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Abstract. Kamp’s theorem established the expressive equivalence of the temporal logic
with Until and Since and the First-Order Monadic Logic of Order (FOMLO) over the
Dedekind-complete time flows. However, this temporal logic is not expressively complete
for FOMLO over the rationals. Stavi introduced two additional modalities and proved that
the temporal logic with Until, Since and Stavi’s modalities is expressively equivalent to
FOMLO over all linear orders. We present a simple proof of Stavi’s theorem.

1. Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [Pnu77] is a convenient
framework for reasoning about “reactive” systems. This has made temporal logics a popular
subject in the Computer Science community, enjoying extensive research. In TL we describe
basic system properties by atomic propositions that hold at some points in time, but
not at others. More complex properties are conveyed by formulas built from the atoms
using Boolean connectives and Modalities (temporal connectives): A k-place modality
M transforms statements ϕ1, . . . , ϕk possibly on ‘past’ or ‘future’ points to a statement
M(ϕ1, . . . , ϕk) on the ‘present’ point t0. The rule to determine the truth of a statement
M(ϕ1, . . . , ϕk) at t0 is called a Truth Table. The choice of particular modalities with their
truth tables yields different temporal logics. A temporal logic with modalities M1, . . . ,Mk

is denoted by TL(M1, . . . ,Mk).
The simplest example is the one place modality 3P saying: “P holds some time in the

future.” Its truth table is formalized by ϕ3(t0, P ) ≡ (∃t > t0)P (t). This is a formula of the
First-Order Monadic Logic of Order (FOMLO) - a fundamental formalism in Mathematical
Logic where formulas are built using atomic propositions P (t), atomic relations between
elements t1 = t2, t1 < t2, Boolean connectives and first-order quantifiers ∃t and ∀t. Most
modalities used in the literature are defined by such FOMLO truth tables, and as a result,
every temporal formula translates directly into an equivalent FOMLO formula. Thus,
different temporal logics may be considered as a convenient way to use fragments of FOMLO .
FOMLO can also serve as a yardstick by which one is able to check the strength of temporal
logics: A temporal logic is expressively complete for a fragment L of FOMLO if every formula
of L with a single free variable t0 is equivalent to a temporal formula.

Actually, the notion of expressive completeness refers to a temporal logic and to a model
(or a class of models) since the question whether two formulas are equivalent depends on the
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domain over which they are evaluated. Any (partially) ordered set with monadic predicates
is a model for TL and FOMLO, but the main, canonical , linear time intended models are
the non-negative integers 〈N, <〉 for discrete time and the non-negative reals 〈R≥0, <〉 for
continuous time.

A major result concerning TL is Kamp’s theorem [Kam68], which implies that the pair
of modalities “P Until Q” and “P Since Q” is expressively complete for FOMLO over the
above two linear time canonical models.

The temporal logic with the modalities Until and Since is not expressively complete for
FOMLO over the rationals [GHR94].

Stavi introduced two additional modalities Untils and Sinces (see Sect. 2.2.2) and proved
that TL(Until,Since,Untils,Sinces) is expressively complete for FOMLO over all linear orders.
There are only two published proofs of Stavi’s theorem [GHR93, GHR94]; however, none is
simple.

The objective of this paper is to present a simple proof of Stavi’s theorem.
The rest of the paper is organized as follows: In Sect. 2 we recall the definitions of the

monadic logic, the temporal logics and state Kamp’s and Stavi’s theorems. In Sect. 3 we
introduce partition formulas which play an important role in our proof of Stavi’s theorem.
In Sect. 4 we prove Stavi’s theorem. The proof of one proposition is postponed to Sect. 5.
Sect. 6 comments on the previous proofs of Stavi’s theorem.

2. Preliminaries

In this section we recall the definitions of linear orders, the first-order monadic logic of order,
the temporal logics and state Kamp’s and Stavi’s theorems.

2.1. Intervals and gaps in linear orders. A subset I of a linear order (T,<) is an
interval, if for all t1 < t < t2 with t1, t2 ∈ I also t ∈ I. For intervals with endpoints
a, b ∈ T , whether open or closed on either end, we will use the standard notation, such
as [a, b) := {t ∈ T | a ≤ t < b}, (a, b) := {t ∈ T | a < t < b}, etc. For a ∈ T let
[a,∞) := {t | t ≥ a} and, similarly, (−∞, a) := {t ∈| t < a}.

A Dedekind cut of a linearly ordered set (T,<) is a downward closed non-empty set
C ⊆ T such that its complement is non-empty and if C has a least upper bound in (T,<),
then it is contained in C. A proper cut or a gap is a cut that has no least upper bound in
(T,<), i.e., one that has no maximal element.

A linear order is Dedekind complete if it has no gaps; equivalently, if for every non-empty
subset S of T , if S has a lower bound in T , then it has a greatest lower bound, written
inf(S), and if S has an upper bound in T , then it has a least upper bound, written sup(S).

For a gap g and an element t ∈ T we write t < g (respectively, g < t) if t ∈ g (respectively,
t /∈ g). We also write (t, g) for the interval {a ∈ T | a > t ∧ a ∈ g}; similarly, (g, t) is
{a ∈ T | a < t ∧ a /∈ g}. Finally, for gaps g1 and g2 we write g1 ≤ g2 if g1 ⊆ g2, and the
interval (g1, g2) is defined as {a ∈ T | a /∈ g1 ∧ a ∈ g2}.
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2.2. First-order Monadic Logic and Temporal Logics. We present the basic definitions
of First-Order Monadic Logic of Order (FOMLO) and Temporal Logic (TL), and well-known
results concerning their expressive power. Fix a set Σ of atoms. We use P,Q,R, . . . to
denote members of Σ. The syntax and semantics of both logics are defined below with
respect to such a Σ.

2.2.1. First-Order Monadic Logic of Order.
Syntax: In the context of FOMLO the atoms of Σ are referred to (and used) as unary

predicate symbols. Formulas are built using these symbols, plus two binary relation
symbols: < and =, and a set of first-order variables (denoted: x, y, z, . . . ). Formulas are
defined by the grammar:

atomic ::= x < y | x = y | P (x) (where P ∈ Σ)

ϕ ::= atomic | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

The notation ϕ(x1, . . . , xn) implies that ϕ is a formula where the xi are the only variables
occurring free; writing ϕ(x1, . . . , xn, P1, . . . , Pk) additionally implies that the Pi are the only
predicate symbols that occur in ϕ. We will also use the standard abbreviated notation
for bounded quantifiers, e.g.: (∃x)>z(. . . ) denotes ∃x((x > z) ∧ (. . . )) and (∀x)<z>z1(. . . )
denotes ∀x((z1 < x < z)→ (. . . )), etc.

Semantics : Formulas are interpreted over labeled linear orders which are called chains.
A Σ-chain is a triplet M = (T,<, I) where T is a set - the domain of the chain, < is
a linear order relation on T , and I : Σ → P(T ) is the interpretation of Σ (where P is
the powerset notation). We use the standard notation M, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn) to
indicate that the formula ϕ with free variables among x1, . . . , xn is satisfiable in M when xi
are interpreted as elements ti of M. For atomic P (x) this is defined by: M, t |= P (x) iff
t ∈ I(P ); The semantics of <,=,¬,∧,∨, ∃ and ∀ is defined in a standard way.

