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Abstract. Cyclic data structures, such as cyclic lists, in functional programming are tricky
to handle because of their cyclicity. This paper presents an investigation of categorical,
algebraic, and computational foundations of cyclic datatypes. Our framework of cyclic
datatypes is based on second-order algebraic theories of Fiore et al., which give a uniform
setting for syntax, types, and computation rules for describing and reasoning about cyclic
datatypes. We extract the “fold” computation rules from the categorical semantics based on

iteration categories of Bloom and Ésik. Thereby, the rules are correct by construction. We
prove strong normalisation using the General Schema criterion for second-order computation
rules. Rather than the fixed point law, we particularly choose Bekic̆ law for computation,
which is a key to obtaining strong normalisation. We also prove the property of “Church-
Rosser modulo bisimulation” for the computation rules. Combining these results, we have
a remarkable decidability result of the equational theory of cyclic data and fold.

1. Introduction

Cyclic data structures in functional programming are tricky to handle. In Haskell, one can
define a cyclic data structure, such as cyclic lists by

clist = 2:1:clist

The feasibility of such a recursive definition of cyclic data depends on lazy evaluation. For
example, one can safely take the head of the cyclic list:

head clist  2

However, this encoding is not completely safe. For example, consider the sum of all elements
using the above recursive encoding. of clist in Haskell. It falls into non-termination:

sum clist  non-termination

This means that such a naive encoding of cyclic structure does not ensure safety.
The computation using our framework is guaranteed to be safe meaning that it is always

terminating, i.e., strongly normalising. We provide a way to regard the sum of a cyclic list as
a cyclic natural number, which is computed by the strongly normalising “fold” combinator.
In this paper, we develop a framework for syntax and semantics of cyclic datatypes that
makes this understanding and computation correct.

Key words and phrases: cyclic data structures, traced cartesian category, iteration theory, fixed point,
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Figure 1: Framework: Second-order algebraic theories and iteration theories

Our framework of cyclic datatypes is founded on second-order algebraic theories of Fiore
et al. [FH10, FM10]. Second-order algebraic theories are founded on the mathematical theory
of second-order abstract syntax by Fiore, Plotkin, and Turi [FPT99, Ham04, Fio08] and have
been shown to be a useful framework that models various important notions of programming
languages, such as logic programming [Sta13], algebraic effects [FS14], quantum computation
[Sta15]. This paper gives another application of second-order algebraic theories, namely,
to cyclic datatypes and their computation. We use second-order algebraic theories to give
a uniform setting for typed syntax, equational logic and computation rules for describing
and reasoning about cyclic datatypes. We extract computation rules for the fold from the
categorical semantics based on iteration categories [BÉ93]. Thereby the rules are correct by
construction. Finally, we prove strong normalisation by using the General Schema criterion
[Bla00] for second-order computation rules.

1.1. Overview of computation. As an overview of cyclic datatypes and their operations
we develop in this paper, we first demonstrate descriptions and an operation of cyclic
datatypes by pseudo-program codes. The code fragments correspond one-to-one to theoretical
data given in later sections. Therefore, they are theoretically meaningful, while intuitively
understandable without going into the detailed theory.

First we consider an example of cyclic lists. The codes below with the keyword ctype

are intended to declare cyclic datatypes. Here we declare the type CNat of natural numbers
and the type CList of cyclic lists having ordinary constructors in Haskell or Agda style.

ctype CNat where

0 : CNat

S : CNat → CNat

with axioms AxCy

ctype CList where

[ ] : CList

:: : CNat,CList → CList

with axioms AxCy

We assume that any ctype declared datatype has a default constructor “cy” for making a
cycle. For example, we express a cyclic list of 1 as a term

cy(x.1 :: x)

where cy has a variable binding “x.”, regarded as the “address” of the top of list. This is a
fundamental idea presented in [FS96] [GHUV06].

A variable occurrence x in the body refers to the top, hence it makes a cycle. The
terms built from the constructors of CList and the default constructor cy are required to
satisfy the axioms AxCy (given later in Fig. 4) indicated by the keyword “with axioms”
(we assume that any ctype datatype satisfies AxCy, so this is for ease of understanding).
We next consider the above mentioned example of the sum of cyclic list.
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sum : CList → CNat

spec sum ([ ]) = 0

sum (k :: t) = plus(k, sum (t))

The above code with the keyword spec describes an equational specification of a function.
It requires that the sum function from cyclic lists to cyclic natural numbers must satisfy
the usual recursive properties of sum. We intend that the spec code is merely a (loose)
specification, and not a definition, because it lacks the case of a cy-term. Here we assume
that the plus function on CNat has already been defined (as presented later in Example
4.2). The following code with the keyword fun defines the function sum.

fun sum t = fold (0, k.x.plus(k,x)) t

It is defined by the fold combinator on the cyclic datatypes. The first two arguments 0 and
k.x.plus(k,x) correspond to the right-hand sides of the specification of sum, where k.x.

are variable binders (as in λ-terms). The fold is actually the fold on a cyclic datatype,
which knows how to cope with cy-terms. The sum of a cyclic list can be computed as follows:

sum(cy(x.S2(0) :: S(0) :: x))
→+ cy(x. fold (0, k.x.plus(k,x)) (x.S2(0) :: S(0) :: x;x))
→+ cy(x.S(S(S(x))))

where we represent a usual natural number n by Sn(0). The final term is a normal form
that cannot be rewritten further. Therefore, we regard it as the computation result. The
steps presented above are actual rewrite steps by the second-order rewrite rules FOLDr given
later in Fig. 7.

1.2. Equational logical framework for cyclic computation. How to understand the
meaning of the result cy(x.S(S(S(x)))) is arguable. The overall situation we have demon-
strated is illustrated in Fig. 1. In this paper, we also provide a formal basis to understand
and to reason about cyclic data, as well as computation results. We use second-order equa-
tional logic and the axioms AxCy to equate cyclic data formally (Fig. 1 [II]). It completely
characterises the notion of bisimulation on cyclic data. We can formally prove that an
equation on cyclic data, such as

cy(x.S(S(S(x)))) = cy(x.S(x)) (1.1)

is derivable from the axioms AxCy in the second-order equational logic. Since AxCy
characterises bisimulation, it means that the expression cy(x.S(S(S(x)))) is bisimilar to
cy(x.S(x)), which is a minimal representation of the result regarded as ∞ (infinity). In
this paper, we do not develop an explicit algorithm to extract such a minimal result from the
computation result, but it is noteworthy that this equational theory generated by AxCy is

decidable [BÉ93]. Consequently, it is computationally reasonable. More practical examples
on cyclic datatypes and computation will be given in §7.
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1.3. Proof by rewriting. In §6, we will develop a decidable proof method for equations
involving functions defined by fold. We give an algorithm to prove whether an equation, e.g.

sum(cy(x.2::1::x)) = plus( sum(cy(x.4::5::x)), cy(x.x) ) (1.2)

holds or not under AxCy. The algorithm is first rewriting both sides of the equation to
normal forms,

sum(cy(x.2::1::x)) plus( sum(cy(x.4::5::x)), cy(x.x) )

plus(cy(x.S9(x)), cy(x.x))

∗?

cy(x.S3(x))

∗

?

∼ cy(x.cy(x.S9(x)))

∗?

then comparing the normal forms by the bisimulation ∼ on cyclic data. In this case, these
are actually bisimilar, hence we conclude (1.2) holds.

Why is this methodology correct? In this paper, we give rigorous reasons and proofs
validating the methodology in §6. An important fact is that even when an equation involving
cyclic data (as the above example) the method is ensured to be decidable. The rewrite
relation “→” has two important properties: strong normalisation (§5) and Church-Rosser
modulo bisimulation (§6), both of which are necessary to establish this proof method. We
will prove these rewriting properties by employing advanced rewriting techniques known as
the General Schema [Bla00, Bla16], and local uniform coherence [JKR83].

Note that one can also show that an equation on cyclic data, such as (1.2), holds using
ordinary domain theoretic semantics of lazy functional programs. A remarkable fact is that
using our framework, we can show it without using domains, complete partial orders, or
complex proof methods. Our methodology is simpler and decidable, i.e., strongly normalising
rewriting and comparison by bisimulation.

1.4. Previous approaches: cyclic structures and functional programming. Fegaras
and Sheard [FS96] established initial algebra semantics of mixed variant recursive types,
and showed that cyclic structures (without any quotient) can be encoded by variable
binding in higher-order abstract syntax (HOAS). It was a starting point of succeeding works
[GHUV06, Ham09, Ham10, OC12, Ham12] improving their HOAS encoding (which had a
few drawbacks) of cyclic structures.

Our previous four papers [GHUV06, Ham09, Ham10, Ham12] improved and extended
it to various directions. Especially, [GHUV06, Ham09, Ham10] aimed to capture unique
representations of cyclic sharing data structures (without any quotient) in order to obtain
an efficient functional programming concept. In the present paper, we will assume the
axioms AxCy and AxBr (Fig. 4) to equate bisimilar graphs. Uniqueness of representations is
desirable, but uniqueness up to bisimilarity chosen in this paper is also desirable, because
checking bisimilarity is efficiently decidable [DPP04] and reflects the meaning of cyclicity.

Oliveira and Cook [OC12] also improved [FS96] by using the parametric HOAS encoding
[Chl08] of variable binding for cycle constructs (without any quotient), instead of HOAS,
and developed generic fold combinators on them for functional programming.
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In all the works mentioned in this subsection, bisimilarity was not used for identifications
of cyclic structures.

1.5. Our recent work. In [Ham15, HMA], the author and collaborators gave algebraic
and categorical semantics of a graph transformation language UnCAL [BFS00, HHI+10]

using iteration theories [BÉ93]. The graph data of UnCAL corresponds to cyclic sharing
trees of type CTree in the present paper, where graphs are treated modulo bisimulation.
UnCAL does not have the notion of types, thus structural recursive functions in UnCAL are
always transformations from general graphs to graphs, thus typing such as sum:CList→CNat

(in Introduction) or collect:FriendGraph→Names (in §7) could not be formulated. The
present paper develops a suitable algebraic framework that captures datatypes supporting
cycles and sharing.

1.6. Novelty of this paper. Since cyclic data structures is potentially dangerous because
of cyclicity as exemplified in the begining of this section, termination of fold (or iterator) on
cyclic structures should be ensured. However, none of the previous works including [FS96,
GHUV06, Ham09, Ham10, Ham12, OC12, BFS00, HHI+10, MA15] on cyclic structures have
formally proved termination nor strong normalisation of fold, and the preservation of suitable
equivalence on cyclic structures by fold. Moreover, these works did not developed a decidable
proof method to prove equations on cyclic data with fold, such as the equation (1.2). In
contrast to it, we will prove and provide a decidable proof method by showing rewriting
properties of FOLDr, i.e., strong normalisation and Church-Rosser modulo bisimulation,
which are new results.

1.7. Organisation. The paper is organised as follows. We first introduce cartesian second-
order algebraic theories, which give syntax and equational logic of cyclic datatypes in §2.
We next give a categorical semantics of cyclic datatypes in §3. We then extract the fold
function from the categorical semantics in §4. In §5, we extract second-order rewrite rules of
fold and show strong normalisation. In §6, we prove Church-Rosser modulo bisimulation of
the rewrite system of fold and then obtain decidability of the equational theory. In §7, we
consider several examples of computing by fold on cyclic datatypes. In §9, we summarise
the paper and discuss related work.

This paper is the fully reworked and extended version of the conference paper [Ham16].
Besides proofs of all results, the present paper establishes Church-Rosser modulo bisimilarity
(Thm. 6.8) and whence decidability of the theory of cyclic data and fold (Cor. 6.10). In
addition, there is now a precise description of how primitive recursive functions are defined
in our framework (§4.4), and additional examples are provided (§7).

2. Second-Order Algebraic Theory of Cyclic Datatypes

We introduce the framework of second-order cartesian algebraic theory, which is a typed and
cartesian extension of second-order equational logic in [FH10] and [Ham07]. Here “cartesian”
means that the target sort of a function symbol is a sequence of base types and we allow
unrestricted substitution for variables. We use second-order algebraic theory as a formal
framework to provide syntax and to describe axioms of algebraic datatypes enriched with
cyclic constructs. The second-order feature is necessary for the cycle construct and the fold



6 M. HAMANA

function on them. We will often omit superscripts or subscripts of a mathematical object if

they are clear from contexts. We use the vector notation
−→
A for a sequence A1, · · · , An, and

|
−→
A | for its length.

