
Logical Methods in Computer Science
Vol. 13(4:6)2017, pp. 1–21
https://lmcs.episciences.org/

Submitted Sep. 08, 2016
Published Nov. 06, 2017

BOUNDED DEGREE AND PLANAR SPECTRA

ANUJ DAWAR AND ERYK KOPCZYŃSKI

Department of Computer Science and Technology, University of Cambridge, J.J. Thomson Avenue,
Cambridge CB3 0FD, England
e-mail address: anuj.dawar@cl.cam.ac.uk

Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
e-mail address: erykk@mimuw.edu.pl

Abstract. The finite spectrum of a first-order sentence is the set of positive integers that
are the sizes of its models. The class of finite spectra is known to be the same as the
complexity class NE. We consider the spectra obtained by limiting models to be either
planar (in the graph-theoretic sense) or by bounding the degree of elements. We show that
the class of such spectra is still surprisingly rich by establishing that significant fragments
of NE are included among them. At the same time, we establish non-trivial upper bounds
showing that not all sets in NE are obtained as planar or bounded-degree spectra.

1. Introduction

The spectrum of a sentence φ of some logic, denoted spec(φ), is the set of positive integers n
such that φ has a model of cardinality n. In this paper we are solely concerned with first-
order logic and we use the word spectrum to mean a set of integers that is is the spectrum
of some first-order sentence. Scholz in [Sch52] posed the question of characterizing those
sets of integers which are spectra. This question has spawned a large amount of research.
In particular, Fagin’s attempt to answer Asser’s question of whether the complement of
a spectrum is itself a spectrum launched the field of descriptive complexity theory. An
excellent summary of the history of the spectrum question and methods used to approach it
are given in the survey by Durand et al. [DJMM12].

An exact characterization of the sets of spectra of first-order sentences can be given
in terms of complexity theory. This result, obtained by Fagin [Fag74] and by Jones and
Selman [JS74] states that a set S ⊆ N is a spectrum if, and only if, the binary representations
of integers in S can be recognised by a non-deterministic Turing machine running in time
2O(n). In the language of complexity theory, we say that the class of spectra is exactly the
complexity class NE.

Besides characterizations of the class of spectra, researchers have also investigated how
the class is changed by restrictions, either on the form of the sentence φ or on the class of
finite models that we consider. A particularly fruitful line of research in the former direction
has investigated the spectra of sentences in a restricted vocabulary. It is an easy observation

Key words and phrases: spectra, finite model theory, planar graphs, bounded degree graphs.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(4:6)2017
c© A. Dawar and E. Kopczyński
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 A. DAWAR AND E. KOPCZYŃSKI

that if the vocabulary includes only unary relations, then the spectrum of any sentence
is either finite or co-finite. Durand et al. [DFL98] investigate the spectra of sentences in
vocabularies with unary relations and one unary function and show that the class of such
spectra is exactly the ultimately periodic (or semilinear) sets of natural numbers. On the
other hand, if we allow two unary functions or one binary relation in the vocabulary, there
are spectra that are NEXPTIME-complete [Fag74, DR96]. However, since the class of
these spectra is not closed under polynomial-time reductions, it does not follow that it
includes all of NEXPTIME or indeed even all of NE. Whether every spectrum spectrum
S is the spectrum of a sentence in such a vocabulary remains an open question. The results
of [DFL98] have also been extended beyond first-order logic to monadic second-order logic
by Gurevich and Shelah [GS03].

In the present paper, we investigate the spectra that can be obtained by restricting
the class of models considered. To be precise, we consider restrictions on the Gaifman (or
adjacency) graph of the structure. We want to explore what reasonable restrictions on such
graphs make for a more tractable class of spectra. This is in the spirit of a recent trend in
finite model theory aimed at investigating it on tame classes of structures (see [Daw07]).

Fischer and Makowsky [FM04] show that if K is a class of structures generated by a
certain class of graph grammars known as eNCE-grammars (see [Kim97]) and all models of
φ are in K, then spec(φ) is ultimately periodic. Here, φ can be a formula of monadic second
order logic with counting (CMSO). Classes of graphs generated by eNCE-grammars include
TWd, the class of structures of tree-width at most d, and CWd, the structures of clique
width at most d. It is not difficult to show that every semilinear set of natural numbers can
be obtained as such a spectrum.

The restricted classes of structures we investigate in this paper are those of bounded
degree and those whose Gaifman graph is planar. We also consider the two restrictions
in combination. There are two ways that we can define spectra of first-order sentences
restricted to a class of structures C. We can define the class of C-spectra as the spectra of
those sentences φ all of whose models are in C. Alternatively, we can define the class of
C-spectra as the class of sets S ⊆ N such that there is a first-order sentence φ and n ∈ S iff
there is a model of φ in C of cardinality n. If C is itself first-order definable (for instance if
it is the class of graphs of degree at most k for some fixed integer k), then the two notions
coincide. Otherwise, the first is more restrictive than the second.

Our lower bound results show that the class of spectra obtained by restricting to bounded
degree and to planar graphs are still quite rich. In particular, Theorem 4.1 shows that the
class of spectra of structures of degree at most 3 still contains all sets S of integers for which
N ∈ S is decidable by a nondeterministic machine running in time O(N) (which is time
exponential in the binary representation of N). Similar (though somewhat weaker) lower
bounds are established for classes of structures which are required to be both planar and of
bounded degree in Theorems 6.1 and 6.2.

On the other hand, the upper bounds show that the class of spectra we obtain is strictly
weaker than the class of all spectra. In particular we establish, for the bounded degree
restriction, in Theorem 5.2 a complexity upper bound on the class of spectra obtained.
This, along with the non-deterministic time hierarchy theorem [SFM78] establishes that this
class of spectra is not the whole class NE. Theorem 6.3 establishes a related complexity
upper bounds on the class of spectra for bounded degree planar graphs. Dropping the
degree restriction, we can obtain a complexity upper bound on planar spectra from results of

BOUNDED DEGREE AND PLANAR SPECTRA 3

Frick and Grohe [FG01] from which again it follows that this is not the class of all spectra,
answering negatively Open Question 6 from [DJMM12].

2. Preliminaries

For a relational vocabulary τ (i.e. a finite collection of constant and relation symbols), a
τ -structure A is a set A along with an interpretation in A of every symbol in τ . We will
confine ourselves to vocabularies τ in which all symbols are binary or unary. The Gaifman
graph Γ(A) of A is the graph on the vertex set A such that two distinct vertices u and v
are adjacent if, and only if, either (u, v) or (v, u) occurs in the interpretation in A of some
binary relation in τ . We say that the degree of A is bounded by d if, in Γ(A) no vertex is
adjacent to more than d others. Similarly, we say that A is planar if Γ(A) is.

2.1. Partial function symbols. For the most part, we will consider structures in which
every binary relation in τ is interpreted as the graph of a partial injective unary function
(PIF). To emphasise this, we use functional notation and write, for instance, t1(x) = t2(y)
as shorthand for the formula that says that the terms t1(x) and t2(y) are defined and their
interpretations are equal. Thus, for example, f(x) = f(x) is equivalent to saying that f(x)
is defined.

A structure interpreting d such partial injective function symbols is always of degree at
most 2d. Conversely, if we have a graph of degree d, by Vizing’s theorem [Viz64] we can
colour the edges with d+ 1 colours in a way such that all edges incident with a given vertex
are of different colours. We can then represent such structures using 2d− 1 partial injective
function symbols. This establishes that in considering the spectra of first-order sentences
over bounded-degree structures, there is no loss of generality in considering structures in
which all binary relations are PIFs.

Definition 2.1. Let PIFSpecd denote the set of S ⊆ N such that S is a spectrum of some
sentence φ using only unary relations and d PIF symbols.

Proposition 2.2. If S ∈ PIFSpecd, then the following are also in PIFSpecd:

(1) S ∪ {n},
(2) S − {n},
(3) {x+ 1 : x ∈ S},
(4) {x ∈ N : x+ 1 ∈ S}.

