
Logical Methods in Computer Science
Vol. 14(2:1)2018, pp. 1–41
https://lmcs.episciences.org/

Submitted Jan. 03, 2017
Published Apr. 10, 2018

CLOSED SETS AND OPERATORS THEREON:
REPRESENTATIONS, COMPUTABILITY AND COMPLEXITY

CARSTEN RÖSNICK-NEUGEBAUER

Technische Universität Darmstadt, Germany
e-mail address: research@carstenrn.com

Abstract. The TTE approach to Computable Analysis is the study of so-called represen-
tations (encodings for continuous objects such as reals, functions, and sets) with respect
to the notions of computability they induce. A rich variety of such representations had
been devised over the past decades, particularly regarding closed subsets of Euclidean
space plus subclasses thereof (like compact subsets). In addition, they had been compared
and classified with respect to both non-uniform computability of single sets and uniform
computability of operators on sets. In this paper we refine these investigations from the
point of view of computational complexity. Benefiting from the concept of second-order
representations and complexity recently devised by Kawamura & Cook (2012), we determine
parameterized complexity bounds for operators such as union, intersection, projection, and
more generally function image and inversion. By indicating natural parameters in addition
to the output precision, we get a uniform view on results by Ko (1991-2013), Braverman
(2004/05) and Zhao & Müller (2008), relating these problems to the P/UP/NP question in
discrete complexity theory.

1. Introduction

Closed subsets of Euclidean space, and in particular subclasses thereof like compact subsets,
are important throughout many parts of pure theoretical mathematics, but also of no
less relevance in disciplines like numerical analysis, convex optimization, or computational
geometry. It is necessary to first define encodings for sets in order to describe computations
on them which can be performed in a reasonably realistic computational model (which can
even be implemented and used in practice [Mül00]). We choose the function oracle Turing
machine model as in [KF82, Ko91, KC12] with encodings (functions of form φ : Σ∗ → Σ∗) of
continuous objects (reals, functions, sets) are given as oracles. Computational efficiency is
gauged by second-order polynomial runtime bounds [KC12] – with the explicit addition of
parameters which leads to a second-order equivalent of discrete parameterized complexity
[KMRZ12, Ret13].

Key words and phrases: computational complexity, logic in computer science.
Supported by the German Research Foundation (DFG) with project Zi 1009/4 and by the Marie Curie

International Research Staff Exchange Scheme Fellowship 294962 within the 7th European Community
Framework Program. A preliminary version (extended abstract) have been appeared in Proc. CCA’2013.
Some parts have also been published in the author’s PhD thesis [Rös14].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(2:1)2018
c© C. Rösnick-Neugebauer
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 C. RÖSNICK-NEUGEBAUER

The introduction of such encodings for sets, called representations in the TTE-branch
of Computable Analysis, constitutes the first of two parts of this paper. One possible
representation, δ, of a closed non-empty set S ⊆ Rd is by a function φ approximating its
distance function dS at any point up to arbitrary precision. Another representation, ψ,
asserts, given a point q and a precision parameter n, that either q is of distance less than 2−n

to S, or that it is of distance greater than 2 · 2−n. Both representations allow for printing an
arbitrarily precise picture of the respective set. So are these two representations computably
equivalent, and if, how are they related complexity-wise? While computably equivalent in any
dimension d, they are only polynomial-time equivalent in dimension d = 1. From dimension
d = 2 onward, the question of whether a set S is polynomial-time computable with respect to
δ iff it is with respect to ψ, has been linked to the P vs. NP question [Bra04]. Several more
representations had been suggested [WK87, Her02, Ret08] and compared with respect to
their computable equivalence [KS95, BW99, Wei00, Zie02, Her02, BP03]. The complexities
of these relations, and in particular the uniform formulations (i. e., the complexity of an
operator translating between two representations) of them, appear to be mostly unmentioned
or unknown (except for a few examples [GLS88, Bra04]). We strengthen these previously
known equivalence results from mere computable equivalence to parameterized polynomial-
time equivalence, and prove uniform exponential lower bounds for the other relations. For
dimension d = 2 these uniform (non-)polynomial-time equivalence results relate to complexity
results for subsets of R2 with respect to various representations [CK95, CK05]; and they
allow us to restate complexity results like for Julia sets [RW02, Bra05a] with respect to
polynomial-time equivalent representations.

The second part of this work investigates the parameterized computational complexity
of natural operators on sets, such as binary intersection and union, or projection to lower
dimensional subspaces, but also forming the image or local inverse of a function with respect
to a given set. The situation concerning their parameterized complexity is similar to that for
representations of sets: Operators on closed, compact or regular subsets have been considered
with respect to computability (e. g., [Zho96, Zie04, ZB04]) and non-uniform complexity
bounds (e. g., [Ko91, Chap. 4], [KY08]), but it appears that less is known about the uniform
complexity of operators (exceptions include [ZM08]). In addition, complexity bounds of
e. g. projection and function inversion had been linked to classical problems from discrete
complexity theory, namely P vs. NP and P vs. UP. Results like these are in the spirit
of well-known ones for maximization and integration of functions [KF82, Fri84] (we refer
the reader e. g. to [Ko98, BHW08] for an overview and more examples of this kind). In
this paper we present uniform worst-case parameterized complexity bounds for all of the
aforementioned operators. Providing operators through parameters with more information
about their arguments turns out to be valuable and fruitful approach to achieve uniformity
and also allows for a fine-grained perspective on their inherent complexity.1 In addition
to upper bounds we also present exponential-time lower bounds, thus extending upon the
former non-uniform bounds that depended on believed-to-be-hard problems from discrete
complexity theory.

1Take the projection of a subset of Rd to its first component as an example: The question whether a given
point q is contained in the projection is uncomputable as long as no information about a bound of the set is
given.

CLOSED SETS AND OPERATORS THEREON 3

Results obtained in this paper. Primarily based on [GLS88, Chap. 4], [Wei00, §5], [Zie02]
and [Ret08], we introduce five representations in Section 2.2: δ and δrel, ψ, κ, and ω. Each
representation will depend on a fixed yet arbitrary norm—a dependence we will show in
Section 3.2 to be of “polynomial-time irrelevance” for all but one representation (δ: Thm. 3.8).
We furthermore compare relations between representations by means of (parameterized)
polynomial-time translations; and observe that, although they are all (uniformly) computably
equivalent over convex regular sets [Zie02, Cor. 4.13], mutual (parameterized) polynomial-
time reductions exist only for intervals (Thm. 3.10), but in general not from dimension
d = 2 onward. In fact, we identify a kind of hierarchy: ω forms the poorest, δ the richest
representation, and δrel, ψ, κ are parameterized polynomial-time equivalent over compact
sets (Thm. 3.11, 3.12 and 3.19). Parameterized polynomial-time equivalence of ω with δ
(hence of all of the former representations) is finally achieved if restricted to compact convex
regular sets (Thm. 3.14).

Section 4 then uses the formerly unveiled connections between representations by dis-
cussing the complexity of operators. Operators include Choice (finding some point in a
set; the presumably most basic set operation) and Union, which are fully polynomial-time
computable for all of the above representations but ω); and Intersection, which (in contrast to
the former result) polynomial-time computable only for ω. More involved operators, Inversion
and Image, are discussed in Sections 5.2 and 5.3: We prove that Inversion is parameterized
polynomial-time computable for Lipschitz-continuous functions whose inverse is also Lipschitz
continuous (Thm. 5.9)—which fits right in the gap between naive exponential-time algorithms
and results of Ko [Ko91, Thm. 4.23+4.26], the latter relating non-uniform Inversion for a
more general class of functions to the (considered to be hard) question whether P 6= UP
holds true.

Preliminaries, nomenclature. We introduce some notations and concepts we frequently
use throughout this paper. Let Σ be the binary alphabet {0, 1}, Σ∗ denotes the set of finite
0/1-strings, Σω the set of 0/1 sequences (isomorphic to Σ(Σ∗), the set of all total functions
from Σ∗ to Σ), and Σ∗∗ := (Σ∗)(Σ∗) the set of all total functions from Σ∗ to Σ∗. A finite string
s = s1 · · · sk ∈ Σ∗ with si ∈ Σ is also called word. The length of s (as above) is defined by
`(s) := k, and ε denotes the unique word of length 0 (the empty word). We further consider
the sets Σω and Σ∗∗ as topological spaces equipped with the product topology (equip Σ, Σ∗

with the discrete topology).
Let N := {0} ∪ N+ with N+ := {1, 2, 3, . . . }, and abbreviate the binary logarithm of

x by lbx := log2 x. By Dm := {a/2m | a ∈ Z} we denote the set of dyadic rationals of
precision m ∈ Z, and set D :=

⋃
m∈ZDm. Let further binN : N→ Σ∗ denote the usual binary

coding of naturals as words, unN denotes the unary coding which we usually abbreviate by
0n := unN(n). Even though unN is not surjective and thus does not admit an inverse, we like
to understand by un−1

N the mapping s ∈ Σ∗ 7→ `(s) ∈ N. Note that the notions of binary and
unary encodings naturally extend to the set of integers by embedding Z into N. By abuse of
notations, we casually write 0k for the unary coding of an integer k. Pairing functions (usually
total, bijective, computable and invertible in polynomial time, although we do not need
them to be surjective) are denoted by 〈·, ·〉X : X ×X → X whereby the “X ” will be usually
clear from context (typically N, Σ∗ or Σ∗∗) and henceforth omitted. Explicitly, 〈s, t〉Σ∗ :=

binN
(〈
bin−1

N (s), bin−1
N (t)

〉
N
)
with 〈·, ·〉N being the Cantor pairing function. Further define the

pairing function 〈φ, ψ〉 on Baire space Σ∗∗ through 〈φ, ψ〉(ε) := ε, 〈φ, ψ〉(0 s) := 0`(ψ(s)) 1φ(s),

4 C. RÖSNICK-NEUGEBAUER

and 〈φ, ψ〉(1 s) := 0`(φ(s)) 1ψ(s) for all s ∈ Σ∗. The binary encoding bin
(d)
D : Dd → Σ∗ of

dyadic rationals is recursively defined: Let bin(1)
D : a/2n 7→

〈
binZ(a), 0n

〉
Σ∗ and for d ≥ 2 let

bin
(d)
D : (q1, . . . , qd) 7→

〈
bin

(1)
D (q1), bin

(d−1)
D (q2, . . . , qd)

〉
Σ∗ .

A normed (vector) space is a pair (X, ‖·‖) of a vector space X together with a norm ‖·‖
on X. A set S ⊆ X is open in X if it is the set of its inner points, i. e., S◦ = S, and closed
(in X) if it is the closure of itself, i. e., S = S. The boundary is defined as ∂S := S \ S◦.

On (Rd, ‖·‖) we denote closed balls with center x ∈ Rd and radius δ > 0 by B‖·‖(x, δ) :=

{y ∈ Rd | ‖x− y‖ ≤ δ}—or simply by B(x, δ) if the norm used is understood. Similarly
denote open balls as B‖·‖(x, δ). Whenever useful, we use the abbreviation Ddn(R) := Ddn ∩
B(0, R). A “ball” (actually a neighborhood) around a set S ⊆ Rd of radius δ > 0 is defined
through the union of balls around the points of S, i. e., B(S, δ) :=

⋃
x∈S B(x, δ), and similarly

for open balls. The same works in the reverse direction, i. e., for negative radii: Denote by
B(S,−δ) :=

{
x ∈ Rd

∣∣ B(x, δ) ⊆ S
}
the (possibly empty) set of all points x lying δ-deep in

S. Further define hollow closed balls centered at x with inner radius δ′ > 0 and outer radius
δ ≥ δ′ through B‖·‖(x, δ, δ

′) := B‖·‖(x, δ) \ B‖·‖(x, δ
′).

The domain and co-domain (also: image) of a function f mapping from a set X into Y
are denoted by dom(f) and cod(f), respectively. Besides total functions, f : X → Y with
dom(f) = X, we also consider partial functions f : ⊆X → Y (f is defined only on a subset
of X, thus the “⊆X”), and partial multi-valued functions as f : X ⇒ Y , f(x) ⊆ Y . Phrased
differently, a multi-valued partial function f : X ⇒ Y is a partial function from X into the
powerset of Y . The multi-valued assignment of an element x ∈ X to a subset Y ′ ⊆ Y is
abbreviated by x Z⇒ Y ′.

2. Model, representations and complexity

All the concepts we discuss in this section are guided by the question how computations
on subsets of real vector spaces could be carried out on a reasonably realistic machine
model. Using a Turing-like machine model (Section 2.1), we define encodings of sets
through representations (Section 2.2) and proceed by giving definitions for computability and
parameterized complexity (Sections 2.3 and 2.4).

2.1. Computational models. Two mainstream models in Computable Analysis are the
Type-2 Theory of Effectivity [Wei00] and the oracle Turing machine model [KF82, Ko91].
The former even yields a topological interpretation of computability. Therefore, we start by
introducing computability using the former model. Carrying these notation over to the latter
model will then naturally give rise to a suitable notion of complexity. From a computational
point, however, both models are equivalent. The notions discussed in this section are based
on [Kaw11, §2.1+2.2] and [KMRZ12, §2].

2.1.1. Type-2 machines: computations on finite and infinite strings. Type-2 machines extend
upon classical Turing machines by operating on infinite strings instead of finite ones, i. e.,
on Σω instead of Σ∗. Such a machine consists of finitely many left-to-right readable input
and bidirectional working tapes, and one left-to-right writable output tape. A computation
on finite strings is carried out as on classical Turing machines: Given a type-2 machine M
with k ∈ N input tapes plus an input (s1, . . . , sk) ∈ Σ∗ × · · · × Σ∗ to it, M either reads

CLOSED SETS AND OPERATORS THEREON 5

one symbol from one of its k input tapes, reads or writes one symbol on one of its working
tapes, or writes a symbol on its output tape. The same applies if the input is not a tuple
of finite strings, but of infinite ones from Σω × · · · × Σω. Given such a machine M , we say
it computes a partial function f : ⊆Σ∗ × · · · × Σ∗ if it terminates on all inputs (s1, . . . , sk)
from f ’s domain and writes f(s1, . . . , sk) symbol-by-symbol on the output tape. As for the
infinite case, M computes a partial function f : ⊆Σω × · · · ×Σω → Σω if M continues forever
on input (s1, . . . , sk) whilst producing s := f(s1, . . . , sk) on its output tape.

Machines which have to run infinitely long to produce their answer would certainly not
deserve to be called “practicable”. The key here, however, is that for every finite prefix of
the input read a type-2 machine produces a non-revisable finite prefix of the still infinitely
long correct output. We postpone discussing of the strong topological implications to
computability until Thm. 2.3 and Section 2.5.

As for classical Turing machines, type-2 machines are also capable to compute functions
f : ⊆X1×· · ·×Xk → X ′ for sets Xi, X

′ different from Σω by encoding their elements through
items from Σω (appropriate cardinalities assumed). Following [Wei00, Def. 2.3.1(2)], we call
such encodings representations. Building upon them, we formulate the computability of
functions f : ⊆X → X ′ through realizers.

Definition 2.1 (representations, realizers). Let X and X ′ be sets.
(1) A representation of X is a surjective partial function ξ : ⊆Σω → X.
(2) An element φ ∈ ξ−1[{x}] is said to be a ξ-name of x.
Further assume ξ and ξ′ to be representations of X and X ′, respectively, and let f : ⊆X → X ′

be some function.
(3) A function g : ⊆Σω → Σω is called a (ξ, ξ′)-realizer of function f if for all φ ∈

ξ−1
[
dom(f)

]
, (ξ′ ◦ g)(φ) = (f ◦ ξ)(φ) holds true. A more visual way to think of

realizers is by a commuting diagram:

Σω g //

ξ

��

Σω

ξ′

��
X

f // X ′

(4) Function f is called (ξ, ξ′)-computable (-continuous) if it has a computable (continuous)
(ξ, ξ′)-realizer.

The above notions are reasonable in the sense that topological continuity of a function
corresponds to (ξ, ξ′)-continuity if ξ and ξ′ are both admissible (cf. [Wei00, §3.2], [Sch02]).
Note that all representations mentioned in this paper are admissible.

We present a few examples of representations in form of a definition.

6 C. RÖSNICK-NEUGEBAUER

Definition 2.2 (representations). (1) Representations unN and binN extend upon the unary
and binary encodings, un−1

N and bin−1
N from Σ∗ to Σω.2 We say, a natural number k ∈ N is

represented by a binN-name φ = 0 b0 0 b1 . . . 0 b` 1ω ∈ Σω, binN : ⊆Σω → N, if φ essentially
is k’s binary encoding: binN(φ) =

∑`
i=0 bi2

i = k. Its unary counterpart, denoted unN,
can be obtained through representing a natural number k ∈ N by φ := (0 1)k 1ω ∈ Σω.

(2) We define a ρ-name φ of a real number x ∈ R to be a suitably encoded sequence (qn)n
of dyadic rationals qn ∈ Dn = {a/2n | a ∈ Z} (i. e., φ = 〈(qn)n∈N〉 ∈ Σω; cf. [Wei00,
Def. 4.1.5+4.1.17]) converging to x in the sense that |qn − x| ≤ 2−n holds true for all
n ∈ N.

(3) Based on ρ, a representation [ρ→ρ] : ⊆Σω → C(R) of continuous functions f : R→ R
may intuitively be understood as follows: A [ρ→ρ]-name encodes how (ρ-names of)
x ∈ R are translated into ρ-names of f(x) (cf. [Wei00, Def. 3.3.13] and [Grz57]).

An important property of the TTE model and its representations is due to its concise
topological roots, resulting in the Main Theorem in the TTE-branch of Computable Analysis.

Fact 2.3. Computability implies (topological) continuity.

Recall that (ξ, ξ′)-computability by a Type-2 machine M means that M maps finite
prefixes of a ξ-name φ to finite prefixes of a ξ′-name φ′. The reader is referred to [Wei00,
Thm. 2.2.3+3.2.11] for detailed explanations and proofs.

