Logical Methods in Computer Science

Vol. 13(4:28)2017, pp. 1-61
www.Imcs-online.org

Submitted Jan. 13, 2014
Published Dec. 20, 2017

MATCHING LOGIC*

GRIGORE ROSU

University of Illinois at Urbana-Champaign, USA
e-mail address: grosu@illinois.edu

1.
2.

2.1.
2.2.
2.3.
2.4.

3.
4.

ABSTRACT. This paper presents matching logic, a first-order logic (FOL) variant for
specifying and reasoning about structure by means of patterns and pattern matching. Its
sentences, the patterns, are constructed using variables, symbols, connectives and quantifiers,
but no difference is made between function and predicate symbols. In models, a pattern
evaluates into a power-set domain (the set of values that match it), in contrast to FOL where
functions and predicates map into a regular domain. Matching logic uniformly generalizes
several logical frameworks important for program analysis, such as: propositional logic,
algebraic specification, FOL with equality, modal logic, and separation logic. Patterns can
specify separation requirements at any level in any program configuration, not only in the
heaps or stores, without any special logical constructs for that: the very nature of pattern
matching is that if two structures are matched as part of a pattern, then they can only be
spatially separated. Like FOL, matching logic can also be translated into pure predicate
logic with equality, at the same time admitting its own sound and complete proof system.
A practical aspect of matching logic is that FOL reasoning with equality remains sound, so
off-the-shelf provers and SMT solvers can be used for matching logic reasoning. Matching
logic is particularly well-suited for reasoning about programs in programming languages
that have an operational semantics, but it is not limited to this.

CONTENTS

Introduction
Matching Logic: Basic Notions
Patterns
Example
Semantics
Basic Properties
Instance: Propositional Calculus
Instance: (Pure) Predicate Logic

Key words and phrases: Program logic; First-order logic; Rewriting; Verification.

* Extended version of an invited paper at the 26'® International Conference on Rewriting Techniques and
Applications (RTA’15), June 29 to July 1, 2015, Warsaw, Poland.
The work presented in this paper was supported in part by the Boeing grant on "Formal Analysis Tools

for Cyber Security" 2014-2017, the NSF grants CCF-1218605, CCF-1318191 and CCF-1421575, and the
DARPA grant under agreement number FA8750-12-C-0284.

|EE| LOGICAL METHODS © G.Rosu
IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(4:28)2017 @ Creative Commons

http://creativecommons.org/about/licenses

2 G. ROSU

5. Matching Logic: Useful Symbols and Notations 20
5.1. Definedness and Totality 20
5.2. Equality 22
5.3. Membership 26
5.4. Functions 27
5.5. Partial Functions 30
5.6. Total Relations 30
5.7. Constructors, Unification, Anti-Unification 31
5.8. Built-in Domains 34
6. Instance: Algebraic Specifications and Beyond 35
6.1. Sequences, Multisets and Sets 37
6.2. Maps 38
7. Instance: First-Order Logic 39
8. Instance: Modal Logic 41
9. Instance: Separation Logic 43
9.1. Separation Logic Basics 43
9.2. Map Patterns 44
9.3. Separation Logic as an Instance of Matching Logic 48
10. Matching Logic: Reduction to Predicate Logic with Equality 51
11. Matching Logic: Sound and Complete Deduction 52
12. Additional Related Work 56
13. Conclusion and Future Work 57
References 58

1. INTRODUCTION

In their simplest form, as term templates with variables, patterns abound in mathematics
and computer science. They match a concrete, or ground, term if and only if there is some
substitution applied to the pattern’s variables that makes it equal to the concrete term,
possibly via domain reasoning. This means, intuitively, that the concrete term obeys the
structure specified by the pattern. We show that when combined with logical connectives
and variable constraints and quantifiers, patterns provide a powerful means to specify and
reason about the structure of states, or configurations, of a programming language.
Matching logic was inspired from the domain of programming language semantics,
specifically from attempting to use operational semantics directly for program verification.
Recently, operational semantics of several real languages have been proposed, e.g., of C [33,
48], Java [14], JavaScript [13, 70|, Python [45, 76], PHP [36], CAML [69], thanks to the
development of semantics engineering frameworks like PLT-Redex [53], Ott [86], K [81, 82|,
etc., which make defining an operational semantics for a programming language almost as easy
as implementing an interpreter, if not easier. Operational semantics are comparatively easy
to define and understand, require little formal training, scale up well, and, being executable,
can be tested. Indeed, the language semantics above have more than 1,000 (some even more
than 3,000) semantic rules and have been tested on benchmarks/test-suites that language
implementations use to test their conformance, where available. Thus, operational semantics

MTCHING LOGIC 3

Deductive

program
verifier

Test-case
generation
Interpreter Formal Language Definition Model
(Syntax and Semantics) dredEr

Symbolic
(semantiC)
execution
Debugger

Figure 1: Architecture of the K framework, powered by matching logic

are typically used as trusted reference models for the defined languages. We would like to
use such operational semantics of languages, unchanged, for program verification.

Despite their advantages, operational semantics are rarely used directly for program
verification, because the general belief is that proofs tend to be low-level, as they work directly
with the corresponding transition system. Hoare [49] or dynamic [46] logics are typically used,
because they allow higher level reasoning. However, these come at the cost of (re)defining
the language semantics as a set of abstract proof rules, which are harder to understand and
trust. The state-of-the-art in mechanical program verification is to develop and prove such
language-specific proof systems sound w.r.t. a trusted operational semantics [65, 51, 3|, but
that needs to be done for each language separately and is labor intensive.

Defining even one complete semantics for a real language like C or Java is already a huge
effort. Defining multiple semantics, each good for a different purpose, is at best uneconomical,
with or without proofs of soundness w.r.t. the reference semantics. It is therefore not surprising
that many practical program verifiers forgo defining a semantics altogether, and instead
they implement ad-hoc verification condition (VC) generation, sometimes via (unverified)
translations to intermediate verification languages like Boogie [4] or Why3 [37]. For example,
program verifiers for C like VCC [26] and Frama-C [37], and for Java like jStar [31] take this
approach. Also, none of the 35 verifiers that participated in the 2016 software verification
competition (SV-COMP) [10] appear to be based on a formal semantics of any kind. The
consequence is that such tools cannot be trusted. We would like program verifiers, ideally, to
produce proof certificates whose trust base is only an operational semantics of the target
language, same as mechanical verifiers based on Coq [60] or Isabelle [66] do, but without the
effort to define any other semantics of the same language, either directly as a separate proof
system or indirectly by extending the operational semantics with language-specific lemmas.
We would like program verifiers, ideally, to take an operational semantics of a language as
input and to yield, as output, a verifier for that language which is as easy to use and as
efficient as verifiers specifically developed for that language.

Matching logic was born from our belief that programming languages must have formal
definitions, and that tools for a given language, such as interpreters, compilers, state-
space explorers, model checkers, deductive program verifiers, etc., can be derived from just
one reference formal definition of the language, which is executable. No other semantics

4 G. ROSU

struct listNode { int val; struct listNode *next; };

void list_read_write(int n) {
rule (§ = return; ---)code (A =)in (- - = rev(A))our A n = len(A)

int i=0;
struct listNode *x=0;

inv (B Alen(B)=n—1i A i<n)i (list(x,a)) heap A A=rev(a)Qp

while (i < n) {
struct listNode *y = x;
x = (struct listNode*) malloc(sizeof (struct listNode));
scanf ("%d", &(x->val));
X->next = y;

i+=1; 3}
inv (- a)out (list(x,8) =)heap A rev(A) = a@p
while (x) {

struct listNode *y;
y = x->next;

printf ("%d,",x->val);
free(x);

x=y; }

Figure 2: Reading, storing, and reverse writing a sequence of integers

for the same language should be needed. This belief is reflected in the design of the K
framework [81, 82| (http://kframework.org), illustrated in Figure 1. This is the ideal
scenario and there is enough evidence that it is within our reach in the short term. For
example, [28| presents a program verification module of K, based on matching logic, which
takes the respective operational semantics of C [48], Java [14], and JavaScript [70] as input
and yields automated program verifiers for these languages, capable of verifying challenging
heap-manipulating programs at performance comparable to that of state-of-the-art verifiers
specifically crafted for those languages. A precursor of this verifier, MatchC [84], has an
online interface at http://matching-logic.org where one can verify dozens of predefined
programs or new ones; e.g., the program in Figure 2 is under the io folder and it takes about
150ms to verify.

To reason about programs we need to be able to reason about program configurations.
Specifically, we need to define configuration abstractions and reason with them. Consider,
for example, the program in Figure 2 which shows a C function that reads n elements from
the standard input and prints them to the standard output in reversed order (for now, we
can ignore the specifications, which are grayed). While doing so, it allocates a singly linked
list storing the elements as they are read, and then deallocates the list as the elements are
printed. In the end, the heap stays unchanged. To state the specification of this program,
we need to match an abstract sequence of n elements in the input buffer, and then to match
its reverse at the end of the output buffer when the function terminates. Further, to state
the invariants of the two loops we need to identify a singly linked pattern in the heap, which
is a partial map. Many such sequence or map patterns, as well as operations on them, can
be defined using conventional algebraic data types (ADTs). But some of them cannot.

http://kframework.org
http://matching-logic.org

MTCHING LOGIC 5

A major limitation of ADTs and of first-order logic (FOL) is that operation symbols are
interpreted as functions in models, which sometimes is insufficient. E.g., a two-element linked
list in the heap (we regard heaps as maps from natural number locations to values) starting
with location 7 and holding values 9 and 5, written as list(7,9@5), can allow infinitely many
heap values, one for each location where the value 5 may be stored. So we cannot define
list as an operation symbol Int x Seq — Map. The FOL alternative is to define list as a
predicate Int x Seq x Map, but mentioning the map all the time as an argument makes
specifications verbose and hard to read, use and reason about. An alternative, proposed by
separation logic |77], is to fix and move the map domain from explicit in models to implicit
in the logic, so that list(7,9Q5) is interpreted as a predicate but the non-deterministic map
choices are implicit in the logic. We then may need custom separation logics for different
languages that require different variations of map models or different configurations making
use of different kinds of resources. This may also require specialized separation logic provers
needed for each, or otherwise encodings that need to be proved correct. Finally, since the
map domain is not available as data, one cannot use FOL variables to range over maps and
thus proof rules like “heap framing” need to be added to the logic explicitly.

Matching logic avoids the limitations of both approaches above, by interpreting its
terms/formulae as sets of values. Matching logic’s formulae, called patterns, are built using
variables, symbols from a signature, and FOL connectives and quantifiers. We can think of
matching logic as collapsing the function and predicate symbols of FOL, allowing patterns
to be simultaneously regarded both as terms and as predicates. When regarded as terms
they build structure, when regarded as predicates they express constraints. Semantically, the
matching logic models are similar to the FOL models, except that the symbols in the signature
are interpreted as functions returning sets of values instead of single values. Patterns are then
also interpreted as sets of values, where conjunction is interpreted as intersection, negation as
complement, and the existential quantifier as union over all compatible valuations. The name
“matching logic” was inspired from the case when the model is that of terms, common in the
context of language semantics, where terms represent (fragments of) program configurations.
There, a pattern is interpreted as the set of terms that match it.

The (grayed) specifications in Figure 2 show examples of matching logic patterns, over the
signature used to define the semantics of C [48]. The signature includes symbols corresponding
to the syntax of the language, to semantic constructs such as ()code holding the remaining
code fragment, (_)neap holding the current heap as a map, and (_)i, and (_)out holding the
current input and resp. output buffers as sequences, among many others. Let us discuss the
invariant pattern of the first loop (second grayed area). It says that the pattern list(x, «)
is matched somewhere in the heap, and that the sequence § of size n — i is available at
the beginning of the input buffer such that A is the reverse of the sequence that x points
to, rev(a), concatenated with 5. The ellipses “---” are syntactic sugar for existentially
quantified variables, which we call “structural frame variables”. Note how symbols from
the signature are mixed with logical constructs, and how variables can range over any
data stored in configurations, including over heap fragments. In addition to the implicit
existential quantifiers for “---”, the sequence 8 under the ()i, symbol is conjuncted with
logical constraints about its length; also, the pair consisting of the (_)in and (_)heap patterns
at the top, which is itself a configuration pattern, is conjuncted with the equality constraint
A = rev(a)@pB. While such mixes of symbols and logical connectives are disallowed in other
logics, such as FOL or separation logic, they are not only well-formed but also strongly

6 G. ROSU

encouraged to be used in matching logic; besides succinctness of specifications, they also
allow for local reasoning. This is discussed in detail shortly, in the example in Section 2.2.

Matching logic is particularly well-suited for reasoning about programs when their
language has an operational semantics. That is because its patterns give us full access to all
the details in a program configuration, at the same time allowing us to hide irrelevant detail
using existential quantification (e.g., the “...” framing variables in Figure 2) or separately
defined abstractions (e.g., the list(x,) pattern in Figure 2). Also, both the operational
semantics of a language and its reachability properties can be encoded as rules o= ¢’ between
patterns, called reachability rules in |28, 27, 79, 84|, and one generic, language-independent
proof system can be used both for executing programs and for proving them correct. In both
cases, the operational semantics rules are used to advance the computation. When executing
programs the pattern to reduce is ground and the application of the semantic steps becomes
conventional term rewriting. When verifying reachability properties, the pattern to reduce is
symbolic and typically contains constraints and abstractions, so matching logic reasoning is
used in-between semantic rewrite rule applications to re-arrange the configuration so that
semantic rules match or assertions can be proved. We refer the interested reader to 28| for
full details on our recommended verification approach using matching logic.

Although we favor the verification approach above, which led to the development of
matching logic, there is nothing to limit the use of matching logic with other verification
approaches, as an intuitive and succinct notation for encoding state properties. For example,
Proposition 9.2 tells us that any separation logic formula is a matching logic pattern as
is. So one can, for example, take an existing separation logic semantics of a language,
regard it as a matching logic semantics and then extend it to also consider structures in
the configuration that separation logic was not meant to directly reason about, such as
function /exception/break-continue stacks, input/output buffers, etc. For this reason, we here
present matching logic as a stand-alone logic, without favoring any particular use of it.

This paper is an extended version of the RTA’15 conference paper |78], which was the
first to allow the unrestricted mix of symbols and logical quantifiers in patterns. A much
simpler variant of matching logic was introduced in 2010 in [80] as a state specification
logic, and has been used since then in several verification efforts [83, 84, 85, 79, 27, 28|, and
implemented in MatchC [84] by reduction to Maude [25] (for matching) and to Z3 [29] (for
domain reasoning). However, that matching logic variant shares only the basic intuition of
“terms as formulae” with the logic presented in this paper, and was only syntactic sugar for
first-order logic (FOL) with equality in a fixed model, essentially allowing only term patterns
t and regarding them as syntactic sugar for equalities J = ¢ (see Section 12).

Section 2 introduces the syntax and semantics of matching logic, as well as some basic
properties. Sections 3 and 4 show how propositional calculus and, respectively, pure predicate
logic fall as instances of matching logic. Section 5 shows how several important mathematical
concepts can be defined in matching logic, such as definedness, equality, membership, and
functions. Using these, Sections 6, 7, 8 and 9 then show how algebraic specifications, first-
order logic, modal logic and, respectively, separation logic also fall as instances of matching
logic. Section 10 shows that, like FOL, matching logic also reduces to pure predicate logic
with equality. Section 11 introduces our sound and complete proof system for matching logic.
Section 12 discusses related work and Section 13 concludes.

MTCHING LOGIC 7

2. MATCHING LogGIc: BAsiCc NOTIONS

We assume the reader is familiar with many-sorted sets, functions, and first-order logic (FOL).
For any given set of sorts S, we assume Var is an S-sorted set of variables, sortwise infinite
and disjoint. We may write : s instead of x € Vars, and when the sort of x is irrelevant we
just write x € Var. We let P(M) denote the powerset of a many-sorted set M, which is itself
many-sorted. We only treat the many-sorted case here, but we see no inherent limitations in
extending the constructions and results in this paper to the order-sorted case.

2.1. Patterns. We start by defining the syntax of patterns.

Definition 2.1. Let (S,X) be a many-sorted signature of symbols. Matching logic (S, X)-
formulae, also called (S, X)-patterns, or just (matching logic) formulae or patterns when
(S, %) is understood from context, are inductively defined as follows for all sorts s € S:

s u= x € Vars // Variable
| 0(@sysny ps,) With o € X5 5, s (written ¥y s when n=0) // Structure
| s // Complement
| ps A s // Intersection
| Jz.¢s with z € Var (of any sort) // Binding

Let PATTERN be the S-sorted set of patterns. By abuse of language, we refer to the symbols
in 3 also as patterns: think of o € X, s, s as the pattern o(z1:51,...,2n:5n).

We argue that the syntax of patterns above is necessary in order to express meaningful
patterns, and at the same time it is minimal. Indeed, variable patterns allow us to extract
the matched elements or structure and possibly use them in other places in more complex
patterns. Forming new patterns from existing patterns by adding more structure/symbols to
them is standard and the very basic operation used to construct terms, which are the simplest
patterns. Complementing and intersecting patterns allows us to reason with patterns the
same way we reason with logical propositions and formulae. Finally, the existential binder
serves a dual role. On the one hand, it allows us to abstract away irrelevant parts of the
matched structure, which is particularly useful when defining and reasoning about program
invariants or structural framing. On the other hand, it allows us to define complex patterns
with binders in them, such as A-, -, or v-bound terms/patterns (to be presented elsewhere).

To ease notation, ¢ € PATTERN means ¢ is a pattern, while s € PATTERN or ¢ €
PATTERN; that it has sort s. We adopt the following derived constructs (“syntactic sugar”):

Ts = dr:s.x 01— P2 = 1 Vo
Ls = 7T prerpr = (91— 2) A2 = 1)
1V = (w1 Ap2) Ve = —(Jz.op)

Intuitively, T is a pattern that is matched by all elements, 1 is matched by no elements,
1 V g is matched by all elements matching 1 or ys, and so on. We will shortly formalize
this intuition. We assume the usual precedence of the FOL-like constructs, with — binding
tighter than A tighter than V tighter than — tighter than <> tighter than the quantifiers.
We adapt from first-order logic the notions of free variable, (variable capture free) substi-
tution, and variable renaming, briefly recalled below. Let F'V () denote the free variables of o,
defined as follows: FV(x) = {x}, FV(0(psy, ..., ¥s,)) = FV(ps,)U---UFV(ps,), FV(—-p) =
FV(p), FV(p1 N p2) = FV(p1) UFV(p2), and FV(3z.p) = FV(p) \ {x}. Similarly, the

usual variable capture free substitution: z[p/x] = ¢ and y[p/x] = y when variable y is different

8 G. ROSU

from @, o (s, -, s,)0/ 2] = 0 (@5, 9/ 7], s s, [0/ 2]), (L1 A pa)lp/a] = prlp/a] A 2|/,
(=)e/x] = =(¢'[¢/2]), and (Bz.¢)[p/x] = 3z.¢" and (3y.¢")[p/z] = Fy.(¢'[¢/x]) when
variable y is different from = and y & FV (p) (to avoid variable capture). And wvariable
renaming, 3x. = Jy.(p[y/x]), which can be used to avoid variable capture.

2.2. Example. There are many examples of patterns throughout the paper resulting from
formulae in various other logics that are captured by matching logic, such as propositional
logic (Section 3), predicate logic (Section 4), algebraic specifications (Section 6) first-order
logic (Section 7) modal logic (Section 8), and separation logic (Section 9). We will discuss
them in their respective sections, showing that formulae in these logics can be regarded as
matching logic patterns. Here, instead, we discuss an example inspired from programming
language semantics, which is the area that motivated the development of matching logic.

Consider the operational semantics of a real language like C, whose configuration has
more than 100 semantic components [33, 48, 28]. The semantic components, here called “cells”
and written using symbols (...)cel, can be nested and their grouping (symbol) is governed by
associativity and commutativity axioms. There is a top cell (...)cry holding subcells (...)code,
(---)heaps {---)in, (---)out among many others, holding the current code fragment, heap, input
buffer, output buffer, respectively. We cannot show the signature of all the symbols defining
the configuration of a language like C for space reasons, but encourage the interested reader
to check the aforementioned papers. We only show a small subset of symbols that is sufficient
to write interesting patterns for illustration purposes, mentioning that nothing changes in
the subsequent developments of matching logic as the signature grows or changes. That is,
we do not have a matching logic for C, another for Java, another for JavaScript, etc.; all
these languages have their respective signatures and patterns, and the same matching logic
machinery applies to all of them in the same way.

To motivate certain patterns below, we will refer to results that are introduced later in
the paper. The purpose of this example, however, is to illustrate and discuss various kinds of
patterns, and especially to show that it is useful to mix symbols with logical connectives.
The hasty reader can only skim the patterns and their descriptions below for now, and revisit
the example later as other results back-reference it.

Consider the signature (S,Y) in Figure 3, consisting of symbols needed to construct
semantic configurations for a C-like language. Usual terms are already patterns, in particular
the first while loop in the program in Figure 2, say LOOP. So are terms with variables, e.g.:

<<LOOP k>code (X =X, n, 1, e>env <-T —oa, r+ 1=y, h>heap <6>in <6>0ut>cfg

The intuition for this pattern is that it matches all the configurations whose code starts with
LOOP (k, the “code frame”, matches the rest of the code), whose environment binds program
identifiers n and i to values n and 14, respectively, and x to location z (e, the “environment
frame”, matches the rest of the environment map) such that both x and x 4 1 are allocated
and bound to some values in the heap (h, the “heap frame”, matches the rest of the heap),
whose input buffer contains some sequence (/) and whose output buffer contains the empty
sequence. This intuition will be formalized shortly. Also, we will show how the various
symbols can be constrained or defined axiomatically, like in algebraic (Section 6) or FOL
(Section 7) specifications; for example, sequences are associative and have € as unit, maps
and Cfg are both associative and commutative with “.” as unit, len(iQa) = 1 + len(a), etc.

The interesting patterns are those combining symbols and logical connectives. For
example, suppose that we want to restrict the pattern above to only match configurations

MTCHING LOGIC

S = { Id,Exp, Stmt, ...

Bool, Nat, Int, ...
Seq pnes Map 14 nats Map nag g -
CfqCell, Cfy,
CodeCell, EnvCell, HeapCell, InCell, OutCell,
¥
YldEw, Stmt = {_=_3, .}

EE’mp Stmt Stmt, Stmt =~ — _
EEsztmt,Stmt = {While(_){_}, }
E.S'tmtStmt, Stmt = { __ }

// other syntactic language constructs
EStmt, Cfg — { <_>code }
2, Map 4, Nat {.}
EIdNat,MapmJ\/at = { _ = _ }
EMapId,Nat Map g Nats Mapra Nat — { . - }
ZM@PM,N@:Cfg = { Uenv }
Map not 1 symbols defined similarly to Map g ng.
X Map g, gt Cf { (U)neap }
Ez\, Seq it
Elnt,Seq[m
ESeqlm Seq g, Sy
ZSeq]m‘,,Nat

Il
)
a
—

Il
e A A Ay A A A A Ay

Eseqlnt 3 SB‘IInt
YiSeq s Cfg
2iSeq s Cfg

Xxog = 14}
Yooy = {__}
ECfg, CfgCell — <_>cfg }

= {if(_){_Yelse{_ 1}, ..}

// code synactic categories
// basic domains

// more domains

// top cell and contents

// config cells

// assignment, ...
// conditional, ...

// while loop, ...
// sequential composition

// cell holding the code

// empty environment map

// one-binding environment map
// environment map merge

// cell holding the environment map

// cell holding the heap map

// empty sequence

// one-integer sequence

// sequence concatenation

// sequence length

// sequence reverse

// input buffer

// output buffer

// empty configuration contents

// merging configuration contents

// top configuration cell

Figure 3: Signature for building program configurations in a C-like language

where i < n. As discussed later in the paper (Section 5.2), equality can be axiomatized in
matching logic and used in any sort context. Also, due to their ubiquity, Boolean expressions
are allowed to be used in any sort context unchanged, with the meaning that they equal
true; that is, we write just b instead of b = true (Section 5.8). With these, we can restrict
the pattern above as follows (note the top-level conjuction):

((LOOP k)code (x =z, nt=1n, i1, €)eny (= a, T+ 1=y, Aheap (B)in (€out)cfrg N I <1

Quantifiers can be used, for example, to abstract away irrelevant parts of the pattern.
Suppose, for example, that we work in a context where the code and the output cells are
irrelevant, and so are the frames of the environment and heap cells. Then we can “hide” them

to the context as follows:

(Jc.Je.Jh. ((x—=2,n=>n,i=14 €env (= a, 2+ 1=y, Bheap (B)in C)cfg) N 1<

10 G. ROSU

Following a notational convention proposed and implemented in K (http://kframework.org
[81, 82]), we use “...” as syntactic sugar for such existential quantifiers used for framing:

(x—=x,n=ni=0 e (= a, T+1=Y heap (B)in g N 1<

It is often the case that program identifiers are bound to default mathematical variables
(their symbolic values) in the environment, and then the mathematical variables are used
in many other parts of the configuration pattern to state additional logical or structural
constraints. For that reason, we typically want to match the program identifiers to their
(symbolic) values once and for all with a separate, default (sub)pattern, which is then not
mentioned anymore in subsequent patterns:

((x—=x,n—=n,1—1% ey **)cfg // assumed by default below
A <<SU —a, r+ 1=y "'>heap in "'>cfg ANi<n

Note that the pattern above contains two (top-level) (...)cfg sub-pattern constraints and one
logical constraint, ¢ < n. This pattern will be matched by precisely those configurations that
match both sub-patterns and satisfy the constraint, which are the same configurations that
match the previous pattern. Therefore, the last two patterns are equal (pattern equality is
formalized in Section 5.2; see Notation 5.8 and Proposition 5.9)).

