
Logical Methods in Computer Science
Vol. 14(2:19)2018, pp. 1–24
https://lmcs.episciences.org/

Submitted Jan. 31, 2017
Published Jun. 29, 2018

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC

PROGRAMS WITH NEGATION ∗

PANOS RONDOGIANNIS AND IOANNA SYMEONIDOU

Department of Informatics & Telecommunications, National and Kapodistrian University of Athens,
Greece
e-mail address: {prondo,i.symeonidou}@di.uoa.gr

Abstract. We develop an extensional semantics for higher-order logic programs with
negation, generalizing the technique that was introduced in [2, 3] for positive higher-order
programs. In this way we provide an alternative extensional semantics for higher-order
logic programs with negation to the one proposed in [6]. We define for the language we
consider the notions of stratification and local stratification, which generalize the familiar
such notions from classical logic programming, and we demonstrate that for stratified
and locally stratified higher-order logic programs, the proposed semantics never assigns
the unknown truth value. We conclude the paper by providing a negative result: we
demonstrate that the well-known stable model semantics of classical logic programming, if
extended according to the technique of [2, 3] to higher-order logic programs, does not in
general lead to extensional stable models.

1. Introduction

Research results developed in [23, 2, 3, 16, 7] have explored the possibility of designing higher-
order logic programming languages with extensional semantics. Extensionality implies that
program predicates essentially denote sets, and therefore one can use standard set theoretic
concepts in order to understand the meaning of programs and reason about them. The key
idea behind this line of research is that if we appropriately restrict the syntax of higher-order
logic programming, then we can achieve extensionality and obtain languages that are simple
both from a semantic as-well-as from a proof-theoretic point of view. Therefore, a main
difference between the extensional and the more traditional intensional higher-order logic
programming languages [19, 9] is that the latter have richer syntax and expressive capabilities
but a non-extensional semantics.

There exist at present two main extensional semantic approaches for capturing the
meaning of positive (i.e., negationless) higher-order logic programs. The first approach,
developed in [23, 16, 7], uses classical domain-theoretic tools. The second approach, developed
in [2, 3], uses a fixed-point construction on the ground instantiation of the source program.

Key words and phrases: Higher-Order Logic Programming, Negation in Logic Programming, Extensional
Semantics.
∗ A preliminary version of this paper has appeared in the proceedings of the 15th European Conference on

Logics in Artificial Intelligence (JELIA), pages 447–462, 2016.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(2:19)2018
c© P. Rondogiannis and I. Symeonidou
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 P. RONDOGIANNIS AND I. SYMEONIDOU

Despite their different philosophies, these two approaches have recently been shown [8] to
agree for a broad and useful class of programs. This fact suggests that the two aforementioned
techniques can be employed as useful alternatives for the further development of higher-order
logic programming.

A natural question that arises is whether one can still obtain an extensional semantics
if negation is added to programs. This question was recently undertaken in [6], where it
was demonstrated that the domain-theoretic results obtained for positive logic programs
in [23, 16, 7], can be extended to apply to programs with negation. More specifically, as
demonstrated in [6], every higher-order logic program with negation has a distinguished
extensional model constructed over a logic with an infinite number of truth values. It
is therefore natural to wonder whether the alternative extensional technique introduced
in [2, 3], can also be extended to higher-order logic programs with negation. It is exactly
this question that we answer affirmatively. This brings us to the following contributions of
the present paper:

• We extend the technique of [2, 3] to the class of higher-order logic programs with negation.
In this way we demonstrate that Bezem’s approach is more widely applicable than possibly
initially anticipated. Our extension relies on the infinite-valued semantics [20], a technique
that was developed in order to provide a purely model-theoretic semantics for negation in
classical logic programming.
• The extensional semantics we propose appears to be simpler compared to [6] because it

relies on the ground instantiation of the higher-order program and does not require the
rather involved domain-theoretic constructions of [6]. However, each technique has its
own merits and we believe that both will prove to be useful tools in the further study of
higher-order logic programming.
• As a case study of the applicability of the new semantics, we define the notions of

stratification and local stratification for higher-order logic programs with negation and
demonstrate that for such programs the proposed semantics never assigns the unknown
truth value. These two new notions generalize the corresponding ones from classical
(first-order) logic programming. It is worth mentioning that such notions have not yet
been studied under the semantics of [6].
• We demonstrate that not all semantic approaches that have been successful for classical

logic programs with negation lead to extensional semantics when applied to higher-order
logic programming under the framework of [2, 3]. In particular we demonstrate that
the well-known stable model semantics of classical logic programming [15], if extended
according to the technique of [2, 3] to higher-order logic programs with negation, does not
in general lead to extensional stable models.

The rest of the paper is organized as follows. Section 2 presents in an intuitive way the
semantics that will be developed in this paper. Section 3 contains background material on
the infinite-valued semantics that will be the basis of our construction. Section 4 introduces
the syntax and Section 5 the semantics of our source language. Section 6 demonstrates that
the proposed semantics is extensional. In Section 7 the notions of stratification and local
stratification for higher-order logic programs are introduced. Section 8 demonstrates that
the stable model semantics do not in general lead to extensional stable models when applied
to higher-order logic programs. Section 9 concludes the paper by discussing the connections
of the present work with that of Zoltán Ésik, to whom the present special issue is devoted,
and by providing pointers to future work.

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 3

The present paper extends and revises the conference paper [21]. More specifically, the
present paper contains complete proofs of all the claimed results (which were either missing
or sketched in [21]), it contains the new Section 8, and it has more detailed and polished
material in most of the remaining sections.

2. An Intuitive Overview of the Proposed Approach

In this paper we consider the semantic technique for positive higher-order logic programs
proposed in [2, 3], and we extend it in order to apply to programs with negation in clause
bodies. Given a positive higher-order logic program, the starting idea behind Bezem’s
approach is to take its “ground instantiation”, in which we replace variables with well-typed
terms of the Herbrand Universe of the program (i.e., terms that can be created using only
predicate constants, function symbols, and individual constants that appear in the program).
For example, consider the higher-order program below (for the moment we use ad-hoc
Prolog-like syntax):

q(a).

q(b).

p(Q):-Q(a).

id(R)(X):-R(X).

In order to obtain the ground instantiation of this program, we consider each clause and
replace each variable of the clause with a ground term that has the same type as the variable
under consideration (the formal definition of this procedure will be given in Definition 4.9).
In the above example, the variable X represents a data object, so it could be replaced by a or
b, namely the only individual constant symbols that appear in the program. The variables
P and Q have the same type, as they both represent a predicate that maps data objects to
truth values (in other words, a unary first-order predicate). Each of them could be replaced
by any such predicate that appears in the program, such as q, or a more complex expression
that also maps data objects to truth values, such as id(q). Therefore, the above program
defines a relation q that is true of a and b; a relation p that is true of a unary first-order
relation Q only if Q is true of a; and a relation id that is true of a unary first-order relation R

and a data object X only if R is true of X. The ground instantiation we obtain is the following
infinite program:

q(a).

q(b).

p(q):-q(a).

id(q)(a):-q(a).

id(q)(b):-q(b).

p(id(q)):-id(q)(a).

id(id(q))(a):-id(q)(a).

id(id(q))(b):-id(q)(b).

· · ·
One can now treat the new program as an infinite propositional one (i.e., each ground
atom can be seen as a propositional variable). This implies that we can use the standard
least fixed-point construction of classical logic programming (see for example [18]) in order
to compute the set of atoms that should be taken as “true”. In our example, the least
fixed-point will contain atoms such as q(a), q(b), p(q), id(q)(a), id(q)(b), p(id(q)),
and so on.

4 P. RONDOGIANNIS AND I. SYMEONIDOU

The main contribution of Bezem’s work was that he established that the least fixed-point
semantics of the ground instantiation of every positive higher-order logic program of the
language considered in [2, 3], is extensional in a sense that can be intuitively explained as
follows. In the above example q and id(q) can be considered equal since they are both
true of exactly the constants a and b. Therefore, we would expect that (for example) if
p(q) is true then p(id(q)) is also true, because q and id(q) should be considered as
interchangeable. This property of “interchangeability” is formally defined in [2, 3] and it is
demonstrated that it holds in the least fixed-point of the immediate consequence operator of
the ground instantiation of every program.

The key idea behind extending Bezem’s semantics in order to apply to higher-order
logic programs with negation, is straightforward to state: given such a program, we first
take its ground instantiation. The resulting program is a (possibly infinite) propositional
program with negation, and therefore we can compute its semantics in any standard way
that exists for obtaining the meaning of such programs. For example, one could use the
well-founded semantics [14] or the stable model semantics [15], and then proceed to show
that the well-founded model (respectively, each stable model) is extensional in the sense
of [2, 3] (informally described above). Instead of using the well-founded or the stable model
semantics, we have chosen to use a relatively recent proposal for assigning meaning to
classical logic programs with negation, namely the infinite-valued semantics [20]. As it has
been demonstrated in [20], the infinite-valued semantics is compatible with the well-founded:
if we collapse the infinite-valued model to three truth values, we get the well-founded one.
There are three main reasons for choosing to proceed with the infinite-valued approach
(instead of the well-founded or the stable model approaches):

• Despite the close connections between the well-founded and the infinite-valued approaches,
it has recently been demonstrated [22] that the well-founded-based adaptation of the
technique of [2, 3] is not extensional.1 Moreover, as we demonstrate in Section 8, a stable-
models-based adaptation of Bezem’s technique, does not in general lead to extensional
models.
• An extension of the infinite-valued approach was used in [6] to give the first extensional

semantics for higher-order logic programs with negation. By developing our present
approach using the same underlying logic, we facilitate the future comparison between
the two approaches.
• As it was recently demonstrated in [13, 5], the infinite-valued approach satisfies all identities

of iteration theories [4], while the well-founded semantics does not. Since iteration theories
(intuitively) provide an abstract framework for the evaluation of the merits of various
semantic approaches for languages that involve recursion, the results just mentioned give
an extra incentive for the further study and use of the infinite-valued approach.

