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Abstract. Event Structures (ESs) address the representation of direct relationships
between individual events, usually capturing the notions of causality and conflict. Up to
now, such relationships have been static, i.e. they cannot change during a system run.
Thus, the common ESs only model a static view on systems. We make causality dynamic
by allowing causal dependencies between some events to be changed by occurrences of
other events. We first model and study the case in which events may entail the removal
of causal dependencies, then we consider the addition of causal dependencies, and finally
we combine both approaches in the so-called Dynamic Causality ESs. For all three newly
defined types of ESs, we study their expressive power in comparison to the well-known
Prime ESs, Dual ESs, Extended Bundle ESs, and ESs for Resolvable Conflicts. Interestingly,
Dynamic Causality ESs subsume Extended Bundle ESs and Dual ESs but are incomparable
with ESs for Resolvable Conflicts.

1. Introduction

Motivation. Modern process-aware systems emphasize the need for flexibility into their
design to adapt to changes in their environment [22]. One form of flexibility is the ability to
change the work-flow during the run-time of the system deviating from the default path, due
to changes in regulations or to exceptions. Such changes could be ad hoc or captured at the
build time of the system [18]. For instance—as taken from [22]—during the treatment process,
and for a particular patient, a planned computer tomography must not be performed due to
the fact that she has a cardiac pacemaker. Instead, an X-ray activity shall be performed. In
this paper, we provide a formal model that can be used for such scenarios, showing what is
the regular execution path and what is the exceptional one [18]. In the Conclusions section,
we highlight the advantages of our model over other static-causality models w.r.t. such
scenarios.

Concurrency Model. In many formalisms for concurrent systems, as e.g. in Petri nets or
different process calculi, causality is a derived concept ([3, 10]). As a consequence, adding
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Figure 1: An example Dynamic Causality ES (DCES). Events are represented as dots,
dependencies as solid arrows. The fact that an event can insert or delete a
dependency is represented by an arrow between the event and the dependency,
with a filled arrowhead for insertion and an empty arrowhead for deletion. Initially
absent dependencies, which may be added, are dotted.

dynamicity to the causality relation usually requires the duplication of modeled actions,
i.e., transitions in Petri nets or parts of processes in process calculi. Event Structures
(ESs) model causality more directly. They usually address statically defined relationships
that constrain the possible occurrences of events, typically represented as causality (for
precedence) and conflict (for choice). An event is a single occurrence of an action; it cannot
be repeated. ESs were first used to give semantics to Petri nets [23], then to process calculi
[8, 16], and recently to model quantum strategies and games [26]. The semantics of an
ES itself is usually provided by the sets of traces compatible with the constraints, or by
configuration-based sets of events, possibly in their partially-ordered variant (posets).

Overview. We study the idea—motivated by application scenarios—of events changing the
causal dependencies of other events. In order to deal with dynamicity in causality, usually
duplications of events are used (see e.g. [10], where copies of the same event have the same
label, but different dependencies). In this paper, we want to express dynamic changes of
causality more directly without duplications. We allow dependencies to change during a
system run, by modifying the causality itself. In this way, we avoid duplications of events,
and keep the model simple and more intuitive. We separate the idea of dropping (shrinking)
causality from adding (growing) causality and study each one separately first, and then
combine them into so-called Dynamic Causality ESs (DCESs).

Example. Figure 1 presents an example DCES: In the regular work-flow, after plowing and
watering, some crop can be planted and finally harvested. Exceptional behavior changes
those dependencies: First, rain deletes the necessity of watering for planting. Second, a pest
infestation inserts a new precondition—pest control—for harvesting. Note that pest control
could also be done prophylactically, but it becomes mandatory after a pest infestation.

Related Work. Kuske and Morin in [15] worked on local independence, using local traces.
There, actions can be independent from each other after a given history. By contrast, in our
work we provide a mechanism for independence of events through the growing and shrinking
causality, while this related work abstracts from the way actions become independent.
In [20], van Glabbeek and Plotkin introduced Event Structures for Resolvable Conflicts
(RCESs), where conflicts can be resolved or created by the occurrence of other events. This
dynamicity of conflicts is complementary to our approach. As visualized in Figure 2, DCESs
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Figure 2: Landscape of Event Structures (newly defined ESs are bold)

and RCESs are incomparable but—similarly to RCESs—DCESs are more expressive than
many other types of ESs. In [12], Hildebrandt et al. present a generalized version of ESs,
DCR-Graphs, for similar purposes as discussed here. They can, e.g., express that a response
is needed after an action. Causal dependencies, however, are static in their approach, i.e.,
the representation of dynamic changes—as present in systems with a regular execution path
and some exceptional execution paths—requires the duplication of actions.

Structure. In §2, we define a relaxed version of Prime ESs [25], denoted as relaxed Prime
ESs (rPESs), and recap the definitions for Bundle ESs (BESs) [16], Extended Bundle ESs
(EBESs) [16], Dual ES (DESs) [17], and ESs for Resolvable Conflicts (RCESs) [20].

In §3, we investigate the various kinds of semantic models that are used by the afore-
mentioned ESs in order to compare them with respect to their expressive power.

In §4, we define Shrinking causality Event Structures (SESs); we show that SESs are
strictly less expressive than RCESs, have the same expressive power as DESs, and thus are
strictly more expressive than rPESs, PESs, BESs, Flow Event Structures (FESs) [8] and
Stable Event Structures (StESs) [25], and are incomparable to EBESs.

In §5, we define Growing causality Event Structures (GESs); we show that GESs are
strictly less expressive than RCESs and strictly more expressive than rPESs and PESs.

In §6, we combine both aforementioned concepts within the Dynamic Causality Event
Structures (DCESs) and show that they are strictly more expressive than EBESs, which are
incomparable to SESs and GESs. Although RCESs are shown to be more expressive than
GESs and SESs, they are incomparable with DCESs. To complete the picture, note that the
set-based Higher order Dynamic causality Event Structures (HDES) [13] are then strictly
more expressive than both RCESs and DCESs (cf. §6.4).

We defer some of the more technical lemmata and some technical definitions to the
Appendix. The relations among the various classes of ESs are summarized in Figure 2, where
an arrow from one class to another means that the first is less expressive than the second.
Here, bold arrows indicate newly derived results, whereas thin arrows indicate results taken
from literature and are augmented with the respective reference. The bold structures are
newly defined in this paper and the gray ones are added to complete the picture but are
discussed here only briefly.

In §7, we summarize the contributions and show the limitations of other static-causality
models w.r.t. our example, and conclude with future work.
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This paper is an extended version of [2], with a special focus on the different type of
used equivalences and an alternative, equivalent, and more intuitive transition definition for
SESs and GESs. For the DCESs, we omit the old transition definition and only state the
new one, which simplifies most proofs. We also omit the conflict relation from the definitions
of the GESs and DCESs, as it can there be expressed as a derived concept.

2. Technical Preliminaries

We investigate the idea of dynamically evolving dependencies between events. Therefore, we
want to allow for the occurrence of events to create new causal dependencies between events
or to remove such dependencies. We base our extension on (a relaxed variant of) Prime
ESs, because it represents a very simple causality model. In the following, we shortly revisit
the main definitions of the types of ESs from the literature that we compare with. ESs are
sometimes augmented with labels for events, e.g., to relate several events and an action in
another formalism ([16, 8]). Since our results are not influenced by the presence of labels,
we restrict our attention to unlabeled ESs.

2.1. Relaxed Prime Event Structures. A Prime Event Structure (PES) [25] consists
of a set of events and two relations describing conflicts and causal dependencies. To cover
the intuition that events causally depending on an infinite number of other events can
never occur, Winskel [25] requires PESs to satisfy the axiom of finite causes. Additionally,
the enabling relation is assumed to be a partial order, i.e., it is reflexive, transitive, and
anti-symmetric. Furthermore, the concept of conflict heredity is required: an event a that is
in conflict with another event b is also in conflict with all causal successors of b.

If we allow causal dependencies to be added or dropped dynamically, it is hard to
maintain the conflict heredity as well as transitivity and reflexivity of enabling. Thus, we
define relaxed Prime Event Structures (rPES) where we omit the axiom of conflict heredity
(as e.g. in [5]) and do not require that enabling is a partial order.

Definition 2.1. A relaxed Prime Event Structure (rPES) is a triple π = (E,#,→), where

• E is a set of so-called events,
• # ⊆ E2 is an irreflexive symmetric relation (the conflict relation), and
• → ⊆ E2 is the enabling relation.

Note that, in comparison to PES, we also omit the finite causes property; its intention will
instead be provided through the constraint on finite configurations (see, e.g., Definition 4.2).
Note that rPESs have the same expressive power as PESs in [25] w.r.t. finite configurations,
since the axiom of finite causes is trivially satisfied for finite configurations and on the other
hand the concept of conflict heredity does not influence the expressive power, but only
ensures that syntactic and semantic conflicts coincide.

The computation state of a process that is modeled as a rPES is represented by the set
of events that have occurred. Naturally, such sets are required to be consistent with the
causality and conflict relations of the given rPES.

Definition 2.2. Let π = (E,#,→) be a rPES.
A set of events C ⊆ E is a configuration of π if it is

• conflict-free, i.e., ∀e, e′ ∈ C . ¬ (e # e′),
• downward-closed, i.e., ∀e, e′ ∈ E . e→e′ ∧ e′ ∈ C =⇒ e ∈ C, and
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• free of enabling cycles, i.e., →∗ ∩ C2 is antisymmetric.

We denote the set of configurations of π by C(π).
For each C ∈ C(π), we define the partial order ≤C := (→∗) ∩ C2.

An event e is called impossible in a rPES π if it does not occur in any configuration
of π. Events can be impossible because of (1) enabling cycles, (2) an overlap between the
enabling and the conflict relation, or (3) impossible predecessors.

In the relaxed version of the PESs, and in contrast to the original PES, the following
two properties do not hold due to impossible events and the lack of conflict heredity.

Definition 2.3 (Fullness and faithfulness, [24, 7]). An ES is called full if every event is
possible, i.e., occurs in a configuration. An ES is called faithful if the syntactic conflict
relation # on possible events coincides with the semantic conflict relation #s given by:

e #s e
′ ⇐⇒ ∀ finite C . {e, e′} 6⊆ C

Lemma 2.4. There are rPES that are not full or faithful.

Proof. For fullness, consider π = ({a, b, c}, ∅, {(a, b), (b, c), (c, a)}), a rPES with three events,
no conflicts, and a dependency cycle. In π, we only have the empty set as a configuration;
thus, π is not full.

Now for faithfulness, consider π′ = ({a, b, c}, {(a, c)}, {(a, b)}), a rPES with three events,
a conflict between a and c, and where b depends on a (this is the rPES in Fig. 8 on page 18).
There is no syntactic conflict between b and c, but there is a semantic conflict because any
configuration containing b and c should both contain a, to be downward-closed, and not
contain a, to be conflict-free; thus, π′ is not faithfull.

The set of causes of an event e, following the reflexive and transitive closure of the
enabling relation backwards, is denoted by dee. Moreover, if D is a configuration and d ∈ D,
then ddeD is the restriction of dde to events in D.

Definition 2.5 ([9]). Let π = (E,#,→) be a rPES and e ∈ E then

dee :=
{
e′ ∈ E | e′ →∗ e

}
.

Let D ∈ C(π) and d ∈ D then

ddeD :=
{
d′ ∈ D | d′ ≤D d

}
.

For rPESs, the following lemmas hold.

Lemma 2.6 (Primality, [9]). Let π = (E,#,→) be a rPES and e be possible in π. Then:

• deeC = dee for all C ∈ C(π) such that e in C,
• dee ∈ C(π), and
• dee is the minimal configuration in C(π) containing e.

Proof. The property deeC = dee follows from the fact that ≤C := (→∗) ∩ C2, while the
property dee ∈ C(π) follows from the fact that there is at least one configuration C ∈ C(π)
such that e ∈ C, and that dee inherits the required properties from C. Minimality is implied
by the fact that deeC = dee for any C ∈ C(π), since any configuration C ′ ⊂ deeC would miss
some event e′ ∈ dee and thus would fail to satisfy deeC′ = dee.
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Figure 3: A Bundle ES, an Extended Bundle ES, and a Dual ES.

Lemma 2.7 (Stability, [9]). Let π = (E,#,→) be a rPES and let C1, C2 ∈ C(π) such that
(C1 ∪ C2) ∈ C(π). Then:

• (C1 ∩ C2) ∈ C(π), and
• for all e ∈ (C1 ∩ C2), we have deeC1∩C2 = deeC1 = deeC2.

Proof. Assume C1, C2, (C1 ∪ C2) ∈ C(π). We start by showing that also (C1 ∩ C2) ∈ C(π).
The properties that (C1 ∩ C2) is conflict-free and →∩ (C1 ∩ C2)

2 is acyclic follow from the
analogue properties of (C1 ∪ C2), while the downward-closure of (C1 ∩ C2) follows from
the downward-closure of both C1 and C2. Therefore (C1 ∩ C2) ∈ C(π). Now, we can use
primality to conclude that deeC1∩C2 = deeC1 = deeC2 for any e ∈ (C1 ∩ C2).

2.2. Bundle, Extended Bundle and Dual Event Structures. The rPESs are simple
but also limited. They do not allow one to describe an optional or conditional enabling of
events. Bundle event structures (BESs)—among others—were designed to overcome these
limitations [16]. Bundles are pairs (X, e), denoted as X�e, where X is a set of events and
e is the event pointed by that bundle. A bundle is satisfied when one event of X occurs.
An event is enabled when all bundles pointing to it are satisfied. This disjunctive causality
allows for optionality in enabling events.

Definition 2.8 ([16]). A Bundle Event Structure (BES) is a triple β = (E,#,�), where

• E is a set of events,
• # ⊆ E2 is an irreflexive symmetric relation (the conflict relation), and
• � ⊆ P(E)× E is the enabling relation, satisfying the following stability condition:
X�e implies that for all e1, e2 ∈ X with e1 6= e2 we have e1 # e2.

Figure 3(a) shows an example of a BES. The solid arrows denote causality, i.e., reflect the
enabling relation, the line between the arrows indicates a bundle, and the dashed line denotes
a mutual conflict.

A configuration of a BES is again a conflict-free set of events that is downward-closed.
Therefore, the stability condition avoids causal ambiguity [17]. To exclude sets of events
that result from enabling cycles, we use (event) traces (called proving sequences in [16]). For
a sequence t = e1 · · · en of events, let t = {e1, . . . , en} and ti = e1 · · · ei for 1 ≤ i ≤ n. Let ε

denote the empty sequence. Let B(e) , {X ⊆ E | X�e}.

Definition 2.9 ([16]). Let β = (E,#,�) be a BES.
A trace is a sequence of distinct events t = e1 · · · en with t ⊆ E that respects

• conflicts, i.e., ∀1 ≤ i, j ≤ n . ¬ (ei # ej), and
• bundle satisfaction, i.e., ∀1 ≤ i ≤ n . ∀X ∈ B(ei) . ti−1 ∩X 6= ∅.
A set of events C ⊆ E is a configuration of β if there is a trace t such that C = t.