Now suppose that we want to state that location x in the heap points to a linked list
over the list data-structure in the program in Figure 2, which comprises a mathematical
sequence of integers . The precise locations of the various nodes in the list are irrelevant.
Such a linked-list pattern can be defined by adding a symbol representing it to the signature,
say list € Xnat Seq,,,, Map Nat, Int? together with two axioms (similar to those in separation logic,
Section 9); it is shown in Section 9.2 that the pattern list(z, «) is matched by precisely all the
(infinitely many) linked lists starting with location x and containing the sequence of elements
«. This shows why we want pattern symbols to be interpreted into power-set domains, so
they can evaluate to sets of elements (all those that match them) instead of just elements.
Matching logic also allows us to axiomatically state that a symbol is to be interpreted as
a function (Section 5.4); in fact, in this simple example we assume all the symbols of our
signature X above to be constrained to be functions, except for those of Map results. We
can now refine the pattern above as follows:

((list(x,) -)neap (Blin ~)eig A 1< N
Inspired from the invariant of the first loop in Figure 2, let us add some more constraints:
((list(z,0) -)heap (B)in ~)efg N len(B)=n—i A i<n AN A=rev(a)Qp

The pattern above is additionally stating that the (...);, cell starts with a prefix of size
equal to n — ¢ which appended to the reverse of the sequence that x points to in the heap
equals the original input sequence A. We can arrange the pattern to better localize the
logical constraints to the sub-patterns for which they are relevant. For example, the first two
constraints are relevant for the sequence /3, so we can move them to their place:

((list(x,a) -)heap (B A len(B)=n—i A i<n)in)erg N A=rev(a)Qf
The above transformation is indeed correct, thanks to Proposition 5.12 (constraint propa-

gation). Similarly, the remaining constraint can be localized to the two cells that need it.
Using also the fact that cell concatenation is commutative, we rewrite the pattern into:

((BANlen(B)=n—i A i<n —)in (list(z,a) -)heap N A=rev(a)QF -)cgg

http://kframework.org

MTCHING LOGIC 11

The pattern above is very similar to the first invariant in Figure 2; the latter does not mention
the top (...)cfg cell because our implementation adds it automatically. The top cell is not
necessary anyway, we added it mostly for uniformity in our notation for configurations.

So constraints can be propagated up and down a pattern to where they are needed. But
how are the constraints generated? One way to generate constraints is through reasoning
using language semantic rules, such as the case analysis and consequence rules in [28§].
Another way to generate constraints is by local reasoning about patterns. For example,
using the axioms of list in Section 9.2, we can infer list(z,a) — 1 V @2, where ¢ is
A (a0 = €) (the empty map “” with constraint “« is the empty sequence”) and ¢ is
da.Fy.a = a@Qy A Jy.(x — a,z+ 1 — y, list(y,7)). By Proposition 2.10 (structural
framing) and propositional reasoning we can then infer the following pattern:

((BAlen(B)=n—i AN i<n -)in (list(x,a) -)heap N A=rev(a)QfF --)cg
= ((BAlen(B)=n—i ANi<n -)in (@1 V2 heap N A=rev(a)QF)

Since symbol application distributes over V (Proposition 2.11), the pattern to the right of —
above becomes (again via propositional reasoning):

((BAlen(B)=n—i AN i<n)in (@1)heap N A=rev(a)Qf --)cg
Vo (B Alen(B)=n—i ANi<n)in (P2)heap N A=rev(a)Qf --)cgg
We can now propagate the constraints of each of 1 and o up into their respective disjunct
above, to be used in combination with the other constrains on sequences.

We stop here with our example. Note that we made no effort above to construct a
signature that does not allow junk configurations (for example, there is nothing to stop us
from adding two or more heaps in a configuration); such junk configurations can be dismissed
either by adding stronger sorting or by well-formedness predicates/patterns. Also, our syntax
for empty maps (“-”) and for map merging (“ ,) above is different from that in Section 9.2.
The syntax above is close to the one we use in our K implementation, while the syntax in
Section 9.2 was specifically chosen to be similar to that of separation logic in order to support
the subsequent results in Section 9.3.

2.3. Semantics. In their simplest form, as terms with variables, patterns are usually matched
by other terms that have more structure, possibly by ground terms. However, sometimes we
may need to do the matching modulo some background theories or modulo some existing
domains, for example integers where addition is commutative or 2 +3 = 1 + 4, etc. For
maximum generality, we prefer to impose no theoretical restrictions on the models in
which patterns are interpreted, or matched, leaving such restrictions to be dealt with in
implementations (for example, one may limit to free models, or to ones for which decision
procedures exist, etc.). This has the additional benefit that it yields complete deduction
(Section 11).

Definition 2.2. A matching logic (5, ¥X)-model M, or just a ¥-model when S is under-

stood, or simply a model when both S and ¥ are understood, consists of:

(1) An S-sorted set {Ms}secg, where each set M, called the carrier of sort s of M, is
assumed non-empty; and

(2) A function oy @ Mg, X -+ x Mg, — P(M,) for each symbol o € X, s, s, called the
interpretation of ¢ in M.

12 G. ROSU

gray area matches @1 — o gray area matches @1 <> o

Figure 4: Matching logic semantics of pattern implication and equivalence

Note that symbols are interpreted as relations, and that the usual (S, X)-algebra models

are a special case of matching logic models, where |oyr(my, ..., my)| = 1 for any my € M,

.., my € M, . Similarly, partial (S, X)-algebra models also fall as special case, where

loar(ma,...,my)| <1, since we can capture the undefinedness of op; on my, ..., m, with

oyv(ma,...,my) = 0. We tacitly use the same notation o) for its extension to argument
sets, P(Ms,) x -+ x P(Ms,) — P(Ms), that is,

O‘M(Al,...,An) = U{UM(al,...,an) | a1 € Al,...,an € An}
where A1 C Mg,,..., A, C M, .
Definition 2.3. Given a model M and a map p : Var — M, called an M-valuation, let its
extension p : PATTERN — P (M) be inductively defined as follows:

o p(x) = {p(x)}, for all x € Vars

o p(o(p1,....on)) =om(p(e1),...p(py)) for all o € Xy, 5, s and appropriate @1, ..., ¢y,

e p(—p) = M; \ p(p) for all ¢ € PATTERN,

e 0(p1 Aw2) = plp1) Np(pe) for all ¢y, ps patterns of the same sort

® ﬁ(al‘gp) = U{p/(@) | Pl : Var — M, p,rVar\{m}: p[Var\{m}} = UaeM ﬂ[a/x](sﬁ)

where “ \” is set difference, “ply” is p restricted to V' C Var, and “pla/z]” is map p’ with
() =aand p'(y) = p(y) if y # x. If a € p(p) then we say a matches ¢ (with witness p).

It is easy to see that the usual notion of term matching is an instance of the above;
indeed, if ¢ is a term with variables and M is the ground term model, then a ground term a
matches ¢ iff there is some substitution p such that p(p) = a. It may be insightful to note
that patterns can also be regarded as predicates, when we think of “a matches pattern ¢” as
“predicate ¢ holds in a”. But matching logic allows more complex patterns than terms or
predicates, and models which are not necessarily conventional (term) algebras.

The extension of p works as expected with the derived constructs:

Ts) = Mg and p(Ls) =0

p1V) = pp1) Up(e2)

p1 =) = {m € My | m € p(p1) implies m € p(p2)} = M \ (p(e1) \ p(2))
= 2

\
(p1 > o) = {m € M, | m € p(p1) iff m € p(p2)} = Ms \ (p(e1) A p(p2))
(“A” is the set symmetric difference operation)

e o o o
SNBSSl
A~~~

° ﬁ(vwgo) = ﬂ{?(%’) ‘ p, : Var — M, p,rVar\{:p}: prVar\{x}} = maeM P[@/I](SO)
Interpreting formulae as sets of elements in models is reminiscent of modal logic, where
they are interpreted as the “worlds” in which they hold, and of separation logic, where they

MTCHING LOGIC 13

are interpreted as the “heaps” they match. We discuss the relationship between matching
logic and these logics in depth in Sections 8 and, respectively, 9.

Therefore, the matching logic interpretation of the logical connectives is not two-valued
like in classical logics. In particular, the interpretation of ;1 — o is the set of all the
elements that if matched by ¢; then are also matched by 2. One should be careful when
reasoning with such non-classical logics, as basic intuitions may deceive. For example, the
interpretation of @1 — ¢9 is the total set (i.e., same as T) iff all elements matching ¢; also
match ¢, but it is the empty set iff 9 is matched by no elements (same as 1) while ¢ is
matched by all elements (same as T). If in doubt, thanks to the set-theoretical interpretation
of the matching logic connectives, we can always draw diagrams to enhance our intuition; for
example, Figure 4 depicts the semantics of pattern implication and of pattern equivalence.

When doing logical reasoning with patterns, we sometimes want to think of a pattern
exclusively as a “predicate”, that is, as something which is either true or false. To avoid using
quotes in such situations, we introduce the following:

Definition 2.4. Pattern ¢ is an M-predicate, or a predicate in M, iff for any M-
valuation p : Var — M, it is the case that p(ps) is either M (it holds) or @ (it does not
hold). Pattern @y is a predicate iff it is a predicate in all models M.

Note that T4 and L, are predicates, and if ¢, ¢1 and (o are predicates then so are -,
p1 A 2, and Jdz . p. That is, the logical connectives of matching logic preserve the predicate
nature of patterns. Section 5 will introduce several useful predicate constructs.

Definition 2.5. M satisfies pg, written M |= ps, iff p(¢s) = M, for all p: Var — M.

Proposition 2.6. Unless otherwise stated, assume the default pattern sort to be s. Then:

(1) If pr.p2 2 Var — M, pilpy)= p2lrv(e) then pi(p) = p2(p)

(2) If x € Vars then M = x iff |Ms| =1

(3) If 0 € X5, 505 and @1, ...,y are patterns of sorts si, ..., sy, respectively, then we have
M = o(prr- - pn) i or(B(1); - B(pn)) = M, for any p's Var — M

)
) M =1 Aoz iff M = @1 and M = @2

) If Jx.ps closed, M = Fz.ps iff U{p(vs) | p: Var — M} = Ms; hence, M = Jx.x
) M |= @1 — @2 1ff pep1) € plp2) for all p: Var — M

) M| o1 < @2 iff pp1) = pp2) for all p: Var — M

) M EVz.p iff M | ¢

Proof. The proof of each of the properties is below:

(1) Structural induction on . The only interesting case is when ¢ has the form Jz.¢’; so

FV(p)=FV(¢') \ {z}. Then

m(aﬂﬂpl) = %J{pll(gpl) ‘ pll : Va)7’—> M, plerar\{x}: perar\{m}}

by Definition 2.3

= U{n () |) Var— M, pilrve)= pilrvie))
(by the induction hypothesis)

= U{p(¢¥') | p3 = Var — M, phlpyv ()= p2lrv(e))}
(since p1l py ()= P2l Fv ()

= U{pIQ(QO/) | p/2 : Var — M, pérVar\{x}: pZFVar\{x}}
(by the induction hypothesis)

= p2(3z.¢)

14 G. ROSU

(2) M =z iff p(x) = M for all p: Var — M, iff {p(x)} = M; for all p: Var — M, iff M,
has only one element.

B) M = o(p1,...,¢n) iff p(o(p1,...,0n)) = M for all valuations p : Var — M, iff
om(p(e1),...plen)) = Mg for any p: Var — M.

(4) M =~y iff p(—p) = M for any p : Var — M, iff M, \ p(y) = M, for any p : Var — M,
iff p(¢) = 0 for any p: Var — M.

(5) M = @1 Ao iff D1 A @a) = My for any p: Var — M, iff p(p1) Np(p2) = M for any
p: Var — M, iff p(p1) = M, and p(p2) = M; for any p : Var — M, iff M = ¢ and
M }: ©2. _

(6) M = Fx.ps iff p(3x.ps) = My for any p : Var — M, ift | J{p'(¢s) | p' : Var —
M, o' var(e}= Plvanfz}} = Ms for any p @ Var — M, iff (by the first property
in this proposition, since FV (ps) C {x}) U{p'(ps) | p/ : Var — M} = My for any
p: Var — M, iff | U{p(ps) | p : Var - M} = M,. In particular, if ¢; = x then
U{p(x) | p: Var — M} = Mg, so M |= Jz.x.

(7) M = @1 — 2 iff p(1 — p2) = M for all p: Var — M, iff p(=(v1 A —~p2)) = M for all
p: Var— M, iff p(p1 A —pa) =0 for all p: Var — M, iff p(e1) N (M \ p(p2)) = 0 for
all p: Var — M, iff p(p1) C p(¢2) for all p: Var — M.

(8) Follows from the previous similar properties for A and —.

(9) M): V.o iff p(VZ'igD) = ﬂ{Pl(S") | p/ : Var — M, perar\{x}: prVar\{z}} = M for all
p: Var — M, iff p'(¢) = M for all p,p’ : Var — M with p'[von (23= 0 var\ (o}, iff
ple) =M for all p: Var — M, iff M | .

Therefore, all properties hold.]

Since Jx.x is satisfied by all models (by (6) above), we could have also defined T as Jz.x
instead of as x V —x. Properties (9) and (2) in Proposition 2.6 imply that the pattern Vz.x
is satisfied precisely by the models whose carrier of the sort of & contains only one element.

Note that property “if ¢ closed then M = —¢p iff M [~ ¢”, which holds in classical logics
like FOL, does not hold in matching logic. This is because M = —¢ means —¢ is matched
by all elements, i.e., ¢ is matched by no element, while M [~ ¢ means ¢ is not matched
by some elements. These two notions are different when patterns can have more than two
interpretations, which happens when M can have more than one element.

Definition 2.7. Pattern ¢ is valid, written = ¢, iff M = ¢ for all M. If F C PATTERN
then M = F iff M |= ¢ for all p € F. F entails ¢, written F' = ¢, iff for each M, M = F
implies M |= ¢. A matching logic specification is a triple (S, %, F') with F' C PATTERN.

2.4. Basic Properties. A natural question is how to formally reason about patterns.
Although they can be inductively built with symbols, like terms are, the following result says
that pure predicate logic reasoning is sound for matching logic when we regard patterns as
predicates. By pure predicate logic we mean predicate logic with just predicate symbols,
without constants or function symbols. As shown in Section 11, the Substitution axiom of
non-pure predicate logics (Vx.y) — ¢[t/z] is not sound when ¢ is an arbitrary matching
logic pattern (it needs to be modified to only allow patterns which interpret to singletons).

Proposition 2.8. The following properties hold for patterns of any sort s € S, so the
Hilbert-style axioms and proof rules that are sound and complete for pure predicate logic [38],
are also sound for matching logic, for any sort (more axioms and proof rules are needed for
completeness, as shown in Section 11):

MTCHING LOGIC 15

) = @, where ¢ is a propositional tautology over patterns of sort s.

) Modus ponens: = ¢1 and = @1 — w2 imply = @o.

) B (Yz. 01 = p2) = (p1 = V. p2) when x & FV(p1).

) Universal generalization: |= ¢ implies =V . @.

) Substitution: = (V.) — ¢ly/z|, with variable y ¢ FV (Vx . @) of same sort as x.

Proof. Indeed,

(1) Let ¥ be a propositional tautology over propositional variables pi, ..., p,, such that
© is obtained from v by substituting patterns 1, ..., @, of sort s for propositional
variables pi, ..., pn, respectively. Let M be any matching logic model, whose carrier
of sort s is My, and let p be any M-valuation. It is well-known that power-sets are
Boolean algebras, in our case (P(Ms), -, N) with = the complement w.r.t. M, and that
all Boolean algebras are models of propositional calculus. Therefore, no matter how
we interpret the variables pi, ..., p, as subsets of My, in particular as p(¢1), ..., p(¢n),
respectively, the interpretation of 1 is the entire set M. Hence, = .

(2) If p : Var — M is a matching logic model valuation such that p(¢1) = M, and
p(¢1) € p(p2), then it must be that p(p2) = Ms.

(3) By (7) in Proposition 2.6, it suffices to show that p(Vz.p1 — p2) C (1 — V. @) for
any valuation p : Var — M. A stronger result (equality) holds, as expected:

(Ve .1 = w2) = (W (p1 = w2) | p': Var — M, p'lvap\ (o} = Pl var\ {2} }
m{MS \ (pl((pl) \ﬁl(()o?)) ’ p/ : Var — M, pIFVar\{m}: prVar\{x}}
= m{MS \ (ﬁ(‘Pl) \ pl(SOQ)) | p, : Var — M, p/rVar\{:p}: prVar\{x}}
(by (1) in Proposition 2.6, because z & FV (1))
= M; \ (ﬁ(‘pl) \ ﬂ{p/(SO?)) | pl : Var — M, p/[Var\{m}: prVar\{z}}
(set theory properties of relative complements)
= M\ (p(e1) \ (V. p2)
= plp1 = V. p2)
(4) Immediate by (9) in Proposition 2.6.
(5) Follows by (7) and (1) in Proposition 2.6, because for any valuation p : Var — M, we
have p(¢ly/x]) = p/(p) where p : Var — M is defined as p' [vun (23= [var {2} and

p'(z) = p(y) (this holds also when y = x), while p(Vx . ¢) is the intersection of all p”(¢)
for all p” : Var — M with p"[von {23= Pl var {2} and p’ is one of these p”.

Therefore, pure predicate logic reasoning can also be used to reason about patterns. []

Proposition 2.8 tells us that the proof system of pure predicate logic is actually sound
for matching logic, unchanged. That is, we do not need to attempt to translate patterns
to predicate logic formulae in order to reason about them, we can simply regard them as
predicates the way they are. Section 11 shows that a few additional proof rules yield a sound
and complete proof system for matching logic, similarly to how (term) Substitution together
with the other four proof rules of pure predicate logic brings complete deduction to FOL.

Sometimes we can show that patterns are two-valued:

Definition 2.9. Pattern ¢ is called a predicate in (S, %, F'), or simply a predicate when
(S, X, F') is understood, iff it is an M-predicate (Definition 2.4) in all models M with M = F.

However, note that Proposition 2.8 applies to any patterns, not only to predicates.
Moreover, there are also interesting properties that appear to be very specific to patterns
and their dual logical-structural nature, and not to predicates, such as the following;:

16 G. ROSU

Proposition 2.10. (Structural Framing) If o € 3, s, s and ¢;, ¢, € PATTERN,, such
that |= @; — ¢} for alli € 1...n, then = o(p1,...,¢0n) = o(@, ..., L)

Proof. Immediate by (7) in Proposition 2.6, because for any model M, the extension of ops
as a function P(Mj,) x -+ x P(Ms,) — P(Mj) is monotone. (]

This structural framing property generalizes to positive, or monotone contexts: if
E ¢ — ¢ then = Cp] — C[¢’] for any positive context C. By a positive/monotone context
we mean a context with no negation on the path to the placeholder.! Indeed, except for —,
the matching logic constructs are interpreted as monotone functions over powerset domains.
Structural framing is crucial for localizing reasoning. Consider, for example, the property

E (1—5%2—0%7—9%8— 1) — list(7,9-5)

proved in Section 11 for the matching logic specifications of maps (which captures separation
logic: Section 9). Taking o as the map/heap merge operation % , Proposition 2.10 implies

E (1—5%2—0%x7—9%x8—1xh)— list(7,9-5)«h

where h is a free map/heap variable. So the property we “locally” proved can be “framed”
within any map/heap. Of course, one can go further and “globalize” the property in any
positive context. For example, consider the operational semantics of a real language like
C, whose configuration was partly discussed in the example in Section 2.2. Recall from
Section 2.2 that semantic cells, written using symbols (...)cel, can be nested and their grouping
(symbol) is governed by associativity and commutativity axioms. Also, there is a top cell
(...)cfg holding a subcell (...)heap among many others. Proposition 2.6 then implies

E ((1—=5%2—0%x7—9%8— 1%h)heap C)cfg — ((list(7,9-5) * h)heap C)cfe

where h and ¢ are free variables (the “heap” and, respectively, “configuration” frames).

As discussed in the example in Section 2.2, sometimes it is useful to move the logical
connectives from inside terms to the top level, or viceversa. While disjunction and existential
quantification can be propagated both ways through symbol applications (++), conjunction
and universal quantification weaken the pattern as they are propagated from the inside to
the outside of a symbol application (—), and negation appears to not be movable at all:

Proposition 2.11. (Distributivity of symbol application) Let o € X;, . s and p; €
PATTERN, for all 1 <1i <n. Pick a particular 1 <i <mn. Let cp; € PATTERNy, be another
pattern of sort s; and let C,;[0] be the context o(p1,...,¢i—1,0,0it1,...¢n) (a context
C[O] is a pattern with one occurrence of a free variable, “0”, and Cly] is C[p/0]). Then:

(1) E Coulwi V@] ¢ Coilioi] V Co il 4]

(2) = CoilFz . @] < Fz. Cyhilpi], where x & FV(Cy;[0])

(3) E Coulwi A @il = Coiliwi]l A Coilf]

(4) = CoilVz . @i) = V. Chilpi], where x & FV(Cy;[0])

Proof. Trivial, using the basic set properties that for any function f : X — P(Y) (i.e.,
relation in X x Y), if {A;};er is a family of subsets of X, i.e., A; C X for all i € Z, then

FOULA: | € T)) = U(A) | i € T} and f(O{Ai | i € T}) € (1{f(A) | i € T}, where
f(A) = U{f(a) | a € A}. Note the inclusion for intersection, as opposed to equality for

p the context of programming language semantics, reasoning typically happens in semantic cells in the
program configuration and the program configuration is typically a term with variables, possibly domain-
constrained, so requiring a context to be positive is not a strong requirement.

MTCHING LOGIC 17

disjunction. The inclusion for intersection becomes equality when f is injective as a relation,

that is, when f(a) N f(a’) # 0 implies a = @'. []

The other implications in (3) and (4) above in Proposition 2.11 do not hold in general.
Consider a signature 3 containing only one sort, two constants a and b, and a binary symbol
f- Consider also a model M containing only two elements, aps and by, with constants a and
b interpreted as {aps} and {bys}, respectively, and with f interpreted as the injective function
fa(anr, anr) = {anr}, fur(bars anr) = {bar}, far(anr, bar) = {bar}, far(bar,bar) = {anr}. Let
Ct2[0] be the context f(a V b,00) and let ¢y and ¢4 be a and b, respectively. Then the
pattern Cyala] A Cya[b], that is f(aV b,a) A f(aV b,b), is interpreted by any valuation to M
as the (total) set {as, bar}, while Cyala Ab], that is f(aV b, a Ab), as the empty set (because
a A'b is interpreted as the empty set). Therefore, = Cyala] A Cy2[b] = Cyala Ab]. Similarly,
WV . Crala] = CralVa .] because Vo . Cyo[z] and Cra[Va . x] are interpreted as {anr, bar}
and (), respectively, by any valuation to M.

The reason for which the counter-examples above worked was that the context Co[],
that is f(a Vv b,0), did not yield an injective relation in M: indeed, it was not the case
that the interpretations of f(a V b,x) and f(a V b,y) were disjoint whenever x and y were
interpreted as distinct elements. We can define a general notion of injectivity, for any context
Cyi[d], which generalizes the usual notion of injectivity of a function or relation:

Definition 2.12. With the notation in Proposition 2.11, C,;[(J] is injective in specification
(S, 5, F) iff F = Chi[z] ACoily] = Cyilz Ayl, where x,y € Var, are distinct variables which
do not occur in Cy;[0]. We drop (S, %, F') when understood. Symbol o is injective on
position i iff C,;[0)] is injective with @1, ..., Yi—1, Qit1,...,on chosen as distinct variables.

It is easy to check that o is injective on position i iff for any model M with M = F, oy
is injective on position ¢ as a relation in M. Recall that functions are particular relations,
and that injectivity is a property of relations in general: R C M, x My, x M, is injective on
position 1 < ¢ < iff (ai,...,a;—1, @i, @it1, ..., an, b) € R and (ay, ..., aj—1,a}, Git1, ..., an,b) € R
implies a; = a,. Regarding o) as such a relation, its injectivity on position ¢ means that
on (@, ooy @im1, @iy Qig1s ooy @) Nopr(an, .oy @1, @5, Qg1 ..., @) # 0 implies a; = al.

