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Abstract. Completion is one of the most studied techniques in term rewriting and funda-
mental to automated reasoning with equalities. In this paper we present new correctness
proofs of abstract completion, both for finite and infinite runs. For the special case of ground
completion we present a new proof based on random descent. We moreover extend the
results to ordered completion, an important extension of completion that aims to produce
ground-complete presentations of the initial equations. We present new proofs concerning
the completeness of ordered completion for two settings. Moreover, we revisit and extend
results of Métivier concerning canonicity of rewrite systems. All proofs presented in the
paper have been formalized in Isabelle/HOL.

1. Introduction

Reasoning with equalities is pervasive in computer science and mathematics, and has
consequently been one of the main research areas of automated deduction. Indeed completion
as introduced by Knuth and Bendix [KB70] has evolved into a fundamental technique whose
ideas appear throughout automated reasoning whenever equalities are present. Many variants
of the original calculus have since been proposed.

Bachmair, Dershowitz, and Hsiang [BDH86] recast completion procedures as infer-
ence systems. This style of presentation, abstract completion, has become the standard to
describe completion procedures and proof orders the accompanying tool to establish correct-
ness [BDH86,BDP89,Bac91], that is, that under certain conditions, exhaustive application
of the inference rules results in a terminating and confluent rewrite system whose equational
theory is equivalent to the initial set of equations.

In this paper we present new, modular correctness proofs, not relying on proof orders,
for five abstract completion systems presented in the literature. Here, we use modular in the
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following sense: Proof orders have to be powerful (and thus complex) enough to cover all
intermediate results (that is, proof orders are a global method), while for our new proofs, we
locally apply well-founded induction with an order that is just strong enough for the current
intermediate result. All proofs are fully formalized in Isabelle/HOL. First, we consider
finite (KBf) and infinite (KBi) runs of classical Knuth-Bendix completion [KB70]. These
two settings demand different proofs since in the latter case the inference system exhibits a
stronger side condition. While our correctness proof for KBf relies on a new notion we dub
peak decreasingness, for the case of KBi we employ a simpler version of this criterion called
source decreasingness. To enhance applicability by covering efficient implementations, our
proofs support the critical pair criterion known as primality [KMN88].

The relevance of infinite runs is illustrated by the following example.

Example 1.1. Consider the set of equations E = {aba ≈ bab} of the three-strand positive
braid monoid. Kapur and Narendran [KN85] proved that E admits no finite complete
presentation. However, taking the Knuth-Bendix order [KB70] with a and b of weight 1 and
a > b in the precedence, completion produces in the limit the following infinite complete
presentation of E

{aba→ bab} ∪ {abnab→ babban−1 | n > 2}

which can be used to decide the validity problem for E .1

Completion procedures, when successful, produce a complete system. Natural questions
include whether such systems are unique and whether all complete systems for a given set
of equations can be obtained by completion. For canonical systems, which are complete
systems that satisfy an additional normalization requirement, Métivier [Mét83] obtained
interesting results. In this paper we revisit and extend his work.

A special case of KBf that is known to be decidable is the completion of ground
systems [Sny93]. We present new correctness and completeness proofs for the corresponding
inference system KBg, based on the recent notion of random descent [vOT16].

On a given set of input equalities, Knuth-Bendix completion can behave in three different
ways: it may (1) succeed to compute a complete system in finitely many steps, (2) fail
due to unorientable equalities, or (3) continuously compute approximations of a complete
system without ever terminating. As a remedy to problem (2), ordered completion was
developed by Bachmair, Dershowitz, and Plaisted [BDP89]. Ordered completion never fails
and can produce a ground-complete system in the limit. Although the price to be paid
is that the resulting system is in general only complete on ground terms, this is actually
sufficient for many applications in theorem proving. Refutational theorem proving [BDP89]
owes its semi-decidability to the unfailing nature of ordered completion. Again employing
peak decreasingness, we obtain a new correctness proof of ordered completion (KBo). Next,
we turn to completeness results for ordered completion, that is, to sufficient criteria for
an ordered completion procedure to produce a complete system. We first reprove the case
of a total reduction order, which assumes a slightly stronger notion of simplifiedness than
the original result [BDP89] though. Then we consider the completeness result for linear
completion (KBl) due to Devie [Dev91].

For easy reference, Table 1 provides pointers to the main definitions and results we
present in this paper.

1Burckel [Bur01] constructed a complete rewrite system consisting of four rules with an additional symbol,
which is no longer a complete presentation of E but can be also used to decide the validity problem for E .
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Table 1: Roadmap.

KBf KBg KBi KBo KBl

inference system 3.1 5.1 6.2 7.2 8.13

fairness 3.5 – 6.3 7.14 8.16

correctness 3.8 5.5 6.12 7.17 8.17
7.16

completeness – 5.12 – 8.10 8.23

The remainder of this paper is organized as follows. We present required preliminaries in
Section 2, followed by the abstract confluence criteria of peak and source decreasingness, as
well as a fairly detailed analysis of critical pairs. In Section 3 we recall the inference rules for
(abstract) Knuth-Bendix completion and present our formalized correctness proof for finite
runs. In Section 4 we present our results on canonical systems and normalization equivalence.
We discuss ground completion in Section 5. Infinite runs are the subject of Section 6 and in
Section 7 we extend our correctness results to ordered completion. Completeness of ordered
completion is the topic of Section 8. We conclude in Section 9 with a few suggestions for
future research.

Our formalizations are part of the Isabelle Formalization of Rewriting IsaFoR [TS09]2

version 2.37. Below we list the relevant Isabelle theory files grouped by their subdirectories
inside IsaFoR:

thys/Abstract_Completion/

Abstract_Completion.thy

Completion_Fairness.thy

CP.thy

Ground_Completion.thy

Peak_Decreasingness.thy

Prime_Critical_Pairs.thy

thys/Confluence_and_Completion/

Ordered_Completion.thy

thys/Normalization_Equivalence/

Encompassment.thy

Normalization_Equivalence.thy

In the remainder we provide hyperlinks (marked by �) to an HTML rendering of our
formalization. Moreover, whenever we say that a proof is “formalized,” what we mean is
that it is“formalized in Isabelle/HOL.” And when we “present a formalized proof,” we give
a textual representation of a formalized proof.

This paper and the accompanying formalization are substantially extended and revised
versions of some of our previous work we published in the ITP [HMS14] and FSCD [HMSW17]
conferences. The former presented a new correctness proof for finite runs of Knuth-Bendix
completion. Its modular design separates concerns rather than relying on a single proof order,
thus rendering it more formalization friendly. In revised form, these results are included
in Section 3. The FSCD contribution extended this novel proof approach to both infinite
runs and ordered completion (see Sections 6 and 7). It moreover incorporated canonicity
results (Section 4). In addition to these results we present new and formalized proofs of
correctness and completeness of ground completion (Section 5), as well as completeness of
ordered completion for two different cases (Section 8). At the end of each section, we remark
on the novelty of the respective results and their proofs.

2http://cl-informatik.uibk.ac.at/isafor

http://cl-informatik.uibk.ac.at/isafor
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2. Preliminaries

We assume familiarity with the basic notions of abstract rewrite systems, term rewrite
systems, and completion [Bac91,BN98], but nevertheless shortly recapitulate terminology
and notation that we use in the remainder.

2.1. Rewrite Systems. For an arbitrary binary relation →α, we write α←, ←→
α

, →=
α , →+

α ,
and→∗α to denote its inverse, its symmetric closure, its reflexive closure, its transitive closure,
and its reflexive transitive closure, respectively. The reflexive, transitive, and symmetric
closure

∗←→
α

of →α is called conversion, and a sequence of the form c0 ←→α c1 ←→α · · · ←→α cn
is referred to as a conversion between c0 and cn (of length n). For a binary relation R
without arrow notation, we also write R−1 for its inverse and R± for its symmetric closure
R ∪ R−1. We further use ↓α as abbreviation for the joinability relation →∗α · ∗α←, where
from here on · denotes relation composition. If a →α b for no b then we say that a is
a (→α-)normal form. The set of all normal forms of a given relation →α is denoted by
NF(→α). By a→!

α b we abbreviate a→∗α b ∧ b ∈ NF(→α) and we call b a normal form of
a. Given two binary relations →α and →β, we use →α /→β as shorthand for the relative
rewrite relation →∗β · →α · →∗β . An abstract rewrite system (ARS for short) A is a set A, the
carrier, equipped with a binary relation →. Sometimes we partition the binary relation into
parts according to a set I of indices (or labels). Then we write A = 〈A, {→α}α∈I〉 where we
denote the part of the relation with label α by →α, that is, → =

⋃
{→α | α ∈ I}.

We assume a given signature F and a set of variables V . The set of terms built up from
F and V is denoted by T (F ,V), while T (F) denotes the set of ground terms. Positions are
strings of positive integers which are used to address subterms. The set of positions in a term
t is denoted by Pos(t). The subset consisting of the positions addressing function symbols in
t is denoted by PosF (t) whereas PosV(t) = Pos(t)− PosF (t) is the set of variable positions
in t. We write p 6 q if p is a prefix of q and p ‖ q if neither p 6 q nor q 6 p. If p 6 q then the
unique position r such that pr = q is denoted by q\p. A substitution is a mapping σ from
variables to terms such that its domain {x ∈ V | σ(x) 6= x} is finite. Applying a substitution
σ to a term t is written tσ. A variable substitution is a substitution from V to V and a
renaming is a bijective variable substitution. A term s is a variant of a term t if s = tσ for
some renaming σ. A pair of terms (s, t) is sometimes considered an equation, then we write
s ≈ t, and sometimes a (rewrite) rule, then we write s → t. In the latter case we assume
the variable condition, that is, that the left-hand side s is not a variable and that variables
of the right-hand side t are all contained in t. A set E of equations is called an equational
system (ES for short) and a set R of rules a term rewrite system (TRS for short). Sets of
pairs of terms E induce a rewrite relation →E by closing their components under contexts
and substitutions. A rewrite step s→E t at a position p ∈ Pos(s) is called innermost and
denoted by s

i−→E t if no proper subterm of s|p is reducible in E . The equational theory
induced by E consists of all pairs of terms s and t such that s←→∗E t. If `→ r is a rewrite
rule and σ is a renaming then the rewrite rule `σ → rσ is a variant of `→ r. A TRS is said
to be variant-free if it does not contain rewrite rules that are variants of each other.

Two terms s and t are called literally similar, written s
.
= t, if sσ = t and s = tτ for

some substitutions σ and τ . Two TRSs R1 and R2 are called literally similar, denoted by
R1

.
= R2, if every rewrite rule in R1 has a variant in R2 and vice versa. The following result

is folklore; we formalized the non-trivial proof.

Lemma 2.1. Two terms s and t are variants of each other if and only if s
.
= t. �

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Term_More.html#lem:variants_imp_renaming
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We say that s encompasses t, written s ·� t, whenever s = C[tσ] for some context
C and substitution σ. Proper encompassment is defined by �· = ·� \ ·�and known to be
well-founded. The identity ·� = �· ∪ .

= is well-known. For a well-founded order >, we write
>mul to denote its multiset extension and >lex to denote its lexicographic extension as defined
by Baader and Nipkow [BN98].

A TRS R is terminating if →R is well-founded, and weakly normalizing if every term
has a normal form. It is (ground-)confluent if s ∗R← · →∗R t implies s →∗R · ∗R← t for all
(ground) terms s and t. It is (ground-)complete if it is terminating and (ground) confluent.
We say that R is a complete presentation of an ES E if R is complete and ←→∗R = ←→∗E .
A TRS R is left-reduced if ` ∈ NF(R \ {` → r}) for every rewrite rule ` → r in R, and
right-reduced if r ∈ NF(R) for every rewrite rule ` → r in R. A reduced TRS is left- and
right-reduced. A reduced complete TRS is called canonical.

We make use of the following result due to Bachmair and Dershowitz [BD86], where
quasi-commutation of R over S means that the inclusion S ·R ⊆ R · (R ∪ S)∗ holds.

Lemma 2.2. Let R and S be binary relations.

(1) If R quasi-commutes over S then well-foundedness of R / S and R coincide. �
(2) If R / S and S are well-founded then R ∪ S is well-founded. �

Lemma 2.3. If R is a well-founded rewrite relation then (R ∪�· ) / ·� is well-founded. �

Proof. First we show the inclusion ·� · R ⊆ R · ·�. Suppose s ·� t R u. So s = C[tσ] for
some context C and substitution σ. Because R is closed under contexts and substitutions,
s R C[uσ]. Moreover, C[uσ] ·� u. This establishes the inclusion, and we conclude that R
(quasi-)commutes over ·�. Because R is well-founded, it follows from Lemma 2.2(1) that the
relation R / ·� is well-founded too. Then R / �· is well-founded since it is contained in R / ·�.
As �· is well-founded, it follows from Lemma 2.2(2) that R ∪ �· is well-founded. We have
·� ·�· ⊆ �· and thus R ∪�· quasi-commutes over ·�. Another application of Lemma 2.2(1)
yields the well-foundedness of (R ∪�· ) / ·�.

2.2. Abstract Confluence Criteria. We use the following simple confluence criterion for
ARSs to replace Newman’s Lemma in the correctness proof of abstract completion. In the
sequel, we will refer to a conversion of the form A← · →A as a peak.

Definition 2.4 (Peak Decreasingness �). An ARS A = 〈A, {→α}α∈I〉 is peak decreasing if
there exists a well-founded order > on I such that for all α, β ∈ I the inclusion

α← · →β ⊆
∗←−−→
∨αβ

holds. Here ∨αβ denotes the set {γ ∈ I | α > γ or β > γ} and if J ⊆ I then
∗←→
J

denotes a
conversion consisting of →J =

⋃
{→γ | γ ∈ J} steps.

Peak decreasingness is a special case of decreasing diagrams [vO94], which is known as
a very powerful confluence criterion. For the sake of completeness, we present an easy direct
(and formalized) proof of the sufficiency of peak decreasingness for confluence. We denote
by M(J) the set of all multisets over a set J .

Lemma 2.5. Every peak decreasing ARS is confluent. �

https://www.isa-afp.org/browser_info/Isabelle2019/AFP/Abstract-Rewriting/Abstract_Rewriting.html#qc_SN_relto_iff
https://www.isa-afp.org/browser_info/Isabelle2019/AFP/Abstract-Rewriting/Relative_Rewriting.html#SN_relto_split
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:SN_encomp_Un_less_relto_encompeq
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#asm:peak_decreasing
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#lem:CR
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Proof. Let > be a well-founded order on I which shows that the ARS A = 〈A, {→α}α∈I〉 is
peak decreasing. With every conversion C in A we associate the multiset MC consisting of
the labels of its steps. These multisets are compared by the multiset extension >mul of >,
which is a well-founded order onM(I). We prove←→∗ ⊆ ↓ by well-founded induction on >mul.
Consider a conversion C between a and b. We either have a ↓ b or a ←→∗ · ← · → · ←→∗ b.
In the former case we are done. In the latter case there exist labels α, β ∈ I and multisets
Γ1,Γ2 ∈M(A) such that MC = Γ1 ] {α, β} ] Γ2. By the peak decreasingness assumption
there exists a conversion C ′ between a and b such that MC′ = Γ1]Γ]Γ2 with Γ ∈M(∨αβ).
We obviously have {α, β} >mul Γ and hence MC >mul MC′ . Finally, we obtain a ↓ b from
the induction hypothesis.

A similar criterion to show the Church-Rosser modulo property will be used in Section 8.
Here an ARS A is called Church-Rosser modulo an ARS B if the inclusion

∗←−−→
A∪B

⊆ ∗−→
A
· ∗←→
B
· ∗←−
A

holds.

Definition 2.6 (Peak Decreasingness Modulo �). Consider two ARSs A = 〈A, {→α}α∈I〉
and B = 〈B, {→β}β∈J〉. Then A is peak decreasing modulo B if there exists a well-founded

order > on I ∪ J such that for all α ∈ I and γ ∈ I ∪ J the inclusion

α← · →γ ⊆
∗←−−→
∨αγ

holds. Here ∨αγ denotes the set {δ ∈ I ∪ J | α > δ or γ > δ}.