2.1.2. Oracle machines. The type-2 model, and in particular the way we have introduced
representations so far, does not yield a viable notion of complexity: Say φ is a ρ-name of a
real number x ∈ R as defined in Thm. 2.2(2), i. e., an encoded sequence (qn)n∈N of dyadic
rationals. In order to access a specific element encoded through φ, say qN , a type-2 machine
has first to skip over a possibly large (compared to the coding length of qN) prefix of φ. Such
an initial motion has to reflect in some way in any complexity notion, although the search
for qN does not contribute anything to the actual computation on it. Granting a machine
access to individual information encoded through φ (black-box approach) without charging
too much for such access can be realized by oracle Turing machines (oracle machines, or
OTMs, for short).

Recall that an oracle machine is a classical (possibly multi-tape) Turing machine with
the addition of a special query tape and two new states: One to initiate the query to the
oracle with the content of the question written on the query tape, and a second to mark that
the oracle has written its respective answer on the query tape. The oracle attached to a
machine can either be a subset of Σ∗ (a possibly undecidable decision problem), or a string
function. We choose the latter type, a function-oracle machine model (cf. [Ko91, Def. 2.11]).

Definition 2.4 (second-order representations).
(1) A second-order representation ξ of a set X is a partial surjective function ξ : ⊆Σ∗∗ → X.

2To justify notational between bin−1
N and binN: Computations are performed on the level of names (i. e.,

objects from Σω). Objects like natural numbers or dyadic rationals, on the contrary, are usually used “as the
are”, i. e., not encoded as words or sequences. They are encoded back into words (via binN or unN) not before
the end of the respective argument.

CLOSED SETS AND OPERATORS THEREON 7

(2) Any ordinary representation ξ : ⊆Σω → X (i. e., in the sense of Thm. 2.1) induces a
second-order representation ξ̃: Any ξ-name φ = (bi)i, bi ∈ Σ, yields a ξ̃-name φ̃ through
φ̃(s) := b`(s) for any t ∈ Σ∗.3

(3) Second-order representations ξ̃1 and ξ̃2 of X1 and X2, respectively, induce a second-order
representation ξ̃1 × ξ̃2 of X1 ×X2: If φi is a ξ̃i-name of xi ∈ Xi, then 〈φ1, φ2〉Σ∗∗ is a
ξ̃1 × ξ̃2-name of X1 ×X2.

Functions computable by oracle machines can be defined over realizers similar to Thm. 2.1.

Definition 2.5 (computable functions, realizers). Assume ξ and ξ′ to be second-order
representations of X and X ′, respectively, and let f : ⊆X → X ′ be some function.
(1) A function g : ⊆Σ∗∗ × Σ∗ → Σ∗ is computable by an oracle machine M? if for all

(φ, s) ∈ Σ∗∗ × Σ∗, Mφ started with s halts and writes g(φ, s) on its output tape.
(2) A function g : ⊆Σ∗∗ × Σ∗ → Σ∗ is called a (ξ, ξ′)-realizer of function f if for all φ ∈

ξ−1
[
dom(f)

]
, (f ◦ ξ)(φ) = ξ′

(
g(φ, ·)

)
holds true. (Note that g(φ, ·) ∈ Σ∗∗.)

(3) Function f is called (ξ, ξ′)-computable if it has a (ξ, ξ′)-realizer computable by some
oracle machine.

2.1.3. Relation between both models. Although the type-2 machines on one hand side and
oracle machines on the other are seemingly different approaches to Real Computability, they
are actually computably identical.

Fact 2.6. Let ξ and ξ′ be ordinary representations of X and X ′, respectively. Every
(ξ, ξ′)-computable (-continuous) function (i. e., realized by some type-2 machine computable
function) f : ⊆X → Y is also (ξ̃, ξ̃′)-computable (-continuous) (i. e., realized by some oracle
machine computable function); and vice versa.

This follows by type conversion [Wei00, Lem. 2.1.6]: Since f is (ξ, ξ′)-computable
(-continuous), it has some computable (continuous) realizer g : ⊆Σω → Σω. By the aforemen-
tioned Lemma, a function G : ⊆Σω × Σ∗ → Σ∗, (ξ, ξ′)-computable by some type-2 machine,
exists such that the following hold true:
(1) Function G has a suitable domain: for all φ ∈ Σω, φ ∈ dom(g) if ∀ s∈Σ∗ . (φ, s) ∈

dom(G);
(2) and G does behave like g (extensionally): ∀φ∈dom(g) .∀ s∈Σ∗ . G(φ, s) = g(φ)(s).
Since G is computable by some type-2 machine, it is computable by some oracle machine
as well, thus (ξ̃, ξ̃′)-realizing f . The reverse direction follows similarly when used that
representations in TTE can equivalently written stated over Σ∗∗ instead of Σω [Wei00,
Ex. 3.2(17)].

Convention. From now on we omit the “tilde” and simply write “ξ” whenever we reason
about second-order representations ξ̃. Arguments s ∈ Σ∗ of names φ are usually of form
s = 〈q, 0n〉 for a dyadic point q ∈ Dd and a precision parameter n ∈ N. We use φ(q, 0n) as a
shorthand for the correct but more verbose φ

(
〈bin(d)

D (q), unN(n)〉
)
.

3The reader is referred to [KMRZ12, Def. 1.16] for more (formal) definitions and extensions of second-order
representations.

8 C. RÖSNICK-NEUGEBAUER

2.2. Second-order representations of sets. Throughout this paper, we solely concentrate
on closed non-empty subsets of Rd (for various d) and subclasses thereof. More precisely:
In any dimension d ∈ N we denote the class of closed non-empty subsets of Rd by A(d), the
class of compact subsets by K(d) := {S ∈ A(d) | ∃ δ > 0 . S ⊆ B(0, δ)}, convex subsets are in
C(d) := {S ∈ A(d) ∩ (Rd, ‖·‖2) | ∀x, y ∈S . ∀λ∈ [0, 1] . λx+ (1− λ)y ∈ S}, and regular subsets
in R(d) := {S ⊆ A(d) | S◦ = S}.4 All notions are depicted on Fig. 1.

Figure 1: Classes of subsets of Euclidean space: Closed A, compact K, convex C, and regular
R.

Intersections of the above subclasses will also be of interest, e. g., the class KR(d) :=
K(d)∩R(d) of bounded bodies ; understand CR(d) (convex bodies), KC(d), and KCR(d) (bounded
convex bodies) similarly. Omitting the dimension on any class of subsets denotes the union
over all d, i. e., A :=

⋃
d∈NA(d) and so forth.

For a set S ∈ A(d) and a norm ‖·‖ we define the distance function d‖·‖,S : Rd → R≥0,
mapping any point q ∈ Rd to its minimal distance to set S, by d‖·‖,S(q) := minx∈S‖q − x‖.

Every representation for a class of sets provides approximate information to the specific
set S it encodes in terms of answers to a specific type of questions: Given a point x, is
x ∈ S? If not, is x far from S? How far? From Thm. 2.3 we can infer that only trivial
sets S (i. e., S = ∅ or the whole space, S = Rd) are representable by their characteristic
functions since they are discontinuous in all other cases. We thus have to allow any name φ
of a reasonable representation to be in some sense vague or "fuzzy" when queries are close to
the boundary of the set S it encodes. To be more precise, we have to allow any name φ to
make errors somewhere if φ represents S ∈ A(d) with ∅ ⊂ S ⊂ Rd. This error, however, has
to be controllable through a precision parameter n, just like for reals and functions.

Subsequently, we cite five different definitions (visualized in Fig. 2) for representations
of sets.

S S S S

q

Figure 2: Representations of sets: Illustration of Thm. 2.7

4Normed vector spaces over equivalent norms are homeomorphic, thus imply the same topology. It
therefore is not necessary to tie any of these subclasses (except for C) to a concrete norm.

CLOSED SETS AND OPERATORS THEREON 9

Definition 2.7. Fix a dimension d ∈ N and a norm ‖·‖ on Rd. Points q are chosen from Dd,
and precision parameters are denoted by n ∈ N.
(1) Weak-membership representation: A ω

(d)
‖·‖-name φ of S ∈ R(d) satisfies

(a) φ(q, 0n) = 1 if B‖·‖(q, 2
−n) ⊆ S (i. e., q lies 2−n-deep within S), or

(b) φ(q, 0n) = 0 if B‖·‖(q, 2
−n) ∩ S = ∅ (i. e., q is off by more than 2−n).

(2) A κ
(d)
‖·‖-name φ of S ∈ K(d) satisfies

(a) b := un−1
Z (φ(ε)) is an upper bound on the size of S, i. e., S ⊆ B‖·‖(0, 2

b), and
(b) φ encodes a sequence of sets Bn ⊂ Ddn through φ(q, 0n) = χBn(q) that is 2−n-close

to S in the Hausdorff-distance dH, i. e., dH(Bn, S) ≤ 2−n:
(κ1) ∀n∈N . ∀x∈S . ∃ q ∈Bn . ‖q − x‖ ≤ 2−n, and
(κ2) ∀n∈N . ∀ q ∈Bn . ∃x∈S . ‖q − x‖ ≤ 2−n.

(3) A ψ
(d)
‖·‖-name φ of S satisfies

(a) φ(q, 0n) = 1 if B‖·‖(q, 2
−n) ∩ S 6= ∅ (q is 2−n-close to S), or

(b) φ(q, 0n) = 0 if B‖·‖(q, 2
−n+1) ∩ S = ∅ (q is at least 2−n+1-far off of S).

(4) A φ ∈ Σ∗∗ is a δ(d)
‖·‖-name of S ∈ A(d) whenever φ encodes S’ distance function, i. e.,

|φ(q, 0n)− d‖·‖,S(q)| ≤ 2−n.
(5) Relative version of δ(d) (specialization of [Ret08, Def. 1.27]): A φ ∈ Σ∗∗ is a δrel(d)

‖·‖-name
of S ∈ A(d) if for all q ∈ Dd and n ∈ N, φ satisfies

3/4 · d‖·‖,S(q)− 2−n ≤ φ(q, 0n) ≤ 5/4 · d‖·‖,S(q) + 2−n. (2.1)

2.2.1. A few historical remarks. The concept underlying δ (representation of the distance
function; cf. [Wei00, ψdist: Def. 5.1.6]) is the same as for Turing located sets ([GN94]; dating
even back to Brouwer [Bro19, katalogisierte Mengen]), and the concept of recognizable sets
[CK95, Def. 3.5] is underlying the weak membership problem/representation ω ([GLS88,
Def. 2.1.14]; also in [KS95, Def. 4.2]). A strengthening of ω, where the positive information
is exact (in the sense that condition “x is 2−n-close to S” is replaced with “x ∈ S”), was also
considered under the notion of strong recognizability [CK95, Def. 4.1] and revisited later as
weak computability by [Bra05b, Def. 3, Thm. 4]. Although Chou/Ko seemed to be the first
to formally present this strengthening, this concept of one-sided error also has already been
present implicitly as part of [GLS88, Lem. 4.3.3]. Representation κ was defined and used
e. g. in [Wei00, Def. 5.2.1], [ZM08, κG: Def. 2.2]; and ψ in [Wei00, ψ: Def. 5.1.1], [KC12,
ψ�: §2.2.3]. Questions regarding both the computability of sets with respect to different
representations (which, however, are not part of this work) and the computability relation
of representations (which are and will be discussed to some extent in Section 3) has been
covered in many articles (see, e. g., [BW99, Wei00, Zie02, Her02, BP03]).

2.3. Enrichments. The representations we have seen in the previous section are rather
generic. In practice, however, additional parameters are usually known, e. g., bounds on
diameters of sets or rate of growth of functions. Such additional discrete information (discrete
advice parameters, or just advice parameters for short [KMRZ12, p.18]) may be uncomputable
from a given representation, but will turn out to be of great use (complexity-wise) in Sections 3
to 5.

10 C. RÖSNICK-NEUGEBAUER

Definition 2.8 (enrichments; cf. [KMRZ12, Def. 2.4(c+d)]). Let νΣ∗ : ⊆Σ∗∗ → Σ∗ denote
a representation of Σ∗. Further, let ξ : ⊆Σ∗∗ → X be a representation of a set X, and
E : X ⇒ Σ∗ a multi-valued function (encodes information ξ-names are enriched with). Then
φ is a ξ u E-name of x ∈ X if it is of form φ = 〈φ1, φ2〉 with ξ(φ1) = x and νΣ∗(φ2) ∈ E(x).

More specific, we use the following four concrete enrichments in the remainder of this
paper.

Definition 2.9 (concrete enrichments for sets).
(1) Outer radii: Consider the enrichment

b : K(d) ⇒ Σ∗ , b : S Z⇒
{
unZ(b)

∣∣∣ b ∈ Z and S ⊆ B‖·‖(0, 2
b)
}

By definition, ψ(d)|K u b then is a representation of K(d) whereby each name contains an
outer radius parameter b (encoded in unary according to b) on the encoded compact set.
We refer to 2b as an outer radius with respect to the outer radius parameter b.

(2) Inner radii and inner points: In a similar fashion to b define enrichments

r : R(d) ⇒ Σ∗ , r : S Z⇒
{
unZ(r)

∣∣ r ∈ Z, ∃x∈S◦ .B‖·‖(x, 2−r) ⊆ S
}
,

a : R(d) ⇒ Σ∗ , a : S Z⇒
{
bin

(d)
D (a)

∣∣ a ∈ Dd, ∃ δ > 0 .B‖·‖(a, δ) ⊆ S
}
.

We refer to decoded images under r as inner radii parameter (giving an inner radius of
2−r), and to decoded images under a as inner points.

(3) Information encoded by a and r is independent of the other, i. e., the bound on an inner
radius parameter according to r need not necessarily be centered at a. If we need both
information, i. e., an inner ball, then we combine it to

ar : S ∈ R(d) Z⇒
{〈

bin
(d)
D (a), unZ(r)

〉 ∣∣ B‖·‖(a, 2
−r) ⊆ S

}
.

These choices of encodings also meet both theory and practice: cf., for example, [GLS88,
Def. 2.1.20] and [Hoo90, Def. 2.2+2.3]. Note that both the dimension and the norm will be
always understood from the context and therefore is not considered enrichment.

Convention. The correct way to work with enriched representations would be like this:
Let E be an enrichment, and 〈φ1, φ2〉 be a ξ u E-name. Then E := νΣ∗(φ2) is a concrete
instance of enrichment E of object x := ξ(φ1). As this intermediate step of “extracting” E
from 〈φ1, φ2〉 is just a technical though necessary detail which does not add to any proof
argument, we use the typographical convention to denote a concrete decoded instance of E(x)

“variable style”, that is, as E. In the above spirit, further abbreviate a ξ(d)|KRuau rub-name
〈φ1, φ2, φ3, φ4〉 by

〈
φ1, a, 0

r, 0b
〉
. This notation has been purposefully chosen as a reminder

that (a) inner points as advice parameters are encoded in binary, while (b) both inner and
outer radii are encoded in unary according to enrichments r and b, respectively.

2.4. Complexity of functions and operators: upper and lower bounds. We briefly
recap some facts from discrete complexity theory. Assume M to be a Turing machine that
either accepts its input s ∈ Σ∗ or rejects it; i. e., M always terminates. The computation
time of such a machine M is bounded by some non-decreasing function t : N→ N (or: t-time
bounded) if for all s ∈ Σ∗, M started on s holds within t(`(s)) steps.

Unless stated otherwise, we use “Turing machine” as a synonym for “deterministic Turing
machine”. Allowing a machine also to guess strings from Σ∗ makes it non-deterministic.
Through the course of this paper we need three complexity classes: P marks the class of all

CLOSED SETS AND OPERATORS THEREON 11

problems A ⊆ Σ∗ decidable by a deterministic polynomial-time bounded Turing machine, and
NP the class of problems decidable by a non-deterministic polynomial-time Turing machine.
Decision problems A ∈ NP can equivalently be stated as being polynomial-time verifiable
by a deterministic Turing machine; i. e., there exists a decision problem A′ ⊆ Σ∗ which is
polynomial-time equivalent to A and satisfies ∃B ∈P . A′ = {s ∈ Σ∗ | ∃w∈Σ`(s) . 〈w, s〉 ∈ B}.
Given an s ∈ Σ∗, a w which verifies 〈w, s〉 ∈ B is usually called a witness for s ∈ A′.

The class UP contains problems A ⊆ Σ∗ decidable by an unambiguous non-deterministic
polynomial-time Turing machine; that is, a machine that for each s ∈ A has exactly one
accepting path. It is easy to see that P ⊆ UP ⊆ NP, but whether any of these inclusions is
proper is a wide-open problem. We defer the discussion of the hypothetical case P 6= UP and
its implications until Section 5.

As for example pointed out in [FG06], problems usually come with a variety of structural
information (like the number of nodes in a graph, number of variables in a formula, number
of faces of a polyhedron), which however is not reflected in the above one-ary notion of
complexity. Parameterized complexity extends upon that: A parameterized decision problem
(A, k) (A ⊆ Σ∗ with parameterization k : Σ∗ → N, which typically is required to be at least
computable) is (τ, t)-time computable, iff a deterministic Turing machine M exists whose
computation time is bounded by τ(k(s)) · t(`(s)) for all s ∈ Σ∗. If t moreover is a polynomial,
then (A, k) is said to be parameterized polynomial-time decidable (also: fixed-parameter
tractable).

2.4.1. Time complexity. The complexity notion for oracle machines is similar to that for
classical Turing machines, except for the extension that it takes the oracle in total one step
to read the content written on the oracle tape and to produce its answer. The computation
time of an oracle machine Mφ (and thus the complexity of the element of Σ∗∗ it computes)
with set-oracle (or equivalently a function-oracle φ ∈ Σω) can solely be measured in the
length of the discrete input given to M?; which is the case for representations ω, κ and ψ.

Definition 2.10. Let t : N→ N be some non-decreasing function.
(1) A function g : ⊆Σω×Σ∗ → Σ∗ is t-time computable if an oracle machine M? exists which

for all φ ∈ Σω and s ∈ Σ∗ computes g(φ, s) in time bounded by t(`(s)).
(2) Let ξ and ξ′ be a second-order representations of sets X and X ′, respectively, and let

dom(ξ) ⊆ Σω.5 A (ξ, ξ′)-computable function f : ⊆X → X ′ is t-time computable if it is
realized by a t-time (ξ, ξ′)-computable function g : ⊆Σω × Σ∗ → Σ∗.