This trace-based definition of a configuration will be the same for Extended Bundle and
Dual ESs. Let T(β) denote the set of traces and C(β) the set of configurations of β.
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A partially ordered set, or poset, is a pair (A,≤), where A is a finite set and ≤ is a
partial order over A. Posets are used as a semantic model for several kinds of ESs and also
other models of concurrency [19]. For example, and in contrast to mere configurations, if A
is a set of events, then the poset (A,≤) does not only record which events have happened,
but the order ≤ also captures their precedence relations.

A poset represents a set of system runs, differing for permutation of independent events.
To describe the semantics of the entire ES, families of posets [19] with a prefix relation are
used. According to Rensink [19], families of posets provide a convenient underlying structure
for models of concurrency, and are at least as expressive as families of configurations.

To obtain the posets of a BES, we augment each of its configurations with a partial
order. Let β = (E,#,�) be a BES, C ∈ C(β), and e, e′ ∈ C. Then e ≺C e′ holds if
∃X ⊆ E . e ∈ X ∧X�e′. Let ≤C be the reflexive and transitive closure of ≺C . It is proved
in [16] that ≤C is a partial order over C. Let P(β) denote the set of posets of β. Each
linearization (obeying the defined precedence relations) of a given poset of a BES (or EBES)
yields an event trace of that structure ([16]).

The first extension of BESs that we consider are Extended Bundle Event Structures (EBESs)
from [16]. The conflict relation # is replaced by a disabling relation. An event e1 disables
another event e2, meaning that the occurrence of e1 precludes any subsequent occurrence
of e2 afterwards. The symmetric conflict # can be modeled through mutual disabling.
Therefore, EBESs are a generalization of BESs, and thus are more expressive [16].

Definition 2.10 ([16]). An Extended Bundle Event Structure (EBES) is a triple ξ =
(E,;,�), where

• E is a set of events,
• ; ⊆ E2 is the irreflexive disabling relation, and
• � ⊆ P(E)× E is the enabling relation satisfying the following stability condition:
X�e implies that for all e1, e2 ∈ X with e1 6= e2 we have e1;e2.

Stability again ensures that two distinct events within a bundle set are in mutual disabling.
Figure 3(b) shows an EBES with the two bundles {a, c}�d and {b, c}�d. The dashed
lines denote again mutual disabling as required by stability. A disabling d;e, to be read “e
disables d”, is represented by a dashed arrow.

Definition 2.11 ([16]). Let ξ = (E,;,�) be an EBES.
A trace is a sequence of distinct events t = e1 · · · en with t ⊆ E that respects

• disabling, i.e., ∀1 ≤ i, j ≤ n . ei;ej =⇒ i < j, and
• bundle satisfaction, i.e., ∀1 ≤ i ≤ n . ∀X ∈ B(ei) . ti−1 ∩X 6= ∅.

We adapt the definitions of configurations and traces of BESs accordingly. For C ∈ C(ξ)
and e, e′ ∈ C, let e ≺C e′ if e; e′ or ∃X ∈ B(e′) . e ∈ X. Again ≤C denotes the reflexive
and transitive closure of ≺C , and P(ξ) denotes the set of posets of ξ.

Dual Event Structures (DESs) are obtained by dropping the stability condition of BESs.
This leads to causal ambiguity, i.e., given a trace and one of its events, it is not always
possible to determine which other events caused this event. The definition of DESs differs
between [14] (based on EBESs) and [17] (based on BESs). Here, we rely on [17].

Definition 2.12 ([17]). A Dual Event Structure (DES) is a triple δ = (E,#,�), where

• E is a set of events,
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• # ⊆ E2 is an irreflexive symmetric relation (the conflict relation), and
• � ⊆ P(E)× E is the enabling relation.

Figure 3(c) shows a DES with one bundle, namely {a, b}�c. It is a relaxed version of the
BES in Figure 3(a) since the stability condition (which enforced a conflict between a and b)
is dropped, and there is no conflict.

The definitions of traces and configurations are relaxed accordingly.

Definition 2.13 ([17]). Let δ = (E,#,�) be a DES.
A trace is a sequence of distinct events t = e1 · · · en with t ⊆ E that respects

• conflicts, i.e., ∀1 ≤ i, j ≤ n . ¬ (ei # ej), and
• bundle satisfaction, i.e., ∀1 ≤ i ≤ n . ∀X ∈ B(ei) . ti−1 ∩X 6= ∅.

Because of the causal ambiguity, the definition of ≤C is difficult and the behavior of
a DES w.r.t. a configuration cannot be described by a single poset anymore. In [17], the
authors illustrate various possible interpretations of causality. The authors defined five
different intensional posets: liberal, bundle satisfaction, minimal, early and late posets.
They show the equivalence of the behavioral semantics, and that the early causality and
trace equivalence coincide. Thus, we concentrate on early causality in the following. The
remaining intensional partial order semantics are discussed in Appendix B.

To capture causal ambiguity, we have to consider all traces of a configuration to obtain
its posets. In essence, the approach defines causes of events e in a given trace t as not
necessarily uniquely defined sets U of events. Posets are then derived by c ≺ e for c ∈ U for
all events in the trace and their possible causes as reflexive-transitive closure of ≺.

Definition 2.14 ([17]). Let δ = (E,#,�) be a DES, let t = e1 · · · en be one of its traces.
For two sets U1, U2 of events of t, we refer to U1 as earlier than U2, if the largest index

in U1 \ U2 is smaller than the largest index in U2 \ U1.
A set U ⊆ E is a cause of ei in t (i.e., for 1 ≤ i ≤ n), if

• ∀e ∈ U . ∃ 1 ≤ j < i . e = ej ,
• ∀X ∈ B(ei) . X ∩ U 6= ∅, and
• U is the earliest set satisfying the previous two conditions.

Let Pd(t) be the set of posets obtained this way for t.

Note that, for BESs, EBESs, and DESs, families of posets are the most discriminating
semantics studied in the literature. So, in these cases, we consider two ESs as behaviorally
equivalent if they have the same set of posets.

Definition 2.15. Let µ1, µ2 be either of BESs, EBESs, or DESs. They are called poset
equivalent, written µ1 'p µ2 if µ1 and µ2 have the same set of posets.

2.3. Event Structures for Resolvable Conflicts. Event Structures for Resolvable Con-
flicts (RCES) were introduced in [20] to generalize former types of ESs and to give semantics
to general Petri Nets. They allow us to model the case where a and c cannot occur together
until b takes place, i.e., initially a and c are in conflict, and they stay in conflict until the
occurrence of b resolves it. An RCES consists of a set of events and an enabling relation
between sets of events. The latter serves to provide witnesses for transitions between config-
urations X and Y : for each subset Z of configuration Y , there must be a witnessing subset
W of the preceding configuration X, where W enables Z. The enabling relation also allows
us to implicitly model conflicts between events, as we will see in the example below.
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Figure 4: Transition graphs of RCESs with resolvable conflict (ρ) and disabling (ργ).

Definition 2.16 ([20]). An Event Structure for Resolvable Conflicts (RCES) is a pair

ρ = (E,`), where E is a set of events and ` ⊆ P(E)2 is the enabling relation.

In [20], several versions of configurations are defined. Here, we consider only configura-
tions that are both reachable and finite.

Definition 2.17 ([20]). Let ρ = (E,`) be an RCES and X,Y ⊆ E. Then:

X 7→ρ Y ⇐⇒ (X ⊂ Y ∧ ∀Z ⊆ Y . ∃W ⊆ X . W ` Z)

If no confusion is possible, we sometimes omit the subscript ρ.
The set of (reachable) configurations of ρ is defined as

C(ρ) = {X ⊆ E | ∅ 7→ρ
∗ X ∧X is finite}

where 7→ρ
∗ is the reflexive and transitive closure of 7→ρ.

Note the difference between ⊂ and ⊆ in the above definition.
As an example, consider the RCES ρ = (E,`), where E = {a, b, c}, with {b} ` {a, c},

and with ∅ ` X iff X ⊆ E and X 6= {a, c}. It models the initial conflict between a and c
that can be resolved by b. In Figure 4(ρ), the respective transition graph is shown, i.e., the
nodes are all reachable configurations of ρ and the directed edges represent 7→ρ. Note that,
because of {a, c} ⊂ {a, b, c} and ∅ 6` {a, c}, there is no transition from ∅ to {a, b, c}.

We consider two RCESs as equivalent if they have the same transition graphs. Note
that, since we consider only reachable configurations, the transition equivalence defined
below is denoted as reachable transition equivalence in [20].

Definition 2.18 ([20]). Two RCESs ρ1 = (E1,`1) and ρ2 = (E2,`2) are called (reachable)

transition equivalent, written ρ1 't ρ2, if E1 = E2 and 7→ρ1 ∩ (C(ρ1))
2 = 7→ρ2 ∩ (C(ρ2))

2.

For RCESs, transition equivalence is the most discriminating sensible semantics studied
in the literature, so we consider two RCESs behaviorally equivalent if they have the same
reachable transition graphs. In analogy with poset equivalence, we may lift this notion to
compare arbitrary types of ESs that are equipped with a transition relation.

Definition 2.19. Let µ1, µ2 be of either type of ESs with transition relation. They are called
transition equivalent, written µ1 't µ2, if they have the same reachable transition graphs.

3. Semantics of Event Structures

We observe that, due to the different expressive power of the aforementioned types of event
structures, different kinds of semantic models are used to compare elements of the same
type. Relaxed Prime ESs are compared w.r.t. finite configurations. BESs, EBESs, and DESs
are compared w.r.t. families of posets. RCESs are compared w.r.t. their transition graphs.
In order to build a hierarchy later on, we relate these semantical models. Fortunately, the
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three semantical models only grow with the expressive power of the respective ESs. In other
words, these three semantical models form a hierarchy on their own with respect to their
power to discriminate event structures.

3.1. Posets. Now, we naturally extend the definition of posets to rPESs. Let π = (E,#,→)
be a rPES, C ∈ C(π), and e, e′ ∈ C. Then e ≺C e′ if e→e′. Again ≤C is the reflexive and
transitive closure of ≺C . Then let P(π) denote the sets of posets of π. By Definition 2.15,
π1 'p π2 tells us that P(π1) = P(π2). Note that for rPESs, there is no need to distinguish
between different definitions of posets as done in [17] for DESs. Accordingly, posets in rPESs
are a direct consequence of the enabling relation. Since the effect of the enabling relation
is already captured by the set of configurations, the consideration of posets does not add
discriminating power in this case.

Lemma 3.1. Let π1 = (E1,#1,→1) and π2 = (E2,#2,→2) be rPESs.
Then C(π1) = C(π2)⇐⇒ π1 'p π2.

Proof [9]. Let ≤iC be the reflexive and transitive closure of ≺C w.r.t. πi. Thus, ≤iC is the
reflexive and transitive closure of →i restricted on events in C.

The implication π1 'p π2 =⇒ C(π1) = C(π2) is straightforward, since, by Definition,
P ∈ P(πi) if and only if P =

(
C,≤iC

)
for some C ∈ C(πi).

We prove the reverse implication C(π1) = C(π2) =⇒ π1 'p π2. Assume C(π1) = C(π2).
Suppose that in some C ∈ C(πi), the two partial order relations ≤iC are different. Without
loss of generality, we may assume that this is because for some e, e′ ∈ C, we have e ≤1

C e
′ and

e 6≤2
C e
′. Let de′eiC =

{
e′′ ∈ C | e′′ ≤iC e′

}
(see Definition 2.5). Then e ∈ de′e1C and e /∈ de′e2C .

Let now de′e1 = {e′′ ∈ E1 | e′′ →∗1 e′}. By Lemma 2.6 (primality), de′e1C = de′e1 and
de′e1 = de′e1C′ for any configuration C ′ ∈ C(π1) that contains e′. This implies de′e2C /∈ C(π1),
which contradicts the hypothesis C(π1) = C(π2).

Since the definitions of posets coincide with respect to early, liberal, bundle satisfaction,
minimal, and late causality, this result holds with respect to posets defined by either of these
notions. Also note that, as shown in [17], posets are more discriminating for DESs with
respect to liberal, bundle satisfaction, minimal, and late causality; but coincide with sets of
configurations for BESs and DESs, where posets are defined based on early causality.

3.2. Transition Graphs. For a transition-based ES with a few additional properties, there
is a natural embedding into RCESs.

Definition 3.2. Let µ be an ES with event set E and transition relation 7→ that is

• strict, i.e., X 7→Y implies X ⊂ Y , and
• dense, i.e., X ′ ⊆ X ⊂ Y ⊆ Y ′ implies that X ′ 7→Y ′ =⇒ X 7→Y

for all configurations X,Y,X ′, Y ′ of µ.
Then, rces(µ) := (E, {(X,Z) | ∃Y ⊆ E . X 7→Y ∧ Z ⊆ Y }).

By Definition 2.16, the resulting structure rces(µ) is a RCES.
We show that rces(µ) is transition equivalent to µ.

Lemma 3.3. Let µ be an ES that is strict and dense according to Definition 3.2.
Then, 7→rces(µ) = 7→µ.



DYNAMIC CAUSALITY IN EVENT STRUCTURES 11

Proof. Assume X 7→µY . Then, by Definition 3.2, X ⊂ Y and X ` Z for all Z ⊆ Y . Then,
by Definition 2.17, also X 7→rces(µ) Y .

Assume X 7→rces(µ) Y . Then, by Definition 2.17, X ⊂ Y and there is X ′ ⊆ X such that
X ′ ` Y . By the construction of rces(·) in Definition 3.2, there is Y ′ such that X ′ 7→µY

′ and
Y ⊆ Y ′. Thus, X ′ ⊆ X ⊂ Y ⊆ Y ′ and X ′ 7→µY

′. Then, as 7→µ is dense, also X 7→µY .

Next, we show that there is a natural way for—PESs, BESs, EBESs, and DESs—to
derive a transition relation from the subset relation between posets.

Definition 3.4. Let µ be a rPES, BES, EBES, or DES with event set E.
We define the transition relation 7→ ⊆ P(E)2 as follows:
X 7→Y if there are two posets (X,≤1) and (Y,≤2) of µ such that X ⊂ Y and ≤1 ⊆ ≤2.

By construction, the above-defined transition relation is strict and dense as required
in Definition 3.2. Accordingly, we associate each rPES, BES, EBES and DES with a
corresponding transition equivalent RCES using the Definitions 3.2 and 3.4.

Lemma 3.5. Let µ1 and µ2 be either of type rPES, BES, EBES, or DES, respectively.
Then, µ1 'p µ2 ⇐⇒ µ1 't µ2.

Proof. Assume µ1 'p µ2. Then, µ1 and µ2 have the same posets and thus the same subset
relations between these posets. Then, by Definition 3.4, µ1 and µ2 are associated with the
same transition relation. Immediately, we get µ1 't µ2.

Assume µ1 't µ2. Then, µ1 and µ2 have the same transitions between sets of configu-
rations. By Definition 2.17, µ1 and µ2 then have the same configurations and traces. As
shown in [17], this implies that µ1 'p µ2 for all ESs without causal ambiguity (i.e., for
rPESs, BESs, EBESs, DESs, and for DESs with posets based on early causality).

If posets are based on liberal, bundle satisfaction, minimal, or late causality, then the
implication µ1 'p µ2 =⇒ µ1 't µ2 still holds, because its proof does not depend on the
kind of posets that are used.