2.2.2. Temporal Logics.
Syntax: In the context of TL the atoms of Σ are used as atomic propositions (also

called propositional atoms). Formulas are built using these atoms and a set (finite or infinite)
B of modality names, where an integer arity, denoted |M|, is associated with each M ∈ B.
The syntax of TL with the basis B, denoted TL(B), is defined by the grammar:

F ::= P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | M(F1, F2, . . . , Fn),

where P ∈ Σ and M ∈ B an n-place modality (with arity |M| = n). As usual, True denotes
P ∨ ¬P and False denotes P ∧ ¬P ; we will use infix notation for binary modalities, where
F1 M F2 is an alternative notation for M(F1, F2).

Semantics: Formulas are interpreted at time-points (or moments) in chains (elements
of the domain). The domain T of M = (T,<, I) is called the time domain, and (T,<) -
the time flow of the chain. The semantics of each n-place modality M ∈ B is defined by a
‘rule’ specifying how the set of moments where M(F1, . . . , Fn) holds (in a given structure) is
determined by the n sets of moments where each of the formulas Fi holds. Such a ‘rule’ for
M is formally specified by an operator OM on time flows, where given a time flow F = (T,<),
OM(F) is an operator in (P(T ))n −→ P(T ).

The semantics of TL(B) formulas is then defined inductively. Given a chain M = (T,<
, I) and a moment t ∈M, define when a formula F holds in M at t - denoted M, t |= F :

• M, t |= P iff t ∈ I(P ), for any propositional atom P .
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• M, t |= F ∨G iff M, t |= F or M, t |= G; similarly for ∧ and ¬.
• M, t |= M(F1, . . . , Fn) iff t ∈ [OM(T,<)](T1, . . . , Tn) where M ∈ B is an n-place modality,
F1, . . . , Fn are formulas and Ti =def {s ∈ T :M, s |= Fi}.

Truth tables: Practically most standard modalities studied in the literature can be
specified in FOMLO : A FOMLO formula ϕ(x, P1, . . . , Pn) (with a single free first-order
variable x and with n predicate symbols Pi) is called an n-place first-order truth table .
Such a truth table ϕ defines an n-ary modality M (whose semantics is given by an operator
OM) iff for any time flow (T,<), for any T1, . . . , Tn ⊆ T and for any structureM = (T,<, I)
where I(Pi) = Ti:

[OM (T,<)](T1, . . . , Tn) = {t ∈ T :M, t |= ϕ(x, P1, . . . , Pn)}

Example 2.1 . Below are truth-table definitions for the (binary) strict-Until and strict-

Since and the (unary) �,
←−
� , K+ and K−:

• P Until Q is defined by : ϕ
Until

(x, P,Q) := (∃x′)>x(Q(x′) ∧ (∀y)<x
′

>x P (y)).
• P Since Q is defined by: ϕ

Since
(x, P,Q) := (∃x′)<x(Q(x′) ∧ (∀y)<x>x′P (y)).

• �(P ) (respectively,
←−
�(P )) - “P holds everywhere after (respectively, before) the current

moment”:

ϕ�(x, P ) := (∀x′)>xP (x′)

ϕ←−
�

(x, P ) := (∀x′)<xP (x′)

• K+ defined by: ϕ
K+ (x, P ) := (∀x′)>x(∃y)<x

′
>x P (y)).

• K− defined by: ϕ
K−

(x, P ) := (∀x′)<x(∃y)<x>x′P (y)).

Formula K−(P ) holds at a moment t iff t = sup({t′ | t′ < t ∧ P (t′)}). Dually, K+(P )
holds at t iff t = inf({t′ | t′ > t∧P (t′)}). Note that K+(P ) is equivalent to ¬((¬P )UntilTrue)
and �P is equivalent to ¬(TrueUntil(¬P )).

Let γ+ be a unary modality such that γ+(P ) holds at t if there is a gap g > t in the

order such that g = sup({t′ | (∀y)<t
′

>t P (y)}). We say that g is the gap left definable by P
that succeeds t, or just that g is P -gap that succeeds t; P holds everywhere on the interval
(t, g), and for every t1 > g, there is t′ ∈ (g, t1) such that t′ /∈ P .

A natural formalization of γ+ semantics uses a second-order quantifier - “there is a
gap”; however, γ+(P ) is equivalent to the conjunction of the following formulas [GHR94]:

(1) (PUntilP ) ∧ ¬(PUntil¬P ).
(2) ¬�P - “¬P holds somewhere in the future.”
(3) ¬(PUntil(P ∧ K+(¬P ))).

Since � and K+ are equivalent to TL(Until) formulas, γ+(P ) can be considered as an
abbreviation of a TL(Until) formula, and γ+ has a first-order truth table ϕγ+(x, P ).

γ− is the mirror image of γ+, i.e., going into the past instead of into the future. γ−(P )
holds at t if there is a gap g < t in the order such that P holds everywhere on the interval
(g, t), and for every t1 < g, there is t′ ∈ (t1, g) such that t′ /∈ P . We say that g is the (right
definable) P -gap that precedes t, or just that g is P -gap that precedes t.

The modalities Untils and Sinces were introduced by Stavi. PUntilsQ holds at t if there
is a gap g > t such that:

• P is true on (t, g).
• In the future of the gap, P is false arbitrarily close to the gap, and



A PROOF OF STAVI’S THEOREM 5

• Q is true from g into the future for some uninterrupted stretch of time.

Untils has a first-order truth table ϕUntils(x, P,Q) which is the conjunction of the following
formulas:

(1) ϕγ+(x, P ).

(2) (∃x1)>x
(
¬P (x1) ∧ (∀y)<x1>x [(¬P (y))→ (∀z)<x1>y Q(z)]

)
.

Sinces is the mirror image of Untils.

2.3. Kamp’s and Stavi’s Theorems. We are interested in the relative expressive power
of TL (compared to FOMLO) over the class of linear structures, where the time flow is
an irreflexive linear order.

Equivalence between temporal and monadic formulas is naturally defined: F is equiva-
lent to ϕ(x) over a class C of structures iff for any M∈ C and t ∈M: M, t |= F ⇔M, t |=
ϕ(x). If C is the class of all chains, we will say that F is equivalent to ϕ.

Expressive completeness/equivalence : A temporal language TL(B) is expressively
complete for FOMLO over a class C of structures iff for every FOMLO formula ϕ(z) with
one free variable there is a ψ ∈ TL(B) such that ϕ is equivalent to ψ over C. Similarly,
one may speak of expressive completeness of FOMLO for some temporal language. If
we have expressive completeness in both directions between two languages, then they are
expressively equivalent.

If every modality in B has a FOMLO truth-table, then it is easy to translate every
formula of TL(B) to an equivalent FOMLO formula. Hence, in this case FOMLO is
expressively complete for TL(B).

The fundamental theorem of Kamp’s states:

Theorem 2.2 ([Kam68]). TL(Until, Since) is expressively equivalent to FOMLO over Dedekind
complete chains.