As hinted prior to the definition, it is not that obvious how to define complexity in case
of names φ from Σ∗∗ instead of Σω. The problem with names from Σ∗∗ is that oracle answers
in general are not bounded in the length of its argument as it has been the case for φ ∈ Σω.
However, combining enrichments with Thm. 2.10 allows us to define time bounds whenever
the oracle answers can be bounded in terms of the parameters a representation has been
enriched with. For that purpose, force both δ(d)- and δrel(d)-names φ to additionally satisfy
φ(q, 0n) ∈ Ddn+1.

6 The subsequent definition is based on [KMRZ12, Def. 2.1+2.2].

5That is, ξ-names are predicates.
6Note that the latter condition is only added to prevent unnecessarily long answers as they are not more

accurate (with respect to the conditions on δ- and δrel-names) when provided with a precision much higher
than n. This restriction is not necessary in the general theory of second-order polynomials and second-order
polynomial-time, but we defer this discussion until Section 5.

12 C. RÖSNICK-NEUGEBAUER

Definition 2.11 (parameterized complexity). Let ξ and ξ′ be second-order representations of
sets X and X ′, respectively, and E : X ⇒ Σ∗ an enrichment of X. Moreover, let τ, t : N→ N
be non-decreasing functions.
(1) A function f : ⊆X → X ′ is (τ, t)-time (ξ u E, ξ′)-computable if it has a (ξ u E, ξ′)-

realizer g : ⊆Σ∗∗ × Σ∗ → Σ∗ such that the computation time on every input (φ, s) ∈
dom(ξ)× Σ∗ 7→ g(φ, s) is bounded by τ

(
`(E(ξ(φ)))

)
· t(`(s)).7

(2) If t is a polynomial, then f is said to be parameterized polynomial-time (ξ u E, ξ′)-
computable.

(3) If both t and τ are polynomials, then f is said to be fully polynomial-time (ξ u E, ξ′)-
computable.

As advice parameters are part of a name anyway, we simply speak about “polynomial
time” whenever “fully polynomial-time” is meant. This identification is justified as fully
polynomial-time and unparameterized polynomial-time coincide for E : x Z⇒ {ε}.

On compact sets K ∈ K(d), this definition allows to bound the answer lengths in terms
of an outer radius parameter b as in Thm. 2.8(1). Take representation δ as an example:
Assume φ :=

〈
φ′, 0b

〉
to be a δ(d) u b-name of K. Then `(φ′(q, 0n)) can be bounded linearly

in |b|+ `(〈q, 0n〉) for all q ∈ Dd and n ∈ N.

2.5. Common proof arguments. We review two common arguments that allows us to
prove lower bounds or even the uncomputablitiy of operations.

2.5.1. Adversary argument. The adversary method is used to prove lower bounds on the
uniform computational complexity of functions. Let ξ, ξ′, X, X ′ and f as in the previous
subsections. For any discrete argument s ∈ Σ∗ pick an element x ∈ X and construct a subset
Y ⊂ X of cardinality at least exponential in `(s) such that every y ∈ Y has a ξ-name φ
close to one of x, yet f(x) differs by at least 2−n from f(y). Then any machine M? that
(ξ, ξ′)-realizes f necessarily has to ask exponentially many queries to φ.

This approach is similar to the adversary method from Information-Based Complexity
[TWW88] where computations are exact, but only finite information is known about the
input. As an example, take Riemann integration, done on 2n many sampling points in order
to achieve an approximation which is always guaranteed to be within error 2−n.

2.5.2. Topological discontinuity. Given second-order representations ξ and ξ′ of sets X and
X ′, respectively, and a function f : ⊆X → X ′. By Thm. 2.3 we already know that f is not
(ξ, ξ′)-computable whenever it is not (ξ, ξ′)-continuous. Recall that Σ∗∗ comes equipped
with the product topology, providing a way to prove the latter: Construct an x ∈ X and an
appropriate ξ-name φ. Any machine for a hypothetical (ξ, ξ′)-realizer for f does only inspect
finitely many values of φ. Now pick a slightly different ξ′-name, say φ′, for a different value,
say x′, which coincides with φ on values observed by M?, but leads it to produce an answer
exceeding the prescribed error bound.

7Notice the term “E(ξ(φ))” in the time bound: Enrichments are by definition multi-valued but τ is not set-
valued. Although technically incorrect, the meaning “this bound has to hold true for every advice parameter
in E(...)” clearly is supported by this notation while the correct statement would be “the computation time
has to be bounded by τ(`(E)) · t(`(s)) for all E ∈ E(ξ(φ))”.

CLOSED SETS AND OPERATORS THEREON 13

3. Comparing representations of sets

In this section, we compare the representations introduced in Thm. 2.7 with respect to their
mutual polynomial-time reducibility. Two aspects will play a key role in these comparisons:
Whether a representation ξ is norm-invariant, i. e., if ξ‖·‖ and ξ‖·‖′ are polynomial-time
equivalent, and the influence of the dimension parameter. Both together will prove δ(d) to
be richer (intuition: to carry more information) than all of the other representations from
dimension d = 2 onward by combining that(a) δ(d) is not norm-invariant for d ≥ 2, (b) all
of the other representations we discuss are norm-invariant, and (c) δ reduces to all of the
other representations in polynomial time. Representation ω, on the other hand, will prove to
be poorer than all of the other representations. However, this gap between δ and ω can be
closed by restricting to KCR, adding parameters to ω and applying techniques from discrete
optimization (Thm. 3.14), which proves all representations to be polynomial-time equivalent
in this particular setting.

We now turn to the formalization of what has been described above.

Definition 3.1 (translations/reductions; cf. [Wei00, Def. 2.3.2]). Let ξ and ξ′ be representa-
tions of the same set X. Then ξ uniformly translates (or: reduces) to ξ′—ξ � ξ′ for short—if
idX is (ξ, ξ′)-computable. If idX is parameterized polynomial-time (ξ, ξ′)-computable, then
we write ξ �pp ξ

′. If idX is even fully polynomial-time (ξ, ξ′)-computable, then we write
ξ �p ξ

′.

Note that while the notation ξ � ξ′ makes sense when read as “ξ translates to ξ′”, it is
counter-intuitive when read as a reduction: ξ reduces to ξ′ if ξ-names carry more information
than ξ′-names; hence, ξ-names are harder to compute than ξ′-names. Reductions in classical
complexity theory are usually thought the other way around, i. e., the harder problem being
“greater or equal” to easier problems.

The intuition about representations encoding more or less information also explains the
following fact which we will use in many places throughout this paper.

Fact 3.2. Let ξ1, ξ2 be representations of X, and ξ′1, ξ′2 be representations of X ′. Then
every (ξ1, ξ

′
1)-computable function is also (ξ2, ξ

′
2)-computable whenever ξ2 � ξ1 (providing

potentially more information about the input) and ξ′1 � ξ′2 (requiring potentially less
information about the output) hold. The same applies if � is replaced with �p.

Convention. For Y ⊆ X let ξ �Y ξ′ be an abbreviation for ξ|Y � ξ′|Y . This new
representation ξ|Y : ⊆Σ∗∗ → Y is the result of the restriction of ξ’s image to Y . Apply the
same to �p, ≺p, ≡ and ≡p.

3.1. Technicalities. Two subtle details need to be addressed before we can start comparing
representations with respect to polynomial-time reducibility: (a) their dependence on the
choice of norm underlying Rd, and (b) considering also ’negative’ values of the precision
parameter n, that is, absolute error boundy larger than one. The former leads to the notion
of well-behaved norms, while the latter introduces scale-invariant representations.

3.1.1. Restriction to well-behaved norms. Representations ψ, κ and ω depend on the notion of
“being close”. Practically speaking, a point q gets printed on the screen whenever B‖·‖(q, 2

−n)

meets the represented set, where points q were chosen from Ddn. The implicit assumption
underlying all representations from Thm. 2.7 is compatibility with the grid Ddn: The whole

14 C. RÖSNICK-NEUGEBAUER

space, say X, can be covered with ‖·‖-balls with radii 2−(n+c) and centers from X∩Ddn, where
c ∈ Z is a constant depending on the pair ‖·‖, ‖·‖∞. As an example, take ‖·‖ := 4 · ‖·‖∞ with
c := − lb 4.

The implied necessity to incorporate a norm-dependent constant c into precision param-
eters is cumbersome and we avoid it by imposing the above mentioned “compatibility” on
the respective norm. For the same reason we disallow slanted (or otherwise distorted) norms
like ‖(x1, x2)‖ := (|x1/2|2 + |x2|2)1/2 although this restriction can be avoided (as we will see
in Thm. 3.7) and is only present to simplify things.

We denote such norms satisfying both of the above motivated properties as being
well-behaved.

Definition 3.3 (well-behaved norms). A norm ‖·‖ on Rd is said to be well-behaved if it has
the following two properties:
(1) ‖·‖ is invariant under 90-degree rotations. More precisely: Let {e1, . . . , ed} be the

canonical basis of Rd. Then ‖ei‖ = ‖ej‖ for all 1 ≤ i, j ≤ d.
(2) ‖·‖-balls are not too small, i. e., B‖·‖∞(q, 2−(n+1)) ⊆ B‖·‖(q, 2

−n) for all n ∈ N and
q ∈ Ddn.

It then follows by the second condition that Rd can be covered by ‖·‖-balls with
centers from Ddn and radii 2−n. Examples of well-behaved norms include the p-norms
‖(x1, . . . , xd)‖p := (|x1| + · · · + |xd|)1/p for p ≥ 1, while ‖(x1, x2)‖ := (|x1/2|2 + |x2|2)1/2

(violates the first condition) and 3/2‖·‖1 (violates the second condition) are not.
Convention. For the rest of this paper, we only consider well-behaved norms unless

stated otherwise.

3.1.2. Scale-invariance. Starting with [KF82], complexity results were stated for functions
whose domains were a subset of the unit hypercube; the same was true for sets. This
restriction rendered (at least for sets) the question about precision parameters smaller
than 0 (i. e., absolute error bounds > 2−0) pointless, which allowed for a complexity notion
solely in the precision parameter. However, as we will see many times in Sections 4 and 5,
algorithms for operators on sets often involve an unavoidable preprocessing step (given
the representations we have seen so far): Given b ∈ N, chop B‖·‖∞

(
0, 2b

)
into 2d(b+1) unit

hypercubes, pick a subset of them (usually one cube), then proceed by applying the given
ξ-name to this subset. It is this preprocessing step which seems to be artificial and superfluous
as the real algorithm often starts only after this step. For this reason the author believes
that a closed subset S of [0, 1] (or any fixed compact set) should admit, up to a polynomial
rather than exponential in k, the same complexity as S inflated by a factor of 2k. Both sets
are still structurally the same!

To this end, let ψ̂ be the extension (or: relaxation) of representation ψ to integer
precisions, i. e., a ψ̂(d)-name φ satisfies

φ(s) = 1 if S ∩ B
(
q, 2−n

)
6= ∅ ; φ(s) = 0 if S ∩ B

(
q, 2−n+1

)
= ∅ .

with s :=
〈
bin

(d)
D (q), unZ(n)

〉
. Recall that we agreed to equivalently write s as

〈
q, 0n

〉
where

0n abbreviates the “unary encoding” of integer n. With the following Lemma we attempt to
provide a way around the above described dilemma.

CLOSED SETS AND OPERATORS THEREON 15

Lemma 3.4 (properties of ψ̂).
(1) Scaling a closed set by factor 2k for k ∈ Z is a parameterized polynomial-time operation

in the absolute value of k (cf. [ZM08, Lem. 2.7(4)]), that is, the binary length of 2k.
More precisely: Operator Scale : (S, k) 7→ {2kx | x ∈ S} is (ψ(d) × unZ,ψ

(d))-computable
in parameterized polynomial time.

(2) In contrast, Scale is fully polnomial-time (ψ̂(d) × unZ, ψ̂
(d))-computable.

(3) ψ(d) �pp ψ̂
(d) �p ψ

(d).

sketch. The first statement follows by the argument hinted prior to this Lemma: Let q ∈ Dd
and n ∈ N. If n−k ≥ 0, then simply query the ψ(d)-name with

〈
2kq, 0n−k

〉
. If n−k < 0, then

first split B(2kq, 2k−n) into unit-balls and combine the queries on the center and precision 0
on each of these balls. For the second statement, use the argument from the above first case,
namely, query the ψ̂(d)-name with precision n− k. The first reduction in statement three
follows immediatiely from 1. and 2. For the second reduction, use the split of B(2kq, 2k−n)
into unit-balls and argue as in the first case of statement one.

It follows by the previous statement that all scaled versions of a set are polynomially
equivalent with respect to ψ̂.

Remark 3.5. As the concept of a scale-invariant representation avoids the above described
deficiencies, we like to impose it on every representation ξ from Thm. 2.7. Therefore, we will
denote ξ̂ to be understood as the scale-invariant version of ξ, and then associate ξ with ξ̂
(i. e., drop the explicit hat). As a consequence, precision parameters shall now usually be
integers.

3.2. Topological versus computable equivalence of norms. In this section we examine
the question which representations ξ are norm-invariant, i. e., whether ξ‖·‖ ≡p ξ‖·‖′ holds
true for all topological equivalent well-behaved norms ‖·‖, ‖·‖′. Notice that “norm-invariance”
inherently asks about polynomial-time equivalence: norm-exchange is a computable operation
for all representations from Thm. 2.7.

Our first result generalizes Braverman’s remark [Bra05b, following Def. 2] on the inter-
changeability of ψ‖·‖2 and ψ‖·‖∞ .

Proposition 3.6. ψ(d)
‖·‖ ≡p ψ

(d)

‖·‖′ holds in any dimension d ∈ N and for any two norms

‖·‖, ‖·‖′ on Rd.

The key to prove this proposition is its non-uniformity with respect to any two well-
behaved norms ‖·‖, ‖·‖′: The necessary information (here: the “coverage pattern” of the unit
‖·‖′-ball) for a machine to translate from ψ

(d)
‖·‖ to ψ

(d)

‖·‖′ can be directly encoded into it.

Remark 3.7. For every two norms ‖·‖, ‖·‖′ on Rd exists a constant k ∈ N and a finite set
D ⊂ Ddk (“coverage pattern”) such that

B‖·‖′(0, 1) ⊆
⋃

p∈D
B‖·‖(p, 2

−k) ⊆ B‖·‖′(0, 3/2) .

Note that ‖·‖′ can only be approximated by ‖·‖-balls up to a constant factor by the
above coverage pattern D. Approximating the shape of a ‖·‖′-ball up to arbitrary precision,
however, might still be uncomputable.

16 C. RÖSNICK-NEUGEBAUER

of Thm. 3.6. Let k ∈ N and Ddk as in Thm. 3.7. Let further φ be a ψ(d)
‖·‖-name of S ∈ A(d),

q ∈ Dd, and n ∈ Z. Claim: φ′, defined as

φ′(q, 0n) := max
p∈D

φ(p′, 0n+k) , p′ := q + 2−(n+k)p ,

is a ψ(d)

‖·‖′-name of S. Note that since D is finite, the maximum ranges only over finitely many
values and is therefore computable in time linear in n+ k + `(〈q〉).

If B‖·‖′(q, 2
−n) ∩ S 6= ∅, then by Thm. 3.7 there exists a point p0 ∈ D such that

B‖·‖(p
′, 2−(n+k)) meets S, justifying φ′(q, 2−n) = 1. If, on the other hand, B‖·‖′(q, 2

−n+1)∩S =

∅, then in particular B‖·‖(p
′, 2−(n+k)) ∩ S = ∅ for all p ∈ D. Their union covers B‖·‖′(q, 2

−n)

which renders φ′(q, 2−n) = 0 to be correct.

Noteworthy: Neither one of the norms has actually to be computable—a direct conse-
quence of the note following Thm. 3.7.

The argument from Thm. 3.6 generalizes to ω(d) (over R(d)) and κ(d) (over K(d)),
rendering both representation to be norm-invariant, too. Representation δ, however, turns
out to be not norm-invariant—not even non-uniformly (provided P 6= NP):

Theorem 3.8 (δ is not polynomial-time invariant under a change of norms unless P 6= NP).
In any dimension d ≥ 2 there is a set S ∈ K(d) that is polynomial-time δ(d)

‖·‖1
-computable but

not polynomial-time δ(d)
‖·‖∞

-computable if and only if P 6= NP.

Proof. Only if (P = NP implies that δ is (non-uniformly) norm-invariant). Suppose P = NP

and let φ1 be a polynomial-time δ(d)
‖·‖1

-computable name of S. Now consider the sets N and
P ,

N :=
{
〈p, δ, 0n, 0m〉

∣∣ ∃ p′ ∈ Ddn+2, φ1(p′, 0n+2) ≤ 2−(n+2) .
〈
p, p′, δ, 0n, 0m

〉
∈ P

}
,

P :=
{〈
p, p′, δ, 0n, 0m

〉 ∣∣ ∣∣δ −
∥∥p− p′

∥∥
∞
∣∣ ≤ 2−m

}
,

which in turn are polynomial-time decidable by the above assumption.

S

q
0δ0 = δ1 = δ2

p′(δ0)

p′(δ1)B
‖·
‖ ∞

(q
,d
‖·
‖ ∞

,S
(q

))

∆1∆2

S

q
δ3 0

p′(δ0)

p′(δ1)
p′(δ2)

p′(δ3)

∆2

∆3

Figure 3: Search for a 2−n-approximation δn+1 to d‖·‖∞,S(q) by iteratively
determining distances δi and associated narrowed sets ∆i+1 :={
x ∈ [0, 1]2

∣∣ |δi − ‖x− q‖∞| ≤ 2−(i+1)
}

such that δi ≤ d‖·‖∞,S(q) and
∃ p′(δi)∈∆i+1 ∩ Ddn+2 .

〈
q, p′(δi), δi, 0

n, 0i+1
〉
∈ P .

