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Abstract. A weight normalization procedure, commonly called pushing, is introduced
for weighted tree automata (wta) over commutative semifields. The normalization pre-
serves the recognized weighted tree language even for nondeterministic wta, but it is most
useful for bottom-up deterministic wta, where it can be used for minimization and equiva-
lence testing. In both applications a careful selection of the weights to be redistributed
followed by normalization allows a reduction of the general problem to the correspond-
ing problem for bottom-up deterministic unweighted tree automata. This approach was
already successfully used by Mohri and Eisner for the minimization of deterministic
weighted string automata. Moreover, the new equivalence test for two wta M and M ′

runs in time O
(
(|M |+ |M ′|) log (|Q|+ |Q′|)

)
, where Q and Q′ are the states of M and M ′,

respectively, which improves the previously best run-time O
(
|M | · |M ′|

)
.

1. Introduction

Weighted tree automata [FV09] have recently found various applications in fields as diverse
as natural language and XML processing [KM09], system verification [Jac11], and pattern
recognition. Most applications require efficient algorithms for basic manipulations of tree
automata such as determinization [BMV10], inference [MKV10], and minimization [HMM09,
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HMM07]. For example, in the system verification domain the properties to be verified
are typically easily expressed as a formula in a logic. It is well-known [TW68] that tree
automata are as expressive as monadic second-order logic with two successors. This celebrated
result was recently generalized to the weighted setting for various weight structures [DV06,
Man08, DGMM11, VDH16], so quantitative specifications are readily available. However,
one of the main insights gained in the development of the mona toolkit [KM01] (or the
spass system [WDF+09]) was that the transformation of a formula into an equivalent tree
automaton heavily relies on the minimization of the constructed deterministic tree automata
as the automata otherwise grow far too quickly. Similarly, a major inference setup, also used
in the synthesis subfield in system verification, is Angluin’s minimally adequate teacher
setup [Ang87]. In this setup, the learner is given access to an oracle that correctly supplies
coefficients of trees in the weighted tree language to be learned, which are called coefficient
queries, and certificates that the proposed weighted tree automaton indeed represents the
weighted tree language to be learned, which are called equivalence queries. In implementations
of the oracle the latter queries are typically answered by equivalence tests.

As already mentioned, quantitative models have recently enjoyed a lot of attention. For ex-
ample, in natural language processing, weighted devices are often used to model probabilities,
cost functions, or other features. In this contribution, we consider pushing [Moh97, Eis03] for
weighted tree automata [BR82, FV09] over commutative semifields [HW98, Gol99]. Roughly
speaking, pushing moves transition weights along a path. If the weights are properly se-
lected, then pushing can be used to canonicalize a (bottom-up) deterministic weighted tree
automaton [Bor05]. The obtained canonical representation has the benefit that it can be
minimized using unweighted minimization, in which the weight is treated as a transition
label. This strategy has successfully been employed in [Moh97, Eis03] for deterministic
weighted (finite-state) string automata, and similar approaches have been used to minimize
sequential transducers [Cho03] and bottom-up tree transducers [FSM11]. Here we adapt the
strategy for tree automata. In particular, we improve the currently best minimization algo-
rithm [Mal09] for a deterministic weighted tree automatonM with states Q from O

(
|M | · |Q|

)
to O

(
|M | log |Q|

)
, which coincides with the complexity of minimization in the unweighted

case [HMM09]. The improvement is achieved by a careful selection of the signs of life [Mal09].
Intuitively, a sign of life for a state q is a context that takes q into a final state. In [Mal09]
the signs of life are computed by a straightforward exploration algorithm, which is very
efficient, but does not guarantee that states that are later checked for equivalence receive
the same sign of life. During the (pair-wise) equivalence checks in [Mal09] the evaluation of
the weight of a state in the sign of life of another state thus becomes unavoidable, which
causes the increased complexity. In this contribution, we precompute an equivalence relation,
which, in general, is still coarser than the state equivalence to be determined, but equivalent
states in this equivalence permit the same sign of life. Then we determine a sign of life for
each equivalence class. Later we only refine this equivalence relation to obtain the state
equivalence, so each state will only be evaluated in its sign of life and this evaluation can be
precomputed. Moreover, the weights obtained in this evaluation, also called pushing weights,
allow a proper canonicalization in the sense that equivalent states will have exactly the same
weights on corresponding transitions after pushing. This property sets our algorithm apart
from Algorithm 1 of [Mal09] and allows us to rely on unweighted minimization [HMM09].
Our pushing procedure, which is defined for general (potentially nondeterministic) weighted
tree automata, always preserves the semantics, so it might also be useful in other setups.
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Secondly, we apply pushing to the problem of testing equivalence. The currently fastest
algorithm [DHM11] for checking equivalence of two deterministic weighted tree automata
M and M ′ runs in time O

(
|M | · |M ′|

)
. It is well known that two minimal deterministic

weighted tree automata M and M ′ are equivalent if and only if they can be obtained from
each other by a pushing operation (with proper pushing weights). In other words, equivalent
automata M and M ′ have the same transition structure, but their transition weights can
differ by consistent factors. We extend our approach to minimization also to equivalence
testing, so we again carefully determine the pushing weight and the sign of life of each
state q of M such that it shares the sign of life with all equivalent states of M but also
with all corresponding states in M ′. This allows us to minimize both input automata and
then treat the obtained automata as unweighted automata and test them for isomorphism.
This approach reduces the run-time complexity to O

(
(|M |+ |M ′|) log (|Q|+ |Q′|)

)
, where

Q and Q′ are the states of M and M ′, respectively.

