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Abstract. A coercion semantics of a programming language with subtyping is typically
defined on typing derivations rather than on typing judgments. To avoid semantic ambiguity,
such a semantics is expected to be coherent, i.e., independent of the typing derivation
for a given typing judgment. In this article we present heterogeneous, biorthogonal, step-
indexed logical relations for establishing the coherence of coercion semantics of programming
languages with subtyping. To illustrate the effectiveness of the proof method, we develop a
proof of coherence of a type-directed, selective CPS translation from a typed call-by-value
lambda calculus with delimited continuations and control-effect subtyping. The article is
accompanied by a Coq formalization that relies on a novel shallow embedding of a logic for
reasoning about step-indexing.

1. Introduction

Programming languages that allow for subtyping, i.e., a mechanism facilitating coercions
of expressions of one type to another, are usually given either a subset semantics, where
one type is considered a subset of another type, or a coercion semantics, where expressions
are explicitly converted from one type to another. In the presence of subtyping, typing
derivations depend on the occurrences of the subtyping judgments and, therefore, typing
judgments do not have unique typing derivations. Consequently, a coercion semantics
that interprets subtyping judgments by introducing explicit type coercions is defined on
typing derivations rather than on typing judgments. But then a natural question arises
as to whether such a semantics is coherent, i.e., whether it does not depend on the typing
derivation.

The problem of coherence has been considered in a variety of typed lambda calculi.
Reynolds proved the coherence of the denotational semantics for intersection types in the
category-theoretic setting [32]. Breazu-Tannen et al. proved the coherence of a coercion
translation from the lambda calculus with polymorphic, recursive and sum types to system F,
by showing that any two derivations of the same judgment are translated to provably equal
terms in the target calculus [12]. Curien and Ghelli introduced a translation from system
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F≤ to a calculus with explicit coercions and showed that any two derivations of the same
judgment are translated to terms that are normalizable to a unique normal form [13]. Finally,
Schwinghammer followed Curien and Ghelli’s approach to prove the coherence of coercion
translation from Moggi’s computational lambda calculus with subtyping, except that he
normalizes derivations in a semantics-preserving way, rather than terms in a dedicated
calculus of coercions [34]. Schwinghammer’s presentation is akin to Mitchell’s for the
simply-typed lambda calculus [27, Chapter 10].

The results listed above fall into two categories: those that hinge on the existence of a
common subtype of two different types for the same term [32, 12], and those that rely on
finding a normal form for a representation of the derivation and hinge on showing that such
normal forms are unique for a given typing judgment [13, 34, 27]. When the source calculus
under consideration is presented in the spirit of the lambda calculus à la Church, i.e., the
lambda abstractions are type annotated, as is the case in all the aforementioned articles that
follow the normalization-based approach, the term and the typing context indeed determine
the shape of the normal derivation (modulo a top level coercion that depends on the type of
the term) [27, Chapter 10]. However, in calculi à la Curry this is no longer the case and the
method cannot be directly applied. Still, if the calculus is at least weakly normalizing, one
can hope to recover the uniqueness property for normal typing derivations for source terms
in normal form, assuming that term normalization preserves the coercion semantics. For
instance, in the simply typed λ-calculus the typing context uniquely determines the type
of the term in the function position in applications building a β-normal form, and, hence,
derivations in normal form for such terms are unique. This line of reasoning cannot be used
when the calculus includes recursion. Similarly, the lambda calculus à la Curry (and other
systems extending it) does not in general satisfy the property of common subtype.

In this article, we consider the coherence problem in calculi where none of the existing
techniques can be directly applied. The coercion semantics we study translate typing deriva-
tions in the source calculus to a corresponding target calculus with explicit type coercions
(that in some cases can be further replaced with equivalent lambda-term representations)
and our criterion for coherence of the translation is contextual equivalence [28] in the target
calculus.

The main result of this work is a construction of logical relations for establishing such a
notion of coherence of coercion semantics, applicable in a variety of calculi. In particular,
we address the problem of coherence of a type-directed CPS (continuation-passing style)
translation from the call-by-value λ-calculus with delimited-control operators and control-
effect subtyping introduced by Materzok and the first author [25], extended with recursion.
While the translation for the calculus with explicit type annotations has been shown to
be coherent in terms of an equational theory in a target calculus [24], no CPS coercion
translation for the original version, let alone extended with recursion, has been proven
coherent.

The reasons why coherence in this calculus is important are twofold. First of all, it is
very expressive and therefore interesting from the theoretical point of view. In particular, the
calculus has been shown to generalize the canonical type-and-effect system for Danvy and
Filinski’s shift and reset control operators [14, 15], and, furthermore, that it is strictly more
expressive than the CPS hierarchy of Danvy and Filinski [26]. These results heavily rely on
the effect subtyping relation that, e.g., allows to coerce pure expressions (i.e., control-effect
free) to effectful ones. From a more practical point of view, the selective CPS translation,
that leaves pure expressions in direct style and introduces explicit coercions to interpret effect
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subtyping in the source calculus, is a good candidate for embedding the control operators in
an existing programming language, such as Scala [33].

In order to deal with the complexity of the source calculus and of the translation itself,
we introduce binary logical relations on terms of the target calculus that are: heterogeneous,
biorthogonal [23, 30, 19], and step-indexed [3, 2, 1]. Heterogeneity allows us to relate terms
of different types, and in particular those in continuation-passing style with those in direct
style. This is a crucial property, since the same term can have a pure type, resulting in
a direct-style term through the translation and another, impure type, resulting in a term
in continuation-passing style. Relating such terms requires quantification over types and
to assure well-foundedness of the construction, we need to use step-indexing, which also
supports reasoning about recursion, even if not in a critical way. We follow Dreyer et
al. [18] in using logical step-indexed logical relations in our presentation of step-indexing.
Biorthogonality, by imposing a particular order of evaluation on expressions, simplifies
the construction of the logical relations. It also facilitates reasoning about continuations
represented as evaluation contexts.

Apart from the calculus with effect subtyping, we have used the ideas presented in
this article to show coherence of subtyping in several other calculi, including the simply
typed lambda calculus with subtyping [27, Chapter 10] extended with recursion, the cal-
culus of intersection types [32], and the lambda calculus with subtyping and the control
operator call/cc.

The article is accompanied by a Coq development containing a library IxFree that
provides a new shallow embedding of the logic for reasoning about step-indexed logical
relations, and a complete formalization of the proofs presented in the rest of the article. The
code is available at https://bitbucket.org/pl-uwr/coherence-logrel.

The rest of this article is structured as follows. In Section 2, we briefly present Dreyer
et al.’s logic for reasoning about step indexing [18] on which we base our presentation. In
Section 3, we introduce the construction of the logical relations in a simple yet sufficiently
interesting scenario—the simply typed lambda calculus à la Curry with natural numbers, type
Top, general recursion and standard subtyping. The goal of this section is to introduce the
basic ingredients of the proof method before embarking on a considerably more challenging
journey in the subsequent section. In Section 4, we present the main result of the article—the
logical relations for establishing the coherence of the CPS translation from the calculus of
delimited control with effect subtyping. In Section 5, we describe the main ideas behind our
Coq formalization. In Section 6, we summarize the article.

2. Reasoning about step-indexed logical relations

Step-indexed logical relations [3, 2, 1] are a powerful tool for reasoning about programming
languages. Instead of describing a general behavior of program execution, they focus on the
first n computation steps, where the step index n is an additional parameter of the relation.
This additional parameter makes it possible to define logical relations inductively not only
on the structure of types, but also on the number of computation steps that are allowed for
a program to make and, therefore, they provide an elegant way to reason about features
that introduce non-termination to the programming language, including recursive types [2]
and references [1].

However, reasoning directly about step-indexed logical relations is tedious because proofs
become obscured by step-index arithmetic. Dreyer et al. [18] proposed logical step-indexed

https://bitbucket.org/pl-uwr/coherence-logrel
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τ ::= Nat | Top | τ → τ (types)

e ::= x | λx.e | e e | fix x(x).e | n (expressions)

S-Refl
τ ≤ τ

τ2 ≤ τ3 τ1 ≤ τ2
S-Trans

τ1 ≤ τ3
S-Top

τ ≤ Top

τ ′2 ≤ τ ′1 τ1 ≤ τ2
S-Arr

(τ ′1 → τ1) ≤ (τ ′2 → τ2)

(x : τ) ∈ Γ
T-Var

Γ ` x : τ

Γ, x : τ1 ` e : τ2
T-Abs

Γ ` λx.e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2
T-App

Γ ` e1 e2 : τ1

Γ, f : τ1 → τ2, x : τ1 ` e : τ2
T-Fix

Γ ` fix f(x).e : τ1 → τ2

T-Const
Γ ` n : Nat

Γ ` e : τ τ ≤ τ ′
T-Sub

Γ ` e : τ ′

Figure 1: The source language—the λ-calculus with subtyping

logical relations (LSLR) to avoid this problem. The LSLR logic is an intuitionistic logic for
reasoning about one particular Kripke model: where possible worlds are natural numbers
(step-indices) and where future worlds have smaller indices than the present one. All
formulas are interpreted as monotone (non-increasing) sequences of truth values, whereas
the connectives are interpreted as usual. In particular, in the case of implication we quantify
over all future worlds to ensure monotonicity, so the formula ϕ ⇒ ψ is valid at index n
(written n |= ϕ⇒ ψ) iff k |= ϕ implies k |= ψ for every k ≤ n. In contrast to Dreyer et al.
we do not assume that all formulas are valid in world 0, because it is not necessary.

