
Logical Methods in Computer Science
Vol. 14(1:9)2018, pp. 1–46
https://lmcs.episciences.org/

Submitted Feb. 01, 2017
Published Jan. 23, 2018

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING ∗

PAROSH AZIZ ABDULLA a, MOHAMED FAOUZI ATIG b, AHMED BOUAJJANI c,
AND TUAN PHONG NGO d

a,b,d Uppsala University, Sweden
e-mail address: parosh@it.uu.se
e-mail address: mohamed faouzi.atig@it.uu.se
e-mail address: tuan-phong.ngo@it.uu.se

c IRIF Université Paris Diderot - Paris 7, France
e-mail address: abou@liafa.univ-paris-diderot.fr

Abstract. We address the problem of verifying safety properties of concurrent programs
running over the Total Store Order (TSO) memory model. Known decision procedures
for this model are based on complex encodings of store buffers as lossy channels. These
procedures assume that the number of processes is fixed. However, it is important in general
to prove the correctness of a system/algorithm in a parametric way with an arbitrarily
large number of processes.

In this paper, we introduce an alternative (yet equivalent) semantics to the classical
one for the TSO semantics that is more amenable to efficient algorithmic verification and
for the extension to parametric verification. For that, we adopt a dual view where load
buffers are used instead of store buffers. The flow of information is now from the memory
to load buffers. We show that this new semantics allows (1) to simplify drastically the
safety analysis under TSO, (2) to obtain a spectacular gain in efficiency and scalability
compared to existing procedures, and (3) to extend easily the decision procedure to the
parametric case, which allows obtaining a new decidability result, and more importantly, a
verification algorithm that is more general and more efficient in practice than the one for
bounded instances.

2012 ACM CCS: [Software and its engineering]: Software organization and properties—Software
functional properties—Formal methods—Software verification.

Key words and phrases: Total Store Order, Weak Memory Models, Reachability Problem, Parameterized
Systems, Well-quasi-ordering.
∗ A preliminary version of this paper appeared as at CONCUR’16 [AABN16].

This work was supported in part by the Swedish Research Council and carried out within the Linnaeus
centre of excellence UPMARC, Uppsala Programming for Multicore Architectures Research Center.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(1:9)2018
c© P.A. Abdulla, M.F. Atig, A. Bouajjani, and T.P. Ngo
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

1. Introduction

Most modern processor architectures execute instructions in an out-of-order manner to
gain efficiency. In the context of sequential programming, this out-of-order execution is
transparent to the programmer since one can still work under the Sequential Consistency
(SC) model [Lam79]. However, this is not true when we consider concurrent processes that
share the memory. In fact, it turns out that concurrent algorithms such as mutual exclusion
and producer-consumer protocols may not behave correctly any more. Therefore, program
verification is a relevant (and difficult) task in order to prove correctness under the new
semantics. The out-of-order execution of instructions has led to the invention of new program
semantics, so called Weak (or relaxed) Memory Models (WMMs), by allowing permutations
between certain types of memory operations [AG96, DSB86, AH90]. Total Store Ordering
(TSO) is one of the the most common models, and it corresponds to the relaxation adopted
by Sun’s SPARC multiprocessors [WG94] and formalizations of the x86-TSO memory model
[OSS09, SSO+10]. These models put an unbounded perfect (non-lossy) store buffer between
each process and the main memory where a store buffer carries the pending store operations
of the process. When a process performs a store operation, it appends it to the end of
its buffer. These operations are propagated to the shared memory non-deterministically
in a FIFO manner. When a process reads a variable, it searches its buffer for a pending
store operation on that variable. If no such a store operation exists, it fetches the value
of the variable from the main memory. Verifying programs running on the TSO memory
model poses a difficult challenge since the unboundedness of the buffers implies that the
state space of the system is infinite even in the case where the input program is finite-state.
Decidability of safety properties has been obtained by constructing equivalent models that
replace the perfect store buffer by lossy channels [ABBM10, ABBM12, AAC+12a]. However,
these constructions are complicated and involve several ingredients that lead to inefficient
verification procedures. For instance, they require each message inside a lossy channel to
carry (instead of a single store operation) a full snapshot of the memory representing a
local view of the memory contents by the process. Furthermore, the reductions involve
non-deterministic guessing the lossy channel contents. The guessing is then resolved either by
consistency checking [ABBM10] or by using explicit pointer variables (each corresponding to
one process) inside the buffers [AAC+12a], causing a serious state space explosion problem.

In this paper, we introduce a novel semantics which we call the Dual TSO semantics.
Our aim is to provide an alternative (and equivalent) semantics that is more amenable
for efficient algorithmic verification. The main idea is to have load buffers that contain
pending load operations (more precisely, values that will potentially be taken by forthcoming
load operations) rather than store buffers (that contain store operations). The flow of
information will now be in the reverse direction, i.e., store operations are performed by
the processes atomically on the main memory, while values of variables are propagated
non-deterministically from the memory to the load buffers of the processes. When a process
performs a load operation, it can fetch the value of the variable from the head of its load
buffer. We show that the Dual TSO semantics is equivalent to the original one in the
sense that any given set of processes will reach the same set of local states under both
semantics. The Dual TSO semantics allows us to understand the TSO model in a totally
different way compared to the classical semantics. Furthermore, the Dual TSO semantics
offers several important advantages from the point of view of formal reasoning and program
verification. First, the Dual TSO semantics allows transforming the load buffers to lossy

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 3

channels without adding the costly overhead that was necessary in the case of store buffers.
This means that we can assume w.l.o.g. that any message in the load buffers (except a
finite number of messages) can be lost in non-deterministic manner. Hence, we can apply
the theory of well-structured systems [Abd10, ACJT96, FS01] in a straightforward manner
leading to a much simpler proof of decidability of safety properties. Second, the absence
of extra overhead means that we obtain more efficient algorithms and better scalability
(as shown by our experimental results). Finally, the Dual TSO semantics allows extending
the framework to perform parameterized verification which is an important paradigm in
concurrent program verification. Here, we consider systems, e.g., mutual exclusion protocols,
that consist of an arbitrary number of processes. The aim of parameterized verification is to
prove correctness of the system regardless of the number of processes. It is not obvious how
to perform parameterized verification under the classical semantics. For instance, extending
the framework of [AAC+12a], would involve an unbounded number of pointer variables, thus
leading to channel systems with unbounded message alphabets. In contrast, as we show in
this paper, the simple nature of the Dual TSO semantics allows a straightforward extension
of our verification algorithm to the case of parameterized verification. This is the first time a
decidability result is established for the parametrized verification of programs running over
WMMs. Notice that this result is taking into account two sources of infinity: the number of
processes and the size of the buffers.

Based on our framework, we have implemented a tool and applied it to a large set
of benchmarks. The experiments demonstrate the efficiency of the Dual TSO semantics
compared to the classical one (by two order of magnitude in average), and the feasibility
of parametrized verification in the former case. In fact, besides its theoretical generality,
parametrized verification is practically crucial in this setting: as our experiments show, it is
much more efficient than verification of bounded-size instances (starting from a number of
components of 3 or 4), especially concerning memory consumption (which also is a critical
resource).

Related Work. There have been a lot of works related to the analysis of programs run-
ning under WMMs (e.g., [LNP+12, KVY10, KVY11, DMVY13, AAC+12a, BM08, BSS11,
BDM13, BAM07, YGLS04, AALN15, AAC+12b, AAJL16, DMVY17, TW16, LV16, LV15,
Vaf15, HVQF16]). Some of these works propose precise analysis techniques for check-
ing safety properties or stability of finite-state programs under WMMs (e.g., [AAC+12a,
BDM13, DM14, AAP15, AALN15]). Others propose context-bounded analyzing techniques
(e.g., [ABP11, TLI+16, TLF+16, AABN17]) or stateless model-checking techniques (e.g.,
[AAA+15, ZKW15, DL15, HH16]) for programs under TSO and PSO. Different other tech-
niques based on monitoring and testing have also been developed during these last years
(e.g., [BM08, BSS11, LNP+12]). There are also a number of efforts to design bounded model
checking techniques for programs under WMMs (e.g., [AKNT13, AKT13, YGLS04, BAM07])
which encode the verification problem in SAT/SMT.

The closest works to ours are those presented in [AAC+12a, ABBM10, AAC+13,
ABBM12] which provide precise and sound techniques for checking safety properties for
finite-state programs running under TSO. However, as stated in the introduction, these
techniques are complicated and can not be extended, in a straightforward manner, to the
verification of parameterized systems (as it is the case of the developed techniques for
the Dual TSO semantics). In Section 6, we experimentally compare our techniques with

4 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

Memorax [AAC+12a, AAC+13] which is the only precise and sound tool for checking safety
properties for concurrent programs under TSO.

2. Preliminaries

Let Σ be a finite alphabet. We use Σ∗ (resp. Σ+) to denote the set of all words (resp.
non-empty words) over Σ. Let ε be the empty word. The length of a word w ∈ Σ∗ is denoted
by |w| (and in particular |ε| = 0). For every i : 1 ≤ i ≤ |w|, let w(i) be the symbol at position
i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some i : 1 ≤ i ≤ |w|.

Given two words u and v over Σ, we use u � v to denote that u is a (not necessarily
contiguous) subword of v, i.e., if there is an injection h : {1, . . . , |u|} 7→ {1, . . . , |v|} such
that: (1) h(i) < h(j) for all i, j : 1 ≤ i < j ≤ |u| and (2) for every i : 1 ≤ i ≤ |u|, we have
u(i) = v(h(i)).

Given a subset Σ′ ⊆ Σ and a word w ∈ Σ∗, we use w|Σ′ to denote the projection of w
over Σ′, i.e., the word obtained from w by erasing all the symbols that are not in Σ′.

Let A and B be two sets and let f : A 7→ B be a total function from A to B. We use
f [a←↩ b] to denote the function g such that g(a) = b and g(x) = f(x) for all x 6= a.

A transition system T is a tuple
(
C, Init, Act,∪a∈Act

a−→
)

where C is a (potentially

infinite) set of configurations; Init ⊆ C is a set of initial configurations; Act is a set of

actions; and for every a ∈ Act,
a−→⊆ C× C is a transition relation. We use c

a−→ c′ to denote

that (c, c′) ∈ a−→. Let −→:= ∪a∈Act
a−→.

A run π of T is of the form c0
a1−→ c1

a2−→ · · · an−→ cn where ci
ai+1−−−→ ci+1 for all i : 0 ≤ i < n.

Then, we write c0
π−→ cn. We use target (π) to denote the configuration cn. The run π

is said to be a computation if c0 ∈ Init. Two runs π1 = c0
a1−→ c1

a2−→ · · · am−−→ cm and

π2 = cm+1
am+2−−−→ cm+2

am+3−−−→ · · · an−→ cn are compatible if cm = cm+1. Then, we write π1 • π2

to denote the run

π = c0
a1−→ c1

a2−→ · · · am−−→ cm
am+2−−−→ cm+2

am+3−−−→ · · · an−→ cn.

For two configurations c and c′, we use c
∗−→ c′ to denote that c

π−→ c′ for some run π. A

configuration c is said to be reachable in T if c0
∗−→ c for some c0 ∈ Init, and a set C of

configurations is said to be reachable in T if some c ∈ C is reachable in T .

3. Concurrent Systems

In this section, we define the syntax we use for concurrent programs, a model for representing
communication of concurrent processes. Communication between processes is performed
through a shared memory that consists of a finite number of shared variables (over finite
domains) to which all processes can read and write. Then we recall the classical TSO
semantics including the transition system it induces and its reachability problem. Next, we
introduce the Dual TSO semantics and its induced transition system. Finally, we state the
equivalence between the two semantics; i.e., for a given concurrent program, we can reduce
its reachability problem under the classical TSO semantics to its reachability problem under
Dual TSO semantics and vice-versa.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 5

q0start q1 q2 A1

w(x, 2) r(y, 0)

q′0start q′1 q′2 q′3 A2

w(y, 1) w(x, 1) r(x, 2)

Figure 1: An example of a concurrent system P= {A1, A2}.

3.1. Syntax. Let V be a finite data domain and X be a finite set of variables. We assume
w.l.o.g. that V contains the value 0. Let Ω(X,V) be the smallest set of memory operations
that contains with x ∈ X and v, v′ ∈ V:

(1) “no” operation nop,
(2) read operation r(x, v),
(3) write operation w(x, v),
(4) fence operation fence, and
(5) atomic read-write operation arw(x, v, v′).

A concurrent system (or a concurrent program) is a tuple P= (A1, A2, . . . , An) where
for every p : 1 ≤ p ≤ n, Ap is a finite-state automaton describing the behavior of the process
p. The automaton Ap is defined as a triple

(
Qp, q

init
p ,∆p

)
where Qp is a finite set of local

states, qinit
p ∈ Qp is the initial local state, and ∆p ⊆ Qp × Ω(X,V) × Qp is a finite set of

transitions. We define P := {1, . . . , n} to be the set of process IDs, Q := ∪p∈PQp to be the
set of all local states and ∆ := ∪p∈P∆p to be the set of all transitions.

Example 3.1. Figure 1 shows an example of a concurrent system P = {A1, A2} consisting of
two concurrent processes, called p1 and p2. Communication between processes is performed
through two shared variables x and y to which the processes can read and write. The automa-
ton A1 is defined as a triple ({q0, q1, q2} , {q0} , {(q0,w(x, 2), q1) , (q1, r(y, 0), q2)}). Similarly,
A2 = ({q′0, q′1, q′2, q′3} , {q′0} , {(q′0,w(y, 1), q′1) , (q′1,w(x, 1), q′2) , (q′2, r(x, 2), q′3)}). 4

3.2. Classical TSO Semantics. In the following, we recall the semantics of concurrent
systems under the classical TSO model as formalized in [OSS09, SSO+10]. To do that, we
define the set of configurations and the induced transition relation. Let P = (A1, A2, . . . , An)
be a concurrent system.

TSO-configurations. A TSO-configuration c is a triple (q,b,mem) where:

(1) q : P 7→ Q is the global state of P, mapping each process p ∈ P to a local state in Qp
(i.e., q(p) ∈ Qp).

(2) b : P 7→ (X× V)∗ gives the content of the store buffer of each process.
(3) mem : X 7→ V defines the value of each shared variable.

Observe that the store buffer of each process contains a sequence of write operations, where
each write operation is defined by a pair, namely a variable x and a value v that is assigned
to x.

The initial TSO-configuration cinit is defined by the tuple (qinit ,binit ,meminit) where,
for all p ∈ P and x ∈ X, we have that qinit(p) = qinit

p , binit(p) = ε and meminit(x) = 0. In
other words, each process is in its initial local state, all the buffers are empty, and all the
variables in the shared memory are initialized to 0.

6 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

t = (q, nop, q′) q(p) = q

(q,b,mem)
t−→TSO (q [p←↩ q′] ,b,mem)

Nop

t = (q,w(x, v), q′) q(p) = q

(q,b,mem)
t−→TSO (q [p←↩ q′] ,b [p←↩ (x, v) · b(p)] ,mem)

Write

t = updatep

(q,b [p←↩ b(p) · (x, v)] ,mem)
t−→TSO (q,b,mem [x←↩ v])

Update

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V = (x, v) · w
(q,b,mem)

t−→TSO (q [p←↩ q′] ,b,mem)
Read-Own-Write

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V = ε mem(x) = v

(q,b,mem)
t−→TSO (q [p←↩ q′] ,b,mem)

Read from Memory

t = (q, arw(x, v, v′), q′) q(p) = q b(p) = ε mem(x) = v

(q,b,mem)
t−→TSO (q [p←↩ q′] ,b,mem [x←↩ v′])

ARW

t = (q, fence, q′) q(p) = q b(p) = ε

(q,b,mem)
t−→TSO (q [p←↩ q′] ,b,mem)

Fence

Figure 2: The transition relation −→TSO under TSO semantics. Here, process p ∈ P and
transition t ∈ ∆p ∪

{
updatep

}
where updatep is a transition that updates the memory using

the oldest message in the buffer of the process p.

We use CTSO to denote the set of all TSO-configurations.

TSO-transition Relation. The transition relation −→TSO between TSO-configurations is
given by a set of rules, described in Figure 2. Here, we informally explain these rules. A
nop transition (q, nop, q′) ∈ ∆p changes only the local state of the process p from q to q′. A
write transition (q,w(x, v), q′) ∈ ∆p adds a new message (x, v) to the tail of the store buffer
of the process p. A memory update transition updatep can be performed at any time by
removing the (oldest) message at the head of the store buffer of the process p and updating
the memory accordingly. For a read transition (q, r(x, v), q′) ∈ ∆p, if the store buffer of the
process p contains some write operations to x, then the read value v must correspond to the
value of the most recent such a write operation. Otherwise, the value v of x is fetched from
the memory. A fence transition (q, fence, q′) ∈ ∆p can be performed by the process p only if
its store buffer is empty. Finally, an atomic read-write transition (q, arw(x, v, v′), q′) ∈ ∆p

can be performed by the process p only if its store buffer is empty. This transition checks
whether the value of x in the memory is v and then changes it to v′.

Let ∆′ :=
{
updatep| p ∈ P

}
, i.e., ∆′ contains all memory update transitions. We use

c −→TSO c
′ to denote that c

t−→TSO c
′ for some t ∈ ∆ ∪∆′. The transition system induced by

P under the classical TSO semantics is then given by TTSO := (CTSO, {cinit},∆ ∪∆′,−→TSO).

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 7

x = 0
y = 0

memory

(x, 2)

(y, 1)(x, 1)

store buffers

tail head
(q1, r(y, 0), q2)

p1 : q(p1) = q1

processes

(q′2, r(x, 2), q′3)

p2 : q(p2) = q′2

r(y, 0)

Figure 3: A reachable TSO-configuration of the concurrent system in Figure 1.

x = 2
y = 1

memory
p1 : q(p1) = q2

processes

p2 : q(p2) = q′3

Figure 4: A reachable “empty buffer” TSO-configuration of the concurrent system in Figure 1.

The TSO Reachability Problem. A global state qtarget is said to be reachable in
TTSO if and only if there is a TSO-configuration c of the form (qtarget,b,mem), with
b(p) = ε for all p ∈ P, such that c is reachable in TTSO.

The TSO reachability problem for the concurrent system P under the TSO semantics
asks, for a given global state qtarget, whether qtarget is reachable in TTSO. Observe that, in
the definition of the reachability problem, we require that the buffers of the configuration c
must be empty instead of being arbitrary. This is only for the sake of simplicity and does not
constitute a restriction. Indeed, we can easily show that the “arbitrary buffer” reachability
problem is reducible to the “empty buffer” reachability problem.