2. Preliminaries

We write N for the set of all nonnegative integers and [1, u] for its subset {i | 1 ≤ i ≤ u}
given u ∈ N. The k-fold Cartesian product of a set Q is written as Qk, and the empty
tuple () ∈ Q0 is often written as ε. Every finite and nonempty set is also called alphabet, of
which the elements are called symbols. A ranked alphabet (Σ, rk) consists of an alphabet Σ
and a mapping rk : Σ → N, which assigns a rank to each symbol. If the ranking ‘rk’
is obvious from the context, then we simply write Σ for the ranked alphabet. For each
k ∈ N, we let Σk be the set {σ ∈ Σ | rk(σ) = k} of k-ary symbols of Σ. Moreover, we let
Σ(Q) = {σw | σ ∈ Σ, w ∈ Qrk(σ)}. The set TΣ(Q) of all Σ-trees indexed by Q is inductively
defined to be the smallest set T such that Q ⊆ T and Σ(T ) ⊆ T . Instead of TΣ(∅) we simply
write TΣ. The size |t| of a tree t ∈ TΣ(Q) is inductively defined by |q| = 1 for every q ∈ Q and
|σ(t1, . . . , tk)| = 1 +

∑k
i=1|ti| for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Q). To increase

readability, we often omit quantifications like “for all k ∈ N” if they are obvious from the
context.

We reserve the use of a special symbol � that is not an element in any considered alphabet.
Its function is to mark a designated position in certain trees called contexts. Formally, the
set CΣ(Q) of all Σ-contexts indexed by Q is defined as the smallest set C such that � ∈ C
and σ(t1, . . . , ti−1, c, ti+1, . . . , tk) ∈ C for every σ ∈ Σk, t1, . . . , tk ∈ TΣ(Q), i ∈ [1, k], and
c ∈ C. As before, we simplify CΣ(∅) to CΣ. In simple words, a context is a tree, in which the
special symbol � occurs exactly once and at a leaf position. Note that CΣ(Q) ∩ TΣ(Q) = ∅,
but CΣ(Q) ⊆ TΣ(Q ∪ {�}), which allows us to treat contexts like trees. Given c ∈ CΣ(Q)
and t ∈ TΣ(Q∪ {�}), the tree c[t] is obtained from c by replacing the unique occurrence of �
in c by t. In particular, c[c′] ∈ CΣ(Q) given that c, c′ ∈ CΣ(Q).

A commutative semiring [HW98, Gol99] is a tuple (S,+, ·, 0, 1) such that (S,+, 0) and
(S, ·, 1) are commutative monoids and s · 0 = 0 and s · (s1 + s2) = (s · s1) + (s · s2) for all
s, s1, s2 ∈ S (i.e., · distributes over +). It is a commutative semifield if (S \ {0}, ·, 1) is a
commutative group (i.e., in addition, for every s ∈ S \ {0} there exists s−1 ∈ S such that
s · s−1 = 1). Typical commutative semifields include
• the Boolean semifield B = ({0, 1},max,min, 0, 1),
• the field (Q,+, ·, 0, 1) of rational numbers, and
• the Viterbi semifield (Q≥0,max, ·, 0, 1), where Q≥0 = {q ∈ Q | q ≥ 0}.
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Given a mapping f : A → S, we write supp(f) for the set {a ∈ A | f(a) 6= 0} of elements
that are mapped via f to a non-zero semiring element.

For the rest of the paper, let (S,+, ·, 0, 1) be a commutative semifield.1

A weighted tree automaton [BLB83, Boz99, Kui98, BV03, Bor05, FV09] (for short: wta)
is a tuple M = (Q,Σ, µ, F ), in which
• Q is an alphabet of states,
• Σ is a ranked alphabet of input symbols,
• µ : Σ(Q)×Q→ S assigns a weight to each transition, and
• F ⊆ Q is a set of final states.
We often write elements of TΣ(Q)×Q as t→ q instead of (t, q). The size |M | of the wta M
is

|M | =
∑

t→q∈supp(µ)

(|t|+ 1) .

We extend the transition weight assignment µ to a mapping hµ : TΣ(Q)×Q→ S by

hµ(p→ q) =

{
1 if p = q

0 otherwise

hµ(σ(t1, . . . , tk)→ q) =
∑

q1,...,qk∈Q
µ(σ(q1, . . . , qk)→ q) ·

k∏
i=1

hµ(ti → qi)

for all p, q ∈ Q, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Q). The wta M recognizes the weighted
tree language M : TΣ → S such that M(t) =

∑
q∈F hµ(t → q) for every t ∈ TΣ. Two wta

M andM ′ are equivalent if their recognized weighted tree languages coincide. The unweighted
(finite-state) tree automaton [GS84, GS97, CDG+07] (for short: fta) corresponding to M is
unw(M) = (Q,Σ, supp(µ), F ).2 We note that supp(M) ⊆ L(unw(M)), where L(unw(M)) is
the tree language recognized by the fta unw(M).

The wta M = (Q,Σ, µ, F ) is (bottom-up) deterministic (or a dwta) if for every t ∈ Σ(Q)
there exists at most one q ∈ Q such that t → q ∈ supp(µ). In other words, a wta M
is deterministic if and only if unw(M) is bottom-up deterministic. In a dwta we can
(without loss of information) treat µ and hµ as partial mappings µ : Σ(Q) 99K Q × S and
hµ : TΣ(Q) 99K Q× S. We use µ(1) and µ(2) as well as h(1)

µ and h(2)
µ for the corresponding

projections to the first and second output component, respectively (e.g., µ(1) : Σ(Q) 99K Q
and µ(2) : Σ(Q) 99K S). To avoid complicated distinctions, we treat undefinedness like a
value (i.e., it is equal to itself, but different from every other value). We observe that
supp(M) = L(unw(M)) for each dwta M .3 Moreover, the restriction to final states instead
of final weights in the definition of a wta does not restrict the expressive power [Bor05,
Lemma 6.1.4], which applies to both wta and dwta. In addition, the transformation of a wta
with final weights into an equivalent wta with final states does not add additional states, so
all our results also apply to wta with final weights.

1Clearly, weighted tree automata can also be defined for semirings or even more general weight structures,
but already minimization for deterministic finite-state string automata becomes NP-hard for simple semirings
that are not semifields (see [Eis03, Section 3]).

2An fta computes in the same manner as a wta over the Boolean semifield B.
3The statement holds because each commutative semifield is zero-divisor free [Bor03, Lemma 1].