The LSLR logic is also equipped with a modal operator B (later), to provide access to
strictly future worlds. The formula Bϕ means ϕ holds in any future world, or formally Bϕ
is always valid at world 0, and n+ 1 |= Bϕ iff ϕ is valid at n (and other future worlds by
monotonicity). The later operator comes with two inference rules:

Γ,Σ ` ϕ
B-intro

Γ,BΣ ` Bϕ
Γ,Bϕ ` ϕ

Löb
Γ ` ϕ

The first rule allows one to shift reasoning to a future world, making the assumptions about
the future world available. The Löb rule expresses an induction principle for indices. Note
that the premise of the rule also captures the base case, because the assumption Bϕ is trivial
in the world 0. The later operator comes with no general elimination rule.

Predicates in LSLR logic as well as step-indexed logical relations can be defined induc-
tively on indices. More generally, we can define a recursive predicate µr.ϕ(r), provided all
occurrences of r in ϕ are guarded by the later operator, to guarantee well-foundedness of
the definition. For the sake of readability, in this paper we define recursive predicates and
relations by giving a set of clauses instead of using the µ operator.

Since the logic is developed for reasoning about one particular model, we can freely
add new inference rules for the logic if we prove they are valid in the model. We can also
add new relations or predicates to the logic if we provide their monotone interpretation. In
particular, constant functions are monotone, so we can safely use predicates defined outside
of the logic, such as typing or reduction relations.
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3. Introducing the logical relations

In this section we prove the coherence of subtyping in the simply-typed call-by-value lambda
calculus extended with recursion, where the coercion semantics is given by a standard
translation to the simply-typed lambda calculus with explicit coercions [13]. Our goal here
is to introduce the proof method in a simple scenario, so that in Section 4 we can focus
on issues specific to control effects. The logical relations we present in this section are
biorthogonal and step-indexed, which is not strictly necessary but it makes the development
more elegant. Furthermore, biorthogonality and step-indexing become crucial in handling
more complicated calculi such as the one of Section 4 and, therefore, are essential for the
method to scale.

3.1. The simply-typed lambda calculus with subtyping. The syntax and typing rules
for the source language are given in Figure 1. The language is the simply-typed lambda
calculus extended with recursive functions (fix f(x).e) and natural numbers (n). For clarity
of the presentation we do not consider any primitive operations on natural numbers, but
they could be seamlessly added to the language. Extending the language with additional
basic types is a little bit more subtle, as discussed in Section 3.5.2. We include the type Top,
to make the subtyping relation interesting. The typing and subtyping rules are standard [27,
Chapter 10], where the typing environment Γ associates variables with their types and is
represented as a finite set of such pairs, noted (x : τ). In the rest of the article we assume the
standard notions and conventions concerning variable binding and α-conversion of terms [7].

3.2. Coercion semantics. The semantics of the source language is given by a translation
of the typing derivations to a target language that extends the source language with explicit
type coercions (and replaces Top with Unit).

3.2.1. Target calculus. The coercions express conversion of a term from one type to another,
according to the subtyping relation. Figure 2 contains syntax, typing rules and reduction
rules of the target language. The type coercions c and their typing rules correspond exactly
to the subtyping rules of the source language. The grammar of terms contains explicit
coercion application of the form c e.

The operational semantics of the target language takes the form of the reduction
semantics, where terms are decomposed into an evaluation context and a redex. We use the
standard notation E[e] for plugging the term e into the context E, and similarly—E[E′]
for plugging the context E′ in E, i.e., for context composition. The grammar of evaluation
contexts extends the standard call-by-value λ-calculus contexts with contexts of the form
c E that enforce evaluating an argument of a coercion before the actual conversion takes
place. It can be shown that the reduction relation of Figure 2 is deterministic.

The semantics distinguishes between β-rules that perform actual computations and
ι-rules that rearrange coercions. Both of them are used during program evaluation. We
say that program e terminates (written e↓) when it can be reduced to a value using both
sorts of reduction rules, according to the evaluation strategy determined by the evaluation
contexts.

The principle behind the operational semantics of coercions, given by the ι-rules, is
to structurally reduce complex coercions c1 ◦ c2 and c1 → c2 to their subcoercions c1 and
c2, until one of the two basic coercions id or top is reached and can be trivially applied to
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τ ::= Nat | Unit | τ → τ (types)

c ::= id | c ◦ c | top | c→ c (coercions)

e ::= x | λx.e | e e | c e | fix x(x).e | n | 〈〉 (expressions)

v ::= x | λx.e | fix x(x).e | (c→ c) v | n | 〈〉 (values)

E ::= � | E e | v E | c E (evaluation contexts)

S-Refl
id :: τ . τ

c1 :: τ2 . τ3 c2 :: τ1 . τ2
S-Transc1 ◦ c2 :: τ1 . τ3

S-Top
top :: τ . Unit

c1 :: τ ′2 . τ
′
1 c2 :: τ1 . τ2

S-Arr
c1 → c2 :: (τ ′1 → τ1) . (τ ′2 → τ2)

(x : τ) ∈ Γ
T-Var

Γ ` x : τ

Γ, x : τ1 ` e : τ2
T-Abs

Γ ` λx.e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2
T-App

Γ ` e1 e2 : τ1

c :: τ . τ ′ Γ ` e : τ
T-CApp

Γ ` c e : τ ′

Γ, f : τ1 → τ2, x : τ1 ` e : τ2
T-Fix

Γ ` fix f(x).e : τ1 → τ2
T-Const

Γ ` n : Nat

T-Unit
Γ ` 〈〉 : Unit

E[(λx.e) v]→β E[e{v/x}]
E[(fix f(x).e) v]→β E[e{fix f(x).e/f, v/x}]

E[id v]→ι E[v]

E[(c1 ◦ c2) v]→ι E[c1 (c2 v)]

E[top v]→ι E[〈〉]
E[(c1 → c2) v1 v2]→ι E[c2 (v1 (c1 v2))]

Figure 2: The target language—the λ-calculus with explicit coercions

perform the actual conversion of a value. We can see that the ι-rules for c1 ◦ c2 and c1 → c2
have an administrative rather than computational role in that erasing the coercions (defined
in the expected way [13]) in the redex and in the contractum of these rules leads to the same
expression. It is worth noting that terms of the form (c→ c) v are considered values, since
they represent a coercion expecting another value as argument (witness the last ι-rule).

General contexts are closed terms with one hole (possibly under some binders), and
are ranged over by the metavariable C. We write ` C : (Γ; τ1)  τ2 if for any e with
Γ ` e : τ1 we have ` C[e] : τ2. Contextual approximation, written Γ ` e1 -ctx e2 : τ ,
means that for any context C and type τ ′, such that ` C : (Γ; τ)  τ ′ if C[e1] terminates,
then so does C[e2]. If Γ ` e1 -ctx e2 : τ and Γ ` e2 -ctx e1 : τ , then we say that e1
and e2 are contextually equivalent. It is this notion of program equivalence that we take to



LOGICAL RELATIONS FOR COHERENCE OF EFFECT SUBTYPING 7

Jτ1 → τ2K = Jτ1K→ Jτ2K

JNatK = Nat

JTopK = Unit

SJτ ≤ τKS-Refl = id

SJτ ≤ TopKS-Top = top

SJτ1 ≤ τ3KS-Trans(D1,D2) = SJτ2 ≤ τ3KD1 ◦ SJτ1 ≤ τ2KD2

SJτ ′1 → τ1 ≤ τ ′2 → τ2KS-Arr(D1,D2) = SJτ ′2 ≤ τ ′1KD1 → SJτ1 ≤ τ2KD2

T JxKT-Var = x

T Jλx.eKT-Abs(D) = λx.T JeKD
T Je1 e2KT-App(D1,D2) = T Je1KD1 T Je2KD2

T Jfix f(x).eKT-Fix(D) = fix f(x).T JeKD
T JeKT-Sub(D1,D2) = SJτ ≤ τ ′KD2 T JeKD1

T JnKT-Const = n

Figure 3: Coercion semantics for the λ-calculus with subtyping

express coherence of the coercion semantics and characterize with logical relations later on
in this section.