Lemma 2.7. If A is peak decreasing modulo B then A is Church-Rosser modulo B. �

Proof. Let x1 ←→α1 · · · ←→αn xn+1 and M = {α1, . . . , αn}. We use induction on M with
respect to >mul to show x1 →∗A · ←→∗B · ∗A← xn+1. If the given conversion is not of the desired
shape, there is an index 1 6 i < n such that xi α← xi+1 →γ xi+2 or xi γ← xi+1 →α xi+2

for some α ∈ I and γ ∈ I ∪ J . As the reasoning is similar, we only consider the former
case. By peak decreasingness there are labels β1, . . . , βm with xi ←→β1 · · · ←→βm xi+2 such
that βj ∈ ∨αγ for all 1 6 j 6 m. Writing N for the multiset {β1, . . . , βm}, we obtain
M >mul (M − {α, γ}) ]N from α, γ ∈M and {α, γ} >mul N . Therefore, the claim follows
from the induction hypothesis.

For the correctness proof in Section 6 we use a simpler notion than peak decreasingness.

Definition 2.8 (Source Decreasingness �). Let A = 〈A,→〉 be an ARS equipped with a

well-founded relation > on A, and we write b
a−→ c if b → c and a = b. We say that A is

source decreasing if the inclusion

← a→ ⊆ ∨a←−→∗

holds for all a ∈ A. Here ← a → denotes the binary relation consisting of all pairs (b, c)
such that a→ b and a→ c. Moreover,

∨a←−→∗ denotes the binary relation consisting of all
pairs of elements that are connected by a conversion in which all steps are labeled with an
element smaller than a.

Source decreasingness is the specialization of peak decreasingness to source labeling [vO08,
Example 6]. It is closely related to the connectedness-below criterion of Winkler and
Buchberger [WB86]. Unlike the latter, source decreasingness does not entail termination.
For instance, for a > b and a > c the non-terminating ARS

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#asm:peak_decreasing_mod
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#lem:CRm
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#asm:source_decreasing
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b a c

is source decreasing but the connectedness-below criterion does not apply.

Lemma 2.9. Every source decreasing ARS is peak decreasing. �

Peak decreasingness as a special case of decreasing diagrams was first considered in our
ITP publication [HMS14] (the modulo version in Definition 2.6 is new). Source decreasingness
originates from our later FSCD contribution [HMSW17].

2.3. Critical Peaks. Completion is based on critical pair analysis. In this subsection we
present a version of the critical pair lemma that incorporates primality (cf. Definition 2.13
below).

Definition 2.10 (Overlaps �). An overlap of a TRS R is a triple 〈`1 → r1, p, `2 → r2〉,
consisting of two rewrite rules and a position, satisfying the following properties:

• there are renamings π1 and π2 such that π1(`1 → r1), π2(`2 → r2) ∈ R (that is, the rules
are variants of rules in R),

• Var(`1 → r1) ∩ Var(`2 → r2) = ∅ (that is, the rules have no common variables),

• p ∈ PosF (`2),

• `1 and `2|p are unifiable,

• if p = ε then `1 → r1 and `2 → r2 are not variants of each other.

In general this definition may lead to an infinite set of overlaps, since there are infinitely
many possibilities of taking variable disjoint variants of rules. Fortunately it can be shown
that overlaps that originate from the same two rules are variants of each other. Overlaps
give rise to critical peaks and pairs.

Definition 2.11 (Critical Peaks � and Pairs �). Suppose 〈`1 → r1, p, `2 → r2〉 is an
overlap of a TRS R. Let σ be a most general unifier of `1 and `2|p. The term `2σ[`1σ]p = `2σ
can be reduced in two different ways:

`2σ[`1σ]p = `2σ

`2σ[r1σ]p r2σ

`1 → r1
p

`2 → r2
ε

We call the quadruple (`2σ[r1σ]p, p, `2σ, r2σ) a critical peak and the equation `2σ[r1σ]p ≈ r2σ
a critical pair of R, obtained from the overlap. The set of all critical pairs of R is denoted
by CP(R).

In our formalization of the above definition, instead of an arbitrary most general unifier,
we use the most general unifier computed by the formalized unification algorithm that is
part of IsaFoR (thereby removing one degree of freedom and making it easier to show that
only finitely many critical pairs have to be considered for finite TRSs).

A critical peak (t, p, s, u) is usually denoted by t
p←− s ε−→ u. It can be shown that different

critical peaks and pairs obtained from two variants of the same overlap are variants of each
other. Since rewriting is equivariant under permutations, it is enough to consult finitely
many critical pairs or peaks for finite TRSs (one for each pair of rules and each appropriate
position) in order to conclude rewriting related properties (like joinability or fairness, see
below) for all of them.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#sub:ars_source_decreasing
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#def:overlap
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#def:cpeaks2
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#def:CP2
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We present a variation of the well-known critical pair lemma for critical peaks and its
formalized proof. The slightly cumbersome statement is essential to avoid gaps in the proof
of Lemma 2.15 below.

Lemma 2.12. Let R be a TRS. If t R
p1←− s p2−→R u then one of the following holds: �

(1) t ↓R u,

(2) p2 6 p1 and t|p2
p1\p2←−−− s|p2

ε−→ u|p2 is an instance of a critical peak, or

(3) p1 6 p2 and u|p1
p2\p1←−−− s|p1

ε−→ t|p1 is an instance of a critical peak.

Proof. Consider an arbitrary peak t p1,`′1→r′1,σ′1← s→p2,`2→r2,σ2 u. If p1 ‖ p2 then

t→p2,`2→r2,σ2 t[r2σ2]p2 = u[r′1σ
′
1]p1 p1,`′1→r′1,σ′1← u

If the positions of the contracted redexes are not parallel then one of them is above the
other. Without loss of generality we assume that p1 > p2. Let p = p1\p2. Moreover, let
π be a permutation such that `1 → r1 = π(`′1 → r′1) and `2 → r2 have no variables in
common. Such a permutation exists since we only have to avoid the finitely many variables
of `2 → r2 and assume an infinite set of variables. Furthermore, let σ1 = π−1 · σ′1. We
have t = s[r1σ1]p1 = s[`2σ2[r1σ1]p]p2

and u = s[r2σ2]p2 . We consider two cases depending on

whether p ∈ PosF(`2) in conjunction with the fact that whenever p = ε then `1 → r1 and
`2 → r2 are not variants, is true or not.

• Suppose p ∈ PosF (`2) and p = ε implies that `1 → r1 and `2 → r2 are not variants. Let
σ′(x) = σ1(x) for x ∈ Var(`1 → r1) and σ′(x) = σ2(x), otherwise. The substitution σ′ is a
unifier of `2|p and `1: (`2|p)σ′ = (`2σ2)|p = `1σ1 = `1σ

′. Then 〈`1 → r1, p, `2 → r2〉 is an

overlap. Let σ be a most general unifier of `2|p and `1. Hence `2σ[r1σ]p
p←− `2σ

ε−→ r2σ is a

critical peak and there exists a substitution τ such that σ′ = στ . Therefore

`2σ2[r1σ1]p = (`2σ[r1σ]p)τ
p←− (`2σ)τ

ε−→ (r2σ)τ = r2σ2

and thus (2) is obtained.
• Otherwise, either p = ε and `1 → r1, `2 → r2 are variants, or p /∈ PosF (`2). In the former

case it is easy to show that r1σ1 = r2σ2 and hence t = u. In the latter case, there exist
positions q1, q2 such that p = q1q2 and q1 ∈ PosV(`2). Let `2|q1 be the variable x. We
have σ2(x)|q2 = `1σ1. Define the substitution σ′2 as follows:

σ′2(y) =

{
σ2(y)[r1σ1]q2 if y = x

σ2(y) if y 6= x

Clearly σ2(x)→R σ′2(x), and thus r2σ2 →∗ r2σ′2. We also have

`2σ2[r1σ1]p = `2σ2[σ
′
2(x)]q1 →

∗ `2σ
′
2 → r2σ

′
2

Consequently, t→∗ s[r2σ′2]p2
∗← u. Hence, (1) is concluded.

An easy consequence of the above lemma is that for every peak t R← s →R u we have
t ↓R u or t←→CP(R) u. It might be interesting to note that in our formalization of the above
proof we do actually not need the fact that left-hand sides of rules are not variables.

Definition 2.13 (Prime Critical Peaks and Pairs �). A critical peak t
p←− s ε−→ u is prime

if all proper subterms of s|p are normal forms. A critical pair is called prime if it is derived
from a prime critical peak. We write PCP(R) to denote the set of all prime critical pairs of
a TRS R.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#lem:peak_imp_join_or_S3_cpeaks
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#def:PCP
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Definition 2.14. Given a TRS R and terms s, t, and u, we write t Os u if s→+
R t, s→

+
R u,

and t ↓R u or t←→PCP(R) u. �

Lemma 2.15. Let R be a TRS. If t
p←− s ε−→ u is a critical peak then t O2

s u. �

Proof. First suppose that all proper subterms of s|p are normal forms. Then t ≈ u ∈ PCP(R)
and thus t Os u. Since also u Os u, we obtain the desired t O2

s u. This leaves us with the
case that there is a proper subterm of s|p that is not a normal form. By considering an
innermost redex in s|p we obtain a position q > p and a term v such that s

q−→ v and all
proper subterms of s|q are normal forms. Now, if v

q←− s ε−→ u is an instance of a critical peak
then v →PCP(R) u. Otherwise, v ↓R u by Lemma 2.12, since q 66 ε. In both cases we obtain
v Os u. Finally, we analyze the peak t

p←− s q−→ v by another application of Lemma 2.12.

(1) If t ↓R v, we obtain t Os v and thus t O2
s u, since also v Os u.

(2) Since p < q, only the case that v|p
q\p←−− s|p

ε−→ t|p is an instance of a critical peak remains.
Moreover, all proper subterms of s|q are normal forms and thus we have an instance
of a prime critical peak. Hence t ←→PCP(R) v and together with v Os u we conclude

t O2
s u.

Lemma 2.16. Let R be a TRS. If t R← s→R u then t O2
s u. �

Proof. From Lemma 2.12, either t ↓R u and we are done, or t R← s →R u contains a
(possibly reversed) instance of a critical peak. By Lemma 2.15 we conclude the proof, since
rewriting is closed under substitutions and contexts.

The following result is due to Kapur et al. [KMN88, Corollary 4].

Corollary 2.17. A terminating TRS is confluent if and only if all its prime critical pairs
are joinable. �

Proof. Let R be a terminating TRS such that PCP(R) ⊆ ↓R. We claim that R is source de-
creasing. As well-founded order we take > =→+

R. Consider an arbitrary peak t R← s→R u.
Lemma 2.16 yields a term v such that t Os v Os u. From the assumption PCP(R) ⊆ ↓R we
obtain t ↓R v ↓R u. Since s→+

R v, all steps in the conversion t ↓R v ↓R u are labeled with a
term that is smaller than s. Since the two steps in the peak receive the same label s, source
decreasingness is established and hence we obtain the confluence of R from Lemma 2.5. The
reverse direction is trivial.

Note that unlike for ordinary critical pairs, joinability of prime critical pairs does not
imply local confluence.

Example 2.18. Consider the TRS R given by the three rules:

f(a)→ b f(a)→ c a→ a

The set PCP(R) consists of the two pairs f(a) ≈ b and f(a) ≈ c, which are trivially joinable.
But R is not locally confluent because the peak b R← f(a)→R c is not joinable.

The critical pair lemma (Lemma 2.12) in this section is due to Knuth and Bendix [KB70]
and Huet [Hue80]. The primality critical pair criterion was first presented by Kapur, Musser,
and Narendran [KMN88]. Our presentation is based on the simpler correctness arguments
from our earlier work [HMS14,HMSW17].

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#def:nabla
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#lem:cpeaks_imp_nabla2
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#lem:peak_imp_nabla2
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#lem:SN_imp_CR_iff_PCP_join
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3. Correctness for Finite Runs

The original completion procedure by Knuth and Bendix [KB70] was presented as a concrete
algorithm. Later on, Bachmair, Dershowitz, and Hsiang [BDH86] presented an inference
system for completion and showed that all fair implementations thereof (in particular the
original procedure) are correct. Abstracting from a concrete strategy, their approach thus
has the advantage to cover a variety of implementations. Below, we recall the inference
system, which constitutes the basis of the results presented in this section.

Definition 3.1 (Knuth-Bendix Completion �). The inference system KBf of abstract
(Knuth-Bendix) completion operates on pairs (E ,R) of sets of equations E and rules R over
a common signature F . It consists of the following inference rules, where we write E ,R for
a pair (E ,R) and ] denotes disjoint set union:

deduce
E ,R

E ∪ {s ≈ t},R
if s R← · →R t compose

E ,R] {s→ t}
E ,R∪ {s→ u}

if t→R u

E ] {s ≈ t},R
E ,R∪ {s→ t}

if s > t
E ] {s ≈ t},R
E ∪ {u ≈ t},R

if s→R u
orient simplify

E ] {s ≈ t},R
E ,R∪ {t→ s}

if t > s
E ] {s ≈ t},R
E ∪ {s ≈ u},R

if t→R u

delete
E ] {s ≈ s},R

E ,R
collapse

E ,R] {t→ s}
E ∪ {u ≈ s},R

if t→R u

Here > is a fixed reduction order on T (F ,V).

Definition 3.1 differs from most of the inference systems in the literature (like those
devised by Bachmair and Dershowitz [Bac91,BD94]) in that we do not impose an encom-
passment condition on collapse. As long as we only consider finite runs (see Definition 3.5
below)—like in Sections 3 to 5—this change is valid (as shown by Sternagel and Thie-
mann [ST13]).

Concerning notation, we write (E ,R) `f (E ′,R′) whenever we can obtain (E ′,R′) from
(E ,R) by applying one of the inference rules of Definition 3.1. While it is well-known that
applying the inference rules of KBf does not affect the equational theory induced by E ∪ R,
our formulation is new and paves the way for a simple correctness proof.

Lemma 3.2. Suppose (E ,R) `f (E ′,R′). Then, the following two inclusions hold:

(1) If s −−−→
E ∪R

t then s
=−→
R′
· =−−−−→
E ′∪R′

· =←−
R′

t. �

(2) If s −−−−→
E ′∪R′

t then s
∗←−−→
E ∪R

t. �

Proof. By inspecting the inference rules of KBf we easily obtain the following inclusions:

deduce

E ∪ R ⊆ E ′ ∪R′ E ′ ∪R′ ⊆ E ∪R ∪←−
R
· −→
R

orient

E ∪ R ⊆ E ′ ∪R′ ∪ (R′)−1 E ′ ∪R′ ⊆ E ∪R ∪ E−1

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#ind:KB
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_subset'
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delete

E ∪ R ⊆ E ′ ∪R′ ∪= E ′ ∪R′ ⊆ E ∪R
compose

E ∪ R ⊆ E ′ ∪R′ ∪ −→
R′
· ←−
R′

E ′ ∪R′ ⊆ E ∪R ∪−→
R
· −→
R

simplify

E ∪ R ⊆ E ′ ∪R′ ∪ −→
R′
· −→
E ′
∪ −→
E ′
· ←−
R′

E ′ ∪R′ ⊆ E ∪R ∪←−
R
· −→
E
∪ −→
E
· −→
R

collapse

E ∪ R ⊆ E ′ ∪R′ ∪ −→
R′
· −→
E ′

E ′ ∪R′ ⊆ E ∪R ∪←−
R
· −→
R

Consider for instance the collapse rule and suppose that s ≈ t ∈ E ∪ R. If s ≈ t ∈ E then
s ≈ t ∈ E ′ because E ⊆ E ′. If s ≈ t ∈ R then either s ≈ t ∈ R′ or s→R u with u ≈ t ∈ E ′
and thus s→R′ · →E ′ t. This proves the inclusion on the left. For the inclusion on the right
the reasoning is similar. Suppose that s ≈ t ∈ E ′ ∪R′. If s ≈ t ∈ R′ then s ≈ t ∈ R because
R′ ⊆ R. If s ≈ t ∈ E ′ then either s ≈ t ∈ E or there exists a rule u→ t ∈ R with u→R s
and thus s R← · →R t.