4. Shrinking Causality

Now, we add a new relation that represents the removal of causal dependencies as a ternary
relation between events C ⊆ E3. For instance, (d, c, t) ∈ C, also written as dC [c → t],
models that the cause c is dropped from the set of causal predecessors of the target t by
the occurrence of the so-called dropper event d. By definition, we ensure d /∈ {c, t}; this is
different w.r.t. the version in [2].

The dropping is visualized in Figure 5 by an arrow with an empty head from the
dependency c→ t to its dropper d. We add this relation to rPESs and denote the result as
shrinking-causality event structures.

Definition 4.1. A Shrinking Causality Event Structure (SES) is a pair σ = (π,C), where
π = (E,#,→) is a rPES and C ⊆ E3 is the shrinking causality relation such that, for all
c, d, t ∈ E, dC [c→ t] implies c→ t and d /∈ {c, t}.

Sometimes we flatten (π,C) into (E,#,→,C). For mC [c → t], we call m the modifier, t
the target, and c the cause. We denote the set of all modifiers dropping c→ t by C [c→ t].
We refer to the set of dropped causes of an event w.r.t. a specific history by the function
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c t

d

Figure 5: Dropper visualization in SESs.

dc : P(E) × E → P(E) defined as: dc(H, e) = {e′ | ∃d ∈ H . dC [e′ → e]}. We refer to the
initial causes of an event by the function ic : E → P(E) such that: ic(e) = {e′ | e′→e}.

The semantics of a SES can be defined based on posets similar to BESs, EBESs, and
DESs, or based on a transition relation similar to RCESs. We consider both.

Definition 4.2. Let σ = (E,#,→,C) be a SES.

(1) A trace of σ is a sequence of distinct events t = e1 · · · en with t ⊆ E such that
• ∀1 ≤ i, j ≤ n . ¬ (ei # ej) and
• ∀1 ≤ i ≤ n .

(
ic(ei) \ dc

(
ti−1, ei

))
⊆ ti−1.

Then, C ⊆ E is a trace-based configuration of σ, if there is a trace t with C = t. CTr(σ)
denotes the set of trace-based configurations, and T(σ) the set of traces of σ.

(2) Let t = e1 · · · en ∈ T(σ) and 1 ≤ i ≤ n. A set U is a cause of ei in t if
• ∀e ∈ U . ∃1 ≤ j < i . e = ej ,
•
(
ic(ei) \ dc

(
ti−1, ei

))
⊆ U , and

• U is the earliest set satisfying the previous two conditions.
Let Ps(t) be the set of posets obtained this way for t.

(3) Let X,Y ⊆ E. Then, X 7→sY iff
• X ⊂ Y ,
• ∀e, e′ ∈ Y . ¬(e # e′), and
• ∀e ∈ Y \X . (ic(e) \ dc(X, e)) ⊆ X.

(4) The set of all configurations of σ is C(σ) := {X ⊆ E | ∅ 7→∗sX ∧X is finite},
where 7→∗s is the reflexive and transitive closure of 7→s.

(5) For X ⊆ Y ⊆ E, we define the set of dropped dependencies as

X,Y := {(c, t) | ∃d ∈ Y \X . dC [c→ t]} .

We use the Definitions 2.15 and 2.19 to obtain 'p and 't for SESs. The combination
of initial and dropped causes ensures that for each ei ∈ t, all its initial causes are either
preceding ei or dropped by other events preceding ei. Note that, as for DESs, we concentrate
on early causality. We consider the reachable and finite configurations w.r.t. 7→s as well as
configurations based on the traces. Note that both definitions coincide. (See Lemma A.1)

4.1. An Alternative Transition Definition. In the following, we provide an alternative
transition definition for SESs. Thereafter, we prove the equivalence of both definitions.

Definition 4.3. Let σ = (E,#,→∅,C) be a SES and X,Y ⊆ E.
Then, (X,→X) 7→s’ (Y,→Y ) if

(1) X ⊂ Y ,
(2) ∀e, e′ ∈ Y . ¬(e # e′),
(3) (a) ∀e ∈ Y \X . {e′ | (e′, e) ∈ →X} ⊆ X, and

(b) →Y :=→X\ X,Y .

This definition stresses the state of the causality relation due to dynamic shrinking: all of
the current causality information is explicitly accessible, instead of hidden in the dc function.
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In order to prove the equivalence of both transition definitions, the following lemma provides
an explicit, non-recursive definition of the current state of the causality relation.

Lemma 4.4. Let σ = (E,#,→∅,C) be a SES and (X,→X) be a state of σ.
Then, →X =→∅ \ ∅,X .

Proof. Let ∅ =: C0, C1, . . . , Cn−1, Cn := X be such that (Ci,→Ci) 7→s’ (Ci+1,→Ci+1) for all
1 ≤ i < n. By Definition 4.3, we get →X = (. . . (→∅ \ C0,C1) \ . . . ) \ Cn−1,X , and by basic
set theory and Definition of 4.2(5), we have →X =→∅ \ ∅,X .

Now we prove that both transition definitions of SESs coincide.

Theorem 4.5. Let σ = (E,#,→∅,C) be a SES and X,Y ⊆ E. Then

X 7→sY ⇐⇒ (X,→X) 7→s’ (Y,→Y ).

Proof. Since the first conditions in the transition definitions of the Definitions 4.2 and 4.3
coincide, we show ∀e ∈ Y \X . ((ic(e) \ dc(X, e)) = {e′ | (e′, e) ∈ →X}). This follows from
definitions of dc and ic and Lemma 4.4:

ic(e) \ dc(X, e)

=
{
e′ | (e′, e) ∈ →∅

}
\ {c | ∃d ∈ X . dC [c→ e]}

=
{
e′ | (e′, e) ∈ →∅ ∧ e′ /∈ {c | ∃d ∈ X . dC [c→ e]}

}
=
{
e′ | (e′, e) ∈ →∅ ∧ (e′, e) /∈ {(c, e) | ∃d ∈ X . dC [c→ e]}

}
=
{
e′ | (e′, e) ∈ →∅ \ {(c, t) | ∃d ∈ X . dC [c→ t]}

}
=
{
e′ | (e′, e) ∈ →∅ \ ∅,X

}
=
{
e′ | (e′, e) ∈ →X

}
By Lemma 4.4, we have →Y = →∅ \ ∅,Y and →X = →∅ \ ∅,X . We can split ∅,Y into

∅,X and X,Y and get →Y =→X \ X,Y . Thus, X 7→sY ⇐⇒ (X,→X) 7→s’ (Y,→Y ).

4.2. SESs versus DESs. We show that SESs are as expressive as DESs by the definition
of mutual encodings that result in structures with equivalent behaviors.

Consider the shrinking causality dC [c→ t]. It models the case that initially t causally
depends on c, which can be dropped by the occurrence of d. Thus, for t to be enabled, either
c occurs or d does. This is a disjunctive causality as modeled by DESs. In fact, dC [c→ t]
corresponds to the bundle {c, d}� t. We prove that we can map each SES into a DES with
the same behavior and vice versa. To translate a SES into a DES, we create a bundle for
each initial causal dependence and add all its droppers to the bundle set.

Definition 4.6. Let σ = (E,#,→,C) be a SES.
Then, des(σ) := (E,#,�), where S�y iff

• S ⊆ E,
• y ∈ E, and
• ∃x ∈ E . x→y ∧ S = ({x}∪ C [x→ y]).

We use Definition 4.6 to show that for each SES there is a DES with exactly the same
traces and configurations.

Lemma 4.7. Let σ be a SES. Then, des(σ) is a DES.
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Proof. Let σ = (E,#,→,C) be a SES. By Definitions 4.1 and 2.1, # ⊆ E2 is irreflexive and
symmetric. Hence, by Definitions 2.12 and 4.6, δ = des(σ) is a DES.

Lemma 4.8. Let σ be a SES. Then, T(σ) = T(des(σ)) and C(σ) = C(des(σ)).

Proof. Let σ = (E,#,→,C) be a SES. Let t = e1 · · · en.
By Definition 4.2, t ∈ T(σ) iff t ⊆ E and ¬ (ei # ej) and also it holds (ic(ei) \

dc
(
ti−1, ei

)
) ⊆ ti−1 for all 1 ≤ i, j ≤ n. Since dc(H, e) = {e′ | ∃d ∈ H . d C [e′ → e]}

and ic(e) = {e′ | e′→e}, we have
(
ic(ei) \ dc

(
ti−1, ei

))
⊆ ti−1 iff ∀e′ ∈ E . e′→ei =⇒ e′ ∈

ti−1 ∨ ∃d ∈ ti−1 . dC [e′ → ei] for all 1 ≤ i ≤ n. By Definition 4.6, then t ∈ T(σ) iff t ⊆ E,
¬ (ei # ej), and X� ei =⇒ ti−1 ∩X 6= ∅ for all 1 ≤ i, j ≤ n and all X ⊆ E. Hence, by
the definition of traces in §2.2, t ∈ T(σ) iff t ∈ T(δ), i.e. T(σ) = T(δ).

Because of CTr(σ) = C(σ) (cf. Lemma A.1), §2.2, and Definition 4.2, then also C(δ) =
CTr(σ) = C(σ).

The encoding also preserve posets.

Theorem 4.9. Let σ be a SES. Then, σ 'p des(σ).

Proof. Let σ = (E,#,→,C) be a SES. By Lemmas 4.7 and 4.8, δ = des(σ) = (E,#,�) is
a DES such that T(σ) = T(δ) and C(σ) = C(δ). Let t = e1 · · · en ∈ T(σ), 1 ≤ i ≤ n, and
the bundles X1� ei, . . . , Xm� ei all bundles pointing to ei. For U to be a cause for ei,
Definition 4.2 requires (ic(ei) \ dc(U, ei)) ⊆ U . Since dc(H, e) = {e′ | ∃d ∈ H . dC [e′ → e]}
and ic(e) = {e′ | e′→ e}, this condition holds iff the condition e′→ ei =⇒ e′ ∈ U ∨ ∃d ∈
U . dC [e′ → ei] holds for all e′ ∈ E. By Definition 4.6, then (∀1 ≤ k ≤ n . Xk ∩U 6= ∅) ⇐⇒
((ic(ei) \ dc(U, ei)) ⊆ U). So, by Definitions 2.14 and 4.2, σ 'p δ.

In the opposite direction, we map each DES into a set of similar SESs such that each
SES in this set has the same behavior as the DES. Intuitively, we have to choose an initial
dependency for each bundle and to translate the remainder of the bundle set into droppers
for that dependency. Unfortunately, the bundles that point to the same event are not
necessarily disjoint. Consider for example {a, b}� e and {b, c}� e. If we choose b→ e
as initial dependency for both bundles to be dropped as aC [b → e] and cC [b → e], then
{a, e} is a configuration of the resulting SES but not of the original DES. So, we have
to ensure that we choose distinct events as initial causes for all bundles pointing to the
same event. Therefore, for each bundle Xi�e, we choose a fresh event xi as initial cause
xi→ e, make it impossible by a self-loop xi→ xi, and add all events d of the bundle Xi

as droppers dC [xi → e]. Note that, in order to translate a DES into a SES, we have to
introduce additional events, i.e., it is not always possible to translate a DES into a SES
without additional impossible events (cf. Lemma A.3).

Definition 4.10. Let δ = (E,#,�) be a DES, {Xi}i∈I an enumeration of its bundles, and
{xi}i∈I a set of fresh events, i.e. {xi}i∈I ∩ E = ∅. Then, ses(δ) := (E′,#,→,C) with

• E′ := E ∪ {xi}i∈I ,
• → := {xi→e | Xi�e} ∪ {xi→xi | i ∈ I}, and
• C := {dC [xi → e] | d ∈ Xi ∧Xi�e}.

Because the xi are fresh, there are no droppers for the self-loops xi→xi in ses(δ). So the
encoding ensures that all events in {xi}i∈I remain impossible forever in the resulting SES. In
fact, we show that the DES and its encoding have the very same traces and configurations.
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Lemma 4.11. For each DES δ there is a SES σ, namely σ = ses(δ), such that T(δ) = T(σ)
and C(δ) = C(σ).

Proof. Let δ = (E,#,�) be a DES. By Definition 2.12, # ⊆ E2 is irreflexive and symmetric.
Hence, by the Definitions 4.1, 2.1, and 4.10, σ = ses(δ) = (E′,#,→,C) is a SES.

Let t = e1 · · · en. Then, by Definition 4.2, t ∈ T(σ) iff t ⊆ E and ¬(ei # ej) and also
(ic(ei) \ dc

(
ti−1, ei

)
) ⊆ ti−1 for all 1 ≤ i, j ≤ n. Note that we have t ⊆ E instead of t ⊆ E′,

because all events in t have to be distinct and for all events in E′ \ E there is an initial self-
loop but no dropper. Since dc(H, e) = {e′ | ∃d ∈ H . dC [e′ → e]} and ic(e) = {e′ | e′→e},(
ic(ei) \ dc

(
ti−1, ei

))
⊆ ti−1 iff ∀e′ ∈ E . e′→ei =⇒ e′ ∈ ti−1 ∨ ∃d ∈ ti−1 . dC [e′ → ei] for

all 1 ≤ i ≤ n. By Definition 4.10, then t ∈ T(σ) iff t ⊆ E, ¬ (ei # ej), and X� ei =⇒
ti−1 ∩X 6= ∅ for all 1 ≤ i, j ≤ n and all X ⊆ E. Hence, by the Definition of traces in §2.2,
t ∈ T(σ) iff t ∈ T(δ), i.e. T(σ) = T(δ).

Because of CTr(σ) = C(σ) (cf. Lemma A.1), the Definition of configurations in §2.2, and
Definition 4.2, then also C(δ) = CTr(σ) = C(σ).

Moreover the DES and its encoding have exactly the same posets.

Theorem 4.12. For each DES δ there is a SES σ = ses(δ) such that δ 'p σ.

Proof. Let δ = (E,#,�) be a DES. By Lemma 4.11, σ = ses(δ) = (E,#,→,C) is a SES
such that T(δ) = T(σ) and C(δ) = C(σ).
Let t = e1 · · · en ∈ T(δ), 1 ≤ i ≤ n, and the bundles X1� ei, . . . , Xm� ei all bundles
pointing to ei. For U to be a cause for ei Definition 4.2 requires (ic(ei)\dc(U, ei)) ⊆ U . Since
dc(H, e) = {e′ | ∃d ∈ H . dC [e′ → e]} and ic(e) = {e′ | e′→ e}, this condition holds iff the
condition e′→ei =⇒ e′ ∈ U ∨ ∃d ∈ U . dC [e′ → ei] holds for all e′ ∈ E. By Definition 4.10,
then (∀1 ≤ k ≤ n . Xk ∩U 6= ∅) iff ((ic(ei) \ dc(U, ei)) ⊆ U). So, by the Definitions 2.14 and
4.2, δ 'p σ.

Thus SESs and DESs have the same expressive power.

Theorem 4.13. SESs are as expressive as DESs.

Proof. By the Theorems 4.9 and 4.12.