2.1. Cartesian Second-Order Algebraic Theory. We assume that B is a set of base
types (written as a, b, c, . . .), and Σ, called a signature, is a set of function symbols of the
form

f : (−→a1 →
−→
b1), . . . , (−→am →

−→
bm)→ c1, . . . , cn.

where all ai, bi, ci are base types (thus any function symbol is of up to second-order type). A
sequence of types may be empty in the above definition. The empty sequence is denoted by
(), which may be omitted, e.g., b1, . . . , bm → c , or ()→ c. The latter case is simply denoted
by c. A signature Σc for type c denotes a subset of Σ, where every function symbol is of the
form f : −→τ → c, which is regarded as a constructor of c. A metavariable is a variable of
(at most) first-order type, declared as m : −→a → b (written as small-caps letters t, s,m, . . .).
A variable of a base type is merely called variable (written usually x, y, . . ., or sometimes
written xb when it is of type b). The raw syntax is given as follows.

- Terms have the form t ::= x | x.t | f(t1, . . . , tn).

- Meta-terms extend terms to t ::= x | x.t | f(t1, . . . , tn) | m[t1, . . . , tn].

The last form is called a meta-application, meaning that when we instantiate m : −→a → b
with a term s, free variables of s (which are of types −→a ) are replaced with (meta-)terms
t1, . . . , tn (cf. Def. 2.1). We may write x1, . . . , xn. t for x1. · · · .xn. t, and we assume ordinary
α-equivalence for bound variables. Terms are used for representing concrete cyclic data,
functional programs on them and equations we want to model. A second-order equational
theory is a set of proved equations built from terms (N.B. not meta-terms). Meta-terms are
used for formulating equational axioms, which are expected to be instantiated to terms.

A metavariable context Θ is a sequence of (metavariable:type)-pairs, and a context Γ is
a sequence of (variable:base type)-pairs. A judgment is of the form

Θ . Γ ` t :
−→
b .

If Θ is empty, we may simply write Γ ` t :
−→
b . A meta-term t is well-typed by the typing

rules Fig. 2. We omit often the types for binders as f( −→x1.t1, . . . ,
−→xn.tn ). Given a meta-term

t with free variables x1, . . . , xn, the notation t {x1 7→ s1, . . . , xn 7→ sn} denotes ordinary
capture avoiding substitution that replaces the variables with terms s1, . . . , sn.

Definition 2.1. (Substitution of terms for metavariables) Let Γ = y1 :
−→
b1 · · · , yk :

−→
b1 .

Suppose

Γ′, x1
i : a1

i , . . . , x
ni
i : ani

i `si :
−→
bi (1 ≤ i ≤ k)

m1 : −→a1 →
−→
b1 , . . . ,mk : −→ak →

−→
bk . Γ ` e : −→c

where ni = |−→ai | and −→ai = a1
i , . . . , a

ni
i . Then a substitution Γ,Γ′ ` e [

−−−−→
m := s ] : −→c is

inductively defined as follows.

x [
−−−−→
m := s ] , x

mi[t1, . . . , tni ] [
−−−−→
m := s ] , si {x1

i 7→ t1 [
−−−−→
m := s ], . . . , xni

i 7→ tni [
−−−−→
m := s ]}

f(−→y1 .t1, . . . ,
−→ym.tm) [

−−−−→
m := s ] , f(−→y1 .t1 [

−−−−→
m := s ], . . . ,−→ym.tm [

−−−−→
m := s ])
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y : b ∈ Γ

Θ . Γ ` y : b

(m : a1, . . . , am →
−→
b ) ∈ Θ

Θ . Γ ` ti : ai (1 ≤ i ≤ m)

Θ . Γ ` m[t1, . . . , tm] :
−→
b

f : (−→a1 →
−→
b1), · · · , (−→am →

−→
bm)→ −→c ∈ Σ

Γ,−−−→xi : ai ` ti :
−→
bi (1 ≤ i ≤ m)

Θ . Γ ` f(
−→
xa11 .t1, . . .

−−→
xamm .tm ) : −→c

Figure 2: Typing rules of meta-terms

(Ax1)

Γ′,−−−→xi : ai ` si :
−→
bi (1 ≤ i ≤ k)

(m1 : −→a1 →
−→
b1 , . . . ,mk : −→ak →

−→
bk . Γ ` t1 = t2 : −→c ) ∈ E

Γ,Γ′ ` t1 [
−−−−→
m := s ] = t2 [

−−−−→
m := s ] : −→c

(Ax2)

Γ′,−−−→xi : ai ` si :
−→
bi (1 ≤ i ≤ k)

(m1 : −→a1 →
−→
b1 , . . . ,mk : −→ak →

−→
bk . Γ ` t1 = t2 : −→c ) ∈ E

Γ,Γ′ ` t2 [
−−−−→
m := s ] = t1 [

−−−−→
m := s ] : −→c

(Fun)

f : (−→a1 →
−→
b1), · · · , (−→ak →

−→
bk)→ −→c ∈ Σ

Γ,−−−→xi : ai ` ti = t′i :
−→
bi (some i s.t. 1 ≤ i ≤ k)

Γ ` f(
−→
xa11 .t1, . . . ,

−→
xaii .ti, . . .

−→
xa11 .tk) = f(

−→
xa11 .t1, . . . ,

−→
xaii .t

′
i, . . . ,

−→
xa11 .tk) : −→c

(Ref)

Γ ` t = t : −→c

(Tra)

Γ ` s = t : −→c
Γ ` t = u : −→c
Γ ` s = u : −→c

(OSub)

Γ ` si :
−→
bi (1 ≤ i ≤ k)

x1 : b1, . . . , xk : bk ` t = t′ : −→c
Γ ` t [−−−→x 7→ s ] = t′ [−−−→x 7→ s ] : −→c

In (Ax1)(Ax2), [
−−−−→
m := s ] denotes [m1 := s1, . . . ,mk := sk ].

In (OSub), [−−−→x 7→ s ] denotes [x1 7→ s1, . . . , xk 7→ sk ].

Figure 3: Cartesian second-order equational logic

where [
−−−−→
m := s ] denotes [m1 := s1, . . . ,mk := sk].

Remark 2.2. The syntactic structure of meta-terms and substitution for abstract syntax
with variable binding was introduced by Aczel [Acz78]. This formal language allowed him
to consider a general framework of rewrite rules for calculi with variable binding. This
influenced Klop’s rewrite system of Combinatory Reduction System (CRS) [Klo80]. A
second-order substitution in the sense of Courcelle [Cou83] is very similar to a substitution
for metavariables but there are no variable binders in the language used in [Cou83] where
function symbols are the targets of replacements (instead of metavariables in our framework).
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For meta-terms Θ . Γ ` s :
−→
b and Θ . Γ ` t :

−→
b , an equation is of the form

Θ . Γ ` s = t :
−→
b ,

or denoted by Γ ` s = t :
−→
b when Θ is empty. The cartesian second-order equational logic

is a logic to deduce formally proved equations from a given set E of equations, regarded as
axioms. The inference system of equational logic is given in Fig. 3. Note that the symmetry
rule

(Sym)
Γ ` s = t : −→c
Γ ` t = s : −→c

is derivable because of symmetry of (Ax1) and (Ax2).

2.2. Preliminaries for datatypes. The default signature Σdef is given by the following
function symbols called default constructors:

Empty sequence 〈 〉 :() Tuple 〈−, · · · ,−〉:(−→c1), . . . , (−→cn)→ −→c1 , . . . ,
−→cn

Cycle constructor cy|
−→c | :(−→c → −→c )→ −→c Composition �(−→a ,−→c ) :(

−→a → −→c ),−→a → −→c

defined for all base types −→a ,−→c ,−→c1 , . . . ,
−→cn ∈ B. This means that any base type has default

constructors. We assume that any signature Σ includes Σdef in this paper. A datatype
declaration for a type c is given by a triple

(c,Σc, E)

consisting of a base type c, signature Σc and axioms E , where every f ∈ Σc is of the form

f : −→a , c, . . . , c→ c,

where −→a are types other than c (which may be empty), and any equation in E is built from
Σc-terms.

2.3. Instance (1): Cyclic Lists modulo Bisimulation. We will present an algebraic
formulation of cyclic datatypes. By a cyclic datatype, we mean an algebraic datatype having
the cycle construct cy satisfying the axioms that characterise cyclicity. The first example is
the datatype of natural numbers. It has already been defined as CNat in Introduction as a
pseudo code. We now give a formal definition using a datatype declaration. The datatype
declaration for CNat is given by (CNat,ΣCNat,AxCy) where ΣCNat is

0 : CNat, S : CNat→ CNat

and the axioms AxCy are given in Fig. 4.
The second example is the datatype of cyclic lists. It has already been defined as CList

in Introduction as a pseudo code. Fix a ∈ B. The datatype declaration for CLista, the
cyclic lists of type a, is given by (CLista,ΣCLista ,AxCy) where ΣCLista is given by

[ ] : CLista, (− ::a −) : a, CLista → CLista

and the axioms AxCy are given in Fig. 4. Note that CLista has also the default constructors,
thus one can form a cycle (see the example below). The definition of CList in Introduction
actually represents the datatype declaration (CListCNat,ΣCListCNat ,AxCy). Hereafter, we
often omit the type parameter subscript a of CList. The axioms AxCy mathematically
characterise that cy is truly a cycle constructor in the sense of Conway fixed point operator
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Axioms AxCy for cycles

(sub) t :−→a → −→c ,
s1, . . . , sn : −→a . ` (−→y .t[−→y ]) � 〈s1 , . . . , sn〉=t[s1 , . . . , sn] : −→c

(SP) t : −→c . ` 〈(−→y .y1) � t, . . . , (−→y .yn) � t〉=t : −→c

(dinat1) s : a→c,
t : c→a . ` cy(x.s[t[x]]) = s[cy(z.t[s[z]])]] : c

(dinatn) s : −→a →−→c ,
t : −→c →−→a . ` cy(−→x .s[t[−→x ]]) = (−→z .s[−→z ]) � cy(−→z .t[s[−→z ]])] : −→c

(Bekic̆) t : −→c ,−→a → −→c ,
s : −→c ,−→a → −→a . ` cy(−→x ,−→y. 〈 t̂, ŝ 〉) =

〈 cy(−→x . (−→y .t̂) � cy(−→y .̂s)),
cy(−→y . (−→x .̂s) � cy(−→x . (−→y .t̂) � cy(−→y .̂s))) 〉

: −→c ,−→a

(CI) t : am → a . ` cy(−→y .〈t[ρ1], . . . ,t[ρm]〉) = 〈cy(y.t̃ ), . . . , cy(y.t̃ )〉 : am

In (dinatn), |−→c | = m > 1 and s[t[−→x ]] is short for s[(−→y .y1) � t[−→x ], . . . , (−→y .ym) � t[−→x ]]. Similarly
for t[s[−→z ]]. In (Bekic̆), t̂ and ŝ are short for t[−→x ,−→y ] and s[−→x ,−→y ], respectively. In (CI), ρi =
yi1 , . . . , yim , where i1, . . . , im ∈ {1, . . . ,m}, t̃ is short for t[y, . . . , y].

Axioms AxBr([ ],+) for branching

(del) t : c . ` cy(xc.x + t) = t : c
(unitL) t : c . ` [ ] + t = t : c
(unitR) t : c . ` t + [ ] = t : c
(assoc) s,t,u : c . ` (s + t) + u = s + (t + u) : c
(comm) s,t : c . ` s + t = t + s : c
(degen) t : c . ` t + t = t : c

Note that the axiom AxBr([ ],+) is parameterised by the function symbols [ ],+. In general, writing
AxBr(ν, µ) where ν : c, µ : c, c → c ∈ Σcon, we mean the set of axioms obtained from the above
axioms by replacing [ ] with ν, and + with µ.

Figure 4: Axioms

[BÉ93]. The equational theory generated by AxCy captures the intended meaning of cyclic
lists. For example, the following are identified as the same cyclic list:

=
AxCy

2 22 2 22=
AxCy

cy(x.2 :: x) = 2 :: cy(x.2 :: x) = 2 :: 2 :: cy(x.2 :: x)

These equalities come from the fixed point law of cy:

(fix) cy(x.s[x]) = s[ cy(x.s[x]]) ]

which is an instance of the axiom (dinat) when t is identity (i.e., t 7→ x for x : c ` x : c).

2.4. On axioms AxCy. We explain the intuitive meaning of the axioms in AxCy. Param-
eterised fixed-point axioms axiomatise cy as a fixed point operator. They (minus (CI))

are equivalent to the axioms for Conway operators of [BÉ93, Has97, SP00]. Bekic̆ law is
well-known in denotational semantics (cf. [Win93, §10.1]) to calculate the fixed point of
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a pair of continuous functionns. Conway operators are also arisen in work independently
of Hyland and Hasegawa [Has97], who established a connection with the notion of traced
cartesian categories [JSV96]. There are equalities that holds in the cpo semantics but
Conway operators do not satisfy. The axiom (CI) is the commutative identities of Bloom

and Ésik [BÉ93, SP00], which ensures that all equalities that hold in the cpo semantics do
hold. See also [SP00, Section 2] for a useful overview about this. The equality generated by
AxCy is bisimulation on cyclic lists. This is included in the equality of cyclic sharing trees
given in the next subsection.