Since rewrite relations are closed under contexts and substitutions, the inclusions in the
right column prove statement (2). Moreover note that each inclusion in the left column is a
special case of

E ∪ R ⊆ =−→
R′
· =−−−−→
E ′∪R′

· =←−
R′

and thus also statement (1) follows from closure under contexts and substitutions of rewrite
relations.

Corollary 3.3. If (E ,R) `∗f (E ′,R′) then the relations
∗←−−→
E ∪R

and
∗←−−−→

E ′∪R′
coincide. �

The next lemma states that termination of R is preserved by applications of the inference
rules of KBf . It is the final result in this section whose proof refers to the inference rules.

Lemma 3.4. If (E ,R) `∗f (E ′,R′) and R ⊆ > then R′ ⊆ >. �

Proof. We consider a single step (E ,R) `f (E ′,R′). The statement of the lemma follows by
a straightforward induction proof. Observe that deduce, delete, and simplify do not change
the set of rewrite rules and hence R′ = R ⊆ >. For collapse we have R′ ( R ⊆ >. In the
case of orient we have R′ = R ∪ {s → t} with s > t and hence R′ ⊆ > follows from the
assumption R ⊆ >. Finally, consider an application of compose. So R = R′′ ] {s→ t} and
R′ = R′′ ∪ {s → u} with t →R u. We obtain s > t from the assumption R ⊆ >. Since >
is a reduction order, t > u follows from t→R u. Transitivity of > yields s > u and hence
R′ ⊆ > as desired.

To guarantee that the result of a finite KBf derivation is a complete TRS equivalent to
the initial E , KBf derivations must satisfy the fairness condition that prime critical pairs of
the final TRS Rn which were not considered during the derivation are joinable in Rn.

Definition 3.5 (Finite Runs and Fairness). A finite run for a given ES E is a finite sequence

E0,R0 `f E1,R1 `f · · · `f En,Rn

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_conversion
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_rtrancl_rules_subset_less
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such that E0 = E and R0 = ∅. The run is fair if En = ∅ and

PCP(Rn) ⊆ ↓Rn
∪

n⋃
i=0

←→
Ei

The reason for writing ←→Ei instead of Ei in the definition of fairness is that critical
pairs are ordered, so in a fair run a (prime) critical pair s ≈ t of Rn may be ignored by
deduce if t ≈ s was generated, or more generally, if s←→Ei t holds at some point in the run.
Non-prime critical pairs can always be ignored. Note that our fairness condition differs from
earlier notions by permitting that (prime) critical pairs may be joinable in Rn. This was
done to allow for more flexibility in implementations. Our proofs smoothly extend to the
relaxed condition.

According to the main result of this section (Theorem 3.8), a completion procedure that
produces fair runs is correct. The challenge is the confluence proof of Rn. We show that
Rn is peak decreasing by labeling rewrite steps (not only in Rn) with multisets of terms.
As well-founded order on these multisets we take the multiset extension >mul of the given
reduction order >.

Definition 3.6 (Labeled Rewriting �). Let→ be a rewrite relation and M a finite multiset
of terms. We write s

M−→ t if s → t and there exist terms s′, t′ ∈ M such that s′ > s and
t′ > t. Here > denotes the reflexive closure of the given reduction order >.

Since both→ and > are closed under contexts and substitutions, we have C[tσ] M ′−−→ C[uσ]
whenever t M−→ u and M ′ = {C[sσ] | s ∈M}, for all contexts C and substitutions σ.

Lemma 3.7. Let (E ,R) `f (E ′,R′). If t
M←−−→
E ∪R

∗ u and R′ ⊆ > then t
M←−−−→
E ′∪R′

∗ u. �

Proof. We consider a single (E ∪ R)-step from t to u. The lemma follows then by induction
on the length of the conversion between t and u. According to Lemma 3.2(1) there exist
terms v and w such that

t
=−→
R′

v
=−−−−→

E ′∪R′
w

=←−
R′

u

We claim that the (non-empty) steps can be labeled by M . There exist terms t′, u′ ∈ M
with t′ > t and u′ > u. Since R′ ⊆ >, we have t > v and u > w and thus also t′ > v and
u′ > w. Hence

t
M−→
R′

= v
M−−−−→
E ′∪R′

= w = M←−
R′

u

and thus also t
M←−−−→
E ′∪R′

∗ u.

Theorem 3.8. For every fair run Γ �

E0,R0 `f E1,R1 `f · · · `f En,Rn
the TRS Rn is a complete presentation of E.

Proof. We have En = ∅. From Corollary 3.3 we know that ←→∗E =←→∗Rn
. Lemma 3.4 yields

Rn ⊆ > and hence Rn is terminating. It remains to prove that Rn is confluent. Let

t
M1←−−
Rn

s
M2−−→
Rn

u

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#def:mstep
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:msteps_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Completion_Fairness.html#lem:finite_fair_new_run
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be a labeled local peak in Rn. From Lemma 2.16 we obtain t O2
s u. Let v Os w appear in

this sequence (so t = v or w = u). We obtain

(v, w) ∈ ↓Rn
∪

n⋃
i=0

←→
Ei

from the definition of Os and fairness of Γ. We label all steps between v and w with the
multiset {v, w}. Because s > v and s > w we have M1 >mul {v, w} and M2 >mul {v, w}.
Hence by repeated applications of Lemma 3.7 we obtain a conversion in Rn between v and
w in which each step is labeled with a multiset that is smaller than both M1 and M2. It
follows that Rn is peak decreasing and thus confluent by Lemma 2.5.

A completion procedure is a program that generates KBf runs. In order to ensure
that the final outcome Rn is a complete presentation of the initial ES, fair runs should be
produced. Fairness requires that prime critical pairs of Rn are considered during the run.
Of course, Rn is not known during the run, so to be on the safe side, prime critical pairs of
any R that appears during the run should be generated by deduce. In particular, there is
no need to deduce equations that are not prime critical pairs. So we may strengthen the
condition s R← · →R t of deduce to s ≈ t ∈ PCP(R) without affecting Theorem 3.8.

The following example shows that the success of a run may depend on the order in
which inference rules are applied [BDP89].

Example 3.9. Consider the ES E consisting of the four equations

a ≈ b a ≈ c f(b) ≈ b f(a) ≈ d

and the reduction order >lpo with the partial precedence a > b > d and a > c > d but where
b and c are incomparable. One possible run is

(E ,∅) `orient
f

+
({a ≈ c, f(a) ≈ d}, {a→ b, f(b)→ b})

`simplify
f

+
({b ≈ c, f(b) ≈ d}, {a→ b, f(b)→ b})

`simplify
f ({b ≈ c, b ≈ d}, {a→ b, f(b)→ b})
`orient
f ({b ≈ c}, {a→ b, f(b)→ b, b→ d})

`collapse
f ({b ≈ c, f(d) ≈ b}, {a→ b, b→ d})

`simplify
f

+
({d ≈ c, f(d) ≈ d}, {a→ b, b→ d})

`orient
f

+
(∅, {a→ b, b→ d, c→ d, f(d)→ d})

which derives a complete presentation of E . However, the run

(E ,∅) `orient
f ({a ≈ b, f(b) ≈ b, f(a) ≈ d}, {a→ c})

`simplify
f

+
({c ≈ b, f(b) ≈ b, f(c) ≈ d}, {a→ c})

`orient
f

+
({c ≈ b}, {a→ c, f(b)→ b, f(c)→ d})

cannot be extended to a successful one because the equation c ≈ b cannot be oriented.

The following example shows that even after a KBf run derived a complete system,
exponentially many steps might be performed to obtain a canonical TRS.
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Example 3.10. Consider the ESs En = {f(gi(c)) ≈ g(fi(c)) | 0 6 i 6 n} for n > 1. By
taking the Knuth-Bendix order >kbo with precedence f > g and where w(f) = w(g), all
equations can be oriented from left to right. Since there are no critical pairs, the resulting
TRSs Rn = {f(gi(c))→ g(fi(c)) | 0 6 i 6 n} are complete by Theorem 3.8. However, it is
not canonical since right-hand sides are not normal forms. When applying compose steps
in a naive way by simplifying the rules in descending order, exponentially many steps are
required to obtain a canonical system [PSK96]. However, when processing the rules in
reverse order only a polynomial number of steps is necessary.

This section resumes our results on finite runs [HMS14]. The presented correctness proof
differs substantially from all earlier proofs in that it does not rely on a proof order [BDH86]
but is instead based on peak decreasingness. It supports a relaxed side condition of the
collapse rule as first used in [ST13], but in contrast to the latter demands only prime critical
pairs to be considered.

4. Canonicity and Normalization Equivalence

A natural question arising in the context of completion concerns uniqueness of resulting
systems: Is there a single complete presentation of a given equational theory conforming to
a certain reduction order? Métivier [Mét83] showed that for reduced and hence canonical
systems this is indeed the case, up to renaming variables. In this section we revisit his
work, aiming at generalizing his uniqueness result for canonical TRSs and at establishing a
transformation to simplify ground-complete TRSs. A key notion to that end is normalization
equivalence.

Definition 4.1 (Conversion/Normalization Equivalence). Two ARSs A and B are said to
be (conversion) equivalent if ←→∗A =←→∗B and normalization equivalent if →!

A =→!
B.

The following example shows that these two equivalence notions do not coincide.

Example 4.2. Consider the four ARSs:

A1 : a b B1 : a b

A2 : a b B2 : a b

While A1 and B1 are conversion equivalent but not normalization equivalent, the ARSs A2

and B2 are normalization equivalent but not conversion equivalent.

The easy proof (by induction on the length of conversions) of the following result is
omitted.

Lemma 4.3. Normalization equivalent terminating ARSs are equivalent. �

Note that the termination assumption can be weakened to weak normalization. However,
the present version suffices to prove the following lemma that we employ in our proof of
Métivier’s transformation result [Mét83] (Theorem 4.7 below).

Lemma 4.4. Let A and B be ARSs such that NF(B) ⊆ NF(A) and either

(1) →B ⊆ →+
A or �

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:WN_NE_imp_conv_eq
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:complete_NE_intro
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(2) →B ⊆ ←→∗A and B is terminating. �

If A is complete then B is complete and normalization equivalent to A.

Proof. We first show →!
B ⊆ →!

A. In case (1), from the inclusion →B ⊆ →+
A we infer that

B is terminating. Moreover, →∗B ⊆ →∗A and, since NF(B) ⊆ NF(A), also →!
B ⊆ →!

A. For

case (2), →!
B ⊆ →!

A holds because →!
B ⊆ ←→∗A, so by confluence of A and NF(B) ⊆ NF(A)

we obtain →!
B ⊆ →!

A. Next we show that the reverse inclusion →!
A ⊆ →!

B holds in both

cases. Let a→!
A b. Because B is terminating, a→!

B c for some c ∈ NF(B). So a→!
A c and

thus b = c from the confluence of A. It follows that A and B are normalization equivalent.
It remains to show that B is locally confluent. This follows from the sequence of inclusions

B← · →B ⊆ ←→∗A ⊆ →!
A · !
A← ⊆ →!

B · !
B←

where we obtain the inclusions from →B ⊆ ←→∗A, confluence of A, termination of A, and
normalization equivalence of A and B, respectively.

In the above lemma, completeness can be weakened to semi-completeness (that is, the
combination of confluence and weak normalization), which is not true for Theorem 4.7
as shown by Gramlich [Gra01]. Again, the present version suffices for our purposes.
Condition (2) of the lemma can be regarded as a specialization of an abstract result
of Toyama [Toy91, Corollary 3.2] to complete systems and will be used in Section 7.

Theorem 4.7 below shows that we can always eliminate redundancy in a complete TRS.
This is achieved by the following two-stage transformation, where, given a TRS R, we write
R .= for a set of representatives of the equivalence classes of rules in R with respect to

.
=

(that is, R .= is a variant-free version of R).

Definition 4.5. Given a terminating TRS R, the TRSs Ṙ and R̈ are defined as follows:

Ṙ = {`→ r↓R | `→ r ∈ R} .= �

R̈ = {`→ r ∈ Ṙ | ` ∈ NF(Ṙ \ {`→ r})} �

Here t↓R stands for an arbitrary but fixed normal form of t.

The TRS Ṙ is obtained from R by first normalizing the right-hand sides and then taking
representatives of variants of the resulting rules, thereby making sure that the result does
not contain several variants of the same rule. To obtain R̈ we remove the rules of Ṙ whose
left-hand sides are reducible with another rule of Ṙ. (This is the only place in the paper
where variant-freeness of TRSs is important.)

The following example shows why the result of Ṙ has to be variant-free.

Example 4.6. Consider the TRS R consisting of the four rules

f(x)→ a f(y)→ b a→ c b→ c

Then the first transformation without taking representatives of rules would yield Ṙ
f(x)→ c f(y)→ c a→ c b→ c

and the second one R̈
a→ c b→ c

Note that R̈ is not equivalent to R. This is caused by the fact that the result of the first
transformation was no longer variant-free.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:complete_NE_intro1
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#def:dot
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#def:ddot


19:16 N. Hirokawa, A. Middeldorp, C. Sternagel, and S. Winkler Vol. 15:3

The following result, due to Métivier [Mét83, Theorem 7], allows us to obtain a canonical
representation of any complete TRS.3 Our proof below proceeds by induction on the well-
founded encompassment order �· .

Theorem 4.7. If R is a complete TRS then R̈ is a normalization and conversion equivalent
canonical TRS. �

Proof. Let R be a complete TRS. The inclusions R̈ ⊆ Ṙ ⊆ →+
R are obvious from the

definitions. Since R and Ṙ have the same left-hand sides, their normal forms coincide. We
show that NF(R̈) ⊆ NF(Ṙ). To this end we show that ` /∈ NF(R̈) whenever `→ r ∈ Ṙ by

induction on ` with respect to the well-founded order �· . If `→ r ∈ R̈ then ` /∈ NF(R̈) holds.

So suppose `→ r /∈ R̈. By definition of R̈, ` /∈ NF(Ṙ \ {`→ r}). So there exists a rewrite

rule `′ → r′ ∈ Ṙ different from `→ r such that ` ·� `′. We distinguish two cases.

• If ` �· `′ then we obtain `′ /∈ NF(R̈) from the induction hypothesis and hence ` /∈ NF(R̈)
as desired.
• If `

.
= `′ then by Lemma 2.1 there exists a renaming σ such that ` = `′σ. Since Ṙ is

right-reduced by construction, r and r′ are normal forms of Ṙ. The same holds for r′σ
because normal forms are closed under renaming. We have r Ṙ← ` = `′σ →Ṙ r

′σ. Since

Ṙ is confluent as a consequence of Lemma 4.4(1), r = r′σ. Hence `′ → r′ is a variant of

`→ r, contradicting the fact that Ṙ is variant-free (by construction).

From Lemma 4.4(1) we infer that the TRSs Ṙ and R̈ are complete and normalization

equivalent to R. The TRS R̈ is right-reduced because R̈ ⊆ Ṙ and Ṙ is right-reduced. From
NF(R̈) = NF(Ṙ) we easily infer that R̈ is left-reduced. It follows that R̈ is canonical. It

remains to show that R̈ is not only normalization equivalent but also (conversion) equivalent
to R. This is an immediate consequence of Lemma 4.3.

Before we proceed to show uniqueness of normalization equivalent TRSs, we need the
following technical lemma.

Lemma 4.8. Let R be a right-reduced TRS and let s be a reducible term which is minimal
with respect to �· . If s→+

R t then s→ t is a variant of a rule in R. �

Proof. Let ` → r be the rewrite rule that is used in the first step from s to t. So s ·� `.
By assumption, s �· ` does not hold and thus s

.
= ` because ·� = �· ∪ .