3.2.2. Translation. The coercion semantics of the source language is given in Figure 3. The
function SJ.K. translates subtyping proofs into coercions, and function T J.K. translates typing
derivations into terms of the target language, whereas types are translated by the function
J.K, which we extend to a point-wise translation of typing environments. Both SJ.K. and
T J.K. are defined by structural recursion on derivation trees, where the structure of the tree
D is given by the second argument, consisting of the name of the final rule in the derivation
D and the immediate subtrees of D. For example, in the equation

T JeKT-Sub(D1,D2) = SJτ ≤ τ ′KD2 T JeKD1

T-Sub(D1, D2) represents the tree

D1

Γ ` e : τ

D2

τ ≤ τ ′
T-Sub

Γ ` e : τ ′

The translation functions themselves are rather straightforward; their role is to replace
subtyping derivations with coercions applied to expressions being coerced from one type to
another. The soundness of the translation functions is ensured by the following lemma.
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Lemma 3.1. Coercion semantics preserves types.

(1) If D :: τ1 ≤ τ2 then SJτ1 ≤ τ2KD :: Jτ1K . Jτ2K.

(2) If D :: Γ ` e : τ then JΓK ` T JeKD : JτK.

The following example demonstrates the translation function and the coercions at work.

Example 3.2. Consider the program (λf.f 1) (λx.x) in the source language. Let D be the
derivation where variable f has type Nat→ Top and the type for expression λx.x is derived
in the following way:

T-Var
x : Top ` x : Top

T-Abs` λx.x : Top→ Top

S-Top
Nat ≤ Top

S-Refl
Top ≤ Top

S-Arr
Top→ Top ≤ Nat→ Top

T-Sub` λx.x : Nat→ Top

The coercion translation of such derivation puts a coercion application in a place, where the
subsumption rule was used in the type derivation:

T J(λf.f 1) (λx.x)KD = (λf.f 1) ((top→ id) (λx.x))

The result of the translation can be reduced using β and ι-reductions:

(λf.f 1) ((top→ id) (λx.x)) →β

(top→ id) (λx.x) 1 →ι

id ((λx.x) (top 1)) →ι

id ((λx.x) 〈〉) →β

id 〈〉 →ι

〈〉

First, we perform β-reduction, since (top → id) (λx.x) is a value. Thereafter, the arrow
coercion (top→ id) gets two arguments, so it can be ι-reduced by distributing coercions top
and id between the argument and the result of the identity function. Then we continue the
reduction using the call-by-value strategy. Note that both β- and ι-reductions are needed
during the evaluation.

The problem of coherence is illustrated in the next example.

Example 3.3. Coercion semantics can produce distant results for different typing derivations,
even in such simple calculus as presented in this section. Consider the fixed-point operator
fix y(f).λx.f (y f) x expressed using recursive functions. Assuming τ ≤ τ ′, one possible
type of such an expression is ((τ → τ ′)→ τ → τ)→ τ → τ . Let D1 be a derivation where
variable y has the same type as whole expression, and we coerce only the subexpression (y f)
from type τ → τ to τ → τ ′. On the other hand, let D2 be a derivation where the whole
expression is coerced from the type ((τ → τ)→ τ → τ)→ τ → τ , which is derived directly.
As a result of the coercion semantics for the derivations D1 and D2 we get the following
programs in the target calculus:

e1 := T Jfix y(f).λx.f (y f) xKD1 = fix y(f).λx.f ((id→ c) (y f)) x

e2 := T Jfix y(f).λx.f (y f) xKD2 = (((id→ c)→ id)→ id) (fix y(f).λx.f (y f) x),
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where c :: τ . τ ′ is a result of translating the proof of τ ≤ τ ′. These terms are different
values and it is hard to find any reasonable equational theory to equate them. However, as a
consequence of next sections, they are contextually equivalent. Indeed, they exhibit similar
behavior when applied to two values f and v. We can perform three β-reductions starting
from the term e1 f v.

e1 f v →2
β

f ((id→ c) (e1 f)) v →β

f ((id→ c) (λx.f ((id→ c) (e1 f)) x)) v

Reducing the term e2 f v requires some extra ι-reductions. Let e0 = fix y(f).λx.f (y f) x
and f0 = ((id→ c)→ id) f . We have the following reduction path.

e2 f v →ι

id (e0 f0) v →β

id (λx.f0 (e0 f0) x) v →ι→β

f0 (e0 f0) v →β

f0 (λx.f0 (e0 f0) x) v →ι

id (f ((id→ c) (λx.f0 (e0 f0) x))) v

In both cases we obtained a term of the form f ((id→ c) e) v (modulo insignificant identity
coercions), where e is a result of applying ei to f .

3.3. Logical relations. In order to reason about contextual equivalence in the target
language, we define logical relations (Figure 4). Relations are expressed in the LSLR logic
described in Section 2, so they are implicitly step-indexed.

We call these relations heterogeneous because they are parameterized by two types, one
for each of the arguments. This property is important for our coherence proof, since it makes
it possible to relate the results of the translation of two typing derivations which assign
different types to the same term, e.g., as in Example 3.3. When both types τ1 and τ2 are Nat
or both are arrow types, the value relation VJτ1; τ2K is standard. Two values are related for
type Nat if they are the same constant, and two functions are related when they map related
arguments to related results. Because we have many kinds of values representing functions,
we follow Pitts and Stark [30] in using an application for testing functions, instead of a
substitution (as in, e.g., [19, 2]). The most interesting are the cases when type parameters
of the relation are different. When one of these types is Unit, then any values are in the
relation, because we do not expect them to carry any information—Unit is the result of
translating the Top type. In such a case we do not even require that related values are of
the kind described by their corresponding type. We can do so since in the calculus each
coercion applied to a value is or reduces to a value. In calculi without this property we have
to be more careful (see Section 3.5.2). The logical relation is empty for different types which
are not Unit.

The relation EJτ1; τ2K for closed terms is defined by biorthogonality. Two terms are
related if they behave the same in related contexts, and contexts are related (relation
KJτ1; τ2K) if they yield the same observations when plugged with related values. Yielding
the same observations (relation -) is defined for each step-index separately: e1 - e2 is
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(v1, v2) ∈ VJNat; NatK ⇐⇒ ∃n, v1 = v2 = n

(v1, v2) ∈ VJτ ′1 → τ1; τ
′
2 → τ2K ⇐⇒ ∀(a1, a2) ∈ VJτ ′1; τ

′
2K.(v1 a1, v2 a2) ∈ EJτ1; τ2K

(v1, v2) ∈ VJUnit; τ2K ⇐⇒ >
(v1, v2) ∈ VJτ1; UnitK ⇐⇒ >

(v1, v2) ∈ VJτ1; τ2K ⇐⇒ ⊥ otherwise

(e1, e2) ∈ EJτ1; τ2K ⇐⇒ ∀(E1, E2) ∈ KJτ1; τ2K.E1[e1] - E2[e2]

(E1, E2) ∈ KJτ1; τ2K ⇐⇒ ∀(v1, v2) ∈ VJτ1; τ2K.E1[v1] - E2[v2]

k |= e1 - e2 ⇐⇒ e1 ↓k =⇒ e2 ↓

(γ1, γ2) ∈ GJΓ1; Γ2K ⇐⇒ ∀x, (γ1(x), γ2(x)) ∈ VJΓ1(x); Γ2(x)K

Γ1; Γ2 ` e1 -log e2 : τ1; τ2 ⇐⇒ ∀(γ1, γ2) ∈ GJΓ1; Γ2K.(e1γ1, e2γ2) ∈ EJτ1; τ2K

Figure 4: Logical relations for the λ-calculus with explicit coercions

valid at k iff termination of e1 using at most k β-steps and any number of ι-steps (written
e1 ↓k), implies termination of e2 in any number of β-steps and ι-steps. This interpretation is
monotone, so the relation - can be added to the LSLR logic.

In order to extend the relation EJτ1; τ2K to open terms we first define a relation GJΓ1; Γ2K
on substitutions (mapping variables to closed values) parameterized by a pair of typing
environments. Then we say that two open terms are related (written Γ1; Γ2 ` e1 -log e2 :
τ1; τ2) when every pair of related closing substitutions makes them related.

Notice that we do not assume that related terms have valid types. Our relations may
include some “garbage”, e.g., (1, λx.x) ∈ VJUnit; NatK, but it is non-problematic. One
can mechanically prune these relations to well-typed terms, but this change complicates
formalization and we did not find it useful.

The relation - is preserved by reductions in the following sense, where the third assertion
expresses an elimination rule of the later modality that is crucial in the subsequent proofs.

Lemma 3.4. The following assertions hold:

(1) If e1 →ι e
′
1 and e′1 - e2 then e1 - e2.

(2) If e2 →ι e
′
2 and e1 - e′2 then e1 - e2.

(3) If e1 →β e
′
1 and Be′1 - e2 then e1 - e2.

(4) If e2 →β e
′
2 and e1 - e′2 then e1 - e2.

The proof of soundness of the logical relations follows closely the standard technique for
biorthogonal logical relations [30, 19]. First, we need to show compatibility lemmas, which
state that the relation is preserved by every language construct.