Proposition 2.13. (Distributivity of injective symbol application) With the notation
in Definition 2.12, if C,;|0)] is injective in (S, X, F') and ¢;, ¢, € PATTERN,, then:

(1) F = Coilei] A Coilei] = Coilpi A @]

(2) F =Vz.Cqilpil = CoilVa . i), where x & FV (Cy;[0])

Together with Proposition 2.11, this implies the full distributivity of injective contexts w.r.t.
the matching logic constructs A, V, ¥, 3 (but not).

Proof. Let M be a model with M |= F and let p: Var — M be a valuation.

To prove the first property, let b € p(Cyi[pi] A Crilgl]), that is, b € p(Cyi[pi]) and
b € p(Cyile]). Then there are a,a’ € M, such that a € p(p;) and b € pla/0](Cy;[0]),
and o’ € p(¢}) and b € pla’/0|(Cy;[0]). Let 2,y € Vars, be two distinct variables that do
not occur in C,;[0J] and let p’ be the valuation pla/z][a’/y]. Then we have b € p/(Cy ;[z])

and b € p/(C,4[y]), that is, b € p/(Cyi[z] A Cyi[y]). The injectivity hypothesis then implies

b € p/(Cyilx Ay]). Therefore, p/(x A y) is non-empty, that is, {a} N {a’} is non-empty,
that is, @ = a/. Since a € p(p;) and o' € p(y}), it follows that a € p(p; A ¢}). Since

b € pla/O)(Cy;[0)), it follows that b € B(Cy i[pi A ¢]).

18 G. ROSU

For the second, let b € p(Vx . Cy ;[@i]), that is, b € p[v/z](Cyilpi]) for all v € Mgy,

that is, for any v € M,,(,) there is some a, € p[v/z](p;) such that b € pla,/0](Co;[0])

(because = & FV (Cy;[]), so plv/x]la,/0(Cyi[0]) = pla,/O](Cyi[0])). The injectivity of
Cy4[0] implies that all such a, elements are equal. Indeed, let v,v" € M sort(z) and a, €

p[”/'ﬂ(@i) and Ay € p[?}//.%']((pi> such that b € p[av/D](Ca,i[D]) and b € p[av’/[l](Ca,i[D])'
Let z,y € Vars, be two distinct variables that do not occur in Cyy ;[], like in the Definition 2.12
of injectivity (but with z instead of x to avoid name collision), and note that the above implies
b € play/z]lay [y](Cosil2] NCyily]). Then Definition 2.12 implies b € play/z][aw /y](Cs.i[2AY]).
Therefore play/z|[ay /y](z Ay) # 0, that is, a, = a,r. Since all the elements a, € plv/z](¢;)
for all v € M,,4(5) are equal, it follows that there is some element a € p(Vz . ¢;) such that

a, = a for all a, as above. Moreover, b € pla/0](Cy;[0]), that is, b € p(Co iV .]). [

The notion of context injectivity in Definition 2.12 is the weakest theoretical condition
we were able to find in order for the (bidirectional) distributivity of conjunction and universal
quantification to hold. In practice, stronger conditions are met. For example, Section 5.7
discusses constructors, which are symbols whose interpretations are injective in all their
arguments at the same time (i.e., opr(aq, ..., an) Nop(dl, ..., al,) # 0 implies a; = af, ...,
a, = a),). Contexts corresponding to constructors are injective in the sense of Definition 2.12.

We next demonstrate the usefulness of matching logic by a series of other examples.

3. INSTANCE: PROPOSITIONAL CALCULUS

In Section 2, (1) in Proposition 2.8, we showed that propositional reasoning is sound for
matching logic. Here we go one step further and show that we can can instantiate matching
logic to become precisely propositional calculus, without any translation needed in any
direction. The idea is to add a special sort for propositions, say Prop, then to use the already
existing syntax of matching logic to build propositions as we know them, and then to show
that the existing semantics of matching logic, given by |=, yields the expected semantics of
propositions as we know it in propositional calculus (let us refer to it as |=pyp).

We build a matching logic signature as follows: S contains only one sort, Prop, and 3 is
empty. Let us also drop the existential quantifier, so that the resulting syntax of patterns
becomes exactly that of propositional calculus:

2 = VarProp

| e

| eAe
Then the default matching logic semantics endows the resulting syntax of propositions with
the desired propositional calculus semantics:

Proposition 3.1. For any proposition ¢, the following holds: |=prep ¢ iff = ¢.

Proof. The implication “=pyp ¢ implies = ¢” follows by (1) in Proposition 2.8. For the
other implication, let us suppose that |= ¢ and let 6 : Varp,,, — {true, false} be an arbitrary
propositional valuation (it is often called a “model” in the literature, but we refrain from
using that terminology to avoid confusion with our notion of model). All we have to do is
show that §(y) = true. Let M be the matching logic model with M py,, = {true, false} and
let pg : Var — M be the matching logic valuation where py(z) = 6(z) for each x € Varpyp.

MTCHING LOGIC 19

Note that, unlike in propositional calculus where propositions 1 evaluate to precisely
one of true or false for any given valuation 6, in matching logic pg(¢)) can be any of the
four subsets of {true, false}. For example, if x and y are variables such that 0(z) = true
and 0(y) = false, then pg(x) = {true}, pg(y) = {false}, po(—x) = {false}, po(—y) = {true},
po(x ANy) =0, pa(z Vy) = {true, false}. Nevertheless, we can inductively show that the
propositional validity of a proposition v is dictated by the membership of true to its matching
logic evaluation as a set: 0(v) = true iff true € pg(¢). Indeed: if ¢ is a variable z then
pa(z) = {6(x)}, so the property holds; if v is =)’ then pg(—v)’) = {true, false}\pg(y)’), so
true € pg(—') iff true & pg(¢'), iff (by the induction hypothesis) 6(¢') # true, iff (by the
two-valued semantics of propositional calculus) 6(—)’) = true; finally, if ¢ is 1)1 A 19 then
true € pg(Y1 A o) iff true € pg(¢n) and true € pg()2), iff (by the induction hypothesis)
0(¢1) = true and 0(12) = true, iff O(1 A hg) = true.

Now |= ¢ implies pg(p) = {true, false}, so true € pg(yp). By the result proved inductively
above we conclude that 0(p) = true. O

An alternative way to capture propositional logic is to add a constant symbol (i.e., a
symbol without any arguments) to 3 for each propositional variable, like we do for modal
logic in Section 8. This is similar to how predicate logic captures propositional calculus,
namely by associating a predicate without arguments to each propositional variable. We
leave the details as an exercise to the interested reader.

4. INSTANCE: (PURE) PREDICATE LoGIC

Recall from Section 2, Proposition 2.8 and the discussion preceding it, that by pure predicate
logic in this paper we mean predicate logic or first-order logic (FOL) with only predicate
symbols (no function and no constant symbols). Note that some works call the fragment of
FOL with only constant (i.e., zero-argument function) symbols “predicate logic”, others use
“predicate logic” as a synonym for FOL. We do not discuss the fragment of FOL with only
constant symbols in this paper, so from here on we take the liberty to refer to “pure predicate
logic” as just “predicate logic”. Proposition 2.8 showed that predicate logic reasoning is sound
for matching logic. Similarly to propositional calculus in Section 3, here we go one step
further and show that we can can instantiate matching logic to become precisely predicate
logic; the FOL case will be discussed in Section 7. We follow the same approach like for
propositional calculus: add a special sort for predicates, say Pred, then use the already
existing syntax of matching logic to build formulae as we know them in predicate logic, and
then show that the existing semantics of matching logic, given by =, yields the expected
semantics of pure predicate logic. We let |=py, denote the predicate logic satisfaction.

Recall that predicate logic is the fragment of first-order logic with just predicate symbols,
that is, with no function (including no constant) and no equality symbols. We consider only
the many-sorted case here. Formally, if S is a sort set and II is a set of predicate symbols,
the syntax of pure predicate logic formulae is

¢ u= w(r1,...,2,) with w € I, 5., z1 € Vars,, ..., x, € Vars,
| e
| ey
| Fz.e
Without loss of generality, suppose that we can pick a fresh sort name, Pred; that

is, Pred ¢ S. Let us now construct the matching logic signature (S U {Pred},), where

20 G. ROSU

Ys1..sn,Pred = 15, s, are the only symbols in ¥; that is, 3 contains precisely the predicate
symbols of the predicate logic signature, but regarded as pattern symbols of result sort Pred.
Suppose also that we disallow any variables of sort Pred in patterns. Then the matching logic
patterns of sort Pred are precisely the predicate logic formulae, without any translation in
any direction. Moreover, the following result shows that the default matching logic semantics
endows these patterns with their desired predicate logic semantics:

Proposition 4.1. For any predicate logic formula ¢, the following holds: |Epr, ¢ iff = ¢.

Proof. That =pr, ¢ implies = ¢ follows by Proposition 2.8: each of the proof rules of
the complete proof system of (pure) predicate logic [38] is sound for matching logic. For
the other implication, note that we can associate to any predicate logic model MP* =
({MSPL}seSa {mprL}ren) a matching logic model MME = ({MSML}seSU{Pred}a {7y }res),
where MML = ML for all s € S and MME, = {%} (with * some arbitrary but fixed element)
and my e (ay, ..., an) = {*} iff myree(ay, ..., ay) holds, and 7y me(aq, ..., a,) = 0 otherwise.
Furthermore, we can show that for any PL formula ¢, we have M*L =pp o iff MM =7 .
Since ¢ does not contain any variables of sort Pred, by (1) in Proposition 2.6 it suffices to
show that for any p: Var — ML it is the case that M, p =pp @ iff p(p) = {*}. We can
easily show this property by structural induction on ¢. The only relatively non-trivial case is
the complement construct, which shows why it was important for M %{;d to contain precisely
one element: M*L p =pp - ifft MPE p Fpp o iff (by the induction hypothesis) () # {*}
iff p(p) = 0 iff p(—p) = {*}.

Therefore, ML Epr @ iff MML = . Since the predicate logic model MPL was
chosen arbitrarily, it follows that = ¢ implies =py, . O

5. MATCHING LoGICc: USEFUL SYMBOLS AND NOTATIONS

Here we show how to define, in matching logic, several mathematical instruments of practical
importance, such as equality, membership, and functions. We also introduce appropriate
notations for them, because they will be used frequently and tacitly in the rest of the paper.

The role of this section is twofold. On the one hand, it illustrates the expressiveness of
matching logic. Indeed, we can define all the crucial mathematical notions above as matching
logic specifications or as syntactic sugar, without any changes to the matching logic itself
(recall, for example, that equality cannot be defined in first-order logics; the logic itself needs
to be modified into “first-order logic with equality”—more details in Section 5.2). On the
other hand, it shows that despite the apparently non-conventional interpretation of patterns
as sets of values in matching logic, the conventional mathematical machinery used to reason
about program states is still available, with its expected meaning.

Unless otherwise mentioned, for the rest of this section we assume an arbitrary but fixed
matching logic specification (S, X, F).

5.1. Definedness and Totality. In classical logics, the interpretation of a formula under a
given valuation is either true or false, and there is only one syntactic category for formu-
lae while multiple syntactic categories for data. In contrast, matching logic patterns are
interpreted as sets of values, those that match them, where the total set corresponds to the
intution of “true”, or T, and the empty set corresponds to “false”, or L. Also, each matching

MTCHING LOGIC 21

logic syntactic category, or sort, admits both data constructs and its own logical connectives
and quantifiers. These leave two questions open:

(1) How can we interpret patterns in a conventional, two-valued way? Are the patterns
matched by proper (i.e., neither total nor empty) subsets of elements true, or false?
(2) How can we lift reasoning within syntactic category s; to syntactic category so?

These questions are particularly important when attempting to combine matching logic
reasoning with classical reasoning or provers for existing mathematical domains.

It turns out that the above can be methodologically achieved by adding some symbols
and defining patterns for them to the matching logic specification (S, X, F'). Specifically, for
any pair of sorts of interest s, s2 € S, which need not be distinct, we can add a symbol [_ 132
to X, s, and an axiom pattern to F' that makes [|52 behave like a definedness predicate for
any pattern of sort sy, with two-valued result of sort sy: [¢]3? is either L, when ¢ is L,
or T, otherwise (i.e., if ¢ is matched by some values of sort s1). The pattern that we can
add to F' in order to achieve the above is in fact unexpectedly simple: [x:s1]52.

Although we do not need it for many of the subsequent results, to simplify the overall
presentation of the rest of the paper, from here on we tacitly work under the following;:

Assumption 5.1. For any (not necessarily distinct) sorts s1,s2 € S, assume the following:

[_132 €Xss, // Definedness symbol
[z:51]52 € F // Definedness pattern

We call the symbols [_13? definedness symbols.
We next show that the definedness symbol indeed has the expected meaning;:

Proposition 5.2. If ¢ € PATTERNy, then [¢]3? is a predicate (Definition 2.9). Specifically,
if p: Var — M is any valuation then p([@]5?) is either O (i.e., p(Ls,)) when p(¢) =0 (i.e.,
© undefined in p), oris Ms, (i.e., p(Ts,)) when p(p) £ 0 (i.e., ¢ defined).

Proof. By Definition 2.3, p([¢]352) = ([_152)m(p(¢)). The definedness pattern axiom states

S1

that [x : s1]3? is valid (Assumption 5.1), which implies ([_]52)as(m1) = M, for allm; € M,

S1

so if there is any m; € p(p) then ([]22)am(p(p)) can only be My,. On the other hand, if

S1

() = 0 then ([_153)m(p(¢)) = 0. O
Notation 5.3. We also define totality, | |32, as a derived construct dual to definedness:
el = ~leld

The totality construct states that the enclosed pattern must be matched by all values:

Proposition 5.4. If ¢ € PATTERNy, then [¢]3? is a predicate (Definition 2.9). Specifically,
if p: Var — M is any valuation then p(|¢]52) is either O (i.e., p(Ls,)) when p(p) # Ms,

S1

(i.e., ¢ not total in p), or is My, (i.e., p(Ts,)) when p(p) = My, (i.e., ¢ total).

Proof. p(l¢]5t) = p(=[=¢lst) = Ms,\p([—153). So b([el3}) = 0iff p([-pl) = M, iff
P(~) £ 0 (by Proposition 5.2) iff () # My, Similarly, p(1)32) = M, if (|13 = 0
iff p(—¢) = 0 (by Proposition 5.2) iff p(p) = Mj,. O

22 G. ROSU

Totality is useful, for example, to define pattern equality as the totality of the pattern
equivalence relation; this is discussed in depth shortly (Section 5.2). It is also useful when
there is a need to restrict a pattern context, say ¢ of sort s, to only instances where pattern
@1 of sort s1 implies pattern o of sort s1: ¢ A [p1 — 252 Indeed, p(p A [¢1 — p2]3?) is
p(p) iff p(e1) € p(p2), and it is) otherwise. For example, 3z.x A [p1 — @2]5? defines the
set of all values of x with the property that if they match ¢1 then they also match ¢o. A
concrete instance of this is the definition of “magic wand” in separation logic (Section 9).

The totality constructs satisfy, in a more general sorted setting, some of the basic
properties of modal logic operators, such as (N), (K), (M) and (5) [7, 56, 44]:

Corollary 5.5. If 51,52 € S and ¢, @1 and py are patterns of sort sy, then:

(N) If E ¢ then = |¢]3?

(K) E [p1 = w2132 = ([p1]32 = [92]2)
M) = el =

(5) E el — [[wl]2]:2

Proof. The (N) property is an immediate corollary of Proposition 5.4. For the (K) property,
let M be a model and p : Var — M a valuation. By Proposition 5.4 and the discussion
in the paragraph following it, p([p1 — @2]3?) is either () or M,,, the latter happening iff
p(¢1) € p(p2). The first case makes our property vacuously hold. In the second case, we have
to show that p([¢1]5? — [w2]52) = Mj,, that is, that p(|¢1]52) C p([w2]35?), which follows by
Proposition 5.4 from p(¢1) € p(p2). To show (M), we have to show p(|¢]5!) € p(y) for any
p: Var — M. By Proposition 5.4, we only need to consider the case where p(|¢]5!) = M,,;
but this can only happen when p(¢) = Mj,, so the property holds. For (5), let p : Var — M
be such that p([¢]5?) = M,, (by Proposition 5.2, the only other case is p([¢]52) = 0,

so the property holds vacuously for that case). Then by Proposition 5.4 it follows that
P(LIel32153) = My,, so p([¢1$2) S p(LIe]53]32)- 0

In Section 8 we show that the modal logic S5 is equivalent to a matching logic specification,
where the definedness and totality constructs play the role of the ¢ and [J modalities.

Notation 5.6. Since s; and sz can usually be inferred from context, we write [| or | _|
instead of [_]52 or | _ |32, respectively. If the sort decorations cannot be inferred from
context, then we assume the stated property/axiom/rule holds for all such sorts.

For example, the generic pattern axiom “[x| where x € Var” replaces all the axioms
[2:51]52 above for all the definedness symbols for all the sorts s; and ss.

Notation 5.7. If ¢ is a predicate (Definition 2.9, then we write [¢] instead of [¢] or [¢].
This notation is justified, because if ¢ is a predicate then = [¢] <> [¢].

As Proposition 5.12 will shortly show, if ¢ is a predicate, then by “wrapping” it with
square brackets, as [p], we can propagate it through the configuration symbols and conjunctive
constraints to wherever it is needed, to facilitate local reasoning.

5.2. Equality. Here we show that, unlike in predicate logic or FOL, equality can be defined
in matching logic. Before that, let us recall why equality cannot be defined in FOL. We
only give a short intuitive explanation here; the interested reader is referred to authoritative
FOL textbooks for full details, e.g., [55, 47]. Suppose that equality were definable in FOL,
that is, that there existed some FOL specification in which a formula Fq(x,y) could only be

MTCHING LOGIC 23

interpreted as equality in models. Then we could use such a formula to state that all models
have singleton carriers: Va.Vy . Fq(x,y). However, FOL is not expressive enough to define
models of fixed carrier size. In FOL, if a specification admits a model of non-empty carrier
A then it also admits a model whose carrier is A U {b}, where b is some element that is not
already in A. Indeed, pick some arbitrary element a € A and extend all the operations and
predicates in the model to behave on b exactly the same as on a. Since the operation and
predicate interpretations cannot distinguish between a and b, the model of carrier A and the
model of carrier AU{b} satisfy exactly the same formulae. In particular, no FOL specification
can admit only models of singleton carrier. One can define equivalence and congruence
relations, but not actual equality. Since precise equality is sometimes desirable, extensions
of FOL with equality have been proposed [55, 47|, where a special binary predicate “=" is
added to the logic together with axioms like equality introduction “t = ¢” and elimination
“(t1 = t2) A p[t1/x] — @[ta/z]”, and interpreted as the equality/identity relation in models.

Let us first discuss why we cannot use <+ as equality in matching logic. Indeed, since
M = p1 < @2 iff p(@1) = p(p2) for all p : Var — M, one may be tempted to use <> as
equality. E.g., given a signature with one sort and one unary symbol f, one may think
that the pattern Jy. f(x) <> y defines precisely the models where f is a function (because a
function evaluates to only one value for any given argument, and the interpretation of variable
pattern y has precisely one value). Unfortunately, that is not true. Consider model M with
M = {1,2} and fy the non-functional relation fas(1) = {1,2}, far(2) = 0. Let p: Var - M
be any M-valuation; recall (Definition 2.3) that p’s extension p to patterns interprets
“3” as union and “<»” as the complement of the symmetric difference. If p(x) = 1 then
Py F(@) < y) = (M\({1,2}A{1}) U (M\({1,2}A{2})) = {1,2} = M. If p(z) = 2 then
Py f(z) & y) = (M\BAL}) U (M\(DA{2})) = {1,2} = M. Hence, M = Jy. f(x) & v,
yet fas is not a function, so <> fails to capture the pattern equality.

The problem above is that the interpretation of ¢1 <> @9, depicted in Figure 4, is not
two-valued (T or L), as we are used to think in classical logics. Specifically, p(¢1) # p(p2)
does not suffice for p(p1 <> p2) = () to hold. Indeed, p(p1 <> p2) = M \ (p(¢1) A B(p2)) and
there is nothing to prevent, e.g., p(¢v1) Np(v2) # 0, in which case p(¢1) A p(p2) # M. What
we would like is a proper equality over patterns, @1 = @z, which behaves as a two-valued
predicate: p(p1 = w2) = 0 when p(p1) # p(p2), and p(p1 = ¢2) = M when p(¢1) = p(p2).
Moreover, we want equalities to be used with patterns of any sort s; and in contexts of any
sort s9, similarly to the definedness and totality constructs in Section 5.1.

Equality can be defined quite compactly using the pattern totality and equivalence
constructs, which were themselves defined using the assumed definedness symbols (Assump-
tion 5.1, Section 5.1) and, respectively, the core A and — constructs (Section 2). Specifically,

Notation 5.8. For each pair of sorts s; (for the compared patterns) and so (for the context

in which the equality is used), we define _ =52 _ as the following derived construct:

o =2y = lo < ¢']32 where ¢, ¢’ € PATTERNg,
Intuitively, ¢ <+ ¢’ matches the grey area in the diagram depicting pattern equivalence

in Figure 4 (complement of the symmetric difference), so [< ¢’ |32 is interpreted as M,
iff the white area is empty, iff the two patterns match exactly the same elements. Formally,

Proposition 5.9. Let p, ¢’ € PATTERNg,. Then:

(1) ple =32 ¢") =0 iff p(e) # p(¢'), for any p: Var — M
(2) ple =3 ¢') = M., iff () = p(¢'), for any p: Var — M

24 G. ROSU

(B) M=o =32¢" iff M |= @ < ', for any model M
@ Fe=5dilfEeed
Proof. Recall that ¢ =32 ¢ stands for [> ¢’ |32, which stands for —[=(p < ¢')]52.

81

(1) Therefore, plp =32 ¢f) is equal to My, \ ([_12)ar(My, \ (My \ (2(01) A 2(22)))),
which is further equal to My, \ ([_132)m(p(ew1) A B(p2)). So ple =32 ¢') = 0 iff
([T m(Ple1) A p(p2)) = My, iE p(1) A plep2) # 0, i p(e) # p(¢").

(2) Similarly to the above, we have p(¢ =52 ¢') = My, iff ([_152)m(p(¢1) A p(g2)) =0, iff
plp1) A plp2) =0, iff p(p) = p(¢').

(3) M | =32 ¢ il p(p =32 ¢) = M, for any p : Var — M, iff p(p) = p(¢’) for any
p: Var — M, iff (by Proposition 2.6) M |= ¢ <> ¢'.

(4) Fo=2¢ iff M =@ =3¢ for any model M, iff (by the above) M = ¢ < ¢’ for any
model M, iff ¢ < ¢'.

Therefore, pattern equality satisfies all these properties. []

Note that (4) in the proposition above is not in conflict with the discussion at the
beginning of this section concluding that we cannot use equivalence instead of equality. The
example there illustrated an equivalence which was nested under a quantifier (Jy . f(x) <> y),
while (4) above says that equivalence and equality are interchangeable at the pattern top.

Like for definedness and totality (Section 5.1), where we decided to drop the sorts s;
and sy from [_ |52 and instead write [_] because the sort of the enclosed pattern and that
of the context dictate s; and so, we also take the freedom to drop the sort embellishments of
=32 and instead write just =. Like for definedness and totality, s; and sz can typically be
inferred from context, and, if ambiguity arises, then we assume all instances. For example,
“r =27 means “x =32 z” for any s1,s2 € S and x € Vars,. Note that the equality symbol
in algebraic specifications and in FOL (with equality) is also implicitly indexed by the sort
of the two terms, although that sort is typically not mentioned as subscript; but one needs
to exercise more care in matching logic, because equality patterns can be nested now. For

example, the pattern in Section 9.2 defining linked list data-structures within maps,
list(x) = (x =0AempV Iz.x— zxlist(z))

is a sugared variant of the explicit patterns (one for each “equality context” sort s),

list(x) =%gap (2 =N 0N emp V 3z x> 2 * list(z))

To minimize the number of disambiguation parentheses, we assumed that equality (=) binds
tighter than conjunction (A). We also assume that negation (=) binds tighter than equality
(=). To avoid confusion, we may use disambiguation parentheses even if not strictly needed.