Example 3.2. Figure 3 illustrates a TSO-configuration c that can be reached from the
initial configuration cinit of the concurrent system in Figure 1. To reach this configuration,
the process p1 has executed the write transition (q0,w(x, 2), q1) and appended the message
(x, 2) to its store buffer. Meanwhile, the process p2 has executed two write transitions
(q′0,w(y, 1), q′1) and (q′1,w(x, 1), q′2). Hence, the store buffer of p2 contains the sequence
(x, 1) · (y, 1). Now, the process p1 can perform the read transition (q1, r(y, 0), q2). Since the
buffer of p1 does not contain any pending write message on y, the read value is fetched
from the memory (represented by the dash arrow in Figure 3). Then, p1 and p2 perform
the following sequence of update transitions updatep2 · updatep2 · updatep1 to empty their
buffers and update the memory to x = 2 and y = 1. Finally, p2 performs the read transition
(q′2, r(x, 2), q′3) (by reading from the memory) to reach to the configuration ctarget given in
Figure 4. Observe that the buffers of both processes are empty in ctarget. Let qtarget be the
global state in ctarget defined as follows: qtarget(p1) = q2 and qtarget(p2) = q′3. Therefore, we
can say that the global state qtarget is reachable in TTSO. 4

8 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

t = (q, nop, q′) q(p) = q

(q,b,mem)
t−→DTSO (q [p←↩ q′] ,b,mem)

Nop

t = (q,w(x, v), q′) q(p) = q

(q,b,mem)
t−→DTSO (q [p←↩ q′] ,b [p←↩ (x, v, own) · b(p)] ,mem [x←↩ v])

Write

t = propagatexp mem(x) = v

(q,b,mem)
t−→DTSO (q,b [p←↩ (x, v) · b(p)] ,mem)

Propagate

t = deletep |m| = 1

(q,b [p←↩ b(p) ·m] ,mem)
t−→DTSO (q,b,mem)

Delete

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V×{own} = (x, v, own) · w
(q,b,mem)

t−→DTSO (q [p←↩ q′] ,b,mem)
Read-Own-Write

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V×{own} = ε b(p) = w · (x, v)

(q,b,mem)
t−→DTSO (q [p←↩ q′] ,b,mem)

Read from Buffer

t = (q, arw(x, v, v′), q′) q(p) = q b(p) = ε mem(x) = v

(q,b,mem)
t−→DTSO (q [p←↩ q′] ,b,mem [x←↩ v′])

ARW

t = (q, fence, q′) q(p) = q b(p) = ε

(q,b,mem)
t−→DTSO (q [p←↩ q′] ,b,mem)

Fence

Figure 5: The induced transition relation −→DTSO under the Dual TSO semantics. Here,
process p ∈ P and transition t ∈ ∆p ∪∆′p where ∆′p :=

{
propagatexp , deletep| x ∈ X

}
.

3.3. Dual TSO Semantics. In this section, we define the Dual TSO semantics. The model
has a FIFO load buffer between the main memory and each process. This load buffer is
used to store potential read operations that will be performed by the process. We allow this
buffer to lose messages at any time by deleting the messages at its head in non-deterministic
manner. Each message in the load buffer of a process p is either a pair of the form (x, v)
or a triple of the form (x, v, own) where x ∈ X and v ∈ V. A message of the form (x, v)
corresponds to the fact that x has had the value v in the shared memory. Meanwhile, a
message of the form (x, v, own) corresponds to the fact that the process p has written the
value v to x. We say that a message (x, v, own) is an own-message.

A write operation w(x, v) of the process p immediately updates the shared memory
and then appends a new own-message (x, v, own) to the tail of the load buffer of p. Read
propagation is then performed by non-deterministically choosing a variable (let’s say x and
its value is v in the shared memory) and appending the new message (x, v) to the tail
of the load buffer of p. This propagation operation speculates on a read operation of p
on x that will be performed later on. Moreover, delete operation of the process p can be
performed at any time by removing the (oldest) message at the head of the load buffer of
p. A read operation r(x, v) of the process p can be executed if the message at the head of
the load buffer of p is of the form (x, v) and there is no pending own-message of the form

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 9

(x, v′, own). In the case that the load buffer of p contains some own-messages (i.e., of the
form (x, v′, own)), the read value must correspond to the value of the most recent such an
own-message. Implicitly, this allows to simulate the Read-Own-Write transitions in the TSO
semantics. A fence operation means that the load buffer of p must be empty before p can
continue. Finally, an atomic read-write operation arw(x, v, v′) means that the load buffer of
p must be empty and the value of the variable x in the memory is v before p can continue.

DTSO-configurations. A DTSO-configuration c is a triple (q,b,mem) where:

(1) q : P 7→ Q is the global state of P.
(2) b : P 7→ ((X× V) ∪ (X× V× {own}))∗ is the content of the load buffer of each process.
(3) mem : X 7→ V gives the value of each shared variable.

The initial DTSO-configuration cDinit is defined by (qinit ,binit ,meminit) where, for all
p ∈ P and x ∈ X, we have that qinit(p) = qinit

p , binit(p) = ε and meminit(x) = 0.
We use CDTSO to denote the set of all DTSO-configurations.

DTSO-transition Relation. The transition relation −→DTSO between DTSO-configurations
is given by a set of rules, described in Figure 5. This relation is induced by members of
∆ ∪∆′′ where ∆′′ :=

{
propagatexp , deletep| p ∈ P, x ∈ X

}
.

We informally explain the transition relation rules. The propagate transition propagatexp
speculates on a read operation of p over x that will be executed later. This is done by
appending a new message (x, v) to the tail of the load buffer of p where v is the current value
of x in the shared memory. The delete transition deletep removes the (oldest) message at the
head of the load buffer of the process p. A write transition (q,w(x, v), q′) ∈ ∆p updates the
memory and appends a new own-message (x, v, own) to the tail of the load buffer. A read
transition (q, r(x, v), q′) ∈ ∆p checks first if the load buffer of p contains an own-message of
the form (x, v′, own). In that case, the read value v should correspond to the value of the
most recent such an own-message. If there is no such message on the variable x in the load
buffer of p, then the value v of x is fetched from the (oldest) message at the head of the
load buffer of p.

We use c −→DTSO c′ to denote that c
t−→DTSO c′ for some t ∈ ∆ ∪ ∆′′. The tran-

sition system induced by P under the Dual TSO semantics is then given by TDTSO =(
CDTSO, {cDinit},∆ ∪∆′′,−→DTSO

)
.

The DTSO Reachability Problem. The DTSO reachability problem for P under the Dual
TSO semantics is defined in a similar manner to the case of the TSO semantics. A global
state qtarget is said to be reachable in TDTSO if and only if there is a DTSO-configuration c
of the form (qtarget,b,mem), with b(p) = ε for all p ∈ P, such that c is reachable in TDTSO.
Then, the DTSO reachability problem consists in checking whether qtarget is reachable in
TDTSO.

Example 3.3. Figure 6 illustrates a DTSO-configuration c′ that can be reached from the
initial configuration cDinit of the concurrent system in Figure 1. To reach this configuration, a
propagation operation is performed by appending the message (y, 0) into the load buffer of p1.
Then, the process p2 executes two write transitions (q′0,w(y, 1), q′1) and (q′1,w(x, 1), q′2) that
update the shared memory to x = 1 and y = 1 and add two own-messages to the tail of the
load buffer of p2. Hence, the load buffer of p2 contains the sequence (x, 1, own) · (y, 1, own).
Then, the process p1 executes the write transition (q0,w(x, 2), q1) which updates the shared
memory and appendes the own-message (x, 2, own) to the tail of the load buffer of p1. After

10 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

x = 2
y = 1

memory

(x, 2, own)(y, 0)

load buffers

tailhead

(x, 2)(x, 1, own)(y, 1, own)

(q1, r(y, 0), q2)

p1 : q(p1) = q1

processes

(q′2, r(x, 2), q′3)

p2 : q(p2) = q′2

r(y, 0)

r(x, 2)

Figure 6: A reachable DTSO-configuration of the concurrent system in Figure 1.

x = 2
y = 1

memory
p1 : q(p1) = q2

processes

p2 : q(p2) = q′3

Figure 7: A reachable “empty buffer” DTSO-configuration of the concurrent system in
Figure 1.

that, a propagation operation appending the message (x, 2) into the load buffer of p2 is
performed. Hence, the value of x (resp. y) is 2 (resp. 1) in the shared memory. Furthermore,
the load buffer of p1 (resp. p2) contains the following sequence (x, 2, own) · (y, 0) (resp,
(x, 2) · (x, 1, own) · (y, 1, own)). Now from the configuration c′ (given in Figure 6), the process
p1 can perform a read transition (q1, r(y, 0), q2). Since there is no pending own-message
of the form (y, v, own) for some v ∈ V in the load buffer of p1, p1 reads from the message
at the head of its load buffer, i.e. the message (y, 0) (represented by the dash arrow for
p1). Then, p2 performs two delete transitions deletep2 to remove two own-messages at the
head of its load buffer. Now, the process p2 can perform the read transition (q′2, r(x, 2), q′3)
to read from its load buffer. Finally, p1 and p2 performs a sequence of delete transitions
deletep1 · deletep1 · deletep2 to empty their load buffers, reaching to the configuration c′target
given in Figure 7. Let qtarget be the global state in c′target defined as follows: qtarget(p1) = q2

and qtarget(p2) = q′3. Therefore, we can say that the global state qtarget in c′target is reachable
in TDTSO. 4

3.4. Relation between TSO and DTSO Reachability Problems. The following the-
orem states the equivalence of the reachability problems under the TSO and Dual TSO
semantics.

Theorem 3.4 (TSO-DTSO reachability equivalence). A global state qtarget is reachable in
TTSO iff qtarget is reachable in TDTSO.

Proof. The proof of this theorem can be found in Appendix A.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 11

Example 3.5. In the Example 3.2 and Example 3.3, we have shown that the global state
qtarget (defined by qtarget(p1) = q2 and qtarget(p2) = q′3) is both reachable in TTSO and
TDTSO for the concurrent system given in Figure 1. 4

4. The DTSO Reachability Problem

In this section, we show the decidability of the DTSO reachability problem by making use of
the framework of Well-Structured Transition Systems (Wsts) [ACJT96, FS01]. First, we
briefly recall the framework of Wsts. Then, we instantiate it to show the decidability of the
DTSO reachability problem. Following Theorem 3.4, we also obtain the decidability of the
TSO reachability problem.

4.1. Well-structured Transition Systems. Let T =
(
C, Init, Act,∪a∈Act

a−→
)

be a tran-

sition system. Let v be a well-quasi-ordering on C. Recall that a well-quasi-ordering on C

is a binary relation over C that is reflexive and transitive; and for every infinite sequence
(ci)i≥0 of elements in C, there exist i, j ∈ N such that i < j and ci v cj .

A set U ⊆ C is called upward closed if for every c ∈ U and c′ ∈ C with c v c′, we have
c′ ∈ U. It is known that every upward closed set U can be characterised by a finite minor set
M ⊆ U such that: (i) for every c ∈ U, there is c′ ∈ M such that c′ v c; and (ii) if c, c′ ∈ M and
c v c′, then c = c′. We use min(U) to denote for a given upward closed set U its minor set.

Let D ⊆ C. The upward closure of D is defined as D ↑:= {c′ ∈ C| ∃c ∈ D with c v c′}. We

also define the set of predecessors of D as PreT (D) :=
{
c| ∃c1 ∈ D, a ∈ Act, c

a−→ c1

}
. For a

finite set of configurations M ⊆ C, we use minpre (M) to denote min (PreT (M ↑) ∪ M ↑).
The transition relation −→ is said to be monotonic wrt. the ordering v if, given

c1, c2, c3 ∈ C where c1 −→ c2 and c1 v c3, we can compute a configuration c4 ∈ C and a run π

such that c3
π−→ c4 and c2 v c4. The pair (T ,v) is called a monotonic transition system if

−→ is monotonic wrt. v.
Given a finite set of configurations M ⊆ C, the coverability problem of M in the monotonic

transition system (T ,v) asks whether the set M ↑ is reachable in T ; i.e. there exist two
configurations c1 and c2 such that c1 ∈ M, c1 v c2, and c2 is reachable in T .

For the decidability of this problem, the following three conditions are sufficient:

(1) For every two configurations c1 and c2, it is decidable whether c1 v c2.
(2) For every c ∈ C, we can check whether {c} ↑ ∩Init 6= ∅.
(3) For every c ∈ C, the set minpre ({c}) is finite and computable.

The solution for the coverability problem as suggested in [ACJT96, FS01] is based on a
backward analysis approach. It is shown that starting from a finite set M0 ⊆ C, the sequence
(Mi)i≥0 with Mi+1 := minpre (Mi), for i ≥ 0, reaches a fixpoint and it is computable.

4.2. DTSO-transition System is a Wsts. In this section, we instantiate the framework
of Wsts to show the following result:

Theorem 4.1 (Decidability of DTSO reachability problem). The DTSO reachability problem
is decidable.

12 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

Proof. The rest of this section is devoted to the proof of the above theorem. Let P =
(A1, A2, . . . , An) be a concurrent system (as defined in Section 3). Moreover, let TDTSO =(
CDTSO, {cDinit},∆ ∪∆′′,−→DTSO

)
be the transition system induced by P under the Dual TSO

semantics (as defined in Section 3.3).
In the following, we will show that the DTSO-transition system TDTSO is monotonic wrt.

an ordering v. Then, we will show the three sufficient conditions for the decidability of the
coverability problem for (TDTSO,v) (as stated in Section 4.1).

(1) We first define the ordering v on the set of DTSO-configurations CDTSO (see Sec-
tion 4.2.1).

(2) Then, we show that the transition system TDTSO induced under the Dual TSO semantics
is monotonic wrt. the ordering v (see Lemma 4.2).

(3) For the first sufficient condition, we show that v is a well-quasi-ordering; and that for
every two configurations c1 and c2, it is decidable whether c1 v c2 (see Lemma 4.3).

(4) The second sufficient condition (i.e., checking whether the upward closed set {c} ↑, with
c is a DTSO-configuration, contains the initial configuration cDinit) is trivial. This check
boils down to verifying whether c is the initial configuration cDinit .

(5) For the third sufficient condition, we show that we can calculate the set of minimal
DTSO-configurations for the set of predecessors of any upward closed set (see Lemma 4.4).

(6) Finally, we will also show that the DTSO reachability problem for P can be reduced
to the coverability problem in the monotonic transition system (TDTSO,v) (see Lemma
4.5). Observe that this reduction is needed since we are requiring that the load buffers
are empty when defining the DTSO reachability problem.

This concludes the proof of Theorem 4.1.

4.2.1. Ordering v. In the following, we define an ordering v on the set of DTSO-
configurations CDTSO. Let us first introduce some notations and definitions.

Consider a word w ∈ ((X× V) ∪ (X× V× {own}))∗ representing the content of a load
buffer. We define an operation that divides w into a number of fragments according to the
most-recent own-message concerning each variable. We define

[w]own := (w1, (x1, v1, own), w2, . . . , wm, (xm, vm, own), wm+1)

where the following conditions are satisfied:

(1) xi 6= xj for all i, j : i 6= j and 1 ≤ i, j ≤ m.
(2) If (x, v, own) ∈ wi for some i : 1 < i ≤ m+ 1, then x = xj for some j : 1 ≤ j < i, i.e.,

the most recent own-message on variable xj occurs at the (2j)th fragment of [w]own .
(3) w = w1 · (x1, v1, own) · w2 · · ·wm · (xm, vm, own) · wm+1, i.e., the divided fragments

correspond to the given word w.

Let w,w′ ∈ ((X× V) ∪ (X× V× {own}))∗ be two words. Let us assume that:

[w]own = (w1, (x1, v1, own), w2, . . . , wr, (xr, vr, own), wr+1)

[w′]own = (w′1, (x
′
1, v
′
1, own), w′2, . . . , w

′
m, (x

′
m, v

′
m, own), w′m+1).

We write w v w′ to denote that the following conditions are satisfied:

(1) r = m,
(2) x′i = xi and v′i = vi for all i : 1 ≤ i ≤ m, and
(3) wi � w′i for all i : 1 ≤ i ≤ m+ 1.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 13

Consider two DTSO-configurations c = (q,b,mem) and c′ = (q′,b′,mem′), we extend
the ordering v to configurations as follows: We write c v c′ if and only if the following
conditions are satisfied:

(1) q = q′,
(2) b(p) v b′(p) for all process p ∈ P, and
(3) mem′ = mem.

4.2.2. Monotonicity. Let c1 = (q1,b1,mem1) , c2 = (q2,b2,mem2) , c3 = (q3,b3,mem3) ∈
CDTSO such that c1

t−→DTSO c2 for some t ∈ ∆p ∪
{
propagatexp , deletep| x ∈ X

}
with p ∈ P,

and c1 v c3. We will show that it is possible to compute a configuration c4 ∈ CDTSO and a

run π such that c3
π−→DTSO c4 and c2 v c4.

To that aim, we first show that it is possible from c3 to reach a configuration c′3, by
performing a certain number of deletep transitions, such that the process p will have the
same last message in its load buffer in the configurations c1 and c′3 while c1 v c′3. Then,
from the configuration c′3, the process p can perform the same transition t as c1 did (to reach
c2) in order to reach the configuration c4 such that c2 v c4. Let us assume that [b1(p)]own

is of the form
(w1, (x1, v1, own), w2, . . . , wm, (xm, vm, own), wm+1)

and [b3(p)]own is of the form(
w′1, (x

′
1, v
′
1, own), w′2, . . . , w

′
m, (x

′
m, v

′
m, own), w′m+1

)
.

We define the word w ∈ ((X× V) ∪ (X× V× {own}))∗ to be the longest word such that
w′m+1 = w′ · w with wm+1 � w′. Observe that in this case we have either wm+1 = w′ = ε or
w′(|w′|) = wm+1(|wm+1|). Then, after executing a certain number |w| of deletep transitions
from the configuration c3, one can obtain a configuration c′3 = (q3,b

′
3,mem3) such that

b3 = b′3 [p←↩ b′3(p) · w]. As a consequence, we have c1 v c′3. Furthermore, since c1 and c′3
have the same global state, the same memory valuation, the same sequence of most-recent
own-messages concerning each variable, and the same last message in the load buffers of p,
c′3 can perform the transition t and reaches a configuration c4 such that c2 v c4.

The following lemma shows that (TDTSO,v) is a monotonic transition system.

Lemma 4.2 (DTSO monotonic transition system). The transition relation −→DTSO is
monotonic wrt. the ordering v.

Proof. The proof of the lemma is given in Appendix B.

4.2.3. Conditions of Decidability. We show the first and the third conditions of the
three conditions for the decidability of the coverability problem for (TDTSO,v) (as stated
in Section 4.1). The second condition has been shown to be trivial in the main proof of
Theorem 4.1.

The following lemma shows that the ordering v is indeed a well-quasi-ordering.

Lemma 4.3 (Well-quasi-ordering v). The ordering v is a well-quasi-ordering over CDTSO.
Furthermore, for every two DTSO-configurations c1 and c2, it is decidable whether c1 v c2.

Proof. The proof of the lemma is given in Appendix C.

14 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

The following lemma shows that we can calculate the set of minimal DTSO-configurations
for the set of predecessors of any upward closed set.

Lemma 4.4 (Computable minimal predecessor set). For any DTSO-configuration c, we
can compute minpre({c}).

Proof. The proof of lemma is given in Appendix D.

4.2.4. From DTSO Reachability to Coverability. Let qtarget be a global state of
a concurrent program P and let Mtarget be the set of DTSO-configurations of the form
(qtarget,b,mem) with b(p) = ε for all p ∈ P where P be the set of process IDs in P. We
recall that qtarget in TDTSO if and only if Mtarget is reachable in TDTSO (see Section 2 for
the definition of a reachable set of configurations). Then by Lemma 4.5, we have that the
reachability problem of qtarget in TDTSO can be reduced to the coverability problem of Mtarget
in (TDTSO,v).

Lemma 4.5 (DTSO reachability to coverability). Mtarget↑ is reachable in TDTSO iff Mtarget
is reachable in TDTSO.

Proof. Let us assume that Mtarget ↑ is reachable in TDTSO. This means that there is a
configuration c ∈ Mtarget↑ which is reachable in TDTSO. Let us assume that c is of the form
(qtarget,b,mem). Then, from the configuration c, it is possible to reach the configuration
c′ = (qtarget,b

′,mem), with b′(p) = ε for all p ∈ P, by performing a sequence of delete
transitions to empty the load buffer of each process. It is then easy to see that c′ ∈ Mtarget
and so Mtarget is reachable in TDTSO. The other direction of the lemma is trivial since
Mtarget ⊆ Mtarget↑.