Proof. Let φ be a sentence whose spectrum is S, witnessing that S ∈ PIFSpecd. Also let
ηn be the first-order sentence that states that there are exactly n distinct elements in the
universe. Then, (1) is obtained as the spectrum of the sentence φ ∨ ηn and (2) is obtained
as the spectrum of φ ∧ ¬ηn.

To establish (3), extend the vocabulary by a new unary relation symbol R and let ρ
be the sentence that says that there is exactly one element not in R. Now, consider the
spectrum of the sentence ρ ∧ φR, where φR denotes the sentence obtained by relativising all
quantifiers in φ to R.

Finally, for a structure A and an element a in its universe, we can define a structure A∗

by removing the element a and expanding the structure with 2d additional unary relations
that code all the various ways that elements could be connected to a. That is, for each PIF
symbol f , we have unary relations R→f and R←f so that R→f (b) if, and only if, f(b) = a and

4 A. DAWAR AND E. KOPCZYŃSKI

R←f (b) if, and only if, f(a) = b. It is now not difficult to translate the sentence φ into a

sentence φ∗ so that A |= φ iff A∗ |= φ∗. In particular, φ∗ asserts that R←f has at most one

element.

We now establish the relationship between PIFSpecd and spectra over graphs of
bounded degree.

Definition 2.3. Let BDSpecd denote the class of sets S such that S is a spectrum of some
sentence φ in a vocabulary with one binary relation E and some number of unary relations
such that every model of φ interprets E as a symmetric relation and has degree at most d.

The following theorem allows us to simplify formulae using lots of symbols to formulae
using only a single symmetric binary relation of degree 3.

Theorem 2.4. If S ∈ PIFSpecd then {2dn+ l : n ∈ S} is in BDSpec3 for any l.

Proof. Let φ be a formula using d PIF symbols f1, . . . , fd such that S is the spectrum of φ
and let A be a structure of the same vocabulary. Define the vocabulary τ to contain the
binary relation E and d additional unary predicates P1, . . . , Pd. We define a τ -structure G
by replacing each element a of A with a gadget consisting of a simple E-path of vertices
p1(a), . . . , pd(a), q1(a), . . . , qd(a), where pi(a) and qi(a) both satisfy Pi and no other predicate
from P1, . . . , Pd. If fi(a) = a′, there is an edge between pi(a) and qi(a

′). In addition G
contains l isolated vertices. It is easily verified that G has degree bounded by 3.

It is easy to write a formula φg of first-order logic whose models are exactly the coloured
graphs G obtained in this way. And, it is also easy to see that A can be interpreted in G.
Combining these, we get a sentence whose spectrum is exactly {2dn+ l : n ∈ S}.

We are also interested in spectra obtainable by models which are planar graphs. We
write PPifSpecd to denote the set of S ⊆ N such that S is a planar spectrum of some
formula φ using only unary relations and d PIF symbols. That is to say, n ∈ S iff there is
some planar structure A such that A |= φ. Note that there is no obvious inclusion either way
between PPifSpecd and PIFSpecd. Some S ∈ PIFSpecd may be witnessed by a formula
φ which in some cardinalities has only non-planar models. On the other hand, as planarity
is not itself definable in first-order logic, the set S′ of those n for which φ has planar models
of size n may not be itself the spectrum of a first-order sentence. We write FPPifSpecd
to denote the set of S ⊆ N such that S is a spectrum of some formula φ using only unary
relations and d PIF symbols, and such that all models of φ are planar sets. FPPifSpecd is
a subset of both PIFSpecd and PPifSpecd.

2.2. Complexity classes. Our aim is to characterize spectra using complexity theory. For
this purpose, we define complexity classes of sets of numbers in terms of resource bounds on
machines accepting the binary representations of numbers.

We write NTIME2(f(N)) to denote the class of sets S ⊆ N such that there is a
nondeterministic multi-tape Turing machine that for any N accepts the binary representation
of N iff N ∈ S and runs in time O(f(N)). If we interpret the classes NP and NE as sets of

numbers in this way, then NP =
⋃
k NTIME2(logk(N)) and NE =

⋃
k NTIME2(Nk). By

results of Fagin [Fag74] and Jones and Selman [JS74], we know that NE is exactly the class
of first-order spectra. In the present paper we will relate bounded-degree and planar spectra
to the classes NTIME2(N logk(N)), which are between NP and NE. Indeed, by the time

BOUNDED DEGREE AND PLANAR SPECTRA 5

hierarchy theorem for nondeterministic machines [SFM78], the classes are strictly between
NP and NE.

We also write NTISP2(T (N), S(N)) to denote the class of sets S ⊆ N such that there
is a nondeterministic Turing machine accepting the binary representation of N iff N ∈ S and
running in time O(T (N)) and space O(S(N)). We write NTS2(f(N)) to denote the union
of NTISP2(T (N), S(N)) over all functions T and S such that T (N) · S(N) = O(f(N)).

These classes are less robust than the well known complexity classes such as P, NP, or
NEXPTIME because the functions bounding resources are not closed under composition
with polynomials. The classes are then sensitive to the exact computation model (e.g. single
tape Turing machine, an automaton with two stacks, multi-tape Turing machine, RAM),
and some of our results are stated for the specific model of automata with two stacks, or
equivalently, single tape Turing machines which can insert or delete symbols from the tape;
we use the symbol NTIMES

2 (f(N)) instead of NTIME2(f(N)) in this case.
However, the classes are somewhat robust in a weaker sense. The following is established

by standard methods of speed-up theorems by considering a larger tape alphabet.

Proposition 2.5. If a machine M recognizes the binary representations of elements of S
in time O(f(N)) = Ω(log3(N)), then for any α > 0 there is a machine M ′ recognizing the
same set and running in time αf(N) for all N > N0, for some N0 ∈ N.

Proposition 2.5 allows us to assume that a machine solving a problem in NTIME2(f(N))
actually solves it in time αf(N) for all N > N0. When relating complexity to spectra, the
finitely many exceptions N ≤ N0 are not important as a result of Proposition 2.2.

3. Basic structure

In this section, we describe a basic construction, consisting of the description of a structure
of each finite cardinality N , along with a first-order axiomatisation of this class of structures.
The structures in question are planar and of bounded degree and play an important role in
our results in encoding machine computations.

Let AN be the following structure over the vocabulary τ0 consisting of a single partial
function symbol f+1:

• the universe AN = {1, . . . , N},
• f+1(n) = n+ 1 for n < N ,
• f+1(N) is not defined.

Theorem 3.1. There is a FO formula φM over vocabulary τ1 ⊃ τ0 containing 2 PIF symbols,
such that φM has models of all non-negative integer cardinalities, and all models of φM
restricted to {f+1} are isomorphic to AN for some N . Moreover, all models of φM are
planar.

Proof. The vocabulary τ1 consists of two PIF symbols f+1 and f2x. Instead of writing f+1(x)
and f2x(x), we just write x+ 1 and 2x, respectively. We also use x+ k for the k-th iteration
of x+ 1.

The formula φM is a conjunction of the following statements:

(1) x+ 1 is defined for all values of x except one. In the sequel, we write N for the unique
x for which x+ 1 is not defined.

(2) For all values of x except one, there is an element y such that y + 1 = x. We write x− 1
to denote this y. The unique element x for which x− 1 is not defined is denoted 1.

6 A. DAWAR AND E. KOPCZYŃSKI

Figure 1: Basic spiral structure.

(3) If 2x and x− 1 are both defined for a given x, then (2(x− 1) + 1) + 1 is also defined,
and (2(x− 1) + 1) + 1 = 2x.

(4) We have 2 · 1 = 1 + 1.
(5) Either x = 2y for some y, or x+ 1 = 2y for some y.

It is straightforward to check that AN expanded with function f2x(x) = 2x is a model
of φM . Figure 1 shows that such models are indeed planar.