Another ES with disjunctive causality are the Stable Event Structures (StESs) [25].
Katoen [14] proves that StESs are strictly less expressive than DESs. Note that for this
particular expressiveness result it does not matter whether the definition of DESs is based
on BESs (as here and in [17]) or EBESs (as in [14]). Then, [8] introduces the Flow Event
Structures (FESs) and proves that PESs are strictly less expressive than FESs, and that FESs
are strictly less expressive than StESs. Since we restrict our attention to finite configurations
and because of Definition 2.2, PESs and rPESs have the same expressive power. Finally,
that BESs are strictly less expressive than FESs was shown in [6] and (more directly) in [16].
With the above theorem we conclude that SESs are strictly more expressive than StESs,
FESs, BESs, PESs and rPESs.

Corollary 4.14. SESs are strictly more expressive than rPESs, BESs, FESs, and StESs.

In [17], the authors prove that for DESs equivalence w.r.t. posets based on early causality
coincides with trace equivalence. Since SESs are as expressive as DESs w.r.t. families of
posets based on early causality, the same correspondence holds for SESs.

Corollary 4.15. Let σ1, σ2 be two SESs. Then σ1 'p σ2 iff T(σ1) = T(σ2).
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Figure 6: Counterexamples.

In Appendix B, we show that each SES and its encoding as well as each DES and its
encoding have the same set of posets considering liberal, minimal, and late causality. Thus,
the concepts of SESs and DESs are not only behaviorally equivalent but—except for the
additional impossible events—also structurally closely related.

Note that 'p, 't, and trace equivalence coincide on SES.

Theorem 4.16. Let σ, σ′ be two SESs. Then σ 'p σ
′ iff σ 't σ

′ iff T(σ) = T(σ′).

Proof. By Corollary 4.15, σ 'p σ
′ iff T(σ) = T(σ′).

If C(σ) 6= C(σ′) then, because of CTr(σ) = C(σ) (cf. Lemma A.1) and the Definitions 4.2
and 4.2, σ 6'p σ

′ and σ 6't σ
′. Hence assume C(σ) = C(σ′). Note that, by Definition 4.2

and CTr(σ) = C(σ) (cf. Lemma A.1), for all C ∈ C(σ) there is a trace t ∈ T(σ) such
that t = C. Moreover, for every trace t ∈ T(σ) except the empty trace there is a sub-
trace t′ ∈ T(σ) and a sequence of events e1 · · · em such that t = t′e1 · · · em and ∀e ∈
{e1, . . . , em} .

(
ic(e) \ dc

(
t′, e
))
⊆ t′. Thus, by Lemma A.2, T(σ) = T(σ′) iff σ 't σ

′.

4.3. SESs versus EBESs. SESs allow us to model disjunctive causality. As an example,
consider the dropping of a causality as in σξ of Figure 6 (or Figure 5). Such a disjunctive
causality is not possible in EBESs. On the other hand, the asymmetric conflict of an EBES
cannot be modeled with a SES. As an example, consider ξσ of Figure 6, where f cannot
precede e. Hence, EBESs and SESs are incomparable.

Theorem 4.17. SESs and EBESs are incomparable.

Proof. Let σξ = ({a, b, c} , ∅, {a→b} , {cC [a→ b]}) be the SES that is depicted in Figure 6.
Assume there is some EBES ξ = (E,;,�) such that T(σξ) = T(ξ). By Definition 4.2,
T(σξ) = {ε, a, c, ab, ac, ca, cb, abc, acb, cab, cba}, i.e. b cannot occur first. By Definition 2.11,

a disabling x; y implies that y can never precedes x. Thus, we have ; ∩{a, b, c}2 = ∅,
because within T(σξ) each pair of events of {a, b, c} occur in any order. Similarly, we have
� ∩{X�e | e ∈ {a, b, c} ∧X ∩ {a, b, c} = ∅} = ∅, because x�y implies that x always has
to precede y. Moreover, by Definition 2.11, adding impossible events as causes or using them
within the disabling relation does not influence the set of traces. Thus, there is no EBES ξ
with the same traces as σξ. By Definition 2.11 and the definition of posets in EBESs, there
is then no EBES ξ with the same configurations or posets as σξ.

Let ξσ = ({e, f} , {e;f} , ∅) be the EBES that is depicted in Figure 6. Assume that
there is some SES σ = (E,#,→,C) such that T(ξσ) = T(σ). According to §2.2, we have
T(ξσ) = {ε, e, f, ef}. By Definition 4.2 and because of the traces e and f , there are no initial

causes for e and f, i.e. → ∩{x→y | y ∈ {e, f}} = ∅. Moreover, # ∩ {e, f}2 = ∅, because of
the trace ef and because conflicts cannot be dropped. Thus fe ∈ T(σ) but fe /∈ T(ξσ), i.e.
there is no SES σ with the same traces as ξσ. Then, by the Definitions 4.2 and 4.2, there is
no SES σ with the same configurations or families of posets as ξσ.
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Figure 7: GESs modeling disabling, conflict, temporary disabling, and resolvable conflicts.

4.4. SESs versus RCESs. SESs are strictly less expressive than RCESs. Each SES can
be translated into a transition-equivalent RCES.

Lemma 4.18. For each SES σ there is a RCES ρ such that σ 't ρ.

Proof. By the Definitions 4.2 and 4.2, X 7→sY implies X ⊆ Y for all X,Y ∈ C(σ).
Assume that X ⊆ X ′ ⊆ Y ′ ⊆ Y . Then, by Definition 4.2, X 7→s Y implies that

∀e, e′ ∈ Y . ¬ (e # e′) and ∀e ∈ Y \X . (ic(e) \ dc(X, e)) ⊆ X. Then X ⊆ X ′ implies that
(ic(e) \ dc(X ′, e)) ⊆ (ic(e) \ dc(X, e)). Then, because of Y ′ ⊆ Y , ∀e, e′ ∈ Y ′ . ¬ (e # e′) and
∀e ∈ Y ′ \X ′ . (ic(e) \ dc(X ′, e)) ⊆ X ′. By Definition 4.2, we then have X ′ 7→sY

′.
Thus, σ satisfies the conditions of Definition 3.2. Then by Lemma 3.3, ρ = rces(σ) is a

RCES such that σ 't ρ.

On the other hand, there are RCESs that cannot be translated into a transition-
equivalent SES. As a counterexample, we use the RCES ρσ = (E,`), where E = {e, f} and
` = {(∅, {e}), (∅, {f}), ({f}, {e, f})}, which captures disabling in an EBES.

Lemma 4.19. There is no transition-equivalent SES to the RCES ρσ = (E,`), where
E = {e, f} and ` = {(∅, {e}), (∅, {f}), ({f}, {e, f})}.

Proof. Assume a SES σ = (E,#,→,C) such that σ 't ρσ. Then C(σ) = C(ρσ). By
Definition 4.2 and CTr(σ) = C(σ) (cf. Lemma A.1) and because of the configuration

{e, f} ∈ C(ρσ), the events e and f cannot be in conflict with each other, i.e. #∩ {e, f}2 = ∅.
Moreover, because of the configurations {e} , {f} ∈ C(ρσ), there are no initial causes for
e and f , i.e. → ∩{x→y | y ∈ {e, f}} = ∅. Note that the relation C cannot disable events.
Thus, we have ∀a, b ∈ {e, f} . ¬ (a # b) and (ic(e) \ dc({f} , e)) = ∅ ⊆ {f}. But then, by
Definition 4.2, we have {f} 7→s {e, f}. Since {f} 7→1 {e, f} does not hold, this violates our
assumption, i.e. there is no SES that is transition equivalent to ρσ.

Hence, SESs are strictly less expressive than RCESs.

Theorem 4.20. SESs are strictly less expressive than RCESs.

Proof. Follows from the Lemmata 4.19 and 4.18.

5. Growing Causality

Like with SESs, we express our extension for growing causality on rPESs by a new relation:
we use I ⊆ E3, where (a, c, t) ∈ I, also denoted as aI [c → t], models the fact that the
occurrence of the so-called adder a adds c as a cause for the target t. Thus, a is a condition
for the causal dependency c→ t. By definition, we will ensure that a /∈ {c, t}, which is a
difference to the version in [2]. The relation I is visualized in the example of Figure 7(c) by
an arrow with a filled head from the modifier c to the added dependency a→b; to denote
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a b

c

a b

c eimp

Figure 8: A rPES with binary conflict (and no inherited conflict) and a simulating GES.

that this dependency does not initially exist, it is depicted as a dotted arrow. (In this
example, there is an additional causality c→a.)

In comparison to a rPES, we can model a binary conflict between a and c by a mutual
disabling, and a disabling of an event by an addition of an impossible cause: assume a
fresh impossible event eimp with eimp→ eimp and the mutual disabling bI [eimp → a] and
aI [eimp → b] (see Figure 8). Thus, we omit the conflict relation in the Definition of GESs.

Definition 5.1. A Growing Causality Event Structure (GES) is a triple γ = (E,→,I),
where E is a set of events, → ⊆ E2 the initial causality relation, and I ⊆ E3 is the growing
causality relation such that, for all a, c, t ∈ E, aI [c→ t] implies ¬(c→ t) and a /∈ {c, t}.

We refer to the causes added to an event w.r.t. a specific history by the function
ac : P(E)× E → P(E), defined as ac(H, e) = {e′ | ∃a ∈ H . aI [e′ → e]}, and to the initial
causality by the function ic as defined in §4. Similar to the RCESs the behavior of a GES
can be defined by a transition relation.

Definition 5.2. Let γ = (E,→,I) be a GES.

• A trace of γ is a sequence of distinct events t = e1 · · · en with t ⊆ E such that

∀1 ≤ i ≤ n .
(
ic(ei) ∪ ac

(
ti−1, ei

))
⊆ ti−1.

Then C ⊆ E is a trace-based configuration of γ if there is a trace t such that C = t. The
set of traces of γ is denoted by T(γ) and the set of its trace-based configurations is denoted
by CTr(γ).
• Let X,Y ⊆ E. Then X 7→gY iff

(1) X ⊂ Y
(2) ∀e ∈ Y \X . (ic(e) ∪ ac(X, e)) ⊆ X
(3) ∀t, a ∈ Y \X . ∀c ∈ E . aI [c→ t] =⇒ c ∈ X.
• The set of all configurations of γ is C(γ) =

{
X ⊆ E | ∅ 7→∗gX ∧X is finite

}
, where 7→∗g is

the reflexive and transitive closure of 7→g.
• For X ⊆ Y ⊆ E we define the set of added dependencies as

X,Y := {(c, t) | ∃a ∈ Y \X . aI [c→ t]} .

The last condition in the transition definition prevents the concurrent occurrence of a
target and its modifier since they are not independent. The exception is when the cause
has already occurred; in that case, the modifier does not change the target’s predecessors.
Again, we consider the reachable and finite configurations, and show in the Appendix (cf.
Lemma C.1) that the definitions of reachable and trace-based configurations coincide. We
use Definition 2.19 to obtain 't for GESs and consider two GESs as equally expressive if
they are transition equivalent.
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5.1. An Alternative Transition Definition. In the following, we provide an alternative
transition definition for GESs, similar to the SESs in Definition 4.3. As before, this definition
stresses the state of the causal dependencies, but this time due to its dynamic growth.
Thereafter, we prove the equivalence of both definitions.

Definition 5.3. Let γ = (E,→∅,I) be a GES, and X,Y ⊆ E.
Then (X,→X) 7→g’ (Y,→Y ), if

(1) X ⊂ Y ,
(2) (a) ∀e ∈ Y \X . {e′ | (e′, e) ∈ →X} ⊆ X,

(b) →Y =→X ∪ X,Y , and
(3) ∀t, a ∈ Y \X . ∀c ∈ E . aI [c→ t] =⇒ c ∈ X.

Here each state explicitly shows all causality information (without the ac function) and the
growing of the causality relation is explicitly represented by the causal state →X .

The following Lemma provides an explicit, non-recursive definition of causal states.

Lemma 5.4. Let γ = (E,→∅,I) be a GES and (X,→X) be a state of γ.
Then →X =→∅ ∪ ∅,X .

Proof. Let ∅ =: C0, C1, . . . , Cn−1, Cn := X be a configuration sequence such that we get
(C0,→∅) 7→s’ (C1,→C1) . . . (Ci,→Ci) 7→s’ (Ci+1,→Ci+1) . . . (Cn−1,→Cn−1) 7→s’ (X,→X).
By Definition 5.3, we have →X= (. . . (→∅ ∪ C0,C1) ∪ . . . ) ∪ Cn−1,X , and with basic set
theory, and the Definition of X,Y in 5.2, we get →X =→∅ ∪ ∅,X .

Now we can prove that both transition definitions of GESs coincide.

Theorem 5.5. Let γ = (E,→∅,I)be a GES and X,Y ⊆ E. Then

X 7→gY ⇐⇒ (X,→X) 7→g’ (Y,→Y ).

Proof. Since all but condition (2) in the transition definitions in 5.2 and 5.3 coincide, we just
show ∀e ∈ Y \X . ((ic(e) ∪ ac(X, e)) = {e′ | (e′, e) ∈ →X}). This follows from definitions of
ac and ic and Lemma 5.4:

ic(e) ∪ ac(X, e)

=
{
e′ | (e′, e) ∈ →∅

}
∪ {c | ∃a ∈ X . aI [c→ e]}

=
{
e′ | (e′, e) ∈ →∅ ∨ e′ ∈ {c | ∃a ∈ X . aI [c→ e]}

}
=
{
e′ | (e′, e) ∈ →∅ ∨ (e′, e) ∈ {(c, e) | ∃a ∈ X . aI [c→ e]}

}
=
{
e′ | (e′, e) ∈ →∅ ∪ {(c, t) | ∃a ∈ X . aI [c→ t]}

}
=
{
e′ | (e′, e) ∈ →∅ ∪ ∅,X

}
=
{
e′ | (e′, e) ∈ →X

}
As →Y =→X ∪ X,Y by Lemma 5.4, we get X 7→gY ⇐⇒ (X,→X) 7→g’ (Y,→Y ).
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5.2. Expressive Power. Disabling as defined in EBESs or the asymmetric event structure
of [4] can be modeled by I. For example, b;a can be modeled by bI [a→ a] as depicted
in Figure 7(a). Analogously, conflicts can be modeled by I through mutual disabling, as
depicted in Figure 7(b). However, if we later combine shrinking and growing causality ESs
in §6, another dropper d can resolve the disabling.

Let us reconsider the example GES in Figure 7(c). Initially, b is enabled and a is
disabled. The occurrence of c, which (enables a and) disables b by adding a as a cause with
cI [a→ b]. By this, b may be temporarily disabled by an occurrence of c until a occurs and
re-enables b. In inhibitor event structures [3], another kind of disabling can be expressed,
where an event b can be disabled by another event c until an event out of a set X (instead
of only a single event a, as above) occurs. This behavior—which may be called disjunctive
re-enabling—cannot be modeled in GESs, but in DCESs (cf. §6).

Also resolvable conflicts can be modeled by a GES. For example the GES in Figure 7(d)
with aI [c→ b] and bI [c→ a] models a conflict between a and b that can be resolved by
c. Note that this example depends on the idea that a modifier and its target cannot occur
concurrently (cf. Definition 5.2). Note also that resolvable conflicts are a reason why families
of configurations are not sufficient to describe the semantics of GESs or RCESs.