PUSHING FOR WEIGHTED TREE AUTOMATA 5

An equivalence relation ≡ on a set A is a reflexive, symmetric, and transitive subset
of A2. The equivalence class (or block) [a]≡ of the element a ∈ A is {a′ ∈ A | a ≡ a′}, and
we let (A′/≡) = {[a′]≡ | a′ ∈ A′} for every A′ ⊆ A. Whenever ≡ is obvious from the context,
we simply omit it. The equivalence ≡ respects a set A′ ⊆ A if [a] ⊆ A′ or [a] ⊆ A \ A′ for
every a ∈ A (i.e., each equivalence class is either completely in A′ or completely outside A′).

Let M = (Q,Σ, µ, F ) be a dwta. An equivalence relation ≡ ⊆ Q2 is a congruence
(of M) if µ(1)(σ(q1, . . . , qk)) ≡ µ(1)(σ(q′1, . . . , q

′
k)) for every σ ∈ Σk and all equivalent states

q1 ≡ q′1, . . . , qk ≡ q′k. Note that this definition of congruence completely disregards the weights,
which yields that ≡ is a congruence for M if and only if ≡ is a congruence for unw(M). Two
states q1, q2 ∈ Q are weakly equivalent, written as q1 ∼M q2, if h

(1)
µ (c[q1]) ∈ F if and only if

h
(1)
µ (c[q2]) ∈ F for all contexts c ∈ CΣ(Q). In other words, weak equivalence coincides with

classical equivalence [GS84, Definition II.6.8] for unw(M). Consequently, the weak equivalence
relation ∼M is actually a congruence of M that respects F [GS84, Theorem II.6.10]. The
weak equivalence relation ∼M can be computed in time O

(
|M | log |Q|

)
[HMM09]. Finally,

two states are (strongly) equivalent, written as q1 ≡M q2 if there exists a factor s ∈ S \ {0}
such that for all c ∈ CΣ(Q) we have

h(2)
µ (c[q1]) · χF

(
h(1)
µ (c[q1])

)
= s · h(2)

µ (c[q2]) · χF
(
h(1)
µ (c[q2])

)
,

where χF : Q→ {0, 1} is the characteristic function of F ; i.e., F (q) = 1 if and only if q ∈ F
for all q ∈ Q. The equivalence relation ≡M is called the Myhill-Nerode equivalence
relation [Mal09, Definition 3]. It is also a congruence that respects F [Mal09, Lemma 4]. If
M is clear from the context, then we just write ≡ instead of ≡M .

3. Signs of life

First, we demonstrate how to efficiently compute signs of life (Definition 3.1), which are
evidence that a final state can be reached. Together with these signs of life we also compute
a pushing weight for each state (Section 4). Our Algorithm 1 is a straightforward extension
of [Mal09, Algorithm 1] that computes on equivalence classes of states (with respect to a
congruence that respects finality) instead of states.4 This change guarantees that equivalent
states receive the same sign of life, which is an essential requirement for the algorithms in
Sections 5 and 6.

Before we start we need to recall the definition of a sign of life [Mal09]. In addition, we
recall the relevant properties that we use in our algorithm. For the rest of this section, let
M = (Q,Σ, µ, F ) be a dwta.

Definition 3.1 ([Mal09, Section 2]). A context c ∈ CΣ(Q) is a sign of life for the state q ∈ Q
if h(1)

µ (c[q]) ∈ F . Any state that has a sign of life is live; otherwise it is dead.

The following lemma justifies that we can compute signs of life for equivalence classes of
congruences that respect F instead of individual states since all states of such an equivalence
class share the same signs of life.

Lemma 3.2 (see [Mal09, Lemma 9]). We have ∼= ⊆ ∼M for every congruence ∼= that
respects F . In particular, ≡M ⊆ ∼M . Moreover, every sign of life for q ∈ Q is also a sign of
life for every q′ ∈ [q]∼=.

4Note that our algorithm is not simply the previous algorithm executed on the quotient dwta with respect
to the congruence. The original dwta is used essentially in the computation of the pushing weights.
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Alg. 1 ComputeSoL: Compute a sign of life and its weight for each state.

Require: dwta M = (Q,Σ, µ, F ) and congruence ∼= ⊆ Q2 of M that respects F
Ensure: return live state partition (L/∼=) and the mappings sol : (L/∼=) → CΣ(Q) and

λ : L→ S \ {0} such that λ(q) = h
(2)
µ (sol([q]∼=)[q]) for every q ∈ L

L← (F/∼=) // final states are trivially live . . .
2: for all B ∈ L do

sol(B)← � // . . . with the trivial context as sign of life. . .
4: λ(q)← 1 for all q ∈ B // . . . and trivial pushing weight
U ← L // start from the final states

6: while U 6= ∅ do
take B ∈ U and U ← U \ {B} // get an unexplored class

8: for all σ(q1, . . . , qk) ∈ Σ(Q) such that µ(1)(σ(q1, . . . , qk)) ∈ B do
for all i ∈ [1, k] such that [qi]∼= /∈ L do

10: c← σ(q1, . . . , qi−1,�, qi+1, . . . , qk) // prepare context
L← L ∪ {[qi]∼=}; U ← U ∪ {[qi]∼=} // add class to L and U

12: sol([qi]∼=)← sol(B)[c] // add transition to target block’s sign of life
λ(q)← λ(µ(1)(c[q])) · µ(2)(c[q]) for all q ∈ [qi]∼= // multiply transition weight

14: return (L, sol, λ)

Proof. It is known that ∼M is the coarsest congruence that respects F [GS84, Theorem
II.6.10].5 Consequently, ∼= ⊆ ∼M and ≡M ⊆ ∼M since we already remarked that ≡M is
also a congruence that respects F . Based on the definition of ∼M it is trivial to see that all
elements of an equivalence class of ∼M share the same signs of life [Mal09, Lemma 9]. Since
[q]∼= ⊆ [q]∼M we obtain the desired statement.