Next, we argue that, up to isomorphism, these are the only models of φM . Let A be
a model of φM . Suppose that the interpretation of f+1 has a cycle, i.e., there is an a ∈ A
such that a + k = a for some k > 0. Let l be the minimum length of such a cycle. From
condition 5 we know that every second element of this cycle is of the form 2x for some x.
In particular, l must be even. By condition 3 and the injectivity of f2x we know that the
elements x such that 2x is on the cycle must themselves form a cycle, this time of length
l/2. This contradicts the assumption that l is minimal.

Since there are no cycles, it follows from conditions 1 and 2 that each element of A is of
form 1 + (k − 1) for some integer k. Writing ak for this element, we can prove inductively
that 2(ak) = a2k. This means that ak 7→ k is the required isomorphism to AN (where
N = |A|).

The spectrum of φM is the set of all natural numbers which is not itself very interesting.
However, the structures we have axiomatized can be used to describe simple properties of
numbers in a simple way.

Example 3.2. Consider the vocabulary τ1 expanded with an additional unary relation P ,
and add an axiom: P (x) iff x = 1 or ∃y P (y) ∧ x = 2y. We can prove inductively that in
any expansion of AN that is a model of this axiom, P has to be interpreted as the set of
powers of two. Adding a further axiom P (N) we obtain a sentence whose spectrum is the
set of powers of two. Moreover, all models of this sentence are planar graphs.

We could also achieve a similar effect by adding a function x→ 2x to our vocabulary,
and the following axiom: 2x+1 = 2 · 2x ∧ 21 = 1 + 1. We can prove inductively that this
symbol has to be interpreted in the intended way. However, the models are no longer planar,
and as we add a new PIF, the degree bound increases to 6.

BOUNDED DEGREE AND PLANAR SPECTRA 7

Example 3.3. Consider the vocabulary τ1 expanded with an additional constant symbol
C and two additional functions that we denote x + C and x · C. We axiomatise these
PIFs by means of the following axioms: 1 + C = C + 1, (x + 1) + C = (x + C) + 1;
1 · C = C, (x + 1) · C = x · C + C. We can prove inductively that x + C and x · C are
interpreted in the intended way. By adding the following axioms: C 6= 1,∃y y 6= 1∧N = y ·C,
we obtain a sentence whose spectrum is the set of composite numbers, and all of whose
models are of degree at most 8.

Example 3.4. Consider the vocabulary τ1 expanded with an additional PIF F axiomatized
by the following axioms: F (1) = 2, F (n+ 1) = F (n) + 2 if ∃mF (m) = n, and F (n+ 1) =
F (n) + 1 if no such m exists. We also have an additional unary relation Φ and the axioms:
Φ(x) iff x = 1 or ∃y x = F (y) ∧ Φ(y); and Φ(N). It can be shown (by induction again) that
the spectrum of the resulting sentence is the set of Fibonacci numbers.

Our vocabulary here has three PIFs, so the structures have degree bounded by 6.
However, the function 2x is not necessary in this particular case. We could add the symbols
F and Φ to the vocabulary τ0 instead. We need an axiom similar to condition 5 in the
definition of φM , but for F (x) instead of 2x. With this F (x) is sufficient to fix the structure.
By removing the axioms related to the function 2x, we obtain a sentence whose spectrum is
again the set of Fibonacci numbers, and all of whose models are planar of degree at most 4.

Example 3.5. Consider τ1 expanded with a function symbol P axiomatized with the
following axioms: P (1) = N ; if P (x) 6= 1 then P (x) = 2P (x+ 1) or P (x) = 2P (x+ 1) + 1;
and if P (x + 1) is defined then P (x) is also defined. Let φ1(x) denote the value 1 if
P (x) = 2P (x + 1) + 1 and 0 if P (x) = 2P (x + 1). Let l be the unique element such that
P (l) = 1 and let φ1(l) = 1. Then φ1(l) . . . φ1(1) is the binary representation of N .

Example 3.6. Let S ∈ NTS2(N). We show that S ∈ PIFSpec4. This is a consequence of
Theorem 4.1 below, but we include the argument here as it is strikingly simple.

Example 3.5 allows us to axiomatise structures AN expanded with the binary representa-
tion of N . Example 3.3 then shows how to axiomatise a grid of width C and height C2, where
C × C2 ≤ N (we only use the functions x+ 1 and x+ C). Let C = S(N) and C2 = T (N).
Then on the grid, with additional unary relations, we can describe the computation of a
Turing machine in the standard way.

4. Lower bound: Turing machines via spectra

In this section we establish a lower bound, by showing that the class of bounded-degree
spectra includes all sets in NTIME2(N). The proof proceeds by constructing, from a Turing
machine A, a first-order sentence whose models are, in a sense we make precise, codings of
accepting computations of A. For simplicity of exposition, in the proof we confine ourselves
to machines with one tape, but the construction can easily be extended to machines with
two or more tapes.

Theorem 4.1. NTIME2(N) ⊆ PIFSpec6.

Proof. Suppose S ⊆ N is in NTIME2(N) and there is a single tape Turing machine A that
accepts the binary representation of N just in case N ∈ S and runs in time O(N). By
Proposition 2.5, we can assume that the running time T of A when the input is the binary
representation of N is such that for large enough values of N , 5T + 2 log T ≤ N .

8 A. DAWAR AND E. KOPCZYŃSKI

Our aim is to describe the construction of a first-order sentence φA which has a model of
size N if, and only if, the binary representation wN of N is accepted by A. The vocabulary
includes a unary relation R and the idea is that in any model of φA the substructure defined
by R is an encoding of an accepting computation of A on wN . The aim is to define this
encoding in such a manner that the size of this encoding is bounded by a linear function of
T , the running time of A. In particular, we will see that 5T + 2 log T ≤ N suffices.

Note that it is straightforward, by axiomatising a suitable T × T grid, to give such an
encoding that is quadratic in T . That is, we can axiomatise a model in which the elements
are pairs (x, y) representing a tape cell x at time y with unary relations coding the state
and tape contents of the machine. The challenge here is to give a linear size construction
and we achieve this by having single elements corresponding to a tape cell x over an interval
of time during which the content of the cell does not change. This is similar to the idea
behind the construction in [Gra84, Gra85] which is used to show that any set S ⊆ N that
can be decided in time O(N) on a nondeterministic random-access machine is the spectrum
of a sentence with unary function symbols.

Our vocabulary contains: three PIFs f←, f→, and f↑; the unary relation R; three
additional unary relations M , T←, T→; a unary relation Sq for each state q of A and a unary
relation Lc for each letter c of the tape alphabet of A.

We now describe the intended models of φA. These are encodings of accepting computa-
tions of A on an input wN . It should be noted that the encoding is not necessarily unique,
but φA does guarantee that it is a valid encoding and it is of size N .

In a model of φA, the intention is that each element e in the relation R represents a
pair x, [y1, y2) where x is a position on the tape and [y1, y2) (with y1 < y2) is an interval of
time in the computation. The meaning of the unary relation symbols, other than R can
then be given as follows. We have M(e) if, and only if, y2 = y1 + 1 and at time y1, the
machine is reading position x in the tape; T←(e) if, and only if, position x is to the left of
the position being read by the machine during the time interval [y1, y2) and T→(e) if, and
only if, position x is to the right of the position being read by the machine during the time
interval [y1, y2); Lc(e) if, and only if, the tape cell x during the interval [y1, y2) contains the
letter c; and Sq(e) if, and only if, M(e) and at time y1 the machine is in state q.

The PIFs f←, f→, and f↑ then connect these elements. If an element e corresponds to
position x and interval [y1, y2), then f↑(e) corresponds to position x and interval [y2, y3), for
some y3 with y3 > y2. Thus, f↑ is used to build a list of contents of the tape at position

x during consecutive time intervals. We write f↓ as an abbreviation for f−1
↑ . This enables

us to enforce the requirement that the contents of a tape cell do not change in between
successive visits of the tape head: if Lc(e) holds and M(e) does not hold, then LC(f↑(e))
must hold.