5.3. GESs versus PESs. The GESs are strictly more expressive than rPES and PESs,
since they are in essence a generalization of the rPES (when the conflict relation is encoded
as mutual disabling, i.e. by mutual adding of an impossible cause) and they can express a
disabling of an event (as in Fig. 7 (b)).

Lemma 5.6. The GESs are strictly more expressive than the rPESs and PESs.

Proof. Let π = (E,#,→) be a rPES. Then, its embedding γπ into a GES is given by
γπ := (E ∪ {eimp},→ ∪{(eimp, eimp)}, {(a, eimp, b), (b, eimp, a) | (a, b) ∈ #)} for a fresh (and
impossible) event eimp.

Let C be a configuration in π. By Definition 2.2, we have that C is downward-closed, i.e.
∀e, e′ ∈ E . e→e′ ∧ e′ ∈ C =⇒ e ∈ C, conflict-free, i.e. ∀e, e′ ∈ C . ¬ (e # e′), and →∩ C2

is free of cycles. Let further be C = {e1, . . . , en} such that also all Cj := {ei | i ≤ j} are
configurations of π (this is always possible since C is conflict-free and → ∩ C2 is free of
cycles). Now, we have Ci 7→gCi+1 for all 1 ≤ i ≤ n−1, as all three conditions in Definition
5.2 are met. The first condition is satisfied, as Ci ⊂ Ci+1 by construction. The second
condition is satisfied, because the only added causality is the disabling of conflicting events
and thus does not affect events in C, and then it coincides with the downward-closure. The
third condition just prevents, w.r.t. our encoding, the concurrent occurrence of conflicting
events. Let on the other hand t = e1, . . . en be a trace in γπ. By Definition 5.2, we have

∀1 ≤ i ≤ n .
(
ic(ei) ∪ ac

(
ti−1, ei

))
⊆ ti−1.

We show that all Cj := {ei | i ≤ j} with j ≤ n are conflict-free and downward-closed in
π and →∩ C2 is free of cycles: Assume that Cj is the smallest not conflict-free set then
it contains ei and ej with ei#ej for some i < j. But since they are in conflict we have
eiI [eimp → ej ] ∈ I, where eimp is impossible. This contradicts(

ic(ej) ∪ ac
(
tj−1, ej

))
⊆ tj−1

because eimp is initially impossible and thus eimp 6∈ ti−1. If some Cj would not be downward-
closed, the ic(ej) ⊆ tj−1 would not hold. Let →∩ C2

j be the minimal not cycle-free relation,
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then ej must have introduced a cycle and thus be a cause of some ei with i < j, but then
ic(ei) ⊆ ti−1 would not hold. Therefore, we have that γπ is a proper encoding of π.

Now consider the GES γ = ({a, b} , ∅, {(b, a, a)}) (as in Figure 7(b)). By Definition 5.2,
b and ab are possible traces in γ, but ba is forbidden. If there was an equivalent rPES πγ ,
the trace b would imply that b does not depend on a. The trace ab would imply that ¬(a#b),
and therefore ba would also be possible in πγ , contradicting the equivalence assumption.

Combining the two results, we get that GESs are strictly more expressive than rPESs.
As we restrict our attention to finite configurations and with Definition 2.2, rPESs and PESs
have the same expressive power. Hence, GESs are strictly more expressive than PESs.

5.4. GESs versus EBESs. As shown in Figure 7(a), GESs can model disabling. Never-
theless, EBESs and GESs are incomparable.

On the one hand, GESs cannot model the disjunction in the enabling relation that
EBESs inherit from BESs. The BES βγ of Figure 6 models a simple case of disjunction in
the enabling relation.

Lemma 5.7. There is no configuration-equivalent GES to βγ of Figure 6.

Proof. Assume a GES γ = (E,→,I) such that C(γ) = C(βγ). According to §2.2, C(βγ) =
{∅, {a} , {b} , {a, c} , {b, c}}. Because {c} /∈ C(βγ), {a, c} ∈ C(βγ), and by Definition 5.2 and
CTr(γ) = C(γ) (cf. Lemma C.1), a has to be an initial cause of c in γ, i.e. a→c. But then,
by Definition 5.2 and CTr(γ) = C(γ) (cf. Lemma C.1), {b, c} /∈ C(γ) although {b, c} ∈ C(βγ).
This violates our assumption, i.e. no GES can be configuration equivalent to βγ .

On the other hand, EBESs cannot model conditional causal dependencies as visualized
by the GES γξ of Figure 6.

Lemma 5.8. There is no trace-equivalent EBES to γξ of Figure 6.

Proof. Assume a EBES ξ = (E,#,�) such that T(ξ) = T(γξ). By Definition 5.2, we have
a, c, ca, bac ∈ T(γξ) and ac /∈ T(γξ). Because of a, c ∈ T(γξ) and by Definition 2.11, a and
c have to be initially enabled in ξ, i.e. � ∩{X�y | y ∈ {a, c}} = ∅. Moreover, because
of ca, bac ∈ T(γξ), a cannot disable c, i.e. ¬ (c;a). But then ac ∈ T(ξ). This violates our
assumption, i.e. there is no trace-equivalent EBES to γξ.

Thus GESs are incomparable to BESs as well as EBESs.

Theorem 5.9. GESs are incomparable to BESs and EBESs.

Proof. By Lemma 5.7, there is no GES that is configuration equivalent to the BES βγ .
Thus, no GES can have the same families of posets as the BES βγ , because two BESs with
different configurations cannot have the same families of posets (cf. §2.2). Moreover, by
the Definitions 2.8 and 2.10, each BES is also an EBES. Thus, no GES can have the same
families of posets as the EBES βγ .

By Lemma 5.8, there is no EBES and thus also no BES that is trace equivalent to the
GES γξ. By Definition 5.2, two GESs with different traces cannot have the same transition
graphs. Thus no EBES or BES can be transition equivalent to γξ.
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5.5. GESs versus SESs. GESs are also incomparable to SESs, because the addition of
causes cannot be modeled by SESs. As a counterexample, we use the GES γσ of Figure 6.

Lemma 5.10. There is no trace-equivalent SES to γσ of Figure 6.

Proof. Assume a SES σ = (E,#,→,C) such that T(σ) = T(γσ). By Definition 5.2,
T(γσ) = {ε, a, b, ab}. Because of the trace ab ∈ T(γσ) and by Definition 4.2, a and b cannot
be in conflict, i.e. ¬(a # b) and ¬(b # a). Moreover, because of the traces a, b ∈ T(γσ),
there are no initial cases for a or b, i.e.→ ∩{x→y | y ∈ {a, b}} = ∅. Thus, by Definition 4.2,
ba ∈ T(σ) but ba /∈ T(γσ). This violates our assumption, i.e. no SES can be trace equivalent
to γσ.

Then since BESs are incomparable to GESs, BESs are less expressive than DESs, and
DESs are as expressive as SESs, we conclude that GESs and SESs are incomparable.

Theorem 5.11. GESs and SESs are incomparable.

Proof. By Lemma 5.10, no SES is trace equivalent to the GES γσ. By Definition 5.2,
two GESs with different traces cannot have the same transition graphs. Thus, no SES is
transition equivalent to the GES γσ.

By [16], BESs are less expressive than EBESs and by [17], BESs are less expressive than
DESs. By Theorem 5.9, BESs and GESs are incomparable and, by Theorem 4.13, DESs are
as expressive as SESs. Thus, GESs and SESs are incomparable.

5.6. GESs versus RCESs. As illustrated in Figure 7(d), GESs can model resolvable
conflicts. Nevertheless, they are strictly less expressive than RCESs. We show first that
each GES can be translated by Definition 3.2 into a transition-equivalent RCES.

Lemma 5.12. For each GES γ there is an RCES ρ, namely ρ = rces(γ), such that γ 't ρ.

Proof. Let γ = (E,→,I). By Definition 5.2, X 7→gY implies X ⊆ Y .
Assume X ⊆ X ′ ⊆ Y ′ ⊆ Y and X 7→g Y . By Definition 5.2, then we have that

∀e ∈ (Y ′ \X ′) . (ic(e) ∪ ac(X, e)) ⊆ X, and ∀t,m ∈ Y \X . ∀c ∈ E . mI [c→ t] =⇒ c ∈ X.
Moreover, because ∀t,m ∈ Y \X . ∀c ∈ E . mI [c→ t] =⇒ c ∈ X, ac(X, e) = ac(X ′, e) for
all e ∈ Y ′ \X ′. As a consequence, we have that ∀e ∈ (Y ′ \X ′) . (ic(e) ∪ ac(X ′, e)) ⊆ X ′ and
∀t,m ∈ Y ′ \X ′ . ∀c ∈ E . mI [c→ t] =⇒ c ∈ X ′. Thus, by Definition 5.2, X ′ 7→gY

′.
By Lemma 3.3, ρ = rces(γ) is an RCES and γ 't ρ.

On the other hand, there is no GES that is transition equivalent to the RCES ργ in
Figure 4. It models the case, where after a and b the event c becomes impossible, i.e. it
models disabling by a set instead of a single event.

Lemma 5.13. There is no transition-equivalent GES to ργ of Figure 4.

Proof. Assume a GES γ = (E,→,I) such that γ 't ργ . Then C(γ) = C(ργ). By Def-
inition 5.2, and because of the configurations {a} , {b} , {c} ∈ C(ργ), there are no initial
causes for a, b, or c, i.e. → ∩ {x→y | y ∈ {a, b, c}} = ∅. Moreover, because of the con-
figurations {a, c} , {b, c} ∈ C(ργ), neither a nor b can add a cause to c. Thus, we have
(ic(c) ∪ ac({a, b} , c)) = ∅ ⊆ {a, b}. But then, by Definition 5.2, {a, b} 7→g {a, b, c}. Since
¬
(
{a, b} 7→ργ {a, b, c}

)
, this violates our assumption, i.e. there is no GES that is transition

equivalent to ργ .
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Figure 9: An order sensitive DCES.

Hence, GESs are strictly less expressive than RCESs.

Theorem 5.14. GESs are strictly less expressive than RCESs.

Proof. Follows from Lemma 5.12 and 5.13.

6. Dynamic Causality

We have investigated shrinking and growing causality separately. In this section, we combine
them and examine the resulting expressive power. Note that we again omit the binary
conflict relation from this definition, because it can be modeled by adders (cf. §5). Since we
slightly changed the definitions for the shrinking and growing causality relations, there is a
slight difference to the version in [2].

Definition 6.1. A Dynamic Causality Event Structure (DCES) is a quadruple ∆ =
(E,→,C,I), where E is a set of events, → ⊆ E2 the initial causality relation, C ⊆ E3 is
the shrinking causality relation, and I ⊆ E3 is the growing causality relation such that for
all d, c, t, a ∈ E:

(1) dC [c→ t] ∧ @a ∈ E . aI [c→ t] =⇒ c→ t
(2) dC [c→ t] =⇒ d /∈ {c, t}
(3) aI [c→ t] ∧ @d ∈ E . dC [c→ t] =⇒ ¬(c→ t)
(4) aI [c→ t] =⇒ a /∈ {c, t}
(5) aI [c→ t] =⇒ ¬(dC [c→ t]).

The Conditions 1, 2, 3, and 4 are a generalization of the Conditions in the Definitions 4.1
and 5.1, respectively. If there are droppers and adders for the same causal dependency we
do not specify whether this dependency is contained in →, because the semantics depends
on the order in which the droppers and adders occur. Condition 5 prevents that a modifier
adds and drops the same cause for the same target.

The order of occurrence of droppers and adders determines the causes of an event. For
example assume aI [c→ t] and dC [c→ t] (as depicted in Figure 9), then after ad, t does
not depend on c, whereas after da, t depends on c. Thus, configurations like {a, d} are not
expressive enough to represent the state of such a system.

Therefore, in a DCES, a state is a pair of a configuration C and the current causal state,
i.e., the relation →C that contains the current causal dependencies. Note that the initial
state is the only configuration with an empty set of events; for other sets of events there
can be different configuration. The behavior of a DCES is defined by the transition relation
between finite configurations.

Definition 6.2. Let ∆ = (E,→in,C,I) be a DCES and X,Y ⊆ E.
Then (X,→X) 7→d (Y,→Y ) if:
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(1) X ⊂ Y
(2) ∀e ∈ Y \X . {e′ | (e′, e) ∈ →X} ⊆ X
(3) →Y = (→X \ X,Y ) ∪ X,Y

(4) ∀(c, t) ∈ X,Y ∩ X,Y . (c ∈ X ∨ t ∈ X)
(5) ∀t, a ∈ Y \X . ∀c ∈ E . aI [c→ t] =⇒ c ∈ X.

Condition 1 ensures the accumulation of events. Condition 2 ensures that only events
that are enabled after X can take place in Y . Condition 3 ensures the correct update of
the current causality relation with respect to this transition. Condition 4 prevents race
conditions; it forbids the occurrence of an adder and a dropper of the same still relevant
causal dependency within one transition. Condition 5 ensures that DCESs generalizes the
GESs, it prevents the concurrent occurrence of an adder and its target since they are not
independent. The one exception is when the cause has already occurred; in that case, the
adder does not change the target’s predecessors.

Definition 6.3. Let ∆ = (E,→in,C,I) and ∆′ = (E′,→′in,C′,I′) be two DCESs. We
call them transition sequence equivalent if they allow for the same transition sequences
with respect to the events and write ∆'ts ∆′, i.e. for any sequence ∅ = X0, X1, . . . , Xn

with Xi ⊂ Xi+1 and Xn ∈ E ∩ E′, we have current causality relations →X0=→in,→X1

, . . . ,→Xn such that (Xi,→Xi) 7→d (Xi+1,→Xi+1) in ∆, iff we have current causality relations
→′X0

=→′in,→′X1
. . . ,→′Xn such that (Xi,→′Xi) 7→d (Xi+1,→X′i+1

) in ∆′.

As visualized by the DCES in Figure 9, the order of events may be relevant for the
behavior of a DCES. Therefore, we use state transition equivalence to compare DCESs.
When we compare a DCES to GESs, SESs, RCESs, and EBES, then the state will be unique
with respect to the configuration (i.e. the current causality relation only depends on the
configuration and not on the order), thus we can use the transition equivalence 't from
Definition 2.19 for those comparisons.

6.1. DCESs versus RCESs. DCESs and RCESs are incomparable.
On the one hand, RCESs can express the disabling of an event c after a conjunction of

events a and b as visualized by ργ of Figure 4, whereas DCESs can model only disabling
after single events.

Lemma 6.4. There is no transition-equivalent DCES to ργ of Figure 4.

Proof. Assume ∆ = (E,→,C,I) such that ∆ 't ργ . Then C(∆) = C(ργ). By Definition 6.2
and because of the configurations {a} , {b} , {c} ∈ C(ργ), there are no initial causes for a,
b, or c, i.e. → ∩{x→y | y ∈ {a, b, c}} = ∅. Note that the relation C cannot disable events.
Finally, because of the configurations {a, c} , {b, c} ∈ C(ργ), neither a nor b can add a cause
to c. Thus we have the state ({a, b} ,→{a,b}), where

{
e′ | (e′, c) ∈→{a,b}

}
= ∅. But then,

by Definition 6.2, ({a, b} ,→{a,b}) 7→d ({a, b, c} ,→{a,b,c}) for some current causality relations
→{a,b} and →{a,b,c}. Since ¬ ({a, b} 7→1 {a, b, c}), this violates our assumption, i.e. there is
no DCES that is transition equivalent to ργ .