2.5. Instance (2): Cyclic Sharing Trees modulo Bisimulation. Next we consider the
datatype of binary branching trees, which can involve cycle and sharing. We call them cyclic
sharing trees, or simply cyclic trees. We first give the declaration of datatype CTree of cyclic
trees as the style of pseudo code below, where we assume that f1, . . . , fn’s part denotes
various unary function symbols such as a,b,c,p,q,. . ..

ctype CTree where

f1 : CTree → CTree
...

fn : CTree → CTree

[ ] : CTree

+ : CTree,CTree → CTree

with axioms AxCy,AxBr([ ],+)

Formally, it is expressed as the datatype declaration

(CTree, {f1, . . . , fn, [ ],+}, AxCy ∪ AxBr([ ],+)).

The binary operator + denotes a branch. For example, one can write b([])+c([]) (cf. Fig.
5 (A)). The datatype can express sharing by the constructor � of composition:

(x.a(b(x) + c(x))) � p([])

(cf. Fig. 5 (F)). Note that the first argument of composition � has a binder (e.g. x.), which
indicates a placeholder filled by the shared part after � (e.g. p([])). A binder at the first
argument of �-term may be a sequence of variables (e.g. “x,y.” in (E)), which will be filled
by terms in a tuple (e.g. <p([]),q([])>). Cyclic trees are very expressive. They cover
essentially XML trees with IDREF, the data model called trees with pointers [CGZ05], and
arbitrary rooted directed graphs (cf. Fig. 5 (B)(E)).

We denote by ∼ the equivalence relation generated by the axioms AxCy,AxBr([ ],+)
in Fig. 4. Using the axioms AxCy ∪ AxBr([ ],+), we can reason this equality ∼ in the
second-order equational logic. The equality ∼ gives reasonable meaning of cycles as in the
case of cyclic lists. The branch + is associative, commutative and idempotent (cf. Fig. 5
(C)), thus nested + can be seen as an n-ary branch (cf. Fig. 5 (D)). Moreover, a shared
term and its unfolding are also identified by ∼ because of the axiom (sub) (cf. Fig. 5 (F)).
The axiom (sub) is similar to the β-reduction in the λ-calculus.
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b
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+
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b c
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(D)+

[ ] [ ]
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bc

�

(sub)

b([])+c([]) = c([])+b([])

�

(C)(A) (B)

(E) (F) (G)

x

y

Figure 5: Examples of cyclic sharing trees

2.6. Algebraic theory of bisimulation. Actually, ∼ is exactly bisimulation on cyclic
trees. Since unary f expresses a labelled edge, and + expresses a branch, cyclic sharing
trees are essentially process graphs of regular behaviors, called charts by Milner in [Mil84].

Infinite unfolding of them are synchronization trees [BÉ93]. Thus the standard notion of
bisimulation between graphs can be defined. Intuitively, starting from the root, bisimulation
is by comparing traces of labels of two graphs along edges (more detailed definition is given

in [BÉ93, Mil84] or ([HMA] Appendix)). Now we see that (C),(F) and (G) are examples of
bisimulation. Actually, the axioms in Fig. 4 are sound for bisimulation, i.e., for each axiom,
the left and the right-hand sides are bisimilar. Moreover, it is complete.

Proposition 2.3. ([Ham15],([HMA]§5.3)) Γ ` s = t : CTree is derivable from AxCy and
AxBr([ ],+) iff if s and t are bisimilar.

The main reason of this is that the axioms AxCy and AxBr([ ],+) are a second-order

representation of Bloom and Ésik’s complete equational axioms of bisimulation [BÉ93]. A

crucial fact is that bisimulation s ∼ t is decidable [BÉ93, BFS00]. There is also an efficient
algorithm for checking bisimulation, e.g. [DPP04]. Hence, cyclic datatypes with the axioms
AxCy, or the axioms AxCy ∪ AxBr are computationally feasible. For example, equality on
cyclic structures such as the one we have seen in Fig. 1 can be checked efficiently.

There are many other instances of cyclic datatypes, some of which will be given in §7.

3. Categorical Semantics of Cyclic Datatypes

In this section, we give a categorical semantics of cyclic datatypes. A reason to consider
categorical semantics is to systematically obtain a “structure preserving map” on cyclic
datatypes. We will formulate the “fold” function for a cyclic datatype as a functor on the
category for cyclic datatypes (Thm. 3.9 and §4).

Since a cyclic datatype has cycles, the target categorical structure should have a notion
of fixed point. It has been studied in iteration theories of Bloom and Ésik [BÉ93]. In

particular iteration categories [Ési99] are suitable for our purpose, which are traced cartesian

categories [JSV96, Has97] satisfying the commutative identities axiom [BÉ93]. We write 1
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for the terminal object, × for the cartesian product, 〈−,−〉 for pairing, and ∆ = 〈id, id〉 for
diagonal in a cartesian category.

Definition 3.1. [Ési99, BÉ93] A Conway operator in a cartesian category C is a family of
functions (−)† : C(A×X,X)→ C(A,X) satisfying:

(f ◦ (g × idX))† = f† ◦ g , (f†)† = (f ◦ (idA ×∆))† ,
f ◦ 〈idA, (g ◦ 〈π1, f〉)†〉 = (f ◦ 〈π1, g〉)†.

An iteration category is a cartesian category having a Conway operator satisfying the
“commutative identities” law [BÉ93]

〈f ◦ (idA × ρ1), . . . , f ◦ (idA × ρm)〉† = ∆m ◦ (f ◦ (idA ×∆m))† : A→ X

where
• f : A×Xm → X
• ∆m , 〈idX , · · · , idX〉 : X → Xm is the diagonal
• ρi : Xm → Xm such that ρi = 〈qi1, . . . , qim〉 where each qij is one of projections
π1, . . . , πm : Xm → X (see also [SP00]).

An iteration functor between iteration categories is a cartesian functor that preserves Conway
operators.

Remark 3.2. It is well-known that there are several equivalent axiomatisations of the
Coway operator, cf. [BÉ93, §6.8][Has97, §7.1] and [SP00]. A frequently used axiomatisation
is a natural and dinatural operator satisfying the Bekic̆ law, which is what the axioms AxCy
in Fig. 4 state.

A typical example of iteration category is the category of CPO complete partial orders
(cpos) with bottom and continuous functions [BÉ93, Has97], where the least fixed point
operator is a Conway operator.

Definition 3.3. Let Σ be a signature. A Σ-structure M in an iteration category C is
specified by giving for each base type b ∈ B, an object [[b]]M (or simply written [[b]]) in C,
and for each function symbol f : (−→a1 →

−→
b1), . . . , (−→am →

−→
bm)→ −→c , a function

[[f ]]MA : C(A× [[−→a1]], [[
−→
b1 ]])× · · · × C(A× [[−→an]], [[

−→
bn]]) - C(A, [[−→c ]]) (3.1)

which is natural in A, where [[b1, . . . , bn]] , [[b1]]× . . .× [[bn]]. Also given a context Γ = x1 :

b1, . . . , xn : bn, we set [[Γ]] , [[b1, . . . , bn]]. The superscript of [[−]] may be omitted hereafter.

3.1. Interpretation. Let M be a Σ-structure in an iteration category C. We give the
categorical meaning of a term judgment Γ ` t : −→c (where there are no metavariables) as a

morphism [[t]]M : [[Γ]]→ [[−→c ]] in C defined by

[[Γ ` yi : c]]M = πi : [[Γ]]→ [[c]]

[[Γ ` f(
−→
xa11 .t1, . . .

−→
xann .tn ) : −→c ]]

M
= [[f ]]M[[Γ]]( [[Γ,−−−−→x1 : a1 ` t1 :

−→
b1 ]]

M
, . . . , [[Γ,−−−−→xn : an ` tn :

−→
bn]]

M
).
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We assume the following interpretations in any Σdef-structure:

[[〈 〉]]MA : C(A,1)→ C(A,1)

[[〈 〉]]MA (t) = t

[[〈−, . . . ,−〉]]MA : C(A, [[−→c1 ]])× · · · × C(A, [[−→cn]])→ C(A, [[−→c1 ]]× · · · × [[−→cn]])

[[〈−, . . . ,−〉]]MA (t1, . . . , tn) = 〈t1, . . . , tn〉
[[�]]MA : C(A× [[−→a ]], [[−→c ]])× C(A, [[−→a ]])→ C(A, [[−→c ]])

[[�]]MA (t, s) = t ◦ 〈idA, s〉
[[cy]]MA : C(A× [[−→c ]], [[−→c ]])→ C(A, [[−→c ]])

[[cy]]MA (t) = t†

We say a Σ-structure M satisfies an equation Γ ` s = t : c, if [[s]]M = [[t]]M holds.
Importantly, every Σdef-structure satisfies the axioms AxCy because C is an iteration category.

Definition 3.4. A (Σ, E)-structure is a Σ-structure M in C satisfying all equations in a
set E of axioms. Let N be a (Σ, E)-structure in an iteration category D. We say that an

iteration functor F : C → D preserves (Σ, E)-structures if F ([[−]]M ) = [[−]]N .
A c-structure (M,α) for a datatype declaration (c,Σc, E) consists of a (Σc, E)-structure

M with a family of morphisms of C:
α , ( ([f ])M : [[b1]]× . . .× [[bn]]→ [[c]] )f :b1,...,bn→c∈Σc .

Note that it induces the interpretation of every function symbol f ∈ Σc given by

[[f ]]MA (t1, . . . , tn) = ([f ])M ◦ 〈t1, . . . , tn〉
for any A in C. We say that an iteration functor F : C → D preserves c-structures if
F ([[c]]M ) = [[c]]N , and F (([f ])M ) = ([f ])N for every f ∈ Σc.

Example 3.5. (The datatype CLista of cyclic lists of type a) We give a CLista-
structure in the iteration category CPO via the standard initial algebra characterisation of
datatypes in the category CPO⊥ of cpos and strict continuous functions [AJ94]. We write
that 1 is the cpo {⊥} (which is the initial object of CPO⊥), where ⊥ is the least element,
⊕ is the coalesced sum, and (−)⊥ is lifting.

Let A be the interpretation [[a]]L of a base type a in CPO. We construct an initial
algebra L of the functor F on CPO⊥ defined by F (X) = 1⊥⊕ (A×X)⊥ by using the initial
algebra construction [SP82], i.e., taking the colimit of ω-chain

1
!- F (1)

F (!)- F 2(1)
F 2(!)- · · ·

we have a cpo L ∼= F (L), consisting of finite and infinite possibly partial lists with continuous
functions nil : 1 → L and cons : A × L → L. The order of the cpo is the usual point-
wise ordering ⊥ v t, and (t1, t2) v (t′1, t

′
2) if t1 v t′1 and t2 v t′2, etc. Then we have a

CLista-structure (L, (([[ ]])L, ([::])L)) defined by

([[ ]])L = nil, ([::])L = cons

and all the axioms in AxCy hold in CPO, since these are now well-known propeties of cpos

[Win93, BÉ93, SP00]. Note that this construction is the same as modelling the lazy list
datatype, hence this also shows that our framework covers modelling lazy datatypes as in
Haskell.
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Example 3.6. (The cyclic tree type CTree) A CTree-structure in an iteration category

C is given by a (Σdef,AxCy ∪ AxBr([ ],+))-structure M where [[CTree]]M = N and N is a
commutative monoid object (N, η :1→ N, µ :N ×N → N) in C satisfying

([[ ]])M = η, ([+])M = µ.

It satisfies all axioms of AxBr([ ],+). Note that every CTree-structure is a degenerated
commutative bialgebra (cf. [FC13]) in a cartesian category C, i.e., N forms also a comonoid
(N, !,∆) that satisfies the compatibility

∆ ◦ η = η × η, ∆øµ = (µ× µ) ◦ (id× 〈π2, π1〉 × id) � (∆×∆), µø∆ = id.

The last equation is by µ ◦ ∆ = µ ◦ 〈id, id〉 = µ ◦ 〈id, (µ)†〉 (dinat)
= (µ)† = id. Thus, a

CTree-structure models branch (by µ) and sharing by (∆) of cyclic sharing trees.