The e is an element corresponding to a pair x, [y1, y2) and f← is defined at e, then f←(e)
corresponds to a pair x− 1, [y1, y

′
2) for some y′2 ≥ y2. That is, f← points to the element on

the tape immediately to the left for a time interval starting at the same time and extending
at least as far. The function f← is defined only at elements e corresponding to positions at
or to the left of the tape head. That is, either M(e) or T←(e) must hold for f←(e) to be
defined. The idea is that since e corresponds to a position on the tape to the left of the tape
head, the tape head must pass through this position to get to to the position immediately
to its left. Thus, the position immediately to the left is unchanged for at least as long.
Moreover, we require that when f←(e) is defined, and corresponds to the pair x− 1, [y1, y

′
2)

with y′2 > y2, then f↑(e) corresponds to the pair x, [y2, y
′
2). Thus, from e, we get to the

BOUNDED DEGREE AND PLANAR SPECTRA 9

position immediately to the left during the same interval, either by taking f←(e) if it is
defined or f←(f↓(e)) otherwise. For ease of presentation, we introduced some abbreviations.
We write T+

←(e) as a shorthand for M(e) ∨ T←(e), i.e. to denote that e represents a position
at or to the left of the tape head. We also write F←(e) to denote the element f←(e) if it is
defined, and f←(f↓(e)) otherwise, i.e. the one that encodes the tape position immediately to
the left of the one represented by e, and during the same time interval.

The function f→ is to be interpreted symmetrically, taking an element e corresponding
to the pair x, [y1, y2) to an element coding the pair x+ 1, [y1, y

′
2) for some y′2 ≥ y2, provided

that M(e) ∨ T→(e) holds. Again, we write T+
→(e) as a shorthand for M(e) ∨ T→(e) and we

write F→(e) to denote the element f→(e) if it is defined, and f→(f↓(e)) otherwise.
We assume that there are two special elements marking the first and last positions on

the tape and that the associated time intervals cover the whole computation (i.e. these tape
cells are not changed). In what follows, we refer to these two special elements as l and r
respectively.

We now wish to express the following condition we refer to later as (?):

Suppose that M(e) and . . . , F 2
←(e), F←(e), e, F→(e), F 2

→(e), . . ., along with
the relations Sq and Lc on these elements, describes a configuration of A.
Then for some e′ (e′ = f↑(F→(e)) if in this configuration A moves right, and
e′ = f↑(F←(e)) ifAmoves left), the sequence . . . , F 2

←(e′), F←(e′), e′, F→(e′), F 2
→(e′), . . .

describes the next configuration of A.

The following axioms ensure this property. In all these, quantifiers are relativized to the set
R.

• M,T←, T→ is a partition of R;
• {Lc : c ∈ Σ} is a partition of R;
• {Sq} is a partition of {e : M(e)};
• if T→(e) then f←(e) is not defined, otherwise F←(e) is defined except when e = l; similarly,

if T←(e) then f→(e) is not defined, otherwise F→(e) is defined, unless e = r;
• the tape content does not change except under the tape head: if Lc(e) and not M(e) and
f↑(e) is defined then Lc(f↑(e));
• correctness of the right side of the tape (height 1): if M(e) or T→(e), and T→(f↑(e)), and
f→(e) is defined, and f→(f↑(e)) is defined, then f↑(f→(e)) = f→(f↑(e));
• correctness of the right side of the tape (height 2): ifM(e) or T→(e), and f↑(f↑(e)) is defined,

and f→(e) is defined, and f→(f↑(e)) is not defined, then f↑(f→(e)) = f→(f↑(f↑(e))),
• no greater height: if f↑(e) is defined and M(e) or T→(e), then f→(e) or f→(f↑(e)) is

defined;
• symmetric axioms for correctness of the left side of the tape;
• time zero: there is only one e such that M(e) and f↓(e) is not defined; if f↓(e) is not

defined, then f↓(f→(e)) and f↓(f←(e)) are also not defined;
• end of computation: there is only one e such that M(e) and f↑(e) is not defined and

for this e, Sq(e) for some final state q; if f↑(e) is not defined and F←(e) is defined then
f↑(F←(e)) is not; if f↑(e) is not defined and F→(e) is defined then f↑(F→(e)) is not;
• correctness of computation: if M(e) and Sq(e) and q is not a final state, then either
M(f↑(F→(e))) and f↑(e) = f←(f↑(F→(e))), or M(f↑(F←(e))) and f↑(e) = f→(f↑(F←(e)));
moreover, if Lc(e) and Lc′(f↑(e)), then there is a valid transition of A in state q to replace
c by c′ and move left or right as appropriate.

10 A. DAWAR AND E. KOPCZYŃSKI

Figure 2: Model coding the computation of a machine.

The construction is illustrated in Figure 2. In this figure, the large red circles depict
elements e for which M(e) holds while the smaller green circles represent other elements e.
The upward pointing arrows depict the partial function f↑, the rightward pointing arrows
depict the partial function f→ and the leftward pointing arrows depict the partial function
f←.

In addition to the above axioms (which ensure condition (?)), we can use the construction
from Example 3.5 to include in φA the condition that the initial contents of the tape are the
binary encoding of the size of the model itself. This ensures that if φA has a model of size N
then A accepts the binary encoding of N . The vocabulary contains in all six PIF symbols:
three from the construction above, two required by the construction from Theorem 3.1 and
one additional one for the construction in Example 3.5.

Now, we need to show that if the binary encoding wN of N is accepted by A, then there
is a model of φA of size N . Suppose that the accepting computation of A on input wN takes
time T and space S. We show that we can construct a model satisfying the axioms above
with at most S + 4T + 2 log T elements. Since we can assume S ≤ T and by assumption
5T + 2 log T ≤ N , this model has fewer than N elements. We can then obtain a model of
φA with exactly N elements by adding additional elements that are not included in R.

We construct, from the accepting computation of A, a model of the appropriate size by
the following iterative procedure:

• We have S + 2 log T elements coding the initial contents of the tape, along with log T
blank cells on either side of it. These are connected through the functions f← and f→.
• For each subsequent configuration of A, we add a layer of elements, which are connected

to previous layers using f↑. The new layer will always contain two elements corresponding
to the positions in the tape where the tape head was in the previous configuration and

BOUNDED DEGREE AND PLANAR SPECTRA 11

the position where it is in the new configuration. In addition to these two, we add new
elements to the layer by the following rule: if e has been added to the new layer, T+

→(e)
holds and F→(e) is not defined, then we add a new element which will be f→(e). Similarly,
if T+
←(e) holds and F←(e) is not defined, we add an element to be f←(e).

This is illustrated in Figure 2 which was obtained by running this procedure. In this case,
S = 5 and T = 14, but two cells of padding on either side suffice.

To obtain a bound on the size of this model, we note that the bottom layer contains
S + 2 log T elements. We want to show that the total number of elements in the additional
layers is bounded by 4T . We cannot put an absolute bound on the number of elements
added in each layer, but we use an amortized analysis to obtain the required bound. For
each element e for which M(e) holds, let the potential Φ(e) be defined to be the number of
elements in the sequence e, F→(e), F 2

→(e), . . . where f→(e) is not defined, plus the number
of elements in the sequence e, F←(e), F 2

←(e), . . . where f←(e) is not defined. If we add the
number of new elements created in a layer to the change of potential Φ(e), we can see that
the result will be always at most 4. Initially, the potential is 2. Thus the number of positions
added in T steps is at most 4T . It can be also easily checked that the padding of length
log T at each end of the tape is always sufficient.

The construction in the proof can also be understood as simulating not a single tape
machine, but an automaton with two stacks (given by T← and T→). It is straightforward to
generalize this construction to more stacks, or equivalently, more tapes.

Corollary 4.2. NTIME2(N) ⊆ BDSpec3.