5. Parameterized Concurrent Systems

In this section, we give the definitions for parameterized concurrent systems, a model for
representing unbounded number of communicating concurrent processes under the Dual
TSO semantics, and its induced transition system. Then, we define the DTSO reachability
problem for the case of parameterized concurrent systems.

5.1. Definitions for Parameterized Concurrent Systems. Let V be a finite data
domain and X be a finite set of variables ranging over V. A parameterized concurrent system
(or simply a parameterized system) consists of an unbounded number of identical processes
running under the Dual TSO semantics. Communication between processes is performed
through a shared memory that consists of a finite number of the shared variables X over the
finite domain V. Formally, a parameterized system S is defined by an extended finite-state
automaton A =

(
Q, qinit ,∆

)
uniformly describing the behavior of each process.

An instance of S is a concurrent system P = (A1, A2, . . . , An), for some n ∈ N, where
for each p : 1 ≤ p ≤ n, we have Ap = A. In other words, it consists of a finite set of processes
each running the same code defined by A. We use Inst(S) to denote all possible instances
of S. We use TP := (CP, InitP, ActP,−→P) to denote the transition system induced by an
instance P of S under the Dual TSO semantics.

A parameterized configuration α is a pair (P, c) where P = {1, . . . , n}, with n ∈ N, is the
set of process IDs and c is a DTSO-configuration of an instance P= (A1, A2, . . . , An) of S.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 15

The parameterized configuration α = (P, c) is said to be initial if c is an initial configuration
of P (i.e., c ∈ InitP). We use C (resp. Init) to denote the set of all the parameterized
configurations (resp. all the initial configurations) of S.

Let Act denote the set of actions of all possible instances of S (i.e., Act = ∪P∈Inst(S) ActP).
We define a transition relation −→ on the set C of all parameterized configurations such that

given two configurations (P, c) and (P′, c′), we have (P, c) t−→ (P′, c′) for some action t ∈ Act

iff P′ = P and there is an instance P of S such that t ∈ ActP and c
t−→P c′. The transition

system induced by S is given by T := (C, Init, Act,−→).

The Parameterized DTSO Reachability Problem. A global state qtarget : P′ 7→ Q
is said to be reachable in T if and only if there exists a parameterized configuration
α = (P, (q,b,mem)), with b(p) = ε for all p ∈ P, such that α is reachable in T and
qtarget(1) · · ·qtarget(|P′|) � q(1) · · ·q(|P|).

The parameterized DTSO reachability problem consists in checking whether qtarget is
reachable in T . In other words, the DTSO reachability problem for parameterized systems
asks whether there is an instance of the parameterized system that reaches a configuration
with a number of processes in certain given local states.

5.2. Decidability of the Parameterized Reachability Problem. We prove hereafter
the following theorem:

Theorem 5.1 (Decidability of parameterized DTSO reachability problem). The parameter-
ized DTSO reachability problem is decidable.

Proof. Let S =
(
Q, qinit ,∆

)
be a parameterized system and T = (C, Init, Act,−→) be its

induced transition system. The proof of the theorem is done by instantiating the framework
of Wsts. In more detail, we will show that the parameterized transition system T is
monotonic wrt. an ordering E. Then, we will show the three sufficient conditions for the
decidability of the coverability problem for (T ,E) (as stated in Section 4.1).

(1) We first define the ordering E on the set C of all parameterized configurations (see
Section 5.2.1).

(2) Then, we show that the transition system T is monotonic wrt. the ordering E (see
Lemma 5.2).

(3) For the first sufficient condition, we show that the ordering E is a well-quasi-ordering;
and that for every two parameterized configurations α and α′, it is decidable whether
α v α′ (see Lemma 5.3).

(4) The second sufficient condition (i.e., checking whether the upward closed set {α} ↑, with
α is a parameterized configuration, contains an initial configuration) for the decidability
of the coverability problem is trivial. This check boils down to verifying whether the
configuration α is initial.

(5) For the third sufficient condition, we show that we can calculate the set of minimal
parameterized configurations for the set of predecessors of any upward closed set (see
Lemma 5.4).

(6) Finally, we will show that the parameterized DTSO reachability problem for the parame-
terized system S can be reduced to the coverability problem in the monotonic transition
system (T ,E) (see Lemma 5.5).

This concludes the proof of Theorem 5.1.

16 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

5.2.1. Ordering EEE. Let α = (P, (q,b,mem)) and α′ = (P′, (q′,b′,mem′)) be two parame-
terized configurations. We define the ordering E on the set C of parameterized configurations
as follows: We write α E α′ if and only if the following conditions are satisfied:

(1) mem = mem′.
(2) There is an injection h : {1, . . . , |P|} 7→ {1, . . . , |P′|} such that

(i) for all p, p′ ∈ P, p < p′ implies h(p) < h(p′); and
(ii) for every p ∈ {1, . . . , |P|}, q(p) = q′(h(p)) and b(p) v b′(h(p)).

5.2.2. Monotonicity. We assume that three configurations α1 = (P, (q1,b1,mem1)), α2 =
(P, (q2,b2,mem2)) and α3 = (P′, (q3,b3,mem3)) are given. Furthermore, we assume that

α1 E α3 and α1
t−→ α2 for some transition t. We will show that it is possible to compute a

parameterized configuration α4 and a run π such that α3
π−→ α4 and α2 E α4.

Since α1 E α3, there is an injection function h : {1, . . . , |P|} 7→ {1, . . . , |P′|} such that:

(1) For all p, p′ ∈ P, p < p′ implies h(p) < h(p′).
(2) For every p ∈ {1, . . . , |P|}, q1(p) = q3(h(p)) and b1(p) v b3(h(p)).

We define the parameterized configuration α′ from α3 by only keeping the local states
and load buffers of processes in h(P). Formally, α′ = (P, (q′,b′,mem′)) is defined as follows:

(1) mem′ = mem3.
(2) For every p ∈ {1, . . . , |P|}, q′(p) = q3(h(p)) and b′(p) = b3(h(p)).

We observe that (q1,b1,mem1) v (q′,b′,mem′). Since the transition relation−→DTSO is
monotonic wrt. the orderingv (see Lemma 4.2), there is a DTSO-configuration (q′′,b′′,mem′′)
such that (q′,b′,mem′) −→∗DTSO (q′′,b′′,mem′′) and (q2,b2,mem2) v (q′′,b′′,mem′′).

Consider now the parameterized configuration α4 = (P′, (q4,b4,mem4)) such that:

(1) mem′′ = mem4.
(2) For every p ∈ {1, . . . , |P|}, q′′(p) = q4(h(p)) and b′′(p) = b4(h(p)).
(3) For every p ∈ ({1, . . . , |P′|} \ {h(1), . . . , h(|P|)}), we have q4(p) = q3(p) and b4(p) =

b3(p).

It is easy then to see that α2 E α4 and α3 −→∗ α4.
The following lemma shows that (T ,E) is a monotonic transition system.

Lemma 5.2 (Parameterized monotonic transition system). The transition relation −→ is
monotonic wrt. the ordering E.

Proof. The proof of the lemma is given in Appendix E.

5.2.3. Conditions for Decidability. We show the first and the third conditions of the
three conditions for the decidability of the coverability problem for (T ,E) (as stated in
Section 4.1). The second condition has been shown to be trivial in the main proof of
Theorem 5.1.

The following lemma states that the ordering E is indeed a well-quasi-ordering:

Lemma 5.3 (Parameterized well-quasi-ordering E). The ordering E is a well-quasi-ordering
over C. Furthermore, for every two parameterized configurations α and α′, it is decidable
whether α E α′.

Proof. The lemma follows a similar argument as in the proof of Lemma 4.3.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 17

The following lemma shows that we can calculate the set of minimal parameterized
configurations for the set of predecessors of any upward closed set.

Lemma 5.4 (Computable minimal parameterized predecessor set). For any parameterized
configuration α, we can compute minpre({α}).

Proof. The proof of the lemma is given in Appendix F.

5.2.4. From Parameterized DTSO Reachability to Coverability. Let qtarget : P′ 7→
Q be a global state. Let Mtarget be the set of parameterized configurations of the form α =
(P′, (qtarget,b,mem)) with b(p) = ε for all p ∈ P′. Lemma 5.5 shows that the parameterized
reachability problem of qtarget in the transition system T can be reduced to the coverability
problem of Mtarget in (T ,E).

Lemma 5.5 (Parameterized DTSO reachability to coverability). qtarget is reachable in T
iff Mtarget↑ is reachable in T .

Proof. To prove the lemma, we first show that Mtarget ↑ is reachable in T if and only if there is
a parameterized configuration α = (P, (q,b,mem)), with b(p) = ε for all p ∈ P, such that
α is reachable in T and qtarget(1) · · ·qtarget(|P′|) � q(1) · · ·q(|P|). Then as a consequence,
the lemma holds.

Let us assume that there is a parameterized configuration α = (P, (q,b,mem)),
with b(p) = ε for all p ∈ P, such that α is reachable in T and qtarget(1) · · ·qtarget(|P′|) �
q(1) · · ·q(|P|). It is then easy to show that α ∈ Mtarget ↑.

Now let us assume that there is a parameterized configuration α′ = (P′′, (q′,b′,mem′)) ∈
Mtarget↑ which is reachable in T . From the configuration α′, it is possible to reach the
configuration α′′ = (P′′, (q′,b′′,mem′)), with b′′(p) = ε for all p ∈ P′′, by performing a
sequence of deletep transitions to empty the load buffer of each process. Since α′ ∈ Mtarget ↑, we
have qtarget(1) · · ·qtarget(|P′|) � q′(1) · · ·q′(|P′′|). Hence, α′′ is a witness of the parameterized
reachability problem of qtarget in the transition system T .

6. Experimental Results

We have implemented our techniques described in Section 4 and Section 5 in an open-source
tool called Dual-TSO1. The tool checks the state reachability problems (c.f. Section 3.3 and
Section 5.1) for (parameterized) concurrent systems under the Dual TSO semantics. We
emphasize that besides checking the reachability for a global state, Dual-TSO can check the
reachability for a set of global states. Moreover, Dual-TSO accepts a more general input
class of parameterized concurrent systems. Instead of requiring that the behavior of each
process is described by a unique extended finite-state automaton as defined in Section 5,
Dual-TSO allows that the behavior of a process can be presented by an extended finite-state
automaton from a fixed set of predefined automata. If the tool finds a witness for a given
reachability problem, we say that the concurrent system is unsafe (wrt. the reachability
problem). After finding the first witness for a given reachability problem, the tool terminates
its execution. In the case that no witness is encountered, Dual-TSO declares that the given
concurrent program is safe (wrt. the reachability problem) after it reaches a fixpoint in

1Tool webpage: https://www.it.uu.se/katalog/tuang296/dual-tso

https://www.it.uu.se/katalog/tuang296/dual-tso

18 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

Program #P
Safe under Dual-TSO(v) Memorax
SC TSO #T(s) #C #T(s) #C

SB 5 yes no 0.3 10 641 559.7 10 515 914
LB 3 yes yes 0.0 2 048 71.4 1 499 475
WRC 4 yes yes 0.0 1 507 63.3 1 398 393
ISA2 3 yes yes 0.0 509 21.1 226 519
RWC 5 yes no 0.1 4 277 61.5 1 196 988
W+RWC 4 yes no 0.0 1 713 83.6 1 389 009
IRIW 4 yes yes 0.0 520 34.4 358 057
MP 4 yes yes 0.0 883 t/o •
Simple Dekker 2 yes no 0.0 98 0.0 595
Dekker 2 yes no 0.1 5 053 1.1 19 788
Peterson 2 yes no 0.1 5 442 5.2 90 301
Repeated Peterson 2 yes no 0.2 7 632 5.6 100 082
Bakery 2 yes no 2.6 82 050 t/o •
Dijkstra 2 yes no 0.2 8 324 t/o •
Szymanski 2 yes no 0.6 29 018 1.0 26 003
Ticket Spin Lock 3 yes yes 0.9 18 963 t/o •
Lamport’s Fast Mutex 3 yes no 17.7 292 543 t/o •
Burns 4 yes no 124.3 2 762 578 t/o •
NBW-W-WR 2 yes yes 0.0 222 10.7 200 844
Sense Reversing Barrier 2 yes yes 0.1 1 704 0.8 20 577

Table 1: Comparison between Dual-TSO(v) and Memorax: The columns Safe under SC
and Safe under TSO indicate that whether the benchmark is safe under SC and TSO wrt.
its reachability problem respectively. The columns #P , #T and #C give the number
of processes, the running time in seconds and the number of generated configurations,
respectively. If a tool runs out of time, we put t/o in the #T column and • in the #C
column.

calculation. Dual-TSO always ends its execution by reporting the running time (in seconds)
and the total number of generated configurations. Observe that the number of generated
configurations gives a rough estimation of the memory consumption of our tool.

We compare our tool with Memorax [AAC+12a, AAC+13] which is the only precise and
sound tool for deciding the state reachability problem of concurrent systems running under
TSO. Observe that Memorax cannot handle the class of parameterized concurrent systems.
We use Dual-TSO(v) and Dual-TSO(E) to denote Dual-TSO when applied to concurrent
systems and parameterized concurrent systems, respectively.

In the following, we present two sets of results. The first set concerns the comparison
of Dual-TSO(v) with Memorax (see Table 1). The second set shows the benefit of the
parameterized verification compared to the use of the state reachability when increasing the
number of processes (see Table 2 and Figure 8). Our example programs are from [AAC+12a,
AMT14, BDM13, AAP15, LNP+12]. In all experiments, we set up the time out to 600
seconds (10 minutes). We perform all experiments on an Intel x86-32 Core2 2.4 Ghz machine
and 4GB of RAM.

Verification of Concurrent Systems. Table 1 presents a comparison between Dual-
TSO(v) and Memorax on 20 benchmarks. In all these benchmarks, Dual-TSO(v) and

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 19

 0

 200

 400

 600

 2 3 4 5 6 7 8 9 10 11

SB

Dual-TSO

Memorax

 0

 200

 400

 600

 2 3 4 5 6 7 8 9 10

LB

Dual-TSO

Memorax

 0

 200

 400

 600

 2 4 6 8 10 12

MP

Dual-TSO

Memorax

 0

 200

 400

 600

 3 4 5 6 7 8 9 10 11

WRC

Dual-TSO

Memorax

 0

 200

 400

 600

 3 4 5 6 7 8 9 10 11

ISA2

Dual-TSO

Memorax

 0

 200

 400

 600

 2 4 6 8 10 12 14

RWC

Dual-TSO

Memorax

 0

 200

 400

 600

 3 4 5 6 7 8 9 10 11 12

W+RWC

Dual-TSO

Memorax

 0

 200

 400

 600

 4 6 8 10 12 14

IRIW

Dual-TSO

Memorax

Figure 8: Running time of Memorax and Dual-TSO(v) by increasing number of processes.
The x axis is number of processes and the y axis is running time in seconds.

Memorax return the same results for the state reachability problems (except 6 examples where
Memorax runs out of time). In the benchmarks where the two tools return, Dual-TSO(v)
out-performs Memorax and generates fewer configurations (and so uses less memory). Indeed,
Dual-TSO(v) is 600 times faster than Memorax and generates 277 times fewer minimal
configurations on average. The experimental results confirm the correlation between the
running time and the memory consumption (i.e., the tool who generates less configurations
is often the fastest).

Verification of Parameterized Concurrent Systems. The second set compares the
scalability of Memorax and Dual-TSO while increasing the number of processes. The results

20 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

Program Safe under TSO
Dual-TSO(E)

#T(s) #C
SB no 0.0 147
LB yes 0.6 1 028
MP yes 0.0 149
WRC yes 0.8 618
ISA2 yes 4.3 1 539
RWC no 0.2 293
W+RWC no 1.5 828
IRIW yes 4.6 648

Table 2: Parameterized verification with Dual-TSO(E).

are given in Figure 8. We observe that although the algorithms implemented by Dual-
TSO(v) and Memorax have the same (non-primitive recursive) lower bound (in theory),
Dual-TSO(v) scales better than Memorax in all these benchmarks. In fact, Memorax can
only handle benchmarks with at most 5 processes while Dual-TSO can handle benchmarks
with more processes. We conjecture that this is due to the important advantages of the
Dual TSO semantics. In fact, the Dual TSO semantics transforms the load buffers into lossy
channels without adding the costly overhead of memory snapshots that was necessary in the
case of Memorax. The absence of this extra overhead means that our tool generates less
configurations (due to the ordering) and this results in a better performance and scalability.

Table 2 presents the running time and the number of generated configurations when
checking the state reachability problem for the parameterized versions of the benchmarks in
Figure 8 with Dual-TSO(E). It should be emphasized that Dual-TSO(E) and Dual-TSO(v)
have the same results for the reachability problems in these benchmarks. We observe that
the verification of these parameterized systems is much more efficient than verification of
bounded-size instances (starting from a number of processes of 3 or 4), especially concerning
memory consumption (which is given in terms of number of generated configurations). The
reason behind is that the size of the generated minor sets in the analysis of a parameterized
system are usually smaller than the size of the generated minor sets during the analysis of
an instance of the system with a large number of processes. In fact, during the analysis of
a parameterised concurrent system, the number of considered processes in the generated
minimal configurations is usually very small. Observe that, in the case of concurrent systems,
the number of considered processes in the generated minimal configurations is equal to the
number of processes in the given system.

7. Conclusion

In this paper, we have presented an alternative (yet equivalent) semantics to the classical one
for the TSO memory model that is more amenable for efficient algorithmic verification and
for extension to parametric verification. This new semantics allows us to understand the TSO
memory model in a totally different way compared to the classical semantics. Furthermore,
the proposed semantics offers several important advantages from the point of view of formal
reasoning and program verification. First, the Dual TSO semantics allows transforming
the load buffers to lossy channels (in the sense that the processes can lose any message

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 21

situated at the head of any load buffer in non-deterministic manner) without adding the
costly overhead that was necessary in the case of store buffers. This means that we can apply
the theory of well-structured systems [Abd10, ACJT96, FS01] in a straightforward manner
leading to a much simpler proof of decidability of safety properties. Second, the absence
of extra overhead means that we obtain more efficient algorithms and better scalability
(as shown by our experimental results). Finally, the Dual TSO semantics allows extending
the framework to perform parameterized verification which is an important paradigm in
concurrent program verification.

In the future, we plan to apply our techniques to other memory models and to combine
with predicate abstraction for handling programs with unbounded data domain.

References

[AAA+15] P. Abdulla, S. Aronis, M.F. Atig, B. Jonsson, C. Leonardsson, and K. Sagonas. Stateless model
checking for TSO and PSO. In TACAS, volume 9035 of LNCS, pages 353–367. Springer, 2015.

[AABN16] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. The
benefits of duality in verifying concurrent programs under TSO. In CONCUR, volume 59 of
LIPIcs, pages 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[AABN17] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. Context-
bounded analysis for POWER. In TACAS 2017, pages 56–74, 2017.

[AAC+12a] P.A. Abdulla, M.F. Atig, Y.F. Chen, C. Leonardsson, and A. Rezine. Counter-example guided
fence insertion under TSO. In TACAS 2012, pages 204–219, 2012.

[AAC+12b] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and Ahmed
Rezine. Automatic fence insertion in integer programs via predicate abstraction. In SAS 2012,
pages 164–180, 2012.

