common branching index
i ∈ Br(I) but not necessarily ending at a minimal index.

Theorem 6.9 (Different Paths Connecting Affected Minimal Components). Let G = SetB
and D ∶ I→ G be a diagram with I a finite directed multigraph without directed cycles. Let

D κ⇒∆S

be a colimiting cocone with image-disjoint D. The following are equivalent:

(1) The cocone has the Van Kampen property
(2) ∀X ∈ B, i, j ∈ Af(I), z ∈ Di(X), z′ ∈ Dj(X) ∶ There are no two different proper

paths from z to z′

(3) ∀X ∈ B, i, j ∈ Af(I), z ∈ Di(X), z′ ∈ Dj(X) ∶ There are no two different inner-cycle
free proper paths from z to z′

Proof. The proof of Theorem 6.9 is rather elementary and is given in [12].

According to this theorem and according to (6.2), it is only necessary for an algorithm
to iterate over branching components and compute paths into potentially affected minimal
components. For instance, one has to consider only the small components D12,D13,D23 in
Fig.1. Again the implementation is independent of whether it ignores inner-cycle free paths
or not. It is, however, not guaranteed to find disjoint paths, if VK is violated.

The absence of directed cycles and the presence of image-disjointness are reasonable
requirements for many practical use-cases. But circumstances can often be further nar-
rowed. In the rest of this section we consider some other possibly satisfied properties and
corresponding alternative checking methods which can simplify VK verification.

Monomorphisms: In some practical cases, the morphisms of D specify relations between
components Di and Dj such that an element in Di is related to at most one element of
Dj . In this case all the morphisms Dd, with d an edge in I, are monomorphisms. In such a
diagram any mapping path P is completely determined by y0 (or yn) and the corresponding
sequence [δ0, ..., δn−1] of edges and opposed edges in I. Due to Theorem 6.9, the diagram
may be not VK only if there are two different sequences of edges and opposed edges between
two distinct affected indices in I. As long as there are no undirected cycles in I this can not
happen, thus the diagram is VK, if there are no undirected cycles in I.

If there are undirected cycles in I it is surely not enough to require image-disjointness
as defined in Def.6.7, see also Fig.1. Instead, we can ensure VK by the stronger requirement
that all the undirected cycles in I are broken in D: An undirected cycle of edges in I is
broken in D if for one of the situations

. . .
dn−1Ð→ ⋯ d0Ð→

d′0←Ð ⋯
d′m−1←Ð . . .

in the edge sequence with 1 ≤ n,m the morphisms Dd0 ○ . . . ○ Ddn−1 and Dd′0 ○ . . . ○ Dd′m−1 are
image disjoint.

In the example in Figure 1 this condition is not satisfied. In the example ”parametrized
specification with import”, however, it is quite natural that Dib and Dr are image disjoint
since the ”imported component” DI is not part of the ”parameter component” Dp.

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 25

start // Directed
cycles in I?

yes
��

no // Branching
in I?

no

��

yes // D image-
disjoint?

yes //

no

��

Only
monic’s
in D?

yes
��

no

{{

One Di(X)
on the cycle

finite? yes

%%

no
��

All undirected
cycles

broken in I?

yes

yy

no
��

Apply
Cor.6.2

not VK VK
Apply

Thm.6.9

Figure 4: Decision diagram

6.5. Decision Diagram and VK Verification Algorithm. In practical cases, as outlined
e.g. in Sect.3.3, colimit computation is obligatory. Verification of the Van Kampen property
must follow, if we want to verify compositionality. It would thus be a nice side effect to
have a possibility to check VK simultanously with colimit computation such that there is no
increase in time complexity! We will now shortly discuss, that with the results gained so far,
this is indeed possible.