We demonstrate that the infinite-valued semantics of the ground instantiation of every
higher-order logic program with negation, is extensional. In this way we extend the results
of [2, 3] which applied only to positive programs. The proof of extensionality is quite
intricate and is performed by a tedious induction on the approximations of the minimum
infinite-valued model. As an immediate application of our result, we show how one can
define the notions of stratification and local stratification for higher-order logic programs
with negation.

1The result in [22] was obtained while the present paper was under review.

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 5

3. The Infinite-valued Semantics

In this section we give an overview of the infinite-valued approach of [20]. As in [20], we
consider (possibly countably infinite) propositional programs, consisting of clauses of the
form p ← L1, . . . , Ln, where each Li is either a propositional variable or the negation of
a propositional variable; the Li will be called literals, negative if they have negation and
positive otherwise. For some technical reasons that will be explained just after Definition 4.9,
we allow a positive literal Li to also be one of the constants true and false.

The key idea of the infinite-valued approach is that, in order to give a logical semantics
to negation-as-failure and to distinguish it from ordinary negation, one needs to extend the
domain of truth values. For example, consider the program:

p ←
r ← ∼p
s ← ∼q
t ← ∼t

According to negation-as-failure, both p and s receive the value True. However, p seems
“truer” than s because there is a rule which says so, whereas s is true only because we are
never obliged to make q true. In a sense, s is true only by default. For this reason, it
was proposed in [20] to introduce a “default” truth value T1 just below the “real” true T0,
and (by symmetry) a weaker false value F1 just above (“not as false as”) the real false F0.
Then, negation-as-failure is a combination of ordinary negation with a weakening. Thus
∼F0 = T1 and ∼T0 = F1. Since negations can be iterated, the new truth domain has a
sequence . . . , T3, T2, T1 of weaker and weaker truth values below T0 but above a neutral value
0; and a mirror image sequence F1, F2, F3, . . . above F0 and below 0. Since our propositional
programs are possibly countably infinite, we need a Tα and a Fα for every countable ordinal
α. The intermediate truth value 0 is needed for certain atoms that have a “pathological”
negative dependence on themselves (such as t in the above program). In conclusion, our
truth domain V is shaped as follows:

F0 < F1 < · · · < Fω < · · · < Fα < · · · < 0 < · · · < Tα < · · · < Tω < · · · < T1 < T0

and the notion of “Herbrand interpretation of a program” can be generalized:

Definition 3.1. An (infinite-valued) interpretation I of a propositional program P is a
function from the set of propositional variables that appear in P to the set V of truth values.

For example, an infinite-valued interpretation for the program in the beginning of
this section is I = {(p, T3), (q, F0), (r, 0), (s, F2), (t, T0)}. As we are going to see later
in this section, the interpretation that captures the meaning of the above program is
J = {(p, T0), (q, F0), (r, F1), (s, T1), (t, 0)}.

We will use ∅ to denote the interpretation that assigns the F0 value to all propositional
variables of a program. If v ∈ V is a truth value, we will use I ‖ v to denote the set of
variables which are assigned the value v by I. In order to define the notion of “model”, we
need the following definitions:

Definition 3.2. Let I be an interpretation of a given propositional program P. For every
negative literal ∼p appearing in P we extend I as follows:

I(∼p) =

 Tα+1, if I(p) = Fα
Fα+1, if I(p) = Tα
0, if I(p) = 0

6 P. RONDOGIANNIS AND I. SYMEONIDOU

Moreover, I(true) = T0 and I(false) = F0. Finally, for every conjunction of literals L1, . . . , Ln
appearing as the body of a clause in P, we extend I by I(L1, . . . , Ln) = min{I(L1), . . . , I(Ln)}.

Definition 3.3. Let P be a propositional program and I an interpretation of P. Then, I
satisfies a clause p← L1, . . . , Ln of P if I(p) ≥ I(L1, . . . , Ln). Moreover, I is a model of P if
I satisfies all clauses of P.

As it is demonstrated in [20], every program has a minimum infinite-valued model under
an ordering relation v, which compares interpretations in a stage-by-stage manner. To
formally state this result, the following definitions are necessary:

Definition 3.4. The order of a truth value is defined as follows: order(Tα) = α, order(Fα) =
α and order(0) = +∞.

Definition 3.5. Let I and J be interpretations of a given propositional program P and
α be a countable ordinal. We write I =α J , if for all β ≤ α, I ‖ Tβ = J ‖ Tβ and
I ‖ Fβ = J ‖ Fβ . We write I vα J , if for all β < α, I =β J and, moreover, I ‖ Tα ⊆ J ‖ Tα
and I ‖ Fα ⊇ J ‖ Fα. We write I <α J , if I vα J but I =α J does not hold.

Definition 3.6. Let I and J be interpretations of a given propositional program P. We
write I < J , if there exists a countable ordinal α such that I <α J . We write I v J if either
I = J or I < J .

It is easy to see [20] that v is a partial order, vα is a preorder, and =α is an equivalence
relation. As in the case of positive programs, the minimum model of a program P coincides
with the least fixed-point of an operator TP. This operator is defined through the notion of
the “least upper bound” of a set of truth values.

Definition 3.7. Let S be a set with a partial order ≤ and let A ⊆ S. We say that u ∈ S is
an upper bound of A, if for every v ∈ A we have v ≤ u. Moreover, u is called the least upper
bound of A, if for every upper bound u′ of A we have u ≤ u′.

If the least upper bound of A exists then it is unique and we denote it by lub(A). In [20]
it is shown that every subset of V has a least upper bound and the operator TP can then be
defined as below:

Definition 3.8. Let P be a propositional program and let I be an interpretation of P. The
immediate consequence operator TP of P is defined as follows:

TP(I)(p) = lub({I(L1, . . . , Ln) | p← L1, . . . , Ln ∈ P})

The least fixed-point MP of TP is constructed as follows. We start with ∅, namely the
interpretation that assigns to every propositional variable of P the value F0. We iterate
TP on ∅ until the set of variables having a F0 value and the set of variables having a T0
value, stabilize. Then we reset the values of all remaining variables to F1. The procedure is
repeated until the F1 and T1 values stabilize, and we reset the remaining variables to F2, and
so on. It is shown in [20] that there exists a countable ordinal δ for which this process will
not produce any new variables having Fδ or Tδ values. At this point we reset all remaining
variables to 0. The following definitions formalize this process.

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 7

Definition 3.9. Let P be a propositional program and let I be an interpretation of P. For
each countable ordinal α, we define the interpretation TωP,α(I) as follows:

TωP,α(I)(p) =

I(p), if order(I(p)) < α
Tα, if p ∈

⋃
n<ω(TnP (I) ‖ Tα)

Fα, if p ∈
⋂
n<ω(TnP (I) ‖ Fα)

Fα+1, otherwise

Definition 3.10. Let P be a propositional program. For each countable ordinal α, we define
Mα = TωP,α(Iα) where I0 = ∅, Iα = Mα−1 if α is a successor ordinal, and

Iα(p) =

{
Mβ(p), if order(Mβ(p)) = β for some β < α
Fα, otherwise

if α is a limit ordinal. The M0,M1, . . . ,Mα, . . . are called the approximations to the minimum
model of P.

In [20] it is shown that the above sequence of approximations is well-defined. We will
make use of the following lemma from [20]:

Lemma 3.11. Let P be a propositional program and let α be a countable ordinal. For all
n < ω, TnP (Iα) vα Mα.

The following lemma from [20] states that there exists a certain countable ordinal, after
which new approximations do not introduce new truth values:

Lemma 3.12. Let P be a propositional program. Then, there exists a countable ordinal δ,
called the depth of P, such that:

(1) for all countable ordinals γ ≥ δ, Mγ ‖ Tγ = ∅ and Mγ ‖ Fγ = ∅;
(2) for all β < δ, Mβ ‖ Tβ 6= ∅ or Mβ ‖ Fβ 6= ∅.

Given a propositional program P that has depth δ, we define the following interpretation
MP:

MP(p) =

{
Mδ(p), if order(Mδ(p)) < δ
0, otherwise

The following two theorems from [20], establish interesting properties of MP:

Theorem 3.13. The infinite-valued interpretation MP is a model of P. Moreover, it is the
least (with respect to v) among all the infinite-valued models of P.

Theorem 3.14. The interpretation NP obtained by collapsing all true values of MP to True
and all false values to False, coincides with the well-founded model of P.

The next lemma states a fact already implied earlier, namely that new approximations
do not affect the sets of variables stabilized by the preceding ones.

Lemma 3.15. Let P be a propositional program and let α be a countable ordinal. For all
countable ordinals β > α, Mα =α Mβ. Moreover, Mα =α MP.

8 P. RONDOGIANNIS AND I. SYMEONIDOU

4. The Syntax of H

In this section we define the syntax of the language H that we use throughout the paper. H
is based on a simple type system with two base types: o, the boolean domain, and ι, the
domain of data objects. The composite types are partitioned into three classes: functional
(assigned to function symbols), predicate (assigned to predicate symbols) and argument
(assigned to parameters of predicates).

Definition 4.1. A type can either be functional, predicate, or argument, denoted by σ, π
and ρ respectively and defined as:

σ := ι | (ι→ σ)

π := o | (ρ→ π)

ρ := ι | π

We will use τ to denote an arbitrary type (either functional, predicate, or argument).
As usual, the binary operator → is right-associative. A functional type that is different than
ι will often be written in the form ιn → ι, n ≥ 1. Moreover, it can be easily seen that every
predicate type π can be written in the form ρ1 → · · · → ρn → o, n ≥ 0 (for n = 0 we assume
that π = o). We proceed by defining the syntax of H:

Definition 4.2. The alphabet of H consists of the following:

(1) Predicate variables of every predicate type π (denoted by capital letters such as Q,R,
S, . . .).