We next give a syntactic category and a Σ-structure to prove categorical completeness.
Let Σ be a signature, and E a set of axioms which is the union of AxCy and axioms for all
datatype declarations of base types c. Given axioms E , all proved equations Γ ` s = t : −→c
(which must be the empty metavariable context) by the second-order equational logic (Fig.
3), defines an equivalence relation =E on well-typed terms, where we also identify renamed
terms by bijective renaming of free and bound variables. We write an equivalence class of
terms by =E as [Γ ` t : −→c ]E . We define the category Tm(E) of term judgments modulo
=E by taking

• objects: sequences of base types −→c
• morphisms: [Γ ` t : −→c ]E : [[Γ]]→ [[−→c ]], the identity: [−−→x : c ` 〈−→x 〉 : −→c ]E
• composition: [

−−→
x : b ` s : −→c ]E ◦ [Γ ` t :

−→
b ]E , [Γ ` (−→x .s) � t : −→c ]E

Proposition 3.7. Tm(E) is an iteration category, and has a (Σ, E)-structure U.

Proof. We define a Σ-structure U by [[c]]U , c for each c ∈ B, and

[[f ]]U−→a : Tm(E)((−→a ,−→a1),
−→
b1)× · · · ×Tm(E)((−→a ,−→an),

−→
bn) - Tm(E)(−→a ,−→c )

[[f ]]U−→a ([t1]E , . . . , [tn]E) , [f(−→x1.t1, . . . ,
−→xn.tn)]E

for f : (−→a1 →
−→
b1), . . . , (−→am →

−→
bm)→ −→c ∈ Σ and base types −→a . This is well-defined because

=E is a congruence. We take

• terminal object: () • pair: 〈[s]E , [t]E〉 , [Γ ` 〈s , t〉 : −→c1 ,
−→c2 ]E

• product: concatenation of sequences

• Conway op.: ([Γ,−−→x : c ` t : −→c ]E)
† = [Γ ` cy(

−→
xc.t) : −→c ]E

• projections: [x1 : c1, x2 : c2 ` xi : ci]E

Then these data turn Tm(E) into an iteration category, and moreover, U forms a (Σ, E)-
structure because of the axioms E for each c ∈ B. Moreover,

( [[c]]U, (f : [[
−→
b1 ]]× · · · × [[

−→
bm]]→ [[c]])

f :
−→
b1 ,...,

−→
bm→c∈Σc

)

is a c-structure. Note that [[
−→
bi ]] =

−→
bi in Tm(E).
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Then [[t]]U = [t]E holds for all well-typed terms t. Using it, we have the following.

Theorem 3.8. (Categorical soundness and completeness) Γ ` s = t : −→c is derivable

iff [[s]]MC = [[t]]MC holds for all iteration categories C and all (Σ, E)-structures in C.

Theorem 3.9. For a (Σ, E)-structure M in an iteration category C, there exists a unique
iteration functor ΨM : Tm(E) - C that preserves (Σ, E)-structures. Pictorially, it is
expressed as the following diagram, where Tm denotes the set of all terms (without quotient).

Tm
[[−]]U- Tm(E)

C

[[−]]M

?� Ψ
M

Proof. We write simply Ψ for ΨM . Since Ψ preserves (Σ, E)-structures, Ψ([[−]]U) = [[−]]M

holds. Hence Ψ([[t]]U) = Ψ([t]E) = [[t]]M for any t, meaning that the mapping Ψ is required
to satisfy

Ψ( [Γ ` yi : c]E ) = πi
Ψ( [Γ ` 〈 〉 : ()]E ) = !
Ψ( [Γ ` 〈s , t〉 : −→c1 ,

−→c2 ]E ) = 〈Ψ[Γ ` s : −→c1 ]E ,Ψ[Γ ` t : −→c2 ]E〉
Ψ( [Γ ` cy(

−→
xc.t) : −→c ]E ) = (Ψ[Γ,−−→x : c ` t : −→c ]E)

†

Ψ( [Γ ` f(
−→
xa11 .t1, . . . ,

−−→
xamm .tm) : c]E)

= [[f ]]M[[Γ]](Ψ[Γ,−−−−→x1 : a1 ` t1 : b1]E , . . . ,Ψ[Γ,−−−−−→xm : am ` tm : bm]E)

Ψ( [Γ ` (
−→
xb.t) � s : c]E ) = Ψ[Γ,

−−→
x : b, ` t : c]E ◦ 〈id[[Γ]],Ψ[Γ ` s :

−→
b ]E〉

(3.2)

The above equations mean that Ψ is an iteration functor that sends the (Σ, E)-structure U
to M . Such Ψ is uniquely determined by these equations because U is a (Σ, E)-structure.

4. Fold on Cyclic Datatypes

Fix a cyclic datatype c (say, the type CList of cyclic lists). By the previous theorem, for a

c-structure M , the interpretation [[−]]M determines a c-structure preserving iteration functor
ΨM . If we take the target category C as also Tm(E), M should be another cyclic datatype
b (say, the CNat of cyclic natural numbers), where the constructors of c are interpreted as
terms of type b. For example, the sum of a cyclic list in Introduction is understood in this
way. Thus the functor ΨM determined by [[−]]M can be understood as a transformation of
cyclic data from terms of type c to terms of type b.

Along this idea, we formulate the fold operation from the cyclic datatype c to another
cyclic datatype b by the functor ΨM . Let (c,Σc, Ec) and (b,Σb, Eb) be datatype declarations.
Let E be the set of axioms collecting the axioms of all datatype declarations for types in
B, which includes AxCy (and AxBr if the datatype suppose it) for every datatype. Hence
E ⊇ Eb ∪ Ec. We define a (Σc, E)-structure (M,α) in Tm(E) by

[[c]]M = b

and [[a]]M = a for a 6= c. We write the arrow part function ΨM on hom-sets as the fold, i.e.,

foldcb(α) : Tm(E)(−→c , c) - Tm(E)([[−→c ]], b). (4.1)
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where −→c = c1, . . . , cn (N.B. some of ci may be c).

4.1. Axiomatising fold as a second-order algebraic theory. The fold is a function
on equivalence classes of term judgments modulo E characterised by (3.2). Equivalently, we
regard it as a function on terms (or term judgments) that preserves =E , i.e.,

s =E t ⇒ foldcb(α)(s) =E foldcb(α)(t).

In this subsection, we axiomatise the function foldcb as the laws of fold within second-order
equational logic using (3.2).

Axiomatising a c-structure (M,α). To give α = (([f ])M : [[a1]]×. . .×[[an]]→ [[c]])f :a1,...,an→c∈Σc

is to give terms x1 : [[a1]], . . . , xn : [[an]] ` ef : b for all f : a1, . . . , an → c ∈ Σc such that

([f ])M = [ef ]E . Note that [[c]] = b. We represent α as a tuple of terms ef according to function
symbols in Σc by the order of datatype constructors listed in a ctype declaration of c.

Axiomatising fold. We next axiomatise the fold operation as a second-order algebraic theory.
The type of fold may be chosen as

foldcb : ([[−→a1]]→ b), . . . , ([[−→am]]→ b), (−→c → c)→ ([[−→c ]]→ b), (4.2)

where the first m-arguments correspond to the c-structure α. But in second-order algebraic
theory, the codomain of function symbol must be a sequence of base types (§2.1), so the
codomain ([[−→c ]]→ b) is inappropriate. We resolve this by simply uncurrying. We axiomatise
the fold as the function symbol of the type

foldcb : ([[−→a1]]→ b), . . . , ([[−→am]]→ b), (−→c → c), [[−→c ]] - b.

and we will write a term of it using the notation

foldcb(
−→x1.e1, . . . ,

−→xm.em, −→y. t ; −→y )

where each ei corresponds to ([fi])
M for fi ∈ Σc in α. The last two arguments −→y. t and −→y

may need explanation. The first “−→y. t” describes a term with variable binding “−→y .” of types
−→c , but the second “−→y ” are free variables of types [[−→c ]], which are different from the first
bound variables, but have the same length. We may write simply

foldcb(
−→x1.e1, . . . ,

−→xm.em, t )

by omitting the parameters after “;”, when |−→y | = 0. This is a formalisation of the
mathematical expression foldcb(α)([−−→y : c ` t : c]E) at the level of semantics as a syntactic
term.

In general, we can consider fold
−→c−→
b

as the fold from −→c to
−→
b . Hereafter, we assume that

any signature Σ is divided into the default signature Σdef, a signature for constructors Σcon,
and fold’s:

Σ = Σdef ∪ Σcon ∪ {fold
−→c−→
b
| −→c ,

−→
b ∈ B}.

In other words, we assume that any function symbol other than a default constructor or
fold is an element of Σcon.

In Fig. 6, we give the axioms FOLD, which axiomatise fold by using the characterisation
(3.2) in case of a particular category C = Tm(E) and a c-structure as a second-order algebraic
theory. To ease understanding, we explicitly describe an instance of (5) as (5’) for the case
c = CList, d = (::). Note that there is no case of foldcb(E,

−→y. z;−→y ) for z 6∈ {−→y }.
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(1) foldcb(E,
−→
yc. yci ;

−→
yb ) = yi

b (for yci ∈ {y
c1
1 , . . . , y

cn
n })

(2) foldc()(E,
−→y. 〈 〉 ;−→y ) = 〈 〉

(3) fold
−→c1 ,−→c2−→
b1 ,
−→
b1

(E, −→y. 〈s[−→y ],t[−→y ]〉 ;−→y ) = 〈fold
−→c1−→
b1

(E, −→y. s[−→y ];−→y ), fold
−→c1−→
b2

(E, −→y.t[−→y ];−→y )〉

(4) fold
−→c−→
b

(E, −→y. cy(−→x .t[−→y ,−→x ]) ;−→y ) = cy(−→x .fold
−→c−→
b

(E, −→y ,−→x.t[−→y ,−→x ]; −→y ,−→x ))

(5) foldcb(E,
−→y. d(

−→
a ,t1[−→y ], . . . ,tn[−→y ]);−→y ) = (−→x .ed[−→a ,−→x ]) � 〈foldc1b1(E, −→y.t1[−→y ];−→y ), . . .〉

(5′) foldCList
b (E, −→y.a :: t[−→y ] ;−→y ) = (x.e[a, x]) � foldCList

b (E, −→y.t[−→y ];−→y ))

(6) foldcb(E,
−→y. (−→x .t[−→x ]) � s[−→y ] ;−→y ) = (−→x .foldcb(E,

−→x.t[−→x ];−→x )) � fold
−→a−→
a′

(E, −→y. s[−→y ]; −→y )

Here E is a sequence (−→z ,−→x .ed[−→z ,−→x ])d∈Σc
of metavariables and d ∈ Σc. (5’) is an instance of (5)

for explanation. In (8), t̂ and ŝ are short for t[−→x ,−→y ] and s[−→x ,−→y ], respectively.

Figure 6: Second-order algebraic theory FOLD

(1r) foldcb(E,
−→y. v(yi) ;−→y )→v(yi)

(2r) foldc()(E,
−→y. 〈 〉 ;−→y )→〈 〉

(3r) fold
−→c1 ,−→c2−→
b1 ,
−→
b1

(E, −→y. 〈s[−→y ],t[−→y ]〉 ;−→y )→〈fold
−→c1−→
b1

(E, −→y. s[−→y ];−→y ), fold
−→c1−→
b2

(E, −→y.t[−→y ];−→y )〉

(4r) fold
−→c−→
b

(E, −→y. cy(−→x .t[−→y ,−→x ]) ;−→y )→cy(−→x .fold
−→c−→
b

(E, −→y ,−→x.t[−→y ,−→x ]; −→y ,−→x ))

(5r) foldcb(E,
−→y. d(

−→
a ,t1[−→y ], . . . ,tn[−→y ]) ;−→y )→ed[

−→
a , foldc1b1(E, −→y.t1[−→y ];−→y ), . . .

foldcnbn(E, −→y.tn[−→y ];−→y )]

Composition

(7r) (−→y.t[−→y ]) � 〈−→s 〉 →t[−→s ]

Figure 7: Second-order rewrite system FOLDr

Bekic̆

(10r) cym+n(−→x ,−→y. 〈 t̂, ŝ 〉) →〈 cym(−→x . (−→y .t̂) � cyn(−→y .̂s)),
cyn(−→y . (−→x .̂s) � cym(−→x . (−→y .t̂) � cyn(−→y .̂s)))〉

Cleaning rules for c satisfying AxBr([ ],+)

(11r) cy(xVarc .v(x) + t) →t

(12r) cy(xVarc .t + v(x)) →t

(13r) cy(−→y.t) →t

(14r) cy(xVarc .v(x)) → [ ]

(15r) [ ] + t →t

(16r) t + [ ] →t

In (7r), |−→s | = 1 is also allowed and the part 〈−→s 〉 is simply a single metavariable s.
By the notation of metavariable, in (13r), cy(−→y.t) means that t cannot involve −→y , and similar for
(12r)(13r). The rules (11r)-(16r) are parameterised by the function symbols [ ],+ as in AxBr([ ],+).