TL(Until,Since) is not expressively complete for FOMLO over the rationals [GHR94].
Stavi introduced two new modalities Untils and Sinces (see Sect. 2.2.2) and proved:

Theorem 2.3. TL(Until,Since,Untils,Sinces) is expressively equivalent to FOMLO over all
chains.

As Until, Since and Stavi’s modalities are definable in FOMLO, it follows that FOMLO
is expressively complete for TL(Until,Since,Untils, Sinces). The contribution of our paper
is a proof that TL(Until,Since,Untils,Sinces) is expressively complete for FOMLO. Our
proof is constructive. An algorithm which for every FOMLO formula ϕ(x) constructs a
TL(Until,Since,Untils, Sinces) formula which is equivalent to ϕ is easily extracted from our
proof.

3. Partition Formulas

In this section we introduce partition formulas and state their properties. They will play an
important role in our proof of Stavi’s theorem. The basic partition formulas generalize the
Decomposition formulas of [GPSS80].

Definition 3.1 (Partition expressions). Let Σ be a set of monadic predicate names, and
δ1(x), . . . , δn(x) are quantifier free first-order formulas over Σ with one free variable, and
O ⊆ {1, . . . , n}. An expression Part(〈δ1, . . . , δn〉, O) is called a partition expression over Σ.
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Semantics. Let I be an interval of a Σ-chainM. A partition expression Part(〈δ1, . . . , δn〉, O)
holds on I in M (notation M, I |= Part(〈δ1, . . . , δn〉, O) if I can be partitioned into n non-
empty intervals I1, . . . , In such that δj holds on all points in Ij , and Ii precedes Ij for i < j,
and Ij a one-point interval for j ∈ O. Note that we do not require that if Ij is a one-point
interval, then j ∈ O. Observe that the semantics of partition expressions does not depend
on the names of the variables that appear in δi.

For example, Part(〈P1(x), P2(x) ∨ P3(x)〉, {1, 2}) holds over I iff I is a two point interval
and P1 holds over its first point and P2 or P3 holds over its second point. Part(〈True,True〉, {1})
holds over I iff I has a minimal point and at least two points.

Definition 3.2 (Partition Formulas). Let Σ be a set of monadic predicate names.

Basic Partition Formulas: A basic partition formula (over Σ) is an expression of one of
the following forms:
(1) z = y or z < y
(2) Part(〈δ1, . . . , δn〉, O)[y, z]
(3) Part(〈δ1, . . . , δn〉, O)[z,∞) or Part(〈δ1, . . . , δn〉, O)(−∞, z] or

Part(〈δ1, . . . , δn〉, O)(−∞,∞),
where Part(〈δ1, . . . , δn〉, O) are partition expressions.

Partition Formulas: are constructed from the basic partition formulas by Boolean con-
nectives and existential quantifier.

Simple Partition Formulas: are constructed from the basic partition formulas by con-
junction and disjunction.

Normal Partition Formulas: A Normal Partition Formula is a partition formula of the
form:

E(z1, . . . , zm) :=

(
m∧

k=n+1

zk = zik

)
∧ (z1 < z2 < · · · < zn)

∧
n∧
j=2

Wj [zj−1, zj ]

∧ Wn+1[zn,∞) ∧W1(−∞, z1]
∧ W0(−∞,∞)

where Wj are basic partition formulas, n ≤ m and in+1, . . . , im ∈ {1, . . . , n}.

The semantics of the partition formulas will not depend on the names of variables that
occur in partition expressions. These occurrences of the variables are considered to be bound.
For other occurrences of variables the definition whether occurrences are free or bound is
standard.

Semantics. Partition formulas are interpreted over Σ-chains. Let M = (T,<, I) be a
Σ-chain. We use the standard notation M, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn) to indicate
that the formula ϕ with free variables among x1, . . . , xn is satisfiable in M when xi
are interpreted as elements ti of M. For basic partition formulas this is defined by:
M, t |= Part(〈δ1, . . . , δn〉, O)[x,∞) iff the partition expression Part(〈δ1, . . . , δn〉, O) holds
on the interval [t,∞) in M; similarly, M, t |= Part(〈δ1, . . . , δn〉, O)(−∞, x] (respectively,
M |= Part(〈δ1, . . . , δn〉, O)(−∞,∞)) iff Part(〈δ1, . . . , δn〉, O) holds on the interval (−∞, t]
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(respectively, the interval (−∞,∞)) in M; and M, t1, t2 |= Part(〈δ1, . . . , δn〉, O)[x1, x2] iff
Part(〈δ1, . . . , δn〉, O) holds on the interval [t1, t2] inM; the semantics of <,=,¬,∧,∨, and ∃
is defined in a standard way.

The following lemmas immediately follow from the definitions and standard logical
equivalences.

Lemma 3.3. (1) Every simple formula is equivalent to a disjunction of normal formulas.
(2) For every normal formula ϕ, the formula ∃xϕ is equivalent to a disjunction of normal

formulas.
(3) For every simple formula ϕ, the formula ∃xϕ is equivalent to a simple formula.

Lemma 3.4 (Closure properties). The set of simple formulas is (semantically) closed under
disjunction, conjunction, and existential quantifier.

The set of simple formulas is not closed under negation. However, we show later (see
Proposition 4.2) that the negation of a simple formula is equivalent to a simple formula in
the expansion of the chains by all TL(Until, Since,Untils, Sinces) definable predicates.

In the rest of this section we explain how to translate a simple partition formula with
one free variable into an equivalent TL(Until,Since,Untils, Sinces) formula.

Let δ1, . . . , δk be quantifier free first-order formulas with one free variable and O ⊆
{1, . . . , k}. For i = 1, . . . k, let Di be a temporal formula equivalent to δi. Define:

Fk := Dk (3.1)

Fi−1 := Di−1 ∧


FalseUntilFi if i− 1 ∈ O and i ∈ O;
DiUntilFi if i− 1 ∈ O and i /∈ O;
Di−1UntilFi if i− 1 /∈ O and i ∈ O;
Di−1Until

∗Fi if i− 1 /∈ O and i /∈ O,

(3.2)

where PUntil∗Q holds at t if there is t′ > t such that Part(〈P (x), Q(x)〉, ∅) holds on the
interval [t, t′]; PUntil∗Q can be expressed as disjunction of the following formulas:

• P ∧
(
(PUntilQ) ∨ (QUntilQ) ∨ PUntil

(
P ∧ (QUntilQ)

))
• P ∧ (PUntilsQ)

Lemma 3.5.

(1) Assume that there is t and a partition of [t1, t] into non-empty intervals I1, . . . , Ik such
that δj holds on Ij and Ii precedes Ij for i < j, and Ii is a one-point interval for i ∈ O.
Then Fk−j holds on Ik−j.

(2) if Fk−j holds at tk−j then there is t ≥ tk−j such that Part(〈δk−j , . . . , δk〉, Ok−j) holds
on [tk−j , t], where l ∈ Ok−j iff l + k − 1− j ∈ O.

(3) F1 holds at t1 iff there is t ≥ t1 such that Part(〈δ1, . . . , δk〉, O) holds on [t1, t].

Proof. (1) and (2) by induction on j. (3) immediately from (1) and (2).