Algorithm 1 simply attempts to reach all states from the final states computing a context
that takes the state to a final state (i.e., a sign of life) as well as its weight in the process.
Due to Lemma 3.2 the signs of life are computed for equivalence classes (or blocks) instead
of individual states. Now let us explain Algorithm 1 in detail. Every final state q ∈ F is
trivially live as evidenced by the trivial sign of life �. Since the congruence ∼= respects F , the
set (F/∼=) contains equivalence classes that contain only final states. We set the sign of life
for each class to � [see Line 3], and for each involved state q we set its pushing weight to 1
[see Line 4]. Overall, this initialization takes time O

(
|F |
)
. Next, we add all those blocks to

the live states L and to the blocks U yet to be explored. As long as there are still unexplored
blocks, we select a block B from U and remove it from U . Then we consider all transitions
that end in a state that belongs to the block B and check whether it contains a source state
that is not yet present in L. For each such source state qi, we add its equivalence class [qi]∼=
to both L and U . Then we set the sign of life for this class to the sign of life for B extended
by the considered transition [see Line 12]. Finally, we select each state q from [qi]∼= and
compute a pushing weight by multiplying the weight of the currently considered transition
with qi replaced by q to the already computed pushing weight for the target state reached by
the modified transition [see Line 13].

5Mind that ∼M coincides with classical equivalence on unw(M) and that our notion of congruence
completely disregards the weights.
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Theorem 3.3. Algorithm 1 is correct and runs in time O
(
|M |+ |Q|

)
.

Proof. Since our algorithm is similar to the one of [Mal09], our proof closely resembles the
proofs of [Mal09, Lemma 10 and Theorem 11] adjusted to equivalence classes. We already
argued that the initialization runs in time O

(
|F |
)
⊆ O

(
|Q|
)
. It is easy to see that U ⊆ L at

all times in the main loop [Line 6–13] of the algorithm. Consequently, each block can be
added at most once to U since it is added at the same time to L and only blocks not in L
can be added to U . This yields that the main loop executes at most |(Q/∼=)| ≤ |Q| times.
The inner loop [Line 9–13] can execute at most |M | times since each transition is considered
at most once in the middle loop and at most once for each source state of the transition. The
statements in the inner loop all execute in constant time except for Line 13, which can be
executed once for each state q ∈ Q. Overall, we thus obtain the running time O

(
|M |+ |Q|

)
.

Now let us prove the post-conditions. By Lemma 3.2 we know that signs of life are
shared between elements in an equivalence class of ∼=. The remaining statements are proved
by induction along the outer main loop. Initially, we set

λ(q) = 1 = h(2)
µ (q) = h(2)

µ (�[q])

by Lines 3–4, which proves the post-condition because sol([q]∼=) = �. In the main loop, we set
λ(q) = λ(µ(1)(c[q])) ·µ(2)(c[q]) in Line 13. The equivalence class of q′ = µ(1)(c[q]) has already
been explored in a previous iteration because q ∼= qi, which by the congruence property yields
µ(1)(c[q]) ∼= µ(1)(c[qi]) and the latter was in the explored equivalence class B, which in turn
yields that the former is in B. Consequently, we can employ the induction hypothesis and
obtain λ(q′) = h

(2)
µ (sol(B)[q′]). In addition,

λ(q) = λ(q′) · µ(2)(c[q]) = h(2)
µ (sol(B)[q′]) · µ(2)(c[q])

= h(2)
µ (sol(B)[c[q]]) = h(2)

µ ((sol(B)[c])[q]) ,

which proves the post-condition because sol([q]∼=) = sol([qi]∼=) = sol(B)[c] by Line 12. Clearly,
sol([q]∼=) is a sign of life for q, which proves that q is live. Finally, suppose that there is a
live state q ∈ Q such that [q]∼= /∈ L (i.e., we assume a live state that is not classified as such
by Algorithm 1). Since it is live, it has a sign of life c ∈ CΣ(Q). By induction on c we can
prove that, when processing c[q], there exists a transition that uses a source state qi such
that [qi]∼= /∈ L, whereas the target state q′ is such that [q′]∼= ∈ L.6 However, since [q′] was
explored, the considered transition was considered in the algorithm, which means that the
equivalence class [qi]∼= was added to L. This contradicts the assumption, which shows that
all states that are not represented in L are indeed dead.

Example 3.4. Our example dwta N = (Q,Σ, µ, F ) is depicted left in Figure 1. For any
transition (small circle, the annotation specifies the input symbol and the weight separated by
a colon), the arrow leads to the target state and the source states q1, . . . , qk have been arranged
in a counter-clockwise fashion starting from the target arrow. For example, the bottom center
transition labeled σ : 4 in the left dwta of Figure 1 corresponds to µ(σ(qb, q1) → q2) = 4;
i.e., its target state is q2, its symbol is σ, its source states are qbq1 (in this order), and
its weight is 4. As usual, final states are doubly circled. The graphical representation of
wta is explained in detail in [Bor05]. The coarsest congruence ∼= respecting F = {q1, qf} is
represented by the set {{q1, qf}, {q2, qb}} of equivalence classes (i.e., partition). We use this
congruence in Algorithm 1. First, the block F of final states is marked as live and added to U .

6Such a switch must exist because all the final states are represented in L.
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qf

qb q2 q1

γ : 8 γ : 4

σ : 4

γ : 2

σ : 1

γ : 2

σ : 1

σ : 4β : 1 α : 1

qf

qb q2 q1

γ : 1 γ : 4

σ : 1

γ : 1

σ : 1

γ : 2

σ : 1

σ : 1β : 8 α : 1

Figure 1: Dwta over the rational numbers before (left) and after (right) pushing.

It is assigned the trivial context � as sign of life and each final state is assigned the trivial
weight 1. Clearly, we can only select one equivalence class B = F in the main loop. Let us
consider the transition γ(qb)→ qf , whose target state qf is in B. Since [qb]∼= = {q2, qb} has
not yet been marked as live, we add it to both L and U . In addition, we set its sign of life
to γ(�). Finally, we set the pushing weights to λ(qb) = λ(qf ) · µ(2)(γ(qb) → qf ) = 8 and
λ(q2) = λ(qf ) · µ(2)(γ(q2) → qf ) = 2. Now all states are live, so the loops will terminate.
Consequently, we have computed all signs of life and the pushing weights

λ(q1) = λ(qf ) = 1 λ(q2) = 2 and λ(qb) = 8 .