Figure 8: Second-order rewrite system SIMP for simplification
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We omit writing contexts and types of equations for simplicity. For example, formally
the axiom (1) in FOLD is written as

e1 : −→a1 → c, . . . ,en : −→a1 → c . ` foldcb(e1, . . . ,en,
−→y. yi ; −→y ) = yi : b

The arguments of fold expressing the c-structure are abbreviated as E for simplicity.
We state the correctness of this axiomatisation, which holds by the above faithful

construction. The following is immediate by construction.

Proposition 4.1. The following are equivalent.

• foldcb(α)([Γ ` t : c]E) = [Γ′ ` u : b]E

• ` foldcb(
−→x1.e1, . . . ,

−→xm.em, −→y. t ; −→y ) = u : b is derived from the axioms E ∪ FOLD using
the second-order equational logic.

where α, ei and t are fold free, Γ = y1 : c, . . . , yn : c, Γ′ = y1 : [[c]], . . . , yn : [[c]].

Example 4.2. The plus function on CNat can be defined as fold as follows.

plus : CNat,CNat → CNat

spec plus(m, n) = pl(m)

where pl(0) = n

pl(S(m)) = S(pl(m))

fun plus(m, n) = fold (n, x.S(x)) m

We specify plus in terms of a unary function pl which recurses on the first argument
m and gives the second argument n if m = 0. Hence it is defined by fold where the target
CNat-structure is defined to be [[0]]M = n, [[S]]M (x) = S(x).

4.2. Primitive recursion by fold. The fold axiomatised above covers the ordinary fold on
algebraic datatypes. Thus, we expect that various techniques on fold developed in functional
programming, such as the fold fusion technique and representation of recursion principles
such as [MFP91] may be transferred to the current setting. Here we consider a way to
implement a particular pattern of recursion appearing often in specifications as a fold.

4.3. Assumptions. Let (c,Σc, Ec) and (b,Σb, Eb) be datatype declarations, where Σc =
{d1, . . . , dn}. We suppose the following form of specification and definition.

f : c → b

spec f(d1(−→a ,−→t )) = ed1
· · ·

f(dn(−→a ,−→t )) = edn

fun f(t) = π1 � foldcb,c( (v1, w1, . . . , vn, wn.〈e′d, d(−→a ,−→w )〉)d∈Σc , t )

(4.3)

We define π1 , (v, w. v). We assume that every ed is a closed term of type b, which may
involve terms of the types

` f(ti) : b ` ti : c
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for each i = 1, . . . , n, (i.e.,
−→
t = t1, . . . , tn may appear solely, cf. examples in §7 in ed).

We define e′d to be a term obtained from ed, by replacing every f(ti) with vi of type b,
and every ti (not in the form f(ti)) with wi of type c, and assume

v1 : b, w1 : c, . . . , vn : b, wn : c ` e′d : b.

The above specification can be seen as describing primitive recursion, because it is
similar to the primitive recursion on natural numbers f(S(n)) = e(f(n), n), where both n
and f(n) can be used at the right-hand side. In functional programming, it is known that
primitive recursion on algebraic datatypes can be represented as fold, called paramorphism
[Mee92]. We now take the fold where the target Σ-structure is the sequence b, c of types,
i.e., foldcb,c.

4.4. Structure. Let E be the set of axioms collecting the axioms of all datatypes in B.
Hence E ⊇ Eb ∪ Ec. We define a (Σc, E)-structure (M,α) in Tm(E) by

[[c]]M = (b, c)

and [[a]]M = a, otherwise. If Ec contains axioms AxBr([ ],+), then Eb must contains axioms
AxBr(ν, µ), where ν : b, µ : b, b→ b are in Σb. We define

([ [ ] ])M = 〈η, [ ]〉, ([+])M (〈v1, w1〉, 〈v2, w2〉) = 〈µ(v1, v2), w1 + w2〉
([d])M (−→a , v1, w1, . . . , vn, wn) = 〈e′d, d(−→a ,−→w )〉

for d : −→a , cn → c ∈ Σcon.

4.5. Formalisation. Then we have the function

foldcb,c(α) : Tm(E)(−→c , c) - Tm(E)([[−→c ]], (b, c)) (4.4)

which is axiomatised as the function symbol

foldcb,c : ([[−→a1]]→ (b, c)), . . . , ([[−→am]]→ (b, c)), (−→c → c), [[−→c ]] - (b, c).

The axioms FOLD in Fig. 6 is instantiated to the case of foldcb,c. For example,

(1) foldcb,c(E,
−→x. xi ; v1, w1, . . . , vn, wn) = 〈vi, wi〉

Other axioms for fold are instantiated similarly.

4.6. Properties. By construction,

` ed = (v1, w1, . . . , vn, wn. e
′
d) � 〈f(t1), t1, . . . , f(tn), tn〉 : b

holds. Define E , (v1, w1, . . . , vn, wn.e
′
d)d∈Σc . By induction on the typing derivations, we

have
foldcb,c(E, t) = 〈 f(t), t 〉

for all closed terms t of type c. By the characterisation (3.2), we have for each d ∈ Σcon,

〈f(d(−→a ,−→t )), t〉 = foldcb,c(E, f(d(−→a ,−→t )))

= 〈(v1, w1, . . . , vn, wn.〈e′d, d(−→a ,−→w )〉) � 〈 f(t1), t1, . . . , f(tn), tn 〉, t〉 = 〈ed, t〉
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hence we have
f(d(−→a ,−→t )) = ed

meaning that f satisfies the specification. We use this representation of primitive recursion
in §7.

Remark 4.3. If ed constrains only recursive calls of the forms f(ti), it is merely a pattern
of structural recursion, so it can be implemented by fold using the structure v.e′ where all
the recursive calls f(ti) in ed are abstracted to v as Example 4.2.

5. Strongly Normalising Computation Rules for FOLD

We expect that FOLD provides strongly normalising computation rules. An immediate idea
is to regard the axioms FOLD as rewrite rules by orienting each axiom from left to right.

But proving strong normalisation (SN) of FOLD is not straightforward. The sizes of both
sides of equations in FOLD are not decreasing in most axioms. So, assigning some “measure”
to the rules in FOLD that is strictly decreasing is difficult for this case. Such a naive method
is typically dangerous for higher-order rewrite rules and might lead one to an unintentional
mistake. If the axioms regarded as second-order rules are a binding Combinatory Reduction
System (CRS) [Ham05] (cf. Remark 2.2), meaning that every meta-application m[t1, . . . , tn]
is of the form m[−→x ], then it is possible to use a simple polynomial interpretation to prove
termination of second-order rules [Ham05]. Unfortunately, this is not the case because in (5)
there is a meta-application violating the condition. Existence of meta-application means
that it essentially involves the β-reduction, thus it has the same difficulty as proving strong
normalisation of the simply-typed λ-calculus.

We use a general established method of the General Schema [BJO02, Bla00], which is
based on Tait’s computability method to show strong normalisation (SN). The General
Schema has succeeded to prove SN of various recursors such as the recursor in Gödel’s
System T. The basic idea of the General Schema is to check whether the arguments of
recursive calls in the right-hand side of a rewrite rule are “smaller” than the left-hand sides’
ones. It is similar to Coquand’s notion of “structurally smaller” [Coq92], but more relaxed
and extended.

5.1. General Schema. We review the General Schema criterion [Bla00, Bla16]. For more
details and the proofs, see the original papers [Bla00, Bla16].

The General Schema is formulated for a framework of rewrite rules called inductive
datatype systems, whose second-order fragment is essentially the same as the present
formulation given in §2. Minor differences are adapted as follows. We use greek letters such
as α, σ, τ , . . . to denote types. Roman alphabets such as a, b, c, . . . are used for base types.

(i) The target of function symbols must be a single (not necessary base) type in an
inductive datatype system. Hence we introduce the product type constructor ×,
assume that b1 × b2 is again a base type in the sense of §2.3, and use it for the target
type.

(ii) Instead of a term x1, . . . , xn.t of sort a1, . . . , an → b in a second-order algebraic theory,
we use x1. · · · .xn.t of type a1 → · · · → an → b. Now the abbreviation −→x .t denotes
x1. · · · .xn.t.
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Definition 5.1. A set of rewrite rules induces the following relation on function symbols in
a signature Σ: f depends on g if there is a rewrite rule defining f (i.e., whose left-hand side
is headed by f) in the right-hand side of which g occurs. Its transitive closure is denoted by
>Σ.

Definition 5.2. A constructor is a function symbol c : −→τ → b which does not occur at the
root symbol of the left-hand side of any rule. The set of all constructors defines a preorder
≤B on the set B of mol types by a ≤B b if b occurs in −→τ for a constructor c : −→τ → b. Let <B
be the strict part and =B the equivalence relation generated by ≤B. A type b is positive if
for any type a s.t. a =B b, a does not occur at a negative position of the type of constructor
c of b. A constructor c : −→τ → b is positive if b is positive.

Definition 5.3. A metavariable z is accessible in a meta-term t if there are distinct bound
variables −→x such that z[−→x ] ∈ Acc(t), where Acc(t) is the least set satisfying the following
clauses:

(a1) t ∈ Acc(t).

(a2) If x.u ∈ Acc(t) then u ∈ Acc(t).

(a3) If c(−→s ) ∈ Acc(t) then each si ∈ Acc(t) for a constructor c.

(a4) Let ui be a term of type τ i for each i = 1, . . . , n. If Acc(t) 3 f(u1, . . . , un) is of a base
type b, and b (possibly) occurs positively in type τ i, then ui ∈ Acc(t) [Bla16, Def.15].

A position p is a finite sequence of natural numbers. The order on positions is defined by
p < q if there exists a non-empty p′ such that p p′ = q. Given a meta-term t, Pos(t) denotes
the set of all positions of t. The notation t|p denotes a subterm of t at a position p, and

t[s]p the term obtained from t by replacing the subterm at the position p by s.

Definition 5.4. A meta-term u is a covered-subterm of t, written t D̂ u, if there are two
positions p ∈ Pos(t), q ∈ Pos(t|p) such that

• u = t[t|pq ]p,

• ∀r < p. t|r is headed by an abstraction, and

• ∀r < q. t|pr is headed by a function symbol, including a constructor.

For example, f(a, c(x)) D̂ c(x), and λ(x.m[x]) D̂ m[x], and y.λ(x.m[x]) D̂ y.x.m[x].

Definition 5.5. Given f : τ1, . . . , τn → τ ∈ Σ, the computable closure CCf (
−→
t ) of a meta-

term f(
−→
t ) is the least set CC satisfying the following clauses. We assume that all the terms

below are well-typed.

(1) If z : τ1, . . . , τp → τ is accessible in some of
−→
t , and −→u ∈ CC, then z[−→u ] ∈ CC.

(2) For any variable x, x ∈ CC.
(3) If c : τ1, . . . , τn → b is a constructor and −→u ∈ CC, then c(−→u ) ∈ CC.
(4) If u, v ∈ CC, then u@v ∈ CC for @ : (σ → τ), σ → τ .

(5) If u ∈ CC then x.u ∈ CC.
(6) If f >Σ g and −→w ∈ CC, then g(−→w ) ∈ CC.
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(7) If −→u ∈ CC such that
−→
t B̂

lex −→u , then f(−→u ) ∈ CC, where B̂
lex

is the lexicographic

extension of the strict part of D̂ .

Definition 5.6. A rewrite rule f(
−→
t )→ r satisfies the General Schema if CCf (

−→
t ) 3 r.

Theorem 5.7. ([Bla00]) Suppose that given a signature Σ and rules R satisfies the
following:

(1) >B is well-founded,
(2) every constructor is positive, and
(3) >Σ is well-founded.

If all the rules of R satisfy the General Schema, then R is strongly normalising.

5.2. Refining second-order algebraic theory to second-order rewrite rules. In
order to apply the General Schema criterion, we refine the second-order algebraic theories
AxCy, AxBr and FOLD to the second-order rewrite rules FOLDr and SIMP.

Crucially, the constructors used in FOLD are not positive, as cy and � involve a negative
occurrence of c in (c→ c). We can overcome this problem by modifying the type (c→ c) to
a restricted (Varc → c), where Varc is a base type having no constructor considered as the
type of “variables” of type c. We assume the constructor v which embeds a “variable” into
a term. We modify the types of default constructors as follows:

〈−, · · · ,−〉 : c1, . . . , cn → c1 × . . .× cn, cy : (
−−→
Varc → c)→ c,

v : Varc → c,

where c’s and a’s are base types of the inductive datatype system (which may be product

types),
−−→
Vara → c is short for Vara1 → · · · → Varan → c. The type of fold is now

foldcb : (
−−−→
Vara1 → b), . . . , (

−−−→
Varak → b), (Varmc → c),Varmb - b,

The use of a type Varσ → τ to represent binders is well-known in the field of mechanized
reasoning, sometimes called (weak) higher-order abstract syntax [DFH95].