Let δ′k be a quantifier-free first-order formula with one free variable and D′k be a temporal
formula equivalent to δ′k. If k /∈ O and we set Dk := D′k∧�D′k in equation (3.1), then F1 holds
at t1 iff Part(〈δ1, . . . , δk−1, δ′k〉, O) holds on [t1,∞); if k ∈ O and we set Dk := D′k ∧�False
in equation (3.1), then F1 holds at t1 iff Part(〈δ1, . . . , δk−1, δ′k〉, O) holds on [t1,∞). Hence,
we obtained:

Lemma 3.6. For every δ1, . . . , δk and O ⊆ {1, . . . , k} there is a TL(Until,Untils) formula
F such that F holds at t iff Part(〈δ1, . . . , δk〉, O) holds on [t,∞).
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By Lemma 3.6 and standard logical equivalences we obtain:

Proposition 3.7 (From simple formulas to TL). Every simple formula with at most one
free variable is equivalent to a TL(Until,Since,Untils,Sinces) formula.

Proof. Note that every simple partition formula with at most one free variable z is equiva-
lent to a boolean combination of basic partition formulas of the forms: Part(〈δ1〉, O)[z, z],
Part(〈δ1, . . . , δn〉, O)[z,∞), Part(〈δ1, . . . , δn〉, O)(−∞, z], or Part(〈δ1, . . . , δn〉, O)(−∞,∞).
Let D1 be a temporal formula equivalent to the first-order quantifier free formula δ1. A for-
mula of the form Part(〈δ1〉, O)[z, z] is equivalent to D1. By Lemma 3.6 and its mirror variant
the formulas of the second and the third forms are equivalent to TL(Until, Since,Untils, Sinces)
formulas. A formula of the form Part(〈δ1, . . . , δn〉, O)(−∞,∞) is equivalent to
“Part(〈δ1〉, O)(−∞, z] ∧ Part(〈δ1, . . . , δn〉, O)[z,∞) for some z.” Since each of the conjuncts
is equivalent to a temporal formula, the conjunction is also equivalent to a temporal formula

A, and Part(〈δ1, . . . , δn〉, O)(−∞,∞) is equivalent to ¬(�¬A ∧ ¬A ∧←−�¬A). Hence, every
simple formula with at most one free variable is equivalent to a TL(Until, Since,Untils, Sinces)
formula.

4. Proof of Stavi’s Theorem

The next definition plays a major role in our proof of Stavi’s theorem; a similar definition is
used in the proof of Kamp’s theorem [GPSS80].

Definition 4.1. Let M be a Σ chain. We denote by E [Σ] the set of unary predicate
names Σ ∪ {A | A is an TL(Until,Since,Untils, Sinces)-formula over Σ }. The canonical
TL(Until,Since,Untils, Sinces)-expansion ofM is an expansion ofM to an E [Σ]-chain, where
each predicate name A ∈ E [Σ] is interpreted as {a ∈M | M, a |= A}1.

Note that if A is a TL(Until,Since,Untils,Sinces) formula over E [Σ] predicates, then it
is equivalent to a TL(Until,Since,Untils,Sinces) formula over Σ, and hence to an atomic
formula in the canonical TL(Until, Since,Untils,Sinces)-expansions.

From now on we say “formulas are equivalent in a chain M” instead of “formulas are
equivalent in the canonical TL(Until,Since,Untils,Sinces)-expansion ofM.” The partition for-
mulas are defined as previously, but now they can use as atoms TL(Until, Since,Untils, Sinces)
definable predicates.

It is clear that the results stated in Sect. 3 hold for this modified notion of partition
formulas. In particular, every simple formula with at most one free variable is equivalent
to a TL(Until,Since,Untils,Sinces) formula, and the set of simple formulas is closed under
conjunction, disjunction and existential quantification. However, now the set of simple
formulas is also closed under negation, due to the next proposition whose proof is postponed
to Sect. 5.

Proposition 4.2 (Closure under Negation). The negation of every simple partition formula
is equivalent to a simple partition formula.

As a consequence we obtain:

Proposition 4.3. Every first-order formula is equivalent to a simple formula.

1 We often use “a ∈ M” instead of “a is an element of the domain of M.”
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Proof. We proceed by structural induction.

Atomic: It is clear that every atomic formula is equivalent to a simple formula.
Negation: By Proposition 4.2.
∃-quantifier and disjunction : This follows from Lemma 3.4.

Proposition 4.3 and Proposition 3.7 immediately imply Stavi’s Theorem:

Theorem 4.4. Every FOMLO formula with one free variable is equivalent to a
TL(Until, Since,Untils, Sinces) formula.

This completes our proof of Stavi’s theorem except for Proposition 4.2 which is proved
in Sect. 5.

5. Proof of Proposition 4.2

Throughout our proof we will freely use that the following assertions and their negations are
expressible by simple formulas:

(1) (z0, z1) contains a point in P .
(2) suc(z0, z1) - z1 is a successor of z0.
(3) interval (z0, z1) contains exactly k points.
(4) interval (z0, z1) contains at most k points.

Let us introduce some helpful notations.

Notation 5.1. We use the abbreviated notations Part(〈δ1, . . . , δn〉, O)(z0, z1) for
Part(〈True, δ1, . . . , δn,True〉, O′)[z0, z1], where O′ := {1, n + 2} ∪ {i + 1 | i ∈
O}. Hence, M, t0, t1 |= Part(〈δ1, . . . , δn〉, O)(z0, z1) iff Part(〈δ1, . . . , δn〉, O) holds
on the open interval (t0, t1) in M. Similarly, Part(〈δ1, . . . , δn〉, O)(z0, z1] stands
for Part(〈True, δ1, . . . , δn〉, O′)[z0, z1], where O′ := {1} ∪ {i + 1 | i ∈ O}; and
Part(〈δ1, . . . , δn〉, O)[z0, z1) for Part(〈δ1, . . . , δn,True〉, O′)[z0, z1], where O′ := {n+ 1} ∪O.

By Proposition 3.7 and standard logical equivalences we obtain:

Lemma 5.2. If every formula of the form ¬Part(〈δ1, . . . , δn〉, O)(z0, z1) is equivalent to a
simple formula, then the negation of every simple formula is equivalent to a simple formula.

Proof.

(1) Every basic partition formula ϕ either (a) has at most one free variable and then ϕ
and ¬ϕ are equivalent to simple formulas by Proposition 3.7, or (b) is equivalent to a
formula of the form Part(〈δ1, . . . , δk〉, O)[z0, z1].

(2) A formula of the form Part(〈δ1, . . . , δk〉, O)[z0, z1] is equivalent to a formula constructed
by disjunction and conjunction from formulas of the forms: (a) Part(〈δ1, . . . , δn〉, O′)(z0, z1)
and (b) suc(z0, z1), z0 < z1, z0 = z1, δ1(z0) and δk(z1), where δi(z) is a quantifier-free
first-order formula. Formulas of the form (b) and their negations are equivalent to simple
formulas.

Hence, if every formula of the form ¬Part(〈δ1, . . . , δk〉, O)(z0, z1) is equivalent to a simple
formula, by the definition of simple formulas, (1)-(2) and De Morgan’s laws we obtain the
conclusion of the Lemma.
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Lemma 5.2 and the next proposition immediately imply Proposition 4.2.