(2) Individual variables of type ι (denoted by capital letters such as X,Y,Z, . . .).
(3) Predicate constants of every predicate type π (denoted by lowercase letters such as

p, q, r, . . .).
(4) Individual constants of type ι (denoted by lowercase letters such as a, b, c, . . .).
(5) Function symbols of every functional type σ 6= ι (denoted by lowercase letters such as

f, g, h, . . .).
(6) The inverse implication constant ←, the negation constant ∼, the comma, the left and

right parentheses, and the equality constant ≈ for comparing terms of type ι.

Arbitrary variables will be usually denoted by V and its subscripted versions.

Definition 4.3. The set of terms of H is defined as follows:

• Every predicate variable (respectively, predicate constant) of type π is a term of type π;
every individual variable (respectively, individual constant) of type ι is a term of type ι;
• if f is an n-ary function symbol and E1, . . . ,En are terms of type ι then (f E1 · · ·En) is a

term of type ι;
• if E1 is a term of type ρ→ π and E2 a term of type ρ then (E1 E2) is a term of type π.

Definition 4.4. The set of expressions of H is defined as follows:

• A term of type ρ is an expression of type ρ;
• if E is a term of type o then (∼E) is an expression of type o;
• if E1 and E2 are terms of type ι, then (E1 ≈ E2) is an expression of type o.

We write vars(E) to denote the set of all the variables in E. Expressions (respectively,
terms) that have no variables will often be referred to as ground expressions (respectively,
ground terms). We will omit parentheses when no confusion arises. To denote that an
expression E has type ρ we will often write E : ρ. Terms of type o will often be referred to

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 9

as atoms. Expressions of type o that do not contain negation, i.e. atoms and expressions of
the form (E1 ≈ E2), will be called positive literals, while expressions of the form (∼E) will
be called negative literals. A literal is either a positive literal or a negative literal.

Definition 4.5. A clause of H is a formula p V1 · · ·Vn ← L1, . . . , Lm, where p is a predicate
constant of type ρ1 → · · · → ρn → o, V1, . . . ,Vn are distinct variables of types ρ1, . . . , ρn
respectively and L1, . . . , Lm are literals. The term p V1 · · ·Vn is called the head of the
clause, the variables V1, . . . ,Vn are the formal parameters of the clause and the conjunction
L1, . . . , Lm is its body. A program P of H is a finite set of clauses.

Example 4.6. The program below defines the subset relation over unary predicates:

subset S1 S2 :- ∼(nonsubset S1 S2).

nonsubset S1 S2 :- S1 X, ∼(S2 X).

The variables S1 and S2 are both predicate variables of type ι→ o, while X is an individual
variable (i.e., it is of type ι). Given predicates p and q of type ι→ o, subset p q is true if
p is a subset of q.

In the following, we will often talk about the “ground instantiation of a program”. This
notion is formally defined below.

Definition 4.7. A substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En} where the
Vi’s are different variables and each Ei is a term having the same type as Vi. We write
dom(θ) to denote the domain {V1, . . . ,Vn} of θ. If all the expressions E1, . . . ,En are ground
terms, θ is called a ground substitution.

We can now define the application of a substitution to an expression.

Definition 4.8. Let θ be a substitution and E be an expression. Then, Eθ is an expression
obtained from E as follows:

• Eθ = E if E is a predicate constant or individual constant;
• Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V;
• (f E1 · · ·En)θ = (f E1θ · · ·Enθ);
• (E1 E2)θ = (E1θ E2θ);
• (∼E)θ = (∼Eθ);
• (E1 ≈ E2)θ = (E1θ ≈ E2θ).

If θ is a ground substitution such that vars(E) ⊆ dom(θ), then the ground expression Eθ is
called a ground instance of E.

Definition 4.9. Let P be a program. A ground instance of a clause p V1 · · ·Vn ← L1, . . . , Lm
of P is a formula (p V1 · · ·Vn)θ ← L1θ, . . . , Lmθ, where θ is a ground substitution whose
domain is the set of all variables that appear in the clause, such that for every V ∈ dom(θ)
with V : ρ, θ(V) is a ground expression of type ρ that has been formed with predicate
constants, function symbols, and individual constants that appear in P. The ground
instantiation of a program P, denoted by Gr(P), is the (possibly infinite) set that contains
all the ground instances of the clauses of P.

In the rest of the paper, we will be extensively using the notion of ground instantiation.
Notice that in the body of a clause of the ground instantiation, there may exist ground
expressions of the form (E1 ≈ E2). In the case where the two expressions E1 and E2 are
syntactically identical, the expression (E1 ≈ E2) will be treated as the constant true, and
otherwise as the constant false.

10 P. RONDOGIANNIS AND I. SYMEONIDOU

5. The Semantics of H

In this section we develop the semantics of H. Our developments generalize the semantics
of [2, 3] for positive higher-order logic programs, to programs with negation. Notice that the
semantics of [2, 3] is based on classical two-valued logic, while ours on the infinite-valued
logic of Section 3.

In order to interpret the programs of H, we need to specify the semantic domains in
which the expressions of each type τ are assigned their meanings. We adopt the approach
of [2, 3]. More specifically, the following definition implies that the expressions of predicate
types should be understood as representing functions. We use [S1 → S2] to denote the
set of (possibly partial) functions from a set S1 to a set S2. The possibility to have a
partial function arises due to a technicality which is explained in the remark just above
Definition 5.3.

Definition 5.1. A functional type structure S for H consists of two non-empty sets D and
A together with an assignment JτK to each type τ of H, so that the following are satisfied:

• JιK = D;
• Jιn → ιK = Dn → D;
• JoK = A;
• Jρ→ πK ⊆ [JρK→ JπK].

Given a functional type structure S, any function val : JoK → V will be called an
infinite-valued valuation function (or simply valuation function) for S.

It is customary in the study of the semantics of logic programming languages to restrict
attention to Herbrand interpretations. Given a program P, a Hebrand interpretation is one
that has as its underlying universe the so-called Herbrand universe of P:

Definition 5.2. For a program P, we define the Herbrand universe for every argument type
ρ, denoted by UP,ρ, to be the set of all ground terms of type ρ that can be formed out of the
individual constants, function symbols, and predicate constants in the program. Moreover,
we define U+

P,o to be the set of all ground expressions of type o, that can be formed out of

the above symbols, i.e. the set U+
P,o = UP,o ∪ {(E1 ≈ E2) | E1,E2 ∈ UP,ι} ∪ {(∼E) | E ∈ UP,o}.

Following [2, 3], we takeD and A in Definition 5.1 to be equal to UP,ι and U+
P,o respectively.

Then, each element of UP,ρ→π can itself be perceived as a function mapping elements of
JρK to elements of JπK, through syntactic application mapping. That is, E ∈ UP,ρ→π can
be viewed as the function mapping each term E′ ∈ UP,ρ to the term EE′ ∈ UP,π. Similarly,
every n-ary function symbol f appearing in P can be viewed as the function mapping each
element (E1, . . . ,En) ∈ UnP,ι to the term (f E1 · · · En) ∈ UP,ι.

Remark: There is a small technicality here which we need to clarify. In the case where
ρ = o, E ∈ UP,o→π is a partial function because it maps elements of UP,o (and not of U+

P,o)

to elements of UP,π; this is due to the fact that our syntax does not allow an expression of
type o→ π to take as argument an expression of the form (E1 ≈ E2) nor of the form (∼E).
In all other cases (i.e., when ρ 6= o), E represents a total function.

Definition 5.3. A Herbrand interpretation I of a program P consists of

(1) a functional type structure SI , such that D = UP,ι, A = U+
P,o and Jρ→ πK = UP,ρ→π for

every predicate type ρ→ π;

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 11

(2) an assignment to each individual constant c in P, of the element I(c) = c; to each
predicate constant p in P, of the element I(p) = p; to each function symbol f in P, of
the element I(f) = f;

(3) a valuation function val I(·) for SI , assigning to each element of U+
P,o an element in V,

while satisfying the following:

• for all E1,E2 ∈ UP,ι, val I((E1 ≈ E2)) =

{
F0, if E1 6= E2

T0, if E1 = E2
;

• for all E ∈ UP,o, val I((∼E)) =

Tα+1, if val I(E) = Fα

Fα+1, if val I(E) = Tα

0, if val I(E) = 0

.

We call val I(·) the valuation function of I and omit the reference to SI , since the latter
is common to all Herbrand interpretations of a program. In fact, individual Herbrand
interpretations are only set apart by their valuation functions.

Definition 5.4. A Herbrand state (or simply state) s of a program P is a function that
assigns to each variable V of type ρ an element of UP,ρ.

Given a Herbrand interpretation I and state s, we can define the semantics of expressions
with respect to I and s.

Definition 5.5. Let P be a program. Also, let I be a Herbrand interpretation and s a
Herbrand state of P. Then the semantics of expressions with respect to I and s is defined as
follows:

• JcKs (I) = I(c) = c, for every individual constant c;
• JpKs (I) = I(p) = p, for every predicate constant p;
• JVKs (I) = s(V), for every variable V;
• J(f E1 · · · En)Ks (I) = (I(f) JE1Ks (I) · · · JEnKs (I)) = (f JE1Ks (I) · · · JEnKs (I)), for every
n-ary function symbol f;
• J(E1 E2)Ks (I) = (JE1Ks (I) JE2Ks (I));
• J(E1 ≈ E2)Ks (I) = (JE1Ks (I) ≈ JE2Ks (I));
• J(∼E)Ks (I) = (∼JEKs (I)).

Since we are dealing with Herbrand interpretations, it is easy to see that for every
Herbrand state s and ground expression E, we have JEKs (I) = E. Therefore, if E is a ground
literal, we can write val I(E) instead of val I(JEKs (I)). Stretching this abuse of notation a little
further, we can extend a valuation function to assign truth values to ground conjunctions of
literals:

Definition 5.6. Let P be a program and I be a Herbrand interpretation of P. We define
val I(L1, . . . , Ln) = min{val I(L1), . . . , val I(Ln)} for all L1, . . . , Ln ∈ U+

P,o.