On the other hand, RCESs cannot distinguish the order of occurrences of events as
it is done for the order of a and d in the DCES in Figure 9. Hence, both structures are
incomparable.

Theorem 6.5. DCESs and RCESs are incomparable.
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Proof. The Theorem follows from Lemma 6.4 and the order insensitivity of the RCESs:
There is no RCES with the same behavior as the DCES in Figure 9 since the transition
behavior of RCESs is configuration based (Definition 2.16) and therefore it simply cannot
behave differently w.r.t. the order of events in the configuration {a, d}.

6.2. DCESs versus GESs and SESs. By construction, DCESs are at least as expressive
as GESs and SESs. To embed a GES (or SES) into a DCES, it suffices to choose C = ∅ (or
first I = ∅ and then add those tuples that encode the binary conflict).

Definition 6.6. Let σ = (E,#,→,C) be a SES.
The embedding of σ into a DCES is given by i(σ) = (E ] {eimp},→∪ {(eimp, eimp)},C,I),
where eimp is a fresh (and impossible) event and I = {(a, eimp, b), (b, eimp, a) | (a, b) ∈ #)}.

Similarly, let γ = (E,→,I) be a GES.
Then, its embedding into a DCES is given by i(γ) = (E,→, ∅,I).

In the case of a SES, since eimp is fresh, there are no droppers for the newly added
dependencies and thus i(σ) is a DCESs in which the order of modifiers does not matter
(cf. Definition D.1). Similarly, i(γ) is a DCESs in which the order of modifiers does not
matter. In the following, we show that SESs (respectively GESs) and their embeddings are
transition equivalent. Note that, in the proofs, we refer to the technical concept of Single
State Dynamic Causality ESs (SSDCs), which are only defined in the Appendix.

Lemma 6.7. Let µ be a GES or SES, then we have i(µ) 't µ.

Proof. Let µ be a GES. We show (X,→X) 7→g’ (Y,→Y ) ⇐⇒ (X,→X) 7→d (Y,→Y ). Note
that Condition 5 in Definition 6.2 always holds for i(µ), since it is a SSDC. The other
conditions in Definition 6.2 are exactly as in Definition 5.3 (since X,Y is always empty).

Let now µ be a SES. We prove (X,→Xs) 7→s’ (Y,→Ys) ⇐⇒ (X,→′X) 7→d (Y,→′Y ) where
→′X = (→′∅ \ ∅,X) ∪ ∅,X , →′Y = (→′∅ \ ∅,Y ) ∪ ∅,Y , and →′∅ = →∅ ∪ {(eimp, eimp)}, by
Lemma D.2 and Definition 6.6.

We consider =⇒ first. Definition 4.3 ensures Condition 1. For Condition 2, consider
→′X = (→′∅ \ ∅,X) ∪ ∅,X since eimp is not in the set of events of µ, we only have to

argue about the added part. But since ∅,X = {(eimp, a) | ∃b ∈ X . a # b}, we only add
dependencies for events in conflict to events in X. With Definition 4.3, then Condition 2
holds. For Condition 3, we have to show →′Y = (→′X \ X,Y ) ∪ X,Y , which unfolds to
→′Y =

(((
→′∅ \ ∅,X

)
∪ ∅,X

)
\ X,Y

)
∪ X,Y ; since i(µ) is a SSDC, we can reorder and

simplify and obtain →′Y = (→′∅ \ ∅,Y ) ∪ ∅,Y , wherefore this condition holds. Condition 4
holds because i(µ) is a SSDC. Condition 5 holds, because all aI [eimp → b] result from
conflicts a # b in µ and thus, Y cannot contain both.

We consider ⇐= by proving the conditions of Definition 4.3: X ⊂ Y follows from
Condition 1. Assume that Y is not conflict-free. Then, there are a, b ∈ Y with a # b.
Because a, b ∈ Y , there is a transition sequence in i(µ) leading to a and b. But, by
Definition 6.6 aI [eimp → b] (and bI [eimp → a]) and because of Condition 5, they cannot
occur in the same transition. Since eimp is impossible and since there are no droppers for the
dependencies between eimp and a (or b), the first occurrence of a or b will add a dependency
from eimp to the respective other event. Without loss of generality, assume a happens first.
So, a will add the dependency eimp → b to the causality relation (by Condition 3) and, as
argued above, this dependency cannot be dropped later. Therefore, b can no longer occur (by
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Condition 2). Thus, Y is conflict-free. The condition ∀e ∈ Y \X . {e′ | (e′, e) ∈ →X} ⊆ X
is a slightly more general version of Condition 2. And the last condition holds because of
→Y =→∅ \ ∅,Y and by Lemma 4.4.

We conclude that the extension from GESs and SESs to DCESs adds expressive power.

Theorem 6.8. DCESs are strictly more expressive than GESs and SESs.

Proof. With Theorem 6.5, DCESs are incomparable to RCESs. With Theorem 5.14 and
4.20, RCESs are strictly more expressive than GESs and SESs. With Lemma 6.7, DCES is
at least as expressive as SESs and GESs.

Now, if DCESs were not strictly more expressive than SESs and GESs, then DCESs
would become comparable to RCESs, which they are not.

6.3. DCESs versus EBESs. To show that DCESs are strictly more expressive than EBESs,
we use the disabling of GESs and the disjunctive causality of SESs. More precisely, EBESs
cannot model the disjunctive causality without a conflict. As counterexample, we use the
embedding of the SES σξ in Figure 6.

Lemma 6.9. There is no EBES with the same configurations as the DCES i(σξ), where σξ
is the SES given in Figure 6.

Proof. We consider the embedding i(σξ) of the SES σξ in Figure 6, which models disjunctive
causality. According to the Definitions 4.2, because ¬(a#c) and ic(a) = ic(c) = ∅, we
have ∅ 7→s {a, c} and so {a, c} ∈ C(σξ). Furthermore, there is no transition ∅ 7→s {b},
because ic(b) = {a}. Yet, there are transitions {a} 7→s {a, b} and {c} 7→s {c, b}, because
ic(b) \ dc({a}, b) ⊆ {a} (ic(b) \ dc({c}, b) ⊆ {c} respectively). The transitions are translated
to the embedding according to Lemma 6.7 and Definition 6.3; the same holds for the
configurations.

If we assume that there is some EBES ξ with the configurations ∅, {a}, {c}, {a, c},
{a, b}, {b, c} and {a, b, c}, then because of Definition 2.10 and since there is no configuration
{b}, there must be a non-empty bundle X�b and because of the configurations {a, b}, {b, c},
this bundle X must contain a and c. Then, the stability condition of Definition 2.10 implies
a;c and c;a, so a and c are in mutual conflict, which contradicts the assumption that we
have {a, c} ∈ C(ξ). Thus, there is no EBES with the same configurations as i(σξ) .

On the other hand, we formally define an encoding of an EBES into a DCES in
Definition D.10 in the Appendix, where disabling uses self-loops of target events, while
droppers use auxiliary impossible events (to ensure that they do not intervene with the
disabling). Besides, we construct posets for the configurations of the encoding, and compare
them with those of the original EBES. In this way, we prove that DCESs are at least as
expressive as EBESs. But since EBESs cannot model the disjunctive causality—without a
conflict—of SESs, DCESs are strictly more expressive than EBESs.

Theorem 6.10. DCESs are strictly more expressive than EBESs.

Proof. Follows from the Lemmata 6.9 and D.13.
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diagnosis

treatment

dr x joins

dr x reads paper

test

Figure 10: An HDES example: Dotted arrows denote initially absent dependencies or initially
absent dynamic rules.

6.4. HDESs. Higher order Dynamic Causality ESs (HDESs) are a recent generalization
of DCESs [13]. Figure 10 presents a small example of a second-order addition: After a
diagnosis, a treatment becomes possible. Now, a doctor might join the treatment team and
nothing changes. However, if the doctor reads—before joining—a medical paper, in which
an additional test before the treatment is suggested, the joining of the doctor leads to an
additional precondition, namely the test for the treatment. This behavior is modeled with a
second-order rule, dr x reads paperI [dr x joinsI [test→ treatment]], and the zeroth-order
rule diagnosis→ treatment.

In general, a HDES consists of a set of events E and a set of rules of arbitrary order
of dynamics (also arbitrary combination of adding and deletion is allowed). As a second
generalization, it is possible to have sets of events as modifiers (in contrast to the singletons
in the DCES approach), this allows for conjunctive adding and dropping where in DCESs
only disjunctive modifications were possible. Accordingly, a HDES consists of a set of events
and set of dynamic rules (causality is considered as zeroth-order dynamics), whereby this
rule set is updated in each transition.

The strict inclusion w.r.t. the expressive power of RCESs into HDESs is proven in [13].
The proof uses configuration structures that were introduced in [11] and later relaxed in [21].
In [13], a definition in-between these two is used.

Definition 6.11 ([13]). A configuration structure is a pair C = (E,C) with E a set and
C ⊆ P(E) a collection of subsets. We call the elements of E events and the elements of C
configurations. For x, y in C we write x→C y if x ⊆ y and

∀Z . x ⊆ Z ⊆ y ⇒ Z ∈ C.
The relation →C is called the step transition relation.

In [13], the authors define a map hdes(·) from any configuration structure (w.r.t. Defini-
tion 6.11) into a HDES and prove that both have the same transition behavior.

Theorem 6.12 ([13]). Let C be a configuration structure. Then the HDES ∆ = hdes(C) is
transition equivalent to C.

Hence, DCESs and RCESs can both be embedded in HDESs. Since DCESs and RCESs
are incomparable, then both kinds of structures are strictly less expressive than HDESs.
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ct

cardiac pacemaker

rem

x-ray

(a)

ct

cardiac pacemaker

rem

x-ray

(b) ct

cardiac pacemaker

rem

x-ray

(c)

Figure 11: A DCES, a BES, and a DES modeling the medical example.

7. Conclusions

We study the idea that causality may change during system runs of event structures. For this,
we enhance a simple type of ESs—the rPESs—by means of additional relations capturing
the changes in events’ dependencies, driven by the occurrence of other events.

First, in §4, we limit our concern to the case where dependencies can only be dropped.
We call the new resulting event structure Shrinking Causality ES (SES). We show that the
exhibited dynamic causality can be expressed through a completely static perspective, by
proving equivalence between SESs and DESs. By such a proof, we do not only show the
expressive power of our new ES, but also the big enhancement in expressive power (w.r.t.
rPESs) gained by adding only this one relation.

Later on, in §5, we study the complementary style where dependencies can be added,
resulting in Growing Causality ES (GES). We show that this variant of dynamic causality
can model both permanent and temporary disabling. Besides, it can be used to resolve
conflicts and, furthermore, to force conflicts. Unlike the SESs, the GESs are not directly
comparable to other types of ESs from the literature, except for PESs (and rPESs). GESs
cannot model disjunction in the enabling relation but they are able to express conditions for
causal relationships.

Finally, in §6, we combine both approaches of dynamicity with a new type of event
structures, which we call Dynamic Causality ES (DCES). Therein, dependencies can be both
added and dropped. For this new type of ESs, the following two—possibly surprising—facts
can be observed: (1) There are types of ESs that are incomparable to both SESs and
GESs, but that are comparable to (here: strictly less expressive than) DCESs, i.e. the
combination of SESs and GESs; one such type is EBESs. (1) Though SESs and GESs
are strictly less expressive than RCESs, their combination—the newly defined DCESs—is
incomparable to RCESs, and incomparable to or even strictly more expressive as any other
type of configuration-based ESs.

To highlight the pragmatic advantages of dynamic-causality ESs over other classes of
ESs, we refer to the example in the Introduction. Reichert et al. in [18] emphasize that
the model of such processes should distinguish between the regular execution path and the
exceptional one. Accordingly, they define two labels, REGULAR and EXCEPTIONAL, to be
assigned to tasks. Figure 11(a) shows a DCES model of our example, where rem represents
the remainder of the treatment process, and ct represents the computer tomography. The
initial causality in a DCES e.g. ct → rem corresponds to the regular path of a process,
while the changes carried by modifiers e.g. cardiac pacemaker correspond to the exceptional
one. Other static-causality ESs like a BES and a DES can model the fact that either the
computer tomography XOR the X-ray is needed, as shown in Figure 11(b) and 11(c). The
same can be done by an equivalent RCES. However, we argue that none of these models can
distinguish between regular and exceptional paths.
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Thus, our main contributions are: (1) We provide a formal model that allows us to
express dynamicity in causality. Using this model, we enhance the rPESs yielding SESs,
GESs and DCESs. (2) We show the equivalence of SESs and DESs. (3) We show the
incomparability of GESs to many other types of ESs. (4) We show that DCESs are strictly
more expressive than EBESs and thus strictly more expressive than many other existing
types of ESs. (5) We show that DCESs are incomparable to RCESs. (6) The new model
succinctly supports modern work-flow management systems.

In [10], Crafa et al. defined an Event Structure semantics for the π-calculus based
on Prime ESs. Since the latter do not allow for disjunctive causality required for their
purpose, and in order to avoid duplications of events, they extended Prime ESs with a set of
bound names, and altered the configuration definition to allow for such disjunction. With
SESs—that can express disjunctive causality—this problem could possibly be addressed
more naturally without copying events. Here, higher-order dynamicity (cf. [13]) might help
to deal with the instantiation of variables caused by communications involving bound names.

Up to now, we limit the execution of DCESs such that an interleaving between adders
and droppers of the same causal dependency is forced. As future work, we intend to study
the case where modifiers of the same dependency can occur concurrently—read: at the
very same instant of time—in DCESs. Similarly, we want to investigate the situation of
concurrent occurrence of an adder and its target in GESs.

More recently, [13] studies the adding and dropping by sets of events and higher-order
dynamics, i.e. events that may change the role of events to adders, droppers or back to
normal events. We are currently developing a web tool (http://hdes.mtv.tu-berlin.de) for
the modeling and simulation of DCESs and HDESs, containing the example DCESs and
HDESs presented in this paper.

The set of possible changes in our newly defined ESs must still be declared statically. In
[1], the author investigated the idea of evolutionary ESs by supporting ad-hoc changes, such
that new dependencies as well as events can be added to a structure.
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Appendix A. Shrinking Causality

In SESs both notions of configurations, traced-based and transition-based, coincide; and in
different situations, the more suitable one can be used.

Lemma A.1. Let σ be a SES. Then CTr(σ) = C(σ).

Proof. Let σ = (E,#,→,C). By Definition 4.2, C ∈ CTr(σ) implies that there is some
t = e1 · · · en such that t ⊆ E, ∀1 ≤ i, j ≤ n . ¬ (ei # ej), ∀1 ≤ i ≤ n .

(
ic(ei) \ dc

(
ti−1, ei

))
⊆

ti−1, and C = t. Hence, by Definition 4.2, ti 7→s ti+1 for all 1 ≤ i ≤ n and ∅ 7→s {e1}. Thus,
by Definition 4.2, C ∈ C(σ).