Despite the fact that patterns evaluate to any set of values and thus are more general
than both terms (which evaluate to only one value) and predicates (which evaluate to one of
two values), and despite the fact that Boolean combinations of patterns and quantification
yield other patterns which can be used under any symbol in ¥, as we saw in Proposition 2.8,
the proof rule/axiom schemas of (pure) predicate logic continue to be sound for matching
logic. Now that we have equality, a natural question is whether the equality proof rule/axiom
schemas of FOL with equality [55, 47| are also sound. For example, in FOL with equality,
“equality elimination” states that terms can be substituted with equal terms in any context.
A similar result holds for matching logic, where terms are replaced with arbitrary patterns:

MTCHING LOGIC 25

Proposition 5.10. The following hold:
(1) Equality introduction: = ¢ = ¢
(2) Equality elimination: = (o1 = p2) A @[p1/x] = @lpa/]

Proof. (1) follows by (4) in Proposition 5.9 and by Proposition 3.1. For (2), let M be some
model and p : Var — M. By Proposition 2.6, it suffices to show p(¢v1 = p2) N p(@[p1/x]) C
plele2/x]). It plp1) # p(p2) then p(¢1 = @2) = 0 by Proposition 5.9, so the inclusion holds.
Now suppose that p(¢1) = p(p2), which implies p(p1 = p2) = M by Proposition 5.9, so it
suffices to show p(p[e1/x]) C p(@[p2/z]). The stronger result p(p[e1/x]) = p(elp2/z]) in
fact holds, because the first element is a function of p(y1), the second element is the same
function but of p(y2), and (1) = p(v2). O

Notation 5.11. From here on in the rest of the paper we write ¢ # ¢’ instead of =(p = ¢’).

One may wonder what really made it possible to define equality in matching logic, which
is not possible in predicate or first-order logic. Let us consider the simplest instance of
equality, x = y between two variables, which is sugar for =[—(z <> y)]. After all, definedness-
like predicates can also be defined in predicate logic; following the translation in Section 10,
for example, the unary matching logic symbols [| are associated binary predicates LR
and the definedness pattern axioms [z] are translated into formula axioms 71 j(z,7). So
the definedness symbol is not the key. The key is the capability to allow logical connectives
between “terms”, which is not allowed in first-order logic. For example, x <> y already tells
us whether z and y are interpreted as the same value or not: for any valuation p, it is indeed
the case that p(z <> y) is the total set iff p(z) = p(y) (see Proposition 2.6).

Equality elimination (Proposition 5.10) allows us to replace patterns by equal patterns
in any context. Further, Proposition 5.9 allows us to replace any top-level <» with =. In
particular, the equivalences in Proposition 2.11 become = Cy,i[¢; V ¢l = Cyi[pi] V Coill]
and |= Cyi[3z . ;) = Jz . Cyiei], respectively, meaning that we can propagate disjunction
and existential quantification through symbols in any context, not only at the top level.
Because of the stronger nature of equality, from here on we state properties in terms of
equality instead of <+ whenever possible. Below is an important such property:

Proposition 5.12. (Constraint propagation) Assume the same hypothesis as in Propo-
sition 2.11: 0 € ¥y, .. 5,5 and p; € PATTERN,, for all 1 <i <n, a particular 1 <17 <n, and
let C,;[0] be the context o (1, ..., pi—1,0, @it1,...¢n). Then for any pattern o:

(1) | Coilei A @l] = Coilpi] A o]
(2) E Coilpi A o]l = Colei] A o]
(3) = Coilpi A l] = Coilpil A @] if ¢ is a predicate (Definition 2.9 and Notation 5.7).

Proof. We only show (1), because (2) and (3) are similar. Let p: Var — M and let p(Cy ;) :
M, — P(Ms) be defined as p(Co;)(a) = onm(p(1), ..., p(0i-1),a,0(@it1), ..., 0(Pn)).
Then p(Cogli A [¢1]) = B(Ca)(plge) O 2([]) and p(Cosli] A [9]) = P(Cort) (1)) N
p([¢l1]). By Proposition 5.2, p([¢]]) is either the empty set or the total set, regardless of
the result sort context (s; vs. s). If the empty set, then p(Cy ilpi A [¢]]) = p(Co.i) (P(pi) N
0) = 0 and p(Cyi[eil A [e]) = p(Coi)(p(wi)) N = 0. If the total set, then p(Cy;[pi A
1) = PCos) (Bl) N May) = P(Cort) (Pl)) and B(Corilipi] A [9]) = PCo) (Plspi)) (1 My =
P(Co) (Plipt)). Therefore, p(Coli A [01]) = B(Coilir] A [01). O

26 G. ROSU

Constraint propagation allows us to propagate, through symbols, any logical constraints
that appear in a conjunctive context. Indeed, as seen in the rest of this section (in particular
in Section 5.8) and in Section 7, domain constraints can be expressed as equalities or as
FOL predicates, and both of these are instances of matching logic predicates. Recall from
Definition 2.9 that (matching logic) predicates are patterns which interpret to either the
empty or the total set of their carrier. The definedness symbol applied to a predicate, the
square brackets in [¢] (Notation 5.7), does not change the semantics of the predicate, but
thanks to its polymorphic nature (Notation 5.6) we can syntactically move ¢ from the sort
context of the argument pattern (s;) of o to the sort context of o’s result (s).

Proposition 5.12 (constraint propagation) and Proposition 2.10 (structural framing) are
particularly useful to localize proof efforts, as illustrated in the example in Section 2.2.

5.3. Membership. Since in matching logic a pattern ¢ evaluates to a set of values while
a variable (pattern) z evaluates to just a (set containing only one) value, the membership
question, “does x € ¢ hold?”, is natural. As seen later in Section 11, membership in fact plays
a key role in proving the completeness of matching logic reasoning. Fortunately, membership
can be quite easily defined as a derived construct in matching logic, making use of the
definedness symbol (Section 5.1), in a similar way to equality (Section 5.2):

Notation 5.13. If x € Vars,, ¢ € PATTERN, and sg € S, then we introduce the notation

T EF @ = EXAN A
Like for definedness, totality and equality, there is a membership construct for each pair of
sorts s1 (for variable and pattern) and sy (for context); we take the freedom to omit them.

Proposition 5.14. With the above, the following hold:

(1) p(z €2 ¢) =0 iff p(x) & p(), for any p: Var — M
(2) plz €32) = My, iff p(z) € p(y), for any p: Var — M
(3) F (z €2 ¢) =3 (AN =32 2), for any sort s

Proof. Recall that x €52 ¢ is [z A p]32.

(1) Therefore, we have p(z €32 ¢) = ([_12)m{p(z)} N5(p)), so p(x €2 ¢) = 0 iff
{p(x)} Np(p) =0, that is, iff p(x) & p(y).

(2) Similarly to above, p(x €32 ¢) = M, iff {p(z)} Np(p) # 0, that is, iff p(x) € p(y).

(3) Let M be some model and p : Var — M. By Proposition 5.9, the property holds iff we
can show p(z €52) = p(xz A ¢ =32 x). Since the membership and equality patterns are
predicates (Definition 2.4), and thus they evaluate either to the entire set or to the empty
set, the following completes the proof: by (2) we have p(z €52) = M, iff p(z) € p(yp),
iff {p(z)} Np(p) = {p(x)}, iff, by (2) in Proposition 5.9, p(x A ¢ =32) = Ms,; and
by (1) we have p(z €52) = 0 iff p(z) & plp), iff {p(x)} N 5(2) £ {p(x)}, iff, by (1) in
Proposition 5.9, p(z A ¢ =32 z) = ();

Therefore, these basic properties hold. 0]

Property (3) in Proposition 5.14 suggests that the equality x A ¢ = = can be regarded as
an alternative definition of membership = € ¢, but we prefer [z A ¢| because is simpler (the
other one requires an additional sort, s3, for the context of the equality).

Proposition 2.8 showed that some of the proof rule/axiom schemas of FOL with equality
are already sound for matching logic, namely the rules corresponding to (pure) predicate
logic. Proposition 5.10 further showed that the equality-related rules/axioms are also sound.

MTCHING LOGIC 27

The soundness of several other rule/axiom schemas are shown below, essentially completing
the soundness of the matching logic proof system (discussed later in Section 11), except for
one rule, Substitution, which needs more discussion and we postpone it to Section 11:

Proposition 5.15. The following hold:
(1) EVz.zepiff E¢

(2) E(zey) =(z=y) when z,y € Var

B) E(ze—p)=~(z €y

(4) E(xepiAp) =(x€p1)N(z€)

(5) = (zr € Fy.p) = Fy.(x €), with x and y distinct

(6) =z €0o(p1, s Pin1, Pis Pit1, s Pn) = (Y € i AT € 0(P15 -, i1, Y Pit 1, -5)

Proof. The proofs below make repetitive use of Propositions 5.9 and 5.14:

(1) Let M be a model. Then M = Vz.xz € ¢ iff M |= x € ¢ (Proposition 2.6), iff
p(x € o) = M for any p: Var — M, iff p(x) € p(p) for any p: Var — M, iff p(¢) = M
for any p: Var — M, iff M = .

(2) It suffices to show p(x € y) = M iff p(x = y) = M for any model M and any p : Var — M,
that is, that p(x) € {p(y)} iff p(z) = p(y), which obviously holds.

(3) It suffices to show p(z € —p) = M iff p(x € ¢) = 0 for any model M and any
p: Var — M, that is, that p(x) € M\p(p) iff p(x) & p(y), which obviously holds.

(4) Tt suffices to show p(x) € p(¢1) ND(p2) iff p(z) € B(p1) and p(z) € p(p2) for any model
M and any p : Var — M, which obviously holds.

(5) Tt suffices to show for any model M and any p : Var — M, that p(z) € U{p'(¢) | ¢’ :

/

Var — M, p,rVar\{y}: prVar\{y}} iff U{?(l‘ € SO) | :0/ s Var— M, p rVar\{y}: prVar\{y}
} = M. It is easy to see that each of the two statements holds iff there exists some

p': Var — M with o'l yun (3= Pl var fy) such that p(x) € ().
(6) It suffices to prove for any model M and any valuation p : Var — M, that
p(x) € on(p(1), - - -, plpi-1), p(0i), p(@it1), - - (@n))
iff there exists a p’ : Var — M with p'T yun (3= £l var\ (43 such that p'(y) € p(;) and

p(z) € on(pler)s - p(0i-1). {p" (W)} B(0it1), - - Ben)),
which obviously holds.
The proof is complete.]

We next define several common relations using patterns, such as functions.

5.4. Functions. Matching logic makes no distinction between function and predicate sym-
bols, treating all symbols uniformly as pattern symbols which are interpreted relationally. A
natural question is whether there is any way, in matching logic, to state that a symbol is to
be interpreted as a function in all models. We show a more general result, namely that there
is a way to state that any pattern, not only a symbol, has a functional interpretation.

Definition 5.16. Pattern ¢ is functional in a model M iff |p(¢)| = 1 for any valuation
p: Var — M. Furthermore, ¢ is functional in F' C PATTERN, or simply functional when
F is understood, iff it is functional in all models M with M = F.

28 G. ROSU

Recall from the preamble of Section 5 that (5,3, F') was assumed to be an arbitrary but
fixed matching logic specification. Therefore F' is understood, so we take the freedom to just
say “¢ is functional” instead of “¢ is functional in F”.

The following trivial result relates functional patterns to (total) functions:

Proposition 5.17. If 0 € ¥, 5. s and M is a X-model, then pattern o(x1,...,xy,) is
functional in M iff opp @ Mg, X -+ X Mg, — My is a total function in M, that is, iff
oum(ai,...,an) contains precisely one element for any elements ay € My, , ..., ap € Ms,.

Proof. Pattern o(x1,...,xz,) is functional in M iff [p(o(z1,...,2,))| = 1 for any valuation
p: Var — M (by Definition 5.16), iff |ops(aq,...,an)| = 1 for any a; € My, ..., ap € My, .[]

The following proposition gives an axiomatic characterization of functional patterns:

Proposition 5.18. Pattern ¢ is functional in model M iff M |= Jy. (¢ = y), where variable
y is chosen so that y & FV (). Therefore, ¢ is functional iff F = Jy. (¢ = y).

Proof. ¢ is functional in M iff [p(¢)| = 1 for any p : Var — M (by Definition 5.16), iff for
any p : Var — M there is some a € M such that p(p) = {a}, iff for any p : Var - M
there is some p' : Var — M with p/ van (3= £l var\fy} such that p'(¢) = p'(y) (by (1) in
Proposition 2.6), iff M = 3Jy.(p = y) (by Definition 2.3 and Proposition 5.9).]

Corollary 5.19. Variables are functional: |= Jy.x =y for any variable x.

Proof. Immediate consequence of Definition 5.16 and Proposition 5.18, because variables are
interpreted as singletons: p(z) = {p(z)} for any valuation p : Var — M.]

We have seen in the discussion at the beginning of Section 5.2 that if f is a one-argument
symbol, the pattern Jy. f(x) < y is not strong enough to enforce f(x) to be functional.
However, thanks to Proposition 5.18, using equality instead of equivalence works:

Corollary 5.20. If o0 € X5, 5,5 and M is a X-model, then oy 1s a total function iff
MEJy.o(z,...,zn) =y.

Proof. By Propositions 5.17 and 5.18.]

Hence, we can state that a symbol o € ¥4, s, s is a function in all models by requiring
o(x1,...,2,) to be a functional pattern, which by Proposition 5.18 is equivalent to stating
that the pattern 3y.o(z1,...,2,) =y holds (i.e., it is entailed by F'), where z1, ..., x,, are
free variables. The simplest way to ensure this is to add this pattern directly to F', as an
axiom. To avoid manually writing such trivial pattern axioms for lots of symbols which are
meant to be interpreted as functions, we adopt the following notation and terminology:

Definition 5.21. For a symbol o € ¥y, s, s, the notation
O:8 X X8, S

is syntactic sugar for stating that F' contains the pattern Jy.o(z1,...,2,) = y. If 0 €
Ys1...sn,s 1s @ symbol such that o : 51 x --- x 5, = s, then we call o a function symbol.
Patterns built with only function symbols are called term patterns, or simply just terms.

Definition 5.21 is instrumental to capturing algebraic specifications and first-order logic
as instances of matching logic; full details are given in Sections 6 and 7.

Corollary 5.22. Term patterns are functional: = Jy.t =y for any term pattern t.

MTCHING LOGIC 29

Proof. Structural induction on term pattern . Obvious when ¢ is a variable. Let ¢t be

o(ty,...,ty) with o : 81 X ... X s, — s and ty,...,t, term patterns of sorts si, ..., sy,
respectively, and let p : Var — M. Then p(t) = opr(p(t1),. .., p(tn)). By the induction hy-
pothesis, t1, ..., t, are functional, that is, p(¢1), ..., p(t,) are singleton sets (Definition 5.16),
say {m1}, ..., {my}, respectively. Then p(t) = opr(my, ..., my), which is also a singleton

set, say {m}, as ops is a function (Corollary 5.20). The rest follows by Proposition 5.18. []

In FOL, the Substitution axiom ((Vz:s.p) — ¢[t/z]) allows for universally quantified
variables to be substituted with any terms. Together with the proof rules and axioms of
predicate logic, Substitution makes FOL deduction complete. An important property of term
patterns in matching logic is that the Substitution axiom of FOL holds for them:

Corollary 5.23. If ¢ is any pattern and t is a term pattern of sort s, then
Term Substitution: = (Vz:s.p) — @[t/z]

Proof. Let p: Var — M be any valuation. Then

Vl’ (P ﬂ{p ’ :0 Var\{z}= P Var\{x}} - W((p)

where p” : Var — M is such that p” [yen(2}= P [var\(z} and {p"(z)} = p(t). Such a
p" exists thanks to Corollary 5.22 and can only be p” = p[m/x] where p(t) = {m}, so

P"(¢) = plelt/]). [

Note Corollary 5.23 generalizes Corollary 5.22: pick ¢ to be Jy.x = y; then Vo : s.p is
a tautology and @[t/x] is Jy .t = y, which by Proposition 5.18 implies that ¢ is functional.
Corollary 5.23 also generalizes (5) in Proposition 2.8, because variables are particular terms.

Corollary 5.23, Proposition 5.10 and Proposition 2.8 imply that FOL reasoning with
or without equality is sound for matching logic, provided that the Substitution axiom of
FOL is only applied when ¢ is a term pattern. To avoid confusing the FOL Substitution
axiom schema with the matching logic variant in Corollary 5.23, we called the later Term
Substitution. As shown in Section 11, Term Substitution can be generalized a bit into
Functional Substitution, which takes functional patterns instead of term patterns ¢, but in
general it is not sound for arbitrary patterns instead of ¢.

Since functional patterns evaluate to singleton sets for any valuation, the conjunction of
two functional patterns evaluate either to the empty set when the two patterns evaluate to
different singleton sets, or to the same singleton set when the two patterns evaluate to the
same singleton set. Formally,

Proposition 5.24. If ¢ and ¢’ are functional patterns of the same sort, then:
(1) E(eny)=1)=(p#¢)
2) E(leny)#L)=(p=¢)
B) Ferng)=(pn(p=¢))

Proof. Trivial: pick a model M and a valuation p : Var — M, and apply the definitions. []

Particular functions with particular properties, such as injective of surjective functions,
can be defined in a conventional way using conventional FOL. For example, pattern (one-
argument functions only, for simplicity)

f@)=fly) »z=y

30 G. ROSU

states that f is injective and pattern

Jz. f(z) =y
states that f is surjective. We only show the former: if (M, fay : M — M) is any model
satisfying f(x) = f(y) — « =y, then fj; must be injective. Indeed, let a,b € M such that
a # band fy(a) = far(b). Pick p: Var — M such that p(x) = a and p(y) = b. Since M
satisfies the axiom above, we get p(f(z) = f(y)) C p(z = y). But Proposition 5.9 implies
that p(z = y) = 0 and p(f(z) = f(y)) = M, which is a contradiction. We can also show that
any model whose f is injective satisfies the axiom. Let (M, fys : M — M) be any model
such that fys is injective. It suffices to show p(f(x) = f(y)) C p(z = y) for any p : Var — M,
which follows by Proposition 5.9: if p(z) = p(y) then p(f(x) = f(y)) = p(x = y) = M, and
if p(x) # p(y) then p(f(z) = f(y)) = p(x = y) = 0 because fy is injective.
With the notation ¢ # ¢’ for =(p = ¢’) introduced in Section 5.2, x # y — f(x) # f(y)
is an alternative way to capture the injectivity of f.

5.5. Partial Functions. In FOL, operation symbols are interpreted as total functions by
default, meaning that they are defined on all the elements in their domain. Interpreting
function symbols as partial functions leads to a completely different logic, called partial FOL
in the literature (see, e.g., [34]), which has many different axioms to properly capture the
desired properties of definedness and undefinedness. Our interpretations of symbols into
powersets allows us not only to elegantly define definedness (Section 5.1), but also to define
partial functions without a need to develop a different logic. Specifically, the pattern

-0 (21,...,x) V Jy.o(z1,...,zn) =Y,
where —o(z1,...,2,) can be equivalently replaced with o(z1,...,2,) = L, states that
0 € Xg,..5,,s 1s a partial function. From now on we use the notation (note the “—” symbol)
018 X+ X8, =8

to automatically assume a pattern like the above for 0. For example, a division partial
function which is undefined iff the denominator is 0 can be specified as:

/: Nat x Nat — Nat

z/y=L < y=0

which means a symbol _ /€ ¥ ngix Nat, Not With pattern axioms —(z/y) V 3z.2/y = z and
x/y = L <> y = 0; the latter is equivalent to [z/y] = (y # 0) and to |~ (z/y)] = (y = 0).

5.6. Total Relations. Recall from Section 5.4 that we can define total functions using
patterns of the form Jy.o(z1,...,z,) =y, stating not only that the interpretation of o in
model M, oy, is defined in any of its arguments, but also that it has only one value. We
sometimes want to state that relations, not only functions, are total. All we have to do is
to say that the relation is non-empty for any arguments, which can be easily stated with a
pattern of the form [o(z1,...,2,)]%, equivalent to o(x1,...,z,) # Ls. We write

g:8 X+ X8, =S8

to automatically state that o is a total relation.

MTCHING LOGIC 31

5.7. Constructors, Unification, Anti-Unification. Constructors can be used to build
programs, data, as well as semantic structures to define and reason about languages and
programs. Hence, constructors have been extensively studied in the literature, using various
approaches and logical formalisms. We believe that classic approaches to constructors can
also be adapted to our matching logic setting, either directly by redefining the corresponding
concepts (e.g., the matching logic analogous to initial algebras [43], etc.) or indirectly by
translating them together with their underlying logic to matching logic (e.g., following
the translations of FOL and algebraic specifications to matching logic in Sections 7 and
6, respectively). Here we discuss a different approach. Specifically, we show how the dual
nature of patterns to specify both structure and constraints can make some of the definitions
and notions related to constructors more elegant and appealing. For example, unification
and anti-unification can be seen as conjunction and, respectively, disjunction of patterns.

One main property of constructors is that they collectively can construct all the elements
of their target domain; i.e., the target domain has “no junk” [43]|. One simple pattern stating
that a unary symbol f is to be interpreted as a surjective relation in every model is 3z . f(z).
Generalizing this idea to an arbitrary set of n symbols

{ciea gmi, | 1<i<n}
that we want to be constructors for target sort s, we get the following “no junk” pattern:

\/ Ja} st 3l s (g,)

S; =8
For example, applied to the usual 0 and succ constructors of natural numbers, the above
becomes 0 V 3z : Nat. succ(z). Indeed, the interpretation of this pattern in the model of
natural numbers is the entire domain; or said differently, any number matches this pattern.
The other main property of constructors is that they yield a unique way to construct each
element in the target domain; i.e., the target domain has “no confusion” [43]. That means
two separate types of conditions, each specifiable with patterns. First, each constructor ¢;

builds a set of elements distinct from that of any other constructor ¢; with s; = s;:
_'(Ci(xila R 71"?’%) N Cj(l‘}, R al‘;nj))

Recall that, by convention, free variables in pattern axioms are assumed universally quantified.

For our 0 and succ example, the above becomes —~(0A succ(x)), stating that suce(x) is different

from 0 for any z. Second, each constructor ¢; is injective in all its arguments at once (regarded
as a tuple), which can be specified with a pattern as follows:

i@y) Neilyiy oy = alag Ayd et Ay
Indeed, the above pattern ensures that in any model M, if
(Ci)M(a%, - ,a?”) N (CZ)M(bzl, .. ,b:nl) #0

then it must be that a} = b}, ..., a" = b,

Putting all the above together, below we formally introduce constructors:
Definition 5.25. Given a specification (S, %, F'), the symbols in set
{ci € 251...577”,51- | 1 < i < n}

are called constructors iff they have the following properties:

32 G. ROSU

No junk: For any sort s € {s; | 1 <i <n},
FE \/ kst 3 s

K] 1
Si=s8
No confusion, different constructors: For any 1 <7 # j < n with s; = s;,
F = (e, ..,z A cj(:cjl», . ,x;-nj))
No confusion, same constructor: For any 1 <i <n,
1 i 1 i 1 1 i i
Fl=ciz,...,o]")Ny, .., y") = cilzy ANy, ..oz Ay™)

Additionally, if each ¢; is functional, then we call them functional constructors. The usual
way to define a set of constructors is to have F include all the patterns above.

It is easy to see that if the symbol o that occurs in the context Cy ;[] in Definition 2.12 is
a constructor, then C, ;[0] is injective, and thus, by Propositions 2.13 and 2.11, it enjoys full
distributivity w.r.t. the matching logic constructs A, V, V and 3. Thanks to Propositions 5.9
and 5.10, we can therefore apply these distributivity properties of constructors in any context.
In addition to the distributivity properties, the following equality properties of constructors
turned out to also be very useful in program verification efforts:

Proposition 5.26. Given a set of constructors {c¢; € L
specification (S,%, F), the following hold:
Case analysis: If ¢ is a pattern of sort s € {s; | 1 <i < n}, then

FEop= \/ Joj st 3 s o Ae(al .2l
;=8

mi | 1< i< n)fora

-S;

K3 K3 7

Additionally, if the constructors and ¢ are all functional, then

FEep= \/ Jop osp. 3l s (g, L2 A (o = (g, 2)

7 7 7
S8;=8

Different constructors: If 1 < i # j < n with s; = sj, and p} € PATTERNS}, ey
@' € PATTERN m; , and gp} € PATTERN,1, ..., (p;.nj € PATTERN m;, then
2 J 7

F|:Ci(@zlv"'vsozni)/\Cj(sogl'w"a(p;nj):J-

. 1 1 m; m;
Same constructor: If ¢;,v¢; € PATTERNS%, T NS PATTERNS:%, then

F e cilph s @) Al ™) = il Al @ AT

Proof. Case analysis follows by Proposition 5.9, which reduces equality (=) to double
implication (++). The latter follows by the propositional distributivity of A over V and, of
course, the “no junk” requirement of constructors in Definition 5.25. The part where the
constructors and ¢ are functional is an immediate corollary, making use of Proposition 5.24.