Based on the above definition, we can define the concept of Herbrand models for our
higher-order programs in the same way as in classical logic programming.

Definition 5.7. Let P be a program and I be a Herbrand interpretation of P. We say
I is a model of P if val I(JAKs (I)) ≥ val I(JL1Ks (I) , . . . , JLmKs (I)) holds for every clause
A← L1, . . . , Lm and every Herbrand state s of P.

Bezem’s semantics is based on the observation that, given a positive higher-order program,
we can use the minimum model semantics of its ground instantiation as a (two-valued)

12 P. RONDOGIANNIS AND I. SYMEONIDOU

valuation function defining a Herbrand interpretation for the initial program itself. We use
the same idea for H programs; the only difference is that we employ the infinite-valued
model of the ground instantiation of the program as the valuation function.

Definition 5.8. Let P be a program. Also, let Gr(P) be the ground instantiation of P
and let MGr(P) be the infinite-valued model of Gr(P). We define MP to be the Herbrand
interpretation of P such that valMP

(A) = MGr(P)(A) for every A ∈ UP,o.

We adopt the notation I ‖ v from Section 3, to signify the set of atoms which are
assigned a certain truth value v ∈ V by a Herbrand interpretation I; that is, I ‖ v =
{A | A ∈ UP,o and val I(A) = v}. Then the relations vα, <α, =α, v and < on Herbrand
interpretations of a higher-order program can be defined in exactly the same manner as in
Section 3.

The next theorem verifies that our semantics is well-defined, in the sense that the
interpretation MP, which we chose as the meaning of a program P, is indeed a model of P.
In fact it is the minimum, with respect to v, model of P.

Theorem 5.9. MP is the minimum (with respect to v) Herbrand model of P.

Proof. Let Gr(P) be the ground instantiation of P and MGr(P) be the infinite-valued model of
Gr(P). Recall (Definition 5.4) that a Herbrand state s of P assigns to each variable V of type ρ
an element of UP,ρ and that this (semantic) element is in fact a ground expression of the same
type. Moreover, recall (Definition 4.7) that a ground substitution, which includes V in its
domain, also assigns a ground expression of type ρ to V; and that such an expression coincides
with its own meaning, under any Herbrand interpretation and any state. Therefore, for every
Herbrand state s of P there exists a ground substitution θ such that s(V) = Jθ(V)Ks′ (MP)
for all states s′ and variables V in P. Also, for every clause A ← L1, . . . , Lm in P there
exists a respective ground instance Aθ ← L1θ, . . . , Lmθ in Gr(P). As MGr(P) is a model
of Gr(P), MGr(P)(Aθ) ≥ min{MGr(P)(L1θ), . . . ,MGr(P)(Lmθ)}. By definition, valMP

(Aθ) =
MGr(P)(Aθ) and valMP

(Liθ) = MGr(P)(Liθ) for all i ≤ m. Moreover, it is easy to see (by a
trivial induction on the structure of the expression) that Aθ = JAKs (MP), which implies
that valMP

(Aθ) = valMP
(JAKs (MP)). Similarly, valMP

(Liθ) = valMP
(JLiKs (MP)), for

all i ≤ m. Then valMP
(JAKs (MP)) ≥ min{valMP

(JL1Ks (MP)), . . . , valMP
(JLmKs (MP))}

follows immediately and implies that MP is a model of P. To see that it is minimum,
assume there exists a model M of the higher-order program P, distinct from MP, which
does not satisfy MP < M. Then the valuation function valM(·) of M defines a (first-
order) interpretation M for the ground instantiation Gr(P) of P, if, for every ground atom
A, we take M(A) = valM(A). It is obvious that MGr(P) 6< M , since M(A) = valM(A)
and valMP

(A) = MGr(P)(A) for every ground atom A imply that M ‖ v = M ‖ v and
MGr(P) ‖ v =MP ‖ v for every truth value v ∈ V. Also, M is distinct from MGr(P), since
M(B) = valM(B) 6= valMP

(B) = MGr(P)(B) for at least one ground atom B. Next we
demonstrate that M is a model of the ground instantiation Gr(P) of P, which is of course a
contradiction, since MGr(P) is the minimum model of Gr(P) and MGr(P) v M should hold.
Indeed, every clause in Gr(P) is a ground instance of a clause A ← L1, . . . , Lm in P and
is therefore of the form Aθ ← L1θ, . . . , Lmθ for some ground substitution θ. Consider a
Herbrand state s, such that s(V) = θ(V) for every variable V in P. Because we assumed
the higher-order interpretation M to be a model of P, we have that valM(JAKs (M)) ≥
min{valM(JL1Ks (M)), . . . , valM(JLmKs (M))}. Again, it is easy to see that Aθ = JAKs (M)
and therefore valM(Aθ) = valM(JAKs (M)). Similarly, valM(Liθ) = valM(JLiKs (M)) for all

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 13

i ≤ m. Additionally, by the construction of M , valM(Aθ) = M(Aθ) and valM(Liθ) = M(Liθ)
for all i ≤ m, so M(Aθ) ≥ min{M(L1θ), . . . ,M(Lmθ)}, which implies that M is a model of
Gr(P). Because we reached a contradiction, MP must be the minimum model of P.

6. Extensionality of the Proposed Semantics

In this section we show that the infinite-valued model we defined in the previous section
enjoys the extensionality property, as this was defined in [2]. For an intuitive explanation of
this property, the reader should consult again the example of Section 2. In order to formally
define this notion, Bezem introduced [2, 3] relations ∼=val ,τ over the set of expressions of a
given type τ and under a given valuation function val . These relations intuitively express
extensional equality of type τ . For the purposes of this paper only extensional equality of
argument types will be needed, for which the formal definition is as follows:

Definition 6.1. Let S be a functional type structure and val be a valuation function for S.
For every argument type ρ we define the relations ∼=val ,ρ on JρK as follows: Let d, d′ ∈ JρK;
then d ∼=val ,ρ d

′ if and only if

(1) ρ = ι and d = d′, or
(2) ρ = o and val(d) = val(d′), or
(3) ρ = ρ′ → π and d e ∼=val ,π d

′ e′ for all e, e′ ∈ Jρ′K, such that e ∼=val ,ρ′ e
′ and d e, d′ e′ are

both defined.

One can easily verify that, for all d, d′ ∈ Jρ1 → · · · → ρn → oK, e1, e′1 ∈ Jρ1K, . . . , en, e
′
n ∈

JρnK, if d ∼=val ,ρ1→···→ρn→o d
′, e1 ∼=val ,ρ1 e

′
1, . . . , en ∼=val ,ρn e

′
n and d e1 · · · en, d′ e′1 · · · e′n

are both defined, then val(d e1 · · · en) = val(d′ e′1 · · · e′n).
Generally, it is not guaranteed that such relations will be equivalence relations; rather

they are partial equivalences (they are shown in [2] to be symmetric and transitive). However,
we are going to see that the minimum model of a program defines true equivalence relations
for all types τ .

Definition 6.2. Let P be a program and let I be a Herbrand interpretation of P. We say
I is extensional if for all argument types ρ the relations ∼=valI ,ρ are reflexive, i.e. for all
E ∈ JρK, it holds that E ∼=valI ,ρ E.

Theorem 6.3 (Extensionality). MP is extensional.

Proof. Since the valuation function of MP is MGr(P), essentially we need to show that
E ∼=MGr(P),ρ E, for every ground expression E of every argument type ρ. We perform an
induction on the structure of ρ. For the base types ι and o the statement holds by definition.
For the induction step, we prove the statement for a predicate type π = ρ1 → · · · → ρm → o,
assuming that it holds for all types simpler than π (i.e., for the types ρ1, . . . , ρm, o and,
recursively, the types that are simpler than ρ1, . . . , ρm). Let A be any atom of the following
form: A is headed by a predicate constant and all variables in vars(A) are of types simpler
than π. Let θ, θ′ be ground substitutions, such that vars(A) ⊆ dom(θ), dom(θ′) and
θ(V) ∼=MGr(P),ρ θ

′(V) for any V : ρ in vars(A). We claim it suffices to show the following two

properties P1(α) and P2(α), for all ordinals α:

P1(α): if Mα(Aθ) = Tα then MGr(P)(Aθ
′) = Tα;

P2(α): if Mα(Aθ) = Fα then MGr(P)(Aθ
′) = Fα.

14 P. RONDOGIANNIS AND I. SYMEONIDOU

To see why proving the above properties is enough to establish that E ∼=MGr(P),π E, ob-
serve the following: first of all, we assumed that π is of the form ρ1 → · · · → ρm → o,
so if V1 : ρ1, . . . ,Vm : ρm are variables, then E V1 · · · Vm is an atom of the form de-
scribed above. Also, by Lemma 3.15 we have that MGr(P)(E θ(V1) · · · θ(Vm)) = Tα
if and only if Mα(E θ(V1) · · · θ(Vm)) = Tα. If P1(α) holds, the latter implies that
MGr(P)(E θ

′(V1) · · · θ′(Vm)) = Tα. Because the relations ∼=MGr(P),ρi are symmetric, θ and

θ′ are interchangeable. Therefore the same argument can be used to infer the reverse
implication, i.e. MGr(P)(E θ′(V1) · · · θ′(Vm)) = Tα ⇒ MGr(P)(E θ(V1) · · · θ(Vm)) = Tα,
thus resulting to an equivalence. If P2(α) holds, the analogous equivalence can be shown
for the value Fα, in the same way. Finally, the equivalence for the 0 value follows by a
simple elimination argument: if for example MGr(P)(E θ(V1) · · · θ(Vm)) = 0, we make the
assumption that MGr(P)(E θ

′(V1) · · · θ′(Vm)) = Tα (respectively, Fα) for some ordinal α.
Then, by Lemma 3.15, Mα(E θ′(V1) · · · θ′(Vm)) = Tα (respectively, Fα), so if property P1(α)
(respectively, P2(α)) holds, it gives us that MGr(P)(E θ(V1) · · · θ(Vm)) = Tα (respectively,
Fα), which is a contradiction. It follows that MGr(P)(E θ

′(V1) · · · θ′(Vm)) = 0. Again, we
can show the reverse implication by the same argument.