Proof. Let S ∈ NTIME2(n). For each l = 0, . . . , 11, let Sl = {n : 12n+ l ∈ S}. The set Sl
is also in NTIME2(n). From Theorem 4.1, Sl is in PIFSpec6. From Theorem 2.4, the set
S′l = {n : n ∈ S ∧n mod 12 = l} is in BDSpec3. Since a union of spectra is also a spectrum
(if spec(φi) = Si, then spec(

∨
φi) =

⋃
Si), also S ∈ BDSpec3.

The construction we have given uses a large number of unary relations. Although
Corollary 4.2 shows that we can reduce the degree of the models to 3, it is unclear whether
we can also reduce the number of unary relations required.

5. Upper bound: spectra via Turing machines

In this section we aim to establish an upper bound on the class of bounded degree spectra.
To be precise, we show that any such spectrum can be recognised by a nondeterministic
Turing machine in time O(N(logN)2). One consequence of this is that there are spectra
that are not bounded-degree spectra.

To establish the result, we need to show that for any first-order sentence φ, we can
construct a nondeterministic machine Aφ that given a positive integer N as input (it does
not much matter whether N is given in unary or binary as we allow a running time that
is greater than the value of N) will decide whether or not φ has a model with exactly N
elements. We assume, for simplicity, that φ is in a vocabulary with one binary relation E
and a number of unary relations R1, . . . , Rk. We can think of structures in this vocabulary
as coloured graphs and we use the language of graphs to describe them.

The machine Aφ proceeds by nondeterministically guessing a graph G with N vertices
and degree bounded by d and then verifying that G is indeed a model of φ. The algorithm
for deciding whether G satisfies φ relies on Hanf’s locality theorem [Han65] (see also [Lib04,

12 A. DAWAR AND E. KOPCZYŃSKI

Theorem 4.12]). For a vertex v in G and a positive integer r, we write Nr(v) to denote
the substructure of G induced by the set of vertices with distance at most r to v, with
a distinguished new constant interpreted by v itself. Note that if the degree of G is at
most d, then Nr(v) has at most 1 + d(d − 1)r−1 vertices in it. We write Sr to denote
the number 1 + d(d − 1)r−1. We denote by τ(v) the isomorphism type of the structure
Nr(v). To be precise, we can take τ(v) to be a canonical structure isomorphic to Nr(v) on
the domain {1, . . . , nτ} where nτ = |Nr(v)|. Since nτ ≤ Sr, there are only finitely many
distinct types. We write T for the set of all types. For a fixed positive integer M , let
fr,M (G) : T→ {0, . . . ,M} be the function that assigns to each type τ ∈ T the minimum of
M and the number of vertices v in G with τ(v) = τ . For a pair of graphs G and H, we write
G ∼r,M H if fr,M (G) = fr,M (H). Then, Hanf’s locality theorem can be stated as follows.

Theorem 5.1 (Hanf’s locality[Han65]). Let φ be a FO formula. Then there exist integers r
and M such that, if G ∼r,M H then G |= φ if, and only if H |= φ.

Now, we describe how this can be used to construct the machine Aφ as required in the
proof of the main theorem.

Theorem 5.2. BDSpecd ⊆ NTIME2(N log2N).

Proof. Given a first-order sentence φ, we describe a multi-tape non-deterministic machine
Aφ which given an input N decides if φ has a model with exactly N elements.

First, Aφ non-deterministically guesses a graph G on N vertices by writing its description
on tape A. The description of G consists of a list of N vertex descriptions, where each
vertex description consists of an identifier of a vertex v (which is an integer given by at
most logN bits), a list of the unary predicates satisfied by v and a list of the identifiers of
the neighbours of v. Note that each vertex description is O(logN) bits long, because the
number of neighbours of v is bounded by d. Thus, the total length of the description of G
is O(N logN). We can assume that the vertex identifiers are exactly {1, . . . , N} and the
vertex descriptions are enumerated in increasing order of the identifier.

Secondly, the machine Aφ non-deterministically guesses the type τ(v) of each vertex.
To be precise, it writes on tape B, for each vertex v the type τ(v) (as there are only a
bounded number of types, this can be specified in a constant amount of space) and a list of
identifiers of vertices of G that correspond to the elements {1, . . . , nτ}. Note that the entire
list has length O(N logN). To complete its task, Aφ needs to verify two things: (1) that the
guessed type of each vertex v on tape B is consistent with the graph G described on tape
A; and (2) that the list of types on tape 2 does ensure that G |= φ. Since the list of types
determines fr,M , and the latter determines whether G |= φ, (2) is a simple table look up.

We now describe how Aφ can, non-deterministically, in time O(N log2N) perform task (1).
The essential idea is that we produce on a series of Sr additional tapes copies of the

vertex descriptions indexed in a suitable way so that we have available for each vertex v,
not only the vertex identifiers of the vertices in its neighbourhood but their full vertex
descriptions. That is, tape i will contain for each vertex v, a complete vertex description of
the ith vertex that occurs in τ(v) and these will be enumerated in increasing order of v. To
achieve this, we first scan tape A and for each vertex description v we encounter, we guess
the number k (which may be 0 and is at most Sr) of vertices w such that v is vertex number
i in the description of w, and copy the vertex description of v on to tape i k times. We then
non-deterministically generate a permutation of the vertex descriptions on tape i. This can
be done in time proportional to the length of tape i times log(N), which is O(N log2(N)).

BOUNDED DEGREE AND PLANAR SPECTRA 13

This is done by guessing a subset S of the set of vertex descriptions, splitting the list into
elements of S and non-elements of S (without changing order), and merging them again so
that all elements of S are after all non-elements of S. Any permutation can be obtained
through log(N) such operations. This sorting technique is similar to the radix sort algorithm
[CLR89, Sec. 9.3]. Finally, we check that the permutation generated is indeed correct by
making an additional scan of tape A and checking that the vertex identifier that occurs in
position i in the type description of vertex v matches that of the vertex description that
occurs in position v on tape i.

Tapes 1 through Sr now provide a suitably indexed table of vertex descriptions and it is
straightforward to check that the type τ(v) ascribed to each vertex v on tape B is consistent
with the graph description on tape A. Indeed, as we simultaneously scan tapes 1 through
Sr, at position v we have access to the full vertex descriptions of all vertices occurring in
the vertex description of v and we can check that Nr(v) is indeed isomorphic to τ(v).

We know, as a result of the time hierarchy theorem for non-deterministic machines that
NTIME2(N log2N) is a proper subset of NE. Since the latter is the class of all spectra, it
follows from Theorem 5.2 that there are spectra that are not in BDSpecd for any d.

The proof of Theorem 5.2 is based on the construction due to Seese [See96] that shows
that, for any fixed first-order sentence φ, the problem of deciding whether a given graph on
N nodes and degree bounded by a constant d satisfies φ is solvable in time linear in N by a
deterministic random-access machine. It follows that determining whether φ has a model
that is a graph on N vertices with degree bounded by d can be done by a nondeterministic
random-access machine in time O(N). Such a machine can first guess the description of
such a graph in time O(N), since the degree bound ensures that the graph has a description
whose length is bounded by O(N). Our proof aims at reconstructing this argument in the
context of multi-tape Turing machines. This can also be established by a general result due
to Monien [Mon77] which shows that any set decidable in linear time by a nondeterministic
random-access machine is in NTIME2(N log2N).

6. Assuming planarity

In this section we investigate to what extent upper and lower bounds similar to those in the
previous two sections can be established in the case where we only consider planar structures.
That is, we are interested in the planar spectrum of a formula φ—the set of those integers n
such that there is a model of φ of size n which is also planar.

As we noted earlier, the models of the formula φM constructed in the proof of Theorem 3.1
are all planar. Moreover, Example 3.2 yields a formula whose spectrum is the set of powers
of two, and again all models are planar. The more complicated examples of Example 3.3
and 3.5 do not yield planar models. However, Example 3.4 gives us a simple formula whose
planar spectrum is the set of Fibonacci numbers.