4. Pushing

The Myhill-Nerode congruence requires that there is a unique scaling factor for every
pair (q, q′) of equivalent states. Thus, any fixed sign of life c for both q and q′ [for which
χF (h

(1)
µ (c[q])) = 1 = χF (h

(1)
µ (c[q′]))] yields non-zero weights h(2)

µ (c[q]) and h(2)
µ (c[q′]), which

can be used to determine this unique scaling factor between q and q′. In fact, we already
computed those weights λ(q) and λ(q′) in Algorithm 1. By Lemma 3.2, states that are not
weakly equivalent (and thus might not have the same sign of life after executing Algorithm 1
with ∼M ) also cannot be equivalent. For the remaining pairs of live states, we computed a
sign of life sol([q]∼M ) for the equivalence class [q]∼M of q in the previous section. In addition,
we computed pushing weights λ(q) and λ(q′). Now, we will use these weights to normalize
the wta by pushing [Moh97, Eis03, PG09]. Intuitively, pushing cancels the scaling factor for
equivalent states, which we will prove in the next section. In general, it just redistributes
weights along the transitions. In weighted (finite-state) string automata [Sak09], pushing
is performed from the final states towards the initial states [Moh97]. Since we work with
bottom-up wta [Bor05] (i.e., our notion of determinism is bottom-up), this works analogously
here by moving weights from the root towards the leaves. However, we introduce our notion of
pushing for arbitrary, not necessarily deterministic wta. To this end, we lift the corresponding
definition [Moh97, page 296] from string to tree automata.

In this section, let M = (Q,Σ, µ, F ) be an arbitrary wta and λ : Q→ S \ {0}
be an arbitrary mapping such that λ(q) = 1 for every q ∈ F .
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Definition 4.1. The pushed wta pushλ(M) is (Q,Σ, µ′, F ) such that for every σ ∈ Σk and
q, q1, . . . , qk ∈ Q

µ′(σ(q1, . . . , qk)→ q) = λ(q) · µ(σ(q1, . . . , qk)→ q) ·
k∏
i=1

λ(qi)
−1 .

The mapping λ indicates the pushed weights. It is non-zero everywhere and has to be 1
for final states because our model does not have final weights.7 In the pushed wta pushλ(M),
the weight of every transition leading to the state q ∈ Q is obtained from the weight of
the corresponding transition in M by multiplying the weight λ(q). To compensate, the
weight of every transition leaving the state q will cancel the weight λ(q) by multiplying
with λ(q)−1. Thus, we expect an equivalent wta after pushing, which we confirm by showing
that M and pushλ(M) are indeed equivalent. The corresponding statement for string
automata is [Moh97, Lemma 4].

Proposition 4.2. The wtaM and pushλ(M) are equivalent. Moreover, ifM is deterministic,
then so is pushλ(M).

Proof. Let pushλ(M) = M ′ = (Q,Σ, µ′, F ). The preservation of determinism is obvious
because supp(µ′) ⊆ supp(µ).8 We prove that hµ′(t→ q) = λ(q) · hµ(t→ q) for every t ∈ TΣ

and q ∈ Q by induction on t. Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ. By
the induction hypothesis, we have hµ′(ti → qi) = λ(qi) · hµ(ti → qi) for every i ∈ [1, k] and
qi ∈ Q. Consequently,

hµ′(t→ q) =
∑

q1,...,qk∈Q
µ′(σ(q1, . . . , qk)→ q) ·

k∏
i=1

hµ′(ti → qi)

=
∑

q1,...,qk∈Q
λ(q) · µ(σ(q1, . . . , qk)→ q) ·

k∏
i=1

λ(qi)
−1 ·

k∏
i=1

(
λ(qi) · hµ(ti → qi)

)
= λ(q) · hµ(t→ q) .

We complete the proof as follows.

M ′(t) =
∑
q∈F

hµ′(t→ q) =
∑
q∈F

λ(q) · hµ(t→ q) =
∑
q∈F

hµ(t→ q) = M(t)

because λ(q) = 1 for every q ∈ F .

Theorem 4.3. The wta pushλ(M) is equivalent to M and can be obtained in time O
(
|M |

)
.

Example 4.4. Let us return to our example dwta N left in Figure 1 and perform pushing.
The pushing weights λ are given in Example 3.4. We consider the transition σ(qb, qf )→ q2,
which has weight 4 in N . In pushλ(N) this transition has the weight

λ(q2) · µ(σ(qb, qf )→ q2) · λ(qb)
−1 · λ(qf )−1 = 2 · 4 · 8−1 · 1−1 = 1 .

The dwta pushλ(N) is presented right in Figure 1. With a little effort, we can confirm that
q2 and qb are equivalent in pushλ(N), whereas q1 and qf are not.

7As already mentioned, the restriction to final states is a convenience and not an essential restriction.
8In fact, supp(µ′) = supp(µ) because semifields are zero-divisor free [Bor03, Lemma 1].
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Alg. 2 Overall structure of our minimization algorithm; see [Mal09] for details on the
procedure MergeStates. Note that the final merging is performed on the input dwta M .
The alphabetic dwta N is only needed to compute the equivalence ≡M .
Require: a dwta M with states Q
Ensure: return a minimal, equivalent dwta
∼M ← ComputeCoarsestCongruence(M,Q×Q) // complexity: O

(
|M | log |Q|

)
2: (L, sol, λ)← ComputeSoL(M,∼M ) // complexity: O

(
|M |

)
N ← alph(pushλ(M)) // complexity: O

(
|M |

)
4: ≡M ← ComputeCoarsestCongruence(N,∼M ) // complexity: O

(
|M | log |Q|

)
return MergeStates(M,≡M , λ) // complexity: O

(
|M |

)
5. Minimization

Our main application of weight pushing is efficient dwta minimization, which we present
next. The overall structure of our minimization procedure is presented in Algorithm 2.
As mentioned earlier, the coarsest congruence ∼M for a dwta M = (Q,Σ, µ, F ) that re-
spects F can be obtained by minimization [HMM09] of unw(M). We call this procedure
ComputeCoarsestCongruence and supply it with a dwtaM and an equivalence relation.
It returns the coarsest congruence (of M) that refines the given equivalence relation.