=. According to
Lemma 2.1 there exists a renaming σ such that s = `σ. We have s→R rσ →∗R t. Because R
is right-reduced, r ∈ NF(R). Since normal forms are closed under renaming, also rσ ∈ NF(R)
and thus rσ = t. It follows that s→ t is a variant of `→ r.

In our formalization, the above proof is the first spot of this section where we actually
need that R satisfies the variable condition (more precisely, only the part of it that right-hand
sides of rules do not introduce fresh variables). We are now in a position to present the
main result of this section.

Theorem 4.9. Normalization equivalent reduced TRSs are unique up to literal similarity.
�

3We were not able to reconstruct enough detail for an Isabelle/HOL formalization from its original proof.
Another textbook proof [Ter03, Exercise 7.4.7] involves 13 steps with lots of redundancy.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:canonical_NE_conv_eq
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:right_reduced_min_step_rule
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:reduced_NE_imp_unique
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Proof. Let R and S be normalization equivalent reduced TRSs. Suppose ` → r ∈ R.
Because R is right-reduced, r ∈ NF(R) and thus ` 6= r. Hence ` →+

S r by normalization
equivalence. Because R is left-reduced, ` is a minimal (with respect to �· ) R-reducible term.
Another application of normalization equivalence yields that ` is minimal S-reducible. Hence
`→ r is a variant of a rule in S by Lemma 4.8.

Example 4.10. Consider the rewrite system R of combinatory logic with equality test,
studied by Klop [Klo80]:

@(@(@(S, x), y), z)→ @(x,@(z,@(y, z))) @(@(K, x), y)→ x

@(I, x)→ x @(@(D, x), x)→ E

The rewrite system R is reduced, but neither terminating nor confluent. One might ask
whether there is another reduced rewrite system that computes the same normal forms for
every starting term. Theorem 4.9 shows that R is unique up to variable renaming.

As the final result of this section, we prove this result of Métivier [Mét83, Theorem 8]
to be an easy consequence of Theorem 4.9. Here a TRS R is said to be compatible with a
reduction order > if ` > r for every rewrite rule `→ r of R.

Theorem 4.11. Let R and S be equivalent canonical TRSs. If R and S are compatible
with the same reduction order then R .

= S. �

Proof. SupposeR and S are compatible with the reduction order>. We show that→!
R ⊆ →!

S .

Let s→!
R t. We show that t ∈ NF(S). Let u be the unique S-normal form of t. We have

t→!
S u and thus t←→∗R u because R and S are equivalent. Since t ∈ NF(R), we have u→!

R t.

If t 6= u then both t > u (as t →!
S u) and u > t (as u →!

R t), which is impossible. Hence
t = u and thus t ∈ NF(S). Together with s←→∗S t, which follows from the equivalence of R
and S, we conclude that s→!

S t. We obtain →!
S ⊆ →!

R by symmetry. Hence R and S are
normalization equivalent and the result follows from Theorem 4.9.

This section resumes our results on canonicity [HMSW17]. While the results of Theo-
rem 4.7 and Theorem 4.11 are due to Métivier [Mét83], we present novel and simpler proofs
based on the (new) auxiliary results Lemma 4.4 and Theorem 4.9.

5. Ground Completion

In this section we focus on the special case of ground equations, that is, equations where
both sides are ground terms.

Definition 5.1 (Ground Completion �). The inference system KBg consists of the inference
rules of KBf except for deduce.

Snyder [Sny93] proved that sets of ground equations can always be completed by KBg,
provided a ground-total reduction order > is used, that is, for all ground terms s, t ∈ T (F)
either s > t, t > s, or s = t. He further proved that every reduced ground rewrite system is
canonical and can be obtained by completion from any equivalent set of ground equations.
Below, we present the proofs of these results that we formalized in Isabelle/HOL.

The following example illustrates the inference system KBg on a set of ground equations.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:EQ_imp_litsim
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#ind:gkb
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Example 5.2. Consider the ES E consisting of the ground equations

f(f(f(a))) ≈ f(b) f(f(b)) ≈ c f(c) ≈ a f(a) ≈ f(f(b))

As reduction order we take LPO induced by the total precedence a > b > c > f. We start
by applying orient to the last two equations:

f(f(f(a))) ≈ f(b) f(f(b)) ≈ c f(c)← a f(a)→ f(f(b))

An application of collapse produces

f(f(f(a))) ≈ f(b) f(f(b)) ≈ c f(c)← a f(f(c)) ≈ f(f(b))

Next we orient the second equation:

f(f(f(a))) ≈ f(b) f(f(b))→ c f(c)← a f(f(c)) ≈ f(f(b))

Two applications of simplify produce

f(f(f(f(c)))) ≈ f(b) f(f(b))→ c f(c)← a f(f(c)) ≈ c

We continue by orienting the last equation:

f(f(f(f(c)))) ≈ f(b) f(f(b))→ c f(c)← a f(f(c))→ c

Two applications of simplify produce

c ≈ f(b) f(f(b))→ c f(c)← a f(f(c))→ c

Orienting the remaining equation followed by a collapse step produces

c← f(b) f(c) ≈ c f(c)← a f(f(c))→ c

Finally, we orient the only remaining equation and collapse, compose, simplify, and delete
exhaustively, thereby obtaining the TRS R

c← f(b) f(c)→ c c← a

which constitutes a canonical presentation of E .

The absence of deduce from KBg does not hurt for ground systems. If s← · → t and
the two contracted redexes are at parallel positions then trivially s→ · ← t. If the steps are
identical then s = t. In the remaining case one of the contracted redexes is a subterm of
the other contracted redex, and the effect of deduce is achieved by the collapse inference
rule. On the contrary, the absence of deduce is crucial to conclude that KBg derivations are
always finite, as illustrated by the following simple example.

Example 5.3. Consider the ground ES E consisting of the single equation a ≈ b and LPO
induced by the precedence a > b. Using KBf (i.e., KBg with deduce) the following infinite
run is possible:

(E ,∅) `orient
f (∅, {a→ b})
`deduce
f ({b ≈ b}, {a→ b})
`delete
f (∅, {a→ b})
`deduce
f . . .

Lemma 5.4. There are no infinite runs E0,∅ `g E1,R1 `g · · · for finite ground ES E0. �

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:SN_on_GKB
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Proof. Let � denote the lexicographic combination of the multiset extension >mul of the
reduction order > with the standard order on natural numbers >N. Furthermore let M(E ,R)
denote the (finite) multiset of left-hand sides and right-hand sides occurring in E and R

M(E ,R) =
⋃
{{s, t} | (s, t) ∈ E} ∪

⋃
{{s, t} | (s, t) ∈ R}

and consider the function P that maps the pair (E ,R) to (M(E ,R), |E|). Now it is straight-
forward to verify that any infinite `g-sequence would give rise to an infinite sequence
P (E0,∅) � P (E1,R1) � · · · , contradicting the well-foundedness of �.

Theorem 5.5. If > is total on E-equivalent ground terms then every maximal KBg run
produces an equivalent canonical presentation for every ground ES E. �

Proof. Consider a maximal KBg run E0,∅ `g E1,R1 `g · · · `g En,Rn where E0 = E is a
ground ES. Because the run is maximal, no inference rule of KBg is applicable to the final
pair (En,Rn). In particular, compose and collapse are not applicable and hence the final
TRS Rn is reduced. Since Rn is ground, this means in particular that there are no critical
pairs. Moreover, termination of Rn follows from Lemma 3.4 (since any KBg run is also a
KBf run), so Rn is canonical. From Corollary 3.3 and the inclusion KBg ⊆ KBf we infer that
E and En ∪Rn are equivalent. It follows that > is total on En-equivalent ground terms and
thus En = ∅, for otherwise the run could be extended with an application of delete or orient.
Hence Rn and E are equivalent.

The restriction on the reduction order > in the above correctness theorem is easy to
satisfy. In particular, it holds for any LPO or KBO based on a total precedence.

Next we consider completeness of ground completion. Our proof makes use of the
following concept.

Definition 5.6 (Random Descent �). An ARS A has random descent if for every conversion
a←→∗ b with normal form b we have a→n b with n+ l = r. Here l (r) denotes the number
of ← (→) steps in the conversion a←→∗ b.

Random descent is useful in the analysis of rewrite strategies [vOT16]. It generalizes a
number of earlier concepts, including the property ← · → ⊆ (→ · ←) ∪= which is known as
WCR1 and holds for left-reduced ground TRSs. We formalized a new, short and direct proof
of the following result due to van Oostrom [vO07]. Here an element a is said to be complete
if it is both terminating (there are no infinite rewrite sequences starting at a) and confluent
(if b ∗← a→∗ c then b ↓ c).

Theorem 5.7. Let A be an ARS with random descent. If a←→∗ b with normal form b then
a is complete and all rewrite sequences from a to b have the same length. �

Proof. Let l (r) be the number of ← (→) steps in the conversion from a to b. We have l 6 r
since n+ l = r for some n by random descent. First we prove termination of a. For a proof
by contradiction, suppose the existence of an infinite rewrite sequence

a = a0 → a1 → a2 → · · ·
Clearly, a→r−l ar−l and thus there exists a conversion ar−l

∗← a←→∗ b with r backwards
and r forwards steps. Hence ar−l = b by another application of random descent and therefore
b → ar−l+1, contradicting the fact that b is a normal form. Next we prove confluence of
a. Suppose c ∗← a →∗ d. We obtain the two conversions c ←→∗ b and d ←→∗ b, which are
transformed into c ↓ d by two applications of random descent. Finally, assume there are

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:ground_max_run_canonical
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#def:RD
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:RD_NF
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two rewrite sequences a →m b and a →n b from a to b of length m and n. Reversing the
first sequence and appending the second one yields a conversion b←→∗ b with m backwards
and n forwards steps. A final application of random descent yields b→k b for some k with
k +m = n. Since b is a normal form, k = 0 and thus m = n as desired.

In the series of lemmas below, we establish that reduced ground TRSs are canonical
and have random descent.

Lemma 5.8. Left-reduced TRSs enjoy the WCR1 property. �

Proof. This follows from a straightforward case analysis on the relative positions of the
two redexes that are part of a peak together with the fact that for left-reduced TRSs the
left-hand side alone uniquely determines the employed rewrite rule.

Lemma 5.9. Left-reduced ground TRSs have random descent. �

Proof. Let R be a left-reduced TRS and s ←→∗ t a conversion between two arbitrary but
fixed terms s and t such that t is a normal form. We proceed by induction on the length of
this conversion. If it is empty or the first step is to the right, we are done. Otherwise, we
have s← u←→∗ t where the conversion between u and t has l (r) ← (→) steps and obtain
u→k t with k + l = r by the induction hypothesis. The remainder of the proof proceeds by
induction on k together with Lemma 5.8.

Lemma 5.10. Right-reduced ground TRSs are terminating. �

Proof. Let R be a right-reduced ground TRS. For the sake of a contradiction, assume that
R is non-terminating. Then there is a minimal non-terminating term t (that is, all its proper
subterms are terminating). This means that after a finite number of non-root steps t→∗ u
there will be a root step u→ v such that v is non-terminating. But since R is right-reduced
and ground, v is a ground normal form, deriving the desired contradiction.

Corollary 5.11. Reduced ground TRSs are canonical and have random descent. �

Proof. Let R be a reduced ground TRS. Then, by Lemma 5.9, R has random descent.
Moreover, by Lemma 5.10, R is terminating. Finally, since all terms are R-terminating,
confluence of R is an immediate consequence of the definition of random descent.

Theorem 5.12. For every ground ES E and every equivalent reduced ground TRS R there
exist a reduction order > and a derivation E ,∅ `g · · · `g ∅,R. �

Proof. Let > be a reduction order that contains R and is total on E-equivalent ground terms.
Consider a maximal KBg run starting from E and using >. According to Theorem 5.5, the
run produces an equivalent reduced TRS R′. Since R ⊆ > and R′ ⊆ >, we obtain R = R′
from Theorem 4.11. It remains to show that > exists. Let = be a total precedence and
define s > t if and only if s ←→∗E t and either dR(s) > dR(t) or both dR(s) = dR(t) and
s =lpo t.

4 Here dR(u) is the number of rewrite steps in R to normalize the term u, which is
well-defined since all normalizing sequences in a reduced ground TRS have the same length
as a consequence of Corollary 5.11 and Theorem 5.7. It is easy to show that > has the
required properties. The only interesting cases are closure under contexts and substitutions.
Both are basically handled by the following observation: dR(C[tσ]) = dR(C[t↓σ]) + dR(t)
for any term t (which holds due to random descent together with termination). This allows
us to lift dR(s) = dR(t) and dR(s) > dR(t) into arbitrary contexts and substitutions.

4In the formalization we actually use =kbo with all weights set to 1, since in contrast to LPO, for KBO
ground-totality for total precedences has already been formalized before.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:left_reduced_WCR1
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:left_reduced_ground_RD
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:right_reduced_ground_SN
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:reduced_ground_RD_and_canonical
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:gkb_complete
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The above result cannot be generalized to left-linear right-ground systems, as shown in
the following example due to Dominik Klein (personal communication).

Example 5.13. Consider the ES E consisting of the two equations f(x) ≈ f(a) and f(b) ≈ b.
Let > be a reduction order. If f(b) > b does not hold, no inference rule of KBg is applicable
to (E ,∅). If f(b) > b then the second equation can be oriented

(E ,∅) `g ({f(x) ≈ f(a)}, {f(b)→ b})
but no further inference steps of KBg are possible. Hence completion will fail on E . Neverthe-
less, the TRS R consisting of the rewrite rule f(x)→ b constitutes a canonical presentation
of E .

The correctness result of ground completion (Theorem 5.5) is due to Snyder [Sny93],
and our formalized proof basically follows his approach. In addition, we present a new
completeness proof based on random descent (Theorem 5.12).

6. Correctness for Infinite Runs

Completion as presented in the preceding sections does not always succeed in producing a
finite complete presentation. It may fail because an unorientable equation is encountered
or it may run forever. In the latter case it is possible that in the limit a possibly infinite
complete presentation is obtained. In this case, completion can serve as a semi-decision
procedure for the validity problem of the initial equations [Hue81]. In this section we give
a new proof that fair infinite runs produce complete presentations of the initial equations,
provided the collapse rule is restored to its original formulation (cf. Definition 6.2 below).

The reason why this restriction is necessary is provided by the following example (due
to Baader and Nipkow [BN98]), which shows that the correctness result (Theorem 3.8) of
Section 3 does not extend to infinite runs without further ado.

Example 6.1. Consider the ES E consisting of the equations

aba ≈ ab bb ≈ b

and LPO with precedence a > b as reduction order. After two orient steps, we apply deduce
to generate the two critical pairs:

aba→ ab bb→ b abab ≈ abba bb ≈ bb

The second one is immediately deleted and the first one is simplified:

aba→ ab bb→ b abb ≈ aba

and subsequently oriented:

aba→ ab bb→ b aba→ abb

At this point we use the third rule to collapse the first rule:

abb ≈ ab bb→ b aba→ abb

An application of simplify followed by delete results in:

bb→ b aba→ abb

Repeating the above process produces

bb→ b aba→ abbb
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and then

bb→ b aba→ abbbb

ad infinitum. Since none of the rules aba→ abn survives, in the limit we obtain the TRS
consisting of the single rule bb → b. This TRS is complete but not equivalent to E as
witnessed by non-joinability of aba and ab.

Definition 6.2 (Knuth-Bendix Completion). The inference system KBi consists of the
inference rules deduce, orient, delete, compose, and simplify of KBf together with the following
modified collapse rule:

collapse ·�
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t
·�−→R u

Here the condition t
·�−→R u is defined as t −→ u using some rule `→ r ∈ R such that t �· `.

Note that the collapse step in Example 6.1 does not satisfy the encompassment condition
from the previous definition.

We write (E ,R) `i (E ′,R′) if (E ′,R′) can be reached from (E ,R) by employing one of
the inference rules of Definition 6.2.