Proposition 5.3 (Closure under negation). Every formula of the form

¬Part(〈δ1, . . . , δn〉, O)(z0, z1)

is equivalent to a simple formula.

Sect. 5.3 contains a proof of Proposition 5.3. In the next subsection we provide some
useful temporal logic formalizations. A proof of the next proposition, which is very similar
to the proof of Proposition 5.3 is presented in Sect. 5.2.

Proposition 5.4. The formula

¬∃x1 . . . ∃xn (z0 < x1 < · · · < xn < z1) ∧
n∧
i=1

Pi(xi)

is equivalent to a simple formula.

5.1. Some formalizations in TL(Until,Since,Untils, Sinces). First, observe that there is
a TL(Until,Untils) formula that holds at t if t succeeds by a (left definable) P1-gap and
until this gap P1 ∧ P2 holds. Indeed, the required formula is Until-gap(P1, P2) := γ+(P1) ∧
γ+(P1 ∧ P2) ∧ ¬((P1 ∧ P2)Until

sP1).
Let δ and δ′1, . . . , δ

′
k be quantifier free first-order formulas with one free variable. For

i = 1, . . . k, let D′i be a temporal formula equivalent to δ′i and let D be a temporal formula
equivalent to δ.

If we set Dk := Until-gap(D,D′k) in equation (3.1) (see page 7) and Di := D′i ∧D for
i = 1, . . . , k − 1 in equation (3.2), then Fj(tj) holds iff there is a δ-gap g that succeeds tj
such that Part(〈δ′j , . . . , δ′k〉, O) holds on [tj , g). Hence, we obtained the following Lemma:

Lemma 5.5. For every k-tuple 〈δ1, . . . , δk〉, O ⊆ {1, . . . , k} and δ there is a TL(Until,Untils)
formula F such that F holds at t if and only if there is a δ-gap g that succeeds t such that
Part(〈δ1, . . . , δk〉, O) holds on [t, g).

Lemma 5.6. Suppose we are given k ≥ 1 quantifier-free formulas δ1, . . . , δk with one free
variable, a set O ⊆ {1, . . . , k}, and points a1, d with a1 ≤ d. Let F1, . . . , Fk be defined as in
equations (3.1) and (3.2) on page 7. Then the following are equivalent:

(1) There are points a1 < a2 < · · · < ak ≤ d such that ∧ki=1Fi(ai).
(2) There is b ∈ [a1, d] such that Part(〈δ1, . . . , δk〉, O) holds on [a1, b].

Proof. ⇐ direction. Let I1, . . . , Ik be a partition of [a1, b] into non-empty intervals such that
δj holds on all points in Ij and Ii precedes Ij for i < j, and Ii is a one-point interval for

i ∈ O. Let us choose any ai ∈ Ii for i = 2, . . . , k. Then ∧ki=1Fi(ai) holds by Lemma 3.5(1).
⇒ direction. Let Fi for i = 1, . . . , k be as in the lemma. By induction on l ≤ k we prove

that if there are points a1 < a2 < · · · < al such that ∧li=1Fi(ai) then there is b ≤ al such
that Part(〈δ1 ∧ F1, . . . , δl ∧ Fl〉, O ∩ {1, . . . , l}) holds on [a1, b].

The basis is immediate, take b := a1.
Inductive step: l 7→ l + 1.
By the inductive assumption there is b′ ≤ al and a partition of [a1, b

′] into l non-empty
intervals I ′1, . . . , I

′
l such that δi ∧ Fi holds on I ′i for i ≤ l and I ′i is a one-point interval for

every i ∈ O ∩ {1, . . . , l}.
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In particular, Fl(b
′) holds. Now, by inspecting the definition of Fl according to Equation

(3.2) on page 7, it is easy to construct the required interval and its partition. In all four
cases Ii is defined as I ′i for i < l and we explain how Il and Il+1 are defined.

If l ∈ O and l + 1 ∈ O, then Fl := Dl ∧ FalseUntilFl+1. Note that Fl, holds at b′,
therefore b′ has a successor c and c ≤ al+1 because b′ ≤ al < al+1. Define Il := I ′l , b := c
and Il+1 := {b}. It is clear that I1, . . . , Il+1 is a required partition.

If l ∈ O and l + 1 /∈ O, then Fl := Dl ∧Dl+1UntilFl+1; hence, there is c > b′ such that
Fl+1(c) and δl+1 holds on (b′, c]. Define Il := I ′l . Define b := min(c, al+1), and Il+1 as (b′, b].
It is clear that I1, . . . , Il+1 is a required partition.

If l /∈ O and l + 1 ∈ O, then Fl := Dl ∧DlUntilFl+1; hence, there is c > b′ such that
Fl+1(c) and δl holds on [b′, c). Define b := min(c, al+1). Define Il as I ′l ∪ [b′, b) and Il+1 as
{b}.

If l /∈ O and l+ 1 /∈ O, then Fl := Dl ∧DlUntil
∗Fl+1. Since Fl holds at b′ there is c > b′

and a partition of [b′, c] into two non-empty intervals J1 and J2 such that J1 < J2 and Dl

holds at all points of J1 and Fl+1 holds at all points of J2. If c < al+1 define Il := I ′l ∪ J1
and Il+1 := J2 and b := c. If al+1 ∈ J2 define Il := I ′l ∪ J1, Il+1 := J2 ∩ {a | a ≤ al+1} and
b := al+1. If al+1 ∈ J1, define Il := I ′l ∪ (J1 ∩ {a | a < al+1}), Il+1 := {al+1} and b := al+1.
It is clear that b ≤ al+1 and I1, . . . , Il+1 is a required partition.

5.2. Proof of Proposition 5.4. The proof of Proposition 5.4 is very similar to the proof
of Proposition 5.3. Its Corollary 5.7 will be used in the proof of Proposition 5.3.

Let An(P1, . . . , Pn, z0, z1) be ∃x1 . . . ∃xn (z0 < x1 < · · · < xn < z1) ∧
∧n
i=1 Pi(xi). We

have to prove that ¬An is equivalent to a simple formula.
¬An is equivalent to the disjunction of (z0, z1) = ∅ and of (z0, z1) 6= ∅ ∧ ¬An. The first

disjunct is equivalent to a simple formula. Therefore, it is sufficient to prove that the second
disjunct is equivalent to a simple formula.

Below we assume that (z0, z1) is non-empty, and prove by induction on n.
Basis: The case n = 1 is trivial.
Inductive step: n 7→ n+ 1.
Since (z0, z1) is non-empty, then one of the following cases holds:

Case 1: There is no occurrence of P1 in (z0, z1) or there is no occurrence of Pn+1 in (z0, z1).
Case 2: z0 = inf{z ∈ (z0, z1) | P1(z)}.
Case 2′: z1 = sup{z ∈ (z0, z1) | Pn+1(z)}. This case is dual to case 2.
Case 3: inf{z ∈ (z0, z1) | P1(z)} is an element in (z0, z1).
Case 3′: sup{z ∈ (z0, z1) | Pn+1(z)} is an element in (z0, z1). This case is dual to case 3.
Case 4: (1) Both c := inf{z ∈ (z0, z1) | P1(z)} and d := sup{z ∈ (z0, z1) | Pn+1(z)} are

gaps in (z0, z1) and
(2) c ≥ d.