[AAC+13] P.A. Abdulla, M.F. Atig, Y.F. Chen, C. Leonardsson, and A. Rezine. Memorax, a precise and
sound tool for automatic fence insertion under TSO. In TACAS, pages 530–536, 2013.

[AAJL16] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson. Stateless
model checking for POWER. In CAV, volume 9780 of LNCS, pages 134–156. Springer, 2016.

[AALN15] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus L̊ang, and Tuan Phong Ngo. Precise and
sound automatic fence insertion procedure under PSO. In NETYS 2015, pages 32–47, 2015.

[AAP15] P.A. Abdulla, M.F. Atig, and N.T. Phong. The best of both worlds: Trading efficiency and
optimality in fence insertion for TSO. In ESOP 2015, pages 308–332, 2015.

[ABBM10] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem for
weak memory models. In POPL, 2010.

[ABBM12] M.F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. What’s decidable about weak
memory models? In ESOP, volume 7211 of LNCS, pages 26–46. Springer, 2012.

[Abd10] Parosh Aziz Abdulla. Well (and better) quasi-ordered transition systems. Bulletin of Symbolic
Logic, 16(4):457–515, 2010.

[ABP11] M.F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers in TSO analysis. In CAV,
volume 6806 of LNCS, pages 99–115. Springer, 2011.

[ACJT96] P.A. Abdulla, K. Cerans, B. Jonsson, and Y.K. Tsay. General decidability theorems for infinite-
state systems. In LICS’96, pages 313–321. IEEE Computer Society, 1996.

[AG96] S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial. Computer, 29(12),
1996.

[AH90] S. Adve and M. D. Hill. Weak ordering - a new definition. In ISCA, 1990.
[AKNT13] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verification for weak memory

via program transformation. In ESOP, volume 7792 of LNCS, pages 512–532. Springer, 2013.
[AKT13] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient bounded model checking

of concurrent software. In CAV, volume 8044 of LNCS, pages 141–157, 2013.
[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,

testing, and data mining for weak memory. ACM TOPLAS, 36(2):7:1–7:74, 2014.

22 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

[BAM07] S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: checking consistency of concurrent
data types on relaxed memory models. In PLDI, pages 12–21. ACM, 2007.

[BDM13] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing robustness
against TSO. In ESOP, volume 7792 of LNCS, pages 533–553. Springer, 2013.

[BM08] Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification for relaxed memory
models. In CAV, volume 5123 of LNCS, pages 107–120. Springer, 2008.

[BSS11] Jacob Burnim, Koushik Sen, and Christos Stergiou. Testing concurrent programs on relaxed
memory models. In ISSTA, pages 122–132. ACM, 2011.

[DL15] Brian Demsky and Patrick Lam. Satcheck: Sat-directed stateless model checking for SC and
TSO. In OOPSLA 2015, pages 20–36. ACM, 2015.

[DM14] Egor Derevenetc and Roland Meyer. Robustness against Power is PSpace-complete. In ICALP
(2), volume 8573 of LNCS, pages 158–170. Springer, 2014.

[DMVY13] A. Marian Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Predicate abstraction for relaxed
memory models. In SAS, volume 7935 of LNCS, pages 84–104. Springer, 2013.

[DMVY17] Andrei Dan, Yuri Meshman, Martin Vechev, and Eran Yahav. Effective abstractions for verifi-
cation under relaxed memory models. Computer Languages, Systems and Structures, 47, Part
1:62–76, 2017.

[DSB86] M. Dubois, C. Scheurich, and F. A. Briggs. Memory access buffering in multiprocessors. In ISCA,
1986.

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor. Comput.
Sci., 256(1-2):63–92, 2001.

[HH16] Shiyou Huang and Jeff Huang. Maximal causality reduction for TSO and PSO. In OOPSLA
2016, pages 447–461, 2016.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 2(7):326–
336, 1952.

[HVQF16] Mengda He, Viktor Vafeiadis, Shengchao Qin, and João F. Ferreira. Reasoning about fences
and relaxed atomics. In 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP 2016, Heraklion, Crete, Greece, February 17-19, 2016, pages
520–527, 2016.

[KVY10] Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic inference of memory fences.
In FMCAD, pages 111–119. IEEE, 2010.

[KVY11] Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Partial-coherence abstractions for
relaxed memory models. In PLDI, pages 187–198. ACM, 2011.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comp., C-28(9), 1979.

[LNP+12] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran Yahav. Dynamic
synthesis for relaxed memory models. In PLDI ’12, pages 429–440, 2012.

[LV15] Ori Lahav and Viktor Vafeiadis. Owicki-gries reasoning for weak memory models. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part II, pages 311–323, 2015.

[LV16] Ori Lahav and Viktor Vafeiadis. Explaining relaxed memory models with program transformations.
In FM 2016, pages 479–495, 2016.

[OSS09] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-tso. In TPHOL, 2009.
[SSO+10] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-tso: A rigorous and usable

programmer’s model for x86 multiprocessors. CACM, 53, 2010.
[TLF+16] Ermenegildo Tomasco, Truc Nguyen Lam, Bernd Fischer, Salvatore La Torre, and Gennaro

Parlato. Embedding weak memory models within eager sequentialization. October 2016.
[TLI+16] Ermenegildo Tomasco, Truc Nguyen Lam, Omar Inverso, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Lazy sequentialization for tso and pso via shared memory abstractions. In
FMCAD16, pages 193–200, 2016.

[TW16] Oleg Travkin and Heike Wehrheim. Verification of concurrent programs on weak memory models.
In ICTAC 2016, pages 3–24, 2016.

[Vaf15] Viktor Vafeiadis. Separation logic for weak memory models. In Proceedings of the Programming
Languages Mentoring Workshop, PLMW@POPL 2015, Mumbai, India, January 14, 2015, page
11:1, 2015.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 23

[WG94] D. Weaver and T. Germond, editors. The SPARC Architecture Manual Version 9. PTR Prentice
Hall, 1994.

[YGLS04] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A framework for axiomatic
and executable specifications of memory consistency models. In IPDPS. IEEE, 2004.

[ZKW15] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order reduction for relaxed memory
models. In PLDI, pages 250–259. ACM, 2015.

Appendix A. Proof of Theorem 3.4

We prove the theorem by showing its if direction and then only if direction. In the following,
for a TSO (DTSO)-configuration c = (q,b,mem), we use states (c), buffers (c), and
mem (c) to denote q, b, and mem respectively.

A.1. From Dual TSO to TSO. We show the if direction of Theorem 3.4. Consider a
DTSO-computation

πDTSO = c0
t1−→DTSO c1

t2−→DTSO c2 · · ·
tn−1−−−→DTSO cn−1

tn−→DTSO cn

where c0 = cDinit and ci is of the form (qi,bi,memi) for all i : 1 ≤ i ≤ n with qn = qtarget
and bn(p) = ε for all p ∈ P. We will derive a TSO-computation πTSO such that target (πTSO)
is a configuration of the form (states (cn) ,b, mem (cn)) where b(p) = ε for all p ∈ P.

First, we define some functions that we will use in the construction of the computation
πTSO. Then, we define a sequence of TSO-configurations that appear in πTSO. Finally,
we show that the TSO-computation πTSO exists. In particular, the target configuration
target (πTSO) has the same local states as the target cn of the DTSO-computation πDTSO.

Let 1 ≤ i1 < i2 < · · · < ik ≤ n be the sequence of indices such that ti1ti2 . . . tik is the
sequence of write or atomic read-write operations occurring in the computation πDTSO. In
the following, we assume that i0 = 0.

For each j : 0 ≤ j ≤ n, we associate a mapping function indexj : P → {0, . . . , k}∗
that associates for each process p ∈ P and each message at the position ` : 1 ≤ ` ≤
|buffers (cj) (p) | in the load buffer buffers (cj) (p) the index indexj(p)(`), i.e., the index of
the last write or atomic write-read operations at the moment this message has been added
to the load buffer. Formally, we define indexj as follows:

(1) index0(p) := ε for all p ∈ P.

(2) Consider j such that 0 ≤ j < n. Recall that cj
tj+1−−→DTSO cj+1 with tj+1 ∈ ∆p ∪∆′p. We

define indexj+1 based on indexj :
• Nop, read, fence, arw: If tj+1 is of the following forms (q, nop, q′), (q, r(x, v), q′),

(q, fence, q′), or (q, arw(x, v, v′), q′), then indexj+1 := indexj.
• Write: If tj+1 is of the form (q,w(x, v), q′), then indexj+1 := indexj [p←↩ r · indexj(p)]

with ir = j + 1.
• Propagate: If tj+1 is of the form propagatexp , then indexj+1 := indexj [p←↩ r · indexj(p)]

where r : 0 ≤ r ≤ k is the maximal index such that ir ≤ j + 1.
• Delete: If tj+1 is of the form deletep, then indexj := indexj+1 [p←↩ indexj+1(p) · r] with
r = indexj(p)(|indexj(p)|).

Next, we associate for each process p ∈ P and j : 0 ≤ j ≤ n, the memory view viewp(cj)
of the process p in the configuration cj as follows:

(1) If buffers (cj) (p) = ε, then viewp(cj) := r where r : 0 ≤ r ≤ k is the maximal index
such that ir ≤ j.

24 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

(2) If buffers (cj) (p) 6= ε, then viewp(cj) := indexj(p)(|indexj(p)|).

Example A.1. We give an example of how to calculate the functions index and view for
a DTSO-computation. Let consider the following DTSO-computation

πDTSO = c0
t1−→DTSO c1

t2−→DTSO c2
t3−→DTSO c3

t4−→DTSO c4
t5−→DTSO c5

containing only transitions of a process p with two variables x and y where ci = (qi,bi,memi)
for all i : 0 ≤ i ≤ n = 5 such that:

q0(p) = q0, b0(p) = ε, mem0(x) = 0,mem0(y) = 0, t1 = (q0,w(x, 1), q1) ,

q1(p) = q1, b1(p) = (x, 1,own) , mem1(x) = 1,mem1(y) = 0, t2 = propagateyp,

q2(p) = q1, b2(p) = (y, 0) · (x, 1,own) , mem2(x) = 1,mem2(y) = 0, t3 = deletep,

q3(p) = q1, b3(p) = (y, 0), mem3(x) = 1,mem3(y) = 0, t4 = (q1, r(y, 0), q2),

q4(p) = q2, b4(p) = (y, 0), mem4(x) = 1,mem4(y) = 0, t5 = deletep,

q5(p) = q2, b5(p) = ε, mem5(x) = 1,mem5(y) = 0.

We note that n = 5 and πDTSO contains only transitions of the process p. We also note
that k = 1 and i1 = 1 is the index of the only write transition t1 occurring in the computation
πDTSO. Following the above definitions of index and view, we define the functions index

and view as follows:

(1) For each j : 0 ≤ j ≤ n = 5, we define the mapping function indexj(p):

index0(p) = ε, index1(p) = 1, index2(p) = 1.1,

index3(p) = 1, index4(p) = 1, index5(p) = ε.

(2) For each j : 0 ≤ j ≤ n = 5, we define the memory view viewp(cj):

viewp(c0) = 0, viewp(c1) = 1, viewp(c2) = 1,

viewp(c3) = 1, viewp(c4) = 1, viewp(c5) = 1. 4

Now, let ≺ be an arbitrary total order on the set of processes and let pmin and pmax

be the smallest and largest elements of ≺ respectively. For p 6= pmax , we define succ(p) to
be the successor of p wrt. ≺, i.e., p ≺ succ(p) and there is no p′ with p ≺ p′ ≺ succ(p). We
define prev(p) for p 6= pmin analogously.

The computation πTSO will consist of k + 1 phases (henceforth referred to as the phases
0, 1, 2, . . . , k). In fact, πTSO will have the same sequence of memory updates as πDTSO. At
the phase r, the computation πTSO simulates the movements of the processes where their
memory view index is r. The order in which the processes are simulated during phase r
is defined by the ordering ≺. First, process pmin will perform a sequence of transitions.
This sequence is derived from the sequence of transitions it performs in πDTSO where its
memory view index is r, including “no”, write, read, fence transitions. Then, the next
process performs its transitions. This continues until pmax has made all its transitions. When
all processes have performed their transitions in phase r, we execute exactly one update
transition (possibly with a write transition) or one atomic read-write transition in order to
move to phase r+ 1. We start the phase r+ 1 by letting pmin execute its transitions, and so
on.

Formally, we define a scheduling function α(r, p, `) that gives for each r : 0 ≤ r ≤ k,
p ∈ P, and ` ≥ 1 a natural number j : 0 ≤ j ≤ n such that process p executes the transition

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 25

tj as its `th transition during phase r. The scheduling function α is defined as follows where
r : 0 ≤ r ≤ k, p ∈ P, and ` ≥ 0:

(1) α(r, p, ` + 1) is defined to be the smallest j such that α(r, p, `) < j, tj ∈ ∆p and

viewp(cj) = r. Intuitively, the (`+ 1)th transition of process p during phase r is defined
by the next transition from tα(r,p,`) that belongs to ∆p. Notice that α(r, p, `+ 1) is
defined only for finitely many `.

(2) If {j | viewp(cj) = r} 6= ∅, we define α(r, p, 0) := min{j | viewp(cj) = r}. Otherwise, we
define α(r, p, 0) := α(r − 1, p,](r − 1, p)) where

](r, p) := max{` | ` ≥ 0, α(r, p, `) is defined}.
Intuitively, phase r starts for process p at the point where its memory view index

becomes equal to r. Notice that α(0, p, 0) = 0 for all p ∈ P since all processes are initially
in phase 0.

Example A.2. In the following, we show how to calculate the scheduling function α(r, p, `)
and](r, p) where r : 0 ≤ r ≤ k, p ∈ P, and ` ≥ 0 for the DTSO-computation πDTSO given in
Example A.1. We recall that k = 1, n = 5 and the definitions of the two functions index

and view are given in Example A.1. We also recall that πDTSO contains only transitions of
the process p. The constructed TSO-computation πTSO from πDTSO will consist of k+ 1 = 2
phases, referred as the phase 0 and the phase 1. In order to define the transitions of the
process p in different phases, for each r : 0 ≤ r ≤ k = 1 and ` ≥ 0, the scheduling function
α(r, p, `) and](r, p) is defined as follows:

α(0, p, 0) = 0, α(1, p, 0) = 1, α(1, p, 1) = 4,

](0, p) = 0,](1, p) = 1. 4

In order to define πTSO, we first define the set of configurations that will appear in
πTSO. In more detail, for each r : 0 ≤ r ≤ k, p ∈ P, and ` : 0 ≤ ` ≤](r, p), we define a
TSO-configuration dr,p,` based on the DTSO-configurations that are appearing in πDTSO.
We will define dr,p,` by defining its local states, buffer contents, and memory state.

(1) We define the local states of the processes as follows:
• states (dr,p,`) (p) := states

(
cα(r,p,`)

)
(p). After process p has performed its `th tran-

sition during phase r, its local state is identical to its local state in the corresponding
DTSO-configuration cα(r,p,`).

• If p′ ≺ p then states (dr,p,`) (p′) := states
(
cα(r,p′,](r,p′))

)
(p′), i.e. the state of p′ will

not change while p is making its moves. This state is given by the local state of p′

after it made its last move during phase r.
• If p ≺ p′ then states (dr,p,`) (p′) := states

(
cα(r,p′,0)

)
(p′), i.e. the local state of p′ will

not change while p is making its moves. This state is given by the local state of p′

when it entered phase r (before it has made any moves during phase r).
(2) To define the buffer contents, we give more definitions. For a DTSO-message a of the form

(x, v), we define DTSO2TSO (a) to be ε. For a DTSO-message a of the form (x, v,own),
we define DTSO2TSO (a) to be (x, v). From that, we define DTSO2TSO (ε) = ε and
DTSO2TSO (a1a2 · · · an) := DTSO2TSO (a1) · DTSO2TSO (a2) · · · DTSO2TSO (an), i.e., we con-
catenate the results of applying the operation individually on each ai with 1 ≤ i ≤ n. We
define DTSO2TSO+ (w) for a word w ∈ ((X× V) ∪ (X× V× {own}))∗ as follows: If |w| =
0 then DTSO2TSO+ (w) := ε, else DTSO2TSO+ (w) := DTSO2TSO (w(1)w(2) · · ·w(|w| − 1)).
In the following, we give the definition of the buffer contents of dr,p,`:

26 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

• buffers (dr,p,`) (p) := DTSO2TSO+

(
buffers

(
cα(r,p,`)

)
(p)
)
. After process p has per-

formed its `th transition during phase r, the content of its buffer is defined by
considering the buffer of the corresponding DTSO-configuration cα(r,p,`) and only
messages belong to p (i.e., of the form (x, v,own)).
• If p′ ≺ p then buffers (dr,p,`) (p′) := buffers

(
cα(r,p′,](r,p′))

)
(p′). In a similar manner

to the case of states, if p′ ≺ p then the buffer of p′ will not change while p is making
its moves.
• If p ≺ p′ then buffers (dr,p,`) (p′) := buffers

(
cα(r,p′,0)

)
(p′). In a similar manner to

the case of states, if p ≺ p′ then the buffer of p′ will not be changed while p is making
its moves.

(3) We define the memory state as follows:
• mem (dr,p,`) := mem (cir). This definition is consistent with the fact that all processes

have identical views of the memory when they are in the same phase r. This view is
defined by the memory component of cir .

Example A.3. In the following, we give the configurations dr,p,` for all r : 0 ≤ r ≤ k, p ∈ P,
and ` : 0 ≤ ` ≤](r, p) that will appear in the constructed TSO-computation πTSO from
πDTSO given in Example A.1. We call that k = 1, n = 5, and πDTSO contains only transitions
of the process p. We also recall that the scheduling function α(r, p, `) and](r, p) are given
in Example A.2.

For each r : 0 ≤ r ≤ k = 1 and ` : 0 ≤ ` ≤](r, p), we define the TSO-configurations
dr,p,` = (qr,p,`,br,p,`,memr,p,`) based on the DTSO-configurations that are appearing in
πDTSO as follows:

d0,p,0 : q0,p,0(p) = q0, b0,p,0(p) = ε, mem0,p,0(x) = 0,mem0,p,0(y) = 0,

d1,p,0 : q1,p,0(p) = q1, b1,p,0(p) = ε, mem1,p,0(x) = 1,mem1,p,0(y) = 0,

d1,p,1 : q1,p,0(p) = q2, b1,p,1(p) = ε, mem1,p,1(x) = 1,mem1,p,1(y) = 0.

Finally, we construct the TSO-computation

πTSO = d0,p,0
t′1−→TSO d

′
0,p,0

t′2−→TSO d1,p,0
t′3−→TSO d1,p,1

where

d′0,p,0 =
(
q′0,p,0,b

′
0,p,0,mem′0,p,0

)
,

t′1 = (q0,w(x, 1), q1) ,

t′2 = updatep,

t′3 = (q1, r(y, 0), q2) ,

and:

d′0,p,0 : q′0,p,0(p) = q1, b′0,p,0(p) = (x, 1), mem′0,p,0(x) = 0,mem′0,p,0(y) = 0.

Since there is only one update transition in both two computations πDTSO and πTSO, it
is easy to see that πTSO has the same sequence of memory updates as πDTSO. It is also
easy to see that d0,p,0 = cinit and d1,p,](1,p) = d1,p,1 = (states (c5) ,b, mem (c5)) where
b(p) = buffers (c5) (p) = ε. Therefore, πTSO is a witness of the construction. 4

The following lemma shows the existence of a TSO-computation πTSO that starts from
the initial TSO-configuration and whose target has the same local state definitions as the

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 27

target cn of the DTSO-computation πDTSO. This concludes the proof of the if direction of
Theorem 3.4.