We will proceed by a second induction on α.

Second Induction Basis (α = 0): We have M0 = TωP,0(∅). Observe that TωP,0(∅)(Aθ) will

evaluate to T0 if and only if there exists some n < ω for which TnP (∅)(Aθ) = T0. On the
other hand, it will evaluate to F0 if and only if there does not exist a n < ω for which
TnP (∅)(Aθ) 6= F0. Therefore, in order to prove P1(0) and P2(0), we first need to perform
a third induction on n and prove the following two properties:
P ′1(0, n): if TnP (∅)(Aθ) = T0 then MGr(P)(Aθ

′) = T0;
P ′2(0, n): if TnP (∅)(Aθ) > F0 then MGr(P)(Aθ

′) > F0.

Third Induction Basis (n = 0): Both P ′1(0, 0) and P ′2(0, 0) hold vacuously, since T 0
P(∅) =

∅, i.e. the interpretation that assigns F0 to every atom.
Third Induction Step (n+ 1): First we show P ′1(0, n+ 1), assuming that P ′1(0, n) holds.

If Tn+1
P (∅)(Aθ) = T0, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such that

for each i ≤ k, TnP (∅)(Li) = T0. This implies that each Li is a positive literal, since
a negative one cannot be assigned the value T0 in any interpretation. This clause is
a ground instance of a clause pV1 · · · Vr ← K1, . . . ,Kk in the higher-order program
and there exists a substitution θ′′, such that (pV1 · · · Vr)θ′′ = A and, for any variable
V 6∈ {V1, . . . ,Vr} appearing in the body of the clause, θ′′(V) is an appropriate ground
term, so that Li = Kiθ

′′θ for all i ≤ k. Observe that the variables appearing in the clause
(pV1 · · · Vr)θ′′ ← K1θ

′′, . . . ,Kkθ
′′ are exactly the variables appearing in A and they are

all of types simpler than π. We distinguish the following cases for each Kiθ
′′, i ≤ k:

(1) Kiθ
′′ is of the form (E1 ≈ E2): By definition, TnP (∅)(Li) = TnP (∅)(Kiθ′′θ) = T0 implies

that E1θ = E2θ. Since E1 and E2 are expressions of type ι, all variables in E1 and E2

are also of type ι and, because ∼=MGr(P),ι is defined as equality, we will have E1θ = E1θ
′

and E2θ = E2θ
′. Therefore E1θ

′ = E2θ
′ and MGr(P)(Kiθ

′′θ′) = T0 will also hold.
(2) Kiθ

′′ is an atom and starts with a predicate constant: As we observed, the variables
appearing in Kiθ

′′ are of types simpler than π. By the third induction hypothesis,
Kiθ
′′ satisfies property P ′1(0, n) and therefore TnP (∅)(Li) = TnP (∅)(Kiθ′′θ) = T0 implies

that MGr(P)(Kiθ
′′θ′) = T0.

(3) Kiθ
′′ is an atom and starts with a predicate variable: Let Kiθ

′′ = VE1 · · · Em′ for
some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that begins with a predicate

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 15

constant and, by vars(Kiθ
′′) ⊆ vars(A), all of the variables of B are of types simpler

than π. Also, TnP (∅)(Bθ) = TnP (∅)(Kiθ′′θ) = T0, which, by property P ′1(0, n) yields
that MGr(P)(Bθ

′) = MGr(P)(θ(V)E1θ
′ · · · Em′θ′) = T0 (1). Observe that the types of

all arguments of θ(V), i.e. the types of Ejθ
′ for all j ≤ m′, are simpler than the

type of V and consequently, since V ∈ vars(A), simpler than π. For each j ≤ m′, let
ρj be the type of Ej and let ρ be the type of V; by the first induction hypothesis,
Ejθ
′ ∼=MGr(P),ρj Ejθ

′. Moreover, by assumption we have that θ(V) ∼=MGr(P),ρ θ
′(V).

Then, by definition MGr(P)(θ(V)E1θ
′ · · · Em′θ′) = MGr(P)(θ

′(V)E1θ
′ · · · Em′θ′) and,

by (1), MGr(P)(θ
′(V)E1θ

′ · · · Em′θ′) = T0.
In conclusion, the clause Aθ′ ← K1θ

′′θ′, . . . ,Kkθ
′′θ′ is in Gr(P) and for each i ≤ k, we

have MGr(P)(Kiθ
′′θ′) = T0, therefore MGr(P)(Aθ

′) = T0 must also hold.
This concludes the proof for P ′1(0, n). Next we prove P ′2(0, n+ 1), assuming P ′2(0, n)

holds. If Tn+1
P (∅)(Aθ) > F0, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such

that for each i ≤ k, TnP (∅)(Li) > F0. This clause is a ground instance of a clause
pV1 · · · Vr ← K1, . . . ,Kk in the higher-order program and there exists a substitution θ′′,
such that (pV1 · · · Vr)θ′′ = A and, for any variable V 6∈ {V1, . . . ,Vr} appearing in the
body of the clause, θ′′(V) is an appropriate ground term, so that Li = Kiθ

′′θ for all i ≤ k.
Observe that the variables appearing in the clause (pV1 · · · Vr)θ′′ ← K1θ

′′, . . . ,Kkθ
′′ are

exactly the variables appearing in A and they are all of types simpler than π. We can
distinguish the following cases for each Kiθ

′′, i ≤ k:
(1) Kiθ

′′ is a positive literal: A positive literal may take one of the three forms that we
examined in our proof for property P ′1(0, n+ 1). We can show that MGr(P)(Kiθ

′′θ′) >
F0 by the same arguments we used in each case.

(2) Kiθ
′′ is a negative literal: A negative literal cannot be assigned the value F0 in any

interpretation. Therefore MGr(P)(Kiθ
′′θ′) > F0 holds by definition.

In conclusion, the clause Aθ′ ← K1θ
′′θ′, . . . ,Kkθ

′′θ′ is in Gr(P) and for each i ≤ k, we
have MGr(P)(Kiθ

′′θ′) > F0, therefore MGr(P)(Aθ
′) > F0 must also hold.

This concludes the proof for P ′2(0, n). We will now use properties P ′1(0, n) and P ′2(0, n)
in order to show P1(0) and P2(0). By definition, if M0(Aθ) = TωP,0(∅)(Aθ) = T0, then

there exists some n < ω such that TnP (∅)(Aθ) = T0. Applying P ′1(0, n) to Aθ we
immediately conclude that MGr(P)(Aθ

′) = T0, which establishes property P1(0). Now let
M0(Aθ) = F0 and assume MGr(P)(Aθ

′) 6= F0. By Lemma 3.15, the latter can only hold
if M0(Aθ

′) = TωP,0(∅)(Aθ′) 6= F0 and this, in turn, means that there exists at least one

n < ω such that TnP (∅)(Aθ′) > F0. Then, reversing the roles of θ and θ′, we can apply
property P ′2(0, n) to Aθ′ and conclude that MGr(P)(Aθ) > F0, which, again by Lemma
3.15, contradicts M0(Aθ) = F0. Therefore it must be MGr(P)(Aθ

′) = F0.
Second Induction Step: Now we prove properties P1(α) and P2(α) for an arbitrary

countable ordinal α, assuming that P1(β) and P2(β) hold for all β < α.
We have Mα = TωP,α(Iα). Again, we first perform a third induction on n and prove

two auxilary properties, as follows:
P ′1(α, n): if TnP (Iα)(Aθ) ≥ Tα then MGr(P)(Aθ

′) ≥ Tα;
P ′2(α, n): if TnP (Iα)(Aθ) > Fα then MGr(P)(Aθ

′) > Fα.

Third Induction Basis (n = 0): We have T 0
P(Iα) = Iα. Observe that, whether α is a

successor or a limit ordinal, Iα does not assign to any atom the value Tα or any value
that is greater than Fα and smaller than Tα. So, whether we assume T 0

P(Iα)(Aθ) ≥ Tα
or T 0

P(Iα)(Aθ) > Fα, it must be T 0
P(Iα)(Aθ) = Tβ for some ordinal β < α. By Lemma

16 P. RONDOGIANNIS AND I. SYMEONIDOU

3.11, Mα(Aθ) = Tβ and so, by Lemma 3.15, Mβ(Aθ) = Tβ. Then, by the second
induction hypothesis, property P1(β) holds and yields MGr(P)(Aθ

′) = Tβ, which implies
both MGr(P)(Aθ

′) ≥ Tα and MGr(P)(Aθ
′) > Fα. Therefore property P ′1(α, 0) and property

P ′2(α, 0) also hold.
Third Induction Step (n+ 1): First we show P ′1(α, n+ 1), assuming that P ′1(α, n) holds.

If Tn+1
P (Iα)(Aθ) ≥ Tα, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such that for

each i ≤ k, TnP (Iα)(Li) ≥ Tα. This clause is a ground instance of a clause pV1 · · · Vr ←
K1, . . . ,Kk in the higher-order program and there exists a substitution θ′′, such that
(pV1 · · · Vr)θ′′ = A and, for any variable V 6∈ {V1, . . . ,Vr} appearing in the body of the
clause, θ′′(V) is an appropriate ground term, so that Li = Kiθ

′′θ for all i ≤ k. As we
observed earlier, the variables appearing in the clause (pV1 · · · Vr)θ′′ ← K1θ

′′, . . . ,Kkθ
′′

are exactly the variables appearing in A and they are all of types simpler than π. We
can distinguish the following cases for each Kiθ

′′:
(1) Kiθ

′′ is a positive literal: A positive literal may take one of the three forms that we
examined in our proof for property P ′1(0, n+ 1). We can show that MGr(P)(Kiθ

′′θ′) ≥
Tα by the same arguments we used in each case.