Case 5: (1) Both c := inf{z ∈ (z0, z1) | P1(z)} and d := sup{z ∈ (z0, z1) | Pn+1(z)} are
gaps in (z0, z1) and

(2) c < d.

For each of these cases we construct a simple formula Condi which describes it (i.e., Case i
holds iff Condi holds), and show that if Condi holds, then ¬An+1 is equivalent to a simple
formula Formi. Hence, ¬An+1 is equivalent to a simple formula ∨i[Condi ∧ Formi].
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Case 1 This case holds iff Part(〈¬P1(x)〉, ∅)(z0, z1) ∨ Part(〈¬Pn+1(x)〉, ∅)(z0, z1) In this
case ¬An+1 is equivalent to True.

Case 2 Case 2 holds iff K+(P1)(z0). In this case ¬An+1 iff ¬An(P2, . . . , Pn+1, z0, z1) which
is equivalent to a simple formula by the inductive assumption.

Case 2′ This case is dual to Case 2.

Case 3 This case holds iff there is (a unique) r0 ∈ (z0, z1) such that ¬P1 holds along (z0, r0)
and either P1(r0) or K+(P1)(r0).

This r0 is definable by the following simple formula, i.e., r0 is a unique z which satisfies
it:

INF (P1, z0, z, z1) := z0 <z < z1 ∧ “no P1 in (z0, z)”∧
∧ (P1(z) ∨ K+(P1)(z))

Hence, this case is described by (∃z)<z1>z0INF (P1, z0, z, z1) which is equivalent to a simple
formula.

In this case ¬An+1 iff (∃z)<z1>z0

(
INF (P1, z0, z, z1)∧¬An(P2, . . . , Pn, z, z1)

)
. The inductive

assumption and Lemma 3.4 imply that this formula is equivalent to a simple formula.

Case 3′ This case is dual to Case 3.

Case 4 The first condition holds iff

• z0 succeeded by ¬P1 gap in (z0, z1), i.e. γ+(¬P1)(z0) and P1 holds at some point in
(z0, z1), and
• z1 preceded by ¬Pn+1 gap in (z0, z1), i.e., γ−(¬Pn+1)(z1) and Pn+1 holds at some point

in (z0, z1).

(Modalities γ+ and γ− were defined in Sect. 2.2.2.) Hence, the first condition is equivalent
to a simple formula.

If the first condition holds, then the second condition holds iff in (z0, z1) no occurrence
of P1 precedes an occurrence of Pn+1, i.e., iff Part(〈¬P1,¬Pn+1〉, ∅)(z0, z1). Hence, Case 4
is described by a simple formula.

In Case 4 ¬An+1(P1, . . . , Pn+1, z0, z1) is equivalent to True.

Case 5 The first condition is the same as in Case 4. If the first condition holds, then z is
between c and d iff z satisfies the formula:

Between(z0, z, z1) := (∃x1)<z>z0P1(x1) ∧ (∃xn+1)
<z1
>z Pn+1(xn+1).

Hence, this case can be described as the conjunction of the first condition and ∃zBetween(z0, z, z1)
and this is equivalent to a simple formula.

Note that in this case ∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1) ∧
∧n+1
j=1 Pj(xj) holds

iff for every z between c and d one of the following 2n− 1 conditions holds: for i = 1, . . . , n:

∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1) ∧ xi < z < xi+1 ∧
n+1∧
j=1

Pj(xj)

for i = 2, . . . , n:

∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1) ∧ xi = z ∧
n+1∧
j=1

Pj(xj)
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Hence, ¬∃x1 . . . ∃xn+1 (z0 < x1 < · · · < xn+1 < z1) ∧
∧n+1
j=1 Pj(xj) is equivalent to

∃z(Between(z) ∧
n∧
k=1

[
¬Ak(P1, . . . , Pk, z0, z) ∨ ¬An+1−k(Pk+1, . . . , Pn+1, z, z1)

]
∧

n∧
k=2

[
¬Ak−1(P1, . . . , Pk−1, z0, z) ∨ ¬Pk(z) ∨ ¬An+1−k(Pk+1, . . . , Pn+1, z, z1)

]
By the inductive assumption ¬Ak and ¬An+1−k are simple for k = 1, . . . , n. Since Between
is a simple formula, and the set of simple formulas is closed under conjunction, disjunction
and existential quantifier, we obtain a formalization of this case by a simple formula. This
completes the proof of Proposition 5.4.

By Proposition 5.4, Lemma 5.6 and standard logical equivalences we derive:

Corollary 5.7.

(1) ¬(∃z)<z1>z0Part(〈δ′1, . . . , δ′n〉, O′)(z0, z] is equivalent to a simple formula.

(2) ¬(∃z)<z1>z0Part(〈δ′1, . . . , δ′n〉, O′)[z, z1) is equivalent to a simple formula.

Proof.

(1) Set k := n+ 1, δ1 := True, δi+1 := δ′i for i = 1, . . . , n and O := {1} ∪ {i+ 1 | i ∈ O′}.
Observe: Part(〈δ′1, . . . , δ′n〉, O′)(z0, z] iff Part(〈δ1, . . . , δk〉, O)[z0, z].

Let Fi be defined as in Lemma 5.6. Then ∃x2 . . . ∃xk−1z0 < x2 < · · · < xk−1 <

xk ∧ F1(z0) ∧
∧k
i=2 Fi(xi) iff ∃z(z0 < z ≤ xk ∧ Part(〈δ1, . . . , δk〉, O)[z0, z]).

Hence, ¬(∃z)<z1>z0Part(〈δ′1, . . . , δ′n〉, O′)(z0, z] is equivalent to ¬F1(z0)∨¬ ∃x2 . . . ∃xkz0 <
x2 < · · · < xk−1 < xk < z1 ∧

∧k
i=2 Fi(xi). The first disjunct is an atom (in the canonical

expansion) and the second disjunct is equivalent to a simple formula by Proposition 5.4.
Therefore, ¬(∃z)<z1>z0Part(〈δ′1, . . . , δ′n〉, O′)(z0, z] is equivalent to a simple formula.

(2) is the mirror image of (1).

5.3. Proof of Proposition 5.3.
Convention. We often will say “a formula is simple” instead of “a formula is equivalent to
a simple formula.” In all such cases equivalence to a simple formula is proved by Lemma 3.4
and by standard logical transformations and/or using the inductive hypotheses.

We proceed by induction on n.
Basis. The case n = 1 is immediate.
Inductive step n 7→ n+ 1.
¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to the disjunction of (z0, z1) = ∅ and of

(z0, z1) 6= ∅ ∧ ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1). The first disjunct is equivalent to a simple
formula. Therefore, it is sufficient to prove that the second disjunct is equivalent to a simple
formula.