Lemma 3.5 (Compatibility). The following assertions hold:

(1) if (x : τ1) ∈ Γ1 and (x : τ2) ∈ Γ2 then Γ1; Γ2 ` x -log x : τ1; τ2;
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(2) if (Γ1, x : τ ′1); (Γ2, x : τ ′2) ` e1 -log e2 : τ1; τ2
then Γ1; Γ2 ` λx.e1 -log λx.e2 : τ ′1 → τ1; τ

′
2 → τ2;

(3) if Γ1; Γ2 ` e1 -log e2 : τ ′1 → τ1; τ
′
2 → τ2 and Γ1; Γ2 ` e′1 -log e′2 : τ ′1; τ

′
2

then Γ1; Γ2 ` e1 e′1 -log e2 e′2 : τ1; τ2;

(4) if (Γ1, f : τ ′1 → τ1, x : τ ′1); (Γ2, f : τ ′2 → τ2, x : τ ′2) ` e1 -log e2 : τ1; τ2
then Γ1; Γ2 ` fix f(x).e1 -log fix f(x).e2 : τ ′1 → τ1; τ

′
2 → τ2;

(5) we have Γ1; Γ2 ` n -log n : Nat; Nat;

(6) we have Γ1; Γ2 ` 〈〉 -log 〈〉 : Unit; Unit.

Proof. The proof is standard and directed by the definition of logical relations. We only
show the proof for the case with recursive functions, where step indexing simplifies reasoning.
Assume (Γ1, f : τ ′1 → τ1, x : τ ′1); (Γ2, f : τ ′2 → τ2, x : τ ′2) ` e1 -log e2 : τ1; τ2 (*).
Since fix f(x).e1 and fix f(x).e2 are values, it suffices to show that for every substitutions
(γ1, γ2) ∈ GJΓ1; Γ2K we have (fix f(x).e1γ1, fix f(x).e2γ2) ∈ VJτ ′1 → τ1; τ

′
2 → τ2K. Now,

we use the Löb rule to assume the induction hypothesis1 (fix f(x).e1γ1, fix f(x).e2γ2) ∈
BVJτ ′1 → τ1; τ

′
2 → τ2K (**). Unfolding the definition of the relation VJτ ′1 → τ1; τ

′
2 → τ2K,

we need to show that for every (v1, v2) ∈ VJτ ′1; τ
′
2K and (E1, E2) ∈ KJτ1; τ2K, we have

E1[(fix f(x).e1γ1) v1] - E2[(fix f(x).e2γ2) v2]. By Lemma 3.4 (used twice), it suffices to
prove that BE1[e1γ1{fix f(x).e1γ1/f, v1/x}] - E2[e2γ2{fix f(x).e2γ2/f, v2/x}]. Using the
later introduction rule, we can remove the later operator both in the goal and in the
assumption (**). Now, we can show that the substitutions γ1{fix f(x).e1γ1/f, v1/x} and
γ2{fix f(x).e2γ2/f, v2/x} are related, hence using (*) we conclude the proof.

The only compatibility lemma specific to our relations is the lemma for coercion
application. Since the subsumption rule is not syntax-directed, we expect from the coercions
to preserve the logical relation, even when they are applied to only one of the related
expressions.

Lemma 3.6 (Coercion compatibility). The logical relation is preserved by coercion applica-
tion:

(1) If c :: τ1 . τ2 and Γ1; Γ2 ` e1 -log e2 : τ1; τ0 then Γ1; Γ2 ` c e1 -log e2 : τ2; τ0.

(2) If c :: τ1 . τ2 and Γ1; Γ2 ` e1 -log e2 : τ0; τ1 then Γ1; Γ2 ` e1 -log c e2 : τ0; τ2.

Proof. We prove both cases by induction on the typing derivation of the coercion c.

Compatibility lemmas allow us to show the fundamental property of the logical relations,
stating that the logical relation is reflexive for well-typed terms.

Theorem 3.7 (Fundamental property). If Γ ` e : τ then Γ; Γ ` e -log e : τ ; τ .

Proof. By induction on the derivation Γ ` e : τ . In each case we apply the corresponding
compatibility lemma.

The soundness of the logical relations is a direct consequence of the following properties:
precongruence which says that the logical relation is preserved by any well-typed context,
and adequacy which says that related programs have the same observable behavior.

Lemma 3.8 (Precongruence). If ` C : (Γ; τ)  τ0 and Γ; Γ ` e1 -log e2 : τ ; τ then
(C[e1], C[e2]) ∈ EJτ0; τ0K.

1This reasoning step corresponds to the induction on indices.



12 BIERNACKI AND POLESIUK

Proof. By induction on the derivation of context typing, using the appropriate compatibility
lemma in each case. For contexts containing subterms we also need the fundamental property.
For the empty context we use the empty substitution, since the empty substitutions are in
relation GJ∅;∅K.

Lemma 3.9 (Adequacy). If (e1, e2) ∈ EJτ ; τK then e1 - e2.

Proof. Let us show �[e1] - �[e2]. Using the assertion (e1, e2) ∈ EJτ ; τK, it suffices to show
(�,�) ∈ KJτ ; τK, which is trivial, since values always terminate.

Theorem 3.10 (Soundness). If k |= Γ; Γ ` e1 -log e2 : τ ; τ holds for every k, then
Γ ` e1 -ctx e2 : τ .

Proof. Suppose ` C : (Γ; τ)  τ0 and C[e1]↓, we need to show C[e2]↓. By Lemma 3.8
and Lemma 3.9 we know k |= C[e1] - C[e2] for every k. Taking k to be the number of steps
in which C[e1] terminates, we have that C[e2] also terminates, by the definition of -.

3.4. Coherence of the coercion semantics. Having established soundness of the logical
relations, we are in a position to prove the main coherence lemma, phrased in terms of the
logical relations, and the coherence theorem.

Lemma 3.11. If Di :: Γi ` e : τi for i = 1, 2 are two typing derivations for the same term
e of the source language, then JΓ1K; JΓ2K ` T JeKD1 -log T JeKD2 : Jτ1K; Jτ2K.

Proof. The proof follows by induction on the structure of both derivations D1 and D2. At
least one of these derivations is decreased in every case. When one of the derivations starts
with the subsumption rule (T-Sub), we apply Lemma 3.6. The coercion that we get after
the translation is well-typed by Lemma 3.1. In other cases we just apply the appropriate
compatibility lemma.

Theorem 3.12 (Coherence). If D1 and D2 are derivations of the same typing judgment
Γ ` e : τ , then JΓK ` T JeKD1 -ctx T JeKD2 : JτK.

Proof. Immediately from Lemma 3.11 and Theorem 3.10.

3.5. Variants. In this section we briefly discuss some possible extensions of the results
presented so far.

3.5.1. Coercions as λ-terms. The coercion semantics described here translates the source
language into the language with explicit coercions. We chose coercions to be a separate
syntactic category, because we found it very convenient, especially for proving Lemma 3.6.
However, one can define a coercion semantics which translates subtyping proofs directly to
λ-expressions. Our result can be easily extended for such a translation. Let |e| be a term
e with all the coercions replaced by the corresponding expressions. To prove that for any
contextually equivalent terms e1 and e2 in the language with coercions, terms |e1| and |e2|
are contextually equivalent in the language without coercions, we need three simple facts
that can be easily verified:

(1) every well-typed term in the language without coercions is well typed in the language
with coercions,



LOGICAL RELATIONS FOR COHERENCE OF EFFECT SUBTYPING 13

(2) term e terminates iff |e| terminates,
(3) if context C does not contain coercions then C[|e|] = |C[e]|.

3.5.2. Multiple base types. In this presentation we consider languages with only one base
type. Adding more base types and some subtyping between them will not change the general
shape of the proof, but defining logical relations for such a case is a little trickier.

Let B be a set of base types and ≤b be a subtyping relation on them. Assume for every
b ∈ B we have set Vb of constants of type b. These constants are values in both source and
target calculi. Additionally, for each b ≤b b′ we have a corresponding coercion cb

′
b and a

function f b
′
b : Vb → Vb′ . The ι-rule for a coercion cb

′
b is defined as follows: if v ∈ Vb, then

E[cb
′
b v]→ι E[f b

′
b (v)].

The coherence of coercion semantics requires coherence on base types. More precisely,
we assume the following properties:

(1) relation ≤b is reflexive and transitive;
(2) for each b ∈ B the function f bb is an identity;

(3) if b1 ≤b b2 and b2 ≤b b3 then f b3b2 ◦ f
b2
b1

= f b3b1 .

We would stipulate that two values v1 and v2 are related for base types b1 and b2 iff for
every common supertype b of b1 and b2, coercing v1 and v2 to b yields the same constant:

(v1, v2) ∈ VJb1; b2K ⇐⇒ v1 ∈ Vb1 ∧ v2 ∈ Vb2 ∧
(
∀b.b1 ≤b b ∧ b2 ≤b b⇒ f bb1(v1) = f bb2(v2)

)
Note that since relation ≤b is reflexive, for b1 = b2 this definition yields the identity relation
on values of a base type b1, the same as in Section 3.3.