We also modifty the type of composition as

− � − : (a1, . . . , an → c), a1 × · · · × an → c

which is not a constructor in the sense of Def. 5.2, hence it is allowed as not positive (when
ai = c).

5.3. Second-order rewrite systems FOLDr and SIMP. We now describe how we obtain
the second-order rewrite rules FOLDr and SIMP given in Fig. 7 and 8. Note that FOLDr’s
“r” stands for “rewrite”. The rewrite system FOLDr is an oriented version of FOLD. The
axiom (5) is refined to (5r) by applying Composition rules which is need to prove SN.
Because of it, a rule corresponding to (6) is not needed in FOLDr. The axiom (sub) in AxCy
involves a meta-application at the right-hand side, which performs general substitution of
terms for variables −→y of base types. The oriented version of it is the rule (7r).

The rewrite system SIMP is for simplification, whose rules are taken from the equational
theory of AxCy ∪ AxBr. We include the Bekic̆ law as a rewrite rule (10r), which can be
depicted as:
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t s t

s

s(Beki
�
)

It says that the fixed point of a pair can be obtained by computing the fixed points of its
components independently and composing them suitably (see the right figure). It can be
seen as decreasing complexity of cyclic computation because looking at the argument of cy,
the number of components of tuple is reduced. The superscript of cy in (10r) indicates the
length of the tuple argument (see §2.1). Such a superscript indicating an invariant of the
arguments is similar to the idea of higher-order semantic labelling [Ham07], but here we just
make the existing superscript explicit rather than labelling. Hence it is suitable for rewrite
rules and actually shown to be terminating (cf. the proof of Thm. 5.9).

We define the relation →FOLDr (resp. →SIMP) on terms by the relation generated by the
second-order equational logic Fig. 3 under the axioms FOLDr (resp. SIMP) without using the
(Ax2), (Ref) and (Tra)-rules. Namely, “one-step rewriting” →FOLDr is equational reasoning
without using symmetry, reflexivity and transitivity. By construction, we immediately see
that the rewrite system FOLDr correctly implements the second-order algebraic theory
FOLD. The following proposition is immediate by construction of rules. We write ť for a
term that recovers the original terms t by stripping the constructor v.

Proposition 5.8. If t→+
FOLDr t

′, then ť = ť′ is derivable from FOLD ∪ AxCy ∪ AxBr.

Theorem 5.9. The second-order rewrite system FOLDr ∪ SIMP is strongly normalising.

Proof. We use the the General Schema criterion using the well-founded relation >Σ on
function symbols

fold, � > cym > cyn > any other constructors

where natural numbers m > n ≥ 1. Now all constructors are positive.

In the following proof, we write f(
−→
t ) � s when CCf (

−→
t ) 3 s. We show that

FOLDr ∪ SIMP satisfies the General Schema, i.e., for each rewrite rule f(
−→
t )→ s, we check

f(
−→
t ) � s.

(1r) fold(E,−→y .v(yi);
−→y ) � v(yi)

(6)⇐= fold(E,−→y .v(yi);
−→y ) � yi, which holds by (2).

The implication “⇐=” expresses backward inference, which is labelled with a number
indicating which clause in Def. 5.3 or Def. 5.5 is applied. In what follows, for brevity, we
examine mostly the cases that the length of bound variables is 1 (i.e., |−→x | = |−→y | = 1) and
the arity of d is 2. General cases are proved similarly.

(4r) fold(y.cy(x.t[y, x]); y) � cy(x.fold(y, x.t[y, x]; y))
(6)⇐= fold(y.cy(x.t[y, x]); y) � fold(y, x.t[y, x]; y)
(7)⇐= fold(y.cy(x.t[y, x]); y) � y

& fold(y.cy(x.t[y, x]); y) � y, x.t[y, x] & y.cy(x.t[y, x]) D̂ y, x.t[y, x]
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The second literal holds easily. In general, if a metavariable with binders is a subterm
of a larger meta-term, it is proved to be smaller by �. The third literal of a covered
subterm relation holds, because stripping the prefix binders, it is a subterm relation.

(5r) fold(z, x.ed[z, x], y.d(a,t[y]); y) � ed[a, fold(z, x.ed[z, x], y.t[y]; y)]
(6)⇐= fold(z, x.ed[z, x], y.d(a,t[y]); y) � a, fold(z, x.ed[z, x], y.t[y]; y)

& ed is accessible in (z, x.ed[z, x]).

The first literal is proved to be smaller straightforwardly (cf. (4r)) and the accessiblity
Acc(z, x.ed[z, x]) 3 ed[z, x] is shown by (a1)(a2). The general case that the part
x.ed[x] in fold is a sequence of metavariables (x.ed[x])d∈Σc is similar. Hereafter, we
omit writing the part E = (x.ed[x])d∈Σc and the arguments after “;” in fold for
brevity.

(3r) fold(y.〈s[y],t[y]〉) � 〈fold(y.s[y]), fold(y.t[y])〉
(3)⇐= fold(y.〈s[y],t[y]〉) � fold(y.s[y]) & fold(y.〈s[y],t[y]〉) � fold(y.t[y])
(7)⇐= y.〈s[y],t[y]〉 D̂ y.s[y] & y.〈s[y],t[y]〉 D̂ y.t[y]

(7r) (−→y.t[−→y ]) � 〈−→s 〉 � t[
−→
s ]

(1)⇐= (−→y.t[−→y ]) � 〈−→s 〉 � −→s & Acc(−→y .t[−→y ]) 3 t[−→y ]

The first literal holds because
−→
s are accesible in 〈−→s 〉. The second literal holds by

(a2)(a1).

(10r) We write t̂ = t[−→x ,−→y ], ŝ = s[−→x ,−→y ].
cym+n(−→x ,−→y .〈t̂, ŝ〉) � 〈cym(−→x .(−→y .t̂) � cyn(−→y .̂s)), cyn(−→y .(−→x .̂s) � cym(−→x .(−→y .t̂) �
cyn(−→y .̂s)))〉
(6)⇐= cym+n(−→x ,−→y .〈t̂, ŝ〉) � cy(−→x .(−→y .t̂) � cy(−→y .̂s))

& cym+n(−→x ,−→y .〈t̂, ŝ〉) � cy(−→y .(−→x .̂s)�cy(−→x .(−→y .t̂)�cy(−→y .̂s))) , (A) & (B).
In what follows, unlabelled cy denotes cym or cyn.

(A) cym+n(−→x ,−→y .〈t̂, ŝ〉) � cy(−→x .(−→y .t̂) � cy(−→y .̂s)) (6)⇐= cym+n(−→x ,−→y .〈t̂, ŝ〉) �
−→x .(−→y .t̂) � cy(−→y .̂s) (6)⇐= cym+n(−→x ,−→y .〈t̂, ŝ〉) � −→x .(−→y .t̂), cy(−→y .̂s)

(B) cym+n(−→x ,−→y .〈t̂, ŝ〉) � cy(−→y .(−→x .̂s) � cy(−→x .(−→y .t̂) � cy(−→y .̂s)))
(6)⇐= cym+n(−→x ,−→y .〈t̂, ŝ〉) � −→y .(−→x .̂s) � cy(−→x .(−→y .t̂) � cy(−→y .̂s))
(6)⇐= cym+n(−→x ,−→y .〈t̂, ŝ〉) � −→y .(−→x .̂s) & cym+n(−→x ,−→y .〈t̂, ŝ〉) � cy(−→x .(−→y .t̂) �

cy(−→y .̂s))

The first literal easily holds. The second literal holds by

(6)⇐= cym+n(−→x ,−→y .〈t̂, ŝ〉) � −→x .(−→y .t̂) � cy(−→y .̂s)
(6)⇐= cym+n(−→x ,−→y .〈t̂, ŝ〉) � −→x .(−→y .t̂), cy(−→y .̂s), each of which holds easily.

The remaining cases are simpler and similarly proved. By Thm. 5.7, we have strong
normalisation of FOLDr ∪ SIMP.
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Remark 5.10. This strong normalisation result is very general. Not only ensuring ter-
mination of computation of foldcb(

−→x1.e1, . . . ,
−→xm.em, t ) for closed terms −→e , t (which is

an expected result by the semantics characterisation), the result ensures that any term
foldcb(

−→x1.e1, . . . ,
−→xm.em, −→y. t ; −→y ) involving possibly

(i) multiple fold’s, or even nested fold’s and

(ii) free variables (i.e., e and t can be open terms)

is strongly normalising without imposing any reduction strategy. For (i), consider the
situation that one defines a function which calls other functions. Since in this paper, our
methodology is that any function on cyclic datatypes is defined using fold, this situation is
realised using fold involving other fold’s.

6. Decidability of Equational Theory

In this section, we show an important property of our framework, namely, the decidability of
the equational theory generated by AxCy, AxBr and FOLDr. This is done by investigating
another important rewriting property, Church-Rosser modulo bisimulation of FOLDr. SN
of FOLDr established in the previous section also plays an important role to establish
Church-Rosser modulo bisimulation. Note that since the rewrite rules SIMP is merely a
subset of an oriented version of theorems derived from AxCy ∪ AxBr, we do not need to
include SIMP for the decidability of equational theory.

Notation 6.1. Hereafter, we omit writing the variable term constructor v in terms used in
FOLDr for simplicity. For example, we will simply write cy(x. x) to mean cy(x. v(x)). We
may write simply→ for the rewrite relation→FOLDr. We write→∗ for the reflexive transitive
closure, →+ for the transitive closure, and ← for the converse of →. We define ↔ ,→ ∪ ←.

The notation nf(t) denotes a unique normal form of t. We write t
!→ t′ if t→∗ t′ and t′ is

a normal form, meaning rewriting to a normal form.

6.1. Church-Rosser modulo ∼. An important property for rewriting with equational
theory is Church-Rosser modulo equivalence relation [Hue80, Ter03].

A relation → is Church-Rosser modulo ∼ (CR∼) if s (∼ ∪ ↔)∗ t implies there exist
s′, t′ such that s→∗ s′ & t→∗ t′ & s′ ∼ t′. In diagram,

s (∼ ∪ ↔)∗ t

s′

∗
?

∼ t′

∗
?

(6.1)

Definition 6.2. We define ∼ to be the equivalence relation on terms generated by AxCy ∪
AxBr, i.e., bisimulation.
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6.2. Confluence on plain terms. We consider confluence on terms without any quotient.

Proposition 6.3. The relation →FOLDr is confluent.

Proof. Since the only critical pair between (6) and (7r) is joinable,→FOLDr is locally confluent.
→FOLDr is also SN (Thm. 5.9). By Newman’s lemma [Hue80, BN98], it is confluent [Klo80].

Note that this result does not contradict known counterexamples to confluence of graph
rewriting systems [AK96],[Has97, Example 2.4.3]. Counterexamples to confluence in [AK96]
use the fixed point law as a rewrite rule, while our FOLDr does not have the fixed point law.

6.3. Normal forms.

Proposition 6.4. The normal form of a term by rewriting with FOLDr is unique.

Proof. Since FOLDr is confluent.

We analyse the structure of normal forms. We call a term a value if it follows the
grammar (d ∈ Σcon):

t, t1, . . . , tn ::= y | d(
−→
t ) | cy(−→x .t) | 〈t1, t2〉 | 〈 〉 | (−→y .t1) � t2

Proposition 6.5. Suppose −→x1 ` e1 : c, . . . , −→xm ` em : c and define e , −→x1.e1, . . . ,
−→xm.em.

If
−−→
y : b ` t : −→c is a value, then nf( fold(e,−→y .t ; −→y ) ) is a value.

Proof. We abbreviate fold(e,−→y .t;−→y ) as fold(t). By induction on the structure of values.
Base cases: y and 〈 〉’s normal forms are themselves. Induction step: Case t = 〈t1, t2〉 is a
value.

nf(fold(〈t1, t2〉)) = nf(〈fold(t1), fold(t2)〉) = 〈nf(fold(t1)),nf(fold(t2))〉 I.H.
= 〈v1, v2〉

where v1, v2 are values. The cases d(
−→
t ), cy(x.t), (−→y .t1) � t2 are similar.

The propositions Prop. 4.1 and Prop. 6.5 show that FOLD is a correct implementation
of the characterisation (3.2) stating that fold preserves bisimilarity and is total.

6.4. A decidable proof method for the equational theory. CR∼ is a desirable prop-
erty, because the diagram (6.1) describes a proof method of s (∼ ∪ ↔)∗ t, i.e., s = t is
derivable from AxCy ∪ AxBr and the equational theory generated form FOLDr.