Definition 6.3. An infinite run is a maximal sequence of the form

Γ: (E0,R0) `i (E1,R1) `i (E2,R2) `i · · ·
with R0 = ∅. We define

E∞ =
⋃
i>0

Ei R∞ =
⋃
i>0

Ri Eω =
⋃
i>0

⋂
j>i

Ej Rω =
⋃
i>0

⋂
j>i

Rj

Equations in Eω and rules in Rω are called persistent. The run Γ is called fair if Eω = ∅
and the inclusion PCP(Rω) ⊆ ↓Rω

∪←→E∞ holds.

Bachmair et al. [BDH86] proved that for every fair run satisfying Eω = ∅ the TRS Rω
constitutes a complete presentation of E0. The remainder of this section is dedicated to
establish the same result, but on a different route without encountering proof orders.

Compared to our proofs for finite runs from Section 3, in the following we will disentangle
our reasoning about rules from our reasoning about equations and furthermore replace
peak decreasingness by the slightly simpler concept of source decreasingness. So why not
use this more modular and simpler approach also in our earlier proofs for finite runs?
The main difference between the two situations is the encompassment condition of deduce.
Unfortunately, without the encompassment condition the equivalent of Lemma 6.10 below for
finite runs breaks down and we are forced to reason about rules and equations simultaneously
(Lemma 3.7). Nevertheless, it seems useful to also have a correctness proof for KBf (lacking
the encompassment condition), since out of the four completion tools we are aware of (CiME
3 [CCF+11], KBCV [SZ12], mkbTT [WSMK10], Slothrop [WSW06]), only CiME 3 actually
implements the encompassment condition.

Lemma 6.4. If (E ,R) `i (E ′,R′) then the following inclusions hold:

(1) E ′ ∪R′ ⊆ ∗←−−→
E ∪R

�

(2) E \ E ′ ⊆ (−→
R′
· E ′) ∪ (E ′ · ←−

R′
) ∪ R′ ∪ R′−1 ∪ = �

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_subset'
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_E_subset


Vol. 15:3 ABSTRACT COMPLETION, FORMALIZED 19:23

(3) R \R′ ⊆ (
·�−→
R′
· E ′) ∪ (R′ · ←−

R′
) �

Together these properties reveal that inference steps do not change the conversion relation.

Corollary 6.5. If (E ,R) `∗i (E ′,R′) then the relations
∗←−−→
E ∪R

and
∗←−−−→

E ′∪R′
coincide. �

Below, we consider an infinite run Γ: (E0,R0) `i (E1,R1) `i (E2,R2) `i · · · such that
Eω = ∅. First we show that all rewrite rules are compatible with the reduction order >.

Lemma 6.6. The inclusions Rω ⊆ R∞ ⊆ > hold. � �

Next, we verify that every equality in Ei can be turned into a valley in R∞. Note that
in contrast to the proof order approach [BDH86] and to the correctness proof for finite runs
given in Section 3 we reason separately about equations and rules. This more local rationale
simplifies the analysis as we can use different well-founded induction arguments for the two
cases, rather than synthesizing an order that covers both.

Lemma 6.7. The inclusion E∞ ⊆ ↓R∞ holds. �

Proof. Let s ≈ t ∈ Ei for some i > 0. By induction on {s, t} with respect to >mul we show
s ↓R∞ t. Because Eω = ∅, s ≈ t ∈ Ej−1 \ Ej for some j > i. Following Lemma 6.4(2), we
distinguish three cases.

• If s ≈ t ∈ Rj ∪R−1j ∪= then the claim trivially holds.

• If s →Rj u and u ≈ t ∈ Ej for some term u then {s, t} >mul {u, t} and thus u ↓R∞ t by
the induction hypothesis. Hence also s ↓R∞ t.

• Similarly, if s ≈ u ∈ Ej and u Rj← t for some term u then {s, t} >mul {s, u} and we obtain
s ↓R∞ t as in the preceding case.

Corollary 6.8. The inclusion −−→
E∞
⊆ ∗←−→
R∞

holds. �

In order to show confluence of Rω we use source decreasingness as defined in Section 2,
employing the following extension of the reduction order >.

Definition 6.9. We define � = ((> ∪�· ) / ·�)+.

According to Lemma 2.3, � is a well-founded order. The next lemma allows us to
transform every non-persistent rule `→ r into an Rω-conversion below `.

Lemma 6.10. The inclusion
s−−→
R∞

⊆ 0 s←→
Rω

∗ holds for all terms s. �

Proof. Let s
s−→R∞ t by employing the rewrite rule `→ r. We prove s 0 s←→∗Rω

t by induction
on (`, r) with respect to �lex. If ` → r ∈ Rω then the claim trivially holds. Otherwise,
`→ r ∈ Ri−1 \ Ri for some i > 0. Using Lemma 6.4(3), we distinguish two cases.

• Suppose `
·�−→`′→r′ u and u ≈ r ∈ Ei for some term u and rule `′ → r′ ∈ Ri. We obtain

`
·�−→`′→r′ u ↓R∞ r from Lemma 6.7. We have ` �· `′ and both ` > u and ` > r. It

follows that all rewrite rules `′′ → r′′ employed in `
·�−→ u ↓R∞ r satisfy (`, r) �lex (`′′, r′′).

Moreover, all steps in ` ↓R∞ r are labeled with a term 6 `. Hence we obtain ` 0 `←→∗Rω
r

from the induction hypothesis.

• Suppose `→ u ∈ Ri and u←`′→r′ r for some term u and rewrite rule `′ → r′ ∈ Ri. We
have (`, r) �lex (`, u) and (`, r) �lex (`′, r′) because r > u and ` > r ·� `′ > r′. Moreover,
both steps are labeled with a term 6 ` and thus we obtain ` 0 `←→∗Rω

r from the induction
hypothesis.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_R_subset
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http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:run_R_less
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:E_i_subset_join_R_inf
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So in both cases we have ` 0 `←→∗Rω
r and thus also s 0 s←→∗Rω

t.

Corollary 6.11. The relations
∗←−→
R∞

and
∗←→
Rω

coincide. �

We arrive at the main theorem of this section. Note that Bachmair’s correctness
proof [Bac91] uses induction with respect to a well-founded order on conversions to directly
show that any conversion of E∞ ∪R∞ can be transformed into a joining sequence of Rω. In
contrast, we prove confluence via source decreasingness. This allows us to concentrate on
local peaks.

Theorem 6.12. If Γ is fair then Rω is a complete presentation of E0. �

Proof. We have Eω = ∅ because Γ is non-failing. The TRS Rω is terminating by Lemma 6.6.
We show source decreasingness of labeled Rω reduction with respect to the reduction order
>. So let t Rω

s←− s
s−→Rω u. From Lemma 2.16 we obtain t O2

s u. Let v Os w appear in
this sequence (so t = v or w = u). We have s > v, s > w, and (v, w) ∈ ↓Rω

∪ ←→E∞ by the
definition of Os and fairness of Γ.

• If v ↓Rω
w then v 0 v−−→∗Rω

· ∗
Rω

0 w←−− w and thus v
∨s←→∗Rω

w.

• If v ←→E∞ w then v ←→Ei w for some i > 0 then v ↓R∞ w by Lemma 6.7. We obtain
v
∨s←→∗R∞ w as in the previous case and thus v

∨s←→∗Rω
w by Lemma 6.10.

Hence t
∨s←→∗Rω

u. Confluence of Rω now follows from Lemmata 2.9 and 2.5. It remains to
show ←→∗E0 = ←→∗Rω

. Using Corollary 6.5 we obtain →Ei∪Ri ⊆ ←→∗E0 by a straightforward
induction on i. This in turn yields ←→∗E0 = ←→∗E∞∪R∞ . From Corollary 6.8 we infer
←→∗E∞∪R∞ =←→∗R∞ and we conclude by an appeal to Corollary 6.11.

Example 6.13. Consider the ES E and the KBO > from Example 1.1. Let Pn for n > 1
denote the TRS {abi+1ab→ babbai | 1 6 i 6 n}. One possible infinite completion run is the
following:

(E ,∅) `orient
i (∅, {aba→ bab}) `deduce

i ({abbab ≈ babba}, {aba→ bab})
`orient
i (∅, {aba→ bab} ∪ P1) `deduce

i ({abbbab ≈ babbaa}, {aba→ bab} ∪ P1)
`orient
i (∅, {aba→ bab} ∪ P2) `i · · ·

If this run is continued in a fair way we subsequently construct the TRSs Pn and can in the
limit obtain the result Rω = {aba→ bab} ∪ {abi+1ab→ babbai | i > 1}, which is complete
according to Theorem 6.12.

This section recapitulates our results on infinite runs [HMSW17]. Our correctness proof
(Theorem 6.12) differs substantially from earlier proofs in the literature. Due to a less
monolithic structure we consider this proof to be more formalization friendly: Instead of
lexicographically combining several orders into a single proof reduction relation, we use
source decreasingness together with different orders as necessary to prove auxiliary results.
In particular, our approach naturally supports prime critical pairs.

7. Ordered Completion

Completion may fail to construct a complete system if unorientable equations are encountered.
For example, the ES E consisting of the two equations 0 + x ≈ x and x+ y ≈ y + x admits
no complete presentation. (We will prove it in Section 8.) This can happen even if a finite
complete system exists, as illustrated by the following example.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:rstep_R_inf_conv_iff
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Example 7.1. Consider the ES E [BD94] consisting of the three equations

1 · (−x+ x) ≈ 0 1 · (x+−x) ≈ x+−x −x+ x ≈ y +−y
Any run of standard Knuth-Bendix completion will fail on this input system; the first two
equations may be oriented from left to right if a suitable order is employed but no further
steps are possible. However, the TRS R consisting of the rules

1 · 0→ 0 x+−x→ 0 −x+ x→ 0

constitutes a canonical presentation of E .

Ordered completion was developed to remedy this shortcoming. In contrast to completion
as presented in the preceding section it never fails, though the resulting system is in general
only ground complete.

For an ES E , an ordered rewrite step is a rewrite step using a rule from E>, which is the
infinite set of rewrite rules `σ → rσ such that ` ≈ r ∈ E± and `σ > rσ for some substitution
σ.

The following inference rules for ordered completion are due to Bachmair, Dershowitz,
and Plaisted [BDP89]. In order to simplify the notation, we abbreviate E>ω ∪ Rω to S, and

use the following shorthands. We write t
·�−→E> u if there exist an equation ` ≈ r ∈ E±, a

context C, and a substitution σ such that t = C[`σ], u = C[rσ], `σ > rσ, and t �· `. The
union of −→R and

·�−→E> is denoted by
·�1−−→S and we write

·�2−−→S for the union of
·�−→R and

·�−→E> .

Definition 7.2 (Ordered Completion �). The inference system KBo of ordered completion
operates on pairs (E ,R) of equations E and rules R over a common signature F . It consists
of the following inference rules:

deduce
E ,R

E ∪ {s ≈ t},R
if s←−−−−

R∪E±
· −−−−→
R∪E±

t compose
E ,R] {s→ t}
E ,R∪ {s→ u}

if t −→S u

E ] {s ≈ t},R
E ,R∪ {s→ t}

if s > t
E ] {s ≈ t},R
E ∪ {u ≈ t},R

if s
·�1−−→S u

orient simplify
E ] {s ≈ t},R
E ,R∪ {t→ s}

if t > s
E ] {s ≈ t},R
E ∪ {s ≈ u},R

if t
·�1−−→S u

delete
E ] {s ≈ s},R

E ,R
collapse

E ,R] {t→ s}
E ∪ {u ≈ s},R

if t
·�2−−→S u

The deduce rule may be applied to any peak, though in practice it is typically limited to
the addition of extended critical pairs (which are defined in Definition 7.11 below). We write
(E ,R) `o (E ′,R′) if (E ′,R′) can be reached from (E ,R) by employing one of the inference
rules of Definition 7.2. We start by stating the equivalents of Lemma 6.4 and Corollary 6.5
for ordered completion.

Lemma 7.3. If (E ,R) `o (E ′,R′) then the following inclusions hold:

(1) E ′ ∪R′ ⊆ ∗←−−→
E ∪R

�

(2) E \ E ′ ⊆ (
·�1−−→
S′
· E ′±)

±
∪ R′± ∪ = �

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#ind:oKBi
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(3) R \R′ ⊆ (
·�2−−→
S′
· E ′) ∪ (R′ · ←−

S′
) �

Corollary 7.4. If (E ,R) `o (E ′,R′) then the relations
∗←−→
E∪R

and
∗←−−→

E ′∪R′
coincide. �

We illustrate KBo by means of an example.

Example 7.5. Consider the ES E consisting of the following three equations:

f(x) ≈ f(a) f(b) ≈ b g(f(b), x) ≈ g(x, b)

By taking the Knuth-Bendix order >kbo with precedence f > b and where all function
symbols are assigned weight 1, the following KBo inference sequence can be obtained:

(E ,∅) `orient
o

+
({f(x) ≈ f(a)}, {f(b)→ b, g(f(b), x)→ g(x, b)})

`deduce
o ({f(x) ≈ f(a), f(b) ≈ f(a)}, {f(b)→ b, g(f(b), x)→ g(x, b)})
`simplify
o ({f(x) ≈ f(a), b ≈ f(a)}, {f(b)→ b, g(f(b), x)→ g(x, b)})
`orient
o ({f(x) ≈ f(a)}, {f(b)→ b, g(f(b), x)→ g(x, b), f(a)→ b})
`simplify
o ({f(x) ≈ b}, {f(b)→ b, g(f(b), x)→ g(x, b), f(a)→ b})

`collapse
o

+
({f(x) ≈ b, b ≈ b, g(b, x) ≈ g(x, b)},∅)

`orient
o ({b ≈ b, g(b, x) ≈ g(x, b)}, {f(x)→ b})
`delete
o ({g(b, x) ≈ g(x, b)}, {f(x)→ b})
`deduce
o ({g(b, x) ≈ g(x, b), b ≈ b}, {f(x)→ b})

This sequence can be extended to an (infinite) run by repeating the last two steps. Then we
have Rω = {f(x)→ b} and Eω = {g(b, x) ≈ g(x, b)}.

Below, we consider an arbitrary run Γ: (E0,R0) `o (E1,R1) `o (E2,R2) `o · · · . In
general E∞ ⊆ ↓R∞ does not hold, as Example 7.5 illustrates. So unlike in the preceding
section we now omit the condition Eω = ∅. However, this comes at the price of weaker
properties of the resulting system, as the remainder of this section shows.

Lemma 7.6. The inclusions Rω ⊆ R∞ ⊆ > and Eω ⊆ E∞ hold. � � �

We use the relation M−→ from Definition 3.6 to show that any equation step below a term
set M eventually turns into a conversion over Eω ∪ R∞ that is still below M . Note that
just like in Section 6 we avoid the use of a synthesized termination argument by handling
equations and rules separately.

Lemma 7.7. The inclusion
S−−→
E∞
⊆ S←−−−−→

Eω∪R∞
∗ holds for all sets S of terms. �

Proof. Let t ≈ u ∈ E∞. We prove

M−−−→
t≈u

⊆ M←−−−−→
Eω∪R∞

∗

by induction on {t, u} with respect to the well-founded order �mul. If t ≈ u ∈ E±ω then the
claim follows trivially. Otherwise, t ≈ u ∈ (Ei−1 \ Ei)± for some i > 0. Using Lemma 7.3(2),
we distinguish two subcases.
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• Suppose t ≈ u ∈ (
·�1−−→Si · E

±
i )
±

. There exist a term t′ and an equation v′ ≈ u′ ∈ E±i such

that {t, u} = {t′, u′} and t′
·�1−−→Si v′. It is sufficient to show

t′
{t′, u′}←−−−−→
Eω∪R∞

∗ v′ and v′
{t′, u′}←−−−−→
Eω∪R∞

∗ u′

The second conversion follows from t′ > v′ and the induction hypothesis for v′ ≈ u′ ∈ E±i ,
which is applicable as {t, u} = {t′, u′} �mul {v′, u′}. The first conversion is obtained as
follows. Because of t′

·�1−−→Si v′, we have t′ →Ri v
′ or t′

·�−→E>i v′. If t′ →Ri v
′ then this step

can be labeled with {t′, u′} as t′ > v′. Otherwise, there exist an equation ` ≈ r ∈ E±i , a
context C, and a substitution σ such that t′ = C[`σ], v′ = C[rσ], `σ > rσ, and t′ �· `. We
have t′ � ` and t′ � r as t′ ·� `σ > rσ ·� r. Therefore {t′, u′} �mul {`, r} holds, so

`
{`, r}←−−−−→
Eω∪R∞

∗ r

follows from the induction hypothesis. Closure under contexts and substitutions now
yields t

{t, u}←−−→∗Eω∪R∞ u.