Lemma A.4. d0,pmin ,0
πTSO−−−→TSO dk,pmax ,](k,pmax) for some TSO-computation πTSO. Further-

more, d0,pmin ,0 is the initial TSO-configuration and

dk,pmax ,](k,pmax) = (states (cn) ,b, mem (cn))

where buffers (p) = buffers (cn) (p) = ε for all p ∈ P.

Proof. Lemmas A.8–A.11 show that the existence of the computation πTSO. Lemma A.13
and Lemma A.12 show the conditions on the initial and target configurations.

First, we start by establishing Lemma A.5, Lemma A.6, and Lemma A.7 that we will
use later.

Lemma A.5. For every j : 0 ≤ j ≤ n and process p ∈ P, the following properties hold:

(1) |indexj(p)| = |buffers (cj) (p) |.
(2) For every `1, `2 : 1 ≤ `1 ≤ `2 ≤ |indexj(p)|, indexj(p)(`2) ≤ indexj(p)(`1) ≤ j.
(3) For every `1, `2 : 1 ≤ `1 < `2 ≤ |indexj(p)| such that buffers (cj) (p) (`1) is of the form

(x, v,own), indexj(p)(`2) < indexj(p)(`1).
(4) For every ` : 1 ≤ ` ≤ |buffers (cj) (p) |, if r = indexj(p)(`) and buffers (cj) (p) (`) is

of the form (x, v,own), then tir ∈ ∆p and it is of the form (q,w(x, v), q′).
(5) For every ` : 1 ≤ ` ≤ |buffers (cj) (p) |, if r = indexj(p)(`) and buffers (cj) (p) (`) is

of the form (x, v), then mem (cir) (x) = v.
(6) For every r1, r2 : 0 ≤ r1 ≤ r2 ≤ k such that r1 = min{indexj(p)(`) | ` : 1 ≤ ` ≤
|indexj(p)|}, tr2 ∈ ∆p, and tr2 is of the form (q,w(x, v), q′), then there is an index ` : 1 ≤
` ≤ |indexj(cj)(p)| such that indexj(p)(`) = r2 and buffers (cj) (p) (`) = (x, v,own).

Proof. The lemma holds following an immediate consequence of the definition of indexj .

Lemma A.6. For every process p ∈ P and index j : 0 ≤ j < n, viewp(cj) ≤ viewp(cj+1).
Furthermore, iviewp(cj) ≤ j and iviewp(cj+1) ≤ j + 1.

Proof. The lemma holds following an immediate consequence of the definitions of viewp and
indexj .

Lemma A.7. For every natural number j such that α(r, p, `) ≤ j < α(r, p, ` + 1) − 1,
DTSO2TSO+ (buffers (cj) (p)) = DTSO2TSO+ (buffers (cj+1) (p)).

Proof. The proof is done by contradiction. Let us assume that there is some j : α(r, p, `) ≤
j < α(r, p, `+ 1)− 1 such that

DTSO2TSO+ (buffers (cj) (p)) 6= DTSO2TSO+ (buffers (cj+1) (p)) .

Observe that the only three operations that can change the content of the load buffer
of the process p are write, delete and propagation operations. Since tj /∈ ∆p (and so
no write operation has been performed) and propagation will append messages of the
form (x, v), this implies that tj is a delete transition of the process p (i.e., tj = deletep).
Now, the only case when DTSO2TSO+ (buffers (cj) (p)) 6= DTSO2TSO+ (buffers (cj+1) (p)) is
where buffers (cj) (p) is of the form w · (y, v′,own) ·m with m ∈ {(x, v), (x, v,own) |x ∈
X, v ∈ V}. This implies that buffers (cj+1) (p) = w · (y, v′,own). Now we can use the
third case of Lemma A.5 to prove that viewp(cj+1) > viewp(cj). This contradicts the
fact that viewp(cj+1) ≤ viewp(cα(r,p,`+1)) (see Lemma A.6) since we have viewp(cα(r,p,`)) =

28 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

viewp(cα(r,p,`+1)) = r (by definition), viewp(cj) ≥ viewp(cα(r,p,`)) (see Lemma A.6) and
viewp(cj+1) > viewp(cj).

Now we can start proving the existence of the computation πTSO by showing that we
can move from the configuration dr,p,` to dr,p,`+1 using the transition tα(r,p,`+1).

Lemma A.8. If ` <] (r, p) then dr,p,`
tα(r,p,`+1)−−−−−−→TSO dr,p,`+1.

Proof. We recall that tα(r,p,`+1) ∈ ∆p by definition. Therefore, tα(r,p,`+1) is not a propagation
transition nor a delete transition. Furthermore, suppose that tα(r,p,`+1) is an atomic read-
write transition. It leads to the fact that viewp(cα(r,p,`+1)) > viewp(cα(r,p,`)), contradicting
to the assumption that we are in phase r. Hence, tα(r,p,`+1) is not an atomic read-write
transition.

Let tα(r,p,`+1) ∈ ∆p be of the form (q, op, q′). To prove the lemma, we will prove the
following properties:

(1) states
(
dα(r,p,`)

)
(p) = q and states (dr,p,`+1) = states

(
dα(r,p,`)

)
[p←↩ q′],

(2) states (dr,p,`+1) (p′) = states (dr,p,`) (p′) for p′ 6= p,
(3) buffers (dr,p,`+1) (p′) = buffers (dr,p,`) (p′) for p′ 6= p,
(4) mem (dr,p,`) = mem (dr,p,`+1) = mem (cir),
(5) The contents of buffers (dr,p,`) (p) and buffers (dr,p,`+1) (p) are compatible with the

transition tα(r,p,`+1). In means that with the properties (1)–(4), the property (5) allows

that dr,p,`
tα(r,p,`+1)−−−−−−→TSO dr,p,`+1.

We prove the property (1). We see from definition of α that tj 6∈ ∆p for all j :
α(r, p, `) < j < α(r, p, ` + 1). It follows that states (cj) (p) = states

(
cα(r,p,`)

)
(p) for

all j : α(r, p, `) < j < α(r, p, ` + 1). In particular, we have states
(
cα(r,p,`+1)−1

)
(p) =

states
(
cα(r,p,`)

)
(p). Then, from the fact that cα(r,p,`+1)−1

tα(r,p,`+1)−−−−−−−→DTSO cα(r,p,`+1) and

the definitions of dr,p,` and dr,p,`+1, we know that states (dr,p,`) (p) = states
(
cα(r,p,`)

)
(p) =

states
(
cα(r,p,`+1)−1

)
(p) = q. It follows that

states (dr,p,`+1) (p) = states
(
cα(r,p,`+1)

)
(p) = q′.

This concludes the property (1).
We prove the property (2). We see from the definitions of dα(r,p,`) and dα(r,p,`+1)

that if p′ ≺ p then states (dr,p,`+1) (p′) = states
(
cα(r,p′,](k,p′))

)
(p′) = states (dr,p,`) (p′).

Moreover, we have if p ≺ p′ then

states (dr,p,`+1)
(
p′
)

= states
(
cα(r,p′,0)

) (
p′
)

= states (dr,p,`)
(
p′
)
.

This concludes the property (2).
We prove the properties (3) and (4). In a similar manner to the case of states, we

can show the property (3). By the definitions of dα(r,p,`) and dα(r,p,`+1) and the fact that
` < ` + 1 ≤] (r, p), we have mem (dr,p,`) = mem (cir) = mem (dr,p,`+1). This concludes the
property (4).

Now, it remains to prove the property (5). We consider the cases where op is a write or
a read operation. The other cases can be treated in a similar way.

• op = w(x, v): We see from Lemma A.7 that for all: j : α(r, p, `) < j < α(r, p, `+ 1)

DTSO2TSO+

(
buffers

(
cα(r,p,`)

)
(p)
)

= DTSO2TSO+ (buffers (cj) (p))

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 29

In particular, we have

DTSO2TSO+

(
buffers

(
cα(r,p,`)

)
(p)
)

= DTSO2TSO+

(
buffers

(
cα(r,p,`+1)−1

)
(p)
)

Then, since cα(r,p,`+1)−1
tα(r,p,`+1)−−−−−−−→DTSO cα(r,p,`+1), we have buffers

(
cα(r,p,`+1)

)
(p) =

(x, v,own) · buffers
(
cα(r,p,`+1)−1

)
(p).

We will show that buffers
(
cα(r,p,`+1)−1

)
(p) 6= ε by contradiction. Let us suppose

that buffers
(
cα(r,p,`+1)−1

)
(p) = ε. By definition, we have viewp(cα(r,p,`+1)) = r′ such

that ir′ = α(r, p, `+ 1). Furthermore, by applying Lemma A.6 to cα(r,p,`), we know that
ir ≤ α(r, p, `). Then, since α(r, p, `) < α(r, p, ` + 1) by definition, we have ir < ir′ .
This contradicts to the fact that viewp(cα(r,p,`+1)) = r by definition. Therefore, we have

buffers
(
cα(r,p,`+1)−1

)
(p) 6= ε.

As a consequence of the fact that buffers
(
cα(r,p,`+1)−1

)
(p) 6= ε, we know that

DTSO2TSO+

(
buffers

(
cα(r,p,`+1)

)
(p)
)

= (x, v) · DTSO2TSO+

(
buffers

(
cα(r,p,`)−1

)
(p)
)

Then, since

DTSO2TSO+

(
buffers

(
cα(r,p,`)

)
(p)
)

= DTSO2TSO+

(
buffers

(
cα(r,p,`+1)−1

)
(p)
)
,

it follows that buffers (dr,p,`+1) = (x, v) · buffers (dr,p,`). Hence this implies that

dr,p,`
tα(r,p,`+1)−−−−−−→TSO dr,p,`+1.

• op = r(x, v): We see from Lemma A.7 that for all j : α(r, p, `) < j < α(r, p, `+ 1)

DTSO2TSO+

(
buffers

(
cα(r,p,`)

)
(p)
)

= DTSO2TSO+ (buffers (cj) (p))

In particular, we have

DTSO2TSO+

(
buffers

(
cα(r,p,`)

)
(p)
)

= DTSO2TSO+

(
buffers

(
cα(r,p,`+1)−1

)
(p)
)

Then, since cα(r,p,`+1)−1
tα(r,p,`+1)−−−−−−−→DTSO cα(r,p,`+1), we have buffers

(
cα(r,p,`+1)

)
(p) =

buffers
(
cα(r,p,`+1)−1

)
(p). Therefore, buffers (dr,p,`+1) (p) = buffers (dr,p,`) (p). We

consider two cases about the type of the operation op:
– Read own write: We see that there is an i : 1 ≤ i < |buffers

(
cα(r,p,`+1)−1

)
(p) | such

that buffers
(
cα(r,p,`+1)−1

)
(p) (i) = (x, v,own), and that there are no j : 1 ≤ j < i and

v′ ∈ V such that buffers
(
cα(r,p,`+1)−1

)
(p) (j) = (x, v′,own). As a consequence, this

implies that there is an i′ : 1 ≤ i′ ≤ |DTSO2TSO+

(
buffers

(
cα(r,p,`+1)−1

)
(p)
)
| such that

DTSO2TSO+

(
buffers

(
cα(r,p,`+1)−1

)
(p) (i′)

)
= (x, v) and there are no j′ : 1 ≤ j′ < i′

and v′ ∈ V such that DTSO2TSO+

(
buffers

(
cα(r,p,`+1)−1

)
(p) (j)

)
= (x, v′). From the

fact that

buffers (dr,p,`+1) (p) = buffers (dr,p,`) (p) = DTSO2TSO+

(
buffers

(
cα(r,p,`+1)−1

))
,

we have dr,p,`
tα(r,p,`+1)−−−−−−→TSO dr,p,`+1.

– Read memory: We consider two cases:
. buffers

(
cα(r,p,`+1)−1

)
(p) (i) = (x, v,own) where i = |buffers

(
cα(r,p,`+1)−1

)
(p) |

and there are no j : 1 ≤ j < i and v′ ∈ V such that buffers
(
cα(r,p,`+1)−1

)
(p) (j) =

(x, v′,own): Since viewp(cα(r,p,`+1)−1) = r, this implies from Lemma A.5 that tir ∈
∆p and it is of the form (q,w(x, v), q′). Hence, we see that mem (cir) (x) = v and

30 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

thus mem (dr,p,`) (x) = mem (dr,p,`+1) (x) = v. Therefore, we have dr,p,`
tα(r,p,`+1)−−−−−−→TSO

dr,p,`+1.
. (x, v′,own) 6∈ buffers

(
cα(r,p,`+1)−1

)
(p) for all v′ ∈ V: Thus buffers

(
cα(r,p,`+1)−1

)
is of the form w · (x, v). Since viewp(cα(r,p,`+1)−1) = r, this implies from Lemma A.5
that mem (cir) (x) = v and thus mem (dr,p,`) (x) = mem (dr,p,`+1) (x) = v. Therefore, we

have dr,p,`
tα(r,p,`+1)−−−−−−→TSO dr,p,`+1.

This concludes the proof of Lemma A.8.

Lemma A.9. If p ≺ pmax then dr,p,](r,p) = dr,succ(p),0.

Proof. To prove the lemma, we will prove the following properties:

(1) states
(
dr,p,](r,p)

)
(p′) = states

(
dr,succ(p),0

)
(p′) for all p′ ∈ P,

(2) buffers
(
dr,p,](r,p)

)
(p′) = buffers

(
dr,succ(p),0

)
(p′) for all p′ ∈ P,

(3) mem
(
dr,p,](r,p)

)
= mem

(
dr,succ(p),0

)
.

We prove the property (1) by considering four cases:

• p′ = p: From the definitions of dr,succ(p),` and dr,p,](r,p), we have states
(
dr,succ(p),`

)
(p) =

states
(
dr,p,](r,p)

)
(p) for all ` : 0 ≤ ` ≤] (r, succ (p)). In particular, we see that

states
(
dr,succ(p),0

)
(p) = states

(
dr,p,](r,p)

)
(p).

• p′ = succ (p): From the definitions of dr,p,` and dr,succ(p),0, states (dr,p,`) (succ (p)) =

states
(
dr,succ(p),0

)
(succ (p)) for all ` : 0 ≤ ` ≤] (r, p). In particular, we see that

states
(
dr,p,](r,p)

)
(succ (p)) = states

(
dr,succ(p),0

)
(succ (p)). It follows from p′ = succ (p)

that states
(
dr,p,](r,p)

)
(p′) = states

(
dr,succ(p),0

)
(p′).

• p′ ≺ p ≺ succ (p): From the definitions of dr,succ(p),` and dr,p′,](r,p′), we know that

states
(
dr,succ(p),`

)
(p′) = states

(
dr,p′,](r,p′)

)
(p′) for all ` : 0 ≤ ` ≤] (r, succ (p)). In par-

ticular, we see that states
(
dr,succ(p),0

)
(p′) = states

(
dr,p′,](r,p′)

)
(p′). Also, by a similar

argument, we have states (dr,p,`) (p′) = states
(
dr,p′,](r,p′)

)
(p′) for all ` : 0 ≤ ` ≤] (r, p).

In particular, we see that states
(
dr,p,](r,p)

)
(p′) = states

(
dr,p′,](r,p′)

)
(p′). Hence, we

have states
(
dr,succ(p),0

)
(p′) = states

(
dr,p,](r,p)

)
(p′).

• p ≺ succ (p) ≺ p′: From the definitions of dr,succ(p),` and dr,p′,0, we can see that

states
(
dr,succ(p),`

)
(p′) = states

(
dr,p′,0

)
(p′) for all ` : 0 ≤ ` ≤] (r, p). In particu-

lar, we see that states
(
dr,succ(p),0

)
(p′) = states

(
dr,p′,0

)
(p′). Also, by a similar argu-

ment, we have states (dr,p,`) (p′) = states
(
dr,p′,0

)
(p′) for all ` : 0 ≤ ` ≤] (r, p). In

particular, we see that states
(
dr,p,](r,p)

)
(p′) = states

(
dr,p′,0

)
(p′). Hence, we have

states
(
dr,succ(p),0

)
(p′) = states

(
dr,p,](r,p)

)
(p′).

We prove the properties (2) and (3). By a similar manner to the case of states,
we can show the property (2). Finally, to show the property (3), by the definition of
dr,p,](r,p), it follows that mem

(
dr,p,](r,p)

)
= mem (cir). Also, by a similar argument, we have

mem
(
dr,succ(p),0

)
= mem (cir). Hence, we have mem

(
dr,p,](r,p)

)
= mem

(
dr,succ(p),0

)
.

This concludes the proof of Lemma A.9.

Lemma A.10. If r < k and tir+1 ∈ ∆pu such that tir+1 is of the form (q, arw(x, v, v′), q′),

then dr,pmax ,](r,pmax)

tir+1−−−→TSO dr+1,pmin ,0.

Proof. To prove the lemma, we will prove the following properties:

(1) states
(
dr,pmax ,](r,pmax)

)
(p) = states (dr+1,pmin ,0) (p) for all p 6= pu,

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 31

(2) buffers
(
dr,pmax ,](r,pmax)

)
(p) = buffers (dr+1,pmin ,0) (p) for all p 6= pu,

(3) states
(
dr,pmax ,](r,pmax)

)
(pu) = q, and states (dr+1,pmin ,0) (pu) = q′,

(4) buffers
(
dr,pmax ,](r,pmax)

)
(pu) = buffers (dr+1,pmin ,0) (pu) = ε,

(5) mem
(
dr,pmax ,](r,pmax)

)
(x) = v and mem (dr+1,pmin ,0) (x) = v′.

We show the property (1). Let p ∈ P \ {pu}. From the definition of dr,pmax ,](r,pmax) and

dr,p,](r,p), states
(
dr,pmax ,](r,pmax)

)
(p) = states

(
dr,p,](r,p)

)
(p) = states

(
cα(r,p,](r,p))

)
(p)

and states (dr+1,pmin ,0) (p) = states (dr+1,p,0) (p) = states
(
cα(r+1,p,0)

)
(p). From the

definition of α, it follows that tj 6∈ ∆p for all j : α(r, p,] (r, p)) ≤ j < α(r + 1, p, 0). This
implies that states

(
cα(r+1,p,0)−1

)
(p) = states

(
cα(r,p,](r,p))

)
(p). Now we have two cases:

• {j | viewp(cj) = r + 1} = ∅: We see that α(r + 1, p, 0) = α(r, p,] (r, p)), and hence that
states

(
dr,pmax ,](r,pmax)

)
(p) = states (dr+1,pmin ,0) (p).

• {j | viewp(cj) = r + 1} 6= ∅: Since viewp(cα(r+1,p,0)−1) = r, we can show that tα(r+1,p,0) /∈
∆p. This is done by contradiction as follows. In fact if tα(r+1,p,0) ∈ ∆p, then it is either a
write transition or an atomic read-write transition. This implies that in both cases that
buffers

(
cα(r+1,p,0)−1

)
(p) = ε and that viewp(cα(r+1,p,0)) = α(r + 1, p, 0). Hence, we have

α(r + 1, p, 0) = r + 1, and this leads to a contradiction since tir+1 ∈ ∆pu . Thus, we have

states
(
dr,pmax ,](r,pmax)

)
(p) = states (dr+1,pmin ,0) (p).