Different constructors: Suppose that there is some model M and valuation p : Var — M

such that p(ci(¢}, ..., o) A cj(cpjl., . .,cp}nj)) # (). Then there are some elements a; €

pleD), ..., al™ € p(¢"), and a} € ﬁ((p;), s a}nj € ﬁ((p;-nj) such that (¢;)m(a;,...,al")N
(¢)) M(a},...,a;nj) # 0, which contradicts the “no confusion” requirement for different

constructors in Definition 5.25.
Same constructor: By Proposition 5.9, we can replace = with <». The < implication
is immediate by structural framing, Proposition 2.10. For the — implication, let M be a

MTCHING LOGIC 33

model, p: Var — M a valuation, and b € p(c;(¢l, ..., o!") A CZ(¢ .., ")), Then there
are some elements ul € p(p}), ..., u"" € p(¢™), and v} € p(y}), ..., vI" € p(i"*) such that
be (C,-)M(u}, couM) A (e)m (v}, . o), that s, b € o/ (¢i(zl, ... ,x;m) ANei(yls o yl™),
where p’ : Var—) M is some valuation that takes xll to uz-l, e X to ug ", and yil to vz-l, e

y;"" to v;"". By the “no confusion” requirement for the same constructor in Definition 5.25 we
conclude that b € p/(c;(z} Ayl, ..., 2" Ayl™)), that is, b E (ci)m({ul} A vt {u™ A
m;

{v"}). This can only happen when u} = v}, ..., u[" = v[™. And in that case it can only be

that b € ples(p! AL, ..., @™ A ™)), O
The case analysis property is useful when additional constraints are needed on a pattern
in order to reason with it. For example, if b is a Boolean (symbolic) expression in a given
positive context, C'[b], then we can replace b with true A (b = true) V false A (b = false), and
then by Propsitions 2.11 (distributivity) and 5.12 (constraint propagation) we can reduce
C[b] to Cltrue] A (b = true) V C[false] A (b = false). Similarly, if e is a Nat (symbolic)
expression in a positive context C|[e], then we can reduce the pattern Cle| to the pattern
C[0] A (e =0) V 3z. Clsucc(x)] A (e = suce(x)), which may be further reducible. The other
two properties in Proposition 5.26 are self-explanatory and clearly useful for the same reasons
why constructors are useful, but we found them particularly useful when attempting to do
symbolic execution using the operational semantics rules of a language. As explained in [28],
the main technical instrument there is unification: indeed, in order to check if a symbolic
program configuration ¢ can be executed with an operational rule left = right, a unification
of ¢ and left is attempted. If it fails then the rule cannot be applied; if it succeeds then the
rule can be applied and ¢ is advanced to right A v, where v is the constraints resulting from
unifying ¢ and left. As discussed below, unification can be achieved in matching logic by
pattern conjunction, which makes the last properties in Proposition 5.12 indispensable.

We next show how unification and anti-unification can be explained as conjunction and,
respectively, disjunction of matching logic patterns. To fall into the conventional setting, for
the reminder of this section assume that all the symbols are functional constructors and all
the starting patterns are term patterns (Definition 5.21) built with such constructors.

Let us re-think unification in terms of matching logic and pattern matching. Consider
two patterns ¢1 and o having the same sort. Each of them is matched by a potentially
infinite set of elements. We are interested in the elements that match both ¢; and o.
Moreover, we are interested in some pattern ¢ that captures all these elements. Clearly
© — 1 and ¢ — @2, and we would like the most general such ¢, that is, if ¢’ — ¢1 and
¢ — @2 then ¢’ — . We do not have to search for such a ¢ any further, because it is, by
definition, @1 A ¢2. All we have to do then is to simplify ¢; A @2 to a convenient form, say
a term pattern constrained with equalities telling how ¢; and 9 fall as instances, using
matching logic reasoning. Let us exemplify this when ¢1 = f(g(x),z) and p9 = f(y,0) where
f is a binary symbol (functional construct), ¢ is unary, and 0 is a constant:

flg(x),z) A f(y,0) (by Proposition 5.26)

flg(x) Ny,z N O) (by Proposition 5.24)

flgx)AN(y=gx),zA(x=0)) = (by Proposition 5.12)
flg(x),z) A (y =g(x)) A (z=0) (by Proposition 5.10)
£(9(0),0) A (y = g(0)) A (z = 0)

Therefore, using matching logic reasoning we obtained both the most general unifier of

the two term patterns, encoded as a conjunction of equalities (y = ¢(0)) A (x = 0), and

34 G. ROSU

the unifying term pattern f(g(0),0). We believe that unification algorithms should not be
difficult to adapt into matching logic proof search heuristics capable of producing proofs like
above, thus narrowing the gap between tools and certifiable program verification.
Anti-unification, or generalization, can be dually regarded as disjunction of patterns?.
Let us briefly recall Plotkin’s original two-rule algorithm [75]:
(1) f(ula"'vun)I—lf(vlw"avn) ~ f(ul UUl,...,’LLnl_l’Un),
(2) wUwv ~> xy,, otherwise, where x,,, is a variable uniquely determined by v and v.
Given terms s and ¢, the term obtained by applying this algorithm to s LIt is their anti-
unification; the corresponding substitutions instantiating it to s and, respectively, ¢ are
obtained by instantiating each variable x,, ,, to u and, respectively, v. For example, f(g(0),0)U
flg(1),1) ~* f(g(z01),x0,1). Indeed, the term f(g(xo,1),20,1) containing one variable, xq 1,
is the least general term that is more general than both f(g(0),0) and f(g(1),1). Also, the
two original terms can be recovered by substituting x¢ 1 with 0 and, respectively, 1
Plotkin’s algorithm can be mimicked with inference in matching logic. For the example
above, the following matching logic proof blindly follows the application of Plotkin’s algorithm
(all proof steps correspond to applications of proof rules of FOL with equality):

f(9(0),0) v f(g(1),1) =
gO)ANy=0Vve=g(1)Ay=1

Jo. Jy. flz,y) A (=)
dr.Jy.Jz. flz,y) Ne=g(z) N(z=0ANy=0Vz=1Ay=1)
EIx.EIy.EIz.f(x,y)/\x:g() (z=0ANy=2Vz=1Ay=2) =

Jr.Jy. 3z f(r,yy Ne=g(z)ANy=2zA(z=0Vz=1)

2. f(9(2),2) N (z=0Vz=1)

The resulting pattern contains both the generalization, f(g(z),z), and the two witness
substitutions that can recover the original terms (encoded as a disjunction of equalities).

5.8. Built-in Domains. Dedicated solvers and decision procedures specialized for particular
but important mathematical domains abound in the literature. Some domains may not even
have finite descriptions in certain logics; a classic example is the domain of natural numbers,
which does not admit a finite, not even a recursively enumerable axiomatization in FOL
(Godel’s incompleteness |38, 39]). Therefore, to reason about certain properties that involve
natural numbers, we need to leave FOL. The standard approach is to assume some oracle for
the domain of interest, which is capable of answering validity questions within that domain.
At the practical level, such an oracle may be implemented using specialized procedures and
algorithms for that domain, such as those provided by Z3 [29], Yices [32], CVC |6, 5], etc.
At the theoretical level, the set of models of the FOL specification in question is restricted to
those that inherit the desired model for the built-in data-types, and thus we can assume all
the valid FOL properties of that domain in the rest of the proof even if those properties are
not provable using FOL.

Reasoning with built-in domains can be done exactly the same way in matching logic:
assume the desired sorts and symbols for the built-in domains, together with all their valid
patterns. Due to their ubiquitous nature, from now on we tacitly assume definitions of
integers and of natural numbers, as well as of Boolean values, with common operations on
them. We assume that these come with three sorts, Int, Nat and Bool, and the operations on

2The author thanks Traian Florin Serbanuta for observing this.

MTCHING LOGIC 35

them use the conventional syntax; e.g., + :Int x Int — Int, + : Nat X Nat — Nat,
> :Nat x Nat — Bool, and_: Bool x Bool — Bool, not_: Bool — Bool, etc.
Boolean expressions are frequently used in matching logic specifications to constrain
variables that occur in patterns of possibly other sorts. For example, suppose that in some
domain Real of real numbers we want to refer to all numbers of the form 1/x where z is a
strictly positive integer. These numbers are precisely matched by the pattern 1/x A (z >
0 zgz‘}fl true). However, this pattern is too verbose. For the sake of a more compact and

easy to read notation, we introduce the following:

Notation 5.27. If b is a proper Boolean expression, that is, a term pattern of sort Bool
(Definition 5.21), then we will write just b instead of b = true in any other sort context.

Notation 5.27 allows us to use Boolean expressions in any sort context, thanks to the
additional notational conventions for equality in Section 5.2. For example, we can write
1/z Az > 0 instead of 1/z A (x > 0 =%l trye).

To avoid confusion or even introducing inconsistencies, we urge the reader to respect
the underlined words proper and other in Notation 5.27. That’s because Bool expressions,
when regarded as patterns, evaluate to one of the singleton sets {t} (the true value) or {f}
(the false value), while patterns of sort Bool can evaluate to any of the four sets 0, {t}, {f},
or {t, f}. For example, consider the Bool patterns T p,,; and L p,,, which are not proper
Bool expressions and evaluate to the sets {¢, f} and (), respectively, and an equality pattern
T Bool = L Boor Which is obviously L (regardless of the sort context). If we carelessly apply
the notation above to this pattern we get (T poo; = true) = (Lpoor = true), that is, T; that’s
because both T g,,; = true and L pg,, = true are 1, and 1. = 1 is T. So it is important to
apply the notation “b as a shortcut for b = true” only when it is guaranteed that b evaluates
to either {t} or {f}, such as when b is a proper Boolean expression term. It is also important
to apply the notation only when b occurs in sort contexts other than Bool. For example,
consider the Boolean expression b = (true or false). If we carelessly apply the notation above
to the Boolean sub-expressions true and false, which occur in b above in Bool contexts, then
we get (true = true) or (false = true), which is T poo 07 L Boor, which is L gy (by the second
item in Definition 2.3). On the other hand, b = true is T goo;-

When reasoning with matching logic patterns, it is often the case that various Boolean
expression constraints come from various sub-patterns. We would like to combine them into
larger Boolean expressions, which we can then send to SMT solvers. The following result
allows us to do that:

Proposition 5.28. If b, by and bs are proper Bool expressions, then

o = (b1 = true A by = true) = (b1 and by = true)

e = (b= true) = (notb = true)

Other similar properties for derived Boolean constructs can be derived from these.

Proof. Trivial: each of p(b), p(b1), and p(b2) can only be {t} or {f}, for any valuation p. []

6. INSTANCE: ALGEBRAIC SPECIFICATIONS AND BEYOND
An algebraic specification is a many-sorted signature (S, ¥) together with a set of equations?

FE over Y-terms with variables. The variables are assumed universally quantified over the

3We only consider unconditional equations here.

36 G. ROSU

entire equation. The models, called X-algebras, are first-order ¥-models without predicates
where equality is interpreted as the identity relation. We let =4;, denote the algebraic
specification satisfaction relation; in particular, ' |= 45, e means that any model that satisfies
all the equations in F also satisfies e.

Algebraic specifications play a crucial role in theoretical computer science and program
reasoning, because they are often used to define abstract data types (ADTS) [59, 40]. Some
common ADTs, which have proved useful in many applications, are lists (or sequences),
sets, multisets, maps, multimaps, graphs, stacks, queues, priority queues, double-ended
queues, double-ended priority queues, etc. [90]. These ADTs can be found a variety of formal
definitions using algebraic specifications in the literature, not necessarily always equivalent,
and are easily definable or already pre-defined in algebraic specification languages such as
Maude [25], CASL [62], CafeOBJ [30], OBJ [41], Clear [19], etc., as well as in many other
languages with support for ADTs.

Here we show not only that algebraic specifications can be regarded as matching logic
specifications, but also that the use of matching logic often allows for more expressive,
concise and intuitive specifications of ADTs. To capture conventional ADTs as matching
logic specifications, we need to do almost nothing besides recalling the conventions and
notations introduced in Section 5. Specifically, algebraic equations ¢t = ¢’ in E are regarded as
matching logic equality patterns ¢t = t' (Section 5.2), algebraic symbols in ¥ are interpreted
as functional symbols (Section 5.4, Definition 5.21), and no other patterns but equations are
allowed in specifications. The resulting matching logic specifications are then precisely the
algebraic specifications not only syntactically, but also semantically:

Proposition 6.1. Let (S, %, F') be the matching logic specification associated to the algebraic
specification (S, %, E) as above, that is, F' contains an equality pattern for each equation in
E, as well as all the patterns stating that the symbols in X are interpreted as functions (see
Definition 5.21). Then for any 3-equation e, we have E =45 ¢ iff F = e.

Proof. The key observation is that, in a similar style to the proof of Proposition 4.1, there is

a bijection between the matching logic models M satisfying F' and the (S, X)-algebras M’

satisfying E, such that M = e iff M’ |=4;4 e for any Y-equation e. The model bijection is

defined as follows:

e M! = M for each sort s € S;

o opp i Mgy X+ X My — Mg with oppr(ar, ... an) =aiff opy s Mg, X+ x Mg, — P (M)
with opr(a,...,a,) = {a}. Note that this is well-defined because F' includes all the
patterns stating that all the symbols are functional, so o, is a function.

This model relationship is easy to prove a bijection, and everything else follows from it. []

Using the notations introduced so far, Peano natural numbers, for example, can be
defined as the following matching logic specification:

0:— PNat
succ : PNat — PNat plus(0,y) =y
plus : PNat x PNat — PNat plus(suce(x),y) = succ(plus(x,y))

This looks identical to the conventional algebraic specification definition, which is precisely
the point and justifies our notation conventions in Section 5. In particular, the functional
notation (Definition 5.21) for the three symbols ensures that they will be interpreted as
functions in the matching logic models. Also, as seen in the proof of Proposition 6.1, there
is a bijective correspondence between the matching logic models of the specification above

MTCHING LOGIC 37

and the conventional models of the Peano algebraic specification (we only discuss the loose
semantics here, not the initial-algebra semantics [43]).

Note, however, that matching logic allows more than just equational patterns. For
example, we can add to F' the pattern 0 V Jx.succ(x) stating that any number is either 0
or the successor of another number. Nevertheless, since matching logic ultimately has the
same expressive power as predicate logic (Proposition 10.1), we cannot finitely axiomatize in
matching logic any mathematical domains that do not already admit finite FOL axiomati-
zations. As indicated in Section 5.8, we follow the standard approach to deal with built-in
domains, namely we assume them theoretically presented with potentially infinitely many
axioms but implemented using specialized decision procedures. Indeed, our matching logic
implementation prototype in K defers the solving of all domain constraints to Z3 [29].

6.1. Sequences, Multisets and Sets. Sequences, multisets and sets are typical ADTs.
Matching logic enables, however, some useful developments and shortcuts. For simplicity, we
only discuss collections over Nat, and name the corresponding sorts Seq, MultiSet, and Set,
respectively. Ideally, we would build upon an order-sorted algebraic signature setting, e.g.
following the approach in [42], so that we can regard x: Nat not only as an element of sort
Nat, but also as one of sort Seq (a one-element sequence), as one of sort MultiSet, as well as
one of sort Set. Extending matching logic to an order-sorted setting is beyond the scope
of this paper. The reader who is not familiar with order-sorted concepts can safely assume
that elements of sort Nat used in a Seq, MultiSet, or Set context are wrapped with injection
symbols. The symbols below can have many equivalent definitions.
Sequences can be defined with two symbols and corresponding equations:

€: — Seq €E-r==x
- :8Seq x Seq — Seq r-e=x
(@ y)-z=x-(y 2)
We assume that lowercase variables have sort Nat and uppercase variables have the appropriate
collection sort. To avoid adding initiality constraints on models, yet be able to do proofs by
case analysis and elementwise equality, we can add the following patterns:

eVdr.3S. x-S
(x-S=2-5)=@=2")N(S=Y5)
The second axiom above holds strictly for sequences, but not for commutative collections, so

it needs to be removed later when we add the commutativity axiom to define multisets and
sets. We next define two common operations on sequences:

rev : Seq — Seq € : Nat x Seq — Bool
rev(e) = € x € € = false
rev(z - S) = rev(S) - x rey-S=(x=yAtrue) orz €S

To illustrate the flexibility of matching logic, we next define up-to and Fibonacci sequences
of natural numbers.

upto : Nat — Seq upto(n) = (n=0AeVn>0Aupto(n—1)-n)

This specification needs to be explained. Let M be a model satisfying the above. First
recall Notation 5.27. For notational simplicity, assume that My, and Mg, are the sets of
natural numbers and of comma-separated sequences of natural numbers, respectively. We
show by induction on m that uptoy,(m) = {1-2---m}. If m = 0 then the second disjunct

38 G. ROSU

of the axiom is () and thus the first disjunct ensures that upto,;(0) = epr = €. If m > 0 then
the first disjunct is () and thus the second disjunct, with p : Var — M such that p(n) = m,
yields p(upto(n)) = p(upto(n — 1) - n), that is, upto,;(m) = upto,,(m — 1) - m, which by the
induction hypothesis implies uptoy,(m) ={1-2---m —1} - m={1-2---m}.

Similarly, we can specify a function that defines the sequence of Fibonacci numbers up
to a given number n > 0:

fib : Nat — Seq fib(n) = (n=0A0Vn>0A auz(n, 0-1))
aux : Nat x Seq — Seq auz(l, S) =25
n>1—aux(n, S-z-y)=aur(n—1, S-z-y-x+y)

We conclude the discussion on sequences with an elegant means to sort sequences
following a bubble-sort methodology:

(z-yhz>y)=y-x

Since equations are symmetric, the above effectively allows to prove (so far only semantically,
in a model) a sequence equal to any of its permutations, i.e., sequences become multisets. If
the equations were oriented, like they are in reachability logic [79], then the above would
yield a sequence sorting procedure.

We can transform sequences into multisets adding the equality axiom x -y = y - x, and
into sets by also including x - x = L or - x = x. Here is one way to axiomatize intersection:

N _: Set x Set — Set eNSy =€
(:E-Sl)ﬂSQ:((J/‘ESQ%SU)/\(—'(SCESQ)—)6))-(51(752)

6.2. Maps. Finite-domain maps are also a typical ADT. Due to their ubiquity in defining
algebraic specifications, maps are usually predefined in languages like those mentioned in
the preamble of this section (Section 6). For example, below is a snippet of Maude’s MAP
module [25], which is parametric in both the source and the target domains:
fmod MAP{X :: TRIV, Y :: TRIV} is

sorts Entry{X,Y} Map{X,Y} .

subsorts Entry{X,Y} < Map{X,Y} .

op _|->_ : X$E1t Y$E1t -> Entry{X,Y} [ctor] .

op empty : -> Map{X,Y} [ctor] .

op _,_ : Map{X,Y} Map{X,Y} -> Map{X,Y} [assoc comm id: empty ctor] .

endfm

Note that the map concatenation symbol, “_,_" is associative (attribute “assoc”), com-

mutative (“comm”), and has the “empty” map as identity (“id: empty”). The attribute
“ctor” states that the corresponding symbols are constructors. Additional axioms, not
shown here, ensure that maps are always well-formed, that is, maps with multiple bindings
of the same key are disallowed. When instantiated with natural numbers for both the
domain and the target, this MAP module defines well-formed finite-domain maps such as
“1 1->5, 21->0, 7 |->9, 8 |-> 1" In Section 9, to show how separation logic can
be framed as a matching logic theory with essentially zero representational /encoding distance,
we will pick an instance of maps with natural numbers as both the domain and the co-domain,
and will rename empty to emp and _,_to %

MTCHING LOGIC 39

7. INSTANCE: FIRST-ORDER LOGIC

First-order logic (FOL) extends predicate logic with function symbols and allows predicates
to apply to terms with variables built using the function symbols. Recall from Section 4 that
by “predicate logic” in this paper we mean what is also called “pure predicate logic” in the
literature, namely FOL without any function or constant symbols.

Formally, given a FOL signature (.S, X, II), the syntax of its (many-sorted) formulae is:

ts x € Varg
o(tsy, ..
T(tsy, -
P
eAP
dx.p

ots,) with o € Xg, 5, 6
Jts,) with 7 € Il s,

¥

Compare the above with the syntax of matching logic in Section 2. Unlike FOL, matching
logic does not distinguish between the term and predicate syntactic categories, reason for
which its syntax is in fact more compact than FOL’s. Moreover, matching logic allows
logical constructs over all the syntactic categories, not only over predicates, and locally
where they are needed instead of only at the top, predicate level. Also, matching logic allows
quantification over any sorts, including over sorts of symbols thought of as predicates.

Like with predicate logic (Section 4), we can instantiate matching logic to capture FOL
as is, modulo the notational conventions in Section 5 but without any translations from one
logic to the other. Like in predicate logic, we add a Pred sort and regard the FOL predicate
symbols as matching logic symbols of result Pred, and disallow variables of sort Pred and
restrict the use of logical connectives and quantifiers to only patterns of sort Pred. Then
there is a one-to-one correspondence between FOL formulae and matching logic patterns
of sort Pred; we let ¢ range over them. Moreover, following the approach in Section 5.4,
we constrain each FOL operational symbol o € ¥, , s to be interpreted as a function,
that is, with the notation introduced in Section 5.4, we write the symbols meant to be
functions as o : s1...s, — s. Formally, let (SM, ML) be the matching logic signature
with SML = S U {Pred} and SME =X U {n:51...5, = Pred | 7 € Il 4, }, and let I be
{3z:s.0(x1:81,...,xn:8n) = 2| 0 € Bg, 5,5} stating that each symbol in ¥ is a function.

Proposition 7.1. For any FOL formula ¢, we have =ror ¢ iff F' = ¢.

Proof. The proof is similar to that of Proposition 4.1. Like there, the implication “|=ror, ¢
implies F' = ¢” follows by the completeness of FOL. Indeed, it is well-known that the
properties in Proposition 2.8 and Corollary 5.23, when regarded as proof rules for deriving
FOL formulae ¢, yield a sound and complete proof system for FOL [38]. That is, “Fror ¢
iff Fror ¢”. However, since Proposition 2.8 and Corollary 5.23 show that these proof rules
are also sound for matching logic in the context of F' (Corollary 5.23 requires that ¢ is a term
pattern in the substitution rule, which holds in the context of F'), we conclude that “Fror ¢
implies F' = ¢". Therefore, “=ror, ¢ implies F' = ¢”.

For the other implication, we also follow the idea in Proposition 4.1. From any FOL
model MFOL = ({MFO™Y cs, {opror}oes, {Tprrr brer) We can construct a matching logic
model MME = ({ MM} (st preay {onmn oes U{mppe}ren), where MME = MEOL for all
sorts s € S and MML = {x} (with x some arbitrary but fixed element), oysmz (a1, ..., a,) =
{opror(at, ... an)}, and myme(ay, ..., ay) = {*} iff mpsre(aq,. .., ay,) holds, and otherwise
ayme(ay, ..., a,) = 0. Note that MML = F: indeed, opym(ay,. .., a,) contains precisely one

40 G. ROSU

element for any o € ¥y, 5, s and any a1 € M;‘f’;, ey Ay € M;‘fL, namely o ror(ay, ..., an).
It therefore suffices to show, for any FOL formula ¢, that MFOL EroL ¢ iff MML =L e
Like in Proposition 4.1, we can show by structural induction on ¢ that for any p: Var —
MPFOL it is the case that MTOL, p =por ¢ iff p(p) = {*}. The induction proof differs from
that in Proposition 4.1 only in the base case, where we need to notice that term patterns
are functional in MM~ thanks to Corollary 5.22, and that p(t) = a for a term ¢ in the FOL
context (with p : Var — MFOL) iff 5(t) = {a} in the matching logic context (where p is
regarded as p : Var — MML which is possible as we disallow Pred variables). []

Consequently, FOL is also a methodological fragment of matching logic. Moreover, since
the rules of FOL where we replace all the predicate meta-variables with pattern meta-variables
are sound for matching logic, we can use off-the-shelf decision procedures and solvers for
FOL or fragments of it unchanged when doing matching logic reasoning. The only thing we
have to be careful about is to distinguish the term patterns from arbitrary patterns, and
make sure that the Substitution rule of FOL is only applied with ¢ a term pattern, otherwise
it may be unsound. Section 11 discusses this in detail.

Predicate logic and FOL with equality also fall as methodological fragments of matching
logic. In addition to the constructions in Section 4 and, respectively, above in this section, all
we have to do is to is to make use of the definedness symbols that we assume by convention
included in all signatures (Section 5.1), which give us equality as an alias as described in
Section 5.2. We leave the details as an exercise for the interested reader.

Like Boolean expressions, FOL is also frequently used in matching logic specifications to
constrain variables that occur in patterns of possibly other sorts. Consider the same example
we discussed before and after Notation 5.27, where we want to refer to all real numbers of the
form 1/x with x a strictly positive integer, but this time using a given predicate positive?(x)
that tells whether x is positive. We can use the pattern 1/z A (positive?(z) =5 T p,.4), but
that is too verbose. We would like to just write 1/x A positive?(z). Following Notation 5.27,
we introduce the following similar notation for predicates instead of Boolean expressions:

Notation 7.2. If ¢ is a FOL formula, we take the freedom to write ¢ instead of @ = T pjeg.