CLOSED SETS AND OPERATORS THEREON 17

A δ(d)
‖·‖∞

-name for S can be recovered from queries “
〈
q, δi, 0

n, 0i
〉
∈ N?” by the following

iterative procedure (cf. Fig. 3): Let δ0 := 0. Then for each 1 ≤ i ≤ n + 1 set δi := δi−1 if〈
q, δi−1, 0

n, 0i
〉
∈ N , and δi := δi−1 + 2−i otherwise. This way,

δi ≤ d‖·‖∞,S(q) ≤ δi + 2−i + 2 · 2−(n+2) , (3.1)

and therefore
∣∣∣d‖·‖∞,S(q)− δn+1

∣∣∣ ≤ 2−n. We prove the correctness of Eqn. (3.1) by induction.

For i = 0 it surely is true, so consider the case i > 0. If
〈
q, δi−1, 0

n, 0i
〉
∈ N , then (3.1) holds

true for δi := δi−1 by the construction of N . If, on the other hand,
〈
q, δi−1, 0

n, 0i
〉
6∈ N , then

for all p′ ∈ Ddn+2 with φ1(p′, 0n+2) ≤ 2−(n+2) we have |δi−1 − ‖q − p′‖∞| > 2−i. Since (3.1)
holds for δi−1, it firstly implies d‖·‖∞,S(q) > δi−1 + 2−i. But then (3.1) rewrites as

δi−1 + 2−i ≤ d‖·‖∞,S(q) ≤ δi−1 + 2−i+1 + 2−n

which is exactly (3.1) for δi := δi−1 + 2−i.
Consequently, φ(q, 0n) := δn+1 gives a δ(d)

‖·‖∞
-name of S.

If. We prove this direction only for d = 2, but the generalization to higher di-
mensions follows by similar constructions. Assuming P 6= NP, we construct an adver-
sary set A through a proper encoding of an NP-complete problem N ⊂ Σ∗ of form
N =

{
s ∈ Σ∗

∣∣ ∃w∈Σ`(s) . 〈w, s〉 ∈ P
}
, P ∈ P, into A. To this end, for n ∈ N and

0 ≤ i < 2n associate the i-th string s ∈ Σn with the setAn,i ⊂ [sn,i, sn,i+1]×[0, 2−(2n+1)] where
sn,0 := 1−2−n, sn,i := sn,0+i·2−(2n+1) and (just to simplify the notation) sn,2n := sn+1,0. For
each word s ∈ Σn we then split its associated set An,i into 2n slices An,i,j , 0 ≤ j < 2n, where
An,i,j is associated with the j-th string w ∈ Σn. To this end, let sn,i,j := sn,i+j ·2−(3n+1) and
sn,i,j+1. Whenever 〈w, x〉 is in P we code a “bump” in An,i,j , and a simple line otherwise; i. e.,
for w, s ∈ Σn, An,i,j := sn,i,j + 2−(3n+1) ·A∧ if 〈w, s〉 ∈ P , and An,i,j := sn,i,j + 2−(3n+1) ·A−
otherwise; A∧ := {(x, y) ∈ [0, 1]2 | x − y = 0 for x ≤ 1/2, and x + y = 1 for x > 1/2},
A− := {(x, y) ∈ [0, 1]2 | y = 0}. Thus A :=

⋃
n,i,j∈N, 0≤i,j<2n An,i,j encodes N .

(a) (b) (c)

Figure 4: Encoding a certain NP-set N into a polynomial-time δ(2)
‖·‖1

-computable set A such

that A being also polynomial-time δ(2)
‖·‖∞

-computable would imply P = NP.

Without further notational overhead associate each point q ∈ D1 ∩ [0, 1] with the
(lexicographically) largest triple of indices (n, i, j) such that q belongs to [sn,i,j , sn,i,j+1].
As before, 〈w, s〉 is also uniquely identified by this triple. Now it is easy to construct a
δ

(2)
‖·‖1

-name for A, while it is hard (i. e., not computable in polynomial time) to construct one

with respect to δ(2)
‖·‖∞

(both cases are also sketched in Fig. 4(b) and Fig. 4(c), respectively).

18 C. RÖSNICK-NEUGEBAUER

• A δ
(2)
‖·‖1

-name φ of A can be constructed in polynomial time:

φ
(
(q1, q2), 0n

)
:=
∣∣q2 − χP 〈w, s〉 ·

(
2−(3n+2) − |q1 − (sn,i,j + sn,i,j+1)/2|

)∣∣

• Now consider δ(2)
‖·‖∞

. Assume there was a polynomial-time OTM M? which could compute

a δ(d)
‖·‖∞

-name φ′ for A. Evaluating φ′ at (q′1, q
′
2) :=

(
(sn,i,0 + sn,i,0)/2, 2−(2n+1)

)
with

precision n′ := 3n+ 4 then decides N because φ′
(
(q′1, q

′
2), 2−n

′) ≥ 2−(2n+2) − 2−(3n+3) if
and only if a witness w ∈ Σn exists with 〈w, s〉 ∈ P .

3.3. Polynomial-time relations. Representations ψ(d), κ(d) and ω(d) are uniformly poly-
nomial-time invariant under a change of norms; and so is δrel(d) according Thm. 3.13
below—however representation δ(d) in general is not, even non-uniformly subject to P 6= NP,
although it is computably equivalent to ψ(d) [BW99, Theorem 3.12]. In fact, restricted to the
class CR of convex bodies, four of our five representations are known computably equivalent.

Fact 3.9 ([Zie02, Cor. 4.13]). δ(d) ≡CR ψ(d) ≡CR ω(d) in any dimension d ∈ N.

They are all equivalent because (intuitively speaking) points can be found due to
regularity (regular sets are full-dimensional), and can be checked (locally) to be of the desired
precision due to convexity (check if all points in a small neighborhood are also contained in
the set).

In this section we now systematically compare all representations from Thm. 2.7 regarding
their polynomial-time reducabilites in (a) dimension d = 1 and for d ≥ 2, and (b) over
various subclasses of A(d). As a result, representations ψ(d) u b, δrel(d) u b, and κ prove to be
�p-equivalent over K(d) for every d ∈ N. Taking ψ(d) as a representative for this equivalence
class, δ(d) ≺p ψ

(d) holds true for d ≥ 2, and ψ(d) ≺p ω
(d) in any dimension (both even on

KCR(d)!), which leaves us in a very different situation compared to Thm. 3.9. However:
This distinction between δ(d) and ω(d) disappears when given the right set of additional
parameters (Thm. 3.14), yielding one equivalence class of representations for sets as the
result.

3.3.1. Polynomial-time reducibilities in dimension d = 1.

Proposition 3.10. δ(1)
‖·‖ u b ≡Kp δrel(1)

‖·‖ u b ≡Kp ψ(1)
‖·‖ u b ≡Kp κ(1)

‖·‖, ψ
(1) �Rp ω(1), and ω(1)

‖·‖ u
ar �CRp ψ

(1)
‖·‖.

Proof. Without loss of generality, let ‖·‖ := ‖·‖∞. Notice that the reductions δ(1) u b �Kp
δrel(d) u b �Kp ψ(1) u b �Kp κ(1) already follow by definition of the respective representations.

• Reduction ψ(1) u b �Kp δ(1): Let
〈
φ, 0b

〉
be a ψ(1) u b-name of a closed S ⊆ B(0, 2b).

Further, set b′ := max{1, b} and c′ := lb max{2, ‖q‖}. For any q ∈ D and n ∈ Z, test if
φ(q, 0n+1) = 1. If it is, then 0 is a valid 2−n-approximation of dS(q). If, on the other
hand, φ(q, 0n+1) = 0, then first find the smallest i ∈ N+, 1 ≤ i ≤ n + b′ + c′ + 1, with
φ(q, 0n+1−i) = 1. Having found i, continue with two binary searches, one in [q−2i−n, q] and
the other in [q, q+2i−n], for points p−, p+ ∈ Dn+1 eventually satisfying φ(p±, 0

n+1) = 1 and
minimizing ‖q − p±‖. Then min{|q − p−|, |q − p+|} consitutes a valid 2−n-approximation
of dS(q).

CLOSED SETS AND OPERATORS THEREON 19

• Reduction δrel(1) u b �Kp δ(1) follows by δrel(1) �Kp ψ(1) and ψ(1) u b �Kp δ(1) from above.
• Reduction κ(1) �Kp ψ(1): Any κ(1)-name φ induces a ψ(1)-name φ′ of the same set by
φ′(q, 0n) := maxp{φ(p, 0n+1) | p ∈ Dn+1 ∩ [q − 2−n, q + 2−n]}. Since |Dn+1 ∩ [q − 2−n, q +
2−n]| ≤ 5, constantly many queries to φ suffice to devise φ′.
• Reduction ψ(1) �Rp ω(1): Every ψ(1)-name φ constitutes a ω(1)-name φ′ of the same set
through φ′(q, 0n) := φ(q, 0n+1).
• Reduction ω(1) u ar �Rp ψ(1): Given a ω(1) u ar-name 〈φ, a, 0r〉 of S ∈ CR(1), do a binary
search between a and q for a point p ∈ Dm, m := max{n, |r|}+ 1, which minimizes |q − p|
over all such points satisfying φ(p, 0m). Then φ′ with φ′(q, 0n) := 1 if |q − p| ≤ 3 · 2−(n+1),
and defined as 0 otherwise, consitutes a ψ(1)-name of S. Note that convexity is cruicial in
order to perform a binary search given only a ω-name.

3.3.2. Arbitrary yet fixed dimension. Some of the formerly explained relations change onward
from dimension d = 2. As a first example we note a result due to Braverman.

Fact 3.11 ([Bra04, Thm. 3.2.1]). Let d ≥ 2. P = NP holds true iff every polynomial-time
ψ

(d)
‖·‖2

-computable S ∈ K(d) is also polynomial-time δ(d)
‖·‖2

-computable.

In short: Finding the distance from a point to a set only from local information (that is,
a ψ-name) about the latter is as hard as solving NP-problems in polynomial time. Thus, δ(d)

is richer (i. e., it in a sense provides more information about closed non-empty sets) than
any of the other representations (i. e., the others are poorer).

We note two implications, following immediately from the proof of Thm. 3.11.
• The statement also holds true over KR(d). In fact, it uniformizes by an adversary argument
as sketched in Section 2.5.1; i. e., ψ(d)

‖·‖2
u b 6�KRp δ

(d)
‖·‖2

for d ≥ 2.
• Theorem 3.11 is stated with respect to ‖·‖2, but it easily generalizes to arbitrary well-
behaved norms ‖·‖ by properly adapting the adversary set’s shape; i. e., from ‖·‖2-balls to
‖·‖-balls.

These two statements also apply to κ due to the following observation.

3.3.3. Representation ψ with outer radii. κ(d) can be reformulated as ψ(d)ub with necessary
outer radius parameter b as every ψ(d) u b-name

〈
φ, 0b

〉
constitutes a κ(d)-name φ′ through

φ′(ε) := 0b and φ′(q, 0n) := φ(q, 0n+1) for q ∈ Dd, n ∈ Z. The reverse direction requires a
little bit more care: A point q which does not belong to Bn might still be arbitrarily close
to the represented set, hence ψ(d)-name would have to give 1 when queried with 〈q, 0n〉.
However, any κ(d)-name does provide enough information if only queried on a finite set of
points close to q.

Proposition 3.12. ψ(d)
‖·‖ u b ≡Kp κ(d)

‖·‖ holds in any dimension d ∈ N.

Proof. By the above argumentation it just remains to prove the reduction κ(d) �Kp ψ(d) u b.
Let q ∈ Dd and n ∈ Z, and be φ a κ(d)-name of S ∈ K(d). Firstly, an outer radius

parameter according to b can be obtained through φ(ε). It thus remains to construct
a ψ(d)-name φ′ from queries to φ. We claim that φ′(q, 0n) := maxp∈P φ(p, 0n+2) with
P := B(q, 3 · 2−(n+1)) ∩ Ddn+2 is such a name. The correctess follows by checking the

20 C. RÖSNICK-NEUGEBAUER

two cases from definition of ψ. If B(q, 2−n) ∩ S 6= ∅, then by (κ1) there must exist a
p ∈ P with φ(p, 0n+2) = 1, which leads to φ′(q, 0n) = 1. Now consider the second case:
B(q, 2−n+1) ∩ S = ∅. We prove it by contradition. To this end, assume φ′(q, 0n) = 1. Then
there is a p ∈ P which satisfies (κ2), i. e., there exists an x ∈ S such that x ∈ B(p, 2−(n+2))

which in turn produces a contradiction because of B(p, 2−(n+2)) ⊂ B(q, 2−n+1).

3.3.4. Local information and relative distance. On compact sets and enriched with outer
radius parameter b ∈ Z, representation δrel(d) is polynomial-time equivalent to ψ(d).8

Proposition 3.13. ψ(d)
‖·‖ u b ≡Kp δrel(d)

‖·‖ u b holds in any dimension d ∈ N.

Proof. We prove the polynomial-time equivalence of δrel(d) u b and ψ(d) u b for ‖·‖ := ‖·‖∞.
The full statement then is a direct application of Thm. 3.6.

Direction δrel(d) u b �Kp ψ(d) u b: Let n ∈ Z and q ∈ Dd. If
〈
φ, 0b

〉
is a δrel(d)|K u b-name

of some S ∈ K(d), then

φ′
(
q, 0n

)
:=

{
1, if φ(q, 0n+4) ≤ 5/4 · 2−n + 2−(n+4)

0, if φ(q, 0n+4) ≥ 3/4 · 2−n + 2−(n+4)

yields
〈
φ′, 0b

〉
to be a ψ(d) u b-name of S.

S

qDd
n+5−i′ B

(
q, 2 · 2−(n+2)−i′)

B
(
q, 2−(n+2)−(i′−1))

p′

Figure 5: Reducing ψ(d)|K u b to δrel(d)|K u b. Highlighted in black are points p with
φ(p, 0n+5−i′) = 1.

Direction ψ(d) u b �p δrel
(d) u b: Let b′ := max{1, b} and c′ := lb max{2, ‖q‖}. We start

by determining an initial approximation to dS(q). To this end, start with k := 0 and search
for the smallest value k ≤ n+ b′+ c′+ 1 with φ(q, 0n+1−k) = 1. Denote this particular integer
by k′. Note that such a k′ does exist because of S ⊆ B(0, 2b + ‖q‖) ⊆ B(0, 2b

′+c′). This k′

then yields the bound dS(q) ∈ [2−(n+2)+k′ , 2−n+k′].
Now that we have a bound on dS(q) we can decompose B(q, 2−n+k′ , 2−(n+2)+k′) into a

constant number of regions to search in for a good approximation to dS(q). More precisely,
let p′ ∈ Ddn+5−k′ ∩ B(q, 2−n+k′ , 2−(n+2)+k′) be a dyadic point with φ(p′, 0n+5−k′) = 1 which
minimizes ‖q − p′‖ over all points from the above hollow set (this argument is also depicted
in Fig. 5). This leads to |dS(q)− ‖q − p′‖| ≤ 2−(n+4)+k′ . Moreover, φ′(q, 0n) := ‖q − p′‖
satisfies Eqn. (2.1). The first half, the lower bound on φ′(q, 0n) in (2.1), follows by validating
that the above bound on ‖q − p′‖ implies dS(q) − 2−(n+4)−k′ ≤ ‖q − p′‖. Comparing this

8Recall that by Thm. 3.5 we assume all representations to be scale-invariant. Without it, only ψ̂ would have
been fully polynomial-time equivalent to δrel, while ψ would have been only parameterized polynomial-time
equivalent.

CLOSED SETS AND OPERATORS THEREON 21

bound with 3/4 · dS(q) − 2−n from (2.1) shows that dS(q) ≥ 2−(n+2)+k′ − 2−n+2 has to
hold in order to prove the lower bound from (2.1) to be true—which it does (cf. the initial
approximation we got on dS(q)). The upper bound follows analogously. Hence,

〈
φ′, 0b

〉
is a

δrel(d) u b-name of S.

3.3.5. Comparing local information. The situation regarding representation ω is more diverse:
Although ω is computably equivalent to ψ over CR-sets (Thm. 3.9), Thm. 3.10 already showed
that additional local information (an inner point a and an inner radius 2−r) is necessary
to reduce a ω(1)-name to a ψ(1)-name. The reduction itself was no more than a binary
search, but the applicability was tied to dimension 1 and therefore does not extend to
dimension d = 2 onward. Nonetheless, ω(d) can be shown to be polynomial-time reducible to
ψ(d)—and even to δ!—in dimension d ≥ 2 given enough additional information, although
by a very different argument. We start by sketching the positive result about ω’s relation to
δ (extending upon [GLS88, Cor. 4.3.12]), and then show that none of the enrichments could
have been directly computed (in polynomial-time) from a ω-name alone.

Theorem 3.14. ω(d) u ar u b �KCRp δ(d) in any dimension d.

This result follows by applying arguments from Convex Optimization: an adaption of
the Ellipsoid Method plus a polarity argument. The Ellipsoid Method allows to first reduce
ω(d) u ar u b to an intermediate representation $(d), called weak optimization representation
[GLS88, WOPT: Def. 2.1.10]. A φ ∈ Σ∗∗ is a$(d)-name of S ∈ KR(d), if for every directional
(or: cost-) vector c ∈ Dd and precision n ∈ Z, it satisfies
(1) φ(c, 0n) = ε if B(S,−2−n) is empty; and
(2) φ(c, 0n) = p for some p ∈ B(S, 2−n) ∩ Dd such that cTx ≤ cTp+ 2−n holds true for all

x ∈ B(S,−2−n).
In the second case we also say that p is an almost optimal point with respect to the cost
vector c (cf. Fig. 6). This case can moreover be reformulated by means of halfspaces and
hyperplanes : Let c be some real-valued vector and α ∈ R. Then H≤αc :=

{
x ∈ Rd

∣∣ cTx ≤ α
}

and, analogously, H≥αc are halfspaces, and their intersection constitutes the hyperplane
H=α
c := H≤αc ∩H≥α. The aforementioned second case now reads as

⋃
x∈B(x,2−n)H

≤cTx
c ⊆

H≤c
Tp+2−n

c for p as above.

c

H≤cTp+2−n

cH=cTp
c p

p∗ set of almost optimal points ($, second case)

B (S,−2−n)

B (S, 2−n)

S

Figure 6: Weak optimization: Cost vector c, and a set S ∈ KR(2) along with an optimal
solution p∗ and the set of almost optimal solutions.