In a similar manner to the case of states, we can show the property (2). Now we
show the properties (3) and (4). Using a similar reasoning as for the process p, we
know that states

(
cα(r+1,pu,0)−1

)
(pu) = states

(
cα(r,pu,](r,pu))

)
(pu). From the definition

of πDTSO, it follows that cα(r+1,pu,0)−1

tα(r+1,pu,0)−−−−−−−→DTSO cα(r+1,pu,0). Furthermore, since
viewp(cα(r+1,pu,0)) = r + 1 and viewp(cα(r+1,pu,0)−1) < r + 1, we know that tα(r+1,pu,0) =

tir+1 . This implies that buffers
(
cα(r+1,pu,0)−1

)
(pu) = buffers

(
cα(r+1,pu,0)

)
(pu) = ε and

states
(
cα(r+1,pu,0)−1

)
(pu) = q and states

(
cα(r+1,pu,0)

)
(pu) = q′. Now since

DTSO2TSO+

(
buffers

(
cα(r,pu,](r,pu))

)
(pu)

)
= DTSO2TSO+

(
buffers

(
cα(r+1,pu,0)−1

)
(pu)

)
,

we see that

buffers
(
dr,pmax ,](r,pmax)

)
(pu) = buffers (dr+1,pmin ,0) (pu) = ε

and that states
(
dr,pmax ,](r,pmax)

)
(pu) = q and states (dr+1,pmin ,0) (pu) = q′. This concludes

the properties (3) and (4).
We show the property (5). From the definition of πDTSO, it follows that mem

(
cir+1

)
=

mem (cir) [x←↩ v′] with mem (cir) (x) = v. Then from the definitions of dr,pmax ,](r,pmax) and
dr+1,pmin ,0, we have the property (5).

This concludes the proof of Lemma A.10.

Lemma A.11. If r < k and tir+1 ∈ ∆pu such that tir+1 is of the form (q,w(x, v), q′), then

dr,pmax ,](r,pmax)
∗−→TSO dr+1,pmin ,0.

Proof. To prove the lemma, we will prove the following properties:

(1) states
(
dr,pmax ,](r,pmax)

)
(p) = states (dr+1,pmin ,0) (p) for all p 6= pu,

(2) buffers
(
dr,pmax ,](r,pmax)

)
(p) = buffers (dr+1,pmin ,0) (p) for all p 6= pu,

(3) The contents of buffers states
(
dr,pmax ,](r,pmax)

)
(pu) and states (dr+1,pmin ,0) (pu) are

compatible, i.e. with the properties (1)–(2), the property (3) allows dr,pmax ,](r,pmax)
∗−→TSO

dr+1,pmin ,0.

32 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

We show the property (1). Let p ∈ P \ {pu}. From the definitions of dr,pmax ,](r,pmax) and

dr,p,](r,p), states
(
dr,pmax ,](r,pmax)

)
(p) = states

(
dr,p,](r,p)

)
(p) = states

(
cα(r,p,](r,p))

)
(p)

and that states (dr+1,pmin ,0) (p) = states (dr+1,p,0) (p) = states
(
cα(r+1,p,0)

)
(p). From

the definition of α, it follows that tj 6∈ ∆p for all j : α(r, p,] (r, p)) ≤ j < α(r + 1, p, 0). This
implies that states

(
cα(r+1,p,0)−1

)
(p) = states

(
cα(r,p,](r,p))

)
(p). Now we have two cases:

• {j | viewp(cj) = r + 1} = ∅: We see that α(r + 1, p, 0) = α(r, p,] (r, p)), and hence that
states

(
dr,pmax ,](r,pmax)

)
(p) = states (dr+1,pmin ,0) (p).

• {j | viewp(cj) = r + 1} 6= ∅: Since viewp(cα(r+1,p,0)−1) = r, we can show that tα(r+1,p,0) /∈
∆p . This is done by contradiction as follows. In fact if tα(r+1,p,0) ∈ ∆p, then it is either a
write transition or an atomic read-write transition. This implies that in both cases that
buffers

(
cα(r+1,p,0)−1

)
(p) = ε and that viewp(cα(r+1,p,0)) = α(r + 1, p, 0). Hence, we have

α(r + 1, p, 0) = r + 1, and this leads to a contradiction since tir+1 ∈ ∆pu . Thus, we have

states
(
dr,pmax ,](r,pmax)

)
(p) = states (dr+1,pmin ,0) (p).

In a similar manner to the case of states, we can show the property (2). Now we
show the property (3). Using a similar reasoning as for the process p, we know that
states

(
cα(r+1,pu,0)−1

)
(pu) = states

(
cα(r,pu,](r,pu))

)
(pu). From the definition of πDTSO,

it follows that cα(r+1,pu,0)−1

tα(r+1,pu,0)−−−−−−−→DTSO cα(r+1,pu,0). Furthermore, from the fact that
viewp(cα(r+1,pu,0)) = r + 1 and viewp(cα(r+1,pu,0)−1) < r + 1, we have two cases to consider:

• buffers
(
cα(r+1,pu,0)−1

)
(pu) = ε: It follows from the conditions for viewp(cα(r+1,pu,0)) and

viewp(cα(r+1,pu,0)−1) that tα(r+1,pu,0) = tir+1 , buffers
(
cα(r+1,pu,0)

)
(pu) = (x, v,own),

and that states
(
cα(r+1,pu,0)−1

)
(pu) = q and states

(
cα(r+1,pu,0)

)
(pu) = q′. From

DTSO2TSO+

(
buffers

(
cα(r,pu,](r,pu))

)
(pu)

)
= DTSO2TSO+

(
buffers

(
cα(r+1,pu,0)−1

)
(pu)

)
we have buffers

(
dr,pmax ,](r,pmax)

)
(pu) = buffers (dr+1,pmin ,0) (pu) = ε. Moreover, we

have states
(
dr,pmax ,](r,pmax)

)
(pu) = q, and states (dr+1,pmin ,0) (pu) = q′. Then, it is

easy to see that mem
(
cir+1

)
= mem (cir) [x←↩ v]. Hence, we have dr,pmax ,](r,pmax)

tir+1−−−→TSO

d′
updatepu−−−−−→TSO dr+1,pmin ,0 for some configuration d′.

• buffers
(
cα(r+1,pu,0)−1

)
(pu) 6= ε: It follows from the conditions for viewp(cα(r+1,pu,0)) and

viewp(cα(r+1,pu,0)−1) that tα(r+1,pu,0) is a delete transition of the process pu. As a conse-

quence, buffers
(
cα(r+1,pu,0)−1

)
(pu) = w·(x, v,own)·m and buffers

(
cα(r+1,pu,0)

)
(pu) =

w · (x, v,own). Hence, we see that

DTSO2TSO+

(
buffers

(
cα(r+1,pu,0)

)
(pu)

)
= DTSO2TSO+

(
buffers

(
cα(r+1,pu,0)−1

)
(pu)

)
·(x, v)

and therefore buffers (dr+1,pmin ,0) (pu) = buffers
(
dr,pmax ,](r,pmax)

)
(pu) (x, v). Further-

more, we have states
(
cα(r+1,pu,0)

)
(pu) = states

(
cα(r+1,pu,0)−1

)
(pu) and this implies

that states
(
dr,pmax ,](r,pmax)

)
(pu) = states (dr+1,pmin ,0) (pu). Then, it is easy to see that

mem
(
cir+1

)
= mem (cir) [x←↩ v]. Hence, we have dr,pmax ,](r,pmax)

updatepu−−−−−→TSO dr+1,pmin ,0.

This concludes the proof of Lemma A.11.

The following lemma shows that the TSO-computation πTSO starts from the initial
TSO-configuration.

Lemma A.12. d0,pmin ,0 is the initial TSO-configuration.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 33

Proof. Let us take any p ∈ P. By the definitions of d0,pmin ,0, d0,p,0, and α(0, p, 0), it follows
that states (d0,pmin ,0) (p) = states (d0,p,0) (p) = states

(
cα(0,p,0)

)
(p) = states (c0) (p) =

qinit . Also, buffers (d0,pmin ,0) (p) = buffers (d0,p,0) (p) = DTSO2TSO+ (buffers (c0) (p)) =
ε. Finally, we have mem (d0,pmin ,0) = mem (ci0) = mem (c0). The result follows immediately for
the definition of the initial TSO-configuration. This concludes the proof of Lemma A.12.

The following lemma shows that the target of the TSO-computation πTSO has the same
local process states as the target cn of the DTSO-computation πDTSO.

Lemma A.13. states
(
dk,pmax ,](k,pmax)

)
= states (cn).

Proof. Let us take any p ∈ P. By the definitions of dk,pmax ,](k,pmax) and dk,p,](k,p), it follows

that states
(
dk,pmax ,](k,pmax)

)
(p) = states

(
dk,p,](k,p)

)
(p) = states

(
cα(k,p,](k,p))

)
(p). By

definition of α(k, p,] (k, p)), we know that tj 6∈ ∆p for all j : α(k, p,] (k, p)) < j ≤ n.
Therefore, we have states (cj) (p) = states (cn) (p) for all j : α(k, p,] (k, p)) ≤ j <
n. In particular, we have states

(
cα(k,p,](k,p))

)
(p) = states (cn) (p). Hence, we have

states
(
dk,pmax ,](r,pmax)

)
(p) = states (cn) (p). This concludes the proof of Lemma A.13.

A.2. From TSO to Dual TSO. We show the only if direction of Theorem 3.4. Consider
a TSO-computation

πTSO = c0
t1−→TSO c1

t2−→TSO c2 · · ·
tn−1−−−→TSO cn−1

tn−→TSO cn.

where c0 = cinit and ci is of the form (qi,bi,memi) for all i : 1 ≤ i ≤ n with qn = qtarget. In
the following, we will derive a DTSO-computation πDTSO such that states (target (πDTSO)) =
states (cn), i.e. the runs πTSO and πDTSO reach the same set of local states at the end of
the runs.

Similar to the previous case, we will first define some functions that we will use in the
construction of the computation πDTSO. Then, we define a sequence of DTSO-configurations
that appear in πDTSO. Finally, we show that the DTSO-computation πDTSO exists. In
particular, the target configuration target (πDTSO) has the same local states as the target cn
of the TSO-computation πTSO.

For every p ∈ P, let ∆w,arw
p ⊆ ∆p (resp. ∆u,arw

p ⊆ ∆p ∪ {updatep}) be the set of write
(resp. update) and atomic read-write transitions that can be performed by process p. Let
∆r
p be the set of read transitions that can be performed by p.

Let I = i1 . . . im be the maximal sequence of indices such that 1 ≤ i1 < i2 < · · · < im ≤ n
and for every j : 1 ≤ j ≤ m, we have tij is an update transition or an atomic read-write

transition (i.e., tij ∈
⋃
p∈P ∆u,arw

p). In the following, we assume that i0 = 0. Let Ip be the
maximal subsequence of I such that all transitions with indices in Ip belong to process p.

Let I ′ = i′1 . . . i
′
m be the maximal sequence of indices such that 1 ≤ i′1 < i′2 < · · · < i′m ≤

n and for every j : 1 ≤ j ≤ m, we have ti′j is a write transition or an atomic read-write

transition (i.e., ti′j ∈
⋃
p∈P ∆w,arw

p). Let I ′p be the maximal subsequence of I ′ such that all

transitions with indices in I ′p belong to process p. Observe that |Ip| = |I ′p|.
For every j : 1 ≤ j ≤ m, let proc (j) be the process that has the update or atomic

read-write transition tij where ij ∈ I. We define match (ij) to be the index of the write (resp.
atomic read-write) transition tmatch(ij) that corresponds to the update (resp. atomic read-

write) transition tij . Formally, match (ij):=l where ∃k : 1 ≤ k ≤ |Ip|, Ip(k) = ij , I
′
p(k) = l

and 1 ≤ l ≤ n. Observe that if tij is an atomic read-write operation, then match (ij) = ij .

34 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

Example A.14. We give an example of how to calculate the function match for a TSO-
computation. Let us consider the following TSO-computation

πTSO = c0
t1−→TSO c1

t2−→TSO c2
t3−→TSO c3

containing only transitions of a process p with two variables x and y where ci = (qi,bi,memi)
for all i : 0 ≤ i ≤ n = 3 such that:

q0(p) = q0, b0(p) = ε, mem0(x) = 0,mem0(y) = 0, t1 = (q0,w(x, 1), q1) ,

q1(p) = q1, b1(p) = (x, 1), mem1(x) = 0,mem1(y) = 0, t2 = updatep,

q2(p) = q1, b2(p) = ε, mem2(x) = 1,mem2(y) = 0, t3 = (q1, r(y, 0), q2) ,

q3(p) = q2, b3(p) = ε, mem3(x) = 1,mem3(y) = 0.

Following the above definitions of I and I ′, I = i1 = 2 (hence, m = 1) is the maximal
sequence of indices of all update or atomic read-write transitions in πTSO. In a similar way,
I ′ = i′1 = 1 is the maximal sequence of indices of all write or atomic read-write transitions
in πTSO. We note that ti1 = t2 is an update transition, and t′i′1

= t1 is a write transition.

Since the TSO-computation contains only transition of the process p, it follows that I = Ip
and I ′ = I ′p. Following the above definition of match, with m = 1 and n = 3, we have
match (i1) = match (2) = 1. 4

For every j : 1 ≤ j ≤ n such that tj ∈ ∆r
p is a read transition of process p, we

define fromMem(tj) as a predicate such that fromMem(tj) holds if and only if (x, v′) /∈
buffers (cj−1) for all v′ ∈ V.

For every j : 1 ≤ j ≤ n and p ∈ P, we define the function labelp(j) as follows:

(1) labelp(j) := (x, v) if tj ∈ ∆r
p is of the form (q, r(x, v), q′) and fromMem(tj) holds.

(2) labelp(j) := (x, v,own) if tj = updatep and match (j) = l with tl of the form (q,w(x, v), q′).
(3) labelp(j) := ε otherwise.

Given a sequence `1 · · · `k with k ≥ 1 and 1 ≤ `i ≤ n for all i : 1 ≤ i ≤ k, we define
labelp(`1 · · · `k) := labelp(`1) · · · labelp(`k−1) · labelp(`k). Let labelrevp (`1 · · · `k) with k ≥ 1
and 1 ≤ `i ≤ n for all i : 1 ≤ i ≤ k be the reversed string of labelp(`1 · · · `k), i.e.
labelrevp (`1 · · · `k) := labelp(`k) · labelp(`k−1) · · · labelp(`1).

Example A.15. In the following, we give an example of how to calculate the functions
fromMem and label for the TSO-computation πTSO given in Example A.14. We recall that
n = 3 and the function match is given in Example A.14. We also note that t3 is the only read
transition in πTSO. Following the above definition of fromMem, we have that fromMem(t3)
holds. Then following the definition of match, for every j : 1 ≤ j ≤ n = 3, we define the
function labelp(j) as follows:

labelp(1) = ε, labelp(2) = (x, 1, own), labelp(3) = (y, 0). 4

Below we show how to simulate all transitions of the TSO-computation πTSO by a
set of corresponding transitions in the DTSO-computation πDTSO. The idea is to divide
the DTSO-computation to m + 1 phases. For 0 ≤ r < m, each phase r will end at the
configuration dr+1 by the simulation of the transition tmatch(ir+1) in πTSO. Moreover, in
phase r : 0 ≤ r < m, we call the process proc (r + 1) as the active process, and other
processes as the inactive ones. We execute only the DTSO-transitions of the active process
p = proc (r + 1) in its active phases. For other processes p′ 6= p, we only change the content
of their buffers in the active phases of p. In the final phase r = m, all processes will be

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 35

considered to be active because the index im+1 is not defined in the definition of the sequence
I. The DTSO-computation πDTSO will end at the configuration dm+1.

For every r : −1 ≤ r < m and p ∈ P, we define the function pos (r, p) in an inductive
way on r:

(1) pos (−1, p) := 0 for all p ∈ P.
(2) pos (r, p) := pos (r − 1, p) for all p 6= proc (r + 1) and 0 ≤ r < m.
(3) pos (r, p) := match (ir+1) for p = proc (r + 1) and 0 ≤ r < m.

In other words, the function pos (r, p) is the index of the last simulated transition by process
p at the end of phase r in the computation πTSO. Moreover, we use pos (−1, p) to be the
index of the starting transition of process p before phase 0.

Example A.16. In the following, we give an example of how to calculate the function pos

for the TSO-computation πTSO given in Example A.14. We recall that m = 1 and πTSO
contains only transitions of the process p. We also recall that the function match is given
in Example A.15. Following the above definition of pos, for every r : −1 ≤ r < m = 1, we
define the function pos (r, p) as follows:

pos (−1, p) = 0, pos (0, p) = 1. 4

Let d0 = cDinit = (qinit ,binit ,meminit). We define the sequence of DTSO-configurations
d1, . . . , dm, dm+1 by defining their local states, buffer contents, and memory states as follows:

(1) For every configuration dr+1 where 0 ≤ r < m:
• states (dr+1) (p) := states

(
cpos(r,p)

)
(p),

• mem (dr+1) := mem
(
cir+1

)
,

• buffers (dr+1) (p) := labelrevp (pos (r, p) + 1 · · · ir+1).
(2) For the final configuration dm+1:
• states (dm+1) (p) := states (cn) (p),
• mem (dm+1) := mem (cn),
• buffers (dm+1) (p) := ε.

Example A.17. In the following, we give an example of how to calculate the sequence
of configurations d1, . . . , dm, dm+1 that will appear in the constructed DTSO-computation
πDTSO from the TSO-computation πTSO given in Figure A.14. We recall that m = 1, n = 3,
and the TSO-computation πTSO contains only transitions of the process p. We also recall
that the functions label and pos are given in Example A.15 and Example A.16, respectively.

The DTSO-computation πDTSO will consist of m+ 1 = 2 phases, referred as the phase
0 and the phase 1. For each r : 0 ≤ r ≤ m + 1 = 2, we define the DTSO-configuration
dr = (q′r,b

′
r,mem′r) based on the TSO-configurations that are appearing in πTSO as follows:

d0 : q′0(p) = q0, b′0(p) = ε, mem′0(x) = 0,mem′0(y) = 0,

d1 : q′1(p) = q1, b′1(p) = (x, 1, own), mem′1(x) = 1,mem′1(y) = 0,

d2 : q′2(p) = q2, b′1(p) = ε, mem′2(x) = 1,mem′2(y) = 0.

Finally, we construct the DTSO-computation as follows:

πDTSO = d0
t′1−→DTSO d1

t′2−→DTSO d12
t′3−→DTSO d13

t′4−→DTSO d14
t′5−→DTSO d2

36 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

where d12 = (q′12,b
′
12,mem12), d13 = (q13,b

′
13,mem13), d14 = (q′14,b

′
14,mem14), t′1 =

(q0,w(x, 1), q1), t′2 = propagateyp, t′3 = deletep t
′
4 = (q1, r(y, 0), q2), t′5 = deletep, and:

d12 : q′12(p) = q1, b′12(p) = (y, 0) · (x, 1, own), mem′12(x) = 1,mem′12(y) = 0,

d13 : q′13(p) = q1, b′13(p) = (y, 0), mem′13(x) = 1,mem′13(y) = 0,

d14 : q′14(p) = q2, b′14(p) = (y, 0), mem′14(x) = 1,mem′14(y) = 0.

Since there is only one update transition in πDTSO and πTSO, it is easy to see that πTSO
has the same sequence of memory updates as πDTSO. It is also easy to see that d0 = cDinit
and d3 = (states (c3) ,b, mem (c3)) where b(p) := ε. Therefore πDTSO is a witness of the
construction. 4

Lemma A.18 shows the existence of a DTSO-computation πDTSO that starts from the
initial TSO-configuration and whose target has the same local state definitions as the target
cn of the TSO-computation πTSO. The only if direction of Theorem 3.4 will follow directly
from Lemma A.18. This concludes the proof of the only if direction of Theorem 3.4.