We explain the reason why CR∼ is useful below. We suppose that CR∼ holds. Now
CR∼ means that a proof of

s (∼ ∪ ↔)∗ t,

where s and t are connected by disordered combinations of ∼, →, ←, is always transformed
to a proof

s →∗ s′ ∼ t′ ←∗ t
for some s′, t′. But this is still not good enough, because it is not clear how many times we
should rewrite s and t to reach suitable s′ and t′. For the case of FOLDr, we can further
transform it to an equivalent proof (cf. Notation 6.1)

s
!→ s0 ∼ t0

!← t (6.2)
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which means that one first normalises the terms s, t to the unique normal forms s0, t0 by
FOLDr and then compares them by the equality ∼. The reasons why this method is possible
are

(i) → is SN,
(ii) → has the unique normal form property
(iii) →∗ preserves ∼ by CR∼, and
(iv) the bisimulation ∼ is decidable.

Hence (6.2) gives a decidable proof method for the equational theory generated by FOLDr,
AxCy and AxBr.

6.5. Establishing CR∼. Unfortunately, CR∼ does not hold on unrestricted terms. For
example, letting e , (l, t. 2 :: t), we have the following situation, which violates CR∼. A
waved line in the diagram denotes ∼.

1 :: fold(e, cy(x.1 :: fold(e, x)))
(4r)(5r)

vv

(dinat)(sub)

1 :: cy(x.2 :: fold(e, fold(e, x)))

6

��

6∼ cy(x.1 :: fold(e, x))

6

��

(6.3)

Note that the left-hand side rewrite applies (4r)(5r), which pushes fold into the con-
structor cy, and changes 1 to 2, because of the definition of e. A crucial point is that
cy(x.1 :: fold(e, x)) involves a normal form fold(e, x), where x is bound by a binder placed
upward. There are three possibilities that such a bound variable x appears:

(a) cy(−→y .C[ fold(e, −→z . x;−→z ) ])

(b) (−→y .C[ fold(e, −→z . x;−→z ) ]) � t
(c) fold(e,−→y .C[ fold(e, −→z . x;−→z )) ])

where a variable x is bound by one of binders −→y , and C is a context that does not bind x.
Now e = −→x1.e1, . . . ,

−→xm.em. The cases (b) and (c) are no problem, i.e., they do not fall into
a situation as the diagram (6.3). The only problematic case is (a). Hence, we exclude such
terms from consideration.

Definition 6.6. Given a term t, if nf(t) has a subterm of the form

cy(−→y .C[ fold(e, −→z . s;−→z )) ]),

where s involves a variable x bound by one of binders −→y of cy, then we call t a bad term.
We define a set of non-bad terms as follows:

T , {t | Γ ` t : −→c with t is not bad, and every first m-arguments e of fold are closed }.
The condition that the first m-arguments e of fold (cf. 4.2) are closed is to avoid similar
problems.

Proposition 6.7. The set T is closed under the rewrite relation →FOLDr and one step
application of an axiom in AxCy and AxBr.
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Proof. If t ∈ T then t→FOLDr t
′ ∈ T because FOLDr does not produce a bad term if t does

not involve a bad term. Similarly, an application of an axiom in AxCy and AxBr does not
produce a bad term if t does not involve a bad term. Note that substitution of terms for
variables are always capture-avoiding.

Note that a bad term does not simply mean that fold does not appear under cy. A term
where fold appears under cy is allowed, when s does not involve the bound variables −→y of
cy. For example, the right-hand side of the rule (4r) in FOLDr is not bad.

We use the following theorem to show CR∼.

Theorem 6.8. [AT12, Cor. 2.3] Let ∼ be an equivalence relation and → a binary relation
on the same set. Suppose à is a symmetric relation such that à∗ = ∼. If

(i) → is well-founded,
(ii) ← ◦ → ⊆ →∗ ◦ à= ◦ ←∗ (i.e., → is locally confluent in one step), and
(iii) ← ◦ à ⊆ →∗ ◦ à= ◦ ←∗ (i.e., → is locally coherent in one step)

then → is Church-Rosser modulo ∼.

We apply the above theorem to our situation. We now take → to be →FOLDr, ∼ to be
the bisimulation restricted on T , and à to be a relation on T defined by:

s à t iff Θ ` s = t : −→c is derived from AxCy ∪ AxBr for some Θ and −→c
by the cartesian second-order equational logic in Fig. 3

without using (Ref) and (Tra).

Namely, the symmetric relation à is the congruence closure of one-step application of an
instance of an axiom of AxCy ∪ AxBr on T . Thus à∗ = ∼. The condition (i) of Thm. 6.8
holds by Thm. 5.9. We check the conditions (ii) and (iii) of Thm. 6.8.

Proposition 6.9. The relations →FOLDr on T is locally confluent in one step.

Proof. Because →FOLDr is confluent.

Proposition 6.10. The relation →FOLDr on T is locally coherent in one step.

Proof. Let → denote →FOLDr on T . We need to show that for an instance s = t of each
axiom such that s has a reduct s′, s′ and t commute modulo ∼. Thus we check all possible
cases of the form s′ ← s à t. This is by induction on the proof of s à t. Throughout the
proof, we write t {−→s } for t{−→y 7→ −→s }. Let −→y = y1, . . . , yn,

−→s = s1, . . . , sn.

• (Ax1)(Ax2): We check each axiom in AxCy ∪ AxBr.

- (sub): Case (−→y .t) � 〈−→s 〉 = t {−→s }.
∗ Case t is rewritten. We have

(−→y .t) � 〈−→s 〉 t {−→s }

(−→y .t′) � 〈−→s 〉
?

t′ {−→s }
?

The case si is rewritten is similar.

∗ If the root of (−→y .t) � 〈−→s 〉 is rewritten, then it is finally rewritten to t {−→s }.
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- (sub) the converse: t {−→s } = (−→y .t) � 〈−→s 〉.
If −→s or t is rewritten, similarly to the above case.
If −→s and t cannot be rewritten, but t {−→s } can be rewritten. Then there exist 1 ≤ i ≤ n
and a context C such that t = C[fold(−→z .yi)] (yi 6∈ −→z ). Then t {−→s } = C[fold(−→z .si)], si
is one of the patterns in FOLDr, i.e., fold(−→z .si)→FOLDr r , where −→z do not appear in si.
We have

C ′[fold(−→z .si)] (−→y .C[fold(−→z .yi)]) � 〈−→s 〉

C ′[r]
?
� C ′[fold(−→z .si)]

+?

where C ′ is obtained from C replacing every yi in C with si for 1 ≤ i ≤ n.

- (SP): 〈(−→y .y1) � t, · · · , (−→y .yn) � t〉 = t.

∗ Case t is rewritten.

〈(−→y .y1) � t, · · · , (−→y .yn) � t〉 t

〈(−→y .y1) � t′, · · · , (−→y .yn) � t〉
?

〈(−→y .y1) � t′, · · · , (−→y .yn) � t′〉
+?

t′
?

The converse is similar.

∗ Case t = 〈−→u 〉 and (−→y .yi) � t is rewritten. Then 〈−→u 〉 ←+ 〈· · · , (−→y .yi) � t, · · ·〉 à 〈−→u 〉.
- All the axioms of AxBr, (Bekic̆), (CI) and their converses: since the roots of the left

and right-had sides of each axiom are not redexes, possible redexes appear only at the
positions of metavariables (such as s,t) in the axiom, hence these are proved similarly to
(SP).

- (dinat1): cy(x.s {z 7→ t}) = s {z 7→ cy(z.t {x 7→ s})}.
(i) Case s or t is rewritten. Similarly to the case (SP).

(ii) Case s and t cannot be rewritten, and t {x 7→ s} can be rewritten. This is only
when s = C[fold(−→y .z)] and t is one of the patterns in FOLDr. Then

∗ s {t} = C[fold(−→y .t)] and

∗ t {s} = t{C[fold(−→y .x)]}.
In this case, (dinat1)’s rhs has a sub-term cy(z.t{s}) = cy(z.s {C[fold(−→y .z)]}),
which is bad. Therefore, this case is excluded.

- (dinatn): cy(−→x .s {−−−→πi � t}) = (−→z .s) � cy(−→z .t {−−−→πi � s}), where πi = −→y .yi.
(i) Case s or t is rewritten. Similarly to the case (SP).

(ii) Case t and s cannot be rewritten. If s = 〈s1, . . . , sn〉 and t = 〈t1, . . . , tn〉, reducing

πi � s and πi � t, similarly to (ii). Otherwise, cy(−→x .s {−−−→πi � t}) is not reducible, hence
done.

- (dinat1)(dinatn): the converses are similar.
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• (Fun) and (OSub): By induction hypothesis and the fact that rewriting and equational
reasoning are closed under contexts and substitutions for variables.

Theorem 6.11. FOLDr is CR∼ on T .

Proof. The relation →FOLDr on T is SN (Thm. 5.9), locally confluent in one step (Prop.
6.9), locally coherent in one step (Prop. 6.10). By Thm. 6.8, we have CR∼.

Remark 6.12. There are several other criteria to establish CR∼, which requires termination
(SN) of rewriting modulo the equivalence relation defined by → /∼ , (∼ · → · ∼)
[Hue80, JKR83] (see also [AT12, Thm. 2.2] for a unified theorem). However, in the case of
FOLDr, the rewriting modulo bisimulation →/∼ is not SN because (dinat) can copy a redex
inside cy. We write fold 〈 〉 for fold(e, 〈 〉). For example, since fold 〈 〉 is a redex by (2r) (N.B.
cy(y.fold 〈 〉) is not bad), we have an infinite derivation

cy(y.fold 〈 〉) ∼ (y.fold 〈 〉) � cy(y.fold 〈 〉)
→ (y.〈 〉) � cy(y.fold 〈 〉)
∼ (y.〈 〉) � (y.fold 〈 〉) � cy(y.fold 〈 〉)
→ (y.〈 〉) � (y.〈 〉) � cy(y.fold 〈 〉) ∼ · · ·

where each underlined term is transformed.

As discussed in §6.4, we have a remarkable result.

Corollary 6.13. The equational theory generated by FOLDr, AxCy and AxBr on terms of
T is decidable.

Since FOLDr is SN and CR∼, we have the following fundamental property.

Proposition 6.14. If
−−→
z : b,Γ ` s : −→c and

−−→
z : b,Γ ` t : −→c are not bad, then

s ∼ t ⇒ fold(−→e , x1, . . . , xn.s;
−→x )

!→ ◦ ∼ ◦ !← fold(−→e , x1, . . . , xn.t;
−→x )

where Γ = x1 : b1, . . . , xn : bn.

Proof. If s ∼ t, then fold(−→e , x1, . . . , xn.s;
−→x ) ∼ fold(−→e , x1, . . . , xn.t;

−→x ), hence their
normal forms are bisimilar by CR∼.

Remark 6.15. We introduced the notion of bad terms to establish the property CR∼.
Another explanation of bad terms is that a bad term generates a non-rational tree. For
example, consider a function incrementing each element of a CNat-list defined by

mapinc(t) = fold([ ], `.s.`+ 1 :: s, t)

This function itself is no problem. For example, applying mapinc to the cyclic list of 1, we
have the cyclic list of 2.

mapinc(cy(x. 1:: x)) → cy(x. mapinc(x. 1:: x; x))

→ cy(x. 2 :: mapinc(x; x)) → cy(x. 2:: x)
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But consider a bad term cy(z.1 :: mapinc(z)). Observe that it is a normal form with respect
to FOLDr, because mapinc(z) cannot be rewritten. But using the cartesian second-order
equational logic with AxCy (especially (fix)) and FOLD, we can reason as follows:

cy(z.1 :: mapinc(z)) = 1 :: mapinc(cy(z.1 :: mapinc(z)))

= 1 :: mapinc(1 :: mapinc(cy(z.1 :: mapinc(z)))))

= 1 :: (2 :: mapinc(mapinc(cy(z.1 :: mapinc(z)))))

= 1 :: 2 :: 3 :: · · · :: n :: mapincn(cy(z.1 :: mapinc(z)))

(6.4)

which essentially means that it corresponds to a non-rational tree. Any cyclic term without
fold is interpreted as a rational tree in CPO because a free iteration theory of binary
branching trees by AxBr characterises rational trees modulo bisimulation [Ési00, BÉ93] (see
also [Ham15, Thm. 3.2]). Then the continuous function fold in CPO is a function between
rational trees modulo bisimulation, but the example (6.4) shows a non-rational tree. In this
sense, we excluded the bad term from T .

Note that a bad term cy(z.1 :: mapinc(z)) can be represented in Haskell as a recursive
definition of list

z = 1:map (1+) z

which is a well-known lazy programming technique. It looks like this is defining a cyclic
data, but actually defining an acyclic infinite data described in [FS96, §2.2.1], and analysed
in our previous work [GHUV06, §2.1]. We could capture this phenomenon from a different
viewpoint, namely from the viewpoint of rewriting. From the view of functional programming,
bad terms generate acyclic infinite data, and from the view of rewriting, bad terms are terms
preventing CR∼.