Let M = (Q,Σ, µ, F ) be a dwta (without useless states) and λ : Q→ S \ {0}
be the pushing weights computed by Algorithm 1 when run on M and ∼M .9

In addition, we let pushλ(M) = M ′ = (Q,Σ, µ′, F ).
The dwta M ′ has the property that (µ′)(2)(σ(q1, . . . , qk)) = (µ′)(2)(σ(q′1, . . . , q

′
k)) for

all σ ∈ Σk and states qi ≡M q′i for every i ∈ [1, k]. We will prove this property (5.1) in
Lemma 5.2. It is this property, which, in analogy to the string case [Moh97, Eis03], allows
us to compute the equivalence ≡M = ∼N on an unweighted fta N , in which we treat the
transition weight as part of the input symbol. For example, the algorithm of [HMM09] can
then be used to compute ∼N . Finally, we merge the equivalent states using the information
about the scaling factors contained in the pushing weights λ in the same way as in [Mal09].
Let us start with the formal definitions.10

Definition 5.1. Let M = (Q,Σ, µ, F ) be a dwta, and let S′ = {µ(τ) | τ ∈ supp(µ)} be
the finite set of non-zero weights that occur as transition weights in M . The alphabetic
dwta alph(M) for M is (Q,Σ× S′, µ′′, F ), where
• rk(〈σ, s〉) = rk(σ) for every σ ∈ Σ and s ∈ S′,
• µ′′(τ) = 1 for every τ ∈ supp(µ′′), and
• for every σ ∈ Σk, s ∈ S′, and q, q1, . . . , qk ∈ Q

µ′′(〈σ, s〉(q1, . . . , qk)→ q) = 1 ⇐⇒ µ(σ(q1, . . . , qk)→ q) = s .

Clearly, the construction of alph(M) can be performed in time O
(
|M |

)
. Next, we show

that the equivalence ≡M in M coincides with the equivalence ∼alph(M ′) in alph(M ′), where
M ′ = pushλ(M). We achieve this proof by showing both inclusions.

9In a dwta without useless states we have |Q| ≤ |M |.
10We avoid a change of the weight structure from our semifield to the Boolean semifield B since the

multiplicative submonoid induced by {0, 1} is isomorphic to the multiplicative monoid of B. Thus, our dwta
with weights in {0, 1} compute in the same manner as a dwta over B or equivalently a deterministic fta.
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Lemma 5.2. The congruence ≡M of M is a congruence of alph(M ′) that respects F .
Proof. Let alph(M ′) = (Q,Σ×S′, µ′′, F ). SinceM and alph(M ′) have the same final states F ,
≡M trivially respects F because it is a congruence of M that respects F . Naturally, ≡M is
an equivalence, so it remains to prove the congruence property for alph(M ′). Let σ ∈ Σk

and qi ≡M q′i for every i ∈ [1, k]. Then

µ(1)(σ(q1, . . . , qk)) ≡M µ(1)(σ(q′1, . . . , q
′
k))

because ≡M is a congruence of M . For the moment, let us assume that11

(µ′)(2)(σ(q1, . . . , qk)) = s = (µ′)(2)(σ(q′1, . . . , q
′
k)) ,

then

(µ′′)(1)(〈σ, s〉(q1, . . . , qk)) = (µ′)(1)(σ(q1, . . . , qk)) = µ(1)(σ(q1, . . . , qk))

≡M µ(1)(σ(q′1, . . . , q
′
k)) = (µ′)(1)(σ(q′1, . . . , q

′
k)) = (µ′′)(1)(〈σ, s〉(q′1, . . . , q′k)) .

For all the remaining combinations of 〈σ, s′〉 we have that both (µ′′)(1)(〈σ, s′〉(q1, . . . , qk)) and
(µ′′)(1)(〈σ, s′〉(q′1, . . . , q′k)) are undefined and thus equal. We have thus proved the congruence
property given the assumption. Consequently, it remains to show that the assumption

(µ′)(2)(σ(q1, . . . , qk)) = (µ′)(2)(σ(q′1, . . . , q
′
k)) (5.1)

is true. By Definition 4.1, we have

(µ′)(2)(σ(q1, . . . , qk)) = λ(µ(1)(σ(q1, . . . , qk))) · µ(2)(σ(q1, . . . , qk)) ·
k∏
i=1

λ(qi)
−1 (5.2)

(µ′)(2)(σ(q′1, . . . , q
′
k)) = λ(µ(1)(σ(q′1, . . . , q

′
k))) · µ(2)(σ(q′1, . . . , q

′
k)) ·

k∏
i=1

λ(q′i)
−1 . (5.3)

Now we prove that

λ(µ(1)(cj [qj ])) · µ(2)(cj [qj ]) ·
j−1∏
i=1

λ(q′i)
−1 ·

k∏
i=j

λ(qi)
−1

= λ(µ(1)(cj [q
′
j ])) · µ(2)(cj [q

′
j ]) ·

j∏
i=1

λ(q′i)
−1 ·

k∏
i=j+1

λ(qi)
−1 (5.4)

for every j ∈ [1, k], where cj = σ(q′1, . . . , q
′
j−1,�, qj+1, . . . , qk). Let pj = µ(1)(cj [qj ]) and

p′j = µ(1)(cj [q
′
j ]). Since qj ≡M q′j , we also have that pj ≡M p′j because ≡M is a congruence

of M . This yields that pj ∼M p′j by Lemma 3.2. Let c = sol([pj ]∼M ) be a sign of life for
both pj and p′j . Moreover, we have a constant scaling factor between the equivalent states
qj and q′j , which yields

λ(qj)

λ(q′j)

(†)
=
h

(2)
µ (c[cj [qj ]])

h
(2)
µ (c[cj [q′j ]])

(‡)
=
h

(2)
µ (c[pj ]) · µ(2)(cj [qj ])

h
(2)
µ (c[p′j ]) · µ(2)(cj [q′j ])

(5.5)

λ(pj)

λ(p′j)
=
h

(2)
µ (c[pj ])

h
(2)
µ (c[p′j ])

, (5.6)

11Mind that we compare the weights in M ′ = pushλ(M) here.
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where (†) holds because c[cj ] is a sign of life for both qj and q′j and (‡) holds essentially by
definition. With these equations, let us inspect the main equality.