Lemma A.18. The following properties hold for the constructed sequence d1, . . . , dm, dm+1:

• For every r : 0 ≤ r < m, dr
∗−→DTSO dr+1,

• dm
∗−→DTSO dm+1.

Proof. We show the proof of the lemma follows directly Lemma A.19 and Lemma A.23. To
make the proof understandable, below we consider a fence transition t = (q, fence, q′) such

that c
t−→TSO c

′ for some c, c′ as an atomic read-write transition of the form (q, arw(x, v, v), q′)
where v ∈ V is the memory value of variable x ∈ X in c. For a given TSO-computation
πTSO, we can calculate such value v for each fence transition πTSO.

Lemma A.19. If 0 ≤ r < m, then dr
∗−→DTSO dr+1.

Proof. We are in phase r. Because from the configuration dr, the memory has not been
changed until the transition tir+1 , we observe that all memory-read transitions of the process
p between transitions tir and tir+1 will get values from mem (dr) where p ∈ P. Therefore,
we can execute a sequence of propagation transitions to propagate from the memory to
the buffer of process p to full fill it by all messages that will satisfy all memory-read
transitions of p between tir and tir+1 . We propagate to processes according to the order
≺: first to the process pmin and last to the process pmax . We have the following sequence:

dr
(∆propagate)∗−−−−−−−→DTSO d

pmin
r · · · (∆propagate)∗−−−−−−−→DTSO d

pmax
r . The shape of the configuration dpmax

r is:

• states (dpmax
r) (p) = states

(
cpos(r−1,p)

)
(p),

• mem (dpmax
r) = mem (cir),

• buffers (dpmax
r) (p) = labelrevp (pos (r − 1, p) + 1 · · · ir+1 − 1).

Below let p = proc (r + 1) be the active process in phase r of the DTSO-computation.
For each transition t in the sequence of transitions (including updates) of the active process,
seq=(tpos(r−1,p)+1 · · · tmatch(ir+1))|∆proc(r+1)∪{updateproc(r+1)}, we execute a set of transitions in

the DTSO-computation as follows:

• To simulate a memory-read transition, we execute the same read transition. And then we
execute a delete transition to delete the oldest message in the buffer of proc (r + 1).
• To simulate a read-own-write transition, we execute the same read transition.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 37

• To simulate a write transition, we execute the same write transition. This transition must
be the transition tmatch(ir+1). According to Dual TSO semantics, we add an own-message
to the buffer of proc (r + 1).
• To simulate an arw transition, we execute the same atomic read-write transition. This

transition must be the transition tmatch(ir+1) and match (ir+1) = ir+1.
• To simulate an update transition, we execute a delete transition to delete the oldest

message in the buffer of proc (r + 1).
• To simulate a nop transition, we execute the same transitions in the DTSO-computation.

Let β(r, l) indicate the index in the TSO-computation of the lth transition in the
sequence seq where 1 ≤ l ≤ |seq|. Formally, we define β(r, l) := j where 1 ≤ j ≤ n,
tj ∈ (∆p ∪

{
updatep

}
) and seq(l) = tj . Let configuration dr,l where 0 ≤ r < m be the

DTSO-configuration before simulating the transition with the index β(r, l). We define dr,l
by defining its local states, buffer contents, and memory state:

• states (dr,l) (p)=states
(
cpos(r−1,p)

)
(p) for all inactive process p and all l : 1 ≤ l ≤ |seq|,

• states (dr,l) (p) = states
(
cβ(r,l)−1

)
(p) for the active process p and all l : 1 ≤ l ≤ |seq|,

• mem (dr,l) = mem (cir) for the active process p and all l : 1 ≤ l ≤ |seq|,
• buffers (dr,l) (p)=labelrevp (pos (r − 1, p) + 1 · · · ir+1 − 1) for all inactive process p and all
l : 1 ≤ l ≤ |seq|,
• buffers (dr,l) (p)=labelrevp (β(r, l) · · · ir+1 − 1) for the active process p and all l : 1 ≤ l ≤
|seq|.

The Lemma A.20, Lemma A.22, and Lemma A.21 imply the result. More precisely, it
shows the existence of a DTSO-computation that starts from the DTSO-configuration dpmaxr

and whose target is the configuration dr+1. This concludes the proof of Lemma A.19.

Lemma A.20. dr,1= dpmax
r for 0 ≤ r < m.

Proof. We show that dr,1 and dpmax
r have the same local states, memory, and buffer contents.

We consider two cases for the active and inactive processes.

• For inactive process p 6= proc (r + 1), it is easy to see that:
– states (dr,1) (p) = states

(
cpos(r−1,p)

)
(p) = states (dpmaxr) (p) by the definitions of

configurations dr,1 and dpmaxr .
– buffers (dr,1) (p)=labelrevp (pos (r − 1, p) + 1 · · · ir+1 − 1) = buffers (dpmaxr) (p) by the

definitions of configurations dr,1 and dpmaxr .
• For the active process p = proc (r + 1):

– states (dr,1) (p) = states
(
cβ(r,1)−1

)
(p) = states

(
cpos(r−1,p)

)
(p) by the definition of

β(r, 1). Therefore states (dr,1) (p) = states (dpmaxr) (p).
– buffers (dr,1) (p)=labelrevp (β(r, 1) · · · ir+1 − 1) = labelrevp (pos (r − 1, p) + 1 · · · ir+1 − 1)

by the definition of β(r, 1). Therefore buffers (dr,1) (p) = buffers (dpmaxr) (p).

In both cases, for the memory, mem (dr,1) = mem (cir) = mem (dpmaxr) by the definitions of
configurations dr,1 and dpmaxr .

This concludes the proof of Lemma A.20.

Lemma A.21. dr,|seq|
tmatch(ir+1)−−−−−−−→DTSO dr+1 for 0 ≤ r < m.

Proof. To prove the lemma, we will show the following properties:

(1) ∃d′r+1 : dr,|seq|
tmatch(ir+1)−−−−−−−→DTSO d′r+1, i.e. the transition tmatch(ir+1) is feasible from the

configuration dr,|seq|.

38 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

(2) Moreover, d′r+1=dr+1.

Let p = proc (r + 1) be the active process. We show the property (1) by considering
two cases:

• match (ir+1) is a write transition: By simulation, we execute the same transition in the
DTSO-computation. It is feasible since states

(
dr,|seq|

)
(p) = states

(
cβ(r,|seq|)−1

)
(p) =

states
(
cmatch(ir+1)−1

)
(p) by the definitions of β(r, |seq|) and dr,|seq|. This concludes the

property (1).
• match (ir+1) is an atomic read-write transition: We notice that match (ir+1) = ir+1. It

is feasible since states
(
dr,|seq|

)
(p) = states

(
cβ(r,l)−1

)
(p) = states

(
cmatch(ir+1)−1

)
(p),

mem
(
dr,|seq|

)
= mem (cir), and

buffers
(
dr,|seq|

)
(p) = buffers

(
cβ(r,l)−1

)
(p) = buffers

(
cmatch(ir+1)−1

)
(p) = ε

by the definitions of β(r, |seq|) and dr,|seq|. This concludes the property (1).

We show the property (2) by showing that d′r+1 and dr+1 have the same local states,
memory, and buffer contents. Recall that the tmatch(ir+1) can be a write transition or an
atomic read-write transition.

We consider inactive processes. For an inactive process p 6= proc (r + 1), we have:

• Since the transition tmatch(ir+1) is of the active process, we have states
(
d′r+1

)
(p) =

states (dpmaxr) (p). Moreover, by the definition of dpmaxr , we see that states (dpmaxr) (p) =
states

(
cpos(r−1,p)

)
(p) . Hence, by the definition of dr+1,

states
(
d′r+1

)
(p) = states (dr+1) (p) .

• Since the transition tmatch(ir+1) is of the active process, we have buffers
(
d′r+1

)
(p) =

buffers (dpmaxr) (p). Moreover, by the definition of dpmaxr , we have buffers (dpmaxr) (p) =
labelrevp (pos (r − 1, p) + 1 · · · ir+1 − 1). Hence, by the definition of dr+1,

buffers
(
d′r+1

)
(p)) = buffers (dr+1) (p) .

We consider the active process p = proc (r + 1) for the case that the transition tmatch(ir+1)

is a write one. By executing the same transition, we add an owing message to the buffer of
process p and change the memory.

• Since the transition tmatch(ir+1) is of the active process, we have

states
(
d′r+1

)
(p) = states

(
cβ(r,l)

)
(p) .

Moreover, it follows from the fact β(r, l) = match (ir+1) and the definition of pos (r, p) that
states

(
cβ(r,l)

)
(p) = states

(
cmatch(ir+1)

)
(p) = states

(
cpos(r,p)

)
(p). Hence, it follows

by the definition of dr+1 that states
(
d′r+1

)
(p) = states (dr+1) (p).

• Since the transition tmatch(ir+1) is of the active process, we have buffers
(
d′r+1

)
(p) =

labelrevp (ir+1) · buffers
(
dr,|seq|

)
(p). Then, it follows from the definition of

dr,|seq| that buffers
(
d′r+1

)
(p) = labelrevp (ir+1) · labelrevp (β(r, |seq|) · · · ir+1 − 1) =

labelrevp (ir+1) · labelrevp (match (ir+1) · · · ir+1 − 1) = labelrevp (match (ir+1) · · · ir+1) =
labelrevp (pos (r, p) · · · ir+1) = labelrevp (pos (r, p) + 1 · · · ir+1). Hence, it follows by the defini-

tion of dr+1 that buffers
(
d′r+1

)
(p) = buffers (dr+1) (p).

We consider the active process p = proc (r + 1) for the case that the transition tmatch(ir+1)

is an atomic read-write one. By simulation, we execute the same transition and change the
memory.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 39

• Since the transition tmatch(ir+1) is of the active process, we have states
(
d′r+1

)
(p) =

states
(
cβ(r,l)

)
(p). Moreover, it follows from the fact β(r, l) = match (ir+1) and the defini-

tion of pos (r, p) that states
(
cβ(r,l)

)
(p) = states

(
cmatch(ir+1)

)
(p) = states

(
cpos(r,p)

)
(p).

Hence, it follows by the definition of dr+1 that states
(
d′r+1

)
(p) = states (dr+1) (p).

• Since the transition tmatch(ir+1) is of the active process, we have buffers
(
d′r+1

)
(p) = ε.

From the definitions of dr+1 and pos (r, p) and the fact match (ir+1) = ir+1, we have
buffers (dr+1) (p) = labelrevp (pos (r, p) + 1 · · · ir+1) = labelrevp (match (ir+1) + 1 · · · ir+1) =

labelrevp (ir+1 + 1 · · · ir+1) = ε. Hene, it follows that buffers
(
d′r+1

)
(p)=buffers (dr+1) (p).

For both cases, for the memory, we have mem
(
d′r+1

)
(p) = mem

(
cir+1

)
= mem (dr+1) from

the fact that we change the memory by transition tmatch(ir+1) and by the definition of dr+1.
Finally, we have d′r+1=dr+1.

This concludes the proof of Lemma A.21.

Lemma A.22. dr,l
∗−→DTSO dr,l+1 for 0 ≤ r < m, 1 ≤ l < |seq|.

Proof. The transition tβ(r,l) can be a read-from-memory, read-own-write, nop, update one.
First, we give our simulation of the transition tβ(r,l) from the configuration dr,l and show
that this simulation is feasible. We consider different types of the transition tβ(r,l). Let
process p = proc (r + 1) is the active process.

• tβ(r,l) is a read-from-memory transition: By simulation, we execute the same transition in
the DTSO-computation. Note that under the DTSO semantics, this transition will read an
element in the buffers. Then we delete the oldest element in the buffer of the active process.
The transition tβ(r,l) is feasible because by the definition of dr,l, we have states (dr,l) (p) =

states
(
cβ(r,l)−1

)
(p) and buffers (dr,l) (p) = labelrevp (β(r, l) · · · ir+1 − 1).

• tβ(r,l) is a nop transition: By simulation, we execute the same transition in the DTSO-
computation. The nop transition is feasible because by the definition of dr,l, we have
states (dr,l) (p) = states

(
cβ(r,l)−1

)
(p).

• tβ(r,l) is a read-own-write read transition: By simulation, we execute the same transition

in the DTSO-computation. Observe that states (dr,l) (p) = states
(
cβ(r,l)−1

)
(p). We

show the read-own-write transition is feasible in the DTSO-computation. In the TSO-
computation, this read must get its value from a write transition t′1 ∈ ∆w

p that has the

corresponding update transition t′2 ∈ ∆update
p . According to the TSO semantics, the write

comes and goes out the buffer in FIFO order. We have the order of these transitions in
the TSO-computation: (i) transition tβ(r,l) is between transitions t′1 and tmatch(ir+1), and
(ii) transition t′2 is between transitions tβ(r,l) and tmatch(ir+1). Moreover, (iii) there is no
other write transition of the same process and the same variable between transitions t′1
and tβ(r,l). In the simulation of the DTSO-computation, when we meet the transition
t′1 we put an own-message m to the buffer of the active process. From that we do not
meet any write transition to the same variable of the active process until the simulation
of transition tβ(r,l). Moreover, the message m exists in the buffer until the simulation of
transition tβ(r,l) because the update transition t′2 is after the transition tβ(r,l). Therefore
the message m is the newest own-message in the buffer that can match to the read tβ(r,l).
In other words, the read transition tβ(r,l) is feasible.
• tβ(r,l) is an update transition: By simulation, we delete the oldest own-message in the buffer

of the active process in the DTSO-computation. This transition is feasible because by the

40 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

definition of dr,l, we have states (dr,l) (p) = states
(
cβ(r,l)−1

)
(p) and buffers (dr,l) (p) =

labelrevp (β(r, l) · · · ir+1 − 1).

We have show our simulation of the transition tβ(r,l) in the DTSO-computation is feasible.
Let d′r,l+1 be the configuration in the DTSO-computation after the simulation. We proceed

the proof of the lemma by proving that d′r,l+1=dr,l+1. To do this, we will show that d′r,l+1

and dr,l+1 have the same local states, memory, and buffer contents.
We consider inactive processes. For an inactive process p 6= proc (r + 1), we have:

• Since in the simulation, we only execute the transition of the active process, we have

states
(
d′r,l+1

)
(p) = states (dpmaxr) (p). Moreover, by the definition of dpmaxr , we see

that states (dpmaxr) (p) = states
(
cpos(r−1,p)

)
(p) . Hence, it follows by the definition of

dr,l+1 that states
(
d′r,l+1

)
(p) = states (dr,l+1) (p).

• Since in the simulation, we only execute the transition of the active process, we have

buffers
(
d′r,l+1

)
(p) = buffers (dpmaxr) (p). Moreover, by the definition of dpmaxr , we see

that buffers (dpmaxr) (p) = labelrevp (pos (r − 1, p) + 1 · · · ir+1 − 1). Hence, it follows by the

definition of dr,l+1 that buffers
(
d′r+1

)
(p) = buffers (dr,l+1) (p).

We consider the active process p 6= proc (r + 1) for the case that the transition

tβ(r,l) is a read-from-memory one. From the simulation of tβ(r,l), states
(
d′r,l+1

)
(p) =

states
(
cβ(r,l+1)−1

)
(p). We have states (dr,l+1) (p) = states

(
cβ(r,l+1)−1

)
(p) from the def-

inition of dr,l+1. Furthermore, because we delete the oldest message in the buffer of the
process p after we execute the read transition, it follows by the definition of dr,l+1 that

buffers
(
d′r,l+1

)
(p) = labelrevp (β(r, l + 1) · · · ir+1 − 1) = buffers (dr,l+1) (p). Finally, by

the definitions of dr,l and dr,l+1, we have mem
(
d′r,l+1

)
= mem (dr,l) = mem (cir) = mem (dr,l+1).

Hence, it follows that d′r,l+1=dr,l+1.

We consider the active process p 6= proc (r + 1) for the case that the transition tβ(r,l) is a

nop one. From the simulation of tβ(r,l), states
(
d′r,l+1

)
(p) = states

(
cβ(r,l+1)−1

)
(p). From

the definition of dr,l+1, states (dr,l+1) (p) = states
(
cβ(r,l+1)−1

)
(p). From the definitions

of dr,l and dr,l+1, buffers
(
d′r,l+1

)
(p) = buffers (dr,l) (p) = labelrevp (β(r, l) · · · ir+1 − 1) =

labelrevp (β(r, l + 1) · · · ir+1 − 1) = buffers (dr,l+1) (p). Finally, by the definitions of dr,l and

dr,l+1, we have mem
(
d′r,l+1

)
= mem (dr,l) = mem (cir) = mem (dr,l+1). Hence, it follows that

d′r,l+1=dr,l+1.

We consider the active process p 6= proc (r + 1) for the case that the transi-
tion tβ(r,l) is a read-own-write one. From the simulation of the transition, we have

states
(
d′r,l+1

)
(p) = states

(
cβ(r,l+1)−1

)
(p). Then from the definition of dr,l+1, we

have states (dr,l+1) (p) = states
(
cβ(r,l+1)−1

)
(p). It follows from the definitions of dr,l

and dr,l+1 that buffers
(
d′r,l+1

)
(p) = buffers (dr,l) (p) = labelrevp (β(r, l) · · · ir+1 − 1) =

labelrevp (β(r, l + 1) · · · ir+1 − 1) = buffers (dr,l+1) (p). Finally, by the definitions of dr,l and

dr,l+1, we have mem
(
d′r,l+1

)
= mem (dr,l) = mem (cir) = mem (dr,l+1) . Hence, it follows that

d′r,l+1=dr,l+1.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 41

We consider the active process p 6= proc (r + 1) for the case that the transition

tβ(r,l) is an update one. From the simulation of the transition, states
(
d′r,l+1

)
(p) =

states
(
cβ(r,l+1)−1

)
(p). We have states

(
cβ(r,l+1)−1

)
(p) = states (dr,l+1) (p) from the def-

inition of dr,l+1. Moreover, we have buffers
(
d′r,l+1

)
(p) = labelrevp (β(r, l + 1) · · · ir+1 − 1) =

buffers (dr,l+1) (p). Futhermore, by the definitions of dr,l and dr,l+1, we have mem
(
d′r,l+1

)
=

mem (dr,l) = mem (cir) = mem (dr,l+1) . Hence, it follows that d′r,l+1=dr,l+1.

This concludes the proof of Lemma A.22.

Lemma A.23. dm
∗−→DTSO dm+1.

Proof. We are in the final phase r = m. Observe that in this phase we do not have
any write and atomic read-write transitions. Because from the configuration dm until
the end of the TSO-computation the memory has not been changed, we observe that all
memory-read transitions of a process p ∈ P after transitions tim get their values from
mem (dm). Therefore, we can execute a sequence of propagation transitions to propagate
from the memory to buffer of the process p to full fill it by all messages that will satisfy
all memory-read transitions of p after tim . We propagate to processes according to the
order ≺: first to process pmin and last to process pmax . We have the following sequence:

dm
(∆propagate)∗−−−−−−−→DTSO d

pmin
m · · · (∆propagate)∗−−−−−−−→DTSO d

pmax
m .

Next we simulate the remaining transitions (tpos(m−1,p)+1 · · · tn)|∆p∪{updatep} for each

process p of the TSO-computation πTSO according to the order ≺: first process pmin and
last process pmax.

• To simulate a memory-read transition, we execute the same read transition. And then we
execute a delete transition to delete the oldest message in the buffer of the process p.
• To simulate a read-own-write transition, we execute the same read transition.
• To simulate an update transition, we execute a delete transition to delete the oldest

message in the buffer of the process p.
• To simulate a nop transition, we execute the same transitions in the DTSO-computation.

Following the same argument as in Lemma A.20, Lemma A.21, and Lemma A.22 we show
that all simulations of transitions are feasible. As a consequence, from the configuration dm
we reach the configuration dm+1 where for all p ∈ P: states (dm+1) (p) = states (cn) (p),
buffers (dm+1) (p)=ε, and mem (dm+1) = mem (cn).

This concludes the proof of Lemma A.23.

Appendix B. Proof of Lemma 4.2

Let ci = (qi,bi,memi) be DTSO-configurations for i : 1 ≤ i ≤ 3. Let us assume that

c1
t−→DTSO c2 for some t ∈ ∆p ∪

{
propagatexp , deletep

}
and p ∈ P. We will define c4 =

(q4,b4,mem4) such that c3
∗−→DTSO c4 and c2 v c4. We consider the following cases

depending on t:

(1) Nop: t = (q1, nop, q2). Define q4 := q2, b4 := b3, and mem4 := mem2 = mem3 =

mem1. We have c3
t−→DTSO c4.

(2) Write to memory: t = (q,w(x, v), q′). Define q4 := q2, b4 := b3 [p←↩ (x, v,own) · b3(p)],

and mem4 := mem2. We have c3
t−→DTSO c4.

42 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

(3) Propagate: t = propagatexp . Define q4 := q2, mem4 := mem2 = mem3 = mem1, and

b4 := b3 [p←↩ (x, v) · b3(p)] where v = mem4(x). We have c3
t−→DTSO c4.

(4) Delete: t = deletep. Define q4 := q2 and mem4 := mem2 = mem3 = mem1. Define
b4 according to one of the following cases:
• If b1 = b2 [p←↩ b2(p) · (x, v)], then define b4 := b3. In other words, we define c4 := c3.
• If b1 = b2 [p←↩ b2(p) · (x, v,own)] and (x, v′,own) ∈ b2(p) for some v′ ∈ V, then

define b4 := b3. In other words, we define c4 := c3.
• If b1 = b2 [p←↩ b2(p) · (x, v,own)] and there is no v′ ∈ V such that (x, v′,own) ∈

b2(p). Since b1(p) v b3(p), we know that there is an i and therefore a smallest i such
that b3(p)(i) = (x, v,own). Define b4 := b3 [p←↩ b3(p)(1) · b3(p)(2) · · ·b3(p)(i− 1)].

We can perform the following sequence of transitions c3
deletep−−−−→DTSO c′1

deletep−−−−→DTSO

c′2 · · ·
deletep−−−−→DTSO c

′
|b3(p)|−i

deletep−−−−→DTSO c4. In other words, we reach the configuration

c4 from c3 by first deleting |b3(p)| − i messages from the head of b3(p).
(5) Read: t = (q, r(x, v), q′). Define q4 := q2, and mem4 := mem2 = mem3 = mem1.

We define b4 according to one of the following cases:
• Read-own-write: If there is an i : 1 ≤ i ≤ |b1(p)| such that b1(p)(i) = (x, v,own),

and there are no j : 1 ≤ j < i and v′ ∈ V such that b1(p)(j) = (x, v′,own). Since
b1(p) v b3(h(p)), there is an i′ : 1 ≤ i′ ≤ |b3(p)| such that b3(p)(i′) = (x, v,own),
and there are no j : 1 ≤ j < i′ and v′ ∈ V such that b3(p)(j) = (x, v′,own). Define
b4 := b3. In other words, we define c4 := c3.
• Read from buffer: If (x, v′,own) 6∈ b1(p) for all v′ ∈ V and b1(p) = w · (x, v). Let i be

the largest i : 1 ≤ i ≤ |b3(p)| such that b3(p)(i) = (x, v). Since b1(p) v b3(p), we know
that such index i exists. Define b4 := b3 [p←↩ b3(p)(1) · b3(p)(2) · · ·b3(p)(i− 1)].

We can perform the following sequence of transitions c3
deletep−−−−→DTSO c′1

deletep−−−−→DTSO

c′2 · · ·
deletep−−−−→DTSO c

′
|b3(p)|−i

deletep−−−−→DTSO c4. In other words, we reach the configuration

c4 from c3 by first deleting |b3(p)| − i messages from the head of b3(p).
(6) Fence: t = (q, fence, q′). Define q4 := q2, b4 := ε, and mem4 := mem2. We can

perform the following sequence of transitions

α3
deletep−−−−→DTSO α

′
1

deletep−−−−→DTSO α
′
2 · · ·

deletep−−−−→DTSO α
′
|b3(p)|

t−→DTSO α4.

In other words, we reach the configuration c4 from c3 by first emptying the content of
b3(p) and then performing t.

(7) ARW: t = (q, arw(x, v, v′), q′). Define q4 := q2, b4 := ε, and mem4 := mem2. We can
reach the configuration c4 from c3 in a similar manner to the case of the fence transition.

This concludes the proof of Lemma 4.2.

Appendix C. Proof of Lemma 4.3

First we show that the ordering w v w′ is a well-quasi-ordering. It is an immediate
consequence of the fact that (i) the sub-word relation is a well-quasi-ordering on finite words
[Hig52], and that (ii) the number of own-messages in the form (x, v, own) that should be
equal, is finite.

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 43

Given two DTSO-configurations c = (q,b,mem) and c′ = (q′,b′,mem′). We define
three orders vstate , vmem , and vbuffer over configurations of CDTSO: c vstate c′ iff q = q′,
c vmem c′ iff mem′ = mem, and c vbufer c′ iff b(p) v b′(p) for all process p ∈ P.

It is easy to see that each one of three orderings is a well-quasi-ordering. It follows that
the ordering v on DTSO-configurations based on vstate , vmem , and vbuffer is a well-quasi-
ordering.

Since the number of processes, the number of local states, memory content, and the
number of own-messages that should be equal are finite, it is decidable whether c1 v c2.

This concludes the proof of Lemma 4.3.

Appendix D. Proof of Lemma 4.4

Consider a DTSO-configuration c = (q,b,mem). Let we recall the definition of minpre({c}):
minpre({c}) := min (PreT ({c} ↑) ∪ {c} ↑). We observe that

minpre({c}) = min
(
∪t∈∆∪∆′′min

{
c′| c′ t−→ c

}
∪ {c}

)
.

For t ∈ ∆ ∪ ∆′′, we select min
{
c′| c′ t−→ c

}
to be the minimal set of all finite DTSO-

configurations of the form c′ = (q′,b′,mem′) such that one of the following properties is
satisfied:

(1) Nop: t = (q1, nop, q2), q(p) = q2 for some p ∈ P, q′ = q [p←↩ q1], b′ = b, and
mem′ = mem.

(2) Write: t = (q1,w(x, v), q2), q(p) = q2 for some p ∈ P, b(p) = (x, v,own) · w for some w,
mem(x) = v, mem′(y) = mem(y) if y 6= x, q′ = q [p←↩ q1], and one of the following
properties is satisfied:
• b′ = b [p←↩ w].
• b′ = b [p←↩ w1 · (x, v′, own) · w2] for some v′ ∈ V where w1 ·w2 = w and (x, v′′, own) /∈
w1 for all v′′ ∈ V.

(3) Propagate: t = propagatexp for some p ∈ P, mem(x) = v, q′ = q, mem′ = mem,
b(p) = (x, v) · w for some w, and b′ = b [p←↩ w].

(4) Read: t = (q1, r(x, v), q2), q(p) = q2 for some p ∈ P, q′ = q [p←↩ q1], and mem′ = mem,
and one of the following conditions is satisfied:
• Read-own-write: there is an i : 1 ≤ i ≤ |b(p)| such that b(p)(i) = (x, v, own), and

there are no j : 1 ≤ j < i and v′ ∈ V such that b(p)(j) = (x, v′, own), and b′ = b.
• Read from buffer: (x, v′,own) 6∈ b(p) for all v′ ∈ V, b(p) = w · (x, v) for some w, and

b′ = b.
• Read from buffer: (x, v′, own) 6∈ b(p) for all v′ ∈ V, b(p) 6= w · (x, v) for all w, and

b′ = b [p←↩ b(p) · (x, v)].
(5) Fence: t = (q1, fence, q2), q(p) = q2 for some p ∈ P, b(p) = ε, q′ = q [p←↩ q1], b′ = b,

and mem′ = mem.
(6) ARW: t = (q1, arw(x, v, v′), q2), mem(x) = v′, mem′ = mem [x←↩ v], q(p) = q2 for

some p ∈ P, b(p) = ε, q′ = q [p←↩ q1], b′ = b.
(7) Delete: t = deletep for some p ∈ P, q′ = q, mem′ = mem. Moreover, (x, v, own) /∈ b(p)

for some x ∈ X and all v ∈ V, b′ = b [p←↩ b(p) · (x, v′, own)] for some v′ ∈ V.

This concludes the proof of Lemma 4.4.

44 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

Appendix E. Proof of Lemma 5.2

Let αi = (Pi, ci) and ci = (qi,bi,memi) for i : 1 ≤ i ≤ 4. We show that if α1
t−→ α2 and

α1 E α3 for some t ∈ ∆p ∪
{
propagatexp , deletep

}
and p ∈ P1 (note that P1 = P2) then the

configuration α4 exists such that α3 −→∗ α4 and α2 E α4. First we define P4:=P3. Because
of α1 E α3, there exists an injection h : P1 7→ P3 in the ordering α1 E α3. We define an
injection h′ : P2 7→ P4 in the ordering α2 E α4 such that h = h′. Moreover, for p ∈ P4, let
q4(p) := q2(h′(p)) if the process p ∈ P2, otherwise q4(p) := q3(p). We define c4 depending
on different cases of t:

(1) Nop: t = (q1, nop, q2). Define b4 := b3 and mem4 := mem2 = mem3 = mem1. We

have α3
t−→DTSO α4.

(2) Write: t = (q,w(x, v), q′). Define b4 := b3 [h(p)←↩ (x, v,own) · b3(h(p))] and mem4 :=

mem2. We have α3
t−→DTSO α4.

(3) Propagate: t = propagatexp . Define mem4 := mem2 = mem3 = mem1 and b4 :=

b3 [h(p)←↩ (x, v) · b3(h(p))] where v = mem4(x). We have α3
t−→DTSO α4.

(4) Delete: t = deletep. Define mem4 := mem2 = mem3 = mem1. Define b4 according
to one of the following cases:
• If b1 = b2 [p←↩ b2(p) · (x, v)], then define b4 := b3. In other words, we have α4 = α3.
• If b1 = b2 [p←↩ b2(p) · (x, v,own)] and (x, v′,own) ∈ b2(p) for some v′ ∈ V, then

define b4 := b3. In other words, we have α4 = α3.
• If b1 = b2 [p←↩ b2(p) · (x, v,own)] and there is no v′ ∈ V with (x, v′,own) ∈ b2(p),

then since b1(p) v b3(h(p)) we know that there is an i and therefore a smallest i such
that b3(h(p))(i) = (x, v,own). Define

b4 := b3 [h(p)←↩ b3(h(p))(1) · b3(h(p))(2) · · ·b3(h(p))(i− 1)]

We can perform the following sequence of transitions α3
deletep−−−−→DTSO α

′
1

deletep−−−−→DTSO

α′2 · · ·
deletep−−−−→DTSO α

′
|b3(h(p))|−i

deletep−−−−→DTSO α4. In other words, we reach the configura-

tion α4 from α3 by first deleting |b3(h(p))| − i messages from the head of b3(h(p)).
(5) Read: t = (q, r(x, v), q′). Define mem4 := mem2. We define b4 according to one of the

following cases:
• Read-own-write: If there is an i : 1 ≤ i ≤ |b1(p)| such that b1(p)(i) = (x, v,own),

and there are no 1 ≤ j < i and v′ ∈ V such that b1(p)(j) = (x, v′,own). Since
b1(p) v b3(h(p)), there is an i′ : 1 ≤ i′ ≤ |b1(p)| such that b1(p)(i′) = (x, v,own),
and there are no 1 ≤ j < i′ and v′ ∈ V such that b1(p)(j) = (x, v′,own). Define
b4 := b3. In other words, we have that α4 = α3.
• Read from buffer: If (x, v′,own) 6∈ b1(p) for all v′ ∈ V and b1 = b2 [p←↩ b2(p) · (x, v)],

then let i be the largest i : 1 ≤ i ≤ |b3(h(p))| such that b3(h(p))(i) = (x, v). Since
b1(p) v b3(h(p)), we know that such an i exists. Define

b4 := b3 [h(p)←↩ b3(h(p))(1) · b3(h(p))(2) · · ·b3(h(p))(i− 1)]

We can reach the configuration α4 from α3 in a similar manner to the last case of the
delete transition.

(6) Fence: t = (q, fence, q′). Define b4 := ε and mem4 := mem2. We can perform

the following sequence of transitions α3
deletep−−−−→DTSO α′1

deletep−−−−→DTSO α′2 · · ·
deletep−−−−→DTSO

A LOAD-BUFFER SEMANTICS FOR TOTAL STORE ORDERING 45

α′|b3(h(p))|
t−→DTSO α4. In other words, we can reach the configuration α4 from α3 by first

emptying the contents of b3(h(p)) and then performing t.
(7) ARW: t = (q, arw(x, v, v′), q′). Define b4 := ε and mem4 := mem2. We can reach the

configuration α4 from α3 in a similar manner to the case of the fence transition.

This concludes the proof of Lemma 5.2.

Appendix F. Proof of Lemma 5.4

Consider a parameterized configuration α = (P, c) with c = (q,b,mem). We recall the
definition of minpre({α}): minpre({α}):=min (PreT ({α} ↑) ∪ {α} ↑). We observe that

minpre({α}) = min
(
∪t∈∆∪∆′′min

{
α′| α′ t−→ α

}
∪ {α}

)
.

For t ∈ ∆ ∪∆′′, we select min
{
α′| α′ t−→ α

}
to be the minimal set of all finite parameterized

configurations of the form α′ = (P′, c′) with c′ = (q′,b′,mem′) such that one of the following
properties is satisfied:

(1) Nop: t = (q1, nop, q2), q(p) = q2 for some p ∈ P, P′ = P, q′ = q [p←↩ q1], b′ = b, and
mem′ = mem.

(2) Write: t = (q1,w(x, v), q2), mem(x) = v for some v ∈ V, mem′(y) = mem(y) if y 6= x,
and one of the following conditions is satisfied:
• q(p) = q2 for some p ∈ P, P′ = P, q′ = q [p←↩ q1], b′ = b [p←↩ w], b(p) = (x, v,own)·
w for some w ∈ ((X× V) ∪ (X× V× {own}))∗.
• q(p) = q2 for some p ∈ P, P′ = P, q′ = q [p←↩ q1], b(p) = (x, v,own) · w for some
w ∈ ((X× V) ∪ (X× V× {own}))∗, b′ = b [p←↩ w1 · (x, v′, own) · w2] for some v′ ∈
V where w1, w2 ∈ ((X× V) ∪ (X× V× {own}))∗, w1 · w2 = w and (x, v′′, own) /∈ w1

for all v′′ ∈ V. In other words, (x, v′, own) is the most recent message to variable x
belonging to p in the buffer b′(p). This condition corresponds to the case when we
have some messages (x, v′, own) that are hidden by the message (x, v, own) in the
buffer b(p).
• q(p) 6= q2 or b(p) 6= (x, v,own) ·w for any p ∈ P, w ∈ ((X× V) ∪ (X× V× {own}))∗,
P′ = P ∪ {p′} for some p′ 6∈ P, q′(p′) = q1, q′(p′′) = q(p′′) if p′′ 6= p′, b′(p′) =
〈(x1, v1,own)|ε〉〈(x2, v2,own)|ε〉 · · · 〈(xm, vm,own)|ε〉 where xi 6= xj , vi ∈ V, 1 ≤
i, j ≤ |X| and b′(p′′) = b(p′′) if p′′ 6= p′. In other words, we add one more process p′

to the configuration α′.
(3) Propagate: t = propagatexp for some p ∈ P, mem(x) = v, P′ = P, q′ = q, mem′ = mem,

b(p) = (x, v) · w for some w ∈ ((X× V) ∪ (X× V× {own}))∗, and b′ = b [p←↩ w].
(4) Read: t = (q1, r(x, v), q2), q(p) = q2 for some p ∈ P, P′ = P, q′ = q [p←↩ q1], and

mem′ = mem, and one of the following conditions is satisfied:
• Read-own-write: there is an i : 1 ≤ i ≤ |b(p)| such that b(p)(i) = (x, v, own), and

there are no j : 1 ≤ j < i and v′ ∈ V such that b(p)(j) = (x, v′, own), and b′ = b.
• Read from buffer: (x, v′,own) 6∈ b(p) for all v′ ∈ V, b(p) = w · (x, v) for some
w ∈ ((X× V) ∪ (X× V× {own}))∗, and b′ = b.
• Read from buffer: (x, v′, own) 6∈ b(p) for all v′ ∈ V, b(p) 6= w · (x, v) for any
w ∈ ((X× V) ∪ (X× V× {own}))∗, and b′ = b [p←↩ b(p) · (x, v)]. This condition
corresponds to the case when we have some messages (x, v) that are not explicitly
presented at the head of the buffer b(p).

46 P.A. ABDULLA, M.F. ATIG, A. BOUAJJANI, AND T.P. NGO

(5) Fence: t = (q1, fence, q2), q(p) = q2 for some p ∈ P, b(p) = ε, P′ = P, q′ = q [p←↩ q1],
b′ = b, and mem′ = mem.

(6) ARW: t = (q1, arw(x, v, v′), q2), mem(x) = v′, mem′ = mem [x←↩ v], and one of the
following conditions is satisfied:
• q(p) = q2 for some p ∈ P, b(p) = ε, P′ = P, q′ = q [p←↩ q1], b′ = b.
• q(p) 6= q2 or b(p) 6= ε for any p ∈ P, P′ = P ∪ {p′} for some p′ 6∈ P, q′(p′) = q1,

q′(p′′) = q(p′′) if p′′ 6= p′, b′(p′) = ε, and b′(p′′) = b(p′′) if p′′ 6= p′. In other words,
we add one more process p′ to the configuration α′.

(7) Delete: t = deletep for some p ∈ P, P′ = P, q′ = q, mem′ = mem, (x, v, own) /∈ b(p)
for some x ∈ X and all v ∈ V, b′ = b [p←↩ b(p) · (x, v′, own)] for some v′ ∈ V.

This concludes the proof of Lemma 5.4.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Concurrent Systems
	3.1. Syntax
	3.2. Classical TSO Semantics
	3.3. Dual TSO Semantics
	3.4. Relation between TSO and DTSO Reachability Problems

	4. The DTSO Reachability Problem
	4.1. Well-structured Transition Systems
	4.2. DTSO-transition System is a Wsts

	5. Parameterized Concurrent Systems
	5.1. Definitions for Parameterized Concurrent Systems
	5.2. Decidability of the Parameterized Reachability Problem

	6. Experimental Results
	7. Conclusion
	References
	Appendix A. Proof of Theorem 3.4
	A.1. From Dual TSO to TSO
	A.2. From TSO to Dual TSO

	Appendix B. Proof of Lemma 4.2
	Appendix C. Proof of Lemma 4.3
	Appendix D. Proof of Lemma 4.4
	Appendix E. Proof of Lemma 5.2
	Appendix F. Proof of Lemma 5.4