Moreover, we have to be more careful with defining the logical relation for the Unit type.
The proof of Lemma 3.6 relies on the fact that for every c :: τ1 . τ2 and (v1, v2) ∈ VJτ ; τ1K,
the expression c v2 either is or reduces to a value. To ensure that property, the relation for
Unit and base type b should relate any value with any value of type b:

(v1, v2) ∈ VJUnit; bK ⇐⇒ v2 ∈ Vb
(v1, v2) ∈ VJb; UnitK ⇐⇒ v1 ∈ Vb

4. Coherence of a CPS translation of control-effect subtyping

In this section we show that the results presented in Section 3 can be adapted to a considerably
more complex calculus—a calculus of delimited control with control-effect subtyping [25].

4.1. Delimited continuations, informally. Control operators for delimited continuations,
introduced independently by Felleisen [20] and by Danvy and Filinski [15], allow the
programmer to delimit the current context of computation and to abstract such a delimited
context as a first-class value. They have found numerous applications (see, e.g., [9] for a list),
including Filinski’s result showing that all computational effects are expressible in terms of
the delimited-control operators shift and reset [21].

The calculus of delimited control studied in this work is the call-by-value λ-calculus
extended with natural numbers, recursion, and the control operators shift0 (S0) and reset0
(〈·〉)—a variant of shift and reset [15]. These operators have recently enjoyed an upsurge of
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interest due to their considerable expressive power and connections with the λµ-calculi [25,
26, 24, 17, 16, 29]. Both the calculus and the coercion semantics we consider in the rest of
the article are based on the type system and the CPS translation introduced by Materzok
and the first author [25].

We will define the semantics of the calculus by a CPS translation to a target calculus
endowed with a reduction semantics, but if we were to directly give reduction rules for shift0
and reset0, they would be [25]:

F [〈E[S0x.e]〉] → F [e{λy.〈E[y]〉/x}]

F [〈v〉] → F [v]

where E is a pure call-by-value evaluation context representing the current delimited
continuation (delimited by 〈·〉 and captured by S0), and F is a metacontext, i.e., a general
evaluation context that consists of a number of pure evaluation contexts separated by control
delimiters.

Let us consider a simple example

1 + 〈10 + S0k.100 + k (k 0)〉

that represents an arithmetic expression over natural numbers. Here is how this expression
is evaluated according to the reduction rules (we assume the standard reduction rules for +
and the call-by-value β-reduction):

1 + 〈10 + S0k.100 + k (k 0)〉 → (1)

1 + 100 + (λy.〈10 + y〉) ((λy.〈10 + y〉) 0) →3 (2)

1 + 100 + (λy.〈10 + y〉) 10 →3 (3)

1 + 100 + 20 →2 (4)

121

In step (1) the delimited continuation λy.〈10 + y〉 is captured and substituted for k. In step
(2) the captured continuation is applied to 0, and the result of this application, the value
10, is returned—the captured continuation is functional in that it is composed with the
remaining computation, rather than abortive as it would be the case for call/cc. In step (3)
the captured continuation is applied to the passed value, and again it returns a value to the
remaining computation that consists in simple arithmetic, carried out in step (4).

In contrast to shift, shift0 is a control operator that can explore and reorganize an
arbitrary portion of the metacontext. Here is an example:

〈1 + 〈10× S0k1.S0k2.k1 (k2 0)〉〉 → (1)

〈1 + S0k2.(λy.〈10× y〉) (k2 0)〉 → (2)

(λy.〈10× y〉) ((λy.〈1 + y〉) 0) →3 (3)

(λy.〈10× y〉) 1 →3 (4)

10

In step (1) k1 is bound to the captured continuation representing multiplication by 10. In
step (2) k2 is bound to the captured continuation representing incrementation by 1. In
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step (3) and (4) 0 is first incremented and the result is then multiplied by 10—the order of
these operations is reversed compared to their occurrence in the initial expression, which is
achieved by repeatedly shifting delimited continuations in steps (1) and (2) and by composing
them in the desired order.

Expressive type systems for delimited continuations are built around the idea that
the type of an expression depends on the type of a context in which the expression is
immersed [14, 8]. For example, the expression

42 + S0k.k

is well typed in such systems. Given a context E that can be plugged with a value of type
Nat and that returns a value of some type τ , assuming that E does not trigger control effects
when plugged with a value, the evaluation of this expression would return a value of type
Nat→ τ . Then, given a metacontext F that expects a value of that type, the expression

F [〈E[42 + S0k.k]〉]

would be well typed. We observe that the answer type τ of the context E differs from
Nat → τ , the type expected by the metacontext F . Such answer-type modification is
characteristic of type systems à la Danvy and Filinski [14] and is necessary to exploit the
expressive power of typed delimited-control operators [6, 8, 25].

Since the control operator shift0 is allowed to explore the metacontext arbitrarily deep,
the type of the expression should actually depend not only on the type of its nearest enclosing
context, but also on the types of the remaining contexts that form the metacontext. For
example, the type of the term

S0k1.S0k2.k1 (k2 42)

would express that given a context E1 expecting a value of type τ and with answer type
τ ′, and a context E2 expecting a value of type Nat and with answer type τ , the type of the
expression

〈E2[〈E1[S0k1.S0k2.k1 (k2 42)]〉]〉

is τ ′. In fact the types in this example could be more complex and express, e.g., that both
E1 and E2 are effectful.

The calculus considered in the rest of this article was built around the idea of types
describing the relevant portion of the metacontext, where, under some conditions, an
expression that imposes certain requirements on the metacontext can be used with a
metacontext of which more is known or assumed [25]. For example, a pure expression such
as the constant 42 can be plugged in a pure evaluation context expecting values of type Nat,
but also in arbitrarily complex metacontexts that have the inner-most context accepting
values of type Nat. Coercions between types describing metacontexts are possible thanks to
the subtyping relation that lies at the heart of the calculus presented in Section 4.2.

4.2. The lambda calculus with delimited control and effect subtyping. The syntax
and typing rules of the calculus of delimited control are shown in Figure 5. Our presentation
differs slightly from the original one [25], but only in some inessential details, and the
two type systems are equally expressive. Types are either pure (τ) or effect annotated
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τ ::= Nat | τ → T (pure types)

T ::= τ | τ [T ]T (types)

e ::= x | λx.e | e e | fix x(x).e | S0x.e | 〈e〉 | n (expressions)

S-Refl
T ≤ T

T2 ≤ T3 T1 ≤ T2
S-Trans

T1 ≤ T3
τ2 ≤ τ1 T1 ≤ T2

S-Arr
(τ1 → T1) ≤ (τ2 → T2)

τ1 ≤ τ2 T2 ≤ T1 U1 ≤ U2
S-Cons

τ1[T1]U1 ≤ τ2[T2]U2

T1 ≤ T2
S-Lift

τ ≤ τ [T1]T2

Γ ` e : T T ≤ U
T-Sub

Γ ` e : U

(x : τ) ∈ Γ
T-Var

Γ ` x : τ

Γ, x : τ ` e : T
T-Abs

Γ ` λx.e : τ → T

Γ ` e1 : τ → T Γ ` e2 : τ
T-PApp

Γ ` e1 e2 : T

Γ ` e1 : (τ2 → τ1[U4]U3)[U2]U1 Γ ` e2 : τ2[U3]U2
T-App

Γ ` e1 e2 : τ1[U4]U1

Γ, f : τ → T, x : τ ` e : T
T-Fix

Γ ` fix f(x).e : τ → T
T-Const

Γ ` n : Nat

Γ, x : τ → T ` e : U
T-Sft

Γ ` S0x.e : τ [T ]U

Γ ` e : τ [τ ]T
T-Rst

Γ ` 〈e〉 : T

Figure 5: The source language—the λ-calculus with delimited control and effect subtyping

(τ [T1]T2). A type τ [T1]T2 describes a computation of type τ that when run in a delimited
context with an answer type T1, yields a computation described by T2. For instance,
the expression S0k1.S0k2.k1 (k2 42), considered in the previous section, can be given type
Nat[Nat](Nat[Nat]Nat), whereas S0k.42 can be given type Nat[Nat[Nat]Nat]Nat.

The calculus comprises the simply typed lambda calculus (rules T-Sub, T-Var, T-Abs,
T-PApp) with the standard subtyping rules (S-Refl, S-Trans, S-Arr), general recursion
(T-Fix), natural numbers (T-Const), and the remaining rules that describe control effects
at the level of types. First, the rule T-Sft corresponds to the operational behavior of S0x.e:
assuming that e, possibly using a captured context 〈E〉 of type τ → T , can be plugged into
a metacontext F of type U , it is sound to use the whole expression with the metacontext
F [〈E〉] of type τ [T ]U . Accordingly, the rule T-Rst expresses that 〈e〉 can be used in a
metacontext F of type T provided e can be plugged in the metacontext F [〈�〉] of type τ [τ ]T .
Then, the rule T-App describes an effectful application e1 e2, where each of the computation
e1, e2, and the application itself can manipulate the metacontext. This is a standard rule
found already in Danvy and Filinski’s type-and-effect system for shift and reset [14], where
it was derived from the CPS semantics of these operators.
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Finally, we have two rules governing the subtyping of effectful computations, namely
S-Cons and S-Lift. The rule S-Cons follows from the CPS interpretation of delimited
continuations—a type τ [T1]T2 is interpreted in CPS as (τ → T1)⇒ T2, where ⇒ means an
effectful function space (see Section 4.3). So, τ1[T1]U1 is a subtype of τ2[T2]U2 when τ2 → T2
is a subtype of τ1 → T1 (the argument type is, as always, treated contravariantly), and U1

is a subtype of U2 (the result type is, as always, treated covariantly). The rule S-Lift is
more interesting and it says that a pure computation can be considered impure, provided
the answer type of the inner-most context can be coerced into the type of the rest of the
metacontext. We have, e.g., Nat ≤ Nat[τ ]τ by using S-Lift, which combined with S-Cons
also implies, e.g., Nat[Nat[τ ]τ ]τ ′ ≤ Nat[Nat]τ ′.