From now on we assume that (z0, z1) is non-empty.
Observe that one of the following cases holds:

Case 1: δ1 holds on all points in (z0, z1).
Case 1′: δn+1 holds on all points in (z0, z1). This case is dual to case 1.
Case 2: z0 = inf{z ∈ (z0, z1) | ¬δ1(z)} or z1 = sup{z ∈ (z0, z1) | ¬δn+1(z)}.
Case 3: inf{z ∈ (z0, z1) | ¬δ1(z)} is an element in (z0, z1).
Case 3′: sup{z ∈ (z0, z1) | ¬δn+1(z)} is an element in (z0, z1). This case is dual to case 3.
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Case 4: Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) | ¬δn+1(z)} are gaps
in (z0, z1) and c > d.

Case 5: Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) | ¬δn+1(z)} are gaps
in (z0, z1) and c < d.

Case 6: Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) | ¬δn+1(z)} are gaps
in (z0, z1) and c = d.

For each of these cases we construct a simple formula Condi which describes it (i.e., Case i
holds iff Condi holds), and show that if Condi holds, then ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is
equivalent to a simple formula Formi. Hence, ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent
to a simple formula ∨i[Condi ∧ Formi].

Case 1 is described by Part(〈δ1〉, ∅)(z0, z1). In this case ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is
equivalent to ¬(∃z)<z1>z0Part(〈δ1, . . . , δn+1〉, O)[z, z1), and by Corollary 5.7 this is a simple
formula.

Case 1′ This case is dual to Case 1.

Case 2 This case is described by K+(¬δ1)(z0) ∨ K−(¬δn+1)(z1). In this case
¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to True.

Note that in the above cases we have not used the inductive assumption. Case 6 will be
also proved directly. However, in cases 3-5 we will use the inductive assumption.

We introduce notations and state an observation which will be used several times.
For a set O of natural numbers and i ∈ N, we denote by Osh(i) the set O shifted by i,

i.e., Osh(i) := {j | j > 0 ∧ j + i ∈ O}.
Define

C<i(z0, z) :=

{
“z is the successor of z0” for i = 1

Part(〈δ1, . . . , δi−1〉, O ∩ {1, . . . , i− 1})(z0, z) for i = 2, . . . , n+ 2

C>i(z, z1) :=

{
“z1 is the successor of z” for i = n+ 1

Part(〈δi+1, . . . , δn+1〉, Osh(i))(z, z1) for i = 0, . . . , n

For i = 1, . . . , n+ 1 define

C≤i(z0, z) :=C<i(z0, z) ∨ C<i+1(z0, z)

C≥i(z, z1) :=C>i(z, z1) ∨ C>i−1(z, z1)

Ai(z0, z, z1) :=

{
C<i(z0, z) ∧ δi(z) ∧ C>i(z, z1) if i ∈ O
C≤i(z0, z) ∧ δi(z) ∧ C≥i(z, z1) otherwise

From these definitions we obtain the following equivalences:

Part(〈δ1, . . . , δn+1〉, O)(z0, z1)⇔ (∃z)<z1>z0Ai for i ∈ 1, . . . , n+ 1 (5.1)

and if (z0, z1) 6= ∅, then

Part(〈δ1, . . . , δn+1〉, O)(z0, z1)⇔ (∀z)<z1>z0

(∨
i

Ai
)

(5.2)

Since, we assumed that (z0, z1) is non-empty, by (5.1)-(5.2) we have

¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1)
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is equivalent to

(∃z)<z1>z0

(∧
i

¬Ai
)

and to

(∀z)<z1>z0

(∧
i

¬Ai
)

Hence, for every ϕ(z0, z, z1)

(∃z)<z1>z0ϕ(z) ∧ ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1)

is equivalent to

(∃z)<z1>z0

(
ϕ(z) ∧

(∧
i

¬Ai
))

is equivalent to

(∃z)<z1>z0

((
ϕ(z) ∧

∧
i∈{2,...,n}

¬Ai
)
∧
(
ϕ(z) ∧ ¬A1 ∧ ¬An+1

))
By the inductive assumption, the definition of Ai, and Lemma 3.4, we obtain that ¬Ai are
simple formulas for i ∈ {2, . . . , n}. Similarly, if 1 ∈ O (respectively, n+ 1 ∈ O), then ¬A1

(respectively, ¬An+1) is equivalent to a simple formula. The set of simple formulas is closed
under ∧, ∨ and ∃. Hence,

Observation 5.8. Assume that ϕ(z) is equivalent to a simple formula, and if 1 /∈ O, then
ϕ(z)∧¬A1 is equivalent to a simple formula, and if n+1 /∈ O, then ϕ(z)∧¬An+1 is equivalent
to a simple formula. Then (∃z)<z1>z0ϕ(z) ∧ ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1) is equivalent to a
simple formula.

In cases 3-5 we will use this observation with some instances of ϕ.

Case 3 This case holds iff there is (a unique) r0 ∈ (z0, z1) such that δ1 holds along (z0, r0)
and ¬δ1(r0) ∨ K+(¬δ1)(r0).

This r0 is definable by the following simple formula, i.e., r0 is a unique z which satisfies
it:

INF¬δ1(z0, z, z1) := z0 <z < z1 ∧ (suc(z0, z) ∨ Part(〈δ1〉, ∅)(z0, z))∧
∧ (¬δ1(z) ∨ K+(¬δ1)(z))

Hence, this case is described by a simple formula (∃z)<z1>z0INF¬δ1(z0, z, z1).
By Observation 5.8 it is sufficient to prove that (1) if 1 /∈ O then INF¬δ1 ∧ ¬A1 is

equivalent to a simple formula, and (2) if n+ 1 /∈ O, then INF¬δ1 ∧ ¬An+1 is equivalent to
a simple formula.

Note that ¬δ1(z) ∨K+(¬δ1)(z) implies ¬
(
δ1(z) ∧ Part(〈δ1, . . . , δn+1〉, O)(z, z1)

)
. There-

fore, by the definition of A1 for the case when 1 /∈ O, and standard logical trans-
formations we obtain that INF¬δ1 ∧ ¬A1 is equivalent to INF¬δ1 ∧

(
¬C≤1 ∨ ¬δ1(z) ∨

¬Part(〈δ2, . . . , δn+1〉, Osh(1))(z, z1). The last formula is equivalent to a simple formula by
the inductive assumption and standard logical equivalences.
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If n+ 1 /∈ O, then INF¬δ1 ∧ ¬An+1 is equivalent to

INF¬δ1(z0, z, z1) ∧ (¬C≥n+1(z, z1) ∨ ¬δn+1(z) ∨ ¬C≤n+1(z0, z)).

¬C≥n+1(z, z1) is a simple formula by the induction basis. Note that INF¬δ1(z0, z, z1) implies
suc(z0, z) or “δ1 holds along the interval (z0, z).” By Case 1 the conjunction of “δ1 holds along
the interval (z0, z)” and ¬C≤n+1(z0, z)) is a simple formula. Therefore, INF¬δ1 ∧ ¬An+1 is
equivalent to a simple formula.

Case 3′ This case is dual to case 3.

Case 4 The conjunction of the following conditions expresses by a simple formula that z is
in the interval (d, c):

• z0 succeeded by δ1 gap in (z0, z1) - γ+(δ1)(z0) and ¬δ1 holds at some point in (z0, z1).
• z1 preceded by δn+1 gap in (z0, z1) - γ−(δn+1)(z1) and ¬δn+1 holds at some point in

(z0, z1).
• δ1 holds along (z0, z) and δn+1 holds along (z, z1).