λ(µ(1)(cj [qj ])) · µ(2)(cj [qj ]) ·
∏j−1
i=1 λ(q′i)

−1 ·
∏k
i=j λ(qi)

−1

λ(µ(1)(cj [q′j ])) · µ(2)(cj [q′j ]) ·
∏j
i=1 λ(q′i)

−1 ·
∏k
i=j+1 λ(qi)−1

=
λ(pj) · µ(2)(cj [qj ]) · λ(qj)

−1

λ(p′j) · µ(2)(cj [q′j ]) · λ(q′j)
−1

(5.6)
=

h
(2)
µ (c[pj ]) · µ(2)(cj [qj ])

h
(2)
µ (c[p′j ]) · µ(2)(cj [q′j ])

·
λ(q′j)

λ(qj)

(5.5)
= 1

Now we are ready to return to the proof obligation expressed in (5.1). We apply (5.4) in
total k times to obtain the desired statement.

(µ′)(2)(σ(q1, . . . , qk))
(5.2)
= λ(µ(1)(σ(q1, . . . , qk))) · µ(2)(σ(q1, . . . , qk)) ·

k∏
i=1

λ(qi)
−1

= λ(µ(1)(c1[q1])) · µ(2)(c1[q1]) ·
0∏
i=1

λ(q′i)
−1 ·

k∏
i=1

λ(qi)
−1

(5.4)
= λ(µ(1)(c1[q′1])) · µ(2)(c1[q′1]) ·

1∏
i=1

λ(q′i)
−1 ·

k∏
i=2

λ(qi)
−1

= λ(µ(1)(c2[q2])) · µ(2)(c2[q2]) ·
1∏
i=1

λ(q′i)
−1 ·

k∏
i=2

λ(qi)
−1

. . .

(5.4)
= λ(µ(1)(ck[q

′
k])) · µ(2)(ck[q

′
k]) ·

k∏
i=1

λ(q′i)
−1 ·

k∏
i=k+1

λ(qi)
−1

= λ(µ(1)(σ(q′1, . . . , q
′
k))) · µ(2)(σ(q′1, . . . , q

′
k)) ·

k∏
i=1

λ(q′i)
−1

(5.3)
= (µ′)(2)(σ(q′1, . . . , q

′
k)) ,

which completes the proof.

Theorem 5.3. We have ≡M = ∼N , where N = alph(M ′).

Proof. Lemma 5.2 shows that ≡M is a congruence of N that respects F . Since ∼N is
the coarsest congruence of N that respects F by [GS84, Theorem II.6.10], we obtain that
≡M ⊆ ∼N . The converse is simple to prove as states that are weakly equivalent in alph(M ′)
share exactly the same signs of life with the scaling factor 1. Since the signs of life already
indicate the transition weights, we immediately obtain that such weakly equivalent states
in alph(M ′) have corresponding transitions with equal transition weights in M ′, which proves
that those states are also equivalent in M ′ with the scaling factor 1. The latter statement
can then be used to prove that they are also equivalent in M (with a scaling factor that is
potentially different from 1).

The currently fastest dwta minimization algorithm [Mal09] runs in time O
(
|M | · |Q|

)
.

Our approach, which relies on pushing and is presented in Algorithm 2, achieves the same
run-time O

(
|M | log |Q|

)
as the fastest minimization algorithms for deterministic fta.
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Alg. 3 Overall structure of our equivalence test.
Require: accessible dwta M = (Q,Σ, µ, F ) and M ′ = (Q′,Σ, µ′, F ′)
Ensure: return ‘yes’ if M and M ′ are equivalent; ‘no’ otherwise

g ← ComputeCorrespondence(M,M ′) // complexity: O
(
|M |

)
2: ∼M ← ComputeCoarsestCongruence(M,Q×Q) // complexity: O

(
|M | log |Q|

)
∼M ′ ← ComputeCoarsestCongruence(M ′, Q′ ×Q′) // complexity: O

(
|M ′| log |Q′|

)
4: (L, sol, λ)← ComputeSoL(M,∼M ) // complexity: O

(
|M |

)
if g is not compatible with the congruences ∼M and ∼M ′ then

6: return no // see Lemma 6.1; complexity: O
(
|Q|+ |Q′|

)
for all q′ ∈ Q′ do

8: λ′(q′) = h
(2)
µ′ (c′[q′]) with c′ = reng(sol(g−1([q′]∼M′ ))) // prepare pushing weights

N ←Minimize(alph(pushλ(M)),∼M ) // complexity: O
(
|M | log |Q|

)
10: N ′ ←Minimize(alph(pushλ′(M

′)),∼M ′) // complexity: O
(
|M ′| log |Q′|

)
return Isomorphic?(N,N ′) // complexity: O

(
|N |
)

Corollary 5.4 (see Algorithm 2). For every dwta M = (Q,Σ, µ, F ), we can compute an
equivalent minimal dwta in time O

(
|M | log |Q|

)
.

6. Testing equivalence

In this final section, we want to decide whether two given dwta are equivalent. To this end,
let M = (Q,Σ, µ, F ) and M ′ = (Q′,Σ, µ′, F ′) be dwta. The overall approach is presented
in Alg. 3. First, we compute a correspondence g : Q→ Q′ between states. For every q ∈ Q,
we compute a tree t ∈ TΣ, which is also called access tree for q, such that h(1)

µ (t) = q. If no
access tree exists, then q is not reachable and can be deleted. A dwta, in which all states
are reachable, is called accessible. To avoid these details, let us assume that M and M ′ are
accessible, which can always be achieved in time O

(
|M |+ |M ′|

)
. In this case, we can compute

an access tree a(q) ∈ TΣ for every state q ∈ Q in time O
(
|M |

)
using standard breadth-first

search, in which we unfold each state (i.e., explore all transitions leading to it) at most once.
To keep the representation efficient, we store the access trees in the format Σ(Q), where
each state q ∈ Q refers to its access tree a(q). To obtain the corresponding state g(q), we
compute the state of Q′ that is reached when processing the access tree a(q). Formally,
g(q) = h

(1)
µ′ (a(q)) for every q ∈ Q. This computation can also be achieved in time O

(
|M |

)
since we can reuse the results for the subtrees. Consequently, we have that h(1)

µ (a(q)) = q and
h

(1)
µ′ (a(q)) = g(q) for every q ∈ Q. Clearly, the computation of the access trees a : Q→ TΣ

and the correspondence g : Q→ Q′ can be performed in time O
(
|M |

)
. Next, we compute

the coarsest congruences ∼M and ∼M ′ for M and M ′ that respect F and F ′, respectively,
and the signs of life for M .