The following example illustrates some of the typing rules of the type system.

Example 4.1. Taking T = Nat[Nat]Nat and τ = Nat→ T as well as Γ = x : Nat→ Nat, y :
τ, z : Nat→ Nat and ∆ = Γ, k : Nat→ Nat, we have the following derivation D:

T-Var
Γ ` x : Nat→ Nat

D1

Γ ` y : τ [Nat]Nat

D2

Γ ` S0k.z (k 42) : T
T-App

Γ ` y S0k.z (k 42) : T
T-Rst

Γ ` 〈y S0k.z (k 42)〉 : Nat
T-PApp

Γ ` x 〈y S0k.z (k 42)〉 : Nat

where D1 is

T-Var
Γ ` y : τ

S-Refl
Nat ≤ Nat

S-Lift
τ ≤ τ [Nat]Nat

T-Sub
Γ ` y : τ [Nat]Nat

and D2 is

T-Var
∆ ` z : Nat→ Nat

T-Var
∆ ` k : Nat→ Nat

T-Const
∆ ` 42 : Nat

T-PApp
∆ ` k 42 : Nat

T-PApp
∆ ` z (k 42) : Nat

T-Sft
Γ ` S0k.z (k 42) : T

4.3. Coercion semantics: a type-directed selective CPS translation. The type
structure of the source calculus has been used by Materzok and the first author to define the
semantics of well-typed expressions by a selective CPS translation of typing derivations into
the call-by-value λ-calculus [25]. Their translation can be seen as a coercion semantics of the
source calculus that introduces explicit coercions in the image of the translation and leaves
pure expressions in direct style. Such a semantics thus can serve as a basis for implementing
delimited continuations as a fragment of a conventional functional language. However, one
should first make sure that it is coherent.

The target calculus that we present next differs from the one considered in [25] in that
it contains a separate syntactic category of coercions as well as a dedicated function type for
expressions in CPS.
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τ ::= Nat | τ → T (pure types)

T ::= τ | (τ → T )⇒ T (types)

c ::= id | c ◦ c | c→ c | ↑c | c[c]c (coercions)

e ::= x | λx.e | e e | c e | fix x(x).e | n (expressions)

v ::= x | λx.e | fix x(x).e | (c→ c) v | ↑c v | (c[c]c) v | n (values)

E ::= � | E e | v E | c E (evaluation contexts)

S-Refl
id :: T . T

c1 :: T2 . T3 c2 :: T1 . T2
S-Trans

c1 ◦ c2 :: T1 . T3

c1 :: τ2 . τ1 c2 :: T1 . T2
S-Arr

c1 → c2 :: (τ1 → T1) . (τ2 → T2)

c :: T1 . T2
S-Lift

↑c :: τ . ((τ → T1)⇒ T2)

c :: τ1 . τ2 c1 :: T2 . T1 c2 :: U1 . U2
S-Cons

c[c1]c2 :: ((τ1 → T1)⇒ U1) . ((τ2 → T2)⇒ U2)

T-Const
Γ ` n : Nat

(x : τ) ∈ Γ
T-Var

Γ ` x : τ

Γ, x : τ ` e : T
T-Abs

Γ ` λx.e : τ → T

Γ ` e1 : τ → T Γ ` e2 : τ
T-App

Γ ` e1 e2 : T

Γ, x : τ → T ` e : U
T-KAbs

Γ ` λx.e : (τ → T )⇒ U

Γ ` e : (τ → T )⇒ U Γ ` v : τ → T
T-KApp

Γ ` e v : U

c :: T . U Γ ` e : T
T-CApp

Γ ` c e : U
Γ, f : τ → T, x : τ ` e : T

T-Fix
Γ ` fix f(x).e : τ → T

E[(λx.e) v]→β E[e{v/x}]
E[(fix f(x).e) v]→β E[e{fix f(x).e/f, v/x}]

E[↑c v1 v2]→β E[c (v2 v1)]

E[id v]→ι E[v]

E[(c1 ◦ c2) v]→ι E[c1 (c2 v)]

E[(c1 → c2) v1 v2]→ι E[c2 (v1 (c1 v2))]

E[(c[c1]c2) v1 v2]→ι E[c2 (v1 ((c→ c1) v2))]

Figure 6: The target language—the λ-calculus with explicit coercions of control effects

4.3.1. Target calculus. The syntax and typing rules of the target language are presented
in Figure 6. There are two kinds of arrow type: the usual one τ → T for regular functions
and the effectful one (τ → T ) ⇒ U for expressions in CPS. We make this distinction to
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express the fact that the CPS translation (see Figure 7) yields expressions with strong
restrictions on the occurrence of terms in CPS: they are never passed as arguments (typing
environment consists of only pure types) and they can be applied only to values representing
continuations (witness the rule T-KApp). Furthermore, observe that in general terms in
CPS, i.e., of type (τ → T )⇒ U expect a bunch of (delimited) continuations to produce the
final answer. For example the type (Nat→ Nat)⇒ (Nat→ Nat)⇒ Nat is inhabited by the
term λk1.λk2.k1 (k2 42).

The syntactic category c of coercions and the typing rules defining judgment c :: T1 . T2
are in one-to-one correspondence with the subtyping rules in the source calculus, discussed
in Section 4.2. In particular the rule S-Lift allows us to treat a pure computation of type τ
as an effectful one (i.e., in CPS) of type (τ → T1)⇒ T2, provided the answer type T1 of the
immediate continuation is a subtype of T2, the type describing the remaining continuations.

Again, the operational semantics distinguishes between β-rules and ι-rules. We classified
the last β-rule as “actual computation” because it does not only rearrange coercions. It
translates back a lifted value v1 and applies to it a given continuation v2. This rule and the
last ι-rule reduce a coerced value applied to a continuation, so terms of the form (↑c v) and
(c[c]c v) are considered values. Notice that these values have effectful types. We extend the
notion of ι-reduction to evaluation contexts: E1 →ι E2 holds iff E1[v] →ι E2[v] for every
value v.

As in Section 3, the metavariable C ranges over general closed contexts. We also define
typing of general contexts ` C : (Γ;T )  T0 as before. The definition of contextual
approximation is necessarily slightly weaker, because we allow only contexts with pure
answer type: we have Γ ` e1 -ctx e2 : T if for every ` C : (Γ;T )  τ a termination of
C[e1] implies a termination of C[e2]. Indeed, an expression that requires a continuation to
trigger computation can hardly be considered a complete program.

4.3.2. Translation. The coercion semantics of the source language is given by the type-
directed selective CPS translation presented in Figure 7. The translation is selective because
it leaves terms of pure type in direct style—witness, e.g, the equations for variable or pure
application. Effectful applications are translated according to Plotkin’s call-by-value CPS
translation [31], whereas the translation of shift0 and reset0 is surprisingly straightforward—
shift0 is turned into a lambda-abstraction expecting a delimited continuation, and reset0 is
interpreted by providing its subexpression with the reset delimited continuation, represented
by the identity function. The following example illustrates the main points of the CPS
translation.

Example 4.2. Let us consider the derivation D given in Example 4.1. We have

T Jx 〈y S0k.z (k 42)〉KD = x ((λl. ↑ id y (λf.(λk.z (k 42)) (λu.f u l))) (λv.v))

where

• the applications x 〈y S0k.z (k 42)〉, z (k 42), and k 42 are pure and, hence, stay in direct
style through the translation;
• the application y S0k.z (k 42) is effectful, and therefore translated to CPS, with y coerced

to a continuation-expecting expression.
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JNatKp = Nat

Jτ → T Kp = JτKp → JT K

JτK = JτKp
Jτ [T ]UK = (JτKp → JT K)⇒ JUK

SJT ≤ T KS-Refl = id

SJT1 ≤ T3KS-Trans(D1,D2) = SJT2 ≤ T3KD1 ◦ SJT1 ≤ T2KD2

SJτ1 → T1 ≤ τ2 → T2KS-Arr(D1,D2) = SJτ2 ≤ τ1KD1 → SJT1 ≤ T2KD2

SJτ ≤ τ [T ]UKS-Lift(D) = ↑SJT ≤ UKD
SJτ1[T1]U1 ≤ τ2[T2]U2KS-Cons(D,D1,D2) = SJτ1 ≤ τ2KD[SJT2 ≤ T1KD1 ]SJU1 ≤ U2KD2

T JeKT-Sub(D1,D2) = SJT ≤ UKD2 T JeKD1

T JxKT-Var = x

T Jλx.eKT-Abs(D) = λx.T JeKD
T Je1 e2KT-PApp(D1,D2) = T Je1KD1 T Je2KD2

T Je1 e2KT-App(D1,D2) = λk.T Je1KD1 (λf.T Je2KD2 (λx.f x k))

T Jfix f(x).eKT-Fix(D) = fix f(x).T JeKD
T JnKT-Const = n

T JS0x.eKT-Sft(D) = λx.T JeKD
T J〈e〉KT-Rst(D) = T JeKD (λx.x)

Figure 7: Type-directed selective CPS translation

The following lemma establishes the type soundness of the CPS translation.