7. Computing by Fold on Cyclic Datatypes

In this section, we demonstrate fold computation on cyclic data by several examples. In this
section, we write → to mean →FOLDr∪SIMP.

Example 7.1. We consider the emptiness check of cyclic sharing trees. It means to check
whether a given closed term is bisimilar to [ ]. This is not just to check whether a given term
is syntactically [ ]. For example, is cy(x.x) + cy(x.[ ] + x) empty? This requires certain
computation, which we will define. First, we define a (cyclic) boolean datatype having the
operation ∧, satisfying the axioms AxBr.

ctype Bool where

true : Bool

false : Bool

∧ : Bool,Bool → Bool

with axioms AxCy,AxBr(true,∧)

isEmpty : CTree → Bool

spec isEmpty([ ]) = true

isEmpty(f(t)) = false

isEmpty(s + t) = isEmpty(s) ∧ isEmpty(t)

fun isEmpty(t) = fold (true, x.false, x.y.x ∧ y) t

We define isEmpty by fold. Examples of computation are as follows, where the cycle cleaning
laws in SIMP are crucial.
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isEmpty(cy(x.x) + cy(x.[ ] +x))
→+ isEmpty([ ] +cy(x.x))
→ isEmpty([ ]+[ ])
→+ true ∧ true → true

isEmpty( cy(xCtree.cy(w.x)) )

→ cy(xBool. isEmpty(x.cy(w.x); x))

→ cy(xBool. cy( w.isEmpty(x.w.x; x,w) ))

→ cy(xBool. cy( w.x ))

→ cy(xBool.x) → true

isEmpty(cy(x. a(cy(y.y+y)) + cy(w.x)))

→+ isEmpty(cy(x. a([ ]) + x))

→ isEmpty(a([ ])) → false

The example isEmpty(cy(x.x) + cy(x.[ ] +x)) is essentially checking null-ability of a
grammar [Brz64], which was pointed as a difficult problem for computing with cyclic data
[OC12]. Our rewrite system FOLDr with SIMP successfully computes it in a principled
manner (i.e., without any special treatment).

Example 7.2. As an example of primitive recursion on cyclic datatypes mentioned in §4.2,
we consider the tail of a cyclic list, which we call ctail. It should satisfy the specification
below right. But how to define the tail of a cy-term is not immediately clear. For example,
what should be the result of ctail (cy(x.1::2::x))? This case may need unfolding of cycle
as in [GHUV06]. A naive unfolding by using the fixed point law cy(x.t) = t {x 7→ cy(x.t)}
violates strong normalisation because it copies the original term. It actually increases
complexity.

ctail : CList → CList

spec ctail ([ ]) = [ ]
ctail (k :: t) = t

ctail (cy(x. t))= ??

We define ctail by fold. Rather than the fixed point law, another important principle
of cyclic structures of Bekic̆ law plays a crucial role here.

fun ctail(t) = π1 � fold (<[],[]>, k,x,y.<y, k :: y>) t

ctail(cy(x.1 :: 2 :: x)) →+ π1 � cy(x,y. <2 :: y, 1 :: 2 :: y>)

→+ π1 � <cy(x.2 :: cy(y.1 :: 2 :: y)), cy(y.1 :: 2 :: y)>
→ cy(x.2 :: cy(y.1 :: 2 :: y)) → 2 :: cy(y.1 :: 2 :: y) (Normal form)

Note that the above normal form does not mean a head normal form and we do not rely on
lazy evaluation. The highlighted step uses Bekic̆ law.

Example 7.3. We define the datatype of cyclic strings consisting of a, b, the empty string
ε, and the choice operator “|”.

ctype CString where

a : CString → CString

b : CString → CString

ε : CString

| : CString,CString → CString

with axioms AxCy,AxBr(ε,|)
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We consider the function aa? that checks whether a given closed term contains two consecutive
a’s, such as a(a(·)). For example,

aa?( b(a(a(b(ε)))) )
!→ true

aa?( b(b(ε))
!→ false

aa?( b(ε)|a(a(ε)) )
!→ true

Even in case of a string containing cycle, the function must return a correct result. For
example, we expect the following results.

aa?( cy(x.a(x)) )
!→ true

aa?( b(cy(x.a(b(a(x))))) )
!→ true

We now specify aa? by using the function head-a? which checks whether the head is a.

head-a? : CString → ABool

spec head-a?(a(t)) = true

head-a?(b(t)) = false

aa? : CString → ABool

spec aa?(a(t)) = head-a?(t)

aa?(b(t)) = aa?(t)

aa?( ε ) = false

aa?(s | t) = aa?(s) ∨ aa?(t)

The results of aa? must be boolean, but it should not be the type Bool defined in Example
7.1. Now we need the type ABool of “additive” boolean, meaning that it has the conjunction
“∨” with the unit false, because the specification of aa? requires that the unit ε (resp. the
multiplication “|”) of CString is mapped to the unit false (resp. the multiplication “∨”)
of the target type.

ctype ABool where

true : ABool

false : ABool

∨ : ABool,ABool → ABool

with axioms AxCy,AxBr(false,∨)

Then we can define the functions head-a? and aa? by fold.

fun head-a?(t) = fold (x.true,x.false,false,x.y.x∨y) t

fun aa?(t) = π1 � fold (v,w.<head-a?(w),a(w)>, v,w.<v,b(w)>

<false,ε>, v1.w1.v2.w2.<v1∨v2,w1|w2>) t

We demonstrate how our system correctly computes

aa?(cy(x.a(x)))
!→ true.

One may think that it needs expansion of the inner term of cy. We show that the rewrite
system FOLDr ∪ SIMP does it without using the fixed point law, rather, by using Bekic̆ law.
We write folde for fold (v.w.<head-a?(w),a(w)>, v.w.<v,b(w)>,...).

aa?(cy(x.a(x))) = π1 � folde cy(x.a(x))

→ π1 � cy(v.w.(folde a(v); v,w))

→+ π1 � <cy(v.head-a?(cy(w.a(w)))), cy(w.a(w))>

→+ head-a?(cy(w.a(w)) → cy(w.head-a?(w.a(w);w) ) →+ cy(w.true) → true
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Again, the highlighted step uses Bekic̆ law. Moreover, we expect

aa?(cy(x.b(x)))
!→ false

without falling into non-termination. This is obtained without any special treatment.

aa?(cy(x.b(x))) = π1 � folde cy(x.b(x))

→ π1 � cy(v.w. (folde b(v); v,w))

→+ π1 � <cy(v.v),cy(w.b(w))> →+ cy(v.v) → false

A crucial point is that since we chose the target type as ABool, the rule (14r) in FOLDr∪SIMP
rewrites cy(v.v) to false, which is the unit of ABool. If we chose the target type as Bool
in Example 7.1, this would become an incorrect result true. But the specification forced us
to choose ABool.

Example 7.4. This example shows that our cyclic datatype has ability to express graphs.
The graph shown below right represents friend relationship, which describes Bob knows
Alice, and Carol knows Alice and Bob. To make it a rooted graph, it has the uppermost
node “+” which points to the nodes of three persons. This is represented as a term

(a.b.c.a+b+c) � cy(a.b.c.<name("alice"), name("bob")+knows(a),

name("carol")+knows(a)+knows(b)>)

which we call g. The term g is of type FriendGraph defined as follows.

ctype FriendGraph where

knows : FriendGraph → FriendGraph

name : String → FriendGraph

[ ] : FriendGraph

+ : FriendGraph,FriendGraph → FriendGraph

with axioms AxCy,AxBr([ ],+)

alice

bob carol
knowsknows

+

We define a function collect that collects all names in a graph as a name list of type Names.

ctype Names where

nm : String → Names

[ ] : Names

+ : Names,Names → Names

with axioms AxCy,AxBr([ ],+)

collect : FriendGraph → Names

spec collect (knows(t)) = collect(t)

collect (name(p)) = nm(p)

fun collect t = π1 � folde (x,y.<x,knows(y)>, x,y.<nm(y),name(y)>,

<[ ],[ ]>, v1.w1.v2.w2.<v1+v2,w1+w2>) t

Then we collect certainly all names by our system as follows, where folde is short for
fold (x,y.<x,knows(y)>, x,y.<nm(y),name(y)>,...).
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collect g = π1 � folde g

→ π1 � (a.a’.b.b’.c.c’.<a+b+c,a’+b’+c’>) � (cy(a.a’.b.b’.c.c’.

<folde(a.b.c.name("alice")), folde(a.b.c.name("bob")+knows(a)),

folde(a.b.c.name("carol")+knows(a)+knows(b)>)))

→+ π1 � (a.a’.b.b’.c.c’.<a+b+c,a’+b’+c’>) � (cy(a.a’.b.b’.c.c’.

< <nm("alice"),name("alice")>, <nm("bob"),name("bob")>, <nm("carol"),name("carol")> >)

→+ nm("alice")+nm("bob")+nm("carol")

8. Related work

8.1. Cyclic structures represented by systems of equations. Other than the term
representation used in the present paper, various representations of cyclic structures or
graphs are known. One of the frequently used representations is by a system of equations, also
known as an equational term graph [AK96]. It is essentially the same as the representation
of cyclic structures using letrec-expressions used in [Has97]. Semantically, the least solution
of a system of equations is regarded as a (unfolded) graph. Syntactically, a system of (flat)
equations can be seen as adjacency lists of a graph, e.g. an equation x = f(y1, . . . , yn)
in a system can be regarded as an adjacency list of vertex x pointed to by other vertices
y1, . . . , yn (cf. the discussions in [Ham10, Sect. 8]). These representations and our term
representation are equivalent. For example, a system of equations{

x1 = f(x1, x2),

x2 = g(x1)

}
is equivalently represented as a term

cy(x1, x2.〈f(x1, x2), g(x1)〉).
Nishimura and Ohori [Nis97, NO99] developed a general mechanism for programming

with cyclic structures in a purely functional style using the representation of system of
equations. They developed the “reduce” operation on cyclic structures based on a mechanism
for data-parallelism on recursive data, which is fold in our sense, although bisimilar cyclic
structures are not identified in their work.

8.2. Foundational graph rewriting calculi. There has been various work to deal with
graph computation and cyclic data structures in functional programming and foundational
calculi including [FS96, GHUV06, Ham09, Ham10, Ham12, OC12, HHI+10, MA15, AK96,
AB97]. Foundational graph rewriting calculi, such as equational term graph rewriting systems
[AK96], are general frameworks of graph computation. The fold on a cyclic datatype in this
paper is more restricted than general graph rewriting. However, our emphasis is clarification
of the categorical and algebraic structures of cyclic datatypes and the computation by fold
on them by regarding fold as a structure preserving map, rather than unrestricted rewriting.
This was a key to obtain SN and CR∼ of FOLDr. We also hope that it will be useful for
further optimisation such as the fold fusion based on semantics as done in [HMA, §4.3]. The
general study of graph rewriting was also important for our study at the foundational level.
The unit “[ ]” of branching in AxBr corresponds to the black hole constant “•” considered

in [AK96], due to [BÉ93]. This observation has been used to give an effective operational
semantics of graph transformation in [MA15].
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9. Conclusion

In this paper, we have developped foundations of cyclic datatypes and computation:

[I] Syntax and type system supporting algebraic datatypes with cycle and sharing
constructs (§2)

[II] Complete equational axioms for bisimulation of cyclic data (Fig. 4)

[III] Algebraic theory FOLD of fold on cyclic datatypes and its strongly normalising rewrite
system FOLDr (Fig. 7, Fig. 6) (§4, §5), which is Church-Rosser modulo bisimulation
(§6)

[IV] The framework that supports [I]-[III] based on cartesian second-order algebraic
theory (§2.1) and iteration category (§3). The numbered items [I]-[III] in Fig. 1 in
Introduction are instances of these results.

We have not assumed any particular operational semantics nor strategy to obtain strongly
normalising fold on cyclic data. This point may be useful to deal with cyclic datatypes in
proof assistances requiring terminating functions, such as Coq or Agda. We have shown
several concrete examples of cyclic data computation in §7. In this paper, we have focused
on the underlying theory of cyclic datatypes. Formal development of the programming
language that realises the program codes described in this paper is left for a future work.

9.1. Acknowledgments. I am grateful to Kazutaka Matsuda and Kazuyuki Asada for
various discussions about calculi and programming languages about graphs and cyclic
structures, and Frédéric Blanqui for clarifying some details of the General Schema. I also
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[Ési99] Z. Ésik. Axiomatizing iteration categories. Acta Cybernetica, 14:65–82, 1999.
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