Since both the FOL formulae and the patterns of Pred sort evaluate to only two possible
values, () or {x}, unlike Notation 5.27 we can freely apply the notation above in any contexts,
including of sort Pred. Note, however, that care must be exercised to ensure that ¢ is
indeed a FOL formula. For example, if one extends FOL with additional formula constructs,
like separation logic does for example (Section 9), then the above notation may lead to
inconsistencies. As discussed in Section 9 in detail, matching logic has a different way to deal
with such extensions (allowing different sorts of “predicates”), without polluting the universe
of FOL formulae and thus allowing the notation above to still apply.

Same as with Boolean expressions in Proposition 5.28, we sometimes need to combine
various FOL constraints resulting from various sub-patterns in order to make appropriate
calls to FOL provers, e.g., SMT solvers. The following result allows us to do that:

Proposition 7.3. If p, p1 and p2 are FOL formulae, then

o = (1= Trrea \DP2=Tprea) = (P1 ADP2 = T Pred)
°): _‘(p = TPred) = (_‘P = TPred)
Other similar properties for derived FOL constructs can be derived from these.

Proof. Trivial: each of p(p), p(p1), and p(p2) can only be @) or {x}, for any valuation p. [J

MTCHING LOGIC 41

8. INSTANCE: MobDAL LoGICc

It turns out that the vanilla matching logic over just one sort with (countably many) constants
and definedness (as defined in Section 5.1) captures one of the most popular modal logics,
S5 [7, 56, 44]. At the end of this section we briefly discuss how other modal logics can also
be framed as matching logic instances, but until there we only discuss S5 and thus take the
liberty to implicitly mean the “S5 modal logic” whenever we say “modal logic”.

We start by giving the syntax and semantics of modal logic. Let Varp,,, be a countable
set of propositional variables p, ¢, etc. Then the modal logic syntax is defined as follows:

2 VarProp

—®

Y=

D

The remaining propositional constructs A, V and <>, can be defined as derived constructs.
Therefore, syntactically, modal logic adds the [J construct to propositional logic, which is
called necessity: Uy is read “it is necessary that ¢”. The dual possibility construct can be
defined as a derived construct: ¢ = —[J—y is read “it is possible that ¢”. Semantically, the
truth value of a formula is relative to a “world”. Propositions can be true in some worlds but
false in others, and thus formulae can also be true in some worlds but not in others:

Definition 8.1. Let W be a set of worlds. Mappings v : Varpy, x W — {true, false},
called (modal logic) W-valuations, state that each proposition only holds in a given
(possibly empty or total) subset of worlds. Valuations extend to modal logic formulae:

e v(—p,w) = true iff v(p, w) = false

e V(1 = po,w) = true iff v(p1,w) = false or v(pa,w) = true

e v(0p,w) = true iff v(p,w’) = true for every w' € W

Formula ¢ is valid in W, written W |=s5 ¢, iff v(p, w) = true for any W-valuation v and
any w € W. Formula ¢ is valid, written g5 ¢, iff W g5 ¢ for all W.

Modal logic (S5) admits the following sound and complete proof system |7, 56]:

(IN) Rule: If ¢ derivable then Oy derivable
(K) Axiom: O(p1 — ¢2) — (Op1 — Do)
(M) Axiom: Oy — ¢
(5) Axiom: Q¢ — OO

We next show that we can define a matching logic specification (S, ¥, F') which faithfully
captures modal logic, both syntactically and semantically. The idea is quite simple: S
contains precisely one sort, say World; 3 contains one constant symbol p € X worq for each
propositional variable p € Varpyp, plus a unary symbol ¢ € Xword wora; and F' contains
precisely one axiom stating that ¢ is the definedness symbol (Section 5.1), namely ¢z : World
(z is a free World variable in this pattern). Then we let Oy be the totality construct
(Notation 5.3), that is, syntactic sugar for ~0—¢p. Note that any modal logic formula ¢ can
be regarded, as is, as a ground matching logic pattern over this signature; by “ground” we
mean a pattern without variables, so the other implication is also true, because disallowing
variables includes disallowing quantifiers. Moreover, Corollary 5.5 implies that the modal
logic proof system above is sound for the resulting matching logic specification, so g5 ¢
implies = . We show the stronger result that the world/valuation models of modal logic
are essentially identical the the matching logic (.S, %, F')-models, and thus:

42 G. ROSU

Proposition 8.2. For any modal logic formula ¢, we have |=s5 ¢ iff = ¢.

Proof. For any world W and W-valuation v : Varpy,, x W — {true, false} (Definition 8.1),
let My, be the matching logic (5, X, F')-model whose carrier is W, whose constant symbols
P € Y\ word (i-e., p € Varpyy) are interpreted as the sets of worlds pyyy,, = {w € W |
v(p,w) = true}, and Qw is the total set W for each w € W. Similarly, for each matching
(S, %, F)-model M let Wir = Myyonq be its carrier and let vas @ Varpr, x Wiy — {true, false}
be defined as v(p,w) = true iff w € pyps. It is clear that the two mappings defined above,
(W, v) — My, and respectively M — (W, var), are inverse to each other.

Since a modal logic formula ¢ can be regarded as a matching logic pattern with no
variables, p(¢) only depends on the model M but not on any particular valuation p : Var — M
(by (1) in Proposition 2.6). Let us then use the notation ¢, for the (unique) interpretation
of ¢ in matching logic model M; note that vyr C Myworid-

We show that for any W and any W-valuation v, we have v(p,w) = true iff w € ¢y, , .
We show it by structural induction on . The cases when ¢ is a propositional symbol or a
logical connective are trivial. For the necessity modal construct O, we have v(Cp, w) = true
iff v(p,w’) = true for all w' € W (Definition 8.1), iff w’ € payy,, for all w' € W (induction
hypothesis), iff pury,, = W = (Mw,) word, iff (Op)ary,, = W (by Proposition 5.4), iff
w € (Op) ry,, (by Proposition 5.4). Therefore, v(p,w) = true iff w € par,, -

We are now ready to prove the main result: g5 ¢ iff v(p,w) = true for any W and
W-valuation v and w € W (Definition 8.1), iff w € ¢ay,,, for any W and W-valuation v and
w € W (by the property proved above by structural induction), iff ¢az,,, = W for any W
and W-valuation v, iff My, = ¢ for any W and W-valuation v (by Proposition 2.5), iff
M = ¢ for any matching logic (S, X, F))-model M (because of the bijective correspondence
between pairs (W, v) and (S, %, F))-models M proved above), iff = .]

The result above, together with the general translation of matching logic to predicate
logic with equality discussed in Section 10, will also give us a translation of modal logic to
predicate logic with equality. Translations from modal logic to various types of first-order
(or second-order or other even more expressive) logics are well-known in the literature, one
of them to predicate logic being called the “standard translation” [89, 11]. Our goal in this
section was not to propose yet another translation, but to show how modal logic can be
framed as a matching logic specification without any translation.

There are many variants of modal logic [89, 11, 44]. One may naturally wonder if
all of them can be similarly regarded as matching logic theories. While systematically
investigating each and everyone of them seems tedious and likely not worth the effort, it is
nevertheless interesting to note that there is an immediate connection between one of the
most general variants of modal logic, called multi-dimensional or polyadic modal logic [11],
and matching logic. Instead of particular unary modal operators like (I and ¢, polyadic
modal logic allows arbitrary operators taking any number of formula arguments; if A is such
an operator of n arguments and @1, ..., ¢, are formulae, then A(p1, ..., @,) is also a formula.
In models, called general frames, each such operator A is associated a relation Ra of n + 1
arguments. Propositional variables are also interpreted as sets (of “worlds in which they
hold”) by valuations, and given set of worlds W, valuation v : Varpy,, x W — {true, false}
and world w € W, we have v(A(p1, ..., on), w) = true iff there are wy, ..., w, € W such that
v(p1,w1) = true, ..., v(pn, wy) = true and Ra(w,wy, ..., wy).

It is easy to associate a matching logic specification (5, %, F) to any polyadic modal
logic. Like for S5, we let S contain precisely one sort, World, and ¥ contain one constant

MTCHING LOGIC 43

symbol p € X\ wora for each propositional variable p € Varp,,. Further, we add a symbol
A € XWorldx.-x World, World of n arguments for each polyadic modal operator A taking
n arguments. Then any polyadic modal logic formula ¢ can be regarded without any
change/translation as a matching logic formula. Further, any axioms/schemas in polyadic
modal logic can be added as matching logic axioms/schemas in F'. Then we can extend
Proposition 8.2 to show = ¢ in the polyadic modal logic iff F' = ¢ in matching logic; the key
technical insight here is that there is a bijective correspondence between relations of n 4+ 1
arguments and functions of n arguments returning sets of elements.

When compared to polyadic modal logic, matching logic has a couple of advantages
which, in our view, make it more appealing to use in practice. First, it has sorts. Thus,
unlike polyadic modal logic which only has “formulae”, matching logic allows us to have
patterns of various types. For example, in Section 2.2 we show how heap patterns interact
with program patterns and how all can be put together in configuration patterns; while
possible in theory, it would be quite inconvenient to force all patterns to have the same sort.
Second and more importantly, modal logic and matching logic have a different interpretation
for “variables”. In modal logic (propositional) variables are interpreted as sets and we are
not allowed to quantify over them, while in matching logic variables are interpreted as just
elements and we can quantify over them. Like shown above, the set interpretation can be
recovered in matching logic by associating constant symbols to propositional variables. But
the singleton interpretation of variables in matching logic, combined with the capability to
quantify over variables of any sort, allows us to elegantly define many useful properties, such
as those in Section 5. For example, the simple pattern V. [z] defines the semantics of the
definedness symbol [|, which as seen above gives us the { construct of S5. It is critical
that x ranges over singleton elements in models. If one attempts to do the same in polyadic
modal logic naively replacing = with a propositional variable p, then one gets an inconsistent
theory (because we want [p]| to be false when p is interpreted as the empty set of worlds).
Definedness then allows us to define membership and equality, and thus allows us to use
patterns like Vx . Jy . f(z) = y to state that symbol f is a function, etc.

Whether the results and observations above have practical relevance remains to be seen.
We hope they at least enhance our understanding of both matching logic and modal logic.

9. INSTANCE: SEPARATION LOGIC

Matching logic has inherent support for structural separation, without a need for any special
logic constructs or extensions. Indeed, pattern matching has a spatial meaning by its very
nature: matching a subterm already separates that subterm from the rest of the context, so
matching two or more terms can only happen when there is no overlapping between them.
Moreover, matching logic patterns can combine structure with logical constraints, which
allows not only to define very sophisticated patterns, but also to reason about patterns as if
they were logical formulae, and to achieve modularity by globalizing local reasoning. Finally,
since matching logic allows variables of any sorts, including of sort Map when heaps are
concerned, it has inherent support for heap framing and local reasoning, too.

9.1. Separation Logic Basics. Separation logic (originating with ideas in [68, 67], followed
by canonical work in [77], with more recent developments in |72, 18, 24, 17, 54| and with
several provers supporting it in [8, 2, 15, 63, 9, 64, 71, 74, 72]), is a logic specifically crafted
for reasoning about heap structures. There are many variants, but here we only consider

44 G. ROSU

the original variant in [67, 77]. Moreover, here we only discuss separation logic as an
assertion-language, used for specifying state properties, and not its extension as an axiomatic
programming language semantic framework. We regard the latter as an orthogonal aspect,
which can similarly be approached using matching logic.

Separation logic extends the syntax of formulae in FOL (Section 7) as follows:

¢ u= (FOL syntaz)

| emp

| Nat — Nat

| exy

| p—op “magic wand”
Its semantics is based on a fixed model of stores and heaps, which are finite-domain maps
from variables and, respectively, locations (which are particular numbers), to integers. Below
we recall the formal definition of satisfaction in the original variant of separation logic,
noting that subsequent variants of separation logic extend the underlying model to include
stacks (instead of stores) as well as various types of resources that are encountered in
modern programming languages. Such extensions are ignored here because they would only
complicate the presentation without changing the overall message: they would only add more
symbols to the corresponding matching logic signature with appropriate interpretations in
the underlying model, and Theorem 9.2 would still hold. Nevertheless, we leave the thorough
analysis of the diversity of separation logic variants proposed in the last 15 years through
the lenses of matching logic as a subject for future work.

Definition 9.1. (Separation logic semantics, adapted from [67, 77]) Partial finite-domain
maps s : Var — Nat are called stores, partial finite-domain maps h : Nat — Nat are
called heaps, and pairs (s, h) of a store and a heap are called states. The semantics of the
separation logic constructs are given in terms of such states, as follows:

e (s,h) =g ¢ for a FOL formula ¢ iff s =por ¢ (the heap portion of the model is irrelevant
for the FOL fragment);

e (s,h) Egsr emp iff Dom(h) = 0;

o (s,h) gL e1 +— ez where e; and eg are terms of sort Nat (thought of as “expressions”) iff
Dom(h) =3(e1) # 0 and h(s(e1)) = S(e2), where S is the (partial function) extension of s
to expressions (with variables) of sort Nat, defined similarly to the extension of valuations
to patterns in Definition 2.3;

e (s,h) EgL ¢1xp2 iff there exist hy and hg such that Dom(hy)NDom(hg) = 0 and h = hy*hs
(the merge of h; and hg, a partial function on maps written as an associative/commutative
comma in Section 6.2) and (s, h1) gL ¢1, (s, h2) EsL 2;

e (s,h) =sL p1—x o iff for any hy with Dom(hy) N Dom(h) = 0, if (s,h1) F=si 1 then
(s,hx h1) Esr p2; i.e., the semantics of “magic wand” is defined as the states whose heaps
extended with a fragment satisfying (1 result in ones satisfying @s.

Separation logic formula ¢ is valid, written =gz, @, iff (s, h) =gz ¢ for any state (s, h).

9.2. Map Patterns. One of the most appealing aspects of separation logic is that it allows
us to define compact and elegant specifications of heap abstractions using inductively defined
predicates. Such an abstraction which is quite common is the linked-list abstraction list(x, S)

MTCHING LOGIC 45

stating that x points to a linked list containing an abstract sequence of natural numbers S:

list(x,€) el emp Az =0
list(z,n - S) Y o300 [n, z] * list(z, S)
Above, € is the empty sequence, n - S is the sequence starting with natural number n and
followed by sequence S, and = — [n, z| is syntactic sugar for x — n* (x + 1) — z. So a
linked list starting with address = takes either empty heap space, in which case x must be 0
and the abstracted sequence is €, or there is some node in the linked list at location x in the
heap that holds the head of the abstracted sequence (n) and a link (z) to another linked list
that holds the tail of the abstracted sequence (S). The implicit properties of the implicit
map model (the heap) in Definition 9.1 ensures the well-definedness of this abstraction,
which essentially means that all the locations reached by unfolding a list abstraction using

the inductive properties above are distinct. The symbol déf, sometimes written = in the
literature, is not part of separation logic; it is a meta-logical means to define inductive, or
recursive predicates, also encountered in the context of first-order logic: the predicate in
question is interpreted in models as the least-fixed point of its defining (meta-)equations.
We next show that similar heap patterns can be defined directly in matching logic.
Specifically, we pick a particular signature (for maps/heaps) together with desired axioms,
that is, a matching logic specification, and show how additional patterns can be defined in
the context of that specification. The definitions are as compact and elegant as those in

separation logic, and no meta-logical constructs, such as 4o or =, appear to be necessary.

In what follows, we only discuss maps from natural numbers to natural numbers, but
they can be similarly defined over arbitrary domains as keys and as values. Consider a
matching logic specification of maps like the one shown in Section 6.2, but instantiated to
natural numbers as both keys and values, with its axioms explicitly listed, and with a syntax
that deliberately resembles that of separation logic (i.e., we use “*” instead of “)”):

_+— _: Nat x Nat — Map empx H=H

emp : — Map HixHy = Hy x Hy

% : Map x Map — Map (Hy x Ho) * H3 = Hy % (Ho * Hg)
O—~a=_1 r—axr—b=_1

Recall that there are no predicates here, only patterns. When regarding the above ADT as
a matching logic specification, we can prove that the bottom two pattern equations above
are equivalent to =(0 — a) and, respectively, (z — a *y +— b) — x # y, giving the +—
and % the feel of “predicates”. Maps, like natural numbers, do not admit finite (or
even recursively enumberable) equational (or first-order) axiomatizations, so adding a “good
enough” subset of equations is the best we can do in practice. We chose ones that have been
proposed by algebraic specification languages and by separation logics for several reasons.
First, they have been extensively used, so there is a good chance they are “good enough” for
many purposes. Second, we do not want to imply that we propose a novel axiomatization
of maps; our novelty is the presentation of known specifications of maps using the general
infrastructure of matching logic at no additional translation cost, without a need to craft a
new logic to address the particularities of maps. Third, this will ease our presentation in
Section 9.3 where the connection with such a logic specifically crafted for maps is discussed.

Consider the canonical model of partial maps M, where: Myg = {0,1,2,...} My =
partial maps from natural numbers to natural numbers with finite domains and undefined in

46 G. ROSU

0, with emp interpreted as the map undefined everywhere, with _ +— interpreted as the
corresponding one-element partial map except when the first argument is 0 in which case it
is undefined (note that _ — was declared using —), and with _ * interpreted as map
merge when the two maps have disjoint domains, or undefined otherwise (note that %
was also declared using —). M satisfies all axioms above.

Following similar definitions in the context of separation logic, we next define several
patterns that are commonly used when proving properties about programs that can allocate
and de-allocate data-structures in the heap. We emphasize that our matching logic specifica-
tions below look almost identical, if not identical, to their separation logic variants. Which
is, in fact, the main point we are making in this subsection. That is, that matching logic
allows us to specify the same complex heap predicates as separation logic, equally compactly
and elegantly, but without a need to devise any new heap-specific logic for that.

We start with matching logic definitions for complete linked lists and for list fragments.
Let list € X Nat,Map and Iseg € X Naix Nat,Map b€ two symbols together with patterns

list(0) = emp Iseg(x,z) = emp
list(x) N #0=3z.2x — z* list(z) Iseg(z,y) No #y=3z.x— zxlseg(z,y)

Note that list and lseg are not meant to be functions, so we did not use the functional
notation (Section 5.4) for them. Moreover, note that Iseg is not even meant to be a totally
defined relation (Section 5.6); indeed, lseg(0,m) is) (and not emp) for all m > 0.

The main difference between our definitions above and their separation logic variants
is that the latter cannot use the (FOL) equality symbol as we did. Indeed, list and Iseg
are predicates there, same as equality, and predicates cannot take predicates as arguments.
To define predicates like list and Iseg, as seen at the beginning of this section, we have to

explicitly use the meta-logical notation 2 or = for defining “recursive predicates™ predicates
satisfying desired properties which have a least fixed-point interpretation in models. We
emphasized “explicitly” above to distinguish it from the implicit least fixed-point principles
used when mathematically defining the semantics of any logic. For example, in our context,
the extension of p to p in Definition 2.3 uses a least-fixed point construction, similar to any
other logic with terms, but that is orthogonal to how symbols are interpreted in the given
model (symbol interpretation is given by the model, not by p).
There are two important questions about the matching logic specification above:

(1) Does this specification admit any solution in M, i.e., total relations listyr : Myg —
P(Mpmap) and Iseg s : Mgt X Mpyar — P(Mpap) satisfying the patterns above?
(2) If yes, is the solution unique? This is particularly important because we do not require
initiality constraints on M nor smallest fixed-point constraints on solutions.
We answer these questions positively. We only discuss Iseg;,, because the other is similar and
simpler. A solution Isegy; : Mgt X Mgt — P(Marap) exists iff it satisfies the two pattern
axioms for Iseg above; explicitly, that means that any solution must satisfy:
Isegpr(n,m) = {emp,;} for all n >0
Isegpr(0,m) = for all m # 0
Isegpr(n,m) = J{({n —nrr n1} *ar lsegps(n1,m)) | ng > 0} for all n # 0 and n # m
where xp; is M’s merge function explained above extended to sets of maps for each
argument; recall that the map merge function is undefined (i.e., it yields an empty set of
maps) when the two argument maps are not merge-able. Note that we had to split the
interpretation of the second equation pattern for lseg into two equalities, reflecting a case

MTCHING LOGIC 47

analysis on whether the first argument is 0 or not. Note also that Iseg(n, m) # () when n # 0,
and that lseg(n, m) contains only non-empty maps when n # 0 and n # m.
First, we claim that the following is a solution:

Isegpr(n,n) = {emp,;} for alln >0
lsegr(0,m) =0 for all m # 0
Isegpr(n,m) ={ n o ny*prng —ar nokpr - *pr Ng—q —ar M
| k>0, and ng = n,ni,na,...,ng_1 > 0 all different and different from m}

Indeed, the first two equalities that need to be satisfied by any solution vacuously hold, while
for the third all we need to note is that the “junk” maps where n is 0 or in the domain of a
map in lseg,;(n1, m) are simply discarded by the map merge interpretation of %

Second, we claim that the above is the unique solution. Let lsegy; : Mgt X Mgt —
P(Mpqp) be some solution satisfying the three equality constraints. It suffices to prove, by
induction on the size k of the domain of h € My, that: h € Isegy(n, m) for n,m € Myq
iff either n = m and h = emp,, (i.e., k = 0), or otherwise n # 0 and n # m and k > 0 and
there are distinct ng = n, ni, ..., ng_1 distinct from m such that h = (n —yr ny *pr 1 —ar
ng k- kg Mg—1 s m). Since the maps in Isegy, (n, m) when n # 0 and n # m contain
at least one binding, we conclude k = 0 can only happen iff h € Iseg,;(n,n), and then
h = emp,;. Now suppose k > 0, which can only happen iff h € Iseg,;(n,m) for n # 0 and
n #% m, which can only happen iff n # 0 and n # m and h = n —j; ny *p; hy for some
ny > 0 and hy € Isegy (n1, m). It all follows now by the induction hypothesis applied to h;.

It should be clear that patterns can be specified in many different ways. E.g., the first
list pattern can also be specified with a single pattern:

list(x) =(x =0ANempV Iz.x — zx*list(z))

We can similarly define more complex patterns, such as lists with data. But first, we specify
a convenient operation for defining maps over contiguous keys, making use of a sequence
data-type. The latter can be defined like in Section 6.1; for notational convenience, we take

the freedom to use comma “,” instead of “-” for sequence concatenation in some places:

[_]: Nat x Seq — Map x — €] = emp
r—la,S]=x—ax*x(z+1)—[9]
In our model M, we can take Mg, to be the finite sequences of natural numbers, with €y,

and -p; interpreted as the empty sequence and, respectively, sequence concatenation.
We can now define lists with data as follows:

list € 2Nat><Seq,Map lS@g € ENatXSeqXNat,Map
list(z,e) = (emp AN x = 0) lseg(z,€,y) = (emp ANx =y)
list(x,n-S) =3z.x > [n,z] * list(z,5) lseg(z,n-S,y) =3z.x — [n, 2] x Iseg(z, S, y)

Note that, unlike in the case of lists without data, this time we have not required the side
conditions x # 0 and x # y, respectively. The side conditions were needed in the former
case because without them we can infer, e.g., list(0) = L (from the second equation of list),
which using the first equation would imply emp = L. However, they are not needed in the
latter case because it is safe (and even desired) to infer list(0,n-S) = L for any n and S. We
can show, using a similar approach like for lists without data, that the pattern lseg(z, S, y)
matches in M precisely the lists starting with z, exiting to y, and holding data sequence S.

48 G. ROSU

We can similarly define other data-type specifications, such as trees with data:

none : — Tree
node : Nat X Tree x Tree — Tree

lree € ENat>< Tree,Map

tree(0, none) = emp
tree(x, node(n,tite)) = Jy z. x> [n,y, 2] * tree(y, t1) * tree(z, t2))

Therefore, in the model M of partial maps described above, there is a unique way
to interpret list and Ilseg, namely as the expected linked lists and, respectively, linked list
fragments. Fixing the interpretations of the basic mathematical domains, such as those of
natural numbers, sequences, maps, etc., suffices in order to define interesting map patterns
that appear in verification of heap properties of programs, in the sense that the axioms
themselves uniquely define the desired data-types. No logic extensions (such as adding
free models with induction/recursion principles as a matching logic equivalent to “recursive
predicates”, or least fixed-point constraints, or even fixed points of any kind) were needed to
define them. The defining axioms were precise enough to capture the intended concept in
the intended model. Choosing the right basic mathematical domains is, however, crucial.
For example, if we allow the maps in Myy,, to have infinite domains then the list patterns
without data above (the first ones) also include infinite lists. The lists with data cannot
include infinite lists, because we only allow finite sequences. This would, of course, change if
we allow infinite sequences, or streams, in the model. In that case, list and Ilseg would not
admit unique interpretations anymore, because we can interpret them to be either all the
finite domain lists, or both the finite and the infinite-domain lists. Writing patterns which
admit the desired solution in the desired model suffices in practice; our reasoning techniques
developed in the sequel allow us to derive properties that hold in all models satisfying the
axioms, so any derived property is sound also for the intended model and interpretations.