The construction of a model encoding the computation of a Turing machine that we
used in the proof of Theorem 4.1 yields a planar graph as long as the machine only uses
a single tape (or more precisely two stacks). But, the proof also relies on encoding in the
formula the statement that the initial contents of the tape encode (in binary) exactly the
size of the structure. This relies on the construction in Example 3.5 and the models are
no longer planar. Instead, we can modify the construction so that the size of the model is
determined by the length S of the tape and the number T of steps taken. Thus, we can

14 A. DAWAR AND E. KOPCZYŃSKI

Figure 3: Machine simulation with section for tiling.

easily modify the construction so that at each time step, exactly four additional elements
are used, by spreading the amortized cost in the proof of Theorem 4.1 over the time steps.
Specifically, we axiomatize the cases where the potential Φ is reduced and ensure there are
additional dummy elements in these cases. Thus, as long as all elements in the relation R
are part of the coding of the computation, there will be exactly S + 4T of them. As the
initial tape contents in the machine form the bottom line (see Figure 2 above), we can add
gadgets below this line, without violating planarity, which allow us to formulate statements
in the formula about the length S and the contents of the tape.

This idea relies on the assumption that everything in R forms part of the machine
computation. This is tricky to enforce as illustrated by Figure 3. Note that this picture has
been rotated 90 degrees in order to fit the page and now the time steps run from left to
right and a single column connected vertically represents the tape contents. The picture
illustrates the coding of a machine that alternately moves six steps to the right on the tape
and then six steps to the left.

In this picture, the area bounded by the blue rectangle defines a subgraph which can be
used to tile the plane. That is to say, we can take infinitely many copies of this subgraph
and connect them by identifying the edges leaving at the top with the incoming edges in
the copy above and similarly to the left and right. This yields an infinite graph G which
satisfies all the axioms apart from the edge cases which talk of elements that appear only
once in the coding of the computation. Hence, the disjoint union of a large enough model of
the axioms with G still yields a model (albeit an infinite one). Furthermore if, instead of
tiling the plane, we use the rectangle to tile a torus, we obtain a finite graph any number of
copies of which can be adjoined to a model to obtain a valid model. This means that the
spectrum of our sentence must be ultimately periodic. However, the embedding of the tiling
on a torus is necessarily not planar and restricting ourselves to planar graphs, it turns out
that we can ensure that all elements in R really are part of the coding of the computation
and this allows us to axiomatise valid computations. In the next two subsections, we carry
out two such constructions, for two different classes of machines. In terms of complexity, the
two results are incomparable.

BOUNDED DEGREE AND PLANAR SPECTRA 15

6.1. A Turing machine with a clock.

Theorem 6.1. NTIMES
2 (N/ logN) ⊆ PPifSpec3.

Proof. Let M be a machine such that for any N ∈ N, it accepts or rejects the binary
representation of N in time O(N/ logN).

We consider a machine M ′ that takes as input a word of the form w#u#bC#bN , where
w, u ∈ {0, 1}∗ and bC and bN are binary strings representing integers C and N respectively.
The machine M ′ performs the following tasks:

• Replace w on the tape with bs , the binary string representing the number s of occurrences
of 1 in the string w. This can be done in time Θ(|w| log s). After this step, the tape
contains bs#u#bC#bN .
• Based on the values of s, u, and C, verify that N contains exactly the size of the model.

This point will be explained later. We also erase everything from the tape, except #bC#bN .
This can be done in time polynomial in s+ |bC |+ |u|.
• Verify that the machine M accepts the word bN in exactly C steps. This is done by

simulating the machine M , while keeping the string between the # signs as a counter that
is decremented at each step and which is shifted left or right as necessary along with the
head movements of M . This can be done in time Θ(|bC |C).

Now, we consider representing the computation of the machine M ′ as a structure of size
exactly N . The structure consists of the following parts.

• The base line which is a straight horizontal path of length S representing the initial tape
contents. We let S = 3 · 2s for some s, and partition the initial tape into three equal
length segments, the first and third of which are blank and the middle one contains the
input w#u#bC#bN , padded with blanks on the right side. Here w is the word of length
2s−1 which contains 1s at positions which are powers of two.
• The computation, represented as a subgraph of size exactly 4T above the base line, where
T is the number of steps taken. We use the construction from Theorem 4.1, improved as
outlined above so that the size of the subgraph is exactly 4T .
• To enforce the length requirement, the spiral structure from Example 3.2 is attached

below the base line, but now requiring that the outer edge of the spiral is 3 · 2s, instead of
checking whether the whole spiral is a power of 2. Additionally, the spiral structure is
used to enforce that the occurrences of 1 in w are indeed at the powers of two. There are
exactly S elements in the spiral structure.
• One additional element is attached to each occurrence of 1 in u in the baseline. These

elements are not attached to anything else so they do not affect the planarity of the
construction.

Note that all of this can be axiomatized in first-order logic.
Now, we have to explain how M ′ verifies that the value N given in the input is indeed

exactly the size of our structure. By counting all the elements above, we know that our
structure contains 2S + 4T +U elements in total, where S = 3 · 2s, U is the number of 1s in
u, and T = Θ

(
|bC |C + 2s log s+ (s+ |bC |+ |u|)O(1)

)
; the machine M ′ can be designed so

that it can compute its own running time T precisely.
Hence, if our formula has a model of size N , this N must indeed be equal to the number

encoded as bN in the initial tape, and this number must be accepted by the machine M .
Now, let N be a number such that the binary representation of N is accepted by the

machine M . If we assume that |u| = s2 and |bC | = s, the value of N computed by M ′ is of

16 A. DAWAR AND E. KOPCZYŃSKI

form N̂ = U + f(C, s) + g(s), where f(C, s) = Θ(C · s) and g(s) = Θ(2s log s). Take s such
that S = 3 · 2s = Θ(N/ logN), and such that if we take the maximum possible values of

C = 2s − 1 and U = s2, the obtained N̂ is greater than N . By replacing these values by
smaller ones (C is obtained by division, and U is used for exact padding), we get N̂ = N ;

since f(C, s) is the dominant component of N̂ , our C will still be Θ(N/ log(N)). Since we
have assumed the computation of M can be done in time and space O(N/ logN), these
values of C, S = Θ(N/ logN) will be sufficient (if the machine M actually needs less time
for the given input, we can change it to non-deterministically wait, so that there is always a
run of the exact length we need). Hence, if the binary representation of N is accepted by
the machine M , there is a model of our formula of size exactly N .

6.2. Queue machines. In this section, we show that the class PPifSpec2 includes the
complexity class NTS2(N), which is a result incomparable with Theorem 6.1. The result is
established by considering queue machines, which we define next.

A queue machine is a non-deterministic Turing machine with two heads: a read head
and a write head. Both heads can only move to the right. The machine starts in an initial
state with an input string on the tape; the read head pointing to the first symbol of the
string and the write head at the first tape cell to the right of the string. The transitions
are given as 4-tuples (q, w1, w2, q

′) ∈ Q× Σ+ × Σ+ ×Q, where Q is the set of states of the
machine and Σ is the tape alphabet. A transition (q, w1, w2, q

′) is enabled if the machine is
in state q and the string starting with the symbol under the read head begins with w1. If the
transition is taken, then the read head moves right to the symbol just after this occurrence
of w1, the string w2 is added to the write of the current string on the tape, the write head
moves to just past the end of this string, and the machine changes state to q′. The machine
halts when it enters a final state.

It is clear that queue machines are Turing-universal. However, we are interested in
the following measure of complexity: what is the total number of symbols (including the
initial tape contents) on the tape at the end of the computation. Note that no symbol is
erased from the tape, it is only the heads that move to the right. As an example, consider a
machine with two state q and qF of which the latter is final, and the following transitions:
(q, b, a, q), (q, a, ab, q), (q, A,Ab, q), (q, A,AA, qF). Suppose this machine is started with
initial tape contents A. One possible run of the machine ends with the tape containing
AAbAbaAbaabAbaababaAA. It can be shown that in any computation of this machine the
number of symbols at the end of the computation is a Fibonacci number, and conversely,
there is such a computation for each Fibonacci number. To be precise, successive As (apart
from the last one) appear exactly at positions F − 1 where F is a Fibonacci number.