(2) Kiθ
′′ is a negative literal and its atom starts with a predicate constant: Let Kiθ

′′

be of the form ∼B, where B is an atom that starts with a predicate constant. It
is TnP (Iα)(∼Bθ) = TnP (Iα)(Kiθ

′′θ) = TnP (Iα)(Li) ≥ Tα. Then TnP (Iα)(Bθ) < Fα, i.e.
TnP (Iα)(Bθ) = Fβ for some ordinal β < α. By Lemma 3.11, Mα(Bθ) = Fβ and
thus, by Lemma 3.15, Mβ(Bθ) = Fβ. By vars(Kiθ

′′) ⊆ vars(A), all the variables
of B are of types simpler than π, so we can apply the second induction hypothesis,
in particular property P2(β), to Bθ and conclude that MGr(P)(Bθ

′) = Fβ. Then
MGr(P)(Kiθ

′′θ′) = MGr(P)(∼Bθ′) = Tβ+1 ≥ Tα.
(3) Kiθ

′′ is a negative literal and its atom starts with a predicate variable: Let Kiθ
′′ =

∼(VE1 · · · Em′) for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom
that begins with a predicate constant and, by vars(Kiθ

′′) ⊆ vars(A), all the vari-
ables of B are of types simpler than π. Also, TnP (Iα)(∼Bθ) = TnP (Iα)(Kiθ

′′θ) =
TnP (Iα)(Li) ≥ Tα. Then TnP (Iα)(Bθ) < Fα, i.e. TnP (Iα)(Bθ) = Fβ for some ordinal
β < α. By Lemma 3.11, Mα(Bθ) = Fβ and thus, by Lemma 3.15, Mβ(Bθ) = Fβ.
By the second induction hypothesis, property P2(β) gives us that MGr(P)(Bθ

′) =
MGr(P)(θ(V)E1θ

′ · · · Em′θ′) = Fβ (1). The types of all arguments of θ(V), i.e. the
types of Ejθ

′ for all j ≤ m′, are simpler than the type of V and consequently, since V ∈
vars(A), simpler than π. For each j ≤ m′, let ρj be the type of Ej and let ρ be the type
of V; by the first induction hypothesis, Ejθ

′ ∼=MGr(P),ρj Ejθ
′. Moreover, by assumption

we have that θ(V) ∼=MGr(P),ρ θ
′(V). Then, by definition MGr(P)(θ(V)E1θ

′ · · · Em′θ′) =

MGr(P)(θ
′(V)E1θ

′ · · · Em′θ′) and, by (1), MGr(P)(θ
′(V)E1θ

′ · · · Em′θ′) = Fβ. There-
fore, it follows that MGr(P)(Kiθ

′′θ′) = MGr(P)(∼(θ′(V)E1θ
′ · · · Em′θ′)) = Tβ+1 ≥ Tα.

We can conclude that MGr(P)(Aθ
′) ≥ Tα, as the clause Aθ′ ← K1θ

′′θ′, . . . ,Kkθ
′′θ′ is in

Gr(P) and we have shown that, for each i ≤ k, MGr(P)(Kiθ
′′θ′) ≥ Tα.

This concludes the proof of P ′1(α, n). Next we prove P ′2(α, n+ 1), assuming P ′2(α, n)

holds. If Tn+1
P (Iα)(Aθ) > Fα, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such

that for each i ≤ k, TnP (Iα)(Li) > Fα. This clause is a ground instance of a clause
pV1 · · · Vr ← K1, . . . ,Kk in the higher-order program and there exists a substitution
θ′′such that (pV1 · · · Vr)θ′′ = A and, for any variable V 6∈ {V1, . . . ,Vr} appearing in
the body of the clause, θ′′(V) is an appropriate ground term, so that Li = Kiθ

′′θ for all

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 17

i ≤ k. Again we observe that the variables appearing in the clause (pV1 · · · Vr)θ′′ ←
K1θ

′′, . . . ,Kkθ
′′ are exactly the variables appearing in A, which are all of types simpler

than π, and distinguish the following cases for each Kiθ
′′:

(1) Kiθ
′′ is a positive literal: A positive literal may take one of the three forms that we

examined in our proof for property P ′1(0, n+ 1). We can show that MGr(P)(Kiθ
′′θ′) >

Fα by the same arguments we used in each case.
(2) Kiθ

′′ is a negative literal and its atom starts with a predicate constant: Let Kiθ
′′

be of the form ∼B, where B is an atom that starts with a predicate constant
and, by vars(Kiθ

′′) ⊆ vars(A), all the variables of B are of types simpler than
π. It is TnP (Iα)(∼Bθ) = TnP (Iα)(Kiθ

′′θ) = TnP (Iα)(Li) > Fα and we claim that
MGr(P)(∼Bθ′) > Fα. For the sake of contradiction, assume that MGr(P)(∼Bθ′) ≤ Fα.
Then MGr(P)(Bθ

′) > Tα, i.e. MGr(P)(Bθ
′) = Tβ for some ordinal β < α. Therefore,

Lemma 3.15 implies that Mβ(Bθ′) = Tβ . This means that, if we reverse the roles of θ
and θ′, we can apply the second induction hypothesis to Bθ′ and use property P1(β)
to conclude that MGr(P)(Bθ) = Tβ. By Lemma 3.15, this implies that Mα(Bθ) = Tβ
and, by Lemma 3.11, TnP (Iα)(Bθ) = Tβ. Then TnP (Iα)(∼Bθ) = Fβ+1 ≤ Fα, which is
obviously a contradiction. So it must be MGr(P)(Kiθ

′′θ′) = MGr(P)(∼Bθ′) > Fα.
(3) Kiθ

′′ is a negative literal and its atom starts with a predicate variable: Let Kiθ
′′ =

∼(VE1 · · · Em′) for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that
begins with a predicate constant and, by vars(Kiθ

′′) ⊆ vars(A), all the variables of
B are of types simpler than π. Also, TnP (Iα)(∼Bθ) = TnP (Iα)(Kiθ

′′θ) = TnP (Iα)(Li) >
Fα. We claim that MGr(P)(∼Bθ′) > Fα. Again, assume that this is not so, i.e.
MGr(P)(∼Bθ′) ≤ Fα; then MGr(P)(Bθ

′) = Tβ > Tα for some ordinal β < α. By
Lemma 3.15, Mβ(Bθ′) = Tβ and the second induction hypothesis applies. So if we
reverse the roles of θ and θ′ property P1(β) gives us that MGr(P)(Bθ) = Tβ. By
Lemma 3.15, Mα(Bθ) = Tβ and thus, by Lemma 3.11, TnP (Iα)(Bθ) = Tβ. This
is a contradiction, as it implies that TnP (Iα)(∼Bθ) = Fβ+1 ≤ Fα. Therefore it
must hold that MGr(P)(∼Bθ′) = MGr(P)(∼(θ(V)E1θ

′ · · · Em′θ′)) > Fα (1). The
types of all arguments of θ(V), i.e. the types of Ejθ

′ for all j ≤ m′, are sim-
pler than the type of V and therefore simpler than π. For each j ≤ m′, let ρj
be the type of Ej and let ρ be the type of V; by the first induction hypothe-
sis, Ejθ

′ ∼=MGr(P),ρj Ejθ
′ and by assumption θ(V) ∼=MGr(P),ρ θ

′(V). Then, by defini-

tion MGr(P)(θ(V)E1θ
′ · · · Em′θ′) = MGr(P)(θ

′(V)E1θ
′ · · · Em′θ′) and, consequently,

MGr(P)(∼(θ(V)E1θ
′ · · · Em′θ′)) = MGr(P)(∼(θ′(V)E1θ

′ · · · Em′θ′)). Therefore by (1),
MGr(P)(∼(θ′(V)E1θ

′ · · · Em′θ′)) > Fα and so we can conclude that MGr(P)(Kiθ
′′θ′) =

MGr(P)(∼(θ′(V)E1θ
′ · · · Em′θ′)) > Fα.

Observe that the clause Aθ′ ← K1θ
′′θ′, . . . ,Kkθ

′′θ′ is in Gr(P) and we have shown that,
for each i ≤ k, MGr(P)(Kiθ

′′θ′) > Fα. So MGr(P)(Aθ
′) > Fα must also hold.

This concludes the proof for P ′2(α, n). We will now use properties P ′1(α, n) and P ′2(α, n)
in order to show P1(α) and P2(α). By definition, if Mα(Aθ) = TωP,α(Iα)(Aθ) = Tα, then

there exists some n < ω such that TnP (Iα)(Aθ) = Tα. As we have shown above, property
P ′1(α, n) yields MGr(P)(Aθ

′) ≥ Tα. However, if it was MGr(P)(Aθ
′) = Tβ > Tα for some

ordinal β < α, then, by Lemma 3.15 we would also have Mβ(Aθ′) = Tβ. By the
second induction hypothesis we would be able to apply property P1(β) to Aθ′ and infer
that MGr(P)(Aθ) = Tβ, which, again by Lemma 3.15, contradicts Mα(Aθ) = Tα. So
MGr(P)(Aθ

′) can only be equal to Tα and property P1(α) holds. Now let Mα(Aθ) = Fα

18 P. RONDOGIANNIS AND I. SYMEONIDOU

and assume MGr(P)(Aθ
′) 6= Fα, i.e. either MGr(P)(Aθ

′) < Fα or MGr(P)(Aθ
′) > Fα. In the

first case, MGr(P)(Aθ
′) = Fβ and, by Lemma 3.15, Mβ(Aθ′) = Fβ for some β < α. By

the second induction hypothesis, property P2(β) gives us that MGr(P)(Aθ) = Fβ < Fα.
In the second case, Lemma 3.15 implies that Mα(Aθ′) = TωP,α(Iα)(Aθ′) > Fα and this,

in turn, means that there exists at least one n < ω such that TnP (Iα)(Aθ′) > Fα. Then,
reversing the roles of θ and θ′, we can apply property P ′2(α, n) to Aθ′ and conclude that
MGr(P)(Aθ) > Fα. In both cases, our conclusion constitutes a contradiction, because, by
Lemma 3.15, Mα(Aθ) = Fα implies that MGr(P)(Aθ) = Fα. Therefore it must also be
MGr(P)(Aθ

′) = Fα and this proves property P2(α).