Remark 3.15. Like for ω, representation $ only makes sense for regular sets since the first
condition would otherwise always hold true, e. g., for singletons. The additional restriction to
bounded sets moreover is necessary for the existence of a point p almost optimizing over S in

22 C. RÖSNICK-NEUGEBAUER

direction of c. To get the “usual” notion of optimization in direction of c, first approximate
the normalized vector to c (i. e., compute c · ‖c‖−1

2 up to the desired precision) and then
apply the $(d)-name.

Further note that we tied representation$ to the Euclidean norm: The second condition
in the definition of $ is stated by means of the the scalar product 〈·, ·〉 induced by ‖·‖2 (i. e.,
xTy = 〈x, y〉 = 1/4(‖x+ y‖22 − ‖x− y‖22)). This does not lead to the most generic definition
of $, however, it is a sensible choice because ‖·‖2 is the only norm on Rd amongst the
p-norms ‖(x1, . . . , xd)‖p :=

(∑d
i=1|xi|p

)1/p (for 1 ≤ p ≤ ∞) that induces a scalar product.

We therefore only write $(d), but obviously mean $(d)
‖·‖2

Using $ and the following Thm. 3.16, we translate an ω-name of a set S to a δ-name of
its polar set S• (a related but in most instances not the same set), and then use this as an
intermediate step to prove the above Theorem.

Fact 3.16 ([GLS88, Cor. 4.3.12]). ω(d) u ar u b �KCRp $(d).

Lemma 3.17. Define • : A(d) → A(d) through S 7→ S• := {y ∈ Rd | ∀x∈S . yTx ≤ 1}, and
call S• the polar of S (a well-known concept in convex geometry and optimization; cf. [BL00,
§4.1], [dBCvKO08, §8.2]). Further, call S centered if 0 ∈ S◦.
(1) For all S ∈ A(d) and r, b ∈ Z, B(0, 2−r) ⊆ S implies S• ⊆ B(0, 2r) and S ⊆ B(0, 2b)

implies B(0, 2−b) ⊆ S•.
(2) Let S ∈ KCR(d) be centered. Then S• is also contained in KCR(d), centered, and S = S••.
(3) Let Z := {S ∈ KCR(d) | S centered }. Further define an enrichment (“inner radius of

centered sets”) r0 : S Z⇒ {unZ(r) | B(0, 2−r) ⊆ S}. Then •|Z is
(
ω(d)u r0ub, δ(d)u r0ub

)
-

computable in polynomial time.

of Thm. 3.14. Let
〈
φ, a, 0r, 0b

〉
be a ω(d)uarub-name of S ∈ Z. Then φ′(q, 0n) := φ(q−a, 0n)

gives a ω(d) u r0 u b-name
〈
φ′, 0r, 0b

〉
of S′ := {x− a | x ∈ S}. Since S′ is centered and

therefore contains 0 as an inner point, Thm. 3.17(3) can be applied to get a δ(d)u r0ub-name〈
φ′′, 0r

′′
, 0b
′′〉 of S′• out of φ′ with r′′ := b and b′′ := r. Use the reduction δ(d) �p ω

(d) and
apply Thm. 3.17(3) once again to get a δ(d)-name φ′′′ of S′•• = S′ (by Thm. 3.17(2)) out of
φ′′. The final translation S′ 7→ {x+ a | x ∈ S′} through ψ(q, 0n) := φ′′′(q + a, 0n) yields a
δ(d)-name ψ of S.

The key ingredient in the proof of Thm. 3.17 is to take the ratio 2−r/2b into account. If
done correctly, this then ensures that we get a sufficiently good approximation of a bounding
hyperplane H≤1

p′ from which the distance—and hence a δ-name—can be easily calculated.
We wrap the necessary technical details in the following statement.

Proposition 3.18. Let S ∈ KCR(d) be centered. Further let r ∈ Z and b ∈ Z be inner and
outer radius parameter, respectively.
(1) Let φ be a $(d)-name of S. Then p := φ(q, 0m) satisfies

∃ p∗ ∈S .
(
p∗ ∈ B(p, 2−n) and ∀x∈S . qTx ≤ qTp∗

)

if m ≥ n+ |b|+ |r|+ 1.
(2) Denote by π : (p, q) 7→ pTq · 1/(qTq) · q the projection of p ∈ Rd onto the line spanned

by q ∈ Rd. If π(p, q) with p ∈ ∂S is approximated by p′ ∈ Dd with precision m ≥

CLOSED SETS AND OPERATORS THEREON 23

(2,−1)(−1,−1)

(−1, 2)

S1

S1
•

H≤1
(2,−1)

H≤1
(−1,2)

H≤1
(−1,−1)

(a) Illustrating the definition of S•.

S

S• H≤1
π(p,q)

q̂

p

q

π(p, q)

x

xTπ(p, q) + 3 · 2−(n+1) · ‖π(p, q)‖

← P (q̂)

(b) Optimization in direction of q̂: Pick an arbi-
trary point p ∈ P (q̂)—the set of optimal points
with respect to q̂—and project it onto q̂. The
resulting point π(p, q) then allows to recover the
distance of q to S• from H=1

π(p,q).

Figure 7: Construction of and argumentation using polar sets.

n+ |b|+ |r|+ 1, then

dH
(
B(0, 2b + 2r) ∩H=1

p′ , B(0, 2b + 2r) ∩H=1
π(p,q)

)
≤ 2−n .

Stated differently, vectors π(p, q) and p′ describe approximately the same hyperplane (with
respect to bounds b and r).

of Thm. 3.17. Note that the polar of a closed set is closed, too, as per definition it is the inter-
section of closed halfspaces, i. e., S• =

⋂
x∈S H

≤1
x with halfspacesH≤1

x :=
{
y ∈ Rd

∣∣ xTy ≤ 1
}
.

Statement (2) now is a special case of the Bipolar Theorem (cf. [BL00, Thm. 4.1.5]), while
statement (1) follows by examining the proof of the aforementioned theorem (cf. [BL00,
Exercise 4.1(5)]).

Concerning (3): Let
〈
φ, 0r, 0b

〉
be a ω(d)|Z u r0 u b-name of S ∈ Z, q ∈ Dd and n ∈ N.

Apply Thm. 3.16 to the above name to get a $(d)|Z u r0 u b-name
〈
φ′, 0r, 0b

〉
of S.

Notice beforehand that Thm. 3.18 allows us to describe all of the following steps in terms
of exact computations while they actually have to be carried out approximately. To get the
approximative (and hence correct) version, use the aforementioned results and the closure of
polynomial-time function computation under composition.

As already mentioned in Thm. 3.15, optimization in a certain direction in the usual sense
is obtained from a $-name by first normalizing the respective cost vector; i. e., q′ := q/‖q‖
in this setting. Now take the $-name φ′ and apply it to q′ to obtain an optimal point
p := φ′(q′, 0m). The point p itself usually does not describe the distance between q and
S• appropriately as depicted in Fig. 7b, but its projection onto q′ encodes precisely this
information. To this end, let p′ := π(p, q′) (use Thm. 3.18(2) to get a good approximations)
and observe that the distance of q from S• can be obtained from the distance of q to the
hyperplane {y ∈ Rd | yTp′ = 1} = H=1

p′ under the premise that qTp′ ≥ 1. More concretely, a
valid δ(d)|Z -name ϕ of S• can be defined as follows:

ϕ(q, 0n) := 0 if qTp′ ≤ 1 + 3 · 2−(n+1) ·
∥∥p′
∥∥ ; ϕ(q, 0n) := (qTp′ − 1) ·

∥∥p′
∥∥−1 otherwise .

24 C. RÖSNICK-NEUGEBAUER

of Thm. 3.18. Considering (1): First note that dH
(
S,B(S,−2−m)

)
≤ 2−(n+1) if m ≥ n +

|b|+ |r|+ 1 which follows by a geometric argument: Observe that S does contain a filled
right-angled triangle T with adjacent side of length ≤ 2b and opposite side of length ≥ 2−r.
The ratio 2−r/2b bounds how “steep” this triangle can be. Stated differently, for all x ∈ ∂T
there exists a y ∈ B(T,−2−m) with ‖x− y‖ ≤ 2−(n+1) for m as above; which implies the
above statement about the Hausdorff-distance of B(S,−2−m) to S.

The definition of $ now implies that each almost optimal p ∈ B(S, 2−m) fulfills qTx ≤
qTp + 2−m for all x ∈ B(S,−2−m). Combine this bound with the first argument over the
Hausdorff distance to obtain the claimed result, namely that there exists an optimal point
p∗ ∈ S ∩ B(p, δ) with δ := (2−(n+1) + 2 · 2−m)/2 < 2−(n+1) with respect to optimization
direction q.

Considering (2): First note that p ∈ ∂S implies ‖p‖ ≥ 2−r, and also ‖p‖ ≤ 2b due
to S ⊆ B(0, 2b). Without loss of generality, let π(p, q) =: (λ, 0, . . . , 0) and p′ := (λ ±
2−m, 0, . . . , 0) (the latter being a boundary case of p′ ∈ B(π(p, q), 2−m)) with 2−r ≤ λ ≤ 2b

(as noted before). In this particular case π(p, q) and p′ are codirectional which simplifies
the following argument. Note that π(p, q)Tx = 1 if x1 = 1/λ, and p′Tx′ = 1 if x′1 =
1/(λ + 2−m). Then the codirectionality of π(p, q) and p′ imply that H=1

π(p,q) and H=1
p′ are

parallel, and they are of Hausdorff distance |1/λ− 1/(λ+ 2−m)|. By 2−r ≤ λ ≤ 2b. Therefore,
|1/λ− 1/(λ+ 2−m)| ≤ 2−n by m ≥ n+ |r|+ |b|+ 1, and thus implies

dH
(
B(0, 2b + 2r) ∩H=1

p′ , B(0, 2b + 2r) ∩H=1
π(p,q)

)
≤ 2−n .

Both the enrichments (a, r and b) as well as the restriction to bounded convex bodies
KCR were necessary to make Thm. 3.14 work, as we summarize in the following statement.

Proposition 3.19 (enrichments of ω). For all d ∈ N we get the following negative results:
(1) The multi-valued operation Bound : KR(d) ⇒ Z, KR(d) 3 S Z⇒

{
b ∈ Z

∣∣ S ⊆ B(0, 2b)
}
is

(ω(d) u ar,unN)-discontinuous. The analogous fact holds for ψ(d) (cf. [Wei00, Exercise
5.2.4]).

(2) Convexity is crucial for Thm. 3.14 to hold: ω(d) u ar u b 6�KR δ(d).
(3) Addendum to the previous point: Convexity helps only in the presence of all of the

above enrichments; i. e., there is no machine operating on KCR(d) that provided with
ω(d) u χ1 u χ2 computes χ3 in polynomial time for any permutation {χ1, χ2, χ3} of
{a, r, b}.

(4) Over KCR(d), advice parameters a, r and b are uniformly computable from ψ(d). The
same statement fails, however, for computability in polynomial time.

Proof.
(1) LetM? be a hypothetical OTM to compute Bound. Further, let 〈φ, a, 0r〉 be a ω(d)|KRuar-

name for S ∈ KR(d). Machine M? terminates (in finite time) and produces a potential
bound b. During its computation it can only have made finitely many queries to φ
and thus has checked only points in, say, B‖·‖(0, 2

b′) for some b′ ∈ Z. Therefore, M?

would have produced the same potential bound b ≤ b′ if S were replaced with the set
S′ := S ∪ B‖·‖(p, 1) for some point p satisfying B‖·‖(0, 2

b′) ∩ B‖·‖(p, 1) = ∅.
(2) We prove the stronger statement ω(d) u ar u b 6�KR ψ(d).

Let S := B‖·‖(0, 2
b, 2b − 2−3), and be φ :=

〈
φ′, a, 0r, 0b

〉
with φ′(q′, n′) := χS(q′) a

concrete ω(d)|KR u ar u b-name of S. Further let M? be a hypothetical OTM translating

CLOSED SETS AND OPERATORS THEREON 25

any φ into a ψ(d)|KR-name. The discrete inputs (tailor-made for the adversary argument)
are q := (0, . . . , 0) and n := 3. On this input, M? does asks queries of precision at most
m ≥ |r|. Therefore, it states “0” as the correct answer a ψ(d)-name would have given
on 〈q, 0n〉 because of B(0, 2−3+1) ∩ S = ∅. M? surely produces the right answer for S,
but it also does so on the slightly modified (adversary) set S′ := S ∪ B(0, 2−(m+2)) for
all ω(d)|KR-names φ′′ for S′ with ∀ p∈Dd . ∀ k∈N, k ≤ m.φ′(p, 0k) = φ′′(p, 0k); thus
misleading M? to produce the wrong answer (0 instead of 1).

(3) Parameter b can not be computed in polynomial time from r, a (and n) because
the outer radius of a set S is simply not bounded in this (local) information about
S. Finding an inner point a from b and r requires to query a ω(d)|KCR-name φ in
roughly 2d·max{0,b+r} many points. To see why, consider the collection of adversary sets
{Sp := B(p, 2−r) | p ∈ B(0, 2b) ∩ Ddr+1} and observe that Sp can only be distinguished
from any other Sp′ if φ is evaluated in p and p′ with precision r + 1. An analogous
argument shows why an inner radius parameter r can not be bounded in terms of a and
b only.

(4) Computability of b, a and r: Let φ be a ψ(d)
‖·‖-name of S ∈ KCR(d). An outer radius

parameter b exists since S is bounded, and it is computable from φ by exploiting convexity:
Starting at 0, systematically ask queries φ(p, 01) with p ∈ Dd1 in order to find a value b ≥ 1
such that (a) ∃ p∈Dd1 ∩ B(0, 2b−1) . φ(p, 01) = 1 and (b) ∀ p∈Dd1 ∩ B(0, 2b) . φ(p, 01) = 0.
It then follows S ∩ B(0, 2b−1) 6= ∅, and S ⊂ B(0, 2b) is implied by using the convexity of
S.

From b one can find a point a and also an inner radius parameter r by gradually
increasing the precision: Starting with r′ := −b + 3, increase r′ until a point p′ ∈ Ddr′
in B(0, 2b) is found such that all p ∈ Ddr′ ∩ B(p′, 2−r

′+3) satisfy φ(p, 0r
′
) = 1. Then

B(p′, 2−r
′
) ⊆ S follows by convexity of S. Now choose a := p′ and r := r′.

Non-polynomial-time computability: Any (deterministic) computation of b and r must
necessarily be unbounded in n (and, obviously, |φ|), simply because the values of both b
and r are usually unbounded in n. The same is true for an inner point a since it depends
on (the unknown) inner radius parameter r; take S = B(a, 2−r), a ∈ Ddr \ Ddr−1 as an
example.

Theorem 3.19(2) covers, in fact, several constellations of enrichments of ω because it
asserts that, informally, “if we can not deduce χ3 from ω(d) and two-thirds of other information
(χ1 and χ2), then particularly neither none nor one-third of it would help, too”.

4. Geometric operations on sets

By definition, both the computability and complexity of an operator is inextricably linked to
the choice of representations of elements it is based on; examples can be found in [Bra99],
[Wei00, Thm. 5.1.13], [Zie02], [ZB04] (for computability), and [ZM08] (for complexity). While
the computability is pretty well-studied, the complexity has been left behind as, again, a
result of the missing generic framework to formulate explicit complexity bounds in. In this
section, we do our small part to shine a light on the complexity of Choice (finding some
point in a set), set operators Union, Intersection and Projection, and basic function operators
Inversion (local inverse of a function) and Image.

26 C. RÖSNICK-NEUGEBAUER

4.1. Choice: Finding a point in a set. We analyze the complexity to compute some
(multi-valued) member of a set S, given only a name of S; i. e., the complexity of the in
general uncomputable (cf. [BG11, BdBP12]) operator Choice : A⇒

⋃
d∈NRd, A 3 S Z⇒ S. It

is an interesting operator because, intuitively, at least this operator should be (parameter-
ized) polynomial-time computable for reasonable representations of sets; like the operator
Evaluation : (f, x) 7→ f(x) is in the realm of continuous functions [KC12].

The following statement indeed proves parameterized complexity results for Choice. In
particular, ψ enriched with b suffices, while even more information is necessary for ω.

Theorem 4.1 (complexity of Choice).
(1) On compact sets, Choice|K is fully polynomial-time (ψ(d) u b,ρd)-computable.
(2) Choice|KR is (ω(d) u r u b,ρd)-computable in time polynomial exponential in |b| + |r|.

This bound also is sharp (i. e., no fully polynomial-time bound holds).

Proof. (1) Let S ∈ K(d),
〈
φ, 0b

〉
be a ψ(d) u b-name of S with b ≥ 0, and n ∈ Z. A point

q ∈ Dd with φ(q, 0n) = 1 can then be found by the following iterative procedure. First,
let p0 := 0. Now assume that pi−1 for 1 ≤ i ≤ n + b + 2 is already given. Then
deterministically pick one point pi out of B(pi−1, 2

b−(i−1)) ∩ Ddi−b with φ(pi, 0
i−b) = 1.

Then pn+b+2 is guaranteed to be 2−n-close to S.
(2) Let

〈
φ, 0r, 0b

〉
be an ω(d)|KR u r u b-name of S ∈ KR(d).

Upper bound: Perform an exhaustive search on Ddr+1(2b). This way φ(p, 0r+1) = 1 is
guaranteed by 2−r being an inner radius of S for some point p ∈ Ddr+1+n(2b). Moreover,
such a point will be found and is close-enough (in the sense of representation ρd) to S.

Sharpness: Consider the class of sets B :=
{

B(a, 2−r)
∣∣ a ∈ Ddr+n′(2

b), n′ ∈ Z
}
⊂

KR(d). The sharpness then is a consequence of Thm. 3.19(2), ω(d) u r u b 6�Bp ψ(d):
Exponentially many points p ∈ Dd have to be considered in order to tell any of the above
sets apart.