Lemma 6.1. Let M and M ′ be equivalent. The correspondence g : Q → Q′ is compatible
with the congruences ∼M and ∼M ′; i.e., g(q) ∼M ′ g(p) if and only if q ∼M p for all
q, p ∈ Q. Moreover, for every reachable q′ ∈ Q′ there exists q ∈ Q such that g(q) ∈ [q′]∼M′ .
Consequently, g induces a bijection g : (Q/∼M )→ (Q′/∼M ′) on the equivalence classes.
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Proof. Let q, p ∈ Q, and let t = a(q) and u = a(p) be the corresponding access trees. Then

q ∼M p

⇐⇒ {c ∈ CΣ(Q) | h(1)
µ (c[q]) ∈ F} = {c ∈ CΣ(Q) | h(1)

µ (c[p]) ∈ F}

⇐⇒ {c ∈ CΣ | h(1)
µ (c[q]) ∈ F} = {c ∈ CΣ | h(1)

µ (c[p]) ∈ F} (?)
⇐⇒ {c ∈ CΣ | c[t] ∈ supp(M)} = {c ∈ CΣ | c[u] ∈ supp(M)} (†)
⇐⇒ {c ∈ CΣ | c[t] ∈ supp(M ′)} = {c ∈ CΣ | c[u] ∈ supp(M ′)} (since M = M ′)

⇐⇒ {c ∈ CΣ | h(1)
µ′ (c[g(q)]) ∈ F ′} = {c ∈ CΣ | h(1)

µ′ (c[g(p)]) ∈ F ′} (†)

⇐⇒ {c ∈ CΣ(Q) | h(1)
µ′ (c[g(q)]) ∈ F ′} = {c ∈ CΣ(Q) | h(1)

µ′ (c[g(p)]) ∈ F ′} (?)

⇐⇒ g(q) ∼M ′ g(p) ,

where (?) follows from [Mal08, Lemma 4] and (†) follows from the easy fact that h(1)
µ (c[q]) ∈ F

if and only if c[t] ∈ supp(M) for all q ∈ Q and t ∈ TΣ such that h(1)
µ (t) = q.

For the second statement, let q′ ∈ Q′ be a reachable state, and let t ∈ TΣ be such that
h

(1)
µ′ (t) = q′. Clearly, we have

{c ∈ CΣ | h(1)
µ′ (c[q′]) ∈ F ′} (†)

= {c ∈ CΣ | c[t] ∈ supp(M ′)} = {c ∈ CΣ | c[t] ∈ supp(M)}
(†)
= {c ∈ CΣ | h(1)

µ (c[q]) ∈ F} (†)
= {c ∈ CΣ | c[a(q)] ∈ supp(M)}

= {c ∈ CΣ | c[a(q)] ∈ supp(M ′)} (†)
= {c ∈ CΣ | h(1)

µ′ (c[g(q)]) ∈ F ′}

where q = h
(1)
µ (t). Consequently, using (?) we obtain q′ ∼M ′ g(q).

We just demonstrated that for equivalent dwta the correspondence g always yields a
bijection g : (Q/∼M ) → (Q′/∼M ′). We can test the compatibility in time O

(
|Q| + |Q′|

)
.

Next we transfer the signs of life via g to the equivalence classes of ∼M ′ and calculate the
corresponding pushing weights for all states q′ ∈ Q′. Since the signs of life can contain
states of Q, we need to rename them using the correspondence g, so we use the func-
tion reng : TΣ(Q ∪ {�}) → TΣ(Q′ ∪ {�}), which is defined by reng(�) = �, reng(q) = g(q)
for all q ∈ Q, and reng(σ(t1, . . . , tk)) = σ(reng(t1), . . . , reng(tk)) for all σ ∈ Σk and trees
t1, . . . , tk ∈ TΣ(Q ∪ {�}). We note that reng(c) ∈ CΣ(Q′) for all c ∈ CΣ(Q).

Using this approach corresponding equivalence classes receive the same sign of life
(modulo the renaming reng of the states). We then minimize M and M ′ using the method of
Section 5 (i.e., we perform pushing followed by unweighted minimization). Finally, we test
the obtained deterministic fta for isomorphism.

Lemma 6.2. We use the symbols of Algorithm 3. Given a compatible correspondence g, the
dwta M and M ′ are equivalent if and only if the deterministic unweighted fta alph(pushλ(M))
and alph(pushλ′(M

′)) are equivalent.

Proof. Clearly, if the deterministic fta alph(pushλ(M)) and alph(pushλ′(M
′)) are equivalent,

then also pushλ(M) and pushλ′(M
′) are equivalent since the weights are annotated on

the symbols of the former devices. Moreover, since pushing preserves the semantics (see
Proposition 4.2), also the dwta M and M ′ are equivalent, which concludes one direction.
For the other direction, let M and M ′ be equivalent. Then also pushλ(M) and pushλ′(M

′)
are equivalent due to Proposition 4.2. An easy adaptation of the proof (of the equality (5.1)
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of the transition weights) of Lemma 5.2 can be used to show that the transition weights of
corresponding transitions are equal and hence alph(pushλ(M)) and alph(pushλ′(M

′)) are
equivalent.

Lemma 6.2 proves the correctness of Algorithm 3 because the minimal deterministic
fta for a given tree language is unique (up to isomorphism) [GS84, Theorem 2.11.12]. The
run-time of our algorithm should be compared to the previously (asymptotically) fastest
equivalence test for dwta of [DHM11], which runs in time O

(
|M | · |M ′|

)
.

Theorem 6.3. We can test equivalence ofM andM ′ in time O
(
(|M |+|M ′|) log (|Q|+ |Q′|)

)
.
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