Let us denote this conjunction by In(d,c)(z0, z, z1).

Hence, this case holds iff (∃z)<z1>z0 In(d,c)(z0, z, z1).
By Observation 5.8 it is sufficient to show that (1) if 1 /∈ O, then In(d,c)(z0, z, z1)∧¬A1

is equivalent to a simple formula, and (2) if n + 1 /∈ O, then In(d,c)(z0, z, z1) ∧ ¬An+1 is
equivalent to a simple formula.

if 1 /∈ O then In(d,c)(z0, z, z1) ∧ ¬A1(z0, z, z1) is equivalent to

In(d,c)(z0, z, z1) ∧
(
¬δ1(z) ∨ ¬C≤1(z0, z) ∨ (¬C>1(z, z1) ∧ ¬C>0(z, z1))

)
.

In(d,c)(z0, z, z1) implies that δn+1 holds along (z, z1), therefore, by Case 1′ both In(d,c) ∧
¬C>0(z, z1) and In(d,c) ∧ ¬C>1(z, z1) are simple. By the basis of induction ¬C≤1 is simple.
Hence, In(d,c)(z0, z, z1) ∧ ¬A1(z0, z, z1) is simple.

Similar arguments show that if n + 1 /∈ O, then In(d,c)(z0, z, z1) ∧ ¬An+1(z0, z, z1) is
simple.

Case 5 It is easy to write a simple formula Between(z0, z, z1) which expresses that z is in
the interval (c, d). Between(z0, z, z1) can be defined as the conjunction of z0 < z < z1 and of

• z0 succeeded by δ1 gap in (z0, z) - γ+(δ1)(z0) and ¬δ1 holds at some point in (z0, z).
• z1 preceded by δn+1 gap in (z, z1) - γ−(δn+1)(z1) and ¬δn+1 holds at some point in (z, z1).

Hence, this case holds iff (∃z)<z1>z0Between(z0, z, z1).
By Observation 5.8 it is sufficient to show that (1) if 1 /∈ O, then Between(z0, z, z1) ∧

¬A1(z0, z, z1) is equivalent to a simple formula, and (2) if n+1 /∈ O, then Between(z0, z, z1)∧
¬An+1(z0, z, z1) is equivalent to a simple formula. Since Between implies ¬C≤1 it follows
that Between ∧ ¬A1 is equivalent to Between. Since Between implies ¬C≥n+1 it follows
that Between ∧ ¬An+1 is equivalent to Between. Therefore, both Between ∧ ¬A1 and
Between ∧ ¬An+1 are simple.

Case 6 Both c := inf{z ∈ (z0, z1) | ¬δ1(z)} and d := sup{z ∈ (z0, z1) | ¬δn+1(z)} are gaps
in (z0, z1) and c ≥ d iff the conjunction of the following holds:

(1) z0 succeeded by δ1 gap in (z0, z1).
(2) z1 preceded by δn+1 gap in (z0, z1).
(3) Part(〈δ1, δn+1〉, ∅)(z0, z1).
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If (1)-(3) holds, then d < c iff F (z0) defined as δ1Until(δ1 ∧ Until-gap(δ1, δ2))(z0) holds,
where Until-gap is defined on page 10.

Hence, this case can be described by the conjunction of (1)-(3) and ¬F (z0). (1) and
(2) are expressed by simple formulas like in Case 4; (3) and ¬F (z0) are simple formulas.
Therefore, this case is described by a simple formula.

In this case Part(〈δ1, . . . , δn+1〉, O)(z0, z1) holds iff there is i such that
Part(〈δ1, . . . , δi〉, O) holds on (z0, c) and Part(〈δi, . . . , δn+1〉, O) or Part(〈δi+1, . . . , δn+1〉, O)
holds on (c, z1). Applying Lemma 5.5 to the tuple 〈True, δ1, . . . , δi〉, O := {1} ∪ {j + 1 | j ∈
O ∧ j ≤ i} and δ1, we obtain a temporal formula Fi such that Fi(z0) iff Part(〈δ1, . . . , δi〉, O)
holds on (z0, c). By the mirror arguments there is a temporal formula Hi such that Hi(z1) iff
Part(〈δi, . . . , δn+1〉, O) holds on (c, z1). Hence, in this case ¬Part(〈δ1, . . . , δn+1〉, O)(z0, z1)
is equivalent to

n∧
i=1

(
¬Fi(z0) ∨ (¬Hi(z1) ∧ ¬Hi+1(z1))

)
.

6. Related Works

Our proof is very similar to the proof of Kamp’s theorem in [Rab14]. The only novelty

of our proof are partition formulas. Simple partition formulas generalize
−→
∃ ∀-formulas

which played a major role in the proof of Kamp’s theorem [Rab14]. Roughly speaking

an
−→
∃ ∀-formula is a normal partition formula which uses only basic partition expressions

Part(〈δ1, . . . , δn〉, O) with the following restriction: for i < n, if i /∈ O then i + 1 ∈ O.
This restriction implies that if a partition I1, . . . , In witnesses that an interval [t, t′] of M
satisfies Part(〈δ1, . . . , δn〉, O), then all intervals Ii have endpoints in M. Over the Dedekind
complete orders all intervals have end-points and every partition expression is equivalent
to a disjunction of the restricted partition expressions; however, over general linear orders
Part(〈P1(x), P2(x)〉, ∅) is not equivalent to a positive boolean combination of restricted
partition expressions.

As far as we know, there are only two published proofs of Stavi’s theorem. One is
based on separation in Chapter 11 of [GHR94], and the other is based on games in [GHR93]
(reproduced in Chapter 12 of [GHR94]). They are much more complicated than the proofs
of Kamp’s theorem in [GHR94].

A temporal logic has the separation property if its formulas can be equivalently rewritten
as a boolean combination of formulas, each of which depends only on the past, present or
future. The separation property was introduced by Gabbay [Gab81], and surprisingly, a

temporal logic which can express � and
←−
� has the separation property (over a class C of

structures) iff it is expressively complete for FOMLO over C.
In the proof based on separation, a special temporal language L∗ is carefully designed.

The formulas of L∗ are evaluated over Dedekind-complete chains. For every chain M its
completion Mc is defined. It is shown: (1) L∗ has the separation property over the com-
pletions of chains; (2) for every ϕ ∈ L∗ there is a formula ψ ∈ TL(Until,Since,Untils,Sinces)
such thatM, t |= ψ iffMc, t |= ϕ, and (3) for every formula ξ(x) ∈ FOMLO there is ϕ ∈ L∗
such that M, t |= ξ iff Mc, t |= ϕ.

In the game-based proof for every chain M and r ∈ N a chain Mr is defined. Mr is
the completion of M by the gaps definable by TL(Until, Since,Untils, Sinces) formulas of the
nesting depth r. Then, special games on the temporal structures are considered. The game
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arguments are easier to grasp, then the separation ones, but they use complicated inductive
assertions.

Our proof avoids completions and games and separates general logical equivalences and
temporal arguments. The proof is similar to our proof of Kamps theorem [Rab14]; yet it is
longer because it treats some additional cases related to gaps in time flows.
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