• If t ≈ u ∈ R±i ∪= then t
{t, u}←−−→
R∞

= u.

In both cases t
{t, u}←−−→∗Eω∪R∞ u holds. Since M contains upper bounds of t and u with respect

to >, the desired inclusion follows from the closure under contexts and substitutions of
→Eω∪R∞ and >.

Next, we show that a rewrite step that uses a rule in R∞ and is below a multiset of
terms M eventually turns into a conversion over persistent rules and equations that is still
below M . To this end we write gt for the set {u ∈ T (F ,V) | t � u}.

Lemma 7.8. The inclusion
M−−→
R∞

⊆ M←−−−→
Eω∪Rω

∗ holds for all multisets M of terms. �

Proof. Let ` ≈ r ∈ R∞. We prove
M−−→
`→r

⊆ M←−−−→
Eω∪Rω

∗

by induction on (`, r) with respect to the well-founded order �lex. If `→ r ∈ Rω then the
claim trivially holds. Otherwise, there is some i > 0 such that ` → r ∈ Ri−1 \ Ri. From
Lemma 7.7 and the induction hypothesis the inclusions

N−−−−−−→
E∞∪R∞

⊆ N←−−−−→
Eω∪R∞

∗ ⊆ N←−−−→
Eω∪Rω

∗ (7.1)

are obtained for every set N ⊆ g`. Using Lemma 7.3, we distinguish two cases.

• Suppose `
·�2−−→Si u and u ≈ r ∈ Ei for some term u. There exist an equation `′ ≈ r′ ∈

E±∞ ∪ R∞, a context C and a substitution σ such that ` = C[`′σ], u = C[r′σ], `σ > rσ,
and ` �· `′. We have ` � `′, r′ as ` �· `′ and ` ·� `′σ > r′σ ·� r′ and thus

`′
{`′}←−−−−→

E∞∪R∞
r′

Since {`′, r′} ⊆ g` we obtain `′
{`′, r′}←−−−→∗Eω∪Rω

r′ from (7.1). Therefore, `
{`}←→∗Eω∪Rω

u
follows from closure under contexts and substitutions and ` > u. Again from ` > u, r we
obtain u

g`←→E∞∪R∞ r and thus u
g`←→Eω∪Rω r follows from (7.1).

• Suppose `→ u ∈ Ri and u Si← r for some term u. We have r > u and thus (`, r) �lex (`, u).
Hence we can apply the induction hypothesis to `

{`}−−→`→u u, yielding `
{`}←→∗Eω∪Rω

u. From
` > r > u we obtain u

g`←→E∞∪R∞ r and thus u
g`←→∗Eω∪Rω

r follows by (7.1).

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ri_subset_ERw
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In both cases `
{`}←→∗Eω∪Rω

r holds. Since →Eω∪Rω and > are closed under contexts and
substitutions, the desired inclusion on steps using `→ r follows.

We can combine the preceding lemmata to obtain an inclusion in conversions over
persistent equations and rules.

Corollary 7.9. The inclusion
M−−−−−−→

E∞∪R∞
⊆ M←−−−→

Eω∪Rω

∗ holds for all multisets of terms M . �

For instance, in Example 7.5 we have f(x)
M←→E∞ f(a) for M = {f(x), f(a)} and the

conversion f(x)←→ b←→ f(a) in Eω ∪ Rω clearly satisfies f(x)
M←→∗Eω∪Rω

f(a).
The results obtained so far are sufficient to show that ordered completion can produce a

complete system.

Theorem 7.10. If Γ satisfies PCP(Rω) ⊆ ↓Rω
∪ ←→E∞ and Eω = ∅ then Rω is a complete

presentation of E0. �

Proof. We prove that Rω is confluent by showing that labeled Rω reduction on arbitrary
terms is source decreasing. Consider t Rω

s←− s s−→Rω u. From Lemma 2.16 we obtain t O2
s u

(where Rω takes the place of R in the definition of Os). Let v Os w appear in this sequence
(so t = v or w = u). We have s > v, s > w, and v ↓Rω

w or v ←→E∞ w by the definition of
Os and the assumption PCP(Rω) ⊆ ←→E∞ .

• If v ↓Rω
w then v 0 v−−→∗Rω

· ∗
Rω

0 w←−− w and thus v
∨s←→∗Rω

w.

• If v ←→E∞ w then v
∨s←→∗Rω

w by Corollary 7.9.

Hence t
∨s←→∗Rω

u. Confluence of Rω follows from Lemmata 2.9 and 2.5. Termination of
Rω holds by Lemma 7.6. We have ←→∗E0 = ←→∗Rω

by an easy induction argument using
Corollary 7.4, so Rω is a complete presentation of E0.

From now on we specialize our results to ground terms. In the remainder of this section
we therefore assume that > is a ground-total reduction order. Before continuing with results
on ordered completion, we define extended critical pairs.

Definition 7.11 (Extended Overlaps �). An extended overlap of a given ES E is a triple
〈`1 ≈ r1, p, `2 ≈ r2〉 satisfying the following properties:

• there are renamings π1 and π2 such that π1(`1 ≈ r1), π2(`2 ≈ r2) ∈ E± (that is, the
equations are variants of equations in E±),

• Var(`1 ≈ r1) ∩ Var(`2 ≈ r2) = ∅,

• p ∈ PosF (`2),

• `1 and `2|p are unifiable with some mgu µ, and

• r1µ 6> `1µ and r2µ 6> `2µ.

An extended overlap gives rise to the extended critical pair `2[r1]pµ ≈ r2µ. An extended

critical pair is called prime if all proper subterms of `1µ are E>-normal forms. The set of
extended prime critical pairs among equations in E is denoted by PCP>(E).

For example, the equations 1·(x+−x) ≈ x+−x and y+−y ≈ −z+z are variable-disjoint
variants of equations in Example 7.1. Neither of them can be oriented from right to left
(independent of the choice of >). Because of the peak 1 · (−z+ z)←→ 1 · (x+−x)←→ x+−x
they admit the extended overlap 〈y+−y ≈ −z+ z, 1, 1 · (x+−x) ≈ x+−x〉 which gives rise
to the extended critical pair 1 · (−z + z) ≈ x+−x. Note that since the second equation is
unorientable, a run of a standard completion procedure will not encounter this critical pair.
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Extended critical pairs are important due to the Extended Critical Pair Lemma [BDP89],
according to which these are the only peaks relevant for ground confluence. In our for-
malization we use the following variant. The proof employs a similar peak analysis as in
Lemma 2.12.

Lemma 7.12. Let E be an ES and consider a peak �

t
pq, σ1←−−−−
r1≈ `1

s
p, σ2−−−−→
`2≈ r2

u

involving ground terms s, t, and u such that `1σ1 > r1σ1 and `2σ2 > r2σ2. If `1 ≈ r1, `2 ≈
r2 ∈ E do not form an extended overlap at position q then t ↓E> u.

In the sequel, we write Sω for the TRS E>ω ∪ Rω.

Corollary 7.13. If s←→
E∞

t for ground terms s and t then s
{s,t}←−→
Sω
∗ t. �

Proof. We obtain s
{s,t}←−→∗Eω∪Rω

t from Corollary 7.9. Since > is ground-total, all Eω steps

in this conversion are (E>ω )± steps or trivial steps between identical terms. Hence s
{s,t}←−→
Sω
∗ t

as desired.

Definition 7.14. A run (E0,R0) `o (E1,R1) `o (E2,R2) `o · · · is called fair if the
inclusion PCP>(Eω ∪ Rω) ⊆ ↓Sω ∪ ←→E∞ holds.

The following lemma links extended prime critical pairs to standard critical pairs and
hence allows us to reuse results from Section 2.3 for our main correctness result (Theorem 7.16
below).

Lemma 7.15. For a TRS R and an ES E, the inclusion ←−−−→
PCP(S)

⊆ ←−−−−−−→
PCP>(E ∪R)

∪ ↓S holds
on ground terms. �

Proof. Suppose s←→e t for ground terms s and t and a prime critical pair e : `2σ[r1σ]p ≈ r2σ
generated from the overlap 〈`1 → r1, p, `2 → r2〉 in S. Let ui ≈ vi be the equation `i ≈ ri if
`i → ri ∈ R and the equation in E± such that `i = uiτi and ri = viτi for some substitution τi
if `i → ri ∈ E>. In the former case we let τi be the empty substitution. Since the equations
u1 ≈ v1 and u2 ≈ v2 are assumed to be variable-disjoint, the substitution τ = τ1 ∪ τ2 is
well-defined. We distinguish two cases.

• If p /∈ PosF(u2) then 〈u1 ≈ v1, p, u2 ≈ v2〉 is not an overlap and hence s ↓S t by
Lemma 7.12.

• Suppose p ∈ PosF(u2). Since u2|pτσ = `2|pσ = `1σ = u1τσ there exist an mgu µ of
u2|p and u1, and a substitution ρ such that µρ = τσ. Because uiµρ = `iσ > riσ = viµρ,
viµ > uiµ is impossible. Hence e′ : u2µ[v1µ]p ≈ v2µ ∈ CP>(E ∪ R) and

`2σ[r1σ]p = u2µρ[v1µρ]p = u2µ[v1µ]pρ←−→
e′

v2µρ = r2σ

Since e is prime, proper subterms of `2σ|p = u2µρ|p are irreducible with respect to S, and
hence the same holds for proper subterms of u2µ. It follows that e′ ∈ PCP>(E ∪ R) and
thus `2σ[r1σ]p ←−−−−−−→

PCP>(E ∪R)
r2σ. Hence also s←−−−−−−→

PCP>(E ∪R)
t.

This relationship between extended critical pairs among E ∪ R and critical pairs among S
is the final ingredient for the main result of this section. As in the preceding section, we
establish correctness of ordered completion via source decreasingness.
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Theorem 7.16. If Γ is fair then Sω is ground-complete and
∗←−→
E0

and
∗←−−−→

Eω∪Rω

coincide. �

Proof. Termination of Sω is a consequence of Lemma 7.6 and the definition of E>ω . Next we
show that Sω is ground-confluent. To this end, we show that labeled Sω reduction is source
decreasing on ground terms. So let s, t, and u be ground terms such that

t
s←−−
Sω

s
s−−→
Sω

u

Lemma 2.16 yields t O2
s u (where Sω takes the place of R in the definition of Os). Let v Os w

appear in this sequence (so t = v or w = u and both terms are ground). We have s > v,
s > w, and (v, w) ∈ ↓Sω ∪←→E∞ by the definition of Os, Lemma 7.15, and fairness of Γ.

• If v ↓Sω w then v 0 v−−→∗Sω ·
∗
Sω

0 w←−− w and thus v
∨s←→∗Sω w.

• If v ←→E∞ w then v ←→Ei w for some i > 0 and thus v
∨s←→∗Sω w by Corollary 7.13.

Hence t
∨s←→∗Sω u. Confluence of the ARS that is obtained by restricting Sω to ground

terms now follows from Lemmata 2.9 and 2.5. It remains to show ←→∗E0 =←→∗Eω∪Rω
. Using

Corollary 7.4 we obtain →Ei∪Ri ⊆ ←→∗E0 for all i > 0 by a straightforward induction
argument. This in turn yields ←→∗E∞∪R∞ ⊆ ←→

∗
E0 and in particular ←→∗Eω∪Rω

⊆ ←→∗E0 . The
reverse inclusion follows from Corollary 7.9 and the inclusion ←→∗E0 ⊆ ←→

∗
E∞∪R∞ .

If Eω is empty, the TRS Rω is not only ground-confluent but actually confluent on all
terms. Even though this result is not surprising, we did not find it explicitly stated in the
literature.

Theorem 7.17. If Γ is fair and Eω = ∅ then Rω is a complete presentation of E0. �

Proof. We have PCP(Rω) ⊆ PCP>(Eω ∪ Rω) since Rω ⊆ >. Hence the result follows from
fairness and Theorem 7.10.

Example 7.18. Consider the ES E from Example 7.1 and >lpo with precedence + > 0.
After two orient steps, we apply deduce:

1 · (−x+ x)→ 0 1 · (x+−x)→ x+−x −x+ x ≈ y +−y 1 · (−z + z) ≈ x+−x
The newly added equation is simplified and then oriented:

1 · (−x+ x)→ 0 1 · (x+−x)→ x+−x −x+ x ≈ y +−y x+−x→ 0

Using the new rewrite rule, the remaining equation is simplified, the second rule is subjected
to compose and subsequently to collapse:

1 · (−x+ x)→ 0 1 · 0 ≈ 0 −x+ x ≈ 0 x+−x→ 0

Orienting both equations results in:

1 · (−x+ x)→ 0 1 · 0→ 0 −x+ x→ 0 x+−x→ 0

At this point the first rule is collapsed using the third rule, and subsequently oriented (into
an existing rule):

1 · 0→ 0 −x+ x→ 0 x+−x→ 0

This sequence can be extended to an infinite run by repeatedly adding (using deduce) and
deleting the trivial equation 0 ≈ 0. Then the set of persistent rules Rω coincides with the
TRS R from Example 7.1, and Eω = ∅.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:correctness_okb
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The final result in this section is in the spirit of Theorem 4.7 but for ordered completion,
showing that a ground-complete system can be interreduced to some extent.

Definition 7.19. Given a ground-complete system S = E> ∪R, we define

R′ = {`→ r | `→ r ∈ Q̇ and ` ∈ NF(
·�−→S)}

E ′ = {s↓R′ ≈ t↓R′ | s ≈ t ∈ E} \=

where Q = R∪ (E± ∩>) and Q̇ is defined in Definition 4.5.

Here we write t
·�−→S u if there are a rule ` → r ∈ S, a context C, and a substitution

σ such that t = C[`σ], u = C[rσ], and t �· `. For example, if E is empty and R consists

of the single rule f(x, y)→ g(x) we have f(y, z) ∈ NF(
·�−→S), but f(g(x), y) /∈ NF(

·�−→S) and

f(x, x) /∈ NF(
·�−→S).

Theorem 7.20. If S = E> ∪R is ground-complete then S ′ = E ′> ∪R′ is ground-complete
and normalization and conversion equivalent on ground terms. �

Proof. We first show NF(S ′) ⊆ NF(S). For a rule ` → r ∈ S, let b`→r be ⊥ if ` → r ∈ Q
and > otherwise. We prove ` /∈ NF(S ′) for every rule `→ r ∈ S, by induction on (`, b`→r)
with respect to the lexicographic combination of �· and the order where > > ⊥.

• If ` → r ∈ Q two cases can be distinguished. If ` /∈ NF(
·�−→S) then ` �· `′ for some rule

`′ → r′ ∈ S and thus `′ /∈ NF(S ′) by the induction hypothesis. Hence also ` /∈ NF(S ′).
If ` ∈ NF(

·�−→S) then, by construction of R′, there is some rule ` → r′ ∈ R′ (modulo
renaming), so ` /∈ NF(S ′).
• If ` → r /∈ Q then ` = uσ and r = vσ for some equation u ≈ v ∈ E± and substitution
σ such that ` > r. We distinguish two cases. First, if u ∈ NF(R′) then u = u↓R′ . We
have ` > r > v↓R′σ because R′ ⊆ > and hence u 6= v↓R′ . It follows that u ≈ v↓R′ ∈ E ′±
and thus ` → v↓R′σ ∈ E ′�. Hence ` /∈ NF(S ′). Second, if u /∈ NF(R′) then u /∈ NF(Q̇)

since R′ ⊆ Q̇. So there exists a rule `′ → r′ ∈ Q such that u ·� `′. Clearly ` ·� `′. Since
`→ r /∈ Q, the induction hypothesis yields `′ /∈ NF(S ′). Hence also ` /∈ NF(S ′).