9.3. Separation Logic as an Instance of Matching Logic. Consider the FOL fragment
in Section 7, where the signature 3 includes the signature of maps in Section 9.2. Any
additional FOL constructs, background theories, and/or built-in domains that one wants to
consider in separation logic specifications, are handled as already explained in Sections 7
and 5.8. It is clear then that all the syntactic constructs of separation logic, except for the
magic wand, —, are given by the above matching logic signature. The magic wand, on the
other hand, can be defined as the following derived construct:

1@y = IH:Map.HA|H 1 — @]

Recall from Section 5.1 that |¢] is T (it matches the entire set) iff its enclosed pattern ¢
is T; otherwise, if ¢ does not match some elements, then [¢| is L (it matches nothing).
In words, (71— o matches all maps h which merged with maps matching ¢ yield only
maps matching 5. Thanks to the notational convention that Booleans b, respectively usual
predicates p, stand for equalities b = true, respectively p = T peq (Notation 5.27),
Any separation logic formula is a matching logic pattern of sort Map.

Semantically, note that separation logic hard-wires a particular model of maps. That

is, its satisfaction relation =g, ¢ is defined using a pre-defined universe of maps, which is

conceptually the same as our model of maps in Section 9.2. Since separation logic extends
FOL, its models are still allowed to instantiate the FOL part of its syntax in the usual FOL

MTCHING LOGIC 49

way, but the maps are rigid and the models cannot touch them. It is therefore not surprising
that we also have to fix the maps in our matching logic models corresponding to the syntax
described so far in order to faithfully capture separation logic semantically. For the rest of
this section, we only consider models M for the matching logic specification above whose
reduct to the syntax of maps is precisely the map domain in Section 9.2. We let Map |= ¢
denote the resulting satisfaction relation: Map = ¢ iff M = ¢ for any model M like above.

In separation logic formulae, variables range only over the domains of data (e.g., natural
numbers), but not over heaps/maps; for example, “IH : Map .1 — 2% H” is not a proper
separation logic formula (although it is one in matching logic). Also, stores s are mappings of
variables to particular values. In matching logic, variables range over all syntactic categories,
including over heaps in our case, and valuations p can map such variables to any values in
the model; for example, the variable H of sort Map in the pattern defining — above is a
heap variable. Since separation logic formulae ¢ contain no heap variables, we can regard
separation logic stores s as M-valuations with the property that $(¢) contains precisely the
heaps which together with s satisfy the original separation logic formula ¢. We prove this in
the next proposition showing that separation logic is not only syntactically an instance of
matching logic (modulo notations in Section 5), but also semantically:

Proposition 9.2. If ¢ is a separation logic formula, then |=gz, ¢ iff Map = ¢.

Proof. Like in the proofs of Propositions 4.1, 6.1, and 7.1, there is a bijection between the
models of separation logic and the matching logic Map-models. The bijection works as
described in the aforementioned propositions for the FOL part, and adds the map model in
Section 9.2 to the resulting matching logic models. To keep the notation simple, we use the
same name, M, to refer both to a separation logic model and to its corresponding matching
logic model, remembering from the proofs of Propositions 4.1 and 6.1 that the latter’s carrier
of sort Pred is a singleton {x}. The context makes it clear which one we are referring to.

We show by structural induction on the separation logic formula ¢ the more general
result that for any store s and any heap h, we have (s, h) =gz ¢ iff h € 5(p).

If ¢ is a FOL formula then its desugared matching logic correspondent is ¢ :])D/[TC;Z T Pred
(Notation 7.2). Then (s, h) =gz ¢ iff s =ror ¢ (Definition 9.1), iff 5(¢) = {x} (see proof of
Proposition 7.1), iff 5(¢) = 3(T preq), iff (¢ :%iz T pred) = Muaqp (by Proposition 5.9), iff
h € 3s(p :%i}; T pred) (Proposition 5.9 again: equality is interpreted as either M, or 0).

Conjunction and negation are trivial. Existential quantification: (s,h) =g 3z . ¢ iff
there exists some a € M of appropriate (non-heap) sort such that (s[a/x],h) = ¢, iff
h € sla/x](¢) (induction hypothesis), iff h € U{s'(¢) | s : Var = M, s yur (3= 5| var\ {2} }>
iff h € 5(3z.¢). We next discuss the heap-related constructs of separation logic.

If o = emp then (s, h) =g emp iff h = emp,,, iff h € {emp,,}, iff h € S(emp).

If o = ey — ey then (s,h) =g e1 = e iff Dom(h) = 5(e1) # 0 and h(5(e1)) = 5(e2)
(Definition 9.1), iff h is the partial-domain map S(e;) — s S(e2) (which is undefined when
5(e1) = 0—see Section 9.2), iff h € 3(e; — e3).

If o = 1 % p2 then (s,h) Eg1 w1 * po iff there exist hy and he of disjoint domains
such that h = hy *ps he (the merge of hy and he, which is a partial function on maps—see
Definition 9.1 and Section 9.2) and (s, h1) g1 w1 and (s, he) gL w2, iff A = hy xp7 he and
h1 € 3(¢1) and hg € 3(p2) (induction hypothesis), iff h € 3(¢1) *ps 5(2), iff h € 5(p1 * p2).

50 G. ROSU

The only case left is the “magic wand”, ¢ = @1 —* pa:

h € 3(p1—* p2)

iff hes(3H.HAN|Hx*p1 — ¢2])

it {h} *ar5(e1) C5(02)

iff hxhy €35(p2) for any hy € 5(p1) compatible with A

iff (s,hxh1) gL w2 for any hy compatible with A such that (s, h1) sz ¢1
(previous step followed by the induction hypothesis)

iff (s,h) FEsL 12

The proof is complete. L]

Although matching logic is complete (Section 11), so its validity = is semi-decidable,
while results in [21, 1] state that the validity problem in separation logics is not semi-decidable,
note that there is no conflict here because we restricted matching logic validity to Map-models.
As an analogy, it is well-known that the validity of predicate logic formulae can be arbitrarily
hard when particular (and not all) models are concerned. All the above says is that the
results in [21, 1] carry over to the particular matching logic theory restricted to Map-models
discussed in this section. Most likely one can obtain even more general instances of the
results [21, 1] for matching logic, but that is beyond the scope of this paper.

The loose-model approach of matching logic is in sharp technical, but not conceptual,
contrast to separation logic. In separation logic, the syntax of maps and separation constructs
is part of the syntax of the logic itself, and the model of maps is intrinsically integrated
within the semantics of the logic: its satisfaction relation is defined in terms of a fixed syntax
and the fixed model of the basic domains (maps, sequences, etc.). Then specialized proof
rules and theorem provers need to be devised. If any changes to the syntax or semantics are
desired, for example adding a new stack, or an 1/O buffer, etc., then a new logic is obtained.
Proof rules and theorem provers may need to change as the logic changes. In matching logic,
the basic ingredients of separation logic form one particular specification, with its particular
signature and pattern axioms, together with particular but carefully chosen models. This
enables us to use generic first-order reasoning in matching logic (Section 11), as well as
theorem provers or SMT solvers for reasoning about the intended models. Nevertheless,
several high performance automated provers for separation logics have been developed, e.g.
[8, 2, 15, 63, 9, 64, 71, 74, 72|, while there are no automated provers available for matching
logic yet. A technical challenge, left for future work, is to investigate the techniques and
algorithms underlying the existing separation logic provers and to generalize them if possible
to work with matching logic in general or at least with common fragments of it.

Like for modal logic (Section 8), the result above in combination with the reduction
of matching logic to predicate logic with equality in Section 10 yields a translation from
separation logic to predicate logic with equality. Note that many of the separation logic provers
above are implicitly or explicitly based on translations to FOL, and specific translations to
FOL or fragments of it have been already studied [20, 22, 12]. Like for modal logic (Section 8),
our goal in this section was not to propose yet another translation. Our goal was to show
how separation logic can be framed as a matching logic specification both syntactically and
semantically, without any translation (but only with syntactic sugar notations). Such results
can help us better understand both logics, as well as their strengths and limitations.

MTCHING LOGIC 51

10. MATCHING LOGIC: REDUCTION TO PREDICATE LOGIC WITH EQUALITY

It is known that FOL formulae can be translated into equivalent predicate logic with equality
formulae (i.e., no function or constant symbols—see Section 4), by replacing all functions
with their graph relations (see, e.g., [55]). Specifically, function symbols o : s1 X -++ X 8,, — s
are replaced with predicate symbols 7, : s1 X - -+ X s, X s, and then terms are transformed
into formulae by adding existential quantifiers for subterms. Let us define such a translation,
say PL. It takes each FOL predicate m(t1,...,t,) into a pure predicate logic formula as
follows:

PL(ﬂ'(tl, e ,tn)) =dry--ry. PLQ(tl, 7“1) VANEIRIVAN PLQ(tn, T’n) A 7T(7“1, cesTh)
where PLy(t,r) is a translation of term ¢ into a predicate stating that ¢ equals variable r:

PLQ(«T,T) - (J,':T)
PLy(o(ty,...,tn),r) = Fry---3Iry . PLo(t1,r1) A+ A PLo(tp,rn) Ao (r1, .oy Tp,)

Axioms stating that the predicate symbols 7, : 81 X --- X 8, X s associated to function
symbols ¢ : s1 X -+ X 5, — s are interpreted as total function relations are also needed:

Vay 81, e &y Sy .3y 5. V218 (mp(x1, ... &n,2) >y =2)

We can similarly translate matching logic patterns into equivalent predicate logic formulae.
Consider predicate logic with equality (and no function or constant symbols) whose satisfaction
relation is =p5;. For matching logic signature (5,3), let (S,IIx) be the predicate logic
signature with Iy, = {7, : 81 X -+ X s, X s | 0 € g, 5,5}, like above but without the
axioms stating that these predicates have a functional interpretation in models (because the
matching logic symbols need not be interpreted as functions). We define the translation PL
of matching logic (S Y))-patterns into predicate logic (S, IIy)-formulae inductively:

PL(p) = Vr. PLy(p,T)

PLy(z,7) = (:U =r)
PLy(o(¢1,---s0n),1) = <+ 3ry . PLa(1,71) A+« A PLa (@ m0) Ao (71,0 ooy Ty T)
PLQ(ﬁQOa) = "PLQ(()Ou)
PLy(p1 AN p2,1) = PLy(ip1,7) A PLa(p2,7)
PLy(3x ., r) = 3x. PLa(p, 1)

PL({¢1,. .-, n}) = {PL(¢1),..., PL(¢n)}

The predicate logic formula PLy(¢,r) captures the intuition that “r matches ¢”. The top
transformation above, PL(¢) = Vr.PLa(p,r), is different from (and simpler than) the
corresponding translation of predicates from FOL to predicate logic. It captures the intuition
that the pattern ¢ is valid iff it is matched by all values r. Then the following result holds:

Proposition 10.1. If F' is a set of patterns and ¢ is a pattern, F' = ¢ iff PL(F') =p; PL(yp).
Proof. 1t suffices to show that there is a bijective correspondence between matching logic

(S,X)-models M and predicate logic (S, IIx;)-models M’, such that M |= ¢ iff M’ =5, PL(y)

for any (S, 3)-pattern . The bijection is defined as follows:

e M! = M, for each sort s € S;

o o © Mg, X---x M, x Mg with (ay,...,an,a) € mepp iff opr 0 Mg, X+ -x Mg, — P(Ms)
with a € op(ay, ..., an).

To show M = ¢ iff M' =5, PL(yp), it suffices to show a € p(y) iff pla/r] =5, PLa(p, 1) for

any p : Var — M, which follows easily by structural induction on . L]

52 G. ROSU

It is informative to translate the definedness and equality patterns in Sections 5.1 and
Section 5.2 using the above, and especially to sanity check that the equality pattern of
matching logic indeed translates to the equality predicate of predicate logic with equality.
Recall that the definedness symbols were axiomatized with pattern axioms [z], and that
we assumed them always available (Assumption 5.1). Then PL([x]) is Vr. 7 1(x,7). We
can drop the universal quantifier and therefore assume T (x,r) as an axiom formula in the
translated predicate logic specification. Let us now show that the matching logic equality
x =y, which is syntactic sugar for =[—(x <> y)|, translates to the equality x = y in predicate
logic. Applying the translation above, we get PL(x = y) is Vr.=(3r1.~(x = r < y =
r1) A 1(r1,7)), which is equivalent, in predicate logic with equality, to Vr.Vry. (z =11 <
y = r1), which is further equivalent to z = y. Similarly, we can show that the translation of
the equational pattern stating that o is functional, namely Vi ...z, .3y.o(z1,...,2,) =¥,
indeed corresponds to the predicate logic formula Vzi, ..., 2, .3y . Vz. (75(21,...,2pn, 2) <>
y = z), as expected. We leave this as an exercise to the interested reader.

Proposition 10.1 gives us a sound and complete procedure for matching logic reasoning:
translate the specification (S, 3, F') and pattern to prove ¢ into the predicate logic specification
(S,IIs, PL(F)) and formula PL(p), respectively, and then derive it using the sound and
complete proof system of predicate logic. However, translating patterns to predicate logic
formulae makes reasoning harder not only for humans, but also for computers, since new
quantifiers are introduced. For example,

(1—5%2—0%xT7+—9%x8— 1) — list(7,9-5)

discussed and proved in a few steps in Section 11, translates into the following formula (to
keep it small, we do not translate the numbers), which takes dozens, if not hundreds of steps
to prove using the predicate logic proof system:

Vr.(3ry.3re. s (1,5,r1) A (3rs. 3ra . m5(2,0,73) A (Frs . Fre . 1 (7,9,75) A Ty (8,1, 76)
A (15, 76,74)) A Ta(r3,74,72)) A Ti(r1,72,7)) — Fr7 . 7w(9,5,77) A Tyt (7,77, 7))

What we would like is to reason directly with matching logic patterns, the same way we
reason directly with terms in FOL without translating them to predicate logic.

11. MATCHING LoGIC: SOUND AND COMPLETE DEDUCTION

In Figure 5, we propose a sound and complete proof system for matching logic (under
Assumption 5.1). The first group of rules/axioms are those of FOL with equality, discussed
and proved sound in Section 2 (predicate logic: Proposition 2.8), Section 5.2 (equational:
Proposition 5.9), and Section 5.4 (FOL Substitution, called Term Substitution there: Corol-
lary 5.23), with a slightly generalized Substitution axiom that we call Functional Substitution
(discussed below), which requires another axiom (shown sound by Corollary 5.19), called
Functional Variable, stating that variables are functional. The second group of rules/axioms
are about membership and were proved sound in Section 5.3 (Proposition 5.14).
Substitution must be used with care. Recall FOL’s Substitution: (Vx.y) — ¢[t/x].
Since matching logic makes no syntactic distinction between terms and predicates, we would
like to have a proof system that does not make such a distinction either. Ideally, since terms
and predicates are particular patterns, we would like to take the proof system of FOL with
equality and turn it into a proof system for matching logic by simply replacing “predicate”
and “term” with “pattern”. This actually worked for all the rules and axioms, except for
Substitution: (Vz.p) — ¢[t/x]. Unfortunately, Substitution is not sound if we replace ¢ with

MTCHING LOGIC 53

FOL axioms and rules:

1. I propositional tautologies

. Modus Ponens: - ¢ and F ¢1 — @2 imply F ¢9
(V.1 = p2) = (p1 = V. @2) when x & FV (p1)

. Universal Generalization: ¢ implies - V& . ¢

. Functional Substitution: - (Vz.¢) A (Jy.¢" =y) — ¢[¢'/z]
. Functional Variable: - Jy.x =y

. Equality Introduction: - ¢ = ¢

. Equality Elimination: F ¢1 = @2 A lp1/x] — ¢[p2/x]

N O Ot O = W N

Membership axioms and rules:

8. FVz.xepiff ¢

9. Fz€y=(xr=y) when z,y € Var

10. Fz € ~p==(x € p)

II.Fzepr ANpa = (x € 1) A (z € ¢2)

12. F (z € Jy.p) = Jy.(x € p), with z and y distinct

13. F 2€0(01,y Pim1s Piy PitlseesPn) = Y(YE Qi N TET(P1yes Pie1,Ys Pit1y-s Pn))

Figure 5: Sound and complete proof system of matching logic.

any pattern. For example, let ¢ be Jy.x =y (Corollary 5.19). If FOL’s Substitution were
sound for arbitrary patterns ¢’ instead of ¢, then the formula Jy .’ = y, stating that ¢’ is a
functional pattern (i.e., it evaluates to a unique element for any valuation: Definition 5.16),
would be valid for any pattern ¢’. That is, any pattern would be functional, which is neither
true nor desired (e.g., T evaluates to the total set, L to the empty set, etc.).

Nevertheless, as proved in Corollary 5.23, Substitution stays sound if ¢ is a term pattern
(Definition 5.21), that is, a pattern build with only functional symbols (interpreted as
functions in all models) and no other constructs: = (Vz.¢) — ¢[t/x] holds if ¢ is any
pattern but ¢ is a term pattern. It turns out that the fact that ¢ is built with only functional
symbols is irrelevant, and all that matters is that ¢ is a functional pattern (all term patterns
are functional: Corollary 5.22). We therefore generalize the Term Substitution axiom:

Functional Substitution: = (Vz.p) A (Fy. ¢ =y) = @[/]
This is more general than the original Substitution in FOL (which allowed only predicates
for p) and than Term Substitution (Corollary 5.23): it can also apply when ¢’ is not a
term pattern but can be proved to be functional. It is interesting to note that a similar
modification of Substitution was needed in the context of partial FOL (PFOL) [34], where
the interpretations of functional symbols are partial functions, so terms may be undefined;
axiom PFOLS in [34] requires ¢’ to be defined in the Substitution rule, and several rules
for proving definedness are provided. Note that our condition Jy.¢" = y is equivalent to
definedness in the special case of PFOL, and that, thanks to the definability of equality in
matching logic, we do not need any special axiomatic or rule support for proving definedness.

We have made no effort to minimize the number of rules and axioms in our proof system
in Figure 5. On the contrary, our approach was to include all the rules and axioms that turned
out to be useful in proof derivations, especially if they already existed in FOL. Moreover, we
preferred to frame “unexpected” properties of matching logic as axioms or proof rules, so
that users of the proof system are fully aware of them. For example, we could have merged

54 G. ROSU

the Functional Substitution and Functional Variable axioms into the conventional predicate
logic Substitution ((5) in Proposition 2.8) or the FOL Term Substitution (Corollary 5.23),
but we preferred not to, because we want the user of our proof system to be fully aware of
the fact that they cannot substitute arbitrary patterns for variables; they should first prove
that the pattern is functional. Additionally, our Functional Substitution is more general, in
that it applies in more instances, so proof derivations are shorter.

Proposition 11.1. With the proof system in Figure 5, the following are derivable:
(1) Predicate Logic Substitution ((5) in Proposition 2.8): = (Vx.p) — ¢ly/x]

(2) Term patterns are functional (Corollary 5.22): = 3y .t =y for any term pattern t
(3) Term Substitution (Corollary 5.23): & (Vx . @) — ¢t/ x]

Proof. By propositional calculus reasoning, which is subsumed by our proof system (1. and
2. in Figure 5), for any patterns A, B, and C, if - AAB — C and - B then - A — C. To
prove (1), pick A asVx.p, Bas3z.y =z, C as p[y/z]. Then - AA B — C by Functional
Substitution and F B by Functional Variable, so - A — C, i.e., - (Vz.¢) — ¢ly/z].

We prove (2) and (3) together, by structural induction on ¢. If ¢ is a variable then
they follow by Functional Variable and, respectively, by (1). Suppose that ¢ is o(t1,...,ty)
for some functional symbol o, i.e., one for which we have an axiom Jy.o(z1,...,2,) =y
(Definition 5.21), and for some appropriate term patterns t¢i, ..., t,. By the induction
hypothesis of (2), we have - Jy1 .t1 = y1, ..., F Jyn .t = yn. By the induction hypothesis
on (3) with x as =1 and ¢ as Jy.o(x1,...,z,) =y, we derive

F (Ve .3y.o(zr,...,zn) =y) = Jy.o(ts,...,zn) =y

Since + Vz1.3y.o(x1,...,2,) = y by the functionality axiom of ¢ and Universal Gener-
alization, we derive b Jy.o(t1,29,...,2,) = y. By the induction hypothesis on (3) with
x as xo9 and ¢ as Jy.o(t1,z2,...,2,) =y, we derive b (Vzo.Jy.o(t1,x2,...,2n) = y) —
Jy.o(t1,ta,...,xy) = y. Since b V. Jy.o(t1,xe,...,2,) =y by the previous derivation
and Universal Generalization, we derive - 3y .o (t1,t2,z3,...,2,) = y. Iterating this process
for all the arguments of o, we eventually derive - Jy.o(t1,...,t,) =y, that is, - Jy .t = y.
The only thing left is to prove (3). We prove it similarly to (1), using (2): in the propositional
calculus property at the beginning of the proof, pick A as Vx.p, B as dy.t =y, and C as
o[t/x]. Then H AN B — C by Functional Substitution and F B by (2) above, so - A — C,
ie, b (Vo.p) — o[t/x]. [

Our approach to obtain a sound and complete proof system for matching logic is to
build upon its reduction to predicate logic with equality in Section 10. Specifically, to use
Proposition 10.1 and the complete proof system of predicate logic with equality. Given a
matching logic signature (S, Y), let (S,IIx) be the predicate logic (with equality) signature
obtained like in Section 10. Besides the PL translation there, we also define a backwards
translation ML of predicate logic with equality (S, IIx)-formulae into (S, ¥)-patterns:

ML(zx=7r) = z=r

ML(7y(r1,...,rn,7)) = T E0(r1,...,)
ML(—p) = —ML(3)
ML(Y1 Np2) = ML(31) A ML(32)
ML(3x.v) = Zx.ML(v)

Recall from Section 5.2 that we assume equality and membership in all specifications.

MTCHING LOGIC 55

Theorem 11.2. The proof system in Figure 5 is sound and complete: F = ¢ iff F'F .

Proof. Propositions 2.8 and 5.10 showed the soundness of all rules except for Substitution.
Corollary 5.23 showed the soundness of the stronger Term Substitution. To show the
soundness of Functional Substitution, we show p((Vz.p) A (Jy.¢" = vy)) C p(e[¢’/x]) for
any model M and valuation p : Var — M. Let s be the sort of ¢ and s be the sort

of 90,- We have ﬁ((vxso) A (Elygp, = y)) = m{ﬁ(so) ’ p,rVar\{z}: prVar\{x}} N U{Ms ’

p,[Var\{a:}: pFVar\{w}a ?(SO,) = {pl(y)}} Since y ¢ FV(()O/), it follows that ?(90/) = p((pl)
Therefore, all we have to show is the following: if p(¢") = {a} for some a € My then

(P (@) | ' Tvar {2y = Pl var\(a} } € ([/]). This holds because p([¢’/z]) = pla/z] ().
We now show the completeness. First, note that Proposition 10.1 and the completeness of

predicate logic imply that F' |= ¢ iff PL(F) -5, PL(p). Second, note that PL(F') F5; PL(y)
implies ML(PL(F)) = ML(PL(yp)), because the ML translation only replaces predicates
To(r1y .oy, 1) With 7 € o(ry,...,r,) and the proof rules of predicate logic, except for
Substitution, are a subset of the proof rules in Figure 5, while the predicate logic Substitution
is derivable in matching logic ((1) in Proposition 11.1). Third, notice that the completeness
result holds if we can show F - ¢ iff '+ ML(PL(y)) for any pattern ¢: indeed, if that
is the case then F' = ML(PL(F')), which together with ML(PL(F')) = ML(PL(y)) implies
F + ML(PL(p)), which further implies F' - ¢.

Let us now prove that F' + ¢ iff ' = ML(PL(y)) for any pattern ¢. We first show
Fr e p= ML(PLy(p,r)) by induction on ¢. The cases p =z, ¢ = —¢’, ¢ = 1 A p2, and
¢ = Jy.¢ are immediate consequences of the axioms 9-12 in Figure 5, using the induction
hypothesis and Equality Elimination (rule 7). For the case ¢ = o(¢1,...,¢n), we can first
derive = ML(PLy(p,r)) = Ary---Frp.m1 € @1 A= Arp € o AT € 0(r1,...,7y) USINg
the induction hypothesis and Equality Elimination, and then -7 € ¢ = 3ry---3r, .11 €

P1L A ATy € o AT € 0(T1,...,7y) using axiom 13 in Figure 5 and conventional FOL
reasoning. Therefore, - r € ¢ = ML(PLy(¢p,7)). Our result now follows by proof rules 8 in
Figure 5, since ML(PL(y)) = Vr. ML(PLy(p,71)). O

As an example, let us informally use the proof system in Figure 5 together with the
axiom patterns in Section 9.2, to derive (1 — 5%2+— 0% 7 — 9% 8 — 1) — list(7,9-5).
For simplicity, like in separation logic, let us assume that the axioms of commutativity,
associativity and idempotence of _* are axiom schemas, so we do not need to explicitly use
the substitution rule to instantiate them; in a mechanical verification setting, their soundness
as schemas can be proved separately from the basic axioms.