For a queue machine M , let SM ⊆ N denote the set of numbers n such that some
computation of M ends with exactly n symbols on the tape. Let QTL denote the collection
of sets which are SM for some queue machine M . We can then establish the following
inclusions.

Theorem 6.2. NTIME2(
√
N) ⊆ NTS2(N) ⊆ QTL ⊆ PPifSpec2

Proof. The first inclusion NTIME2(
√
N) ⊆ NTS2(N) follows from definitions, since a

Turing machine running in time
√
N cannot take space more than

√
N and thus the product

of time and space required is at most N .

BOUNDED DEGREE AND PLANAR SPECTRA 17

For the second inclusion, we can use a simulation similar to that in the proof of
Theorem 6.1. That is, from a machine M accepting a set in NTS2(N), we can first construct
a machine M ′ that clocks the number of steps and also clocks the space required, while
simulating M . The machine M ′ halts when the total space (i.e. the length of the string on
the tape, summed over all configurations that have occurred in the computation) is exactly
N , the number that was represented in binary in the initial configuration. Now, it is easily
checked that a queue machine simulating M ′ (in the standard way) will halt with exactly N
symbols on the tape if the binary representation of N is accepted by M .

For the third inclusion, we show that, given a queue machine M , we can axiomatise in
first-order logic a structure W with two PIFs that represents the string that is on the tape
at the end of a successful computation of M . One PIF is the successor function, connecting
position x on the tape to x+ 1. The other is a function frw which maps a position which is
the position of the read head at some time t to the position of the write head at the same
time. In addition, we have a number of unary relations to code the content of the tape
and the state of the machine. To see that the structure described is planar, consider the
embedding that places all points in a line, with the edges corresponding to the successor
function following the line. The edges corresponding to frw connect to the source above the
line and the target below the line, looping around the left end of the line. Since, moving
from time t to time t+ 1, both the read and the write heads move to the right, it can be
seen that such edges do not cross. Axiomatising such a structure in first-order logic is now a
straightforward matter: we need to note that if a position x is the source of an frw edge
and x encodes the fact that at this point the machine is in state q, then for some transition
(q, w1, w2, q

′), the string w1 appears in the cells starting at x, the string w2 appears in the
tape to the right of frw(x), that frw is defined at x+ |w1| and nowhere else in between x
and x+ |w1|, and frw(x+ |w1|) = frw(x) + |w2|.

Note that the assumption of planarity is essential to the proof above. The first-order
axioms we construct from a machine M will admit models that, in addition to N elements
representing a valid computation of M contain a loop containing a sequence of symbols
wx such that M when reading wx outputs xw. This loop will be necessarily non-planar,
though embeddable on a torus. Indeed a model of the axioms could admit any number
of such additional loops. On the other hand, if M is a machine which (by some measure)
always increases the length of the string at each step, then such a loop becomes impossible.
The example given above generating sequences of Fibonacci number length is one such
machine. Thus, one obtains this class as a planar spectrum without having to assume
planarity. Indeed, Example 3.4 (in its planar form) is essentially encoding this idea.

6.3. Upper bounds. We now establish an upper bound that shows, in particular, that
not every spectrum is a planar spectrum. Let PSpec denote the class of planar spectra, i.e.
those sets S ⊆ N for which there is a first-order sentence φ such that N ∈ S if, and only
if, there is a planar model of φ with N elements. In particular, PPifSpecd ⊆ PSpec and
PBDSpecd ⊆ PSpec for any d.

Theorem 6.3. PSpec ⊆ NTIME2(N log2N).

Proof. It is known that, for any first-order sentence φ there is a linear-time algorithm that
decides, for a planar graph G whether or not G |= φ [FG01], for instance, on a random-access
machine (RAM). Since the average degree of a planar graph is at most 6, a planar graph on

18 A. DAWAR AND E. KOPCZYŃSKI

N vertices has at most 3N edges. Thus, a non-deterministic RAM can, on input N guess a
graph G with at most 3N edges, check that the graph is planar and then check determine
whether G |= φ, all in time O(N). For a linear time algorithm for checking that a graph is
planar, we can use the algorithm from [dFdMR06]. Since any set decidable in linear time
on a non-deterministic RAM is in NTIME2(N log2N) [Mon77], the result follows.

From the time hierarchy theorem [SFM78], it follows that NTIME2(N log2N) is a
proper subset of NE and since the latter is exactly the class of all spectra, there are spectra
which are not planar spectra. This answers negatively Open Question 6 from [DJMM12].

With respect to bounded-degree planar spectra, we note that the set of such spectra
with degree bounded by 3 is already quite rich.

Theorem 6.4. For any d, if S ∈ PPifSpecd then S′ = {2dn | n ∈ S} ∈ PBDSpec3.

Proof. This can be established by an argument similar to that for Corollary 4.2. We cannot
literally use the construction from the proof of Theorem 2.4, as there is no guarantee that
the structure G obtained in the proof of that theorem is planar, even if A is. In that
construction we build a gadget corresponding to each element a of A consisting of points
p1, . . . , pd, q1, . . . , qd connected in an E-path in that order. It is easily seen that we can,
instead, choose a different order for each a which will guarantee that G is planar if A. Indeed
such an order is given by the order of incidence of edges on a in a planar embedding of A.
Moreover, since we have unary relations Pi identifying the vertices pi and qi, the order is
not relevant and we are still able to interpret G in A and vice versa.

7. Forcing planarity

In this section, we turn to considering the classes of spectra of the form FPPifSpecd for
some d. We have previously seen examples that demonstrate that some sparse sets of
numbers (such as the powers of 2 or the Fibonacci numbers) are realized as spectra of
sentences φ such that all models of φ are planar. However, in order to prove the general
lower bounds established in Theorems 6.1 and 6.2, we had to explicitly restrict attention
to planar models as this is not something that was enforced by the axioms. Indeed, in
both cases, the axioms admit non-planar models where there are components disjoint from
the machine simulation that can be embedded on a torus. We now show that we are able
to construct a machine simulation which can be axiomatised by a formula that enforces
planarity, provided that we severely restrict the memory size: it needs to be linear in the
size of the input (i.e. the binary representation of the number N). We also need to restrict
the time that the machine can run more stringently than in our previous results.

Theorem 7.1. NTISP2(N1−ε, logN) ⊆ FPPifSpec2 for all ε with 0 < ε < 1.

Proof. Suppose we have a nondeterministic Turing machine M which accepts the binary
representation of N in time N1−ε and space logN . Let d > 10 be an integer such that

d > 2
1
ε . We can assume, by changing alphabet as necessary, that machine M uses space

logdN . Given a structure in a vocabulary with two PIFs that defines a (N1−ε) × logdN
grid, we can, in a standard way, give first-order axioms saying that certain unary relations
on the grid elements code an accepting computation of M . Thus, to establish the result,
it suffices to show that we can axiomatise, in first-order logic, a planar structure of size N
containing a definable grid of dimension (N1−ε)× logdN . This is what we do next.

BOUNDED DEGREE AND PLANAR SPECTRA 19

We build on the basic spiral structure constructed in the proof of Theorem 3.1. Indeed,
the two PIFs are exactly those defined there, we will only add unary relations to the structure.
We assume that the elements of the structure are A = {1, . . . , N}. Let n be the largest
integer such that 2n < N and we divide the set A into layers L1, . . . , Ln, Ln+1 where, for
k ≤ n, Lk contains the elements in the range [2k−1, 2k − 1] and Ln+1 contains the elements
in the range [2n, N]. We now inductively define two functions v : A → {0, . . . , 4} and
f : A→ {0, . . . , d− 1}.