By Definition 4.2, C ∈ C(σ) implies that there are X1, . . . , Xn ⊆ E such that ∅ 7→s

X1 7→s . . . 7→sXn and Xn = C. Then, by Definition 4.2, we have:

∅ ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xn ⊆ E (C1)

∀e, e′ ∈ Xn . ¬
(
e # e′

)
(C2)

∀e ∈ X1 . (ic(e) \ dc(∅, e)) ⊆ ∅ (C3)

∀1 ≤ i < n . ∀e ∈ Xi+1 \Xi . (ic(e) \ dc(Xi, e)) ⊆ Xi (C4)

Let X1 = {e1,1, . . . , e1,m1} and Xi \ Xi−1 = {ei,1, . . . , ei,mi} for all 1 < i ≤ n. Then by
Definition 4.2, t = e1,1 · · · e1,m1 · · · en,1 · · · en,mn = e′1 · · · e′k is a trace such that t ⊆ E (because

of (C1)), ¬
(
e′i # e′j

)
for all 1 ≤ i, j ≤ k (because of (C1) and (C2)), for all 1 ≤ i ≤ k and
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all 1 ≤ j ≤ mi we have
(
ic(ei,j) \ dc

(
ti−1, ei,j

))
⊆ ti−1 (because of (C3) and (C4)), and

t = C (because Xn = C). Thus C ∈ CTr(σ).

Moreover the following technical Lemma relates transitions and the extension of traces
by causally independent events.

Lemma A.2. Let σ = (E,#,→,C) be a SES and X,Y ∈ C(σ).
Then X 7→sY iff there are t1 = e1 · · · en, t2 = e1 · · · enen+1 · · · en+m ∈ T(σ) such that X = t1,
Y = t2, and ∀e, e′ ∈ Y \X . (ic(e) \ dc(X, e)) ⊆ X.

Proof. By Definition 4.2 and Lemma A.1, X ∈ C(σ) implies that there is a trace t1 =
e1 · · · en ∈ T(σ) such that X = t1.

If X 7→s Y , then by Definition 4.2, we have X ⊆ Y , ∀e, e′ ∈ Y . ¬(e # e′), and
∀e ∈ Y \X . (ic(e)\dc(X, e)) ⊆ X. Then by Definition 4.2, t2 = e1 · · · enen+1 · · · en+m ∈ T(σ)
and Y = t2 for an arbitrary linearization en+1 · · · en+m of the events in Y \ X, i.e. with
{en+1, . . . , en+m} = Y \X such that en+i 6= en+j whenever 1 ≤ i, j,≤ m and i 6= j.

If there is a trace t2 = e1 · · · enen+1 · · · en+m ∈ T(σ) such that Y = t2 and ∀e, e′ ∈
Y \X . (ic(e) \ dc(X, e)) ⊆ X then X ⊆ Y . Moreover, by Definition 4.2, t2 ∈ T(σ) implies
∀e, e′ ∈ Y . ¬ (e # e′). Thus by Definition 4.2, X 7→sY .

Note that the condition ∀e, e′ ∈ Y \X . (ic(e) \ dc(X, e)) ⊆ X states that the events in
Y \X are causally independent from each other.

In Definition 4.10 we provide an encoding of a DESs into a SESs. Of course it can be
criticized that the encoding adds events (although they are fresh and impossible). But as
the following example—with more bundles than events—shows it is not always possible to
translate a DES into a SES without additional impossible events.

Lemma A.3. There are DESs δ = (E,#,�), as e.g. δ = ({a, b, c, d, e} , ∅,�) with
� = {{x, y}�e | x, y ∈ {a, b, c, d} ∧ x 6= y}, that cannot be translated into a SES σ =
(E,#′,→,C) such that T(δ) = T(σ).

Proof. Assume a SES σ = (E,#,→,C) such that E = {a, b, c, d, e} and T(σ) = T(δ).
According to §2.2, T(δ) contains all sequences of distinct events of E such that e is not the
first, second, or third event, i.e. for e to occur in a trace it has to be preceded by at least
three of the other events. Since by Definition 4.2 conflicts cannot be dropped, T(σ) = T(δ)
implies #′ = ∅. Moreover, since e has to be preceded by at least three other events that
can occur in any order, → has to contain at least three initial causes for e. Without loss
of generality let a→ e, b→ e, and c→ e. Because of the traces abd, acd ∈ T(δ), we need
the droppers dC [b → e] and dC [c → e]. Then ad ∈ T(σ) but ad /∈ T(δ). In fact if we fix
E = {a, b, c, d, e} there are only finitely many different SESs σ = (E,#′,→,C) and for none
of them T(δ) = T(σ) holds.

Note that the above lemma implies that no encoding of the above DES can result into a
SES with the same events such that the DES and its encoding have same configurations or
posets.

Appendix B. Alternative Partial Order Semantics in DES and SES

To show that DES and SES are not only behavioral equivalent ES models but are also very
closely related at the structural level we consider the remaining four intensional partial order
semantics for DES of [17].
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Liberal causality is the least restrictive notion of causality in [17]. Here each set of
events from bundles pointing to an event e that satisfies all bundles pointing to e is a cause.

Definition B.1 (Liberal Causality). Let δ = (E,#,�) be a DES, e1 · · · en one of its traces,
1 ≤ i ≤ n, and X1�ei, . . . , Xm�ei all bundles pointing to ei. A set U is a cause of ei in
e1 · · · en if

• ∀e ∈ U . ∃1 ≤ j < i . e = ej ,
• U ⊆ (X1 ∪ . . . ∪Xm), and
• ∀1 ≤ k ≤ m. Xk ∩ U 6= ∅.
Let Plib(t) be the set of posets obtained this way for a trace t.

Bundle satisfaction causality is based on the idea that for an event e in a trace each
bundle pointing to e is satisfied by exactly one event in a cause of e.

Definition B.2 (Bundle Satisfaction Causality). Let δ = (E,#,�) be a DES, e1 · · · en one
of its traces, 1 ≤ i ≤ n, and X1�ei, . . . , Xm�ei all bundles pointing to ei. A set U is a
cause of ei in e1 · · · en if

• ∀e ∈ U . ∃1 ≤ j < i . e = ej and
• there is a surjective mapping f : {Xk} → U such that f(Xk) ∈ Xk for all 1 ≤ k ≤ m.

Let Pbsat(t) be the set of posets obtained this way for a trace t.

Minimal causality requires that there is no subset which is also a cause.

Definition B.3 (Minimal Causality). Let δ = (E,#,�) be a DES and let e1 · · · en be one
of its traces, 1 ≤ i ≤ n, and X1�ei, . . . , Xm�ei all bundles pointing to ei. A set U is a
cause of ei in e1 · · · en if

• ∀e ∈ U . ∃1 ≤ j < i . e = ej ,
• ∀1 ≤ k ≤ m. Xk ∩ U 6= ∅, and
• there is no proper subset of U satisfying the previous two conditions.

Let Pmin(t) be the set of posets obtained this way for a trace t.

Late causality contains the latest causes of an event that form a minimal set.

Definition B.4 (Late Causality). Let δ = (E,#,�) be a DES, e1 · · · en one of its traces,
1 ≤ i ≤ n, and X1�ei, . . . , Xm�ei all bundles pointing to ei. A set U is a cause of ei in
e1 · · · en if

• ∀e ∈ U . ∃1 ≤ j < i . e = ej ,
• ∀1 ≤ k ≤ m. Xk ∩ U 6= ∅,
• there is no proper subset of U satisfying the previous two conditions, and
• U is the latest set satisfying the previous three conditions.

Let Plate(t) be the set of posets obtained this way for a trace t.

As derived in [17], it holds that

Plate(t) ,Pd(t) ⊆ Pmin(t) ⊆ Pbsat(t) ⊆ Plib(t)

for all traces t. Moreover a behavioral partial order semantics is defined and it is shown
that two DESs have the same posets w.r.t. the behavioral partial order semantics iff they
have the same posets w.r.t. the early partial order semantics iff they have the same traces.

Bundle satisfaction causality is—as the name suggests—closely related to the existence
of bundles. In SESs there are no bundles. Of course, as shown by the encoding des(·) in
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Definition 4.6, we can transform the initial and dropped causes of an event into a bundle.
And of course if we do so an SES σ and its encoding des(σ) have exactly the same families
of posets. But because bundles are no native concept of SESs, we cannot directly map the
definition of posets w.r.t. bundle satisfaction to SESs.

To adapt the definitions of posets in the other three cases we have to replace the
condition U ⊆ (X1 ∪ . . . ∪Xm) by U ⊆ ({e | e→ei ∨ ∃e′ ∈ E . eC [e′ → ei]}) and replace the
condition ∀1 ≤ k ≤ m. Xk ∩ U 6= ∅ by (ic(ei) \ dc(U, ei)) ⊆ U (as in Definition 4.2). The
remaining conditions remain the same with respect to traces as defined in Definition 4.2. Let
Plib(t), Pmin(t), and Plate(t) denote the sets of posets obtained this way for a trace t ∈ T(σ)
of a SES σ w.r.t. liberal, minimal, and late causality. Moreover, let Px(δ) =

⋃
t∈T(δ) Px(t)

and Px(σ) =
⋃
t∈T(σ) Px(t) for all x ∈ {lib, bsat,min, late}.

Since again the definitions of posets in DESs and SESs are very similar the encodings
des(·) and ses(·) preserve families of posets. The proof is very similar to the proofs of the
Theorems 4.9 and 4.12.

Theorem B.5. For each SES σ there is a DES δ, namely δ = des(σ), and for each DES δ
there is a SES σ, namely σ = ses(δ), such that Px(σ) = Px(δ) for all x ∈ {lib,min, late}.

Proof. The definitions of posets in DESs and SESs w.r.t. minimal and late causality differ
in exactly the same condition and its replacement as the definitions of posets in DESs and
SESs w.r.t. early causality. Thus the proof in these two cases is similar to the proofs of the
Theorems 4.9 and 4.12.

If σ = (E,#,→,C) is a SES then, by Lemmas 4.7 and 4.8, δ = des(σ) = (E,#,�)
is a DES such that T(σ) = T(δ) and C(σ) = C(δ). If δ = (E,#,�) is a DES then, by
Lemma 4.11, σ = ses(δ) = (E,#,→,C) is a DES such that T(δ) = T(σ) and C(δ) = C(σ).
In both cases let t = e1 · · · en ∈ T(σ), 1 ≤ i ≤ n, and X1�ei, . . . , Xm�ei be all bundles
pointing to ei.

In the case of liberal causality, for U to be a cause for ei the definition of posets in SESs
requires U ⊆ ({e | e→ei ∨ ∃e′ ∈ E . eC [e′ → ei]}) and (ic(ei) \ dc(U, ei)) ⊆ U . The second
condition holds iff ∀1 ≤ k ≤ m. Xk ∩U 6= ∅ as shown in the proofs of the Theorems 4.9 and
4.12. By the Definitions 4.6 and 4.10, the first conditions holds iff U ⊆ (X1 ∪ . . . ∪Xm). So,
by the definitions of posets in DESs and SESs w.r.t. liberal causality, Plib(σ) = Plib(δ).

Appendix C. Growing Causality

As in SESs, both notions of configurations of GESs, traced-based and transition-based
coincide; in different situations the more suitable one can be used.

Lemma C.1. Let γ be a GES. Then CTr(γ) = C(γ).

Proof. Let γ = (E,→,I).
By Definition 5.2, C ∈ CTr(γ) implies that there is some t = e1 · · · en such that t ⊆ E,

∀1 ≤ i ≤ n . ∀1 ≤ i ≤ n .
(
ic(ei) ∪ ac

(
ti−1, ei

))
⊆ ti−1, and C = t. Hence by Definition 5.2,

ti 7→g ti+1 for all 1 ≤ i ≤ n and ∅ 7→g {e1}. Thus by Definition 5.2, C ∈ C(γ).
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By Definition 5.2, C ∈ C(γ) implies that there are X1, . . . , Xn ⊆ E such that ∅ 7→g

X1 7→g . . . 7→gXn and Xn = C. Then by Definition 5.2, we have:

∅ ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xn ⊆ E (D1)

∀e ∈ X1 . (ic(e) ∪ ac(∅, e)) ⊆ ∅ (D2)

∀1 ≤ i < n . ∀e ∈ Xi+1 \Xi .
(ic(e) ∪ ac(Xi, e)) ⊆ Xi

(D3)

∀1 ≤ i < n . ∀t,m ∈ Xi+1 \Xi . ∀c ∈ E .
mI [c→ t] =⇒ c ∈ Xi

(D4)

Let X1 = {e1,1, . . . , e1,m1} and Xi \ Xi−1 = {ei,1, . . . , ei,mi} for all 1 < i ≤ n. Then
by Definition 5.2, t = e1,1 · · · e1,m1 · · · en,1 · · · en,mn = e′1 · · · e′k is a trace such that t ⊆ E
(because of (D1)), for all 1 ≤ i ≤ k and all 1 ≤ j ≤ mi we have

(
ic(ei,j) ∪ ac

(
ti−1, ei,j

))
⊆ ti−1

(because of (D2), (D3), and, by (D4), ac
(
ti−1 ∪Xi, ei,j

)
= ac

(
ti−1, ei,j

)
), and t = C (because

Xn = C). Thus C ∈ CTr(γ).

Appendix D. Dynamic Causality

To compare DCESs to other ESs we define the Single State Dynamic Causality ESs (SSDCs)
as a subclass of DCESs in that no modifier can add and drop the same dependency.

Definition D.1. Let SSDC be a subclass of DCESs such that % is a SSDC iff

∅,E ∩ ∅,E = ∅.
Since there are no adders and droppers for the same causal dependency, the order

of modifiers does not matter and thus there are no two different states sharing the same
configuration, i.e. each configuration represents a state. Thus it is enough for SSDC to
consider transition equivalence with respect to configurations, i.e. 't.

Lemma D.2. Let % = (E,→∅,C,I) be a SSDC. Then for the current causality relation
→X of any state (X,→X) ∈ S(%) it holds

→X= (→∅ \ ∅,X) ∪ ∅,X .

Proof. If X = ∅ then, by the Definitions 4.2 and 5.2, ∅,X = ∅ and ∅,X = ∅. Thus
→∅ =→∅.

Assume (U,→U ) 7→d (X,→X). By induction, we have →U = (→∅ \ ∅,U ) ∪ ∅,U . By

Condition 3 in Definition 6.2, we have →X = (→U \ U,X) ∪ U,X . By combining these
two equations we obtain →X = ((→∅ \ ∅,U ) ∪ ∅,U ) \ U,X) ∪ U,X . But, since % is a

SSDC, this can be reordered to →X= (→∅ \( ∅,U ∪ U,X)) ∪ ( ∅,U ∪ U,X) and simplified

to →X= (→∅ \ ∅,X) ∪ ∅,X .

In SSDC Condition 3 holds whenever X ⊂ Y .

Lemma D.3. Let % = (E,→∅,C,I) be a SSDC and let (X,→X) and (Y,→Y ) be two states
of % with X ⊂ Y then Condition 3 of Definition 6.2 holds for those two states.