7. Stratified and Locally Stratified Programs

In this section we define the notions of stratified and locally stratified programs and argue
that atoms of such programs never obtain the truth value 0 under the proposed semantics.
The notion of local stratification is a straightforward generalization of the corresponding
notion for classical (first-order) logic programs. However, the notion of stratification is a
genuine extension of the corresponding notion for first-order programs.

Definition 7.1. A program P is called locally stratified if and only if it is possible to decom-
pose the Herbrand base UP,o of P into disjoint sets (called strata) S1, S2, . . . , Sα, . . . , α < γ,
where γ is a countable ordinal, such that for every clause H ← A1, . . . ,Am,∼B1, . . . ,∼Bn
in Gr(P), we have that for every i ≤ m, stratum(Ai) ≤ stratum(H) and for every i ≤ n,
stratum(Bi) < stratum(H), where stratum is a function such that stratum(C) = β, if the
atom C ∈ UP,o belongs to Sβ, and stratum(C) = 0, if C 6∈ UP,o and is of the form (E1 ≈ E2).

All atoms in the minimum Herbrand model of a locally stratified program have non-zero
values:

Lemma 7.2. Let P be a locally stratified logic program. Then, for every atom A ∈ UP,o it
holds MP(A) 6= 0.

Proof. Theorem 3.14 implies that the infinite-valued model MGr(P) of the ground instantiation
of P assigns the truth value 0 to an atom iff this atom is assigned the truth value 0 by the
well-founded model of Gr(P). Notice now that, by Definition 7.1, if P is a locally stratified
higher-order program, then Gr(P) is in turn a locally stratified propositional program (having
exactly the same local stratification as P). Recall that the well-founded model of a locally
stratified propositional program does not assign the truth value 0 to any atom [14], so neither
does MGr(P) or, consequently, MP.

Since Definition 7.1 generalizes the corresponding one for classical logic programs, the
undecidability result [10] for detecting whether a given program is locally stratified, extends
directly to the higher-order case.

Lemma 7.3. The problem of determining whether a given logic program P is locally stratified,
is undecidable.

However, there exists a notion of stratification for higher-order logic programs that is
decidable and has as a special case the stratification for classical logic programs [1]. In the
following definition, a predicate type π is understood to be greater than a second predicate
type π′, if π is of the form ρ1 → · · · → ρn → π′, where n ≥ 1.

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 19

Definition 7.4. A program P is called stratified if and only if it is possible to decompose
the set of all predicate constants that appear in P into a finite number r of disjoint sets
(called strata) S1, S2, . . . , Sr, such that for every clause H← A1, . . . ,Am,∼B1, . . . ,∼Bn in P,
where the predicate constant of H is p, we have:

(1) for every i ≤ m, if Ai is a term that starts with a predicate constant q, then stratum(q) ≤
stratum(p);

(2) for every i ≤ m, if Ai is a term that starts with a predicate variable Q, then for all
predicate constants q that appear in P such that the type of q is greater than or equal
to the type of Q, it holds stratum(q) ≤ stratum(p);

(3) for every i ≤ n, if Bi starts with a predicate constant q, then stratum(q) < stratum(p);
(4) for every i ≤ n, if Bi starts with a predicate variable Q, then for all predicate constants

q that appear in P such that the type of q is greater than or equal to the type of Q, it
holds stratum(q) < stratum(p);

where for every predicate constant r, stratum(r) = i if the predicate symbol r belongs to Si.

Example 7.5. In the following program:

p Q:-∼(Q a).

q X:-(X≈a).
the variable Q is of type ι→ o and X is of type ι. The only predicate constants that appear
in the program are p, which is of type (ι → o) → o, and q, which is of type ι → o. Note
that the type of p is neither equal nor greater than the type of Q, while the type of q is the
same as that of Q. It is straightforward to see that the program is stratified, if we choose
S1 = {q} and S2 = {p}. Indeed, for the first clause, we have stratum(p) > stratum(q) and
in the second clause there are no predicate constants or predicate variables appearing in
its body. However, if Q and X are as above and, moreover, Y is of type ι, it can easily be
checked that the program:

p Q:-∼(Q a).

q X Y:-(X≈a),(Y≈a),p (q a).

is not stratified nor locally stratified, because if the term q a is substituted for Q we get a
circularity through negation. Notice that the type of q is ι→ ι→ o and it is greater than
the type of Q which is ι→ o.

Since the set of predicate constants that appear in a program P is finite, and since the
number of predicate constants of the program that have a greater or equal type than the
type of a given predicate variable is also finite, it follows that checking whether a given
program is stratified, is decidable. Moreover, we have the following theorem:

Theorem 7.6. If P is stratified then it is locally stratified.

Proof. Consider a decomposition S1, . . . , Sr of the set of predicate constants of P such that
the requirements of Definition 7.4 are satisfied. This defines a decomposition S′1, . . . , S

′
r of

the Herbrand base of P, as follows:

S′i = {A ∈ UP,o | the leftmost predicate constant of A belongs to Si}
We show that S′1, . . . , S

′
r corresponds to a local stratification of UP,o. Consider a clause in P

of the form H′ ← A′1, . . . ,A
′
m,∼B′1, . . . ,∼B′n and let H← A1, . . . ,Am,∼B1, . . . ,∼Bn be one

of its ground instances. Let p be the predicate constant of H (and H′). Consider any A′i. If
A′i starts with a predicate constant, say qi, by Definition 7.4, it is stratum(p) ≥ stratum(qi).

20 P. RONDOGIANNIS AND I. SYMEONIDOU

By the definition of the local stratification decomposition we gave above, it is stratum(H) =
stratum(p) and stratum(Ai) = stratum(qi), and therefore stratum(H) ≥ stratum(Ai). If A′i
starts with a predicate variable, say Q, then Q has been substituted in A′i with a term starting
with a predicate constant, say qi, that has a type greater than or equal to that of Q. By
Definition 7.4, it is stratum(p) ≥ stratum(qi) and by the definition of the local stratification
decomposition we gave above, it is stratum(H) = stratum(p) and stratum(Ai) = stratum(qi),
and therefore stratum(H) ≥ stratum(Ai). The justification for the case of negative literals, is
similar and omitted.

8. Non-Extensionality of the Stable Models

It is natural to wonder whether the more traditional approaches to the semantics of negation
in logic programming, also lead to extensional semantics when applied to higher-order logic
programs with negation under the framework of [2, 3]. The two most widely known such
approaches are the stable model semantics [15] and the well-founded [14] one. It was recently
demonstrated [22] that the well-founded approach does not in general lead to an extensional
well-founded model when applied to higher-order programs. In this section we demonstrate
that the stable model semantics also fails to give extensional models in the general case. We
believe that these two negative results reveal the importance of the use of the infinite-valued
approach for obtaining extensionality.

The stable model semantics, in its original form introduced in [15], is applied on the
ground instantiation of a given first-order logic program with negation, which is a (possibly
infinite) propositional program. In this respect, it is not hard to adapt it to apply to
the framework of [2, 3], which is based on the ground instantiation of a given higher-
order program (which is again a possibly infinite propositional program). For reasons of
completeness, we include the definition of stable models [15] (see also [17]).

Definition 8.1. Let P be a propositional program and let I be a set of propositional
variables. The reduct PI of P with respect to I, is the set of rules without negation that can
be obtained from P by first dropping every rule of P that contains a negative literal ∼p in
its body such that p ∈ I, and then dropping all negative literals from the bodies of all the
remaining rules. The set I is called a stable model of P if I coincides with the least model
of PI .

To demonstrate the non-extensionality of the stable models approach in the case of
higher-order programs, it suffices to find a program that produces non-extensional stable
models. The following very simple example does exactly this.

Example 8.2. Consider the higher-order program:

r(Q):-∼s(Q).
s(Q):-∼r(Q).
q(a).

p(a).

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 21

where the predicate variable Q of the first and second clause is of type ι→ o. We at first
take the ground instantiation of the above program:

r(p):-∼s(p).
r(q):-∼s(q).
s(p):-∼r(p).
s(q):-∼r(q).
q(a).

p(a).

Consider now the Herbrand interpretation M = {p(a), q(a), s(p), r(q)}. One can easily
check that M is a model of the ground instantiation of the program. However, the above
model is not extensional: since p and q are extensionally equal, the atoms s(q) and r(p)

should also belong to M in order to ensure extensionality. It remains to show that M is
also a stable model. Consider the reduct of the above program based on M :

r(q).

s(p).

q(a).

p(a).

Obviously, the least model of the reduct is the interpretation M , and therefore M is a
stable model of the initial program. In other words, we have found a program with a
non-extensional stable model.

Continuing the discussion on the above example, one can easily verify that the above
program also has two extensional stable models, namely M1 = {p(a), q(a), s(p), s(q)} and
M2 = {p(a), q(a), r(p), r(q)}. This creates the hope that we could somehow adapt the
standard stable model construction procedure in order to produce only extensional stable
models. The following example makes this hope vanish.

Example 8.3. Consider the program:

r(Q):-∼s(Q),∼r(p).
s(Q):-∼r(Q),∼s(q).
q(a).

p(a).

where, in the first two clauses, Q is of type ι→ o. The ground instantiation of the program
is the following:

r(p):-∼s(p),∼r(p).
r(q):-∼s(q),∼r(p).
s(p):-∼r(p),∼s(q).
s(q):-∼r(q),∼s(q).
q(a).

p(a).

This program has the non-extensional stable model M = {p(a), q(a), s(p), r(q)}. However,
it has no extensional stable models: there are four possible extensional interpretations
that are potential candidates, namely M1 = {p(a), q(a)}, M2 = {p(a), q(a), r(p), r(q)},
M3 = {p(a), q(a), s(p), s(q)}, and M4 = {p(a), q(a), s(p), s(q), r(p), r(q)}; one can
easily verify that none of these interpretations is a stable model of the ground instantiation

22 P. RONDOGIANNIS AND I. SYMEONIDOU

of the program. The conclusion is that there exist higher-order logic programs with negation
which have only non-extensional stable models!

The above examples seem to suggest that the extensional approach of [2, 3] is incompati-
ble with the stable model semantics. Possibly this behaviour can be explained by an inherent
characteristic of the stable model semantics, which appears even in the case of classical logic
programs with negation. Consider for example the simple propositional program:

p:-∼q.
q:-∼p.

The above program has two stable models, namely {p} and {q}. In the first stable model, p
is true and q is false despite the fact that the program is completely symmetric and there is
no apparent reason to prefer p over q; a similar remark applies to the second stable model.
It is possible that it is this characteristic of stable models (i.e., the resolution of negative
circularities by making specific choices that are not necessarily symmetric) that leads to
their non-extensionality.

9. Connections to the Research of Zoltán Ésik

The work reported in this paper is closely connected with research conducted by Zoltán
Ésik in collaboration with the first author (Panos Rondogiannis). In this section we briefly
describe the roots of this joint collaboration which unfortunately was abruptly interrupted
by the untimely loss of Zoltán.

In 2005, the first author together with Bill Wadge proposed [20] the infinite-valued
semantics for logic programs with negation (an overview of this work is given in Section 3 of

the present paper). In 2013, the first author together with Zoltán Ésik started a collaboration
supported by a Greek-Hungarian Scientific Collaboration Program with title “Extensions
and Applications of Fixed Point Theory for Non-Monotonic Formalisms”. The purpose
of the program was to create an abstract fixed point theory based on the infinite-valued
approach, namely a theory that would not only be applicable to logic programs but also to
other non-monotonic formalisms. This abstract theory was successfully developed and is
described in detail in [11]. As an application of these results, the first extensional semantics
for higher-order logic programs with negation was developed in [6]. Another application
of this new theory to the area of non-monotonic formal grammars was proposed in [12].
Moreover, Zoltán himself further investigated the foundations and the properties of the
infinite-valued approach [13], highlighting some of its desirable characteristics.

The work reported in the present paper is an alternative approach to the semantics of
higher-order logic programs with negation developed in collaboration with Zoltán in [6]. The
two approaches both use the infinite-valued approach but are radically different otherwise.
In particular, the present approach heavily relies on the ground instantiation of the source
program, while the approach of [6] operates directly on the source program and extensively
uses domain theoretic constructions. It is easy to find a program where our approach gives
a different denotation from that of [6]. Actually, the two approaches differ even for positive
programs. The example given below is borrowed from [8] where it was used to demonstrate
the differences between the approach of [2, 3] versus that of [7] (which applies to positive
programs but has similarities to [6] because it is also based on domain theory).

EXTENSIONAL SEMANTICS FOR HIGHER-ORDER LOGIC PROGRAMS WITH NEGATION ∗ 23

Example 9.1. Consider the following program:

p(a):-Q(a).

where the predicate variable Q is of type ι→ o. Under the semantics developed in this paper
(which generalizes that of [2, 3]), the above program intuitively states that p is true of a if
there exists a predicate that is defined in the program that is true of a. If we take the ground
instantiation of the above program:

p(a):-p(a).

and compute the least model of the instantiation, we find the least model of the program
which assigns to the atom p(a) the truth value F0.

Under the semantics of [6] the atom p(a) is true in the minimum Herbrand model of
the initial program. This is because in this semantics, the initial program reads (intuitively
speaking) as follows: “p(a) is true if there exists a relation that is true of a”; actually,
there exists one such relation, namely one in which the constant a has the value T0. This
discrepancy between the semantics of [2, 3] and that of [6] is due to the fact that the latter is
based on (infinite-valued) sets and not on the syntactic entities that appear in the program.

Despite the above difference, there certainly exists common ground between the two
techniques. As it is demonstrated in [8], there exists a large and useful class of positive
programs for which the approach of [2, 3] coincides with that of [7]. Intuitively speaking, this
class contains all positive programs that do not contain existential variables in the bodies of
clauses (like Q in the above example). We believe that such a result also holds for programs
with negation. More specifically, we conjecture that there exists a large fragment of H for
which the semantics of [6] coincides with the one given in the present paper. Establishing such
a relationship between the two semantics, will lead to a better understanding of extensional
higher-order logic programming.

References

[1] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declarative knowledge. In
Jack Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 89–148. Morgan
Kaufmann, 1988.

[2] Marc Bezem. Extensionality of simply typed logic programs. In Danny De Schreye, editor, Logic
Programming: The 1999 International Conference, Las Cruces, New Mexico, USA, November 29 -
December 4, 1999, pages 395–410. MIT Press, 1999.

[3] Marc Bezem. An improved extensionality criterion for higher-order logic programs. In Laurent Fribourg,
editor, Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the
EACSL, Paris, France, September 10-13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer
Science, pages 203–216. Springer, 2001.

[4] Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic of Iterative Processes.
EATCS Monographs on Theoretical Computer Science. Springer, 1993.

[5] Arnaud Carayol and Zoltán Ésik. An analysis of the equational properties of the well-founded fixed point.
In Chitta Baral, James P. Delgrande, and Frank Wolter, editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South
Africa, April 25-29, 2016., pages 533–536. AAAI Press, 2016.

[6] Angelos Charalambidis, Zoltán Ésik, and Panos Rondogiannis. Minimum model semantics for extensional
higher-order logic programming with negation. TPLP, 14(4-5):725–737, 2014.

[7] Angelos Charalambidis, Konstantinos Handjopoulos, Panos Rondogiannis, and William W. Wadge.
Extensional higher-order logic programming. ACM Trans. Comput. Log., 14(3):21, 2013.

24 P. RONDOGIANNIS AND I. SYMEONIDOU

[8] Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Equivalence of two fixed-point
semantics for definitional higher-order logic programs. In Ralph Matthes and Matteo Mio, editors,
Proceedings Tenth International Workshop on Fixed Points in Computer Science, FICS 2015, Berlin,
Germany, September 11-12, 2015., volume 191 of EPTCS, pages 18–32, 2015 (to appear in extended
form in Theoretical Computer Science, 2017).

[9] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187–230, 1993.

[10] Peter Cholak and Howard A. Blair. The complexity of local stratification. Fundam. Inform., 21(4):333–344,
1994.

[11] Zoltán Ésik, and Panos Rondogiannis. A fixed point theorem for non-monotonic functions. Theoretical
Computer Science, 574:18–38, 2015.

[12] Zoltán Ésik, and Panos Rondogiannis. Theorems on Pre-fixed Points of Non-Monotonic Functions with
Applications in Logic Programming and Formal Grammars. In Ulrich Kohlenbach, Pablo Barceló, and
Ruy J. G. B. de Queiroz, editors, Logic, Language, Information, and Computation - 21st International
Workshop, WoLLIC 2014, Valparáıso, Chile, September 1-4, 2014, Proceedings, volume 8652 of Lecture
Notes in Computer Science, pages 166–180. Springer, 2014.

[13] Zoltán Ésik. Equational properties of stratified least fixed points (extended abstract). In Valeria de Paiva,
Ruy J. G. B. de Queiroz, Lawrence S. Moss, Daniel Leivant, and Anjolina Grisi de Oliveira, editors, Logic,
Language, Information, and Computation - 22nd International Workshop, WoLLIC 2015, Bloomington,
IN, USA, July 20-23, 2015, Proceedings, volume 9160 of Lecture Notes in Computer Science, pages
174–188. Springer, 2015.

[14] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):620–650, 1991.

[15] Michael Gelfond, and Vladimir Lifschitz. The Stable Model Semantics for Logic Programming. In
Proceedings of the Fifth Logic Programming Symposium. MIT Press, 1070–1080, 1988.

[16] Vassilis Kountouriotis, Panos Rondogiannis, and William W. Wadge. Extensional higher-order datalog.
In Short Paper Proceeding of the 12th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), pages 1–5, December 2005.

[17] Vladimir Lifschitz. Twelve Definitions of a Stable Model. In Proceedings of the 24th International
Conference on Logic Programming (ICLP), pages 37–51, 2008.

[18] John W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.
[19] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University Press,

New York, NY, USA, 1st edition, 2012.
[20] Panos Rondogiannis and William W. Wadge. Minimum model semantics for logic programs with

negation-as-failure. ACM Trans. Comput. Log., 6(2):441–467, 2005.
[21] Panos Rondogiannis and Ioanna Symeonidou. Extensional Semantics for Higher-Order Logic Programs

with Negation. In Proceedings of the 15th European Conference on Logics in Artificial Intelligence
(JELIA), pages 447–462, 2016.

[22] Panos Rondogiannis and Ioanna Symeonidou. The intricacies of three-valued extensional semantics for
higher-order logic programs. TPLP, 17(5-6):974–991, 2017.

[23] William W. Wadge. Higher-order horn logic programming. In Vijay A. Saraswat and Kazunori Ueda,
editors, Logic Programming, Proceedings of the 1991 International Symposium, San Diego, California,
USA, Oct. 28 - Nov 1, 1991, pages 289–303. MIT Press, 1991.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. An Intuitive Overview of the Proposed Approach
	3. The Infinite-valued Semantics
	4. The Syntax of H
	5. The Semantics of H
	6. Extensionality of the Proposed Semantics
	7. Stratified and Locally Stratified Programs
	8. Non-Extensionality of the Stable Models
	9. Connections to the Research of Zoltán Ésik
	References