4.2. Binary union. [ZM08, Lem. 2.7] proved Union to be polynomial-time computable over
κ with respect to an output-sensitive measure of complexity: Given two κ(d) ≡Kp ψ(d) u b-
names φ1 and φ2, taking the maximum over the outer radii parameter as well as the maximum
over the answers at any point, φ(q, 0n) = maxi φi(q, 0

n), constitutes a name of the union.
Linear-time algorithms for ψ(d) and δ(d) follow analogously.

However, the same method applied to ω(d) over regular sets does not yield a valid
ω(d)-name of the union. As it turns out, Union is even uncomputable over ω(d). Convexity,
again, proves to be the key to render Union computable, even in polynomial time.

Theorem 4.2.
(1) Union|KR×KR is

(
(ω(d) u r u b)× (ω(d) u r u b),ω(d)

)
-discontinuous.

(2) On CR(r), however, Union|CR×CR becomes polynomial-time (ω(d)×ω(d),ω(d))-computable.9

Proof. (1) The basic adversary construction of sets Si and S̃i is depicted in Fig. 8a. First
choose Si such that B(q, 2−n+1) has an empty intersection with S1 ∪ S2 (e. g., as a
simple rectangle/cuboid as depicted). Further construct S̃i as follows: (a) ri is an inner

9Keep in mind that the result may not be convex.

CLOSED SETS AND OPERATORS THEREON 27

S1 S2

> 2−r−1

< 2−m

vs.
S̃1 S̃2

B (q, 2−n)

(a) Union|KR×KR is ω(d)-discontinuous: The
adversary set on the left is indistinguishable
from the right one provided the “stripes” are
just small enough to not contain a ball of
radius 2−m.

S̃1

S̃2

S̃′

2−(m+2)

q

(b) Alternately cut small pieces of “size”
2−(m+2) off of two copies of the unit inter-
val (in general: unit hypercube) to obtain
an empty intersection around point q.

Figure 8: Adversary arguments, proving the discontinuity of (a) Union over ω and (b)
Intersection over ψ.

radius parameter of S̃i; (b) the “teeth”, being of length > 2−n+2, are placed around q
as depicted; (c) each rectangle/cuboid is of width ≤ 2−(m+1), where m ∈ N marks the
maximal precision a hypothetical OTM M? for Union asks on input 〈q, 0n〉. Now the
only (and in this case correct) choice M 〈φ1,φ2〉 started with 〈q, 0n〉 has is to assert 0 since
B(q, 2−n+1) ∩ (S1 ∪ S2) = ∅. Now exchange the names for Si by names φ̃i for S̃i which
coincide with the previous ones on all queries up to precision m. Then M〈φ̃1,φ̃2〉 sill
asserts 0 in this case, although now B(q, 2−n) ⊂ S̃1 ∪ S̃2 proves 1 to be the only correct
answer.

(2) Let φi be ω(d)-names of Si, i = 1, 2. Claim: Then φ′, defined through

φ′(q, 0n) := max
i=1,2

{
φi(p, 0

n+2)
∣∣ p ∈ B := B(q, 3 · 2−(n+2)) ∩ Ddn+2

}
,

constitutes a ω(d)-name of S′ := S1 ∪ S2.
Let B(q, 2−n) ∩ S′ = ∅. Then ⋃p∈B B(p, 2−(n+2)) ⊂ S′ must also have empty intersec-

tion with S′, hence φi(p, 0n+2) = 0 for all p ∈ B and i ∈ {1, 2}. Now let B(q, 2−n) ⊆ S′.
We prove the correctness of φ′(q, 0n) := 1 by contradiction. To this end, assume
φ′(q, 0n) = 0, i. e., B(p, 2−(n+2)) 6⊆ S1, S2 would have to hold for all p ∈ B. Because of
B(p, 2−(n+2)) ⊂ B(q, 2−n) ⊆ S′ and the convexity of Si, there must be a p′ ∈ P such that
B(p′, 2−(n+2)) is contained entirely either in S1 ∩ S2, S1 \ S2 or S2 \ S1. If B(p′, 2−(n+2))
were contained in the first (convex) set, then we would get a contradiction because of
B(p′, 2−(n+2)) 6⊆ S1, S2. If it were contained in (one of the connected regions of) S1 \ S2,
then we would also get a contradiction to the assumption that B(p′, 2−(n+2)) 6⊆ S1. The
analogous argument also holds for the third set, thus proving ω(d)(φ′) = S′.

4.3. Binary intersection. Intersection proves to be discontinuous for δ over the class A of
closed sets [Wei00, Ex. 5.1(14)] by the usual adversary argument: Whenever a (hypothetical)
algorithm decides upon a certain point x to be a member of the intersection, we can slightly
modify the original sets by excluding points from a small neighborhood of x, rendering x to
be far off the actual intersection and therefore leading any hypothetical OTM to produce a
wrong answer.

Even when requiring the intersection of two regular sets to be regular again, this
discontinuity remains [Zie02, §3]. We show how convexity helps to establish computability,
and how the complexity is bounded in terms of an inner radius of the intersection.

28 C. RÖSNICK-NEUGEBAUER

Theorem 4.3. Let

D :=
{

(S1, S2) ∈ R(d) ×R(d)
∣∣ S1 ∩ S2 ∈ R(d)

}
;

E :=
{

(S1, S2) ∈ KCR(d) ×KCR(d)
∣∣ S1 ∩ S2 ∈ KCR(d)

}
,

and further define the enrichment r′ to encode an inner radius parameter of the intersection
of two sets, i. e., r′ : (S1, S2) ∈ D Z⇒

{
unZ(r′)

∣∣ ∃ a∈Rd .B(a, 2−r
′
) ⊆ S1 ∩ S2

}
.

(1) Intersection|D is (ξ(d) × ξ(d), ξ(d))-discontinuous for all representations ξ from Thm. 2.7.
(2) Intersection|E is (ξ(d) × ξ(d), ξ(d))-computable for all representations ξ from Thm. 2.7.
(3) Intersection|E is parameterized polynomial-time

(
(ξ(d)ub)×(ξ(d)ub)ur′, ξ(d)

)
-computable

for ξ(d) := ψ(d), and even fully polynomial-time computable for ξ(d) := ω(d).

Notice the duality in the ω(d)-result for Intersection|E compared with Union: While for
the first a correct answer was easy to produce when the point was not deep-enough in at
least one of the two sets, it was easy to produce a correct answer for the latter if the point
resided deep in both sets. Further note that this is the direct opposite of what holds for ψ;
an indication that ψ is dual to ω, just like the union of sets is the lattice-dual operation of
intersection.

Proof. (1) We only show the ψ(d)-discontinuity of Intersection (the proof loosely follows
[Wei00, Thm. 5.1.13]); the remaining statements follow by the same construction.

Let S1, S2 := [−1, 1]d be the sets provided to Intersection through ψ(d)-names φ1, φ2.
It follows that any ψ(d)-name φ′ of S′ := S1∩S2 = [−1, 1]d has to satisfy φ′(q, 0n) = 1 for
all q ∈ Dd∩ [−1, 1]d and n ∈ N. Assume that a name for S′ is computed by a hypothetical
OTMM? for Intersection, and letm ∈ N be the maximal precision of queriesM 〈φ1,φ2〉 asks
when started on input 〈q, 0n〉 with q := (0, . . . , 0). Now exchange φi by a ψ(d)-name φ̃i for
S̃i (depicted in Fig. 8b) which fulfills φ̃i(p, 0k) = φi(p, 0

k) for all p ∈ Dd and k ≤ m. Then
M〈φ̃1,φ̃2〉〈q, 0n〉 = M 〈φ1,φ2〉〈q, 0n〉 = 1 although S̃′ := S̃1 ∩ S̃2 = B‖·‖∞(q, 1, 1 − 2−n+1)

and therefore B(q, 2−n+1) ∩ S̃′ = ∅ for n ≥ 3.
(2) Apply ξ(d) �KCR ψ(d) u r u b (Thm. 3.9 + Thm. 3.19(3)) to the domain-side and

ψ(d) �KCR ξ(d) (Thm. 3.9) to the codomain-side, then use statement 3.
(3) The second part, i. e. with ξ(d) := ω(d), has been proved in [GLS88, p.129].

B (a, 2−r)
B (q, 2−n)

q
B
(
q, 2−n+1

)
B
(
p, 2−N

)

S1

S2

Figure 9: Intersecting two convex bodies when additional information about their intersection
(an inner ball and an outer radius) is given.

Let
〈
φ1, φ2, 0

b1 , 0b2 , 0r
′〉 be a (ψ(d) u b× ψ(d) u b) u r′-name of (S1, S2) ∈ E . Due to

convexity, S′ := S1 ∩ S2 only meets B(q, 2−n) if S′ contains a polyhedron with precisely
one vertex lying in B(q, 2−n). Therefore, we derive a lower bound N ∈ O(n+ b1 + b2 + r′)
on the inner radius parameter of S′ close to q; i. e., a radius that guarantees the existence

CLOSED SETS AND OPERATORS THEREON 29

of a ball, say B
(
p, 2−N

)
, which is contained in S′ and also is sufficiently close to q; i. e.,

B(p, 2−N) ⊆ S′ ∩B(q, 2−n+1). This argument is also depicted in Fig. 9; and it yields the
following bound on N :

3/2 · 2−n ·
(

2 · 2−r′ · (2max{b1,b2}+1 − 2−r
′ − 2−n)−1

)
≥ 2−(n+r′+max{b1,b2}) ≥ 2−N .

Finally, construct φ′ by a local search around q:

φ′(q, 0n) := max
{

min
i=1,2

φi
(
p, 0N

) ∣∣∣ p ∈ B(q, 3/2 · 2−(n+1)) ∩ DdN
}
.

Due to the locality of this search, the number of points to be considered is exponential
in r and max{b1, b2}, but polynomial in n.

4.4. Projection operator. For d ∈ N and d ≥ e let Projection be the operator

Projectiond,e : K(d) → K(e),

S 7→ Projectiond,e(S) :=
{
x ∈ Rd

∣∣∣ ∃ y ∈Rd−e . (x, y) ∈ S
}
,

pointwise projecting a subset S of d-dimensional Euclidean space down to dimension e.10

Convexity again turns out to be the key to prove polynomial-time bounds.

Fact 4.4 ([ZM08, Thm. 3.2+Lem. 3.3]). (1) Let d ≥ 2. The statement “if a set S ∈ K(d)

is polynomial-time κ(d)-computable, then operator Projectiond,1(S) is polynomial-time
κ(1)-computable” is equivalent to P = NP.

(2) Projection2,1|KC is polynomial-time (κ(2),κ(1))-computable.

The proof of the second argument can be extended to Projectiond,d−1—which by composi-
tion Projectione+1,e◦· · ·◦Projectiond,d−1 implies the polynomial-time (κ(d),κ(e))-computability
of Projectiond,e. Moreover, the second result carries over to the seemingly poorest representa-
tion ω, but only if restricted to bounded convex bodies KCR.
Proposition 4.5 (ω-computability & -complexity of Projection). Let d > e ∈ N.
(1) Projection|KR is (ω(d) u r u b,ω(e))-discontinuous for d ≥ 2.
(2) Nonetheless: Projection|KCR is (ω(d) u b,ω(e))-computable, and even (ω(d) u aru b,ω(e))-

computable in parameterized polynomial time.

Proof. (1) Apply the adversary argument we have seen several times before. The discontinuity
then follows by cutting the unit hypercube [0, 1]d up via a “chess-board”-like pattern.

(2) Use ω(d)u arub �KCRp ψ(d) (Thm. 3.14) and ψ(d)ub ≡Kp κ(d) Thm. 3.12) on the domain
side, κ(e) �Kp ψ(e) �KRp ω(e) on the co-domain side, and then apply the comment on the
complexity of Projectiond,e|KC following Thm. 4.4.

10Note that the projection of a compact/convex/regular set is again compact/convex/regular.

30 C. RÖSNICK-NEUGEBAUER

5. Function inversion and image computation

In this section we discuss the complexity of function inversion and image computation; i. e.,
of (f, S) 7→ (f |S)−1 for the former, and (f, S) 7→ f [S] for the latter.

Recall that, for the representations in Thm. 2.7, a name would return either a bit (ω,
ψ) or a dyadic rational (δ, δrel) and/or an integer (κ), all bounded in binary length by that
of the query and/or parameter. This becomes different when encoding (approximations to)
arbitrary continuous real functions f . To this end, we refine the previous notion of complexity
(Thm. 2.10 and 2.11) and measure the running time in both the discrete argument and the
length of the name encoding f . This generalization is covered by Thm. 2.11(3) and permits
to bound the complexity of the aforementioned operators.

For convenience and supported by the results from Section 3, we formulate the following
definitions and results with respect to ‖·‖ := ‖·‖∞.

5.1. Prerequisites. Following Thm. 2.11 we already discussed the need to add advice
parameters in order to state the complexity of operators solely in the coding length of their
discrete arguments. As an example we saw δ|K with advice parameter b. This approach works
for sigma-compact metric spaces, but not for the space of continuous real functions: According
to Arzela-Ascoli, its compact subsets are parameterized by a modulus of equicontinuity, that
is, an integer sequence as opposed to a single integer. The following definition of second-order
polynomials and second-order polynomial time (devised and investigated in a sequence of
papers [Meh76, KC96, Lam06, KC12]) provides a solution by defining a notion of length in
both the discrete argument and the oracle. A recent attempt to generalize from second-order
to higher-order complexity can be found in [FH13].

Definition 5.1 (second-order polynomials and complexity; cf. [KC12, §3.2]).
(1) A total function φ : Σ∗ → Σ∗ is length-monotone if `(φ(s)) ≤ `(φ(t)) holds true whenever

`(s) ≤ `(t) for s, t ∈ Σ∗. We denote the set of length-monotone functions by LM.
(2) On φ ∈ LM define a notion of length through

`(φ)(m) := `(φ(0m)) = max
s∈Σ∗. `(s)≤m

`(φ(s)).11

(3) A second-order polynomial P : (N→ N)→ (N→ N) in arguments L : N→ N and n ∈ N
is defined inductively: Every constant m ∈ N is a second-order polynomial, as well as
variable n; assuming Q and Q′ are second-order polynomials, then Q+Q′, Q ·Q′ and
L(Q) are, too.

We make a few remarks why the above definitions are useful, and how they subsume
Thm. 2.11.

Remark 5.2.
(1) As by construction, the class of second-order polynomials is closed under addition,

multiplication and composition (just like its first-order counterpart, N[X]).
(2) Thm. 2.4 already showed how to encode multiple length-monotone functions φ1, φ2 into

one, φ := 〈φ1, φ2〉. This way, `(φ)(m+ 1) = `(φ1)(m) + `(φ2)(m) + 1 for all m ∈ N.
11Notice the overloading of the length-function `(·): Depending on the context, it denotes the length of

either words or length-monotonic functions. But this overloading “behaves well” in the sense that every word
s ∈ Σ∗ can be associated with the constant function φs : t 7→ s so that the length of s coincides with the
length of φs, i. e., `(s) = `(φs).

CLOSED SETS AND OPERATORS THEREON 31

Let ξ and ξ′ be second-order representations of sets X and X ′, respectively, and E : X ⇒ Σ∗

be a multi-valued function.
(3) As per Thm. 2.4(3), any ξ × ξ′-name is of form 〈φ, φ′〉 for φ, φ′ ∈ LM, and thus itself in

LM by the previous point.
(4) Similarly, any ξuE-name φ = 〈φ1, φ2〉 is of length `(φ)(m+1) = `(φ1)(m)+`(E(ξ(φ2)))+1.
As per the last two points, fully polynomial-time computability implies computability in
second-order polynomial-time.

We are now ready to define representations for functions and lengths of names thereof.

Definition 5.3 (moduli, and representations for total functions). Let X ∈ K(d), and
f : X → Re be a continuous function.
(1) A function µ : N→ N is called modulus of (uniform) continuity of f if ‖x− y‖ ≤ 2−µ(n)

implies ‖f(x)− f(y)‖ ≤ 2−n for all x, y ∈ dom(f) and precisions n ∈ N.12

(2) A 〈φ, ϕ〉 ∈ LM is a λd,eX -name of f if
(a) φ satisfies

∀ q ∈Dd ∩X . ∀n∈N . ‖φ(q, 0n)− f(q)‖ ≤ 2−n (5.1)

and
(b) ϕ encodes a modulus of continuity µ of f , i. e., ϕ : s ∈ Σ∗ → 0µ(`(s)).
In order to simplify the notation we associate ϕ with µ and just write 〈φ, µ〉 instead of
〈φ, ϕ〉.

(3) A function µ : N → N is called modulus of (uniform) unicity of f (cf. [Ko91, §4.1];
introduced by Kohlenbach in [Koh90, Koh93], although in a more general way than we
need it here) if ‖f(x)− f(y)‖ ≤ 2−µ(n) implies ‖x− y‖ ≤ 2−n for all x, y ∈ dom(f) and
precisions n ∈ N.

(4) A
〈
φ, µ, µ

〉
∈ LM is a ιd,eX -name of f if µ and µ are, respectively, moduli of continuity

and unicity of f , and λd,eX
(
〈φ, µ〉

)
= f .

Representations λ and ι only cover subclasses of total functions with a priori known
domains; thus asking about the (λd,dX ,λd,dY)-computability and -complexity of function
inversion would only make sense if they were restricted to total injective and surjective
functions of signature X → Y only. Phrased differently, formulating function inversion over
a class F of functions and with respect to λ only makes sense in case that for all functions
f ∈ F the (a priori known) codomain matches img(f); thus, the inverses of functions in
F had to be total and (more importantly) had to share the same domain. This is too
restrictive a requirement In general, the inverse g of an injective function f : X → Y is a
partial function from Y to X; but Eqn. (5.1) does not work in case of partial functions: Any
φ ∈ LM satisfying Eqn. (5.1) and associated to a partial function g : ⊆X → Y is only defined
for dyadic points in dom(g), but dom(g) does not necessarily contain any dyadic point.

By relaxing on the first universal quantification in Eqn. (5.1) we obtain new represen-
tations λd,e⊆ and ιd,e⊆ (i. e., multi-representation; cf. [GWX08]) which extend λd,e and ιd,e,
respectively, and are tailor-made for partial functions. They render any name to be defined
on all dyadic inputs (not only those from X ∩ Dd), but only give good approximations (in
the usual sense) if the input is close to the domain of the respective function (specializing
[KMRZ12, Ex. 1.19(h)]).