We next establish the inclusion →S′ ⊆ ←→∗S on ground terms. We have E ′ ∪ R′ ⊆ ←→∗E ∪R
by construction. For ground terms s and t, a step s →S′ t implies s ←→E ′∪R′ t and hence
existence of a conversion s ←→∗E ∪R t. We can also obtain such a conversion where all
intermediate terms are ground by replacing every variable with some ground term. Since
the reduction order > is ground-total, →E ∪R ⊆ ←→=

S holds on ground terms. Hence there is
a conversion s←→∗S t.

Moreover, the system S ′ is clearly terminating as it is included in >. Thus the result
follows from Lemma 4.4(2), viewing S and S ′ as ARSs on ground terms.

We illustrate the transformation of Definition 7.19 on a concrete example.

Example 7.21. Consider the following system with R consisting of one rule and E consisting
of three equations:

s(s(x)) + s(x)→ s(x) + s(s(x)) x+ s(y) ≈ s(x+ y) x+ y ≈ y + x

s(x) + y ≈ s(x+ y)

It is ground-complete for the lexicographic path order [KL80] with + > s as precedence. We
have Q = R ∪ {x + s(y) → s(x + y), s(x) + y → s(x + y)}. Since the term s(s(x)) + s(x)

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:reduced_ground_complete
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is reducible by the rule s(x) + x→ x+ s(x) ∈ S and s(s(x)) + s(x) ·� s(x) + x, the rule of
R does not remain in R′. Hence, R′ = {x + s(y) → s(x + y), s(x) + y → s(x + y)} and
E ′ = {x+ y ≈ y + x}.

One may wonder whether R′ can simply be defined as Q̈ instead of imposing a strict
encompassment condition. The following example shows that this destroys reducibility.

Example 7.22. Consider the following system where R consists of two rules and E consists
of one equation:

f(x, y)→ g(x) f(x, y)→ g(y) g(x) ≈ g(y)

Then E>∪R is ground-complete if > is the lexicographic path order with f > g as precedence.
We have R′ = Q̇ = Q = R and E ′ = E but Q̈ = ∅.

Note that we obtain an equivalent ground-complete system if we add, for instance, an
equation g(g(x)) ≈ g(y). This shows that even systems which are simplified with respect to
the procedure suggested by Theorem 7.20 are not unique.

This section resumes our results on ordered completion [HMSW17]. Like in Sections 3
and 6, our proofs deviate from the standard approach [BDP89] in that we avoid proof orders
in favor of different, simpler orderings as required, together with source decreasingness.
Again, we also support prime critical pairs. For Theorem 7.17 and the interreduction result
of Theorem 7.20 we are not aware of earlier references in the literature.

8. Completeness Results for Ordered Completion

Ordered completion never fails and its limit always constitutes a ground-complete system.
On the other hand, if there is a complete presentation that is compatible with the employed
reduction order, does ordered completion also produce a complete presentation, ending
with Eω = ∅? In this section we revisit two results from the literature which provide
sufficient conditions for ordered completion to always derive a complete system, independent
of the strategy employed by a completion procedure. In Section 8.1 we reprove the result
by Bachmair, Dershowitz, and Plaisted for the case where the reduction order is ground
total [BDP89]. The corresponding result by Devie [Dev91] for linear systems is considered
in Section 8.2.

8.1. Ground-Total Orders. In this subsection we consider a fair run Γ of ordered com-
pletion

(E0,R0) `o (E1,R1) `o (E2,R2) `o · · ·
with respect to a ground-total reduction order >. If Eω = ∅ then the TRS Rω is a complete
presentation of E0 by Theorem 7.17. According to Bachmair et al. [BDP89, Theorem 2],
under certain conditions fair runs always conclude with Eω = ∅ whenever there exists a
complete presentation of E0 compatible with >. In the remainder of this subsection we
give a formalized proof of this result. Like the original proof, it is based on the idea that
ground-completeness of Rω is preserved under signature extension with constants. Let K be
a set of different fresh constants x̂ for every variable x ∈ V . We first show that the reduction
order > can be extended to a ground-total order on the signature augmented by K such
that minimum constants are preserved.
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Lemma 8.1. There exists a ground-total reduction order >K on T (F ∪ K,V) such that
> ⊆ >K and the minimum constant with respect to > is also minimum in >K. �

Proof. Let ⊥ ∈ F be the minimum constant with respect to >. We consider the KBO =kbo

with weights w0 = 1 and w(f) = 1 for all f ∈ F ∪ K together with a precedence = which
is total on F ∪ K, has ⊥ as the minimum element, and satisfies x̂ = f for all f ∈ F and
x̂ ∈ K. Given a term t ∈ T (F ∪K,V), we write t⊥ for the term obtained from t by replacing
every constant in K with ⊥. Furthermore, we define s >K t as s⊥ > t⊥, or both s⊥ = t⊥
and s =kbo t. We show that >K is a ground-total reduction order with the stated properties.
Ground totality of >K follows from ground totality of =kbo given the total precedence.
Well-foundedness holds by construction as a lexicographic combination of well-founded
relations. Closure under substitutions is satisfied because it holds for both > and =kbo,
and s⊥ = t⊥ implies sσ⊥ = tσ⊥. Similar arguments apply to closure under contexts and
transitivity. By construction of = and the definition of >K, the constant ⊥ is still minimal.
Moreover >K extends > because s > t implies s, t ∈ T (F ,V), so s⊥ = s > t = t⊥ and hence
s >K t.

We write t̂ for the ground term that is obtained from t by replacing every variable x by
the constant x̂. In the next lemma we verify some basic properties related to this grounding
operation.

Lemma 8.2. Let R be a TRS over a signature F and let s, t ∈ T (F ,V).

(1) If s > t then ŝ >K t̂. �

(2) Suppose s 6= t. Then s→R t if and only if ŝ→R t̂. �

Proof.

(1) Suppose s > t. Lemma 8.1 yields s >K t and, because >K is closed under substitutions,
ŝ >K t̂.

(2) We consider the two implications separately.
• If s→R t then Var(t) ⊆ Var(s). Let σ be a substitution such that ŝ = sσ. We have
t̂ = tσ and thus ŝ = sσ →R tσ = t̂.

• Conversely, if ŝ→R t̂ then ŝ|p = `σ and t̂ = ŝ[rσ]p for some rule `→ r ∈ R, position

p, and substitution σ. We denote the substitution {x 7→ φ(σ(x)) | x ∈ V} by σφ. Here
φ(u) denotes the term obtained from u after replacing every constant x̂ of K by x.
Because s|p = φ(ŝ|p) = φ(`σ) = `σφ and t = φ(t̂) = φ(ŝ[rσ]p) = s[rσφ]p, we obtain

s→R t as desired.

It is not hard to see that the TRS Sω still constitutes a ground-complete presentation of E0
when considered over the extended signature, as shown below.

Lemma 8.3. The TRS Sω is ground-complete over F ∪ K and ←→∗Eω∪Rω
=←→∗E0. �

Proof. Since >K contains > by Lemma 8.1, the run Γ is also a valid run with respect to >K.
It is moreover fair since > ⊆ >K implies PCP>K(E) ⊆ PCP>(E) for any set of equations E ,
by Definition 7.11. Hence the result follows from Theorem 7.16.

An important observation for the completeness proof below is that normal forms with
respect to the final system Sω and with respect to the union S∞ of intermediate systems
coincide, as shown below.

Lemma 8.4. The inclusion NF(Sω) ⊆ NF(S∞) holds. �

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:less_sk
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Proof. The result is an immediate consequence of the following two claims:

(a) If ` ≈ r ∈ E±∞, ` ∈ NF(R∞), and `σ > rσ then `σ /∈ NF(E>ω ).

(b) If `→ r ∈ R∞ then ` /∈ NF(Sω).

For claim (a) we use induction on {`, r} with respect to �mul. If ` ≈ r ∈ E±ω the result is
immediate. Otherwise, ` ≈ r ∈ Ei \ Ei+1 or r ≈ ` ∈ Ei \ Ei+1 for some i > 0. Without loss
of generality we assume the former since the latter case is similar. From Lemma 7.3(2) we

obtain ` (→·�1
Si+1
· Ei+1

±)
±
r, ` → r ∈ Ri+1, r → ` ∈ Ri+1, or ` = r. The latter two cases

are impossible because of the assumption `σ > rσ and the inclusion Ri+1 ⊆ R∞ ⊆ >. Also
`→ r ∈ Ri+1 is impossible because of the assumption ` ∈ NF(R∞).

• Suppose ` →·�1
Si+1

u and u ≈ r ∈ E±i+1 for some term u. The step ` →Si+1 u cannot use

a rule in Ri+1 because ` ∈ NF(R∞). So there must be an equation `′ ≈ r′ ∈ E±i+1, a
substitution τ , and a position p in ` such that `|p = `′τ , u|p = r′τ , `′τ > r′τ , and ` �· `′.
Because of ` ·� `′τ > r′τ ·� r′ we have ` � r′, and therefore {`, r} �mul {`′, r′}. Moreover,
`′ ∈ NF(R∞). The induction hypothesis yields `′τ /∈ NF(E>ω ). Since ` ·� `′τ , we have
` /∈ NF(E>ω ) and thus also `σ /∈ NF(E>ω ).

• In the remaining case we have r →·�1
Si+1

u and u ≈ ` ∈ E±i+1 for some term u. We have

r > u and thus also r � u and {`, r} �mul {`, u}. Because `σ > rσ > uσ, the result follows
from the induction hypothesis.

For claim (b) we use induction on (`, r) with respect to �lex. If `→ r ∈ Rω then ` /∈ NF(Sω)
trivially holds. Otherwise, ` → r ∈ Ri \ Ri+1 for some i > 0. From Lemma 7.3(3) we
obtain ` →·�2

Si+1
· Ei+1 r or ` Ri+1 · Si+1← r. In the latter case there is a term u such

that ` → u ∈ Ri+1 and r →Si+1 u. Since this implies r > u and thus (`, r) �lex (`, u), we
obtain ` /∈ NF(Sω) from the induction hypothesis. In the former case there is a term u such
that ` →·�2

Si+1
u and u ≈ r ∈ Ei+1. If the step ` →Si+1 u uses a rule `′ → r′ ∈ Ri+1 then

the result follows from the induction hypothesis because ` �· `′ implies (`, r) �lex (`′, r′),
and `′ /∈ NF(Sω) implies ` /∈ NF(Sω). Otherwise, there exist an equation `′ ≈ r′ ∈ Ei+1, a
position p in `, and a substitution σ such that `|p = `′σ, r|p = r′σ, `′σ > r′σ, and ` �· `′.
If `′ ∈ NF(R∞) then we obtain `′σ /∈ NF(E>ω ) from claim (a) and thus ` /∈ NF(Sω) because
` ·� `′σ. If `′ /∈ NF(R∞) then there exists some rule `′′ → r′′ ∈ R∞ such that `′ ·� `′′. In this
case we have ` � `′′ and thus (`, r) �lex (`′′, r′′). We obtain `′′ /∈ NF(Sω) from the induction
hypothesis. Hence also ` /∈ NF(Sω).

Corollary 8.5. The identity NF(Sω) = NF(S∞) holds. �

Proof. We obtain NF(S∞) ⊆ NF(Sω) from the inclusion →Sω ⊆ →S∞ and hence the result
follows from Lemma 8.4.

Hereafter we assume that there is a complete presentation R of E0 with R ⊆ >. We
next show that grounded terms which are Sω-normal forms are also R-normal forms.

Lemma 8.6. If t̂ ∈ NF(Sω) then t̂ ∈ NF(R). �

Proof. Suppose t̂ ∈ NF(Sω) but t̂ /∈ NF(R), so t̂→R u for some term u. Since t̂ is ground
and R is terminating, also u is ground. We obtain t̂ ↓Sω u from the ground-completeness

of Sω (Lemma 8.3). Since t̂ >K u by the global assumption R ⊆ > and Lemma 8.2(1), the
joining sequence cannot be of the form t̂ ∗

Sω← u as this would imply u > t̂ and thus u >K t̂,
contradicting the well-foundedness of >K. Therefore we must have t̂ →+

Sω ·
∗
Sω← u which

means that t̂ is reducible in Sω, contradicting the assumption t̂ ∈ NF(Sω).

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Sw_NF_Sinf
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The preliminary results collected so far now lead to the following key observation:
If a grounded term ŝ is reducible then so is its (possibly non-ground) counterpart s. In
Lemma 8.8 below we can then connect R-reducibility to Sω-reducibility for terms over the
original signature.

Lemma 8.7. If ŝ→S∞ t̂ then s /∈ NF(S∞). �

Proof. There exist an equation ` ≈ r ∈ E±∞ ∪R∞, a position p, and a substitution σ such
that ŝ|p = `σ̂, t̂ = ŝ[rσ̂]p, and `σ̂ >K rσ̂. We perform induction on t̂ with respect to >K.

If p 6= ε then t̂� rσ̂ and thus t̂ >K rσ̂ because >K is a ground-total reduction order. The
induction hypothesis yields `σ /∈ NF(S∞), which implies s /∈ NF(S∞). So in the following we
assume that the step ŝ→S∞ t̂ takes place at the root position. If s > t then s→ t ∈ S∞,
from which the claim is immediate. This covers the case ` ≈ r ∈ R∞, so if s 6> t then
` ≈ r ∈ E±∞. We distinguish two cases, t̂ ∈ NF(S∞) and t̂ /∈ NF(S∞).

• If t̂ ∈ NF(S∞) then t̂ ∈ NF(Sω) by Corollary 8.5 and thus t̂ ∈ NF(R) by Lemma 8.6. From
Lemma 8.3 and the fact that R is a complete presentation of E0 we obtain ŝ→+

R t̂. The

latter implies s→+
R t by Lemma 8.2(2) and thus s > t, which is a contradiction.

• Suppose t̂ /∈ NF(S∞). We distinguish two further cases, depending on whether or not
` ≈ r belongs to E±ω .

If ` ≈ r /∈ E±ω then ` ≈ r ∈ (Ei \ Ei+1)
± for some i > 0. From Lemma 7.3(2) we

obtain ` (→Si+1 · E
±
i+1)

±
r, ` → r ∈ Ri+1, r → ` ∈ Ri+1, or ` = r. The last two cases

contradict ŝ >K t̂. If ` →Si+1 · E
±
i+1 r or ` → r ∈ Ri+1 then ` /∈ NF(S∞) and thus

s = `σ /∈ NF(S∞). Otherwise, r →Si+1 u for some term u with u ≈ ` ∈ E±i+1. We have

s = `σ ←→E∞ uσ S∞← rσ = t and thus ŝ = `σ̂ →S∞ uσ̂ = ûσ and t̂ = rσ̂ >K uσ̂. The
induction hypothesis yields s /∈ NF(S∞).

In the second case we assume ` ≈ r ∈ E±ω . From the assumption t̂ /∈ NF(S∞) we obtain
a term u such that t̂ →S∞ û. We have t̂ >K û and thus t /∈ NF(Sω) by the induction
hypothesis. Consider an innermost Sω-step starting from t, say t

i−→Sω v, such that there
exists a peak

s = `σ ←→`≈r rσ = t→q
Sω v (?)

with lσ = s 6> t = rσ. If the two steps form an overlap then we have s←→PCP>(Eω∪Rω) v
since t

i−→Sω v is innermost, and thus s ←→E∞ v or s ↓Sω v is obtained from the fairness

of the run. In the former case, since ŝ >K t̂ >K v̂, we have ŝ →S∞ v̂ and thus the
induction hypothesis applies. If on the other hand s ↓Sω v then we cannot have v →∗Sω s
as this would imply v > s, contradicting ŝ >K v̂ because > and >K are compatible by
Lemma 8.2(1). So s must be Sω-reducible.