Lemma 4.3. Coercion semantics preserves types:

(1) If D :: T1 ≤ T2 then SJT1 ≤ T2KD :: JT1K . JT2K.

(2) If D :: Γ ` e : T then JΓK ` T JeKD : JT K.

The problem of coherence of the CPS translation is demonstrated in the following
example.

Example 4.4. Let us consider the term (fix f(x).f x) 1 in the source language. We derive
the type Nat[T ]T for it in two ways: let D1 be the derivation

...
f : Nat→ Nat[T ]T, x : Nat ` f x : Nat[T ]T

T-Fix
` fix f(x).f x : Nat→ Nat[T ]T

T-Const` 1 : Nat
T-PApp

` (fix f(x).f x) 1 : Nat[T ]T

and D2 be the derivation
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...
` fix f(x).f x : Nat→ Nat[T ]T

...
T-Sub

` fix f(x).f x : (Nat→ Nat[T ]T )[T ]T

T-Const` 1 : Nat
...

T-Sub
` 1 : Nat[T ]T

T-App
` (fix f(x).f x) 1 : Nat[T ]T

Then we have

T J(fix f(x).f x) 1KD1 = (fix f(x).f x) 1

T J(fix f(x).f x) 1KD2 = λk. ↑ id (fix f(x).f x) (λg. ↑ id 1 (λy.g y k))

We observe that the two terms are quite distinct: one is a diverging expression, and the
other is a lambda abstraction. However, the results of the next two sections show that
these two terms are contextually equivalent, and so both typing derivations have equivalent
coercion semantics.

4.4. Logical relations. The logical relations are defined in Figure 8. We use the metavari-
able κ to range over values that are meant to represent continuations. The relation VJτ1; τ2K
for pure values and the relation EJT1;T2K for expressions are similar to the relations defined
in Section 3.3. All information about control effects is captured in the relation KJT1;T2K
for contexts. If T1 and T2 are pure, then we proceed as usual with biorthogonal logical
relations: two contexts are related if they behave the same way for related values, since pure
computations can interact with their context only by returning a value.

For impure types (of the form (τ → T )⇒ U) contexts should be plugged with effectful
expressions which expect a continuation (represented as a function) to trigger computation.
A context is able to provide such a continuation κ if it can be decomposed as an application
of the hole to κ and the rest of the context. In general it does not mean that the context
has necessarily the form E′[� κ], but that it can be ι-reduced to such a form. For instance,
context E[((c[c1]c2)�) κ] does not have an application to κ as the inner-most element, but
still applies plugged value to a continuation (c→ c1) κ after one ι-step. The logical relation
for contexts of impure types (case KJ(τ1 → T1)⇒ U1; (τ2 → T2)⇒ U2K) relates two contexts
iff they can be decomposed (using ι-reduction) as applications to related continuations in
related contexts.

The most interesting are the cases that relate pure and impure contexts. As previously,
the impure context should be decomposed to a continuation κ and the rest of the context.
Then the pure context should be decomposed in such a way that the continuation κ is
related with some portion E of the pure context. The answer type of E cannot be retrieved
from the type of the initial pure context, so we quantify over all possible types. Unlike
the logical relations for parametricity [2, 1] we quantify over syntactic types. In order
to make the construction well-founded, the relations are defined by nested induction on
step indices and on the structure of the second type. Notice that step indices play a role
only in one case—when we quantify over the second type and the later operator guards
the non-structural use of the relations VKJτ1 → T1; τ2  T K and KJU1;T K. The auxiliary
relations KVJτ1  T1; τ2 → T2K and VKJτ1 → T1; τ2  T2K relate a portion of an evaluation
context with a value of an arrow type and they are defined analogously to the value relation
for functions.
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(v1, v2) ∈ VJNat; NatK ⇐⇒ ∃n, v1 = v2 = n

(v1, v2) ∈ VJτ1 → T1; τ2 → T2K ⇐⇒ ∀(a1, a2) ∈ VJτ1; τ2K.(v1 a1, v2 a2) ∈ EJT1;T2K
(v1, v2) ∈ VJτ1; τ2K ⇐⇒ ⊥ otherwise

(e1, e2) ∈ EJT1;T2K ⇐⇒ ∀(E1, E2) ∈ KJT1;T2K.E1[e1] - E2[e2]

(E1, E2) ∈ KJτ1; τ2K ⇐⇒ ∀(v1, v2) ∈ VJτ1; τ2K.E1[v1] - E2[v2]

(E1, E2) ∈ KJτ1; (τ2 → T2)⇒ U2K ⇐⇒ ∃T, (E, κ) ∈ KVJτ1  T ; τ2 → T2K,
(E′1, E

′
2) ∈ KJT ;U2K.

E1 →∗ι E′1[E] ∧ E2 →∗ι E′2[� κ]

(E1, E2) ∈ KJ(τ1 → T1)⇒ U1; τ2K ⇐⇒ ∃T, (κ,E) ∈ BVKJτ1 → T1; τ2  T K,
(E′1, E

′
2) ∈ BKJU1;T K.

E1 →∗ι E′1[� κ] ∧ E2 →∗ι E′2[E]

(E1, E2) ∈ KJ(τ1 → T1)⇒ U1;
(τ2 → T2)⇒ U2K ⇐⇒ ∃(κ1, κ2) ∈ VJτ1 → T1; τ2 → T2K,

(E′1, E
′
2) ∈ KJU1;U2K.

E1 →∗ι E′1[� κ1] ∧ E2 →∗ι E′2[� κ2]

(E, κ) ∈ KVJτ1  T1; τ2 → T2K ⇐⇒ ∀(a1, a2) ∈ VJτ1; τ2K.(E[a1], κ a2) ∈ EJT1;T2K

(κ,E) ∈ VKJτ1 → T1; τ2  T2K ⇐⇒ ∀(a1, a2) ∈ VJτ1; τ2K.(κ a1, E[a2]) ∈ EJT1;T2K

(γ1, γ2) ∈ GJΓ1; Γ2K ⇐⇒ ∀x.(γ1(x), γ2(x)) ∈ VJΓ1(x); Γ2(x)K

Γ1; Γ2 ` e1 -log e2 : T1;T2 ⇐⇒ ∀(γ1, γ2) ∈ GJΓ1; Γ2K.(e1γ1, e2γ2) ∈ EJT1;T2K

Figure 8: Logical relations for the λ-calculus with explicit coercions of control effects

The relations of this section possess properties analogous to the ones of Section 3.3,
in particular the relation - is preserved by reduction (Lemma 3.4) and the compatibility
lemmas (including Lemma 3.6) hold. However, the proof of the compatibility lemmas requires
the following results that establish the preservation of relations with respect to ι-reductions
of evaluation contexts.

Lemma 4.5. The following assertions hold:

(1) If E →∗ι E′ and E′[e1] - e2 then E[e1] - e2.

(2) If E →∗ι E′ and e1 - E′[e2] then e1 - E[e2].

(3) If E1 →∗ι E′1 and (E′1, E2) ∈ KJT1;T2K then (E1, E2) ∈ KJT1;T2K.

(4) If E2 →∗ι E′2 and (E1, E
′
2) ∈ KJT1;T2K then (E1, E2) ∈ KJT1;T2K.

The rest of the soundness proof follows the same lines as in Section 3.3. Interestingly,
the adequacy lemma can be proved only for pure types, which is in harmony with the notion
of contextual equivalence in the target calculus.
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Theorem 4.6 (Fundamental property). If Γ ` e : T then Γ; Γ ` e -log e : T ;T .

Lemma 4.7 (Precongruence). If ` C : (Γ;T )  τ and Γ; Γ ` e1 -log e2 : T ;T , then
(C[e1], C[e2]) ∈ EJτ ; τK.

Lemma 4.8 (Adequacy). If (e1, e2) ∈ EJτ ; τK then e1 - e2.

Theorem 4.9 (Soundness). If k |= Γ; Γ ` e1 -log e2 : T ;T holds for every k, then
Γ ` e1 -ctx e2 : T .