Proof. Condition 3 of Definition 6.2 states that →Y = (→X \ X,Y ) ∪ X,Y but since
→X= (→∅ \ ∅,X) ∪ ∅,X by Lemma D.2, we have to show that →Y = ((→∅ \ ∅,X) ∪
∅,X) \ X,Y ) ∪ X,Y . Because % is a SSDC, this could be reordered and simplified to

→Y = (→∅ \ ∅,Y ) ∪ ∅,Y that holds by Lemma D.2.
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Lemma D.4. Let % = (E,→∅,C,I) be a SSDC and (X,→X) 7→d (Y,→Y ) a transition in
%. Then for all X ′, Y ′ with X ⊆ X ′ ⊂ Y ′ ⊆ Y there is a transition (X ′,→X′) 7→d (Y ′,→Y ′)
in %, where →X′ = (→∅ \ ∅,X′) ∪ ∅,X′ and →Y ′ = (→∅ \ ∅,Y ′) ∪ ∅,Y ′.

Proof. Condition 1 of Definition 6.2 holds by assumption. Condition 2 holds since (Y ′\X ′) ⊆
(Y \X) and X ⊆ X ′. For Condition 3 we show→Y ′ = (→X′ \ X′,Y ′)∪ X′,Y ′ by assumption
it follows →Y ′ = ((→∅ \ ∅,X′) ∪ ∅,X′) \ X′,Y ′) ∪ X′,Y ′ and since % is a SSDC we can

reorder and simplify to →Y ′ = (→∅ \ ∅,Y ′) ∪ ∅,Y ′that holds by assumption. Condition 4

holds because ( X′,Y ′ ∩ X′,Y ′) = ∅ since % is a SSDC. Finally Condition 5 holds since
(Y ′ \X ′) ⊆ (Y \X) and X ⊆ X ′.

To compare DCESs with EBESs, we define a another sub-class of DCESs.

Definition D.5. Let EBDC denotes a subclass of SSDC with the additional requirements:

(1) ∀c, a, t ∈ E . aI [c→ t] =⇒ c = t
(2) ∀c, d, t ∈ E . dC [c→ t] =⇒ c 6= t
(3) ∀c, d1, . . . , dn, t ∈ E . d1C [c→ t] ∧ · · · ∧ dnC [c→ t] =⇒
∀a, b ∈ {c, d1, . . . , dn} . (a 6= b =⇒ aI [b→ b] ∈ I ∧ bI [a→ a] ∈ I)

The first condition translates disabling into I and the second ensures that disabled
events cannot be enabled again. The third condition reflects causal unambiguity by C such
that either the initial cause or one of its droppers can happen.

We adapt the notion of precedence.

Definition D.6. Let ϑ be a EBDC and X ∈ C(ϑ) we define the precedence relation
<X⊆ X ×X as e <X e′ ⇐⇒ (e → e′) ∨ (e′I [e → e]) ∨ (∃c ∈ E . eC [c → e′]). Let ≤X be
the reflexive and transitive closure of <X .

The relation <X indeed represents a precedence relation, and its reflexive transitive
closure is a partial order.

Lemma D.7. Let ϑ = (E,→,C,I) be a EBDC, X ∈ C(ϑ), and let e, e′ ∈ X . e <X e′. Let
also (X0,→X0) 7→d . . . 7→d (Xn,→Xn) with X0 = ∅ and Xn = X be the transition sequence of
X then ∃Xi ∈ {X0, . . . , Xn} . e ∈ Xi ∧ e′ /∈ Xi.

Proof. Let (Xf ,→Xf ) be the first occurrence of e in the sequence (X0,→X0) 7→d . . . 7→d

(Xn,→Xn), so according to Condition 1 of Definition 6.2 it is enough to prove that e′ /∈ Xf .
First, assume that e → e′, then (e, e′) ∈→∅. Then, by Definition 6.2, to obtain

(e, e′) /∈→Xf−1
we need a dropper d ∈ Xf−1 for e→ e′ (according to Condition 3). But that

is impossible, since e and d will be mutually disabling each other, because of Condition 3 of
Definition D.5. So (e, e′) ∈→Xf−1

and thus e′ /∈ Xf because of Condition 2 of Definition 6.2.

Second, assume that e′I [e→ e]. If e′ ∈ Xf then, by Condition 5 of Definition 6.2, it
follows e′ ∈ Xf−1. Let f ′ be minimal with e′ ∈ Xf ′ by Condition 3 we have (e, e) ∈→Xf ′ ,

and—since ϑ is a EBDC and therefore a SSDC—there is no dropper for e→ e and we have
(e, e) ∈→Xf−1

. Thus, by Condition 2, e /∈ Xf contradicting our definition, and therefore the

assumption e′ ∈ Xf must be wrong.
Third, assume ∃c ∈ E . eC [c → e′]. Then since EBDC are a subclass of SSDC we

have @a ∈ E . aI [c → e′] according to Definition D.1. Then c → e′ by Condition 1 of
Definition 6.1 that means (c, e′) ∈→∅. Let us assume that e′ ∈ Xf then either c or another
dropper d with dC [c → e′] occurred before e′ that is impossible because of the mutual
disabling in Condition 3 of Definition D.5. So e′ /∈ Xf .
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Lemma D.8. ≤X is a partial order over X.

Proof. Let e, e′ ∈ X . e <X e′ and let (∅ = X0,→X0) . . . (Xn = X,→Xn) be the transition
sequence of X. Let Xh (Xj) be the configurations where e (respectively e′) occurs first. By
Lemma D.7 then h < j. Since ≤X is the reflexive and transitive closure of <X we have
e ≤X e′ =⇒ h ≤ j. For anti-symmetry, assume that e′ ≤X e. By Lemma D.7, we have j ≤ h,
but h ≤ j. Hence h = j. The equality h = j implies that e = e′ because otherwise h < j
and j < h that is a contradiction.

Let P(ϑ) = {(X,≤X) | X ∈ C(ϑ)} denote the set of posets of the EBDC ϑ. We show
that the transitions of a EBDC ϑ can be extracted from its posets.

Theorem D.9. Let ϑ = (E,→∅,C,I) be a EBDC and (X,→X), (Y,→Y ) ∈ S(ϑ) with
X ⊂ Y . Then(

∀e, e′ ∈ Y . e 6= e′ ∧ e′ ≤Y e =⇒ e′ ∈ X
)
⇐⇒ (X,→X) 7→d (Y,→Y ).

Proof. We assume (∀e, e′ ∈ Y . e 6= e′ ∧ e′ ≤Y e =⇒ e′ ∈ X). Condition 1 holds by assump-
tion. For Condition 2 we have to show that ∀e ∈ Y \ X . {e′ | (e′, e) ∈→X} ⊆ X. By
Lemma D.2, we have →X= (→∅ \ ∅,X) ∪ ∅,X for all (e′, e) ∈→∅.
• The inclusion

{
e′ | (e′, e) ∈ (→∅ \ ∅,X)

}
⊆ X holds by assumption and because e′ ≤Y e

implies e′ ∈ X.
• For all (e′, e′) ∈ ∅,X of the form eI [e′ → e′] we have e′ ≤Y e and thus e′ /∈ Y \X.

For Condition 3 we have to show →Y = (→X \ X,Y ) ∪ X,Y . By Lemma D.2 we have
→X= (→∅ \ ∅,X) ∪ ∅,X . We substitute →X in →Y = (→X \ X,Y ) ∪ X,Y by →X= (→∅
\ ∅,X) ∪ ∅,X . This reduces to →Y = (→∅ \ ∅,Y ) ∪ ∅,Y that holds again by Lemma D.2.

Condition 4 holds trivially because ϑ is a SSDC and thus ∅,E ∩ ∅,E = ∅. Consider now
eI [e′ → e′]. If e, e′ ∈ Y , we have e′ ≤Y e. Therefore by assumption e′ ∈ X that fulfills
Condition 5.

Let us now assume (X,→X) 7→d (Y,→Y ), and e, e′ ∈ Y with e 6= e′ and e′ ≤Y e by
Lemma D.7 it follows e′ ∈ X.

The following defines an encoding of an EBES into an EBDC. Furthermore the encoding
preserves posets. Figure 12 provides an example where conflicts with impossible events are
dropped for simplicity.

Definition D.10. Let ξ = (E,;,�, l) be an EBES, {Xi}i∈I an enumeration of its bundles,
and {xi}i∈I a set of fresh events, i.e. {xi}i∈I ∩ E = ∅.

Then dces(ξ) = (E′,→∅,C,I) such that:

(1) E′ = E ∪ {xi}i∈I
(2) →∅= {xi→e | Xi�e} ∪ {xi→xi | i ∈ I}
(3) C {dC [xi → e] | d ∈ Xi ∧Xi�e}
(4) I = {e′I [e→ e] | e;e′}.

We show that the encoding yields an EBDC.

Lemma D.11. Let ξ be an EBES. Then dces(ξ) is an EBDC.

Proof. First dces(ξ) is a DCES. The Definitions of →∅,C, and I in Definition D.10 ensure
the Conditions 6.1.1 and 6.1.3. According to the definition of C in Condition D.10.3 all
dropped causes are the fresh events that cannot be added by I (Condition D.10.4). So
Condition 6.1.5 also holds.
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Figure 12: An EBES and its poset-equivalent DCES.

Second, dces(ξ) is a SSDC since all dropped events are fresh and because these fresh
events are never added by I, the conditions of Definition D.1 are satisfied.

Third, dces(ξ) is a EBDC. The Conditions D.5.1 and 2 hold by definition. Bundle
members in ξ mutually disable each other. Then according to the Condition D.10.4, the
Condition D.5.3 holds. Therefore dces(ξ) is a EBDC.

Before comparing an EBES with its encoding according to posets, we show that they
have the same configurations.

Lemma D.12. Let ξ = (E,;,�) be an EBES. Then C(ξ) = C(dces(ξ)).

Proof. First, ∀X ⊆ E . X ∈ C(ξ) =⇒ X ∈ C(dces(ξ)).
According to §2.2, X ∈ C(ξ) means there is a trace t = e1, . . . , en in ξ such that X = t̄.

Let us prove that t corresponds to a transition sequence in dces(ξ) leading to X. I.e.
let us prove that there exists a transition sequence (X0,→X0) 7→d . . . 7→d (Xn,→Xn) with
X0 = ∅,→X0=→∅ and Xn = X such that Xi = Xi−1∪{ei} for 1 ≤ i ≤ n, and→Xi is defined
according to Lemma D.2. This means we have to prove that (Xi−1,→Xi−1) 7→d (Xi,→Xi)
for 1 ≤ i ≤ n.

Since Xi = Xi−1 ∪ {ei}, we have Xi−1 ⊂ Xi and so Condition 1 in Definition 6.2 holds.
Next, let us prove that ∀e ∈ Xi \Xi−1 . {e′ | (e′, e) ∈→Xi−1} ⊂ Xi−1, i.e. {e′ | (e′, e) ∈ (→∅
\ ∅,Xi−1

) ∪ ∅,Xi−1
} ⊆ Xi−1. By Lemma D.2 and the Definition of dces(ξ), →∅ contains

only fresh (and impossible) events as causes and the elements x ∈ Xi of bundles Xi�e are
droppers of these fresh events. But since each of these bundles is satisfied, each of these
fresh events in →∅ is dropped. Furthermore, there cannot be added causality in dces(ξ) for
e, except disabling of e, but this is not possible since it occurs in a configuration. Therefore
{e′ | (e′, e) ∈ (→∅ \ ∅,Xi−1

) ∪ ∅,Xi−1
} ⊆ Xi−1 for all e ∈ Xi and all 1 ≤ i ≤ n. Condition 3

follows from Lemma D.3. Condition 4 of Definition 6.2 holds by Definition D.1. Since
in the transition (Xi−1,→Xi−1) 7→d (Xi,→Xi) only one event—namely ei—occurs, the last
Condition 5 is satisfied.

On the other hand let X ∈ C(dces(ξ)) and (X0,→X0) 7→d . . . 7→d (Xn,→Xn) such that
X0 = ∅,→X0=→∅. By Lemma D.4, we can assume ei+1 := Xi+1 \Xi. We have to show
that t = e1, . . . , en is a trace in ξ. By Definition 2.11, this means ∀1 ≤ i, j ≤ n . ei ;
ej =⇒ i < j and ∀1 ≤ i ≤ n . ∀Y ⊆ E . Y � ei =⇒ ti−1 ∩ Y 6= ∅. Assume ei; ej . By
Definition D.10, we have ejI [ei → ei]. By Definition D.6 and Lemma D.7, then ei <X ej
and ∃i′ < n . ei ∈ Xi′ ∧ ej /∈ Xi′ . But, since ej ∈ X, the first Condition holds. Next
assume Y �ei. By Definition D.10, there is a fresh and impossible cause xi for ei in the
initial causality ((xi, ei), (xi, xi) ∈→∅), there is no dropper for (xi, xi), and the elements of
Y are exactly the droppers for (xi, ei) (y ∈ Y ⇐⇒ yC [xi → ei]). Since ei ∈ Xi and by
Condition 2 of Definition 6.2, it follows (xi, ei) /∈→Xi−1 (since xi never becomes enabled).
By Condition 3, there must be a j < i such that ejC [xi → ei] (since (xi, ei) ∈→∅), thus we
have ej ∈ ti−1 ∩ Y and we are done.
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Finally we show that the encoding preserves posets.

Lemma D.13. For each EBES ξ there is a DCES, namely dces(ξ), such that P(ξ) =
P(dces(ξ)).

Proof. Let p = (X,≤X), then X ∈ C(ξ) by the definition of posets of EBESs. Then according
to Lemma D.12: X ∈ C(dces(ξ)). On the other hand, let ≤′X be the partial order defined
for X in dces(ξ) as in Definition D.6. This means that we should prove that ≤X=≤′X . Since
≤X ,≤′X are the reflexive and transitive closures of ≺X , <X respectively, we have to prove
that ≺X=<X . In other words we have to prove ∀e, e′ ∈ X . e ≺X e′ ⇔ e′ <X e.

Let us start with e ≺X e′ =⇒ e <X e′. According to §2.2 e ≺X e′ means ∃Y ⊆ E . e ∈
Y � e′ ∨ e; e′. If ∃Y ⊆ E . e ∈ �Y e′ then ∃c ∈ E′ . eC [c → e′], where E′ is the set
of events of dces(ξ), by the definition of dces(ξ) (Definition D.10). This means e <X e′

according to the definition of <X (Definition D.6). If e;e′, then ¬e′;e because otherwise
e and e′ are in conflict. This means e′I [e → e] according to Definition D.10 that means
e <X e′ according to Definition D.6.

Let us consider the other direction: e <X e′ =⇒ e ≺X e′. e <X e′ means ∃c ∈ E′ . eC
[c→ e′] ∨ e′I [e→ e], where E′ is the set of events of dces(ξ), according to the definition of
<X in Definition D.6. The third option, where e→e′, is rejected, because all initial causes
in dces(ξ) are the fresh impossible events. If ∃c ∈ E′ . eC [c→ e′] then ∃Y ⊆ E . e ∈ Y ;e′

according to the definition of C in dces(ξ). This means e ≺X e′ by the definition of ≺X in
§2.2. If on the other hand e′I [e→ e], then e;e′ according to the definition of dces(ξ) that
means e ≺X in §2.2.

So we have ≺X=<X that implies ≤X=≤′X .
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