12The concepts and arguments in this section generalize to integer parameters.

32 C. RÖSNICK-NEUGEBAUER

Definition 5.4 (representing partial functions). Let f : ⊆Rd → Re be a (possibly partial)
function with compact domain. A

〈
φ, µ, µ

〉
is a ιd,e⊆ -name of f if µ and µ are moduli of f ,

respectively, and φ satisfies

∀ q ∈Dd .∀n∈N .
(

dom(f) ∩ B
(
q, 2−µ(n+1)

)
6= ∅

=⇒ ∃x∈dom(f) ∩ B
(
q, 2−µ(n+1)

)
.
∥∥φ
(
q, 0n

)
− f(x)

∥∥ ≤ 2−(n+1)
)
.

(5.2)
Similarly define λd,e⊆ as the generalization of λd,e to continuous partial functions.

Note that by the above construction, every ιd,e⊆ -name φ of some total function f in
particular is a ιd,e-name of f , too: For each q ∈ dom(f) there is an x ∈ dom(f)∩B(q, 2−µ(n+1))

such that ‖f(q)− f(x)‖ ≤ 2−(n+1). Applying (5.2) then yields

‖φ(q, 0n)− f(q)‖ ≤ ‖φ(q, 0n)− f(x)‖ + ‖f(x)− f(q)‖ ≤ 2−(n+1) + 2−(n+1) = 2−n .

5.2. Function inversion: some upper and lower bounds. The Inversion operator takes
a function f and a subset A 3 S ⊆ dom(f), and (under the assumption on f having a local
inverse on S) maps (f, S) to the inverse of f |S . In this section we focus on the parameterized
complexity of this operator.

While Inversion is polynomial-time computable for injective functions from [0, 1] to R
[Ko91, Thm. 4.6], its complexity is linked to the existence of one-way functions from dimension
two onwards [Ko91, Thm. 4.23+4.26]. If f is bi-Hölder continuous (i. e., both f and its
inverse are Hölder continuous), then Inversion still is only computable in exponential time, but
becomes parameterized polynomial-time computable for bi-Lipschitz functions (Thm. 5.9). It
turns out that this bound is actually the best we can achieve: There is no parameterized
polynomial-time algorithm for Inversion over bi-Hölder functions that are not bi-Lipschitz
assuming that one-way permutations exist (Thm. 5.11; an assumption stronger than the
existence of one-way string functions underlying contemporary cryptography).

We start to formally prove the above claims by reviewing a few non-uniform bounds on
function inversion. The first fact is a uniform reformulation of the above mentioned inversion
result, [Ko91, Thm. 4.6], for one-dimensional functions.

Fact 5.5. Inversion is polynomial-time
(
ι1,1[0,1], ι

1,1
⊆
)
-computable.

Notice the necessity of adding an inverse modulus µ to make this result work. The
algorithm behind the proof is based on trisection on [0, 1] [Wei00, Ex. 6.3.6]: For a given
point q in the range of f , start with p = 1/2 as a candidate for a 2−n-approximation to f−1(q)
and use that injectivity implies strict monotonicity for injective functions f : [0, 1]→ R to
determine whether to continue this binary search in [0, p] or [p, 1]. This algorithm stops and
returns p when it is of precision roughly µ(µ(n)). By unrolling the definitions of both µ and
µ one verifies that this indeed gives a 2−n-approximation to f−1(q). This approach, however,
fails from dimension two on due to lack of total order.

The following two results recall known lower and upper bounds on the complexity of
non-uniform function inversion.

CLOSED SETS AND OPERATORS THEREON 33

Fact 5.6 (non-uniform bounds for function inversion; [Ko91, Thm. 4.23+4.26]).
(1) If P = NP, then f−1 is polynomial-time (ρ2,ρ2)-computable on img(f) whenever

f : [0, 1]2 → R2 is injective, (ρ2|[0,1]2 ,ρ2)-computable in polynomial time and µ is poly-
nomially bounded.13

(2) If P 6= UP, then there exists an injective, polynomial-time (ρ2,ρ2)-computable function
f : [0, 1]2 → [0, 1]2 with polynomial modulus of unicity µ for which f−1 is not (ρ2,ρ2)-
computable in polynomial time on dom(f−1) = img(f).

The second statement has been proved using the following result that connects the P
vs. UP question with the existence of one-way functions (which we discuss thereafter).

Fact 5.7 ([Ko85, GS88]). Total one-way functions exist if and only if P 6= UP.

Notice the emphasis on totality (and implicitly on injectivity) since there are other
types of one-way functions whose existence, in contrast, are not always connected to just P
vs. UP [HT03, Thm. 3.2]. An injective polynomial-time computable function φ : ⊆Σ∗ → Σ∗

is said to be a (worst-case) one-way function if (a) some polynomial p exists such that
`(φ−1(s)) ≤ p(`(s)) whenever s ∈ img(φ) (polynomial honesty); and (b) if no polynomial-time
computable function ψ satisfies ψ(φ(s′)) = s′ for all s′ ∈ dom(φ) (not polynomial-time
invertible).

Now we are equipped to talk about the proof of Thm. 5.6(2): Assume P 6= UP, and let
φ : Σ∗ → Σ∗ be a total one-way function. Based on φ, construct a piecewise-linear function
f with the properties described in Thm. 5.6(2) which is hard to invert if φ is. This is
achieved by encoding the image of φ into the domain of f in a way which only allows to
recover the inverse s = φ−1(t) from t and f if φ is polynomial-time computable. The moduli
(of continuity/unicity) of f are, moreover, polynomials. More precisely, µ(n) = µ(n) =

cn+p(n)+const, where p(`(s)) = `(φ−1(s)) for any s ∈ Σ∗. Since p(n) is super-logarithmic14,
the moduli are bounded linear (from below) in n. This suggests that Inversion could be
polynomial-time computable for the class of Lipschitz- or even Hölder-continuous functions;
which we prove to be almost correct in Thm. 5.9; and it can not be generalized to arbitrary
polynomially bounded moduli (Thm. 5.6(2)).

The inversion algorithm we devise in Thm. 5.9 will involve partial injective functions,
encoded using ιd,e together with ψ(d) for their domain:

Definition 5.8 (representation θ). Let f : ⊆Rd → Re be a (possibly partial) function
with compact domain, and let S ∈ K(d). A

〈
φ, µ, µ, ψ

〉
∈ LM is a θd,e-name of (f, S) if

(a) S ⊆ dom(f); (b) ψ is a κ(d)-name of S; (c)
〈
φ, µ, µ

〉
is a ιd,e⊆ -name of f .

Recall that a function f : X → Y on normed spaces (X, ‖·‖X) and (Y, ‖·‖Y) is (α,C)-
Hölder (continuous) with Hölder exponent 0 < α ≤ 1 and Hölder constant C > 0 if it
satisfies

‖f(x)− f(y)‖Y ≤ C · ‖x− y‖αX
for any two x, y ∈ X.

In particular, an (α,C)-Hölder function has modulus of continuity µ(n) := (n+ lb(C)) ·
α−1, and any L-Lipschitz (continuous) function is in fact (1, L)-Hölder. Take [0, 1] 3 x 7→ √x

13Note that f being polynomial-time computable already implies µ to be polynomially bounded.
14If not, one could just try out all of the 2lb(`(s)) many possible preimages for s under φ, thus computing

φ in polynomial time, contradicting the existence of one-way functions (since φ is an arbitrary one), thus
implying P = UP.

34 C. RÖSNICK-NEUGEBAUER

as an example: It is (α, 1)-Hölder for α ≤ 1/2, and its inverse [0, 1] 3 y 7→ y2 is even
(1, 1)-Hölder (hence 1-Lipschitz).

If the inverse of a Hölder function f exists and if it moreover is a Hölder function, than
we call f bi-Hölder. If f is bi-Hölder, then there exist bounds 0 < α,α′ ≤ 1 and C,C ′ > 0
such that

1/C ′ · ‖x− y‖1/α
′

X ≤ ‖f(x)− f(y)‖Y ≤ C · ‖x− y‖αX .

If α = α′ = 1, then we call f bi-Lipschitz. 15

For convenience, denote by H the class of partial functions f : ⊆Rd → Re that are also
bi-Hölder, and by L the class of those f being bi-Lipschitz. Now we are equipped to state
our result about inversion.

Theorem 5.9 (complexity of Inversion). Operator Inversion is
(
θd,e, ιe,d⊆

)
-computable and its

time complexity is bounded exponentially in µ ◦ µ ◦ µ(n). This exponential dependence still
holds true when restricted to H, but leads to a parameterized polynomial-time bound when
further restricted to L.

The exponential dependence on Hölder parameters in the above theorem is actually
optimal unless P = UP ∩ coUP. To see why, we consider the notion of one-way permutations,
that is, bijective one-way functions. It is known by [HT03, Thm. 3.1] that total one-way
permutations exist if and only if P 6= UP ∩ coUP. Recall that the moduli of the function
specifically constructed to prove Thm. 5.6(2) were polynomially bounded in n. Assuming
the existence of total one-way permutations, they even become linear in n. Noting that f is
a Hölder function if and only if it has a linearly bounded modulus then implies the claimed
optimality of Thm. 5.9.

Lemma 5.10. Let ϕ be a total one-way permutation. Then a partial one-way permutation
ψ : ⊆Σ∗ → Σ∗ with the following properties can be constructed from ϕ:
(1) ψ is length-preserving, i. e., ψ[Σm] ⊆ Σm for all m ∈ N ;
(2) ψ ∈ FP ;
(3) ψ−1 ∈ FP =⇒ ϕ−1 ∈ FP .

Corollary 5.11. Assume P 6= UP ∩ coUP. Then there exists an injective, polynomial-time
(ρ2,ρ2)-computable function with moduli of continuity and unicity µ, µ both of the form
n 7→ an + b with a, b ∈ N for which f−1 is not (ρ2,ρ2)-computable in polynomial time on
dom(f−1) = img(f).

Theorem 5.11 leads to the conclusion that the exponential-time bound in Thm. 5.9 for
Inversion restricted to Hölder functions is optimal (assuming P 6= UP∩ coUP) as a continuous
function is Hölder continuous if and only if it admits a linear modulus of continuity.

We now sketch how to prove Thm. 5.9 (also illustrated in Fig. 10) and postpone the
respective proofs of the last two statements until the end of this subsection.

Let q be the point to compute (f |S)−1(q) for. Testing for all points p on a fine grid,
say Ddk(n), whether their image approximate image is close to q would be a pure brute-force
approach, and as such having an exponential running time. Instead we search iteratively:
Start with a coarse grid Ddk(0) and keep all these points from this (coarse) grid whose images
are not too far from q. The key idea in this step, which will lead to a low(er) complexity, is

15Exponents α ∈ {0}∪ (1,∞) excluded by purpose: α = 0 if the respective function is bounded, and α > 1
if it is constant.

CLOSED SETS AND OPERATORS THEREON 35

p1p2p3

p4p5p6

p7p8p9

f−1(q)

f, φ

q

q1

q2

q3
q4q5

q6 q7

q8q9

B (q, 3ti)

B (q, 2ti)

Figure 10: Points pj along with their correct and approximate images f(pj) and qj :=
φ
(
pj , 0

mi+1
)
, respectively. All approximate images qj , except for q2, q3 and q9,

are close enough to q (all that lies within the blue-highlighted ball), thus being
candidates of being an approximate inverse image of q in round i+ 1.

that the number of points that have to be kept in this step can be bounded in terms of both
moduli (µ and µ):

• Any two distinct points p, p′ ∈ Ddµ(n) are ‖p− p′‖ > 2−(µ(n)+1) apart,
• thus (by definition of the inverse modulus) their images satisfy

B
(
f(p), 2−µ(µ(n)+1)−1

)
∩ B

(
f(p′), 2−µ(µ(n)+1)−1

)
= ∅

• which implies that only finitely many points from a fixed grid can be close to q—and we
can bound their number in terms of µ, µ and n.

For the next iteration, the grid will be refined to Ddk(1). But instead of checking all these points,
we will consider only those being close to a point p from the former grid Ddk(0) whose image has
turned out to be not too far from q. The complexity of this algorithm for finding a good approx-
imation to f−1(q) will then be of formO(n·#of points that have to be kept in each iteration).

of Thm. 5.9. Let
〈
φ, µ, µ, φ′, 0b

〉
be a ιd,e⊆ -name of (f, S). Further, let n ∈ N and q ∈ De ∩ S;

we postpone the discussion about the general case where df [S](q) ≤ 2−µ(n+1) to a later stage in
this proof. Without loss of generality, we assume µ(n+1)−µ(n) ≥ 1 and µ(n+1)−µ(n) ≥ 1.16

Moreover, we prove the theorem only for b := 0 (just for convenience) although the arguments
extend to arbitrary outer radii parameter b.

To shorten the frequently used terms, we define precisions ki := µ(µ(i) + 1) + 1 and
mi := µ(i), radii ri := 2−ki+1 and ti := 2−mi , as well as approximations qp,i := φ(p, 0ki). The

16Hölder functions with Hölder exponent α ∈ (0, 1] have this property since µ(n+1)−µ(n) = 1/α ∈ [1,∞)
for µ(n) = 1/α · (n+ lbH).

36 C. RÖSNICK-NEUGEBAUER

proof is centered around the following sets:

S0 :=
{
p ∈ Ddk0

∣∣∣ φ′(p, 0m0) = 1
}
,

Ci :=
{
p ∈ Si

∣∣ p ∈ Si and ‖q − qp,i‖ ≤ 2ti
}
,

Si+1 :=
⋃

p∈Ci

Sp,i+1 , Sp,i+1 :=
{
p′ ∈ B(p, ri) ∩ Ddki+1

∣∣ φ′(p′, 0mi+1) = 1
}
.

All we now have to do is to iteratively compute the candidate sets Ci and finally deterministi-
cally pick a point p ∈ Cn+2. We claim that such a p exists and that it is a 2−n-approximation
to f−1(q).

An important note before we continue. Since f is a partial function the term “f(p)” might
be undefined for some p ∈ Si. We nonetheless want to talk about objects like “B(f(p), ·)”.
The definition of ιd,e solves this problem: For i ∈ N and p ∈ Ddki let xp,i be any point from
S ∩ B(p, ri) as in (5.2). Then f

[
B(p, ri) ∩ S

]
⊆ B(f(xp,i), ti), and we will therefore always

reason about B(f(xp,i), δ) instead of the maybe undefined B(f(p), δ/2).
Correctness: We have to show that Ci 6= ∅ for all 0 ≤ i ≤ n + 2, and that f−1(q) ∈

B(p, 2−n) for any p ∈ Cn+2. Instead of the statment “Ci 6= ∅” we prove the stronger
proposition “∃ pi ∈Ci . q ∈ B(f(xpi,i), ti)”.

For i = 0 we first note that
⋃
p∈S0

B(p, r0) is a superset of S. This plus the definition
of µ imply f [S] ⊆ ⋃p∈S0

B(f(xp,0), t0). Therefore, there must exist a point p0 ∈ S0 whose
image is close to q in the sense that q ∈ B(f(xp0,0), t0). Hence, ‖q − qp0,0‖ ≤ 2t0 which gives
C0 6= ∅.

Now let i ≥ 1. By construction of Ci−1 and Si it holds that

q ∈
⋃

p∈Ci−1

f
[
B(p, ri−1) ∩ S

]
⊆

⋃

p∈Ci−1

⋃

p′∈Pp,i

f
[
B
(
p′, ri

)
∩ S
]
.

Therefore the exists a p′ ∈ Pi with
∥∥q − f(xp′,i)

∥∥ ≤ ti, implying
∥∥q − qp′,i

∥∥ ≤ 2ti. Thus,
Ci 6= ∅.

In the end (i. e., for i = n+2), the definition of µ implies that for any p ∈ Cn+2 holds q ∈
B(qp,n+2, 2tn+2), which first leads to q ∈ B(f(xp,n+2), 3tn+2). Using that µ(n+ 2)−µ(n) ≥ 2

implies 3tn+2 < 4tn+2 ≤ tn finally allows to conclude f−1(q) ∈ B(p, 2−n).
A note on the general case of df [S](q) ≤ tn+1: By assumption, there exists an x ∈ S

such that ‖f(x)− q‖ ≤ tn+1. Therefore, ‖f(x)− f(xp,n+2)‖ ≤ tn+2 holds true for all
p ∈ Ddkn+2

∩ B(x, rn+2), implying ‖f(x)− qp,n+2‖ ≤ 2tn+2. Combining both bounds then
gives ‖qp,n+2 − q‖ ≤ 4tn+2 ≤ tn.
Complexity: We have to bound the number of points in S0, Ci and Si+1 for i ∈ N. The set
S0 contains at most 2d(b+k0) many points17, and |Si+1| is bounded by

|Si+1| ≤
∑

p∈Ci

∣∣B(p, ri) ∩ Ddki+1

∣∣ ≤ |Ci| · (2ri/ri+1)d ≤ |Ci| · 2d(ki+1−ki+2) .

17This is true modulo details: The exponential dependence on k0 = µ(µ(0) + 1) + 1 only leads to an
exponential dependence on the respective Hölder exponents. This exponential bound, however, can be
reduced to linear: Extend the definition of µ and µ to integers and, instead of k0, start with k−j for j ∈ N+

being maximal with property k−j ≥ 0. Such a j can be found in time logarithmic in the absolute value of
both Hölder constants.

CLOSED SETS AND OPERATORS THEREON 37

The bound on |Ci| requires a bit more care (as hinted prior to this proof): Any two distinct
points p, p′ ∈ Ci have the property that B(p, ri/4) and B(p′, ri/4) are disjoint. It then follows
by definition of µ that B(xp,i, 2

−µ(ki+2)) and B(xp′,i, 2
−µ(ki+2)) are also disjoint. This fact

now allows to bound |Ci| by counting how many disjoint balls of radius 2−µ(ki+2) fit into
B(q, 2ti + ti):

|Ci| ≤ (2 · 3ti/2−µ(ki+2))d < (4 · 2µ(ki+2)−mi)d .