Otherwise, the peak (?) constitutes a variable overlap, so there is some variable x ∈
Var(r) and positions q1 and q2 such that r|q1 = x and q = q1q2. If x /∈ Var(`) then
s←→E∞ v and the induction hypothesis applies as before. Otherwise, s = `σ is reducible
in S∞.

Lemma 8.8. The inclusion NF(Sω) ⊆ NF(R) holds. �

Proof. Suppose t→R u, so t > u and thus also t̂ >K û. From Lemma 8.3 we obtain t̂ ↓Sω û.

Like in the proof of Lemma 8.6, û→∗Sω t̂ would imply û >K t̂, contradicting well-foundedness

of >K. Therefore the joining sequence must be of the shape t̂ →+
Sω ·

∗
Sω← û and thus t̂ is

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:sk_Swinf_step_imp_no_Sinf_NF
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reducible in Sω and also in S∞ because Sω ⊆ S∞. Lemma 8.7 yields t /∈ NF(S∞) and thus
t /∈ NF(Sω) by Corollary 8.5.

We call (Eω,Rω) simplified if Rω is reduced and all equations in Eω are irreducible
with respect to Rω, unorientable with respect to >, and non-trivial. We use the following
auxiliary result before proving the main completeness theorem.

Lemma 8.9. If (Eω,Rω) is simplified then NF(Rω) ⊆ NF(Sω). �

Proof. Suppose (Eω,Rω) is simplified and let s ∈ NF(Rω). We prove s ∈ NF(Sω) by induction
on s with respect to �. If s /∈ NF(Sω) then there exist an equation ` ≈ r ∈ E±ω , a context C,
and a substitution σ such that s = C[`σ] and `σ > rσ. Since s ·� `σ > rσ ·� r implies s � r
and r ∈ NF(Rω) by the assumption that (Eω,Rω) is simplified, the induction hypothesis
yields r ∈ NF(Sω). Hence r ∈ NF(R) by Lemma 8.8. Since R is a complete presentation of
E0, we have ` ↓R r and thus `→∗R r. From R ⊆ > we infer ` > r or ` = r, contradicting the
assumption that (Eω,Rω) is simplified.

Theorem 8.10. If (Eω,Rω) is simplified then Eω = ∅ and Rω is literally similar to R. �

Proof. Suppose Eω 6= ∅ and let s ≈ t be an equation in Eω. The terms s and t are R-normal
forms by the assumption that (Eω,Rω) is simplified in combination with Lemmata 8.8 and 8.9.
Since R is a complete presentation of E0, we obtain s = t, contradicting the assumption that
(Eω,Rω) is simplified. Hence, Eω = ∅ and therefore Rω is a complete presentation of E0 by
Theorem 7.17. Since (Eω,Rω) is simplified, Rω is even a canonical presentation of E0. As
Rω ⊆ >, literal similarity of Rω and R is concluded by Theorem 4.11.

A run of ordered completion is called simplifying if its limit (Eω,Rω) is simplified.

Example 8.11. Consider again the ES E from Example 7.1 and its complete presentation
R, which cannot be derived using standard completion. Termination of R can be shown by
a suitable KBO. Thus, by Theorem 8.10 any fair and simplifying run of ordered completion
on E using the same order will succeed with a variant of R, independent of the employed
strategy.

The results in this subsection are due to Bachmair, Dershowitz, and Plaisted [BDP89].
However, our proof is structured into many preliminary results, as opposed to the monolithic
original version, and we fill in numerous details omitted in the original version.

8.2. Linear Systems. The previously presented correctness and completeness results (The-
orems 7.16 and 8.10) do not state any properties of the system obtained when running KBo

with a reduction order that is not ground-total. The following example from Devie [Dev91]
shows that the restriction to ground-total orders can actually be severe.

Example 8.12. Consider the ES E consisting of the following equations:

f1(g1(i1(x))) ≈ g1(i1(f1(g1(i2(x))))) h1(g1(i1(x))) ≈ g1(i1(x)) f1(a) ≈ a

f2(g2(i2(x))) ≈ g2(i2(f2(g2(i1(x))))) h2(g2(i2(x))) ≈ g2(i2(x)) f2(a) ≈ a

g1(a) ≈ a h1(a) ≈ a i1(a) ≈ a

g2(a) ≈ a h2(a) ≈ a i2(a) ≈ a

When orienting all equations from left to right we obtain a TRS R which is easily shown
to be terminating by automatic tools. As all critical pairs are joinable it is confluent, and

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Rw_subset_NF_Sw
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:completeness
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thus canonical since it is also reduced. However, R cannot be oriented by any ground-total
reduction order >. We have i1(a) ←→∗E i2(a) but neither i2(a) > i1(a) nor i1(a) > i2(a) can
hold; using the rule f1(g1(i1(x)))→ g1(i1(f1(g1(i2(x))))), the former would imply

f1(g1(i2(a))) > f1(g1(i1(a))) > g1(i1(f1(g1(i2(a)))))

which contradicts well-foundedness, and for the latter a similar argument applies. As a matter
of fact, in [Dev91] it is shown that any KBo run starting from E and using a ground-total
reduction order will fail to generate a finite result.

Devie [Dev91] gives a second sufficient condition for an ordered completion procedure
to compute a canonical result whenever such a presentation exists, without imposing any
restriction on the reduction order. Instead, the set of input equalities E0 is required to
be linear, and Devie considers an ordered completion inference system with a modified
deduction rule to ensure that linearity is preserved. He moreover shows that under these
circumstances a relaxed fairness condition is sufficient. In this section we give a new proof
of this result which has been formalized. First we recall Devie’s inference system.

Definition 8.13 (Linear Ordered Completion �). The inference system KBl of linear
ordered completion consists of the rules orient, delete, compose, simplify, and collapse ·� of
KBi (Definition 6.2) together with the following modified deduction rule:

deducel
E ,R

E ∪ {s ≈ t},R if s←−−−−
E±∪R

· −−−−→
E±∪R

t and s ≈ t is linear

We write (E ,R) `l (E ′,R′) if (E ′,R′) can be reached from (E ,R) by employing one of
the inference rules of Definition 8.13.

Lemma 8.14. The inclusion KBl ⊆ KBo holds. �

Note that in contrast to the ordered completion system KBo, ordered rewriting using
orientable instances of E is not permitted in compose, simplify, and collapse ·�. This is because
ordered rewrite steps need not preserve linearity as stated in Lemma 8.15 below. For example,
a compose step in KBo on the linear rule g(x)→ f(f(x)) using the linear equation f(x) ≈ f(y)
may result in the nonlinear rule g(x)→ f(h(x, x)) when h(x, x) is substituted for the variable
y and a reduction order > is used such that f(f(x)) > f(h(x, x)).

With these restrictions, it is not hard to prove that inference steps preserve linearity.

Lemma 8.15. If E ∪ R is linear and (E ,R) `l (E ′,R′) then E ′ ∪R′ is linear. �

From now on we consider E0 ∪R0 to be linear.

Definition 8.16. An extended overlap (Definition 7.11) which satisfies `1 > r1 and r2 6> `2,
or `2 > r2 and r1 6> `1 gives rise to a linear critical pair [Dev91]. The set of all linear critical
pairs originating from equations in E is denoted LCP>(E). An infinite run

(E0,R0) `l (E1,R1) `l (E2,R2) `l · · ·
is fair if the inclusion LCP>(Eω ∪ Rω) ⊆ ↓Rω

∪←→E∞ holds.

Below, we consider an infinite fair run Γ. We next show that the result of a fair run
without persistent equations is indeed complete.

Theorem 8.17. If Γ is fair and Eω = ∅ then Rω is a complete presentation of Eω. �

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#ind:oKBilin
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBilin_step_imp_oKBi_step
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBilin_step_linearity_preserving
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ew_empty_CR_Rw_linear
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Proof. The run Γ is also a valid KBo run by Lemma 8.14. We moreover have PCP(Rω) ⊆
LCP(Eω ∪ Rω) since Rω ⊆ >, and hence PCP(Rω) ⊆ ↓Rω

∪←→E∞ by fairness. So the result
follows from Theorem 7.10.

The following result relates equations in E∞ and rules in R∞ to persistent equations
and rules, respectively.

Lemma 8.18.

(1) E∞ ⊆
∗−−→
R∞

· =←→
Eω
· ∗←−−
R∞

�

(2) If `→ r ∈ R∞ then ` −−→
Rω

· ( <`←−−−→
Eω∪Rω

)
∗
r. �

Proof.

(1) For an equation s ≈ t ∈ E∞ we prove the desired inclusion by induction on {s, t} with
respect to >mul.

(2) By induction on (`, r) with respect to >lex.

In order to show that Rω is Church-Rosser modulo Eω, we need a result about joinability of
critical peaks modulo persistent equations.

Lemma 8.19. If there is an equation ` ≈ r ∈ E±ω ∪Rω with r 6> ` that is involved in a peak

s←−−−
r≈ `

· −−→
Rω

t then s
∗−−→
R∞

· =←→
Eω
· ∗←−−
R∞

t. �

Proof. If the two steps occur at parallel positions then they commute and thus s →Rω

· r≈ `← t. If the peak constitutes an overlap then s←→LCP(Eω∪Rω) t since Rω ⊆ > and r 6> `
by assumption. We thus have s←→E∞ t or s ↓Rω

t by fairness such that the claim follows
from Lemma 8.18(1) and Rω ⊆ R∞. Otherwise, we have a variable overlap. By Lemma 8.15
both Eω and Rω are linear. This implies s →=

Rω
· =
r≈ `← t, so the claim follows from the

inclusion Rω ⊆ R∞.

Lemma 8.20. The TRS Rω is Church-Rosser modulo Eω. �

Proof. Define the ARSs A and B with multiset labeling as follows:

• s M−→A t if s
{s′}−−→Rω t and M = {s′} for some term s′ > s.

• s M−→B t if s
{s′, t′}←−−→Eω t and M = {s′, t′} for some terms s′ > s and t′ > t.

By equipping them with the well-founded order >mul Lemmata 8.19 and 8.18 imply the
condition of peak decreasingness modulo. Hence, Lemma 2.7 applies.

For a run of KBl we call (Eω,Rω) simplified if Rω is reduced and Eω is irreducible with
respect to Rω and does not contain trivial equations. From now on we assume that (Eω,Rω)
is simplified. This allows us to establish relationships between R-normal forms and normal
forms with respect to the result of the linear completion run.

Lemma 8.21. The inclusion NF(R) ⊆ NF(E±ω ) ∩ NF(Rω) holds. �

Proof. Let t ∈ NF(R). Assume to the contrary that t→ u for some term u by applying an
equation ` ≈ r ∈ E±ω ∪Rω from left to right. Because R is a complete presentation of Eω ∪Rω,
we have ` ↓R r. Since t ∈ NF(R) implies ` ∈ NF(R), we obtain r →∗R `. If ` ≈ r ∈ Rω
this contradicts Rω ⊆ >, otherwise ` ≈ r ∈ E±ω and r →∗R ` contradict unorientability and
non-triviality of Eω, which hold by the assumption that Eω is simplified.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Einf_to_Ew
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Rinf_Rw_msteps
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:linear_peak_cases
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:CRm
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_R_subset_NF_REw
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Lemma 8.22. The inclusion NF(Rω) ⊆ NF(R) holds. �

Proof. We show that `→+
Rω

r for every `→ r ∈ R, which is sufficient to prove the claim.
Let `→ r ∈ R. By Lemma 8.20 we have

`
∗−−→
Rω

u←→
Eω
∗ v

∗←−−
Rω

r

for some terms u and v. Since R is reduced, r ∈ NF(R). According to Lemma 8.21, both
r ∈ NF(E±ω ) and r ∈ NF(Rω) hold. Hence r = v follows from r →∗Rω

v and u ←→∗Eω v = r
implies u = v. Therefore ` →∗Rω

r. Since R is terminating, ` = r is impossible and thus

`→+
Rω

r as desired.

As in the previous section, the last result allows us to establish the main completeness
theorem.

Theorem 8.23. If (Eω,Rω) is simplified then Eω = ∅ and Rω is literally similar to R. �

Proof. The TRS R is complete, the TRS Rω is terminating, and the inclusion →Rω ⊆ ←→∗R
holds because R is a complete presentation. Moreover, NF(Rω) ⊆ NF(R) by Lemma 8.22.
Hence, Lemma 4.4(2) applies. SinceRω is a complete presentation, Eω = ∅ by the assumption
of a simplified system.

Example 8.24. By Theorem 8.23 any simplifying KBl run on the equational system E
and the reduction order >lpo from Example 3.9 will result in a canonical presentation,
independent of the order in which inference steps are applied. Note that Theorem 8.10 does
not apply since the given order >lpo is not ground total.

We conclude the subsection by showing the absence of a complete presentation for the
equational system mentioned in the first paragraph of Section 7.

Example 8.25. Let E be the ES consisting of the two equations 0+x ≈ x and x+y ≈ y+x.
We show that E admits no complete presentation. Assume to the contrary that R is a
complete presentation of E . We use→+

R as the reduction order > for KBl. Because 0+x←→∗E x
implies 0+ x ↓R x and x ∈ NF(R), we have 0+ x > x. In the same way x+ 0 > x is derived.
Therefore, the following fair run of KBl is constructed:

(E ,∅) `orient
l ({x+ y ≈ y + x}, {0 + x→ x})
`deduce
l ({x+ y ≈ y + x, x+ 0 ≈ x}, {0 + x→ x})
`orient
l ({x+ y ≈ y + x}, {0 + x→ x, x+ 0→ x})
`deduce
l ({x+ y ≈ y + x, 0 ≈ 0}, {0 + x→ x, x+ 0→ x})
`delete
l ({x+ y ≈ y + x}, {0 + x→ x, x+ 0→ x})
`deduce
l ({x+ y ≈ y + x, 0 ≈ 0}, {0 + x→ x, x+ 0→ x})
`delete
l · · ·

It is easy to check that this run is fair; the two non-trivial critical pairs x + 0 ≈ x and
0 + x ≈ x belong to E±∞. We have Eω = {x+ y ≈ y + x} and Rω = {0 + x→ x, x+ 0→ x}.
Note that (Eω,Rω) is simplified. According to Theorem 8.23, the persistent set Eω must be
empty. This is a contradiction and thus R does not exist.

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Rw_subset_NF_R
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:linear_completeness
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In summary, our proof of Theorem 7.10 resembles the approach by Devie [Dev91], though
our version is structured along several preliminary results that are of independent interest,
such as Lemmata 8.20, 8.21, and 8.22.

9. Conclusion

In this paper we have presented new and formalized proofs for a number of correctness and
completeness results for abstract completion, ranging from the decidable case of ground-
completion to completeness results for ordered completion. By using modern abstract
confluence criteria, we could avoid the use of proof orders, which had a positive effect on the
Isabelle/HOL formalization.

We mention some topics for future work. Concerning completion of ground systems,
the literature contains other interesting results that we might consider as target for future
formalization efforts. Gallier et al. [GNP+93] showed that every ground ES E can be
transformed into an equivalent canonical TRS in O(n3) time, where n is the combined size
of the terms appearing in E . Snyder [Sny93] improved this result to an O(n log n) time
algorithm. Moreover, his algorithm can enumerate all canonical presentations, of which there
are at most 2k [Sny93, Theorem 4.7], where k is the number of equations in E . Furthermore,
all canonical presentations have the same number of rules.

In the context of ordered completion, completeness remains an open problem in the
general case: It is unknown whether an ordered completion run can find a complete system
R for a set of input equations E if neither E is linear (Theorem 8.23) nor R is compatible
with a ground-total reduction order (Theorem 8.10).

There are several important extensions of completion that we did not consider in this
paper. We mention completion in the presence of associative and commutative (AC) sym-
bols [PS81], normalized completion [Mar96,WM13], as well as maximal completion [KH11].
They are natural candidates for future formalization efforts.
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