For this, let’s summarize the outcome of the previous sections as a decision algorithm,
see Fig.4. With the exception of rare cases in which there is a directed cycle in I whose
component carrier sets are all infinite, it is possible to easily reach an early decision, if either
there are directed cycles in I or if there is no branching in I. This analysis is restricted to
the small graph I. In the presence of branching, the natural next step is to check violation of
image-disjointness in D to immediately deduce violation of VK (Fact 6.8). Image-disjointness
can immediately be confirmed, if all branches diverge. Otherwise, the mapping behavior
along branches has to be investigated, which may be more costly.

Hence the combined algorithm for colimit computation and Van Kampen verification
comprises the following steps:

(1) Preprocessing of the data shows whether we are on a decision route in Fig.4 on which
Thm.6.9 will be applied. In this case there are no directed cycles in I and D is image-
disjoint.

(2) vk ∶= true;
(3) ≅X ∶= {(z, z) ∣ z ∈ Dj(X), j ∈Min(I)} for all X ∈ B;
(4) For each branching component Di, each X ∈ B and for each y ∈ Di(X), do:

(a) Add images (z, z′) to ≅X according to primary identifications in step 2 in the
specialized colimit computation.

(b) Keep ≅X transitive by adding all arising transitive pairs from the last enhancement.
(c) Whenever in the two previous steps a pair (z, z′) is added for the second time,

vk ∶= false (cf. Theorem 6.9).
(5) Compute colimit cocone κ as in (6.1) using the family ≅= (≅X)X∈B.
(6) Return (κ, vk)

26 H. KÖNIG AND U. WOLTER

7. Conclusion and Future Work

In general, arbitrary diagrams in arbitrary categories are not VK. Even if we restrict to
presheaf topoi, many diagrams are not VK. In the paper we presented a feasible condition
(Thm. 3.5) to check if a diagram in a presheaf topos is VK or not.

As suggested by the example in Sect.3.3, modelers may well work with a non-VK-
diagram (of software models), if they have a common understanding of the used natural
transformation τ ∶ E ⇒ D, i.e., if they know how to avoid ”twisting anomalies” as shown in
the example. Hence, the natural next step will be to look for feasible conditions that a given
τ ∶ E ⇒ D is in the image of κ∗, even if the diagram is not VK. We may allow non-uniqueness
of mapping paths in diagrams of models, but then paths in the diagram of instances have
to be exact copies of them, i.e., path liftings from models to instances must behave like
discrete fibrations. It is worth to underline that the instances we get from a given ”indexed
semantics” via a corresponding variant of the Grothendieck construction [28] are always
contained in the image of κ∗ up to isomorphism.

An interesting research direction arises from counter-examples in Sect. 5. It seems to
be easy to find categories, where necessity of the Van Kampen property is violated although
path uniqueness holds. Although being artificial and practically not relevant, the example
showing violation of path uniqueness despite validity of VK is interesting: there do not seem
to be other substantially different examples of this type. Is it possible to have violation of
path-uniqueness and still validity of the Van Kampen property in more practical examples?
We conjecture that the implication ”VK ⇒ Path-Uniqueness” is very natural and holds in a
wider variety of (set-based) categories.

For topologists being familiar with homotopy theory [20], violation of path uniqueness
strongly resembles (continuous) paths that can not be contracted to a point. Hence, an
interesting further research direction is to investigate, how path lifting (e.g. of covering
morphisms) is connected with our investigations. Moreover, discrete unique path lifting
is discussed in the theory of (split) fibrations [25]. The ultimate goal, however, is to find
a categorical counterpart for the path-uniqueness criterion (Theorem 3.5), which states a
necessary and sufficient condition for validity of the Van Kampen property in more general
categories. Is such a condition significantly different from the bilimit condition mentioned in
the introduction and the universal property in [7] and can we benefit from results of higher
order category theory, e.g. [17]?

References

[1] M. Bunge and S. Lack. Van Kampen Theorems for Topoi. Advances in Mathematics, 179:291 – 317,
2003.

[2] Z. Diskin and U. Wolter. A Diagrammatic Logic for Object-Oriented Visual Modeling. Electr. Notes
Theor. Comput. Sci., 203(6):19–41, 2008. doi:10.1016/j.entcs.2008.10.041.

[3] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformations.
Springer, 2006.

[4] Hartmut Ehrig, M. Grosse-Rhode, and U. Wolter. Applications of Category Theory to the Area of
Algebraic Specification in Computer Science. Applied Categorical Structures, 6:1–35, 1998.

[5] Jose Luiz Fiadeiro. Categories for Software Engineering. Springer, 2005.
[6] Robert Goldblatt. Topoi: The Categorial Analysis of Logic. Dover Publications, 1984.
[7] T. Heindel and P. Sobociński. Van Kampen Colimits as Bicolimits in Span. In A. Kurz, M. Lenisa, and

A. Tarlecki, editors, Algebra and Coalgebra in Computer Science, volume 5728 of Lecture Notes in Comput.
Sci., pages 335–349. Springer Berlin / Heidelberg, 2009. doi:10.1007/978-3-642-03741-2_23.

http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://dx.doi.org/10.1007/978-3-642-03741-2_23

VAN KAMPEN COLIMITS AND PATH UNIQUENESS 27

[8] G Janelidze and W. Tholen. Facets of Descent, I. Appl. Categorical Structures, 2:245–281, 1994.
doi:10.1007/BF00878100.

[9] Wolfram Kahl. Collagories: Relation-algebraic Reasoning for Gluing Constructions. J. Log. Algebr.
Program., 80(6):297–338, 2011. doi:10.1016/j.jlap.2011.04.006.

[10] Wolfram Kahl. Categories of Coalgebras with Monadic Homomorphisms, pages 151–167. Springer, Berlin,
Heidelberg, 2014. doi:10.1007/978-3-662-44124-4_9.

[11] Harald König, Michael Löwe, Christoph Schulz, and Uwe Wolter. Van Kampen Squares for Graph Trans-
formation. In Graph Transformation - 7th International Conference, ICGT 2014, Held as Part of STAF
2014, York, UK, July 22-24, 2014. Proceedings, pages 222–236, 2014. doi:10.1007/978-3-319-09108-2_
15.

[12] Harald König and U. Wolter. Van Kampen Colimits in Presheaf Topoi. Technical report, University of
Applied Sciences, FHDW Hannover, 2016. URL: http://fhdwdev.ha.bib.de/public/papers/02016-02.
pdf.

[13] Harald König and U. Wolter. Being Van Kampen is a Uniqueness Property in Presheaf Topoi. CALCO
2017 Pre-Proceedings. URL: http://coalg.org/mfps-calco2017/calco-papers/calco2017-16.pdf

[14] S. Lack and P. Sobociński. Adhesive Categories. In Foundations of Software Science and Com-
putation Structures (FoSSaCS ’04), volume 2987, pages 273–288. Springer, 2004. doi:10.1007/

978-3-540-24727-2_20.
[15] S. Lack and P. Sobociński. Toposes are Adhesive. Lecture Notes in Comput. Sci., 4178:184–198, 2006.

doi:10.1007/11841883_14.
[16] Michael Löwe. Van Kampen Pushouts for Sets and Graphs. Technical report, University of Applied

Sciences, FHDW Hannover, 2010.
[17] Jacob Lurie. Higher Algebra. http://www.math.harvard.edu/~lurie/papers/HA.pdf, Sept. 2017.
[18] Moerdijk I. Mac Lane, S. Sheaves in Geometry and Logic. A first introduction to topos theory. Springer,

1992.
[19] Saunders Mac Lane. Categories for the Working Mathematician, Second edition. Springer, 1998.
[20] J.P. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. The University of

Chicago Press, 1999. URL: http://dx.doi.org/10.1007/978-3-642-17336-3.
[21] Mehrdad Sabetzadeh, Shiva Nejati, Sotirios Liaskos, Steve M. Easterbrook, and Marsha Chechik.

Consistency Checking of Conceptual Models via Model Merging. In Requirements Engineering Conference,
pages 221–230, 2007.

[22] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal Software
Development. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2012. URL:
http://dx.doi.org/10.1007/978-3-642-17336-3, doi:10.1007/978-3-642-17336-3.

[23] Herbert Seifert. Konstruktion dreidimensionaler geschlossener Räume. Dissertation, University of
Dresden, 1931.

[24] P. Soboczińsky. Deriving Process Congruences from Reaction Rules. Technical Report DS-04-6, BRICS
Dissertation Series, 2004.

[25] T. Streicher. Fibred Categories à la Jean Bénabou https://arxiv.org/pdf/1801.02927v2.pdf, 2004.
[26] E. R. van Kampen. On the Connection between the Fundamental Groups of some Related Spaces.

American Journal of Mathematics, 55:261 – 267, 1933.
[27] A. Vistoli. Grothendieck Topologies, Fibered Categories and Descent Theory. Fundamental Algebraic

Geometry, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 2005, 123:1 – 104, 2005.
[28] U. Wolter and Z. Diskin. From Indexed to Fibred Semantics – The Generalized Sketch File –. Reports

in Informatics 361, Dep. of Informatics, University of Bergen, 2007.
[29] U. Wolter and H. König. Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi.

Applied Categorical Structures, 23(3):447 – 486, 2015. doi:10.1007/s10485-013-9339-2.
[30] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University

Press 1987
[31] U. Wolter. An Algebraic Approach to Deduction in Equational Partial Horn Theories. J. Inf. Process.

Cybern. EIK 27(2): 85 – 128, 1990
[32] U. Wolter, M. Klar, R. Wessäly, F. Cornelius. Four Institutions – A Unified Presentation of Logical

Systems for Specification. TU Berlin, Fachbereich Informatik, 1994, 94-24

http://dx.doi.org/10.1007/BF00878100
http://dx.doi.org/10.1016/j.jlap.2011.04.006
http://dx.doi.org/10.1007/978-3-662-44124-4_9
http://dx.doi.org/10.1007/978-3-319-09108-2_15
http://dx.doi.org/10.1007/978-3-319-09108-2_15
http://fhdwdev.ha.bib.de/public/papers/02016-02.pdf
http://fhdwdev.ha.bib.de/public/papers/02016-02.pdf
http://coalg.org/mfps-calco2017/calco-papers/calco2017-16.pdf
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/11841883_14
http://www.math.harvard.edu/~lurie/papers/HA.pdf
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/978-3-642-17336-3
https://arxiv.org/pdf/1801.02927v2.pdf
http://dx.doi.org/10.1007/s10485-013-9339-2

	1. Introduction
	1.1. Motivation
	1.2. Related Work

	2. Preliminaries
	3. An Equivalent Condition for the Van Kampen Property
	3.1. Van Kampen Colimits
	3.2. Equivalent Condition
	3.3. Application of Theorem ??

	4. An Outline of the Proof of Theorem ??
	4.1. Pushouts
	4.2. From Pushouts to Coequalizers
	4.3. From Coequalizers to Colimits
	4.4. Combining the Results

	5. Counterexamples in other Categories
	5.1. Path Uniqueness, but no Isomorphic Unit
	5.2. Path Uniqueness but no Isomorphic Co-Unit
	5.3. Van Kampen holds, but Path Uniqueness is Violated

	6. Practical Guidelines
	6.1. Relevant Types of Mapping Paths
	6.2. Cyclic Shape Graphs
	6.3. Specialized Construction of Colimits
	6.4. Efficient Checking of the Van Kampen Property
	6.5. Decision Diagram and VK Verification Algorithm

	7. Conclusion and Future Work
	References