The above describe procedure for computing Inversion therefore checks at most

O
(∑n+2

i=0

∣∣Ci
∣∣+
∣∣Si
∣∣
)

many points. Their number is bounded by (and thus further simplifies to)

O
(
n · 2µ(kn+2+2)−mn+2+kn+2−kn+1

)
. (5.3)

If f |S is bi-Hölder continuous, then its moduli are of form µ(n) = α−1(n+ c) and µ(n) =

α−1(n+ c) with c := lbC, c := lbC. Moreover,

µ(kn+2 + 2)−mn+2 = n · ((αα2)−1 − α−1) + 2 · (αα2)−1 + k0/α

and ki+1 − ki = (αα)−1. Assuming αα = 1 (which holds exactly for bi-Lipschitz functions)
allows to rewrite Eqn. (5.3) to O

(
n · 2k0

)
by applying the identities we just obtained.

Note that the encoding length of each p and qp,i is bounded linearly in b+ kn+2 + `(〈q〉).
Finally, this bound combined with the former bound on the number of points to check gives
the claimed parameterized polynomial-time bound for Inversion over L.
of Thm. 5.11. Follows directly from the proof of Thm. 5.6(2) by replacing the one-way
function with a partial one-way permutation as in Thm. 5.10. Since ψ is length-preserving it
satisfies p(`(s)) = `(ψ−1(s)) with p := id. By the remarks following Thm. 5.6(2), the moduli
of the function constructed to prove this direction are of form µ(n) = cn+ p(n) + const—a
bound linear in n.

of Thm. 5.10. Let ϕ be a total one-way permutation and p ∈ N[X] such that `(s) ≤ p(`(ϕ(s)))
for all s ∈ Σ∗. Set

Γn :=
∑n

i=0

(
p(i) + 2

)
, γn := Γn −

(
p(n) + 2

)
, δs,n := p(n)− `(s) ,

and construct a partial function ψ : ⊆Σ∗ → Σ∗ by

ψ : 0γn 1 0δs,n 1 s 7−→ 0Γn−(n+1) 1ϕ(s) for ϕ(s) ∈ Σn .

The idea behind the construction of ψ is to first pad the all arguments to ϕ with length-n
images to be of length Γn, and then to pad the image of each t ∈ Σγn also to length Γn. This
way, ψ will be length-preserving.

Concerning (2): Given a t ∈ Σ∗, use `(t) to determine whether t is contained in ΣΓn

for some n. To this end, check if t is of form 0γn 1 0δs,n 1 s for some s ∈ Σ≤p(n) and also if
ϕ(s) ∈ Σn. Note that the respective n is bounded from above by `(t). If t is not of this
particular form, then t 6∈ dom(ψ) follows immediately. If, on the contrary, t is of this form,
but ϕ(s) 6∈ Σn, then t 6∈ dom(ψ) follows, too. If, however, ϕ(s) ∈ Σn, then the (easy to
compute) string 0Γn−(n+1) 1ϕ(s) is the image of t under ψ.

Concerning (3): Let ψ−1 ∈ FP. Given t ∈ Σ∗, construct t′ := 0Γn 1 t. Note that by
surjectivity of ϕ we know that elements of dom(ψ) can only be of the above form. It thus

38 C. RÖSNICK-NEUGEBAUER

suffices to compute s′ := ψ−1(t′) = 0γn 1 0δs,n 1 s and extract s from it which by construction
of ψ satisfies ϕ−1(t) = s.

5.3. Image. The operator Image : ⊆C(Rd,Re)×K(d) 3 (f, S) 7→ f [S] ∈ K(e) has been proven
to be (λd,e⊆ × κ(d),ψ(e))-computable [Wei00, Thm. 6.2.4(4)] which, however, fails if we relax
the restriction on S from compact to closed [Wei00, Thm. 6.2.4(3)]. The respective proof
unfortunately does not yield any complexity bounds. However: Restricting Image to Hölder
functions does give parameterized bounds. To this end, define a representation Λd,e

⊆ as
follows: A φ′ is a Λd,e

⊆ -name of (f, S) ∈ H×K(d) if φ′ = 〈φ, ϕ〉 with λd,e⊆ (φ) = f , κ(d)(ϕ) = S,
and S ⊆ dom(f). Further denote by αC the enrichment by Hölder parameters, i. e.,

αC : H⇒ Σ∗ , αC : f Z⇒ {〈unN(1/α), binN(C)〉 | f is (α,C)-Hölder continuous} .
Then the complexity of Image restricted to Hölder functions follows immediately from
Thm. 5.9.

Corollary 5.12. Image|H×K is parameterized polynomial-time (Λd,e
⊆ uαC,κ(e))-computable,

and Image|L×K is fully polynomial-time (Λd,e
⊆ u αC,κ(e))-computable.

For the proof it essentially suffices to modify the proof of Thm. 5.9 as follows: Replace
all ki with µ(i+ 1) + 1, mi with i, and instead of deterministically picking a point p ∈ Sn+2

we check whether Sn+2 is empty. If Sn+2 is empty, then it is a witness for dS(q) ≥ 2−n, while
a non-empty Sn+2 witnesses dS(q) ≤ 2−n+1.

6. Future research

Sections 4 and 5 can be understood as the base for further interesting questions about
operators and parameters that render them to be polynomial-time computable; like the
complexity of preimage PreImage : (f, S′) 7→ f−1[S′] [ZB04, Lem. 24], or generalizations of
the solution operator for Poisson equations to arbitrary compact domains [KSZ13]. We
also left open questions raised about the complexity of Inversion for more restricted classes
of functions (continuous, smooth, Gevrey [LLM01, KMRZ12]) and about improvements of
Thm. 5.6. For example: Can Ko’s construction be modified to produce a smooth function
instead of only a continuous one? And do Ziegler and McNicholl’s computability results on
the implicit and inverse function theorem [Zie06, McN08] (parameterized) polynomial-time
if restricted to a subset of C2 or Gevrey functions?

Acknowledgements

I am grateful to Martin Ziegler for continuous advice and many helpful suggestions; and to
Akitoshi Kawamura, Ulrich Kohlenbach, Robert Rettinger, and Florian Steinberg for seminal
discussions, hints and lots of advice. I also like to express my gratitude to the anonymous
referees who have provided invaluable suggestions on how to improve both the structure of
this paper and the presentation of results plus their respective proofs.

CLOSED SETS AND OPERATORS THEREON 39

References

[BB85] E. Bishop and D.S. Bridges. Constructive Analysis, volume 2. Springer Verlag, 1985.
[BBH01] J. Blanck, V. Brattka, and P. Hertling, editors. 4th International Workshop on Computability

and Complexity in Analysis (CCA 2000), Swansea, UK, Selected Papers, volume 2064 of Lecture
Notes in Computer Science. Springer, September 17–19 2001.

[BdBP12] V. Brattka, M. de Brecht, and A. Pauly. Closed Choice and a Uniform Low Basis Theorem.
Annals of Pure and Applied Logic, 163(8):986–1008, 2012.

[BG11] V. Brattka and G. Gherardi. Effective Choice and Boundedness Principles in Computable
Analysis. The Bulletin of Symbolic Logic, pages 73–117, 2011.

[BHW08] V. Brattka, P. Hertling, and K. Weihrauch. A Tutorial on Computable Analysis. In New
Computational Paradigms, pages 425–491. Springer, 2008.

[Bis67] M. Bishop. Foundations of Constructive Analysis. 1967.
[BL00] J.M. Borwein and A.S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and

Examples. Springer, 2000.
[BP03] V. Brattka and G. Presser. Computability on Subsets of Metric Spaces. Theoretical Computer

Science, 305:43–76, 2003.
[Bra99] V. Brattka. Computable Invariance. Theoretical Computer Science, 210(1):3–20, 1999.
[Bra03] V. Brattka. The Emperor’s New Recursiveness: The Epigraph of the Exponential Function in

Two Models of Computability. Words, Languages & Combinatorics, 3:63–72, 2003.
[Bra04] M. Braverman. Computational Complexity of Euclidean Sets: Hyperbolic Julia-Sets are Poly-

Time Computable. Master’s thesis, University of Toronto, 2004.
[Bra05a] M. Braverman. Hyperbolic Julia Sets are Poly-Time Computable. Electronic Notes in Theoretical

Computer Science, 120:17–30, 2005.
[Bra05b] M. Braverman. On the Complexity of Real Functions. In Foundations of Computer Science,

2005. FOCS 2005. 46th Annual IEEE Symposium on [con05], pages 155–164.
[Bra05c] M Braverman. On the Complexity of Real Functions. arXiv preprint cs.CC/0502066, 2005.
[Bro19] L.E.J. Brouwer. Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlosse-

nen Dritten. Zweiter Teil. Verhandelingen Akad. Wet. Amsterdam Natuurk. Sect. I, 12(7),
1919.

[BW99] V. Brattka and K. Weihrauch. Computability on Subsets of Euclidean Space I: Closed and
Compact Subsets. Theoretical Computer Science, 219(1):65–93, 1999.

[CCA13] 10th International Workshop on Computability and Complexity in Analysis (CCA 2013), Nancy,
France, Proceedings, July 8–10 2013.

[CK95] A.W. Chou and Ker-I Ko. Computational Complexity of Two-Dimensional Regions. SIAM
Journal on Computing, 24(5):923–947, 1995.

[CK05] A.W. Chou and Ker-I Ko. The Computational Complexity of Distance Functions of Two-
Dimensional Domains. Theoretical Computer Science, 337(1):360–369, 2005.

[con95] 12th Annual Symposium on Theoretical Aspects of Computer Science (STACS 1995), Munich,
Germany, Proceedings, March 2–4 1995.

[con05] 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh,
PA, USA, Proceedings. IEEE Computer Society, October 23–25 2005.

[dBCvKO08] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer, 3 edition, 2008.

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory, volume 3. Springer Heidelberg, 2006.
[FH13] H. Férée and M. Hoyrup. Higher-Order Complexity in Analysis. In CCA13 [CCA13], pages

22–35. Extended abstract.
[FHHP] H. Férée, E. Hainry, M. Hoyrup, and R. Péchoux. Polynomial-Time Computable Real Functions.
[Fri84] H. Friedman. The Computational Complexity of Maximization and Integration. Advances in

Mathematics, 53(1):80–98, 1984.
[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-

tion. Springer, Berlin, 1988.
[GN94] X. Ge and A. Nerode. On Extreme Points of Convex Compact Turing Located Sets. Logical

Foundations of Computer Science, pages 114–128, 1994.
[Grz57] A. Grzegorczyk. On the Definition of Computable Real Continuous Functions. Fundamenta

Mathematicae, 42:61–71, 1957.

http://arxiv.org/abs/cs/0502066

40 C. RÖSNICK-NEUGEBAUER

[GS88] S. Grollmann and A.L. Selman. Complexity Measures for Public-Key Cryptosystems. SIAM
Journal on Computing, 17(2):309–335, 1988.

[GWX08] T. Grubba, K. Weihrauch, and Y. Xu. Effectivity on Continuous Functions in Topological
Spaces. Electronic Notes in Theoretical Computer Science, 202:237–254, 2008.

[Her02] P. Hertling. A Comparison of certain Representations of Regularly Closed Sets. Electronic
Notes in Theoretical Computer Science, 66(1):65–78, 2002.

[Hoo90] H.J. Hoover. Feasible Real Functions and Arithmetic Circuits. SIAM Journal on Computing,
19(1):182–204, 1990.

[Hoy12] M. Hoyrup. On the Inversion of Computable Functions. 2012.
[HT03] C.M. Homan and M. Thakur. One-Way Permutations and Self-Witnessing Languages. Journal

of Computer and System Sciences, 67:608–622, 2003.
[Kaw11] A. Kawamura. Computational Complexity in Analysis and Geometry. PhD thesis, University of

Toronto, 2011.
[KC96] B.M. Kapron and S.A. Cook. A new Characterization of Type-2 Feasibility. SIAM Journal on

Computing, 25(1):117–132, 1996.
[KC12] A. Kawamura and S.A. Cook. Complexity Theory for Operators in Analysis. ACM Transactions

on Computation Theory (TOCT), 4(2):5, 2012.
[KF82] Ker-I Ko and H. Friedman. Computational Complexity of Real Functions. Theoretical Computer

Science, 20(3):323–352, 1982.
[KMRZ12] A. Kawamura, N.Th. Müller, C. Rösnick, and M. Ziegler. Parameterized Uniform Complexity

in Numerics: from Smooth to Analytic, from NP-Hard to Polytime. CoRR, abs/1211.4974,
2012.

[Ko85] Ker-I Ko. On Some Natural Completeness Operators. SIAM Journal on Computing, 37(1):1–30,
1985.

[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser Boston Inc., 1991.
[Ko98] K. Ko. Polynomial-Time Computability in Analysis. Studies in Logic and the Foundations of

Mathematics, 139:1271–1317, 1998.
[KO01] U. Kohlenbach and P.B. Oliva. Effective Bounds on Strong Unicity in L1-Approximation. Basic

Research in Computer Science (BRICS), 14, 2001.
[Koh90] U. Kohlenbach. Theorie der majorisierbaren und stetigen Funktionale und ihre Anwendungen bei

der Extraktion von Schranken aus inkonstruktiven Beweisen: Effektive Eindeutigkeitsmodule bei
besten Approximationen aus ineffektiven Beweisen. PhD thesis, Goethe-Universität Frankfurt
(Main), 1990.

[Koh93] U. Kohlenbach. Effective Moduli from ineffective uniqueness proofs. An Unwinding of de La
Vallée Poussin’s proof for Chebycheff approximation. Num. Funct. Anal. Optim., 14:581–606,
1993.

[KS95] M. Kummer and M. Schäfer. Computability of Convex Sets. In STACS [con95], pages 550–561.
[KSZ13] A. Kawamura, F. Steinberg, and M. Ziegler. On the Computational Complexity of Poisson’s

and Laplace’s Equation. In CCA13 [CCA13], page 138. Abstract.
[KY08] K. Ko and F. Yu. On the Complexity of Convex Hulls of Subsets of the Two-Dimensional Plane.

Electronic Notes in Theoretical Computer Science, 202:121–135, 2008.
[Lam06] B. Lambov. The Basic Feasible Functionals in Computable Analysis. Journal of Complexity,

22(6):909–917, 2006. Computability and Complexity in Analysis.
[LLM01] S. Labhalla, H. Lombardi, and E. Moutai. Espaces métriques rationnellement présentés et

complexité, le cas de l’espace des fonctions réelles uniformément continues sur un intervalle
compact. Theoretical Computer Science, 250(1):265–332, 2001.

[McN08] T.H. McNicholl. A Uniformly Computable Implicit Function Theorem. Mathematical Logic
Quarterly, 54(3):272–279, 2008.

[Meh76] K. Mehlhorn. Polynomial and Abstract Subrecursive Classes. Journal of Computer and System
Sciences, 12(2):147–178, 1976.

[Mül87] N.Th. Müller. Uniform Computational Complexity of Taylor Series. In Ottmann [Ott87], pages
435–444.

[Mül00] N.Th. Müller. The iRRAM: Exact Arithmetic in C++. In Blanck et al. [BBH01], pages 222–252.

CLOSED SETS AND OPERATORS THEREON 41

[Ott87] Thomas Ottmann, editor. 14th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 1987), Karlsruhe, Germany, Proceedings, volume 267 of Lecture Notes in
Computer Science. Springer, July 13–17 1987.

[Ret08] R. Rettinger. Computability and Complexity Aspects of Univariate Complex Analysis, 2008.
Habilitation thesis.

[Ret13] R. Rettinger. Computational Complexity in Analysis. In CCA13 [CCA13], pages 100–109.
Extended abstract.

[Rös14] Carsten Rösnick. Parametrisierte uniforme Berechnungskomplexität in Geometrie und Numerik.
PhD thesis, Technische Universität Darmstadt, Wiesbaden, 2014.

[RW02] R. Rettinger and K. Weihrauch. The Computational Complexity of Some Julia Sets. Electronic
Notes in Theoretical Computer Science, 66(1):154–164, 2002.

[Sch02] M. Schröder. Extended Admissibility. Theoretical Computer Science, 284:519–538, 2002.
[TWW88] J.F. Traub, G.W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity. Academic

Press, 1988.
[Wei00] K. Weihrauch. Computable Analysis: An Introduction. Springer, 2000.
[WK87] K. Weihrauch and C. Kreitz. Representations of the Real Numbers and of the Open Subsets of

the Set of Real Numbers. Annals of Pure and Applied Logic, 35:247–260, 1987.
[ZB04] M. Ziegler and V. Brattka. Computability in Linear Algebra. Theoretical Computer Science,

326(1):187–211, 2004.
[Zho96] Q. Zhou. Computable Real-Valued Functions on Recursive Open and Closed Subsets of

Euclidean Space. Mathematical Logic Quarterly, 42(1):379–409, 1996.
[Zie02] M. Ziegler. Computability on Regular Subsets of Euclidean Space.Mathematical Logic Quarterly,

48(1):157–181, 2002.
[Zie04] M. Ziegler. Computable Operators on Regular Sets. Mathematical Logic Quarterly, 50(4-5):392–

404, 2004.
[Zie06] M. Ziegler. Effectively Open Real Functions. Journal of Complexity, 22(6):827–849, 2006.
[ZM08] X. Zhao and N.Th. Müller. Complexity of Operators on Compact Sets. Electronic Notes in

Theoretical Computer Science, 202:101–119, 2008.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	Results obtained in this paper
	Preliminaries, nomenclature

	2. Model, representations and complexity
	2.1. Computational models
	2.2. Second-order representations of sets
	2.3. Enrichments
	2.4. Complexity of functions and operators: upper and lower bounds
	2.5. Common proof arguments

	3. Comparing representations of sets
	3.1. Technicalities
	3.2. Topological versus computable equivalence of norms
	3.3. Polynomial-time relations

	4. Geometric operations on sets
	4.1. Choice: Finding a point in a set
	4.2. Binary union
	4.3. Binary intersection
	4.4. Projection operator

	5. Function inversion and image computation
	5.1. Prerequisites
	5.2. Function inversion: some upper and lower bounds
	5.3. Image

	6. Future research
	Acknowledgements
	References