Recall the following axiom patterns about linked lists with data from Section 9.2:

x> €] = emp list(z,e) = (emp A x = 0)

z[a,S]=x—ax(x+1)— [5] list(x,n-S)=3z.x > [n,z] * list(z,5)
Using the left axioms, axioms for sequences in Section 6.1, and axioms of maps, by Functional
Substitution and Equality Elimination (Figure 5) we derive F 1 +— 5%2 — 0 =1 — [5,0]
and - 7 — 9%x8 — 1 = 7 — [9,1], respectively. By the first axiom for list above,
F list(0,€) = emp. Note that Functional Substitution is equivalent to - p[¢’/y] A (Fy. ¢’ =
y) — (3x.p) (by propositional reasoning, e.g., A - B = =B — —A), so we get - 1 —
[5,0] * list(0,€) — (Fz. 1+ [5, 2] = list(z, €)), which by the second axiom of list above yields
F 1+ [5,0] % list(0,¢e) — list(1,5). Following similar reasoning for the other binding, we can

56 G. ROSU

construct the following (informal) proof derivation:

1—5%x2—=0%x7—9*x8—1
= 1 [5,00 %7 [9,1]
1+ [5,0] * list(0,€) x 7 — [9,1] (structural framing—Proposition 2.10)

4o

(2.1 [5, 2] x list(z,€)) x 7T — [9,1]
list(1,5-€) % 7+ [9,1]

= list(1,5) % 7+ [9,1]

— Jz.7—1[9,2] A list(z,5)

list(7,9 - 5)

When applying structural framing (Proposition 2.10) above, we assumed the completeness of
the matching logic proof system (Theorem 11.2). It is an insightful exercise to directly prove
Proposition 2.10 with F instead of |, without using the completeness theorem but only the
proof rules in Figure 5 (hint: use the membership rules).

The example proof above was neither difficult nor unexpected, and it followed almost
the same steps as the corresponding separation logic proof. Indeed, in spite of matching
logic’s simplicity (recall that its syntax is even simpler than that of FOL: Definition 2.1) and
domain-independence, it has the necessary expressiveness and capability to carry out proof
derivations for particular domains given as matching logic specifications that are as abstract
and intuitive as in logics specifically crafted for those domains. Additionally, its patterns
are expressive enough to capture complex structural and logical properties about program
configurations, at the same time giving us the peace of mind that any such properties are
derivable with a uniform, domain-independent proof system.

12. ADDITIONAL RELATED WORK

Matching logic builds upon intuitions from and relates to at least five important logical
frameworks: (1) Relation algebra (RA) (see, e.g., [88]), noticing that our interpretations of
symbols as functions to powersets are equivalent to relations; although our interpretation
of symbols captures better the intended meaning of pattern and matching, and our proof
system is quite different from that of RA, like with FOL we expect a tight relationship
between matching logic and RA, which is left as future work; (2) Partial FOL (see, e.g., [34]
for a recent work and a survey), noticing that our interpretations of symbols into powersets
are more general than partial functions (Section 5.2 shows how we defined definedness); (3)
Separation logics (SL) (see, e.g.,[67]), which we discussed in Section 9; and (4) Precursors of
matching logic in 80, 83, 84, 85, 79, 27|, which proposed the pattern idea by extending FOL
with particular “configuration” terms (grayed box below is the only change to FOL):

ts uw= xeVars | o(tr,....ty) witho e Xy . s
o = w(xry,...,zy) withmelly, s, | —¢ | oAp | Tz
|t € Ty cp(X)

where T ¢f,(X) is the set of terms of a special sort Cfg (from “configurations”) over variables
in set X. To avoid terminology conflicts, we here strengthen the proposal in [78] to call the
variant above topmost matching logic from here on. Topmost matching logic can trivially be
desugared into FOL with equality by regarding a particular pattern predicate t € Tx ¢y (X)
as syntactic sugar for “(current state/configuration is) equal to ¢”, i.e., 0 = ¢t. One major
limitation of topmost matching logic, which motivated the generalization in [78] with full

MTCHING LOGIC 57

details added in this paper, is that its restriction to patterns of sort Cfg prevented us to
define local patterns (e.g., the heap list pattern) and perform local reasoning. They had to
be defined globally, as patterns of sort Cfg with structural frames for everything else except
their target cell (e.g., the heap), which was not only more verbose but also less modular.

The basic idea of regarding terms with variables as sentences/patterns that are satisfied /-
matched by ground terms, goes back to [58] and it was further studied in [57, 87, 35, 73, 61].
Furthermore, terms enriched with Boolean conditions over their variables, called constrained
terms, were studied in 23], together with their relation to narrowing. These approaches allow
certain Boolean algebra operations to be applied to patterns, and study the expressiveness of
such operations w.r.t. the languages of ground terms that they define, in particular conditions
under which negation can be eliminated. In addition to Boolean algebra operations and
conditions on terms with variables, matching logic also allows quantification over variables, as
well as using the resulting patterns nested inside other patterns. The richer syntax of patterns
in matching logic is motivated by needs to specify complex structures with mixed constraints
over program configurations, as shown in Section 2.2. Also, matching logic allows models
with any data, not only term models, interprets symbols as relations with the axiomatic
capability to constrain them as functions, and organizes the patterns and their models in a
logic that admits a sound and complete proof system.

The idea of regarding terms as patterns is also reminiscent of pattern calculus [52],
although note that matching logic’s patterns are intended to express and reason about static
properties of data-structures or program configurations, while pattern calculi are aimed at
generally and compactly expressing computations and dynamic behaviors of systems. So
far we used rewriting to define dynamic semantics; it would be interesting to explore the
combination of pattern calculus and matching logic for language semantics and reasoning.

13. CONCLUSION AND FUTURE WORK

Matching logic is a sound and complete FOL variant that makes no distinction between
function and predicate symbols. Its formulae, called patterns, mix symbols, logical connectives
and quantifiers, and evaluate in models to sets of values, those that “match” them, instead of
just one value as terms do or a truth value as predicates do in FOL. Equality can be defined
and several important variants of FOL fall as special fragments. Separation logic can be
framed as a matching logic theory within the particular model of partial finite-domain maps,
and heap patterns can be elegantly specified using equations. Matching logic allows spatial
specification and reasoning anywhere in a program configuration, and for any language, not
only in the heap or other particular and fixed semantic components.

We made no efforts to minimize the number of rules in our proof system (Figure 5),
because our main objective in this paper was to include the proof system for FOL with
equality as part of our proof system, to indicate that conventional reasoning remains valid
and thus automated provers can be used unchanged. It is likely, however, that a minimal
proof system working directly with the definedness symbols [| can be obtained such that
the equality and membership axioms and rules in Figure 5 can be proved as lemmas.

Our completeness result in Section 11 relies heavily on equality and on membership
patterns, whose definitions require the existence of the definedness symbols | _]. On the other
hand, Proposition 10.1 translates arbitrary matching logic validity to validity in predicate
logic with equality, even when there are no definedness symbols. Since predicate logic

58 G. ROSU

with equality admits complete deduction, we conjecture that matching logic must admit an
alternative complete proof system which does not rely on definedness symbols.

We have not discussed any computationally effective fragments of matching logic or
heuristics to automate matching logic deduction. These are crucial for the development
of practical provers and program verifiers. The systematic study of such fragments and
heuristics is left for future work. Also, complexity results in the style of |21, 1, 16, 50] for
separation logic can likely also be obtained for fragments of matching logic.

Many of the results related to localizing/globalizing reasoning, such as Propositions 2.10,
5.12; and 2.11, extend to monotone/positive contexts, that is, to ones without negations on
the path to the placeholder. While non-monotonic contexts do not seem to occur frequently
in program verification efforts, it would nevertheless be worthwhile investigating techniques
for the elimination of negation, likely generalizing those in [57, 87, 35|, or intuitionistic
variants of matching logic where negation is not allowed at all in patterns.

Finally, the main application of matching logic so far was as a pattern language for
reachability logic [28, 27, 79, 84], where reachability rules, which are pairs of patterns
© = ¢’, can be used to specify both operational semantics rules and properties to prove
about programs. Reachability logic has its own (language independent) sound and relatively
complete proof system. We conjecture that we can capture reachability logic as an instance
of matching logic, too, in a similar vein to how we did it for modal logic in Section 8: add
some new symbols with their (axiomatized) semantics and then prove the proof rules of
reachability logic as lemmas/corollaries. For example, we can extend the world models M in
Section 8 with a Kripke transition relation w Rw’ by adding a symbol o_ € X word, worid
and assuming w Rw’ iff w € opr(w’), then define ¢ and other CTL or even CTL* operators
as least fixed points, and finally the reachability rules as sugar.

Acknowledgments. This is an extended version of an RTA’15 invited paper [78].
The author warmly thanks the RTA’15 program committee for the invitation and to the
anonymous reviewers. The author also expresses his deepest thanks to the K team (http:
//kframework.org), who share the belief that programming languages should have only one
semantics, which should be executable, and formal analysis tools, including fully fledged
deductive program verifiers, should be obtained from such semantics at little or no extra cost.
I would like to also warmly thank the following colleagues and friends for their comments and
criticisms on previous drafts of this paper: Nikolaj Bjorner, Xiaohong Chen, Claudia-Elena
Chirita, Maribel Fernandez, loana Leustean, Dorel Lucanu, José Meseguer, Brandon Moore,
Daejun Park, Cosmin Radoi, Traian Florin Serbanuta, and Andrei Stefanescu.

REFERENCES

[1] T. Antonopoulos, N. Gorogiannis, C. Haase, M. I. Kanovich, and J. Ouaknine. Foundations for decision
problems in separation logic with general inductive predicates. In FOSSACS’1/, volume 8412 of LNCS,
pages 411-425, 2014.

[2] A. Appel and S. Blazy. Separation logic for small-step Cminor. In TPHOLs 07, volume 4732 of LNCS,
pages 521, 2007.

[3] A. W. Appel. Verified software toolchain. In ESOP’11, volume 6602 of LNCS, pages 1-17, 2011.

[4] M. Barnett, B. yuh Evan Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In FMCO’05, volume 4111 of LNCS, pages 364387, 2006.

[5] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and C. Tinelli.
CVC4. In CAV’11, volume 6806 of LNCS, pages 171-177. Springer, 2011.

[6] C. Barrett and C. Tinelli. CVC3. In CAV’07, volume 4590 of LNCS, pages 298-302, 2007.

http://kframework.org
http://kframework.org

(7]
(8]
(9]
[10]

[11]
[12]

13]
14]
115]
[16]
17]
18]
[19]
[20]
21]
22]
23]
[24]
1251

[26]

27]
28]
[29]

(30]

31]

32]
[33]

MTCHING LOGIC 59

O. Becker. Zur logik der modalitiaten. Jahrbuch fiir Philosophie und Phdnomenologische Forschunyg,
11:497-548, 1930.

J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular Automatic Assertion Checking with
Separation Logic. In FMCO’05, volume 4111 of LNCS, pages 115-137, 2005.

J. Berdine, B. Cook, and S. Ishtiaq. SLAyer: Memory safety for systems-level code. In CAV’11, volume
6806 of LNCS, pages 178183, 2011.

D. Beyer. Reliable and reproducible competition results with benchexec and witnesses (report on
SV-COMP 2016). In TACAS’16, volume 9636 of LNCS, pages 837-904, 2016.

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, NY, USA, 2001.
F. Bobot and J.-C. Fillidtre. Separation predicates: A taste of separation logic in first-order logic. In
ICFEM’12, volume 7635 of LNCS, pages 167-181, 2012.

M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, and
G. Smith. A trusted mechanised JavaScript specification. In POPL’1/, pages 87-100. ACM, 2014.

D. Bogdanag and G. Rogu. K-Java: A Complete Semantics of Java. In POPL’15, pages 445-456. ACM,
January 2015.

M. Botincan, M. Parkinson, and W. Schulte. Separation Logic Verification of C Programs with an SMT
Solver. Electronic Notes in Theoretical Computer Science, 254:5-23, 2009.

J. Brotherston, C. Fuhs, J. A. N. Pérez, and N. Gorogiannis. A decision procedure for satisfiability in
separation logic with inductive predicates. In CSL-LICS’1}, pages 25:1-25:10. ACM, 2014.

J. Brotherston, N. Gorogiannis, M. Kanovich, and R. Rowe. Model Checking for Symbolic-Heap
Separation Logic with Inductive Predicates. In POPL’16, pages 84-96. ACM, 2016.

J. Brotherston and J. Villard. Parametric Completeness for Separation Theories. In POPL’1/, pages
453-464. ACM, 2014.

R. M. Burstall and J. A. Goguen. Putting theories together to make specifications. In IJCAI’77, pages
1045-1058. Morgan Kaufmann Publishers Inc., 1977.

C. Calcagno, P. Gardner, and M. Hague. From separation logic to first-order logic. In FOSSACS’05,
volume 3441 of LNCS, pages 395-409, 2005.

C. Calcagno, H. Yang, and P. W. O’Hearn. Computability and complexity results for a spatial assertion
language for data structures. In FSTTCS’01, volume 2245 of LNCS, pages 108-119, 2001.

C. Cao, J. Wang, Y. Sui, and Y. Shen. Translating separation logic into a fragment of the first-order
logic. International Conference on Semantics, Knowledge and Grid, pages 188194, 2010.

A. Cholewa, S. Escobar, and J. Meseguer. Constrained narrowing for conditional equational theories
modulo axioms. Science of Computer Programming, 112:24-57, 2015.

D.-H. Chu, J. Jaffar, and M.-T. Trinh. Automatic Induction Proofs of Data-Structures in Imperative
Programs. In PLDI’15, pages 457-466. ACM, 2015.

M. Clavel, F. Durén, S. Eker, J. Meseguer, P. Lincoln, N. Marti-Oliet, and C. Talcott. All About Maude,
volume 4350 of LNCS. Springer, 2007.

E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and
S. Tobies. VCC: A practical system for verifying concurrent C. In TPHOLs’09, volume 5674 of LNCS,
pages 23—42, 2009.

A. Stefanescu, c. Ciobaca, R. Mereutd, B. M. Moore, T. F. Serbanuti, and G. Rogu. All-path reachability
logic. In RTA-TLCA’14, volume 8560 of LNCS, pages 425-440. Springer, 2014.

A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu. Semantics-based program verifiers for all languages.
In OOPSLA’16, pages 74-91. ACM, 2016.

L. De Moura and N. Bjgrner. Z3: an efficient SMT solver. In TACAS’08, volume 4963 of LNCS, pages
337-340, 2008.

R. Diaconescu and K. Futatsugi. CafeOBJ Report. The Language, Proof Techniques, and Methodologies
for Object-Oriented Algebraic Specification, volume 6 of AMAST Series in Computing. World Scientific,
1998.

D. Distefano and M. J. Parkinson. jStar: Towards practical verification for Java. In OOPSLA’08, pages
213-226. ACM, 2008.

B. Dutertre. Yices 2.2. In CAV’1}, volume 8559 of LNCS, pages 737-744, 2014.

C. Ellison and G. Rosu. An executable formal semantics of C with applications. In POPL, pages 533-544.
ACM, 2012.

60

1341
1351
136]
137]
38]
139]
j40]
ja1]
j42]
j43]
j44]
j45]
Ja6]
j47]
48]
j49]
150]
51]
/52]

[53]

[54]
[55]

[56]
[57]

[58]

[59]
[60]

[61]

G. ROSU

W. M. Farmer and J. D. Guttman. A set theory with support for partial functions. Studia Logica,
66(1):59-78, 2000.

M. Fernandez. Negation elimination in empty or permutative theories. Journal of Symbolic Computation,
26(1):97-133, 1998.

D. Filaretti and S. Maffeis. An executable formal semantics of php. In ECOOP’1/, LNCS, pages 567—-592.
Springer, 2014.

J. Filliatre and A. Paskevich. Why3 - where programs meet provers. In ESOP’13, volume 7792 of LNCS,
pages 125-128, 2013.

K. Goédel. Die vollstandigkeit der axiome des logischen funktionenkalkiils. Monatshefte fir Mathematik
und Physik, 37(1):349-360, 1930.

K. Gédel. Uber formal unentscheidbare sétze der principia mathematica und verwandter systeme I.
Monatshefte fiir Mathematik und Physik, 38(1):173-198, 1931.

J. Goguen, J. Thatcher, and E. Wagner. An Initial Algebra Approach to the Specification, Correctness,
and Implementation of Abstract Data Types. IBM research reports. IBM Research Center, 1976.

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ. In Software
Engineering with OBJ: Algebraic specification in action, pages 3-167. Kluwer, 2000.

J. A. Goguen and J. Meseguer. Order-sorted algebra i: equational deduction for multiple inheritance,
overloading, exceptions and partial operations. Theoretical Computer Science, 105(2):217 — 273, 1992.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra semantics and continuous
algebras. Journal of the Association for Computing Machinery, 24(1):68-95, Jan. 1977.

R. Goldblatt. Mathematical modal logic: A view of its evolution. Journal of Applied Logic, 1(5-6):309-392,
2003.

D. Guth. A formal semantics of Python 3.3. Master’s thesis, University of Illinois at Urbana-Champaign,
July 2013. https://github.com/kframework/python-semantics.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In Handbook of Philosophical Logic, pages 497-604,
1984.

J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, New
York, NY, USA, 1st edition, 2009.

C. Hathhorn, C. Ellison, and G. Rosu. Defining the undefinedness of C. In PLDI’15, pages 336—345.
ACM, 2015.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the Association for
Computing Machinery, 12(10):576-580, 1969.

R. Tosif, A. Rogalewicz, and J. Simécek. The tree width of separation logic with recursive definitions. In
CADE’18, volume 7898 of LNCS, 2013.

B. Jacobs. Weakest pre-condition reasoning for Java programs with JML annotations. The Journal of
Logic and Algebraic Programming, 58(1-2):61-88, 2004.

C. B. Jay. The pattern calculus. ACM Transactions on Programming Languages and Systems, 26(6):911—
937, 2004.

C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A. McCarthy, J. Rafkind,
S. Tobin-Hochstadt, and R. B. Findler. Run your research: On the effectiveness of lightweight mecha-
nization. In POPL’12, pages 285—296. ACM, 2012.

R. Krebbers, A. Timany, and L. Birkedal. Interactive Proofs in Higher-Order Concurrent Separation
Logic. In POPL’17, pages 457-466. ACM, 2017.

G. Kreisel and J. L. Krivine. Elements of mathematical logic (Model theory). North Holland Publishing
Company, Amsterdam, 1967.

S. A. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24(1):1-14, 03 1959.

J. Lassez, M. J. Maher, and K. Marriott. Elimination of negation in term algebras. In MF(CS’91, volume
520 of LNCS, pages 1-16, 1991.

J. Lassez and K. Marriott. Explicit representation of terms defined by counter examples. Journal of
Automated Reasoning, 3(3):301-317, 1987.

B. Liskov and S. Zilles. Programming with abstract data types. SIGPLAN Not., 9(4):50-59, Mar. 1974.
The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. Version
8.0, http://coq.inria.fr.

J. Meseguer and S. Skeirik. Equational formulas and pattern operations in initial order-sorted algebras.
In LOPSTR’15, volume 9527 of LNCS, pages 36-53. Springer, 2015.

https://github.com/kframework/python-semantics
http://coq.inria.fr

[62]
[63]
[64]
[65]
[66]
[67]
[68]

[69]
[70]

[71]
[72]
[73]
[74]

[75]
[76]

[77]
[78]
[79]
[80]
[81]
(82]
[83]
[84]
[85]
[86]
(87]
[88]
(89]

[90]

MTCHING LOGIC 61

P. D. Mosses. CASL Reference Manual, The Complete Documentation of the Common Algebraic
Specification Language, volume 2960 of LNCS. Springer, 2004.

J. A. Navarro Perez and A. Rybalchenko. Separation logic + superposition calculus = heap theorem
prover. In PLDI’11, pages 556-566. ACM, 2011.

J. A. Navarro Perez and A. Rybalchenko. Separation logic modulo theories. In APLAS’13, volume 8301
of LNCS, pages 90-106, 2013.

T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. Formal Aspects of
Computing, 10:171-186, 1998.

T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-order Logic.
Springer-Verlag, Berlin, Heidelberg, 2002.

P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In
CSL’01, volume 2142 of LNCS, pages 1-19, 2001.

P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215-244,
1999.

S. Owens. A sound semantics for OCamljgn:. In ESOP’08, volume 4960 of LNCS, pages 1-15, 2008.

D. Park, A. Stefanescu, and G. Rogu. KJS: A complete formal semantics of JavaScript. In PLDI’15,
pages 346-356. ACM, 2015.

M. J. Parkinson and A. J. Summers. The relationship between separation logic and implicit dynamic
frames. In ESOP’11, volume 6602 of LNCS, pages 439-458, 2011.

E. Pek, X. Qiu, and P. Madhusudan. Natural Proofs for Data Structure Manipulation in C using
Separation Logic. In PLDI’14, pages 440-451. ACM, 2014.

R. Pichler. Explicit versus implicit representations of subsets of the Herbrand universe. Theoretical
Computer Science, 290(1):1021-1056, 2003.

R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using smt. In CAV’13, volume 8044 of
LNCS, pages 773-789, 2013.

G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153-163, 1970.

J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patterson, J. Li, A. Chitipothu, and S. Krishnamurthi.
Python: The full monty. In OOPSLA’13, pages 217-232. ACM, 2013.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS’02, pages 55-74.
IEEE, 2002.

G. Rosu. Matching logic — extended abstract. In RTA’15, volume 36 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 521, July 2015.

G. Rosu, A. Stefinescu, Stefan Ciobacd, and B. M. Moore. One-path reachability logic. In LICS’13,
pages 358-367. IEEE, 2013.

G. Rosu, C. Ellison, and W. Schulte. Matching logic: An alternative to Hoare/Floyd logic. In AMAST’10,
volume 6486 of LNCS, pages 142-162, 2010.

G. Rosu and T. F. Serbanuti. An overview of the K semantic framework. Journal of Logic and Algebraic
Programming, 79(6):397-434, 2010.

G. Rosu and T. F. Serbanuta. K overview and simple case study. In Proceedings of International K
Workshop (K’11), volume 304 of ENTCS, pages 3-56. Elsevier, June 2014.

G. Rosu and A. Stefanescu. Matching logic: a new program verification approach (NIER track). In
ICSE-NIER’11, pages 868-871. ACM, 2011.

G. Rosu and A. Stefanescu. Checking reachability using matching logic. In OOPSLA’12, pages 555-574.
ACM, 2012.

G. Rosu and A. Stefanescu. From hoare logic to matching logic reachability. In FM’12, volume 7436 of
LNCS, pages 387-402, 2012.

P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa. Ott: effective tool
support for the working semanticist. In ICFP’07, pages 1-12. ACM, 2007.

M. Tajine. The negation elimination from syntactic equational formula is decidable. In RTA’93, volume
690 of LNCS, pages 316-327, 1993.

A. Tarski and S. Givant. A formalization of set theory without variables. Colloguium Publications, 41,
1987.

J. F. A. K. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples. Distributed in the U.S.A.
By Humanities Press, 1983.

Wikipedia. Abstract data type, 2016. https://en.wikipedia.org/wiki/Abstract_data_type.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 9404, USA

https://en.wikipedia.org/wiki/Abstract_data_type

	1. Introduction
	2. Matching Logic: Basic Notions
	2.1. Patterns
	2.2. Example
	2.3. Semantics
	2.4. Basic Properties

	3. Instance: Propositional Calculus
	4. Instance: (Pure) Predicate Logic
	5. Matching Logic: Useful Symbols and Notations
	5.1. Definedness and Totality
	5.2. Equality
	5.3. Membership
	5.4. Functions
	5.5. Partial Functions
	5.6. Total Relations
	5.7. Constructors, Unification, Anti-Unification
	5.8. Built-in Domains

	6. Instance: Algebraic Specifications and Beyond
	6.1. Sequences, Multisets and Sets
	6.2. Maps

	7. Instance: First-Order Logic
	8. Instance: Modal Logic
	9. Instance: Separation Logic
	9.1. Separation Logic Basics
	9.2. Map Patterns
	9.3. Separation Logic as an Instance of Matching Logic

	10. Matching Logic: Reduction to Predicate Logic with Equality
	11. Matching Logic: Sound and Complete Deduction
	12. Additional Related Work
	13. Conclusion and Future Work
	References