For x ∈ Ln+1, we let v(x) = 1 and f(x) = 0.
For x ∈ Ln, we let v(x) = 2 + v(2x) + v(2x + 1), where we assume v(y) denotes 0 if

y > N . Again, we let f(x) = 0. Note that
∑

x∈Ln v(x) = N + 1.
For m < n and x ∈ Lm, we define f(x) =

∑
{y∈Lm+1|y≥2x} v(y) (mod d). Note that

f(x) = (v(2x) + v(2x + 1) + f(x + 1)) mod d. We then define v(x) by v(x) = (v(2x) +
v(2x+ 1) + f(x+ 1)− f(x))/d ∈ {0, 1}. In other words, we compute the sum of numbers
v(y) for all y in the layer Lm+1, from right to left, and store the suffix sums as f(x) in the
layer Lm. Whenever the calculated suffix sum exceeds d, we subtract d, and set v(x) to 1.
Hence, the sum of v(x) for x ∈ Lm will equal the sum of v(y) for y ∈ Lm+1 divided by d,
and f(2m−1) will be the remainder.

Note that f(1), f(2), . . . , f(2n−1), f(2n) then contains the representation of N in base d.
Since d > 2, there is m0 such that f(2k) = 0 for all k < m0. Let Γ = {2ix : x ∈ Lm0 , i ≥ 0}.
For x ∈ Γ, let g(x) be the smallest y ∈ Γ such that y > x, but is still in the same layer – if
there is none, g(x) is undefined.

We add d unary relation symbols to our vocabulary interpreted by the d sets f(x) =
0, f(x) = 1, . . . , f(x) = d− 1; five unary relations to represent v(x) = 0, . . . , v(x) = 4, and
one interpreted by the set Γ. It can be checked that there are first-order axioms that ensure
that the interpretation of these relation symbols is exactly that.

Now, the set Γ, together with the two PIFs g and f2x is a grid of dimension 2m0×(n−m0).
Moreover, n−m0 is just the number of digits in the base d representation of N , i.e. dlogdNe.
Thus we have

2m0 ∼ 2log2N−logdN = 2log2N(1−logd2) = N1−logd2 > N1−ε,

where the last inequality follows from the fact that d > 2
1
ε . Thus, this gives us the grid we

require. However, g is not definable in FO from f+1 and f2x. Nonetheless, we can axiomatise
the fact that a certain set R of unary relations codes the computation of the machine M on
the grid defined by g and f2x on Γ. We can say that if the interpretation of R at a position
x = 2it encodes the contents of tape cell i at time t, then position 2it+ 1 encodes it at the
next time step. This can then be propagated to the position 2i(t+ 1) (i.e. g(x)) by means of
the axiom ∀x/∈ΓR(x+ 1) ⇐⇒ R(x) for each R ∈ R.

As an example, it follows that the set of prime numbers is the spectrum of a sentence
using only two PIFs and all of whose models are planar graphs (of degree at most 4). This
is the case because the straightforward primality test of checking all potential divisors from

2 to
√
N shows that the set of primes is in NTISP2(N

1
2 , logN).

8. Conclusions and future work

We have shown that, in considering the spectra of first-order sentences, restricting the
models to have bounded degree or to be planar (or, indeed, both in combination) is a real

20 A. DAWAR AND E. KOPCZYŃSKI

restriction. We can put a complexity upper bound on these spectra that is strictly lower
than the NE characterization we know for the class of all spectra. At the same time, we
have demonstrated that these classes of spectra are still very rich by showing that we can
encode certain classes of machine simulations in them. There are, however, gaps between
the lower bounds and the upper bounds we have established and an obvious question for
future work is whether either set of bounds can be tightened. It would be interesting to
obtain an exact characterisation in terms of complexity for the various classes of spectra
that we consider. Such tight characterisations seem unlikely with Turing machines, but it
might be possible to obtain them with machine models with a more robust notion of linear
time such as, for example, Kolmogorov-Uspenski machines (see [Gur88]).

If we consider spectra of sentences which only have planar models, we can still establish
a lower bound, as in Theorem 7.1. This is based on a simulation of machines with a severe
space restriction, and it is quite possible that this bound is not tight. Thus, a natural question
is whether we can construct simulations of machines with higher memory requirements in
such cases.

Acknowledgment

The research reported here was carried out during a visit by the second author to the
University of Cambridge in 2011, supported by the ESF Resaearch Networking Programme
GAMES. Eryk Kopczyński was also partially supported by the Polish National Science
research grant DEC-2012/07/D/ST6/02435.

References

[CLR89] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press
and McGraw-Hill Book Company, 1989.

[Daw07] A. Dawar. Finite model theory on tame classes of structures. In MFCS, volume 4708 of Lecture
Notes in Computer Science, pages 2–12. Springer, 2007.

[dFdMR06] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Trémaux trees and planarity. Int. J.
Found. Comput. Sci., 17, 2006.

[DFL98] A. Durand, R. Fagin, and B. Loescher. Spectra with only unary function symbols. In Computer
Science Logic, selected paper of CSL’97, LNCS 1414, pages 189–202. Springer, 1998.

[DJMM12] A. Durand, N. D. Jones, J. A. Makowsky, and M. More. Fifty years of the spectrum problem:
survey and new results. In preparation. Bulletin of Symbolic Logic, 18, 2012.

[DR96] A. Durand and S. Ranaivoson. First-order spectra with one binary predicate. Theoretical
Computer Science, 160(1-2):305 – 320, 1996.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity of
computation (proc. siam-ams sympos. appl. math., new york, 1973) (Providence, R.I.) (Richard
M. Karp, editor), SIAM-AMS Proceedings, vol. 7, American Mathematical Society, pages 43–73,
1974.

[FG01] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures.
J. ACM, 48, 2001.

[FM04] E. Fischer and J. A. Makowsky. On spectra of sentences of monadic second order logic with
counting. Journal of Symbolic Logic, 69:617–640, 2004.

[Gra84] E. Grandjean. The spectra of first-order sentences and computational complexity. SIAM J.
Comput., 13(2):356–373, 1984.

[Gra85] E. Grandjean. Universal quantifiers and time complexity of random access machines. Mathematical
Systems Theory, 18(2):171–187, 1985.

[GS03] Y. Gurevich and S. Shelah. Spectra of monadic second-order formulas with one unary function.
In In LICS’03, pages 291–300. IEEE, 2003.

BOUNDED DEGREE AND PLANAR SPECTRA 21

[Gur88] Y. Gurevich. Logic in computer science column. Bulletin of the EATCS, 35:71–81, 1988.
[Han65] W. Hanf. Model-theoretic methods in the study of elementary logic. JW Addison et al.The

Theory of Models, North-Holland, Amsterdam, pages 132–145, 1965.
[JS74] N. D. Jones and A. L. Selman. Turing machines and the spectra of first-order formulas. Journal

of Symbolic Logic, 39:139–150, 1974.
[Kim97] C. Kim. A hierarchy of ence families of graph languages. Theor. Comput. Sci., 186(1-2):157–169,

1997.
[Lib04] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[Mon77] B. Monien. About the derivation languages of grammars and machines. In Automata, Lan-

guages and Programming, Fourth Colloquium, University of Turku, Finland, July 18-22, 1977,
Proceedings, pages 337–351, 1977.

[Sch52] H. Scholz. Ein ungelöstes problem in der symbolischen logik. Journal of Symbolic Logic, 17:160,
1952.

[See96] D. Seese. Linear time computable problems and first-order descriptions. Math. Struct. in Comp.
Science, 6:505–526, 1996.

[SFM78] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity
classes. J. ACM, 25:146–167, 1978.

[Viz64] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No., 3:25–30,
1964.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Partial function symbols
	2.2. Complexity classes

	3. Basic structure
	4. Lower bound: Turing machines via spectra
	5. Upper bound: spectra via Turing machines
	6. Assuming planarity
	6.1. A Turing machine with a clock
	6.2. Queue machines
	6.3. Upper bounds

	7. Forcing planarity
	8. Conclusions and future work
	Acknowledgment
	References