4.5. Coherence of the CPS translation. Although standard compatibility lemmas and
coercion compatibility suffice to prove soundness of logical relations, we need another kind
of compatibility to prove coherence, since there is another source of ambiguity. Two typing
derivations in the source language can be different not only because of the subsumption rule,
but also because of two rules for application.

Lemma 4.10 (Mixed application compatibility). The following assertions hold:

(1) If Γ1; Γ2 ` f1 -log f2 : ((τ ′1 → (τ1 → U4)⇒ U3)→ U2)⇒ U1; τ
′
2 → T2

and Γ1; Γ2 ` e1 -log e2 : (τ ′1 → U3)⇒ U2; τ
′
2

then Γ1; Γ2 ` λk.f1 (λf.e1 (λx.f x k)) -log f2 e2 : (τ ′1 → U4)⇒ U1;T .

(2) If Γ1; Γ2 ` f1 -log f2 : τ ′1 → T1; ((τ ′2 → (τ2 → U4)⇒ U3)→ U2)⇒ U1

and Γ1; Γ2 ` e1 -log e2 : τ ′1; (τ ′2 → U3)⇒ U2

then Γ1; Γ2 ` f1 e1 -log λk.f2 (λf.e2 (λx.f x k)) : T ; (τ ′2 → U4)⇒ U1.

Proof. Both cases are similar, so we show only the first one. We have to show that both
terms closed by substitutions have the same observations in related contexts (E1, E2) ∈
KJ(τ ′1 → U4)⇒ U1;T K. Since context E1 is in relation for effectful type, by the definition
of logical relations and Lemma 4.5, it can be decomposed as a continuation κ and the rest
of the context. Now we have the missing continuation κ that can trigger computation in
the first term, so the rest of the proof consists in simple context manipulations, applying
definitions and performing reductions.

Lemma 4.11. If Di :: Γi ` e : Ti for i = 1, 2 are two typing judgments for the same term
e of the source language, then JΓ1K; JΓ2K ` T JeKD1 -log T JeKD2 : JT1K; JT2K.

Theorem 4.12 (Coherence). If D1 and D2 are derivations of the same typing judgment
Γ ` e : T , then JΓK ` T JeKD1 -ctx T JeKD2 : JT K.

4.6. Coercions as λ-terms. In contrast to the calculus considered in Section 3.4, such a
coherence theorem does not imply coherence of the translation directly to the simply typed
λ-calculus (where coercions are expressed as λ-terms). As a counterexample, consider the
expression (fix f(x).f x) 1 and the two derivations D1 and D2 presented in Example 4.4.
Recall that

T J(fix f(x).f x) 1KD1 = (fix f(x).f x) 1

T J(fix f(x).f x) 1KD2 = λk. ↑ id (fix f(x).f x) (λg. ↑ id 1 (λy.g y k))

The former term is a diverging computation, but the latter is a lambda abstraction waiting
for an argument (continuation). After translation to simply typed λ-calculus, these terms
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can be distinguished even by the context C = (λx.1) � with answer type Nat. But by
Theorem 4.12 these terms are equivalent. This is because types in the target language
carry more information than simple types, and in particular, an expression of a type
(τ → T ) ⇒ U is not a usual function, but a computation waiting for a continuation, as
explained in Section 4.3. Computations cannot be passed as arguments, so the context C is
not well-typed in the target calculus.

But still we can prove some interesting properties of a direct translation to the simply
typed λ-calculus in two cases: when control effects do not leak to the context or when we
relate only whole programs. Let |e| be a term e with all coercions replaced by corresponding
expressions.

Corollary 4.13. If D1, D2 :: Γ ` e : τ and τ does not contain any type of the form τ ′[T ]U ,
then |T JeKD1 | and |T JeKD2 | are contextually equivalent.

Corollary 4.14. If D1, D2 :: Γ ` e : τ then |T JeKD1 | terminates iff |T JeKD2 | terminates.
Moreover, if τ = Nat and one of the expressions terminates to a constant, then the other
term evaluates to the same constant.

5. Coq formalization

5.1. The library IxFree. Our Coq formalization accompanying this article is built on our
IxFree library that contains a shallow embedding of the LSLR logic similar to Appel et
al.’s formalization of the “very modal model” [4] and Krebbers et al.’s Iris proof mode [22].
Instead of using type Prop to represent propositions, we use a special type of “indexed
propositions” defined as a type of monotone functions from nat to Prop.

Definition monotone (P : nat → Prop) := ∀ n, P (S n) → P n.
Definition IProp := { P : nat → Prop | monotone P }.

Definition I_valid_at (n : nat) (P : IProp) := proj1_sig P n.
Notation "n |= P" := (I_valid_at n P).

One of the main differences between our library and Iris proof mode is a way of keeping
track of the assumptions. Instead of interpreting a sequent ϕ1, . . . , ϕn ` ψ directly, we treat
it as k |= ψ with the standard Coq assumptions k |= ϕ1, . . . , k |= ϕn. This approach is very
convenient since it allows for reusing a number of existing Coq tactics, but it does not scale
to e.g. linear logic like Iris.

Logical connectives including the later operator are functions on type IProp with
defined human readable notation. The library provides lemmas and tactics representing
the most important inference rules. Tactics not only apply the corresponding lemmas, but
also hide the step index arithmetic from the user. For instance, when proving the sequent
Q ` P ⇒ Q represented by the following Coq goal
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P : IProp
Q : IProp
k : nat
H1 : k |= Q
============================
k |= P ⇒ Q

the introduction of implication tactic iintro H2 behaves exactly like introduction of
implication rule, producing the goal

P : IProp
Q : IProp
k : nat
H1 : k |= Q
H2 : k |= P
============================
k |= Q

even if the lemma corresponding to that rule requires quantification over all smaller indices:

Lemma I_arrow_intro {n : nat} {P Q : IProp} :
(∀ k, k ≤ n, (k |= P) → (k |= Q)) → (n |= P ⇒ Q).

5.2. Recursive predicates. The LSLR logic allows for recursive predicates and relations,
provided all recursive occurrences are guarded by the later operator. Such a syntactic
requirement is not compatible with structural recursion in Coq, so we rely on the notion
of contractiveness[4]. Informally, a function is contractive if it maps approximately equal
arguments to more equal results. This intuition can be expressed using the later modality:

Definition contractive (l : list Type) (f : IRel l → IRel l)
: Prop := ∀ R1 R2, |= B(R1 ≈i R2) ⇒ f R1 ≈i f R2.

where IRel l is a type of indexed relations on types described by l, and ≈i is an indexed
version of relation equivalence. The library provides a general method of constructing
recursive relations as a fixed point of a contractive function:

Definition I_fix (l : list Type) (f : IRel l → IRel l) :
contractive l f → IRel l.

If all occurrences of the function argument are guarded by the later operator, then the
function can be proven to be contractive, and the proof can be (mostly) automatized by the
auto_contr tactic.

6. Conclusion

We have shown that the technique of logical relations can be used for establishing the
coherence of subtyping, when it is phrased in terms of contextual equivalence in the target
of the coercion translation. In particular, we have demonstrated that a combination
of heterogeneity, biorthogonality and step-indexing provides a sufficiently powerful tool
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for establishing coherence of effect subtyping in a calculus of delimited control with the
coercion semantics given by a type-directed selective CPS translation. Moreover, we have
successfully applied the presented approach also to other calculi with subtyping, e.g., as
demonstrated in this article for the simply-typed λ-calculus with recursion. The Coq
development accompanying this paper is based on a new embedding of Dreyer et al.’s
logic for reasoning about step-indexing [18] that, we believe, considerably improves the
presentation and formalization of the logical relations.

Regarding logical relations for type-and-effect systems, there has been work on proving
correctness of a partial evaluator for shift and reset by Asai [5], and on termination of
evaluation of the λ-calculi with delimited-control operators by Biernacka et al. [8, 10] and by
Materzok and the first author [25]. Unsurprisingly, all these results, like ours, are built on
the notion of biorthogonality, even if not mentioned explicitly. The distinctive feature of our
construction is a combination of heterogeneity and step-indexing that supports reasoning
about the observational equivalence of terms of different types whose structure is very distant
from each other, e.g., about direct-style and continuation-passing-style terms.

Logical relations presented in Section 4 require step-indexing in order to ensure well-
formedness of the definition in the presence of quantification over types. A similar problem
occurs in polymorphic λ-calculi and is usually resolved using quantification over relations
that describe semantic types. Adapting this approach to our calculus is not straightforward,
because we need quantification over a single type, whereas the semantic types are defined
for pairs of types. An interesting question is if the step-indexing in the relations of Section 4
can be avoided by using quantification over relations.

The type systems considered in this work are monomorphic. It remains to be investigated
how the ideas presented in this article would carry over to system F≤ and its extensions.
In particular, we find it worthwhile to develop a polymorphic type-and-effect system for
shift0, perhaps by marrying the type system of Section 4 with Asai and Kameyama’s
polymorphic type system for delimited continuations [6], along with a type-directed selective
CPS translation to system F with explicit coercions. Establishing the coherence of the
translation would again be a crucial step in such